WO2023233452A1 - Outdoor unit and refrigeration cycle device - Google Patents
Outdoor unit and refrigeration cycle device Download PDFInfo
- Publication number
- WO2023233452A1 WO2023233452A1 PCT/JP2022/021891 JP2022021891W WO2023233452A1 WO 2023233452 A1 WO2023233452 A1 WO 2023233452A1 JP 2022021891 W JP2022021891 W JP 2022021891W WO 2023233452 A1 WO2023233452 A1 WO 2023233452A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- flow path
- compressor
- valve
- passage
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims description 71
- 239000003507 refrigerant Substances 0.000 claims abstract description 316
- 239000003921 oil Substances 0.000 claims abstract description 127
- 238000011084 recovery Methods 0.000 claims abstract description 95
- 239000010721 machine oil Substances 0.000 claims abstract description 70
- 239000007788 liquid Substances 0.000 claims description 99
- 230000006870 function Effects 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 238000002347 injection Methods 0.000 description 53
- 239000007924 injection Substances 0.000 description 53
- 238000000034 method Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 17
- 230000007423 decrease Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 238000001704 evaporation Methods 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 239000012071 phase Substances 0.000 description 7
- 239000010726 refrigerant oil Substances 0.000 description 5
- 238000004781 supercooling Methods 0.000 description 5
- 238000007906 compression Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
Definitions
- the present disclosure relates to an outdoor unit and a refrigeration cycle device.
- Patent Document 1 discloses a refrigeration system that includes a compressor, a condenser, a liquid receiver, an expansion valve, an accumulator, a circulation passage through which a refrigerant circulates through an evaporator, and an injection passage branching from the circulation passage. is disclosed.
- a part of the refrigerant flowing from the condenser toward the expansion valve is merged with the intermediate-pressure refrigerant of the compressor using an injection flow path, thereby adjusting the discharge temperature of the compressor. It is possible to reduce the
- the refrigeration apparatus described in Patent Document 1 includes an economizer that performs heat exchange between the refrigerant flowing in the circulation channel from the condenser toward the expansion valve and the refrigerant flowing in the injection channel.
- An economizer is a type of heat exchanger.
- the refrigeration system described in Patent Document 1 further includes a suction injection and performs injection into the low-pressure piping on the suction side of the compressor to reduce the pressure in the injection flow path and ensure supercooling. There is.
- the accumulator has a function of not directly returning the liquid refrigerant to the compressor, and an oil return mechanism that returns only the refrigerating machine oil taken out from the compressor to the compressor.
- the oil return mechanism of the accumulator is composed of U-shaped piping.
- One end of the U-shaped pipe is an outflow pipe that returns refrigerating machine oil to the compressor side.
- the outflow pipe is inserted into and fixed to the upper part of the container of the accumulator.
- the bent portion of the U-shaped pipe is configured to be disposed below the container of the accumulator.
- An oil return hole is provided at the bottom of the bent portion of the U-shaped pipe.
- the refrigerating machine oil taken out from the compressor accumulates in the evaporator or in the suction pipe connecting the outdoor unit and the load device. If the refrigerating machine oil does not return to the compressor, the compressor may run out of oil, which may cause wear or failure of the compressor.
- an accumulator is provided before the compressor.
- the accumulator temporarily stores therein the liquid refrigerant and refrigerating machine oil that return from the load device to the compressor.
- the accumulator mainly returns the refrigerating machine oil to the compressor through the oil return hole, thereby preventing the compressor from running out of oil.
- thermo OFF refers to a state in which when the controlled value reaches the target value, the compressor stops operating and only air is blown to the air-conditioned space.
- the operation of the outdoor unit is temporarily stopped when recovering refrigeration oil from the load device. Then, after confirming that the evaporation temperature has risen, the compressor is started, and an oil recovery operation is periodically performed in which the compressor is operated at a frequency higher than a certain level. Therefore, the operational efficiency of the refrigeration system deteriorates due to losses caused by starting and stopping the oil recovery operation.
- the internal state of the accumulator is in one of the following cases.
- the internal state of the accumulator is either a state in which the refrigerating machine oil and the refrigerant are dissolved, or a state in which the refrigerating machine oil and the refrigerant are separated into two phases with the density of the refrigerating machine oil being higher than that of the refrigerant and the refrigerating machine oil being accumulated at the bottom. It is one of the following states. When the refrigerating machine oil and refrigerant are dissolved, the oil return mechanism of the accumulator works well.
- the oil return mechanism of the accumulator may not function and the refrigerating machine oil may accumulate in the accumulator.
- the operation of the oil return mechanism largely depends on physical property values such as the viscosity and solubility of the refrigerating machine oil.
- the refrigerant oil and refrigerant may separate into two phases within the operating range of the refrigeration system. Therefore, within the operating range of the refrigeration system, not all combinations of refrigerant and refrigeration oil satisfy favorable conditions for the operation of the oil return mechanism.
- the present disclosure has been made to solve such problems, and utilizes the characteristics of refrigerating machine oil to control whether or not refrigerant flows from the injection flow path into the circulation flow path, thereby ensuring sufficient return.
- the object is to obtain an outdoor unit and a refrigeration cycle device that can ensure oil capacity.
- An outdoor unit configured to be connected to a load device including a first expansion valve and an evaporator, and includes a compressor having a suction port and a discharge port, and a condenser. a heat exchanger having a first passage and a second passage and performing heat exchange between a refrigerant flowing in the first passage and a refrigerant flowing in the second passage, and a control device,
- the compressor, the condenser, the first passage of the heat exchanger, the first expansion valve of the load device, and the evaporator of the load device form a circulation flow path in which refrigerant circulates, and the a bypass that allows refrigerant to flow from a first branch located between the outlet of the condenser and the load device in the circulation flow path to a first connection located between the suction port and the load device;
- the bypass flow path further includes a suction on-off valve that switches whether or not refrigerant flows into the first connection portion, and the control device controls the compressor and the suction
- a refrigeration cycle device includes the outdoor unit described above and the load device connected to the outdoor unit.
- an injection flow path that bypasses the high pressure side and the low pressure side is provided.
- the control device opens the suction on-off valve and disconnects the suction port and load from the injection flow path before starting the oil recovery operation.
- a refrigerant is introduced into a first connection disposed between the refrigerant and the device.
- FIG. 1 is a configuration diagram showing the overall configuration of a refrigeration cycle device 1 according to Embodiment 1.
- FIG. 2 is a configuration diagram showing various sensors and a control device 100 arranged in the refrigeration cycle device 1 shown in FIG. 1.
- FIG. This is a Daniel chart showing the characteristics of refrigeration oil and refrigerant.
- This is a Daniel chart showing the characteristics of refrigeration oil and refrigerant.
- 2 is a flowchart showing a procedure for transitioning from normal operation to oil recovery operation in the refrigeration cycle device 1 according to the first embodiment.
- 2 is a flowchart showing a processing procedure of an oil recovery operation under first control in the refrigeration cycle device 1 according to the first embodiment.
- 7 is a flowchart showing a processing procedure for oil recovery operation under second control in the refrigeration cycle device 1 according to the first embodiment.
- FIG. 2 is a configuration diagram showing the overall configuration of a refrigeration cycle device 1 according to a second embodiment.
- 10 is a configuration diagram showing various sensors and a control device 100 arranged in the refrigeration cycle device 1 shown in FIG. 9.
- FIG. 7 is a diagram schematically showing a configuration of an accumulator 40 provided in a refrigeration cycle device 1 according to a third embodiment.
- FIG. 1 is a configuration diagram showing the overall configuration of a refrigeration cycle device 1 according to the first embodiment. Note that FIG. 1 functionally shows the connection relationship and arrangement of each device in the refrigeration cycle device 1, and does not necessarily show the arrangement in a physical space.
- the refrigeration cycle device 1 includes an outdoor unit 2, a load device 3, a first extension pipe 88, and a second extension pipe 84.
- the outdoor unit 2 and the load device 3 are connected via a first extension pipe 88 and a second extension pipe 84.
- the outdoor unit 2 is an outdoor unit of the refrigeration cycle device 1 configured to be connected to the load device 3.
- the outdoor unit 2 is installed outdoors.
- the load device 3 is a load device of the refrigeration cycle device 1, and is installed in the space to be cooled.
- the space to be cooled is, for example, an indoor space.
- the outdoor unit 2 includes a compressor 10, a condenser 20, a fan 22, a liquid receiver 73, a heat exchanger 30, an accumulator 40, and piping 80 to 83 and 89.
- the heat exchanger 30 has a first passage H1 and a second passage H2, and performs heat exchange between the refrigerant flowing through the first passage H1 and the refrigerant flowing through the second passage H2. Heat exchanger 30 is sometimes called an economizer.
- the load device 3 includes a first expansion valve 50, an evaporator 60, and piping 85 to 87.
- Evaporator 60 performs heat exchange between air and refrigerant.
- the evaporator 60 is, for example, a fin-and-tube heat exchanger having heat exchanger tubes and fins. In the refrigeration cycle device 1, the evaporator 60 evaporates the refrigerant by absorbing heat from the air in the space to be cooled.
- the first expansion valve 50 is, for example, an electronic expansion valve that reduces the pressure of the refrigerant. Further, the first expansion valve 50 may be a temperature expansion valve that is controlled independently of the outdoor unit 2, for example.
- the piping 85 has one end connected to the second extension piping 84 and the other end connected to the inlet of the first expansion valve 50 .
- the piping 86 has one end connected to the outlet of the first expansion valve 50 and the other end connected to the inlet of the evaporator 60.
- the piping 87 has one end connected to the outlet of the evaporator 60 and the other end connected to the first extension piping 88 .
- the load device 3 also includes an on-off valve 28 that operates to prevent the object to be cooled from becoming too cold. By detecting the temperature of the object to be cooled (temperature inside the refrigerator, etc.) and closing the on-off valve 28, it is possible to prevent excessive cooling and adjust the temperature of the object to be cooled. In addition, for periodic defrosting operation, the operation of closing the on-off valve 28 and turning off the thermostat is also carried out.
- the accumulator 40, the compressor 10, the condenser 20, the liquid receiver 73, the first passage H1 of the heat exchanger 30, the first expansion valve 50 of the load device 3, and the evaporator 60 of the load device 3 are connected to the refrigerant.
- the "main refrigerant circuit” is sometimes called the "circulation flow path" of the refrigeration cycle.
- Piping 89 is a piping arranged between first extension piping 88 and accumulator 40 .
- the pipe 97 is a pipe arranged between the accumulator 40 and the compressor 10.
- the compressor 10 has a suction port G1, a discharge port G2, and an intermediate pressure port G3.
- the compressor 10 compresses the refrigerant sucked through the pipes 97 and 96 and discharges it to the pipe 80.
- the pipe 96 is a pipe that constitutes a part of an injection flow path 101, which will be described later, and is connected to an intermediate pressure port G3 of the compressor 10.
- Piping 97 connects accumulator 40 and suction port G1 of compressor 10.
- the compressor 10 is, for example, an inverter compressor whose driving frequency can be arbitrarily changed by inverter control. As described above, the compressor 10 is provided with the intermediate pressure port G3, and the refrigerant from the intermediate pressure port G3 can be made to flow into the middle part of the compression process.
- Compressor 10 is configured to adjust its rotational speed according to a control signal from control device 100 (see FIG. 2). By adjusting the rotational speed of the compressor 10, the amount of refrigerant circulated can be adjusted, and the capacity of the refrigeration cycle device 1 can be adjusted.
- the compressor 10 can be of various types, such as a scroll type, a rotary type, a screw type, or a two-stage compression type of each of these types.
- the operation of the compressor 10 is performed according to the air conditioning load of the space to be cooled within the control value range of "minimum frequency" and "maximum frequency" set for control by the control device 100. The frequency is determined and operation is carried out.
- Minimum frequency is sometimes referred to as the minimum operating frequency or minimum allowable frequency.
- the “highest frequency” is sometimes referred to as the maximum operating frequency or the maximum allowed frequency.
- the "minimum frequency” set during normal operation will be referred to as “first minimum frequency”
- the “minimum frequency” set during oil recovery operation for recovering refrigerating machine oil will be referred to as “second minimum frequency”. ”.
- the inlet of the condenser 20 is connected to a pipe 80, into which the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 flows.
- the condenser 20 is configured so that the high temperature, high pressure gas refrigerant discharged from the discharge port G2 of the compressor 10 and the outside air exchange heat (radiate heat).
- the condenser 20 is, for example, a fin-and-tube heat exchanger having heat exchanger tubes and fins. Through heat exchange in the condenser 20, the refrigerant is condensed and changed from a gas phase to a liquid phase. In this way, the refrigerant discharged from the compressor 10 to the pipe 80 is condensed and liquefied in the condenser 20 and flows out to the pipe 81.
- a fan 22 for feeding outside air is attached to the condenser 20 in order to increase the efficiency of heat exchange in the condenser 20.
- the fan 22 supplies outside air to the condenser 20 with which the refrigerant exchanges heat in the condenser 20 .
- the refrigerant pressure (high pressure side pressure) on the discharge side of the compressor 10 can be adjusted.
- the rotation speed of fan 22 is controlled by control device 100.
- the liquid receiver 73 is connected between the piping 81 and the piping 82.
- the liquid receiver 73 is a container that stores the refrigerant that has been condensed into a liquid phase in the condenser 20 as a surplus amount of refrigerant with respect to the main refrigerant circuit.
- the pipe 81 is a pipe that connects the outlet of the condenser 20 and the inlet of the liquid receiver 73.
- the pipe 82 is a pipe that connects the outlet of the liquid receiver 73 and the inlet of the first passage H1 of the heat exchanger 30.
- the outdoor unit 2 further includes an "injection passage 101" that branches from the main refrigerant circuit and sends refrigerant to the compressor 10 via the second passage H2.
- Injection channel 101 is composed of pipes 91 to 92, pipe 96, and pipe 98. Note that the "injection flow path 101" is sometimes referred to as a "bypass flow path.”
- the injection flow path 101 is provided between the first branch portion P1 and the first connection portion P2.
- the first branch P1 is arranged between the outlet of the condenser 20 and the load device 3 in the main refrigerant circuit. More specifically, the first branch P1 is arranged between the outlet of the first passage H1 in the main refrigerant circuit and the load device 3.
- the first connecting portion P2 is arranged upstream of the suction port G1 of the compressor 10. More specifically, the first connection portion P2 is arranged between the load device 3 and the accumulator 40.
- the injection flow path 101 includes a "first refrigerant flow path” made up of a pipe 91, a “second refrigerant flow path” made up of a pipe 92 and a pipe 98, and a "third refrigerant flow path” made of a pipe 96. ⁇ Route''.
- the "first refrigerant flow path" (piping 91) is a refrigerant flow path for flowing the refrigerant from the pipe 83, which is the high-pressure part of the main refrigerant circuit, to the inlet of the second passage H2 of the heat exchanger 30.
- One end of the pipe 91 is connected to the pipe 83, and the other end of the pipe 91 is connected to the entrance of the second passage H2.
- the "third refrigerant flow path” (piping 96) is a refrigerant flow path branched from the "second refrigerant flow path" (pipes 92, 98). One end of the “third refrigerant flow path” (piping 96) is connected to the piping 92, and the other end is connected to the intermediate pressure port G3 of the compressor 10.
- the “third refrigerant flow path” is a refrigerant flow path for flowing refrigerant from the outlet of the second passage H2 of the heat exchanger 30 to the intermediate pressure port G3 of the compressor 10. Piping 96 is arranged between piping 92 and intermediate pressure port G3.
- the "second refrigerant flow path” (pipes 92, 98) is connected at one end to the outlet of the second passage H2 of the heat exchanger 30 and at the other end to the first connection part P2 arranged in the piping 89. There is.
- the "second refrigerant flow path” (piping 92, 98) is a refrigerant flow path for flowing the refrigerant from the outlet of the second passage H2 of the heat exchanger 30 to the first connection portion P2.
- Piping 92 is arranged between the outlet of second passage H2 and piping 96.
- Piping 98 is arranged between piping 92 and first connection portion P2.
- the piping 89 is a piping connected between the first extension piping 88 and the accumulator 40, as shown in FIG.
- An intermediate on-off valve 75 is arranged in the "third refrigerant flow path" (piping 96) of the injection flow path 101. By opening and closing the intermediate on-off valve 75, it is possible to switch whether or not refrigerant flows from the third refrigerant flow path to the intermediate pressure port G3 of the compressor 10. In addition, in FIG. 1, the intermediate on-off valve 75 does not necessarily need to be provided. If the intermediate opening/closing valve 75 is not provided, the second expansion valve 71 controls the amount of refrigerant flowing into the intermediate pressure port G3 or controls whether or not the refrigerant flows into the intermediate pressure port G3.
- a suction on-off valve 76 is arranged in the "second refrigerant flow path" (pipes 92, 98) of the injection flow path 101. More specifically, the suction on-off valve 76 is arranged in the pipe 98 of the second refrigerant flow path. By opening and closing the suction on-off valve 76, it is possible to switch whether or not the refrigerant flows from the second refrigerant flow path to the first connection portion P2.
- the intermediate on-off valve 75 and the suction on-off valve 76 function as a flow path switching device that switches the destination of the refrigerant flowing out from the outlet of the second passage H2. Specifically, when the suction on-off valve 76 is in the open state, the refrigerant flowing out from the outlet of the second passage H2 flows into the pipe 89. On the other hand, when the intermediate on-off valve 75 is open and the suction on-off valve 76 is closed, the refrigerant flowing out from the outlet of the second passage H2 flows to the intermediate pressure port G3. The opening and closing operations of the intermediate on-off valve 75 and the suction on-off valve 76 cause the refrigerant from the injection flow path 101 to flow into at least one of the intermediate pressure port G3 and the first connection portion P2 of the compressor 10.
- a second expansion valve 71 is arranged in the pipe 91.
- the second expansion valve 71 is an electronic expansion valve that can reduce the pressure of the refrigerant flowing from the pipe 83, which is a high pressure section in the main refrigerant circuit, to an intermediate pressure PM. Therefore, the pressure of the refrigerant flowing through the "second refrigerant flow path" and the "third refrigerant flow path” is the intermediate pressure PM.
- the heat exchanger 30 has a first passage H1 and a second passage H2, and is configured to exchange heat between the refrigerant flowing through the first passage H1 and the refrigerant flowing through the second passage H2.
- the heat exchanger 30 performs heat exchange between the refrigerant flowing through the first passage H1, which is a part of the main refrigerant circuit, and the refrigerant flowing through the second passage H2, which is a part of the injection passage 101.
- the refrigerant flowing through the first passage H1 is on the side to be cooled.
- the first passage H1 has an inlet connected to the pipe 82 and an outlet connected to the pipe 83.
- the second passage H2 has an inlet connected to the pipe 91 and an outlet connected to the pipe 92.
- FIG. 2 is a configuration diagram showing various sensors and the control device 100 arranged in the refrigeration cycle device 1 shown in FIG.
- the outdoor unit 2 includes pressure sensors 110 to 112, temperature sensors 120 to 125, and a control device 100.
- the load device 3 includes a temperature sensor 126.
- the pressure sensor 110 detects the pressure PL at the suction port G1 of the compressor 10 and outputs the detected value to the control device 100.
- Pressure PL is sometimes referred to as "low pressure” or “evaporation pressure.”
- the pressure sensor 111 detects the discharge pressure PH of the refrigerant discharged from the discharge port G2 of the compressor 10, and outputs the detected value to the control device 100.
- Discharge pressure PH is sometimes referred to as "high pressure” or “condensing pressure.”
- the pressure sensor 112 detects the intermediate pressure PM of the refrigerant flowing out from the outlet of the second passage H2 and flowing through the pipe 92, and outputs the detected value to the control device 100.
- Intermediate pressure PM is lower than discharge pressure PH and higher than pressure PL.
- the area from the discharge port G2 of the compressor 10 to the inlet of the first expansion valve 50 will be referred to as the "high pressure side", and the outlet of the first expansion valve 50 will be referred to as the "high pressure side”.
- the area from the air to the suction port G1 of the compressor 10 is referred to as the "low pressure side.”
- the injection flow path 101 is referred to as an "intermediate pressure section.”
- the temperature sensor 120 detects the discharge temperature TH of the refrigerant discharged from the compressor 10 and outputs the detected value to the control device 100.
- the temperature sensor 121 detects the refrigerant temperature T1 of the pipe 81 at the outlet of the condenser 20 and outputs the detected value to the control device 100.
- the temperature sensor 122 detects the refrigerant temperature at the outlet of the first passage H1 of the heat exchanger 30 as the outlet temperature T2 of the heat exchanger 30, and outputs the detected value to the control device 100.
- the temperature sensor 123 detects the ambient temperature of the outdoor unit 2 as the outside air temperature TA, and outputs the detected value to the control device 100.
- the temperature sensor 123 is placed, for example, near the condenser 20, but may be placed on the casing of the outdoor unit 2, and the placement position is not limited.
- the temperature sensor 124 detects the temperature TL of the pipe 97 connected to the suction port G1 of the compressor 10 and outputs the detected value to the control device 100.
- the temperature sensor 125 detects the temperature at the outlet of the second passage H2 of the heat exchanger 30 and outputs the detected value to the control device 100.
- the temperature sensor 126 detects the outlet temperature of the evaporator 60 and automatically adjusts the first expansion valve 50.
- the control device 100 includes a CPU (Central Processing Unit) 102, a memory 104, an input/output buffer (not shown) for inputting and outputting various signals, and the like.
- the memory 104 includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
- the CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program.
- the program stored in the ROM is a program in which the processing procedure of the control device 100 is written.
- the control device 100 executes control of each device in the outdoor unit 2 according to these programs. This control is not limited to processing by software, but can also be performed by dedicated hardware (electronic circuit).
- the control device 100 controls the operations of the compressor 10, the second expansion valve 71, the intermediate on-off valve 75, and the suction on-off valve 76. Further, the control device 100 may also control the first expansion valve 50.
- FIGS. 3 and 4 are Daniel charts representing the characteristics of refrigerating machine oil and refrigerant.
- the horizontal axis represents temperature
- the vertical axis represents oil viscosity.
- Each diagonal line in FIGS. 3 and 4 indicates the solubility between the refrigerant and the refrigerant in the refrigerating machine oil, and each curve indicates an isobaric line.
- control device 100 opens the intermediate on-off valve 75 and closes the suction on-off valve 76, and controls the second temperature so that the discharge temperature TH of the compressor 10 matches a preset target temperature.
- the opening degree of the expansion valve 71 is feedback-controlled. Specifically, the control device 100 acquires the discharge temperature TH of the compressor 10 from the temperature sensor 120. When the discharge temperature TH of the compressor 10 is higher than the target temperature, the control device 100 increases the opening degree of the second expansion valve 71. As a result, the amount of refrigerant flowing into the intermediate pressure port G3 via the liquid receiver 73 increases, so that the discharge temperature TH decreases.
- the control device 100 reduces the opening degree of the second expansion valve 71. As a result, the amount of refrigerant flowing into the intermediate pressure port G3 via the liquid receiver 73 decreases, so that the discharge temperature TH increases.
- the control device 100 maintains the opening degree of the second expansion valve 71 at the current state.
- control device 100 controls the opening degree of the second expansion valve 71 so that the discharge temperature TH of the compressor 10 approaches the target temperature.
- control device 100 increases the speed of the compressor 10 at the determined appropriate timing and increases the amount of refrigerant circulating through the refrigeration cycle device 1, thereby increasing the flow rate of the refrigerant in the pipes and causing the refrigerant to accumulate. Collect the refrigerating machine oil.
- FIGS. 3 and 4 show Daniel charts representing characteristics depending on the combination of refrigerating machine oil and refrigerant. From the Daniel charts of FIGS. 3 and 4, it can be seen that the viscosity of refrigerating machine oil tends to decrease as the pressure increases. Utilizing this characteristic of refrigerating machine oil, in the first embodiment, as a means to increase the pressure on the low pressure side of the compressor 10, the opening and closing of the suction on-off valve 76 is controlled to perform an oil recovery operation using suction injection. do.
- FIG. 5 is a flowchart showing a procedure for transitioning from normal operation to oil recovery operation in the refrigeration cycle device 1 according to the first embodiment.
- the control device 100 determines whether the compressor 10 is in the activated state (step S1). If the compressor 10 is not started (YES in step S1), start-up control of the compressor 10 is performed using control of the intermediate on-off valve 75 and the suction on-off valve 76, which are flow path switching devices (step S2). .
- the startup control of the compressor 10 performed in step S2 will be described later using FIG. 8.
- Step S3 the control device 100 determines whether the current operating frequency of the compressor 10 is lower than a preset second minimum frequency.
- the second lowest frequency is the lowest frequency used by the control device 100 to control the compressor 10 when performing the oil recovery operation.
- step S3 If the current operating frequency of the compressor 10 is lower than the second minimum frequency (YES in step S3), the control device 100 proceeds to the process of step S4. On the other hand, if the current operating frequency of the compressor 10 is equal to or higher than the second lowest frequency, the flow in FIG. 5 is directly ended.
- step S4 the control device 100 determines whether the operating frequency of the compressor 10 continues to be lower than the second minimum frequency for a preset first period or more. That is, the control device 100 determines whether or not a first period or more has elapsed since the operating frequency of the compressor 10 was determined to be lower than the second minimum frequency in step S3.
- the first period is, for example, one hour, but is not limited thereto.
- step S4 If it is determined that the operating frequency of the compressor 10 is lower than the second minimum frequency for the first period or longer (YES in step S4), the control device 100 performs the oil recovery operation in step S6 or step S7. do.
- the control device 100 determines whether or not the suction port G1 of the compressor 10 is in a liquid back state in step S5 to determine which of step S6 and step S7 to select. That is, before starting the oil recovery operation, the control device 100 determines whether the state of the suction port G1 of the compressor 10 is in a liquid back state, and controls the oil recovery operation based on the presence or absence of the liquid back state. The type of control is switched (step S5).
- the control device 100 has first control and second control as types of control for oil recovery operation.
- liquid back state means that the refrigerant sucked into the compressor 10 is not completely evaporated in the evaporator 60, and liquid refrigerant is continuously sucked into the compressor 10 together with the gas refrigerant. Note that when the suction port G1 of the compressor 10 is in a liquid back state, the following conditions are satisfied.
- step S5 the control device 100 determines the presence or absence of liquid back by determining whether the above conditions are satisfied. Therefore, the control device 100 acquires the pressure PL at the suction port G1 portion of the compressor 10 from the pressure sensor 110. Then, the control device 100 calculates the saturation temperature of the refrigerant at the pressure PL based on the pressure PL. The control device 100 also acquires the temperature TL of the suction pipe of the compressor 10 from the temperature sensor 124. Then, the control device 100 determines whether the difference DL between the saturation temperature of the refrigerant at the pressure PL and the temperature TL is less than a first threshold value set in advance. Note that the first threshold is, for example, 5K (Kelvin), but is not limited to this.
- control device 100 determines that the compressor 10 is in a liquid back state (NO in step S5), and performs the oil recovery operation under the second control in step S7.
- control device 100 determines that the compressor 10 is not in the liquid back state (YES in step S5), and performs the oil recovery operation according to the first control in step S6.
- the control device 100 determines the timing to perform the oil recovery operation based on the operating frequency of the compressor 10.
- the first embodiment is not limited to that case. For example, if the compressor 10 is not an inverter compressor but a constant-speed compressor, there is no frequency fluctuation, so regular oil recovery operation may be performed at a preset cycle. In that case, instead of steps S3 and S4 in the flow of FIG. 5, the control device 100 determines whether the integrated value of the operating time of the compressor 10 is equal to or greater than a preset threshold. If the integrated value of the operating time of the compressor 10 is equal to or greater than the threshold value, the process proceeds to step S5, and if the integrated value of the operating time of the compressor 10 is less than the threshold value, the flow of FIG. 5 is directly ended.
- FIG. 6 is a flowchart showing the processing procedure of the oil recovery operation under the first control in the refrigeration cycle device 1 according to the first embodiment.
- the control device 100 determines that there is no liquid back in step S5 of FIG. It shows the flow.
- control device 100 moves to step S6 in FIG. 5, as shown in FIG. 6, the control device 100 opens the suction on-off valve 76 (step S11). Thereby, the high pressure side and the low pressure side of the refrigeration cycle device 1 are bypassed, so that the pressure PL of the low pressure portion detected by the pressure sensor 110 can be increased.
- step S12 determines whether the pressure PL exceeds a preset second threshold (step S12). If the pressure PL exceeds the second threshold, the process advances to step S13. On the other hand, if the pressure PL is less than or equal to the second threshold, the process advances to step S16.
- step S16 the control device 100 determines whether a preset second period or more has elapsed since the first determination in step S12. The second period is, for example, 3 minutes, but is not limited thereto. If it is determined in step S16 that the second period or more has not elapsed (NO in step S16), the control device 100 returns to the process in step S12. On the other hand, if it is determined in step S16 that the second period or more has elapsed (YES in step S16), the control device 100 proceeds to the process in step S13.
- step S13 when the pressure PL has been sufficiently increased in steps S12 and S16 by opening the suction on-off valve 76, the suction on-off valve 76 is closed (step S13).
- the reason for performing the process in step S16 is as follows. If the mode is such that the pressure PL cannot rise completely and the suction on-off valve 76 is kept open, the amount of refrigerant circulating to the evaporator 60 will decrease during that period. In that case, the refrigeration capacity of the refrigeration cycle device 1 becomes insufficient, and the space to be cooled becomes uncooled. Therefore, it is desirable to close the suction on-off valve 76 when the viscosity of the refrigerating machine oil can be reduced to some extent, that is, after the second period has elapsed.
- control device 100 changes the lowest frequency from the first lowest frequency during normal operation to the second lowest frequency during oil recovery operation (step S14). Note that the second lowest frequency is set to a higher frequency than the first lowest frequency.
- step S14 by changing the setting of the lowest frequency of the compressor 10 to the second lowest frequency necessary for the oil recovery operation, the operation continues at the second lowest frequency or higher in subsequent operations. be able to.
- the control device 100 determines whether the operation at the second lowest frequency or higher continues for a preset third period or longer (step S15).
- the third period is, for example, 5 minutes, but is not limited to this. If the operation at the second lowest frequency or higher has not continued for the third period or longer (NO in step S15), the control device 100 returns to the process in step S14. On the other hand, if the operation at the second lowest frequency or higher continues for a third period or longer (YES in step S15), the control device 100 returns the lowest frequency to the original first lowest frequency (step S17) and shifts to normal operation. .
- the low pressure side pressure PL detected by the pressure sensor 110 is increased by opening the suction on-off valve 76.
- the viscosity which is a characteristic of refrigerating machine oil, described above using the Daniel charts of FIGS. 3 and 4 can be reduced.
- the speed of the compressor 10 is increased for oil recovery operation with the target evaporation temperature set during normal operation, the evaporation temperature will immediately fall below the target evaporation temperature and the thermostat will be turned off, causing the Oil recovery operations may not be able to continue. Therefore, in the flow of FIG.
- the saturation temperature of the pressure PL detected by the pressure sensor 110 is increased by opening the suction on-off valve 76.
- the operating frequency of the compressor 10 is naturally increased by the capacity control of the compressor 10 by the control device 100, and the oil recovery operation can be continued at a sufficiently high operating frequency.
- thermo-off is avoided by stopping operation for a certain period of time, but in that case, the operating efficiency of the refrigeration cycle apparatus deteriorates due to the start and stop of the refrigeration cycle apparatus.
- the suction on-off valve 76 by opening the suction on-off valve 76, it is possible to avoid turning off the thermostat and continue the oil recovery operation for a sufficient period of time. The number of stops can be reduced. As a result, the operating efficiency of the refrigeration cycle device can be improved.
- oil recovery operation can be performed with the viscosity, which is a characteristic of refrigerating machine oil, reduced.
- FIG. 7 is a flowchart showing the processing procedure of the oil recovery operation under the second control in the refrigeration cycle device 1 according to the first embodiment.
- the control device 100 determines that there is a liquid back in step S5 of FIG. It shows the flow.
- the second control in FIG. 7 is performed when it is determined in step S5 in FIG. 5 that there is liquid back.
- the suction on-off valve 76 is opened in a liquid back state, the refrigerant in the liquid state from the pipe 83 is injected into the first connection part P2, which promotes a tendency for the suction port G1 of the compressor 10 to become slightly damp.
- the load device 3 if oil recovery operation is performed with the suction on-off valve 76 opened while the operation is already in liquid back mode, liquid back up will be promoted and the accumulator 40 will overflow. This may lead to failure of the compressor 10.
- Step S21 when the control device 100 detects the liquid back state based on the detected values of the pressure sensor 110 and the temperature sensor 124, the compressor 10 is first stopped as shown in FIG. (Step S21).
- Step S23 the control device 100 changes the lowest frequency from the first lowest frequency during normal operation to the second lowest frequency during oil recovery operation, and then restarts the compressor 10 with the suction on-off valve 76 closed. Note that when moving from step S22 to step S23, processing similar to step S12 and step S16 in FIG. 6 may be performed.
- the control device 100 increases the operating frequency of the compressor 10 to the second lowest frequency (step S24). Then, the control device 100 determines whether the operation at the second lowest frequency or higher continues for a preset fourth period or longer (step S25). The fourth period is, for example, 5 minutes, but is not limited to this. If the operation at the second lowest frequency or higher has not continued for the fourth period or longer (NO in step S25), the control device 100 returns to the process in step S24. On the other hand, if the operation at the second lowest frequency or higher continues for a fourth period or longer (YES in step S25), the control device 100 returns the lowest frequency to the first lowest frequency during normal operation (step S26) and returns to normal operation. Transition.
- the fourth period is, for example, 5 minutes, but is not limited to this. If the operation at the second lowest frequency or higher has not continued for the fourth period or longer (NO in step S25), the control device 100 returns to the process in step S24. On the other hand, if the operation at the second lowest frequency or higher continues for a fourth
- FIG. 8 is a control flowchart when the compressor 10 is started during normal operation in the refrigeration cycle device 1 according to the first embodiment.
- the control flow in FIG. 8 is the control flow executed in step S2 in FIG.
- control device 100 closes the intermediate on-off valve 75 and the suction on-off valve 76 (step S31).
- control device 100 starts the compressor 10 (step S32) and increases the operating frequency of the compressor 10 (step S33).
- control device 100 determines whether the current operating frequency of the compressor 10 has become equal to or higher than the first lowest frequency during normal operation (step S34).
- step S34 If the current operating frequency of the compressor 10 is less than the first lowest frequency during normal operation (NO in step S34), the control device 100 returns to the process in step S33. On the other hand, if it is confirmed that the current operating frequency of the compressor 10 has increased to the first lowest frequency during normal operation (YES in step S34), the control device 100 proceeds to the process of step S35.
- step S35 the control device 100 opens the intermediate on-off valve 75 and performs normal operation.
- the discharge temperature TH is controlled by the second expansion valve 71 described above.
- the suction on-off valve 76 is opened.
- the high-pressure side and the low-pressure side are bypassed, and the refrigerant flows from the first branch part P1 arranged in the pipe 83 to the first connecting part P2 arranged upstream of the accumulator 40.
- the pressure PL on the low pressure side increases.
- Refrigerating machine oil has a property that its viscosity decreases as the pressure increases. Therefore, as the pressure PL increases, the viscosity of the refrigerating machine oil remaining in the main refrigerant circuit decreases.
- the refrigerating machine oil in each pipe of the main refrigerant circuit can be easily recovered depending on the flow rate of the refrigerant.
- the refrigerant and the refrigerant oil are controlled by controlling whether or not the refrigerant flows into the main refrigerant circuit, which is the circulation flow path, from the injection flow path 101 by utilizing the characteristics of the refrigerant oil. Sufficient oil return capacity can be ensured according to the conditions.
- the control device 100 determines the timing to perform the oil recovery operation according to the control flow shown in FIG. That is, the control device 100 determines to perform the oil recovery operation when the compressor 10 is in operation and the current operating frequency of the compressor 10 is lower than the second minimum frequency that requires the oil recovery operation. do. Thereby, the oil recovery operation can be performed at appropriate timing compared to the case where the oil recovery operation is performed periodically at a fixed period. As a result, the oil recovery operation is not performed at an unnecessary timing, so it is possible to suppress a decrease in operating efficiency due to starting and stopping of the oil recovery operation.
- the control device 100 when performing the oil recovery operation, sets the lowest frequency of the compressor 10 to a second lowest frequency higher than the first lowest frequency, which is the lowest frequency during normal operation. Set.
- the frequency of the compressor 10 when the frequency of the compressor 10 is increased, the evaporation pressure decreases and falls below the target evaporation pressure. Therefore, in the first embodiment, after the pressure PL on the low pressure side is increased by opening the suction on-off valve 76, the frequency of the compressor 10 is increased to the second lowest frequency, and the suction on-off valve 76 is opened.
- the frequency of turning off the thermostat can be reduced compared to the case without it. As a result, it is possible to prevent the oil recovery operation from being interrupted due to the thermostat being turned off, and thus it is possible to secure time to recover the refrigerating machine oil.
- the control device 100 determines whether or not the state of the suction port G1 of the compressor 10 is in a liquid back state before performing the oil recovery operation according to the control flow shown in FIG. are doing.
- the control device 100 switches the type of oil recovery operation control based on the presence or absence of liquid back. That is, if there is no liquid back, the oil recovery operation is performed using the first control according to the control flow shown in FIG. On the other hand, if there is liquid back, oil recovery operation is performed using the second control according to the control flow shown in FIG. If the suction on-off valve 76 is opened in a state where liquid back is already present, liquid back will be promoted. Therefore, in the second control, the suction on-off valve 76 is opened while the compressor 10 is stopped. Thereby, the pressure PL on the low pressure side can be increased without being affected by liquid back.
- FIG. 9 is a configuration diagram showing the overall configuration of the refrigeration cycle device 1 according to the second embodiment.
- FIG. 10 is a configuration diagram showing various sensors and a control device 100 arranged in the refrigeration cycle device 1 shown in FIG. Note that FIG. 9 functionally shows the connection relationship and arrangement of each device in the refrigeration cycle device 1, and does not necessarily show the arrangement in a physical space.
- the difference between the first embodiment and the second embodiment is that in the refrigeration cycle device 1 according to the second embodiment, an outdoor unit 2A is provided instead of the outdoor unit 2 shown in FIG.
- a liquid receiver 73A is arranged in the injection flow path 101.
- a flow rate adjustment valve 72, pipes 93 and 94, and a gas vent passage 95 are added to the injection flow path 101.
- a check valve 77 is added to the piping 89 disposed upstream of the accumulator 40.
- the check valve 77 is a valve that prevents refrigerant from flowing in a direction opposite to the flow of refrigerant in the main refrigerant circuit. Since the other configurations are the same as those in FIG.
- the intermediate on-off valve 75 does not necessarily need to be provided. If the intermediate opening/closing valve 75 is not provided, the second expansion valve 71 controls the amount of refrigerant flowing into the intermediate pressure port G3, or controls whether or not the refrigerant flows into the intermediate pressure port G3.
- the injection flow path 101 is provided between the first branch portion P1A and the first connection portion P2A.
- the first branch P1A is arranged between the condenser 20 and the load device 3 in the main refrigerant circuit. More specifically, the first branch P1A is arranged between the outlet of the condenser 20 and the inlet of the first passage H1 in the main refrigerant circuit.
- the first connection portion P2A is arranged upstream of the suction port G1 of the compressor 10. More specifically, the first connecting portion P2A is connected to an injection pipe 44 of the accumulator 40, which will be described later.
- the present invention is not limited to this, and in the second embodiment, the first connection part P2A is disposed between the load device 3 and the accumulator 40, similarly to the first connection part P2 of the first embodiment. Good too.
- the injection flow path 101 is comprised of a "first refrigerant flow path” comprised of pipes 91A, 91B, 93, and 94, a “third refrigerant flow path” comprised of pipe 96, and pipes 92, 98. and a "second refrigerant flow path.”
- the "first refrigerant flow path” (pipes 91A, 91B, 93, 94) is a refrigerant flow path for flowing the refrigerant from the high-pressure part of the main refrigerant circuit, ie, the pipe 81, to the inlet of the second passage H2 of the heat exchanger 30. It is a road.
- One end of the "first refrigerant flow path” is connected to the pipe 81, and the other end of the "first refrigerant flow path” is connected to the entrance of the second passage H2.
- the pipe 91A is a pipe between the first branch part P1A arranged in the pipe 81 and the second expansion valve 71.
- the pipe 91B is a pipe between the second expansion valve 71 and the inlet of the liquid receiver 73A.
- the pipe 93 is a pipe connected between the outlet of the liquid receiver 73A and the flow rate adjustment valve 72.
- the pipe 94 is a pipe connected between the flow rate regulating valve 72 and the inlet of the second passage H2.
- the "third refrigerant flow path" branches from the “second refrigerant flow path” and connects from the outlet of the second passage H2 to the intermediate pressure port G3 of the compressor 10. This is a refrigerant flow path through which refrigerant flows.
- the "second refrigerant flow path” (piping 92, 98) is connected to the first connection part P2A, as in the first embodiment.
- the "second refrigerant flow path” (piping 92, 98) is a refrigerant flow path that allows the refrigerant to flow from the outlet of the second passage H2 to the first connection portion P2A.
- a liquid receiver 73A for storing refrigerant and a second expansion valve 71 are arranged in the "first refrigerant flow path" of the injection flow path 101.
- the liquid receiver 73A is sometimes called a receiver.
- the inlet of liquid receiver 73A is connected to piping 81 via piping 91A and 91B.
- the pipe 81 is a pipe connected between the outlet of the condenser 20 and the inlet of the first passage H1.
- the second expansion valve 71 is arranged between the pipe 91A and the pipe 91B.
- a flow rate adjustment valve 72 and a gas vent passage 95 are further arranged.
- the flow rate adjustment valve 72 is an expansion valve arranged between a pipe 93 connected to the outlet of the liquid receiver 73A and a pipe 94 connected to the second passage H2.
- the gas vent passage 95 is a pipe that connects the gas discharge port of the liquid receiver 73A and the inlet of the second passage H2, and discharges the refrigerant gas in the liquid receiver 73A.
- the liquid receiver 73A is a container that internally separates the two-phase refrigerant into gas and liquid, stores the refrigerant, and can adjust the amount of refrigerant in the main refrigerant circuit.
- a gas vent passage 95 connected to the upper part of the liquid receiver 73A and a pipe 93 connected to the lower part of the liquid receiver 73A separate the refrigerant into gas refrigerant and liquid refrigerant in the liquid receiver 73A. This is a pipe for taking out the product in a separated state.
- the gas vent passage 95 is a pipe for taking out gas refrigerant
- the pipe 93 is a pipe for taking out liquid refrigerant.
- the flow rate adjustment valve 72 is a valve that adjusts the amount of circulating liquid refrigerant discharged from the liquid receiver 73A. By adjusting the circulating amount of liquid refrigerant discharged from the pipe 93 using the flow rate adjustment valve 72, the amount of refrigerant in the liquid receiver 73A can be adjusted.
- the opening degree of the flow rate adjustment valve 72 is controlled by the control device 100.
- the discharge pressure PH from the compressor 10 may exceed the critical pressure of the refrigerant.
- the critical pressure of the refrigerant When such a high-pressure supercritical refrigerant is used, if the receiver 73A is provided in the pipes 91A and 91B, which are the high-pressure parts of the main refrigerant circuit, the refrigerant in the pipes 91A and 91B becomes supercritical, and the receiver Liquid refrigerant cannot be stored in the container 73A. In that case, the buffer function of the excess refrigerant amount by the liquid receiver 73A is lost.
- a second expansion valve 71 is provided on the inlet side of the liquid receiver 73A.
- the second expansion valve 71 reduces the pressure of the refrigerant flowing through the pipe 91A from high pressure to intermediate pressure. Therefore, the pressure of the refrigerant flowing through the pipe 91B is an intermediate pressure.
- the dryness of the refrigerant in the injection flow path 101 can be controlled by the second expansion valve 71. Therefore, if the dryness of the refrigerant is controlled so that liquid back does not occur, it is sufficient to perform only the oil recovery operation according to the first control in the case of no liquid back shown in FIG. 6 described above. In this case, since the compressor 10 is not stopped for oil recovery operation, starting and stopping during oil recovery operation can be completely eliminated.
- FIG. 11 is a control flowchart when the compressor 10 is started during normal operation in the refrigeration cycle device 1 according to the second embodiment.
- FIG. 11 shows a control flow when starting up the compressor 10 when the check valve 77 is installed in the pipe 89.
- a check valve 77 is installed in the pipe 89. Further, the first connection portion P2A to which the suction on-off valve 76 of the injection flow path 101 is connected is installed downstream of the check valve 77. As a result, by opening the suction on-off valve 76 when starting the compressor 10, the pressure on the high pressure side and the pressure at the suction port G1 portion of the compressor 10 become the same pressure value, ensuring the startability of the compressor 10. can do.
- control at startup of the compressor 10 during normal operation in Embodiment 2 will be described using FIG. 11.
- control device 100 closes the intermediate on-off valve 75 and the suction on-off valve 76 (step S41).
- control device 100 starts the compressor 10 (step S42).
- control device 100 opens the suction on-off valve 76 while the compressor 10 continues to operate (step S43).
- control device 100 increases the operating frequency of the compressor 10 (step S44).
- control device 100 determines whether the current operating frequency of the compressor 10 has become equal to or higher than the first minimum frequency during normal operation (step S45).
- step S45 If the current operating frequency of the compressor 10 is less than the first lowest frequency during normal operation (NO in step S45), the control device 100 returns to the process in step S44. On the other hand, if it is confirmed that the current operating frequency of the compressor 10 has increased to the first lowest frequency during normal operation (YES in step S45), the control device 100 proceeds to the process of step S46.
- step S46 the control device 100 closes the suction on-off valve 76, opens the intermediate on-off valve 75, and performs normal operation.
- the discharge temperature TH is controlled by the second expansion valve 71 described in the first embodiment. Since the content of the control is the same as described in Embodiment 1, the description thereof will be omitted here.
- the suction on-off valve 76 can be opened every time the compressor 10 is started.
- the suction on-off valve 76 is opened when the control device 100 performs the oil recovery operation.
- the high pressure side and the low pressure side are bypassed, and the refrigerant flows from the first branch part P1A arranged in the pipe 81 to the first connection part P2A arranged upstream of the suction port G1 of the compressor 10.
- the pressure PL on the low pressure side increases.
- Refrigerating machine oil has a property that its viscosity decreases as the pressure increases. Therefore, as the pressure PL increases, the viscosity of the refrigerating machine oil remaining in the main refrigerant circuit decreases.
- the refrigerating machine oil in each pipe of the main refrigerant circuit can be easily recovered depending on the flow rate of the refrigerant.
- the characteristics of refrigerating machine oil are used to control whether or not refrigerant flows into the main refrigerant circuit, which is a circulation flow path, from the injection flow path 101. are doing. By allowing the refrigerant to flow into the first connection portion P2A from the injection flow path 101, sufficient oil return capacity is ensured in accordance with the conditions of the refrigerant and refrigerating machine oil.
- the control device 100 determines the timing to perform the oil recovery operation according to the control flow shown in FIG. That is, the control device 100 determines to perform the oil recovery operation when the compressor 10 is in operation and the current operating frequency of the compressor 10 is lower than the second minimum frequency that requires the oil recovery operation. do. Thereby, the oil recovery operation can be performed at appropriate timing compared to the case where the oil recovery operation is performed periodically at a fixed period. As a result, the oil recovery operation is not performed at an unnecessary timing, so it is possible to suppress a decrease in operating efficiency due to starting and stopping of the oil recovery operation.
- the control device 100 sets the lowest frequency of the compressor 10 to the first lowest frequency, which is the lowest frequency during normal operation, when performing the oil recovery operation.
- the second lowest frequency is set higher than the frequency.
- the frequency of the compressor 10 is increased to the second lowest frequency after the pressure PL on the low pressure side is increased by opening the suction on-off valve 76. speed up Thereby, the frequency of thermo-off can be reduced compared to the case where the suction on-off valve 76 is not opened. As a result, it is possible to prevent the oil recovery operation from being interrupted due to the thermostat being turned off, and thus it is possible to secure time to recover the refrigerating machine oil.
- the control device 100 determines whether the state of the suction port G1 of the compressor 10 is liquid before performing the oil recovery operation according to the control flow of FIG. It is determined whether the camera is in the back position or not.
- the control device 100 switches the type of oil recovery operation control based on the presence or absence of liquid back. That is, if there is no liquid back, the oil recovery operation is performed using the first control according to the control flow shown in FIG. On the other hand, if there is liquid back, oil recovery operation is performed using the second control according to the control flow shown in FIG.
- the suction on-off valve 76 is opened while the compressor 10 is stopped. Thereby, the pressure PL on the low pressure side can be increased without being affected by liquid back.
- a second expansion valve 71 that reduces the pressure of the refrigerant to an intermediate pressure is provided on the inlet side of the liquid receiver 73A. Therefore, even in operation in a supercritical state, liquid refrigerant can be stored in the liquid receiver 73A. As a result, the buffer function of the surplus refrigerant amount by the liquid receiver 73A is maintained, and the amount of refrigerant can be adjusted.
- a flow rate adjustment valve 72 is provided on the outlet side of the liquid receiver 73A to adjust the circulation amount of the liquid refrigerant discharged from the liquid receiver 73A.
- the amount of refrigerant in the liquid receiver 73A can be adjusted by adjusting the circulating amount of liquid refrigerant discharged from the liquid receiver 73A using the flow rate adjustment valve 72.
- the amount of refrigerant contained in the main refrigerant circuit and the injection flow path 101 is controlled based on the opening degree of the flow rate adjustment valve 72. Can be adjusted.
- FIG. 12 is a diagram schematically showing the configuration of an accumulator 40 provided in the refrigeration cycle device 1 according to the third embodiment. As shown in FIG. 12, in the third embodiment, the injection flow path 101 is connected to the lower part of the casing 41 of the accumulator 40. Note that the configuration of the refrigeration cycle device 1 is as described in Embodiment 1 or Embodiment 2, so its connections will be omitted here.
- the accumulator 40 includes a casing 41, an inflow pipe 42, an outflow pipe 43, and an injection pipe 44.
- the casing 41 is a container that stores refrigerant and refrigerator oil inside.
- the accumulator 40 has a sealed structure with a casing 41.
- the inflow pipe 42 is arranged to pass through the upper part of the casing 41.
- An upper end 42a of the inflow pipe 42 is arranged outside the casing 41, and a lower end 42b of the inflow pipe 42 is arranged inside the casing 41.
- the inflow pipe 42 has, for example, an L-shape, but is not limited thereto.
- the inflow pipe 42 directs the refrigerant flowing from the pipe 89 into the internal space of the casing 41 . Therefore, the inflow pipe 42 passes through the upper part of the casing 41, and the lower end 42b of the inflow pipe 42 is open at the upper part of the internal space of the casing 41.
- the outflow pipe 43 is arranged to pass through the upper part of the casing 41.
- the outflow pipe 43 has a U-shape.
- the outflow pipe 43 causes the gas refrigerant and refrigerating machine oil separated in the internal space of the casing 41 to flow into the suction port G1 (see FIGS. 1 and 9) of the compressor 10 through the pipe 97. Therefore, the outflow pipe 43 is installed to penetrate the upper part of the casing 41, and one end 43a of the outflow pipe 43 is arranged outside the casing 41. Further, the other end 43b of the outflow pipe 43 is open at the upper part of the internal space of the casing 41.
- the outflow pipe 43 has a curved pipe portion 43c located below the internal space of the casing 41.
- An oil return hole 45 is formed at the lowest part of the curved pipe portion 43c. Furthermore, the outflow pipe 43 has a pressure equalizing hole 46 .
- the pressure equalizing hole 46 is arranged on the one end 43a side of the outflow pipe 43, and is arranged below the upper part of the casing 41.
- the outflow pipe 43 is arranged near the penetration part where the outflow pipe 43 penetrates the casing 41.
- the pressure equalizing hole 46 is arranged inside the casing 41.
- the injection pipe 44 is arranged to penetrate the lower part of the casing 41.
- the injection pipe 44 forms the first connection part P2 (see FIG. 1) or the first connection part P2A (see FIG. 9) itself, to which the pipes 92 and 98, which are the second refrigerant flow paths, are connected. It functions as part P2 or P2A.
- the injection pipe 44 is connected to the first connection portion P2 (see FIG. 1) or the first connection portion P2A (see FIG. 9).
- the suction on-off valve 76 is opened, the refrigerant from the second refrigerant flow path flows into the injection pipe 44.
- the injection pipe 44 allows the refrigerant to flow into the internal space of the casing 41 .
- the "injection piping 44" is sometimes called "bypass piping".
- the tip of the pipe 98 provided with the suction on-off valve 76 is installed as the injection pipe 44 so as to penetrate through the lower part of the casing 41. Thereby, when the suction on-off valve 76 is opened, the refrigerant from the high pressure side flows into the casing 41 of the accumulator 40 with force.
- the refrigerant accumulated in the accumulator 40 and the refrigerating machine oil can be forcibly stirred while lowering the viscosity of the refrigerating machine oil by increasing the pressure PL as described in Embodiments 1 and 2.
- the refrigerant and refrigerating machine oil may separate into two phases, as shown in the left diagram of FIG.
- an injection pipe 44 is provided at the lower part of the accumulator 40 to force the refrigerant to flow into the lower part of the internal space of the accumulator 40.
- the refrigerant and refrigerating machine oil in the internal space of the accumulator 40 are agitated, as shown in the right diagram of FIG.
- the refrigerating machine oil that has been separated above the refrigerant mixes uniformly with the refrigerant through stirring, so that the refrigerating machine oil can be recovered through the oil return hole 45.
- the refrigerant and the refrigerating machine oil are always mixed by stirring. can be in a mixed state. In this way, the oil recovery operation can be carried out with the refrigerant and refrigerating machine oil mixed inside the accumulator 40, thereby making it possible to further improve the efficiency of oil recovery.
- the suction on-off valve 76 when the oil recovery operation is performed, by opening the suction on-off valve 76, the inside of the accumulator 40 is agitated by the refrigerant forcefully flowing in from the injection pipe. Thereby, the oil recovery operation can be performed in a state where the refrigerant and the refrigerating machine oil are mixed, so that the efficiency of oil recovery can be further improved.
- the refrigerant stirred in the accumulator 40 flows into the pipe 97 from the outflow pipe 43.
- the high pressure side and the low pressure side are bypassed, and the pressure PL on the low pressure side increases.
- Refrigerating machine oil has a property that its viscosity decreases as the pressure increases. Therefore, as the pressure PL increases, the viscosity of the refrigerating machine oil remaining in the main refrigerant circuit decreases. Thereby, the refrigerating machine oil in each pipe of the main refrigerant circuit can be easily recovered depending on the flow rate of the refrigerant.
- a refrigerator including a refrigeration cycle device was described as an example, but the refrigeration cycle device may also be used in an air conditioner or the like.
- the present invention is not limited to that case. That is, the compressor 10 does not need to have the intermediate pressure port G3.
- the piping 96 and the intermediate on-off valve 75 shown in FIGS. 1 and 9 are also not installed.
- the operation of the refrigeration cycle device 1 is basically the same as in the first to third embodiments, except that all the refrigerant sucked into the compressor 10 is sucked through the suction port G1. This is the point.
- the control device 100 opens the suction on-off valve 76 before performing the oil recovery operation to increase the pressure PL on the low pressure side. Therefore, as in the first to third embodiments described above, sufficient oil return capacity can be ensured.
- Embodiments 1 to 3 disclosed herein are illustrative in all respects and should not be considered restrictive.
- the scope of the present disclosure is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.
- an HFC (Hydro Fluoro Carbon) refrigerant such as R32, or an HFO (Hydro Fluoro Orefin) refrigerant such as R1234yf can be used as the refrigerant.
- a high-pressure supercritical refrigerant such as CO 2
- non-azeotropic refrigerants can also be used, and among the non-azeotropic refrigerants, it is also possible to use, in particular, a CO 2 mixed refrigerant such as R463A.
- Refrigeration cycle device 2 outdoor unit, 2A outdoor unit, 3 load device, 10 compressor, 20 condenser, 22 fan, 28 on-off valve, 30 heat exchanger, 40 accumulator, 41 casing, 42 inflow pipe, 42a upper end , 42b lower end, 43 outflow pipe, 43a one end, 43b other end, 43c bent pipe section, 44 injection pipe, 45 oil return hole, 46 pressure equalization hole, 50 first expansion valve, 60 evaporator, 71 second expansion valve, 72 Flow rate adjustment valve, 73 Liquid receiver, 73A Liquid receiver, 75 Intermediate on-off valve, 76 Suction on-off valve, 77 Check valve, 80 Piping, 81 Piping, 82 Piping, 83 Piping, 84 Second extension piping, 85 Piping , 86 piping, 87 piping, 88 first extension piping, 89 piping, 91 piping, 91A piping, 91B piping, 92 piping, 93 piping, 94 piping, 95 gas vent passage,
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
This outdoor unit is configured to be connected to a load device including a first expansion valve and an evaporator. The outdoor unit comprises: a compressor having a suction port and a discharge port; a condenser; a heat exchanger that has a first passage and a second passage and exchanges heat between a refrigerant flowing in the first passage and a refrigerant flowing in the second passage; and a control device. The compressor, the condenser, the first passage of the heat exchanger, the first expansion valve of the load device, and the evaporator of the load device form a circulation flow path in which the refrigerant circulates. Further provided is a bypass flow path which allows the refrigerant to flow from a first branch section disposed between an outlet of the condenser and the load device in the circulation flow path to a first connection section disposed between the suction port and the load device. The bypass flow path has a suction on-off valve that switches whether the refrigerant flows into the first connection section. The control device controls the compressor and the suction on-off valve. If the control device executes an oil recovery operation to recover refrigerating machine oil that remains in the circulation flow path, the control device, before starting the oil recovery operation, opens the suction on-off valve to allow the refrigerant to flow into the first connection section from the bypass flow path.
Description
本開示は、室外ユニットおよび冷凍サイクル装置に関する。
The present disclosure relates to an outdoor unit and a refrigeration cycle device.
特許文献1には、圧縮機、凝縮器、受液器、膨張弁、アキュムレータ、および、蒸発器を冷媒が循環する循環流路と、循環流路から分岐するインジェクション流路と、を備える冷凍装置が開示されている。特許文献1に記載の冷凍装置においては、凝縮器から膨張弁に向かって流れる冷媒の一部を、インジェクション流路を使って圧縮機の中間圧の冷媒に合流させることによって、圧縮機の吐出温度を低下させることが可能である。
Patent Document 1 discloses a refrigeration system that includes a compressor, a condenser, a liquid receiver, an expansion valve, an accumulator, a circulation passage through which a refrigerant circulates through an evaporator, and an injection passage branching from the circulation passage. is disclosed. In the refrigeration system described in Patent Document 1, a part of the refrigerant flowing from the condenser toward the expansion valve is merged with the intermediate-pressure refrigerant of the compressor using an injection flow path, thereby adjusting the discharge temperature of the compressor. It is possible to reduce the
さらに、特許文献1に記載の冷凍装置は、凝縮器から膨張弁に向かって循環流路を流れる冷媒と、インジェクション流路を流れる冷媒と、の間で、熱交換を行なうエコノマイザを備えている。エコノマイザは、熱交換器の一種である。エコノマイザを用いることで、凝縮器から膨張弁に向かって流れる冷媒が、インジェクション流路を流れる冷媒によって冷却されるため、過冷却が確保される。この時、中間インジェクションの圧力が、確保したい過冷却度よりも高くなってしまった場合、過冷却を確保できなくなってしまう。そのため、特許文献1に記載の冷凍装置では、吸入インジェクションをさらに備えて、圧縮機の吸入側の低圧配管へインジェクションを行うことで、インジェクション流路の圧力を低下させて、過冷却を確保している。
Furthermore, the refrigeration apparatus described in Patent Document 1 includes an economizer that performs heat exchange between the refrigerant flowing in the circulation channel from the condenser toward the expansion valve and the refrigerant flowing in the injection channel. An economizer is a type of heat exchanger. By using the economizer, the refrigerant flowing from the condenser toward the expansion valve is cooled by the refrigerant flowing through the injection flow path, thereby ensuring supercooling. At this time, if the intermediate injection pressure becomes higher than the desired degree of supercooling, supercooling cannot be ensured. Therefore, the refrigeration system described in Patent Document 1 further includes a suction injection and performs injection into the low-pressure piping on the suction side of the compressor to reduce the pressure in the injection flow path and ensure supercooling. There is.
ここで、アキュムレータは、液冷媒を圧縮機へ直接戻さない機能と、圧縮機から持ち出された冷凍機油のみを圧縮機へ戻す返油機構と、を備えている。アキュムレータの返油機構は、U字型形状の配管から構成されている。U字形状の配管の一端は、圧縮機側へ冷凍機油を戻す流出配管になっている。流出配管は、アキュムレータの容器上部に挿入されて固定されている。また、U字型形状の配管の屈曲部は、アキュムレータの容器下部に配置されるように構成されている。U字型形状の配管の屈曲部の最下部には、油戻し穴が備えられている。
Here, the accumulator has a function of not directly returning the liquid refrigerant to the compressor, and an oil return mechanism that returns only the refrigerating machine oil taken out from the compressor to the compressor. The oil return mechanism of the accumulator is composed of U-shaped piping. One end of the U-shaped pipe is an outflow pipe that returns refrigerating machine oil to the compressor side. The outflow pipe is inserted into and fixed to the upper part of the container of the accumulator. Further, the bent portion of the U-shaped pipe is configured to be disposed below the container of the accumulator. An oil return hole is provided at the bottom of the bent portion of the U-shaped pipe.
上記のように、圧縮機から持ち出された冷凍機油は、蒸発器に溜まり込む、あるいは、室外機と負荷装置とをつなぐ吸入配管などに溜まり込む。そして、それらの冷凍機油が圧縮機へ戻らない場合は、圧縮機は油不足となり、圧縮機の摩耗または故障の原因となることがある。
As mentioned above, the refrigerating machine oil taken out from the compressor accumulates in the evaporator or in the suction pipe connecting the outdoor unit and the load device. If the refrigerating machine oil does not return to the compressor, the compressor may run out of oil, which may cause wear or failure of the compressor.
上記の特許文献1に記載の冷凍装置においては、圧縮機の手前に、アキュムレータを設けている。アキュムレータは、負荷装置から圧縮機へ戻る液冷媒と冷凍機油とを、いったん、内部に蓄積する。そして、アキュムレータは、主に油戻し穴から冷凍機油を圧縮機へ戻すことで、圧縮機の油の枯渇を防いでいる。
In the refrigeration system described in Patent Document 1, an accumulator is provided before the compressor. The accumulator temporarily stores therein the liquid refrigerant and refrigerating machine oil that return from the load device to the compressor. The accumulator mainly returns the refrigerating machine oil to the compressor through the oil return hole, thereby preventing the compressor from running out of oil.
しかしながら、負荷装置側の冷凍機油をアキュムレータへ回収するには、冷凍機油の粘性が原因で各配管に滞留している冷凍機油を、冷媒の流速により回収する必要があり、これは圧縮機を増速することで実現できる。しかしながら、一般的に、圧縮機は蒸発温度を目標値として、単位時間あたりに冷媒を送り出す容量制御をしているため、冷凍機油回収のために圧縮機の回転速度を高くすると、即座に、目標の蒸発圧力値(すなわち、低圧値)に達してしまい、冷凍装置がサーモOFFの状態になってしまう。その結果、十分に冷凍機油を回収する時間を確保することができない。なお、サーモOFFとは、このように制御対象値が目標値に達することで、圧縮機が作動を停止して、空調対象空間に対して送風だけが行われる状態をいう。
However, in order to collect the refrigerating machine oil on the load equipment side into the accumulator, it is necessary to collect the refrigerating machine oil that has accumulated in each pipe due to the viscosity of the refrigerating machine oil by using the flow rate of the refrigerant. This can be achieved by speeding up. However, in general, compressors use the evaporation temperature as a target value to control the capacity to send out refrigerant per unit time. The evaporation pressure value (that is, the low pressure value) is reached, and the refrigeration system enters the thermo-off state. As a result, it is not possible to secure sufficient time to recover refrigerating machine oil. Note that the term "thermo OFF" refers to a state in which when the controlled value reaches the target value, the compressor stops operating and only air is blown to the air-conditioned space.
そのため、一般的な冷凍装置では、負荷装置の冷凍機油を回収する際には、室外ユニットの運転を一時停止している。そして、蒸発温度が上昇するのを確認してから圧縮機を起動して、一定周波数以上で圧縮機を運転させる油回収運転を定期的に実施している。そのため、油回収運転の発停によるロスで、冷凍装置の運転効率が悪くなる。
Therefore, in a typical refrigeration system, the operation of the outdoor unit is temporarily stopped when recovering refrigeration oil from the load device. Then, after confirming that the evaporation temperature has risen, the compressor is started, and an oil recovery operation is periodically performed in which the compressor is operated at a frequency higher than a certain level. Therefore, the operational efficiency of the refrigeration system deteriorates due to losses caused by starting and stopping the oil recovery operation.
また、アキュムレータに液冷媒と冷凍機油とが混在する状態で、アキュムレータが返油機構を作用させる場合、アキュムレータの内部の状態は、次のいずれかの場合である。すなわち、アキュムレータの内部の状態は、冷凍機油と冷媒とが溶解している状態か、あるいは、冷凍機油の密度が冷媒より高く冷凍機油が下方に溜まった状態で冷凍機油と冷媒とが2相分離している状態、のいずれかである。冷凍機油と冷媒とが溶解している状態の場合には、アキュムレータの返油機構は良好に作用する。一方、冷凍機油と冷媒とが2相分離した場合、アキュムレータの返油機構が作用せずに、冷凍機油がアキュムレータに溜まり込んでしまうことがある。このように、アキュムレータが返油機構を作動させる場合、返油機構の動作は、冷凍機油の粘度または溶解度などの物性値に大きく依存することになる。しかしながら、冷媒と冷凍機油との組み合わせによっては、冷凍装置の運転範囲において冷凍機油と冷媒とが2相分離してしまう場合がある。従って、冷凍装置の運転範囲において、冷媒と冷凍機油とのすべての組み合わせが、返油機構の作用に良好な条件を満たすとは限らない。
Furthermore, when the accumulator operates the oil return mechanism in a state where liquid refrigerant and refrigerating machine oil are mixed in the accumulator, the internal state of the accumulator is in one of the following cases. In other words, the internal state of the accumulator is either a state in which the refrigerating machine oil and the refrigerant are dissolved, or a state in which the refrigerating machine oil and the refrigerant are separated into two phases with the density of the refrigerating machine oil being higher than that of the refrigerant and the refrigerating machine oil being accumulated at the bottom. It is one of the following states. When the refrigerating machine oil and refrigerant are dissolved, the oil return mechanism of the accumulator works well. On the other hand, when the refrigerating machine oil and the refrigerant are separated into two phases, the oil return mechanism of the accumulator may not function and the refrigerating machine oil may accumulate in the accumulator. In this way, when the accumulator operates the oil return mechanism, the operation of the oil return mechanism largely depends on physical property values such as the viscosity and solubility of the refrigerating machine oil. However, depending on the combination of refrigerant and refrigerant oil, the refrigerant oil and refrigerant may separate into two phases within the operating range of the refrigeration system. Therefore, within the operating range of the refrigeration system, not all combinations of refrigerant and refrigeration oil satisfy favorable conditions for the operation of the oil return mechanism.
本開示は、かかる課題を解決するためになされたものであり、冷凍機油の特性を利用して、循環流路へのインジェクション流路からの冷媒の流入の有無を制御することで、十分な返油能力を確保することが可能な、室外ユニットおよび冷凍サイクル装置を得ることを目的とする。
The present disclosure has been made to solve such problems, and utilizes the characteristics of refrigerating machine oil to control whether or not refrigerant flows from the injection flow path into the circulation flow path, thereby ensuring sufficient return. The object is to obtain an outdoor unit and a refrigeration cycle device that can ensure oil capacity.
本開示に係る室外ユニットは、第1膨張弁と蒸発器とを含む負荷装置に対して接続されるように構成された、室外ユニットであって、吸入ポートおよび吐出ポートを有する圧縮機と、凝縮器と、第1通路および第2通路を有し、前記第1通路を流れる冷媒と前記第2通路を流れる冷媒との間で熱交換を行う熱交換器と、制御装置と、を備え、前記圧縮機、前記凝縮器、前記熱交換器の前記第1通路、前記負荷装置の前記第1膨張弁、および、前記負荷装置の前記蒸発器は、冷媒が循環する循環流路を形成し、前記循環流路における前記凝縮器の出口と前記負荷装置との間に配置された第1分岐部から、前記吸入ポートと前記負荷装置との間に配置された第1接続部に冷媒を流す、バイパス流路をさらに備え、前記バイパス流路は、前記第1接続部への冷媒の流入の有無を切り替える吸入開閉弁を有し、前記制御装置は、前記圧縮機、および、前記吸入開閉弁を制御するものであって、前記制御装置は、前記循環流路内に滞留する冷凍機油を回収する油回収運転を実施する場合、前記油回収運転を開始する前に、前記吸入開閉弁を開放して、前記バイパス流路から前記第1接続部へ冷媒を流入させるものである。
An outdoor unit according to the present disclosure is an outdoor unit configured to be connected to a load device including a first expansion valve and an evaporator, and includes a compressor having a suction port and a discharge port, and a condenser. a heat exchanger having a first passage and a second passage and performing heat exchange between a refrigerant flowing in the first passage and a refrigerant flowing in the second passage, and a control device, The compressor, the condenser, the first passage of the heat exchanger, the first expansion valve of the load device, and the evaporator of the load device form a circulation flow path in which refrigerant circulates, and the a bypass that allows refrigerant to flow from a first branch located between the outlet of the condenser and the load device in the circulation flow path to a first connection located between the suction port and the load device; The bypass flow path further includes a suction on-off valve that switches whether or not refrigerant flows into the first connection portion, and the control device controls the compressor and the suction on-off valve. When performing an oil recovery operation to recover refrigerating machine oil remaining in the circulation flow path, the control device opens the suction on-off valve before starting the oil recovery operation. , the refrigerant is caused to flow into the first connection portion from the bypass flow path.
本開示に係る冷凍サイクル装置は、上記の室外ユニットと、前記室外ユニットに接続された前記負荷装置と、を備えたものである。
A refrigeration cycle device according to the present disclosure includes the outdoor unit described above and the load device connected to the outdoor unit.
本開示に係る室外ユニットおよび冷凍サイクル装置によれば、高圧側と低圧側とをバイパスするインジェクション流路を備えている。制御装置は、循環流路内に滞留する冷凍機油を回収する油回収運転を実施する場合、油回収運転を開始する前に、吸入開閉弁を開放して、インジェクション流路から、吸入ポートと負荷装置との間に配置された第1接続部へ冷媒を流入させる。これにより、負荷装置から吸入ポートまでの間の循環流路内の冷媒の圧力が上昇し、冷凍機油の特性の1つである粘性が低下する。その結果、冷凍機油の回収が容易になる。このように、冷凍機油の特性を利用して、循環流路へのインジェクション流路からの冷媒の流入の有無を制御することで、冷媒と冷凍機油との状態に合わせた十分な返油能力を確保することができる。
According to the outdoor unit and refrigeration cycle device according to the present disclosure, an injection flow path that bypasses the high pressure side and the low pressure side is provided. When performing oil recovery operation to recover refrigerating machine oil accumulated in the circulation flow path, the control device opens the suction on-off valve and disconnects the suction port and load from the injection flow path before starting the oil recovery operation. A refrigerant is introduced into a first connection disposed between the refrigerant and the device. As a result, the pressure of the refrigerant in the circulation path between the load device and the suction port increases, and the viscosity, which is one of the characteristics of refrigerating machine oil, decreases. As a result, refrigerating machine oil can be easily recovered. In this way, by utilizing the characteristics of refrigerating machine oil to control whether or not refrigerant flows into the circulation flow path from the injection flow path, sufficient oil return capacity can be achieved according to the conditions of the refrigerant and refrigerating machine oil. can be secured.
以下、本開示に係る室外ユニットおよび冷凍サイクル装置の実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。同一の又はこれに相当する構成については、同一符号を付して示し、その説明は繰り返さない。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。
Hereinafter, embodiments of an outdoor unit and a refrigeration cycle device according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure. Furthermore, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments and modifications thereof. Furthermore, in each figure, the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Identical or equivalent configurations are indicated by the same reference numerals, and their descriptions will not be repeated. Note that in each drawing, the relative dimensional relationship or shape of each component may differ from the actual one.
実施の形態1.
(冷凍サイクル装置1の構成)
図1は、実施の形態1に係る冷凍サイクル装置1の全体構成を示す構成図である。なお、図1では、冷凍サイクル装置1における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。Embodiment 1.
(Configuration of refrigeration cycle device 1)
FIG. 1 is a configuration diagram showing the overall configuration of arefrigeration cycle device 1 according to the first embodiment. Note that FIG. 1 functionally shows the connection relationship and arrangement of each device in the refrigeration cycle device 1, and does not necessarily show the arrangement in a physical space.
(冷凍サイクル装置1の構成)
図1は、実施の形態1に係る冷凍サイクル装置1の全体構成を示す構成図である。なお、図1では、冷凍サイクル装置1における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
(Configuration of refrigeration cycle device 1)
FIG. 1 is a configuration diagram showing the overall configuration of a
図1に示すように、冷凍サイクル装置1は、室外ユニット2と、負荷装置3と、第1延長配管88および第2延長配管84と、を備える。室外ユニット2と負荷装置3とは、第1延長配管88および第2延長配管84を介して接続されている。
As shown in FIG. 1, the refrigeration cycle device 1 includes an outdoor unit 2, a load device 3, a first extension pipe 88, and a second extension pipe 84. The outdoor unit 2 and the load device 3 are connected via a first extension pipe 88 and a second extension pipe 84.
室外ユニット2は、負荷装置3に接続されるように構成された冷凍サイクル装置1の室外ユニットである。室外ユニット2は、室外に設置される。一方、負荷装置3は、冷凍サイクル装置1の負荷装置であり、冷却対象空間に設置される。冷却対象空間は、たとえば、室内空間である。
The outdoor unit 2 is an outdoor unit of the refrigeration cycle device 1 configured to be connected to the load device 3. The outdoor unit 2 is installed outdoors. On the other hand, the load device 3 is a load device of the refrigeration cycle device 1, and is installed in the space to be cooled. The space to be cooled is, for example, an indoor space.
室外ユニット2は、圧縮機10と、凝縮器20と、ファン22と、受液器73と、熱交換器30と、アキュムレータ40と、配管80~83および89と、を備える。熱交換器30は、第1通路H1と第2通路H2とを有し、第1通路H1を流れる冷媒と、第2通路H2を流れる冷媒と、の間で熱交換を行う。熱交換器30は、エコノマイザと呼ばれることがある。
The outdoor unit 2 includes a compressor 10, a condenser 20, a fan 22, a liquid receiver 73, a heat exchanger 30, an accumulator 40, and piping 80 to 83 and 89. The heat exchanger 30 has a first passage H1 and a second passage H2, and performs heat exchange between the refrigerant flowing through the first passage H1 and the refrigerant flowing through the second passage H2. Heat exchanger 30 is sometimes called an economizer.
負荷装置3は、第1膨張弁50と、蒸発器60と、配管85~87と、を備える。蒸発器60は、空気と冷媒との間で熱交換を行なう。蒸発器60は、たとえば、伝熱管とフィンとを有するフィンアンドチューブ型熱交換器である。冷凍サイクル装置1においては、蒸発器60は、冷却対象空間の空気からの吸熱によって冷媒を蒸発させる。第1膨張弁50は、たとえば、冷媒を減圧する電子膨張弁である。また、第1膨張弁50は、たとえば、室外ユニット2と独立して制御される温度膨張弁であってもよい。配管85は、一端が第2延長配管84に接続され、他端が第1膨張弁50の入口に接続されている。配管86は、一端が第1膨張弁50の出口に接続され、他端が蒸発器60の入口に接続されている。配管87は、一端が蒸発器60の出口に接続され、他端が第1延長配管88に接続されている。また、負荷装置3は、冷却対象の冷え過ぎを防止するために動作する開閉弁28を有している。冷却対象の温度(庫内温度など)を検知し、開閉弁28を閉止することで、冷え過ぎを防止し冷却対象の温度調整を行うことができる。また、定期的な霜取運転のために開閉弁28を閉止しサーモOFFする動作も実施される。
The load device 3 includes a first expansion valve 50, an evaporator 60, and piping 85 to 87. Evaporator 60 performs heat exchange between air and refrigerant. The evaporator 60 is, for example, a fin-and-tube heat exchanger having heat exchanger tubes and fins. In the refrigeration cycle device 1, the evaporator 60 evaporates the refrigerant by absorbing heat from the air in the space to be cooled. The first expansion valve 50 is, for example, an electronic expansion valve that reduces the pressure of the refrigerant. Further, the first expansion valve 50 may be a temperature expansion valve that is controlled independently of the outdoor unit 2, for example. The piping 85 has one end connected to the second extension piping 84 and the other end connected to the inlet of the first expansion valve 50 . The piping 86 has one end connected to the outlet of the first expansion valve 50 and the other end connected to the inlet of the evaporator 60. The piping 87 has one end connected to the outlet of the evaporator 60 and the other end connected to the first extension piping 88 . The load device 3 also includes an on-off valve 28 that operates to prevent the object to be cooled from becoming too cold. By detecting the temperature of the object to be cooled (temperature inside the refrigerator, etc.) and closing the on-off valve 28, it is possible to prevent excessive cooling and adjust the temperature of the object to be cooled. In addition, for periodic defrosting operation, the operation of closing the on-off valve 28 and turning off the thermostat is also carried out.
アキュムレータ40、圧縮機10、凝縮器20、受液器73、熱交換器30の第1通路H1、負荷装置3の第1膨張弁50、および、負荷装置3の蒸発器60は、冷媒がこの順序で循環する「主冷媒回路」を形成する。「主冷媒回路」は、冷凍サイクルの「循環流路」と呼ばれることがある。
The accumulator 40, the compressor 10, the condenser 20, the liquid receiver 73, the first passage H1 of the heat exchanger 30, the first expansion valve 50 of the load device 3, and the evaporator 60 of the load device 3 are connected to the refrigerant. Forms a "main refrigerant circuit" that circulates in sequence. The "main refrigerant circuit" is sometimes called the "circulation flow path" of the refrigeration cycle.
アキュムレータ40は、配管89から冷媒が流れ込み、配管97へ冷媒を流出させる。配管89は、第1延長配管88とアキュムレータ40との間に配置された配管である。また、配管97は、アキュムレータ40と圧縮機10との間に配置された配管である。
In the accumulator 40 , refrigerant flows into the pipe 89 and flows out into the pipe 97 . Piping 89 is a piping arranged between first extension piping 88 and accumulator 40 . Further, the pipe 97 is a pipe arranged between the accumulator 40 and the compressor 10.
圧縮機10は、吸入ポートG1、吐出ポートG2、および、中間圧ポートG3を有する。圧縮機10は、配管97および配管96から吸入される冷媒を圧縮して配管80へ吐出する。配管96は、後述するインジェクション流路101の一部分を構成する配管で、圧縮機10の中間圧ポートG3に接続されている。配管97は、アキュムレータ40と圧縮機10の吸入ポートG1とを接続している。圧縮機10は、たとえば、インバータ制御により駆動周波数を任意に変更することができるインバータ圧縮機である。圧縮機10には、上述したように、中間圧ポートG3が設けられており、中間圧ポートG3からの冷媒を圧縮工程の途中部分に流入させることができる。圧縮機10は、制御装置100(図2参照)からの制御信号に従って、回転速度を調整するように構成されている。圧縮機10の回転速度を調整することで冷媒の循環量が調整され、冷凍サイクル装置1の能力を調整することができる。圧縮機10には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ、あるいは、これらの各タイプで且つ二段圧縮タイプのもの等を採用し得る。なお、圧縮機10においては、制御装置100が制御を行う上で設定される「最低周波数」および「最高周波数」の制御値範囲内で、冷却対象空間の空調負荷に応じて圧縮機10の運転周波数を決めて、運転が実施される。「最低周波数」は、最小運転周波数または最小許容周波数と呼ばれることがある。「最高周波数」は、最大運転周波数または最大許容周波数と呼ばれることがある。また、以下の説明においては、通常運転時に設定される「最低周波数」を「第1最低周波数」と呼び、冷凍機油を回収する油回収運転時に設定される「最低周波数」を「第2最低周波数」と呼ぶこととする。
The compressor 10 has a suction port G1, a discharge port G2, and an intermediate pressure port G3. The compressor 10 compresses the refrigerant sucked through the pipes 97 and 96 and discharges it to the pipe 80. The pipe 96 is a pipe that constitutes a part of an injection flow path 101, which will be described later, and is connected to an intermediate pressure port G3 of the compressor 10. Piping 97 connects accumulator 40 and suction port G1 of compressor 10. The compressor 10 is, for example, an inverter compressor whose driving frequency can be arbitrarily changed by inverter control. As described above, the compressor 10 is provided with the intermediate pressure port G3, and the refrigerant from the intermediate pressure port G3 can be made to flow into the middle part of the compression process. Compressor 10 is configured to adjust its rotational speed according to a control signal from control device 100 (see FIG. 2). By adjusting the rotational speed of the compressor 10, the amount of refrigerant circulated can be adjusted, and the capacity of the refrigeration cycle device 1 can be adjusted. The compressor 10 can be of various types, such as a scroll type, a rotary type, a screw type, or a two-stage compression type of each of these types. In addition, in the compressor 10, the operation of the compressor 10 is performed according to the air conditioning load of the space to be cooled within the control value range of "minimum frequency" and "maximum frequency" set for control by the control device 100. The frequency is determined and operation is carried out. "Minimum frequency" is sometimes referred to as the minimum operating frequency or minimum allowable frequency. The "highest frequency" is sometimes referred to as the maximum operating frequency or the maximum allowed frequency. In addition, in the following explanation, the "minimum frequency" set during normal operation will be referred to as "first minimum frequency", and the "minimum frequency" set during oil recovery operation for recovering refrigerating machine oil will be referred to as "second minimum frequency". ”.
凝縮器20の入口は、配管80に接続され、圧縮機10から吐出された高温高圧のガス冷媒が流入される。凝縮器20は、圧縮機10の吐出ポートG2から吐出された高温高圧のガス冷媒と外気とが熱交換(放熱)を行うように構成されている。凝縮器20は、たとえば、伝熱管とフィンとを有するフィンアンドチューブ型熱交換器である。凝縮器20の熱交換により、冷媒は凝縮されて、ガス相から液相に変化する。このように、圧縮機10から配管80に吐出された冷媒は、凝縮器20において凝縮液化され、配管81へ流出する。また、凝縮器20の熱交換の効率を上げるために外気を送るファン22が、凝縮器20に対して取り付けられている。ファン22は、凝縮器20において冷媒が熱交換を行うための外気を凝縮器20に供給する。ファン22の回転速度を調整することにより、圧縮機10の吐出側の冷媒圧力(高圧側圧力)を調整することができる。ファン22の回転速度は、制御装置100によって制御される。
The inlet of the condenser 20 is connected to a pipe 80, into which the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 flows. The condenser 20 is configured so that the high temperature, high pressure gas refrigerant discharged from the discharge port G2 of the compressor 10 and the outside air exchange heat (radiate heat). The condenser 20 is, for example, a fin-and-tube heat exchanger having heat exchanger tubes and fins. Through heat exchange in the condenser 20, the refrigerant is condensed and changed from a gas phase to a liquid phase. In this way, the refrigerant discharged from the compressor 10 to the pipe 80 is condensed and liquefied in the condenser 20 and flows out to the pipe 81. Further, a fan 22 for feeding outside air is attached to the condenser 20 in order to increase the efficiency of heat exchange in the condenser 20. The fan 22 supplies outside air to the condenser 20 with which the refrigerant exchanges heat in the condenser 20 . By adjusting the rotational speed of the fan 22, the refrigerant pressure (high pressure side pressure) on the discharge side of the compressor 10 can be adjusted. The rotation speed of fan 22 is controlled by control device 100.
受液器73は、配管81と配管82との間に接続されている。受液器73は、凝縮器20で凝縮されて液相となった冷媒を、主冷媒回路に対する余剰の冷媒量として貯蔵する容器である。配管81は、凝縮器20の出口と受液器73の入口とを接続する配管である。配管82は、受液器73の出口と熱交換器30の第1通路H1の入口とを接続する配管である。
The liquid receiver 73 is connected between the piping 81 and the piping 82. The liquid receiver 73 is a container that stores the refrigerant that has been condensed into a liquid phase in the condenser 20 as a surplus amount of refrigerant with respect to the main refrigerant circuit. The pipe 81 is a pipe that connects the outlet of the condenser 20 and the inlet of the liquid receiver 73. The pipe 82 is a pipe that connects the outlet of the liquid receiver 73 and the inlet of the first passage H1 of the heat exchanger 30.
室外ユニット2は、主冷媒回路から分岐して第2通路H2を経由して圧縮機10に冷媒を送る「インジェクション流路101」をさらに備える。インジェクション流路101は、配管91~92、配管96、および、配管98から構成される。なお、「インジェクション流路101」は「バイパス流路」と呼ばれることがある。
The outdoor unit 2 further includes an "injection passage 101" that branches from the main refrigerant circuit and sends refrigerant to the compressor 10 via the second passage H2. Injection channel 101 is composed of pipes 91 to 92, pipe 96, and pipe 98. Note that the "injection flow path 101" is sometimes referred to as a "bypass flow path."
インジェクション流路101は、第1分岐部P1から第1接続部P2の間に設けられている。第1分岐部P1は、主冷媒回路における凝縮器20の出口と負荷装置3との間に配置されている。さらに詳細に言えば、第1分岐部P1は、主冷媒回路における第1通路H1の出口と負荷装置3との間に配置されている。一方、第1接続部P2は、圧縮機10の吸入ポートG1の上流側に配置されている。さらに詳細に言えば、第1接続部P2は、負荷装置3とアキュムレータ40との間に配置されている。
The injection flow path 101 is provided between the first branch portion P1 and the first connection portion P2. The first branch P1 is arranged between the outlet of the condenser 20 and the load device 3 in the main refrigerant circuit. More specifically, the first branch P1 is arranged between the outlet of the first passage H1 in the main refrigerant circuit and the load device 3. On the other hand, the first connecting portion P2 is arranged upstream of the suction port G1 of the compressor 10. More specifically, the first connection portion P2 is arranged between the load device 3 and the accumulator 40.
インジェクション流路101は、配管91から構成される「第1冷媒流路」と、配管92および配管98から構成される「第2冷媒流路」と、配管96から構成される「第3冷媒流路」と、を含む。
The injection flow path 101 includes a "first refrigerant flow path" made up of a pipe 91, a "second refrigerant flow path" made up of a pipe 92 and a pipe 98, and a "third refrigerant flow path" made of a pipe 96. ``Route''.
「第1冷媒流路」(配管91)は、主冷媒回路の高圧部である配管83から、熱交換器30の第2通路H2の入口へ冷媒を流すための冷媒流路である。配管91の一端は配管83に接続され、配管91の他端は、第2通路H2の入口に接続されている。
The "first refrigerant flow path" (piping 91) is a refrigerant flow path for flowing the refrigerant from the pipe 83, which is the high-pressure part of the main refrigerant circuit, to the inlet of the second passage H2 of the heat exchanger 30. One end of the pipe 91 is connected to the pipe 83, and the other end of the pipe 91 is connected to the entrance of the second passage H2.
「第3冷媒流路」(配管96)は、「第2冷媒流路」(配管92、98)から分岐した冷媒流路である。「第3冷媒流路」(配管96)は、一端が配管92に接続され、他端が圧縮機10の中間圧ポートG3に接続されている。「第3冷媒流路」は、熱交換器30の第2通路H2の出口から、圧縮機10の中間圧ポートG3へ冷媒を流すための冷媒流路である。配管96は、配管92と中間圧ポートG3との間に配置されている。
The "third refrigerant flow path" (piping 96) is a refrigerant flow path branched from the "second refrigerant flow path" (pipes 92, 98). One end of the "third refrigerant flow path" (piping 96) is connected to the piping 92, and the other end is connected to the intermediate pressure port G3 of the compressor 10. The "third refrigerant flow path" is a refrigerant flow path for flowing refrigerant from the outlet of the second passage H2 of the heat exchanger 30 to the intermediate pressure port G3 of the compressor 10. Piping 96 is arranged between piping 92 and intermediate pressure port G3.
「第2冷媒流路」(配管92、98)は、一端が熱交換器30の第2通路H2の出口に接続され、他端が配管89に配置された第1接続部P2に接続されている。「第2冷媒流路」(配管92、98)は、熱交換器30の第2通路H2の出口から、第1接続部P2へ冷媒を流すための冷媒流路である。配管92は、第2通路H2の出口と配管96との間に配置されている。配管98は、配管92と第1接続部P2との間に配置されている。配管89は、図1に示すように、第1延長配管88とアキュムレータ40との間に接続されている配管である。
The "second refrigerant flow path" (pipes 92, 98) is connected at one end to the outlet of the second passage H2 of the heat exchanger 30 and at the other end to the first connection part P2 arranged in the piping 89. There is. The "second refrigerant flow path" (piping 92, 98) is a refrigerant flow path for flowing the refrigerant from the outlet of the second passage H2 of the heat exchanger 30 to the first connection portion P2. Piping 92 is arranged between the outlet of second passage H2 and piping 96. Piping 98 is arranged between piping 92 and first connection portion P2. The piping 89 is a piping connected between the first extension piping 88 and the accumulator 40, as shown in FIG.
インジェクション流路101の「第3冷媒流路」(配管96)には、中間開閉弁75が配置されている。中間開閉弁75の開閉により、第3冷媒流路から圧縮機10の中間圧ポートG3への冷媒の流入の有無を切り替えることができる。なお、図1において、中間開閉弁75は必ずしも設けなくてもよい。中間開閉弁75が無い場合、中間圧ポートG3への冷媒の流入量の制御または流入の有無の制御は、第2膨張弁71で行う。
An intermediate on-off valve 75 is arranged in the "third refrigerant flow path" (piping 96) of the injection flow path 101. By opening and closing the intermediate on-off valve 75, it is possible to switch whether or not refrigerant flows from the third refrigerant flow path to the intermediate pressure port G3 of the compressor 10. In addition, in FIG. 1, the intermediate on-off valve 75 does not necessarily need to be provided. If the intermediate opening/closing valve 75 is not provided, the second expansion valve 71 controls the amount of refrigerant flowing into the intermediate pressure port G3 or controls whether or not the refrigerant flows into the intermediate pressure port G3.
また、インジェクション流路101の「第2冷媒流路」(配管92、98)には、吸入開閉弁76が配置されている。さらに詳細に言えば、吸入開閉弁76は、第2冷媒流路のうちの配管98に配置されている。吸入開閉弁76の開閉により、第2冷媒流路から、第1接続部P2への冷媒の流入の有無を切り替えることができる。
Furthermore, a suction on-off valve 76 is arranged in the "second refrigerant flow path" (pipes 92, 98) of the injection flow path 101. More specifically, the suction on-off valve 76 is arranged in the pipe 98 of the second refrigerant flow path. By opening and closing the suction on-off valve 76, it is possible to switch whether or not the refrigerant flows from the second refrigerant flow path to the first connection portion P2.
このように、中間開閉弁75および吸入開閉弁76は、第2通路H2の出口から流出する冷媒の行き先を切り替える流路切替装置として機能する。具体的には、吸入開閉弁76が開状態の場合には、第2通路H2の出口から流出する冷媒は、配管89に流れる。一方、中間開閉弁75が開状態で、吸入開閉弁76が閉状態の場合には、第2通路H2の出口から流出する冷媒は、中間圧ポートG3に流れる。中間開閉弁75および吸入開閉弁76の開閉動作により、インジェクション流路101からの冷媒は、圧縮機10の中間圧ポートG3および第1接続部P2の少なくともいずれか一方に流入される。
In this way, the intermediate on-off valve 75 and the suction on-off valve 76 function as a flow path switching device that switches the destination of the refrigerant flowing out from the outlet of the second passage H2. Specifically, when the suction on-off valve 76 is in the open state, the refrigerant flowing out from the outlet of the second passage H2 flows into the pipe 89. On the other hand, when the intermediate on-off valve 75 is open and the suction on-off valve 76 is closed, the refrigerant flowing out from the outlet of the second passage H2 flows to the intermediate pressure port G3. The opening and closing operations of the intermediate on-off valve 75 and the suction on-off valve 76 cause the refrigerant from the injection flow path 101 to flow into at least one of the intermediate pressure port G3 and the first connection portion P2 of the compressor 10.
また、配管91には、第2膨張弁71が配置されている。第2膨張弁71は、主冷媒回路における高圧部である配管83から流入される冷媒の圧力を、中間圧PMまで低下させることができる電子膨張弁である。従って、「第2冷媒流路」および「第3冷媒流路」を流れる冷媒の圧力は、中間圧PMになっている。
Further, a second expansion valve 71 is arranged in the pipe 91. The second expansion valve 71 is an electronic expansion valve that can reduce the pressure of the refrigerant flowing from the pipe 83, which is a high pressure section in the main refrigerant circuit, to an intermediate pressure PM. Therefore, the pressure of the refrigerant flowing through the "second refrigerant flow path" and the "third refrigerant flow path" is the intermediate pressure PM.
このように、実施の形態1では、インジェクション流路101および熱交換器30を設けることにより、主冷媒回路の液管である配管83における過冷却度を確保することが容易となる。
As described above, in the first embodiment, by providing the injection flow path 101 and the heat exchanger 30, it becomes easy to ensure the degree of supercooling in the pipe 83, which is the liquid pipe of the main refrigerant circuit.
熱交換器30は、第1通路H1および第2通路H2を有し、第1通路H1を流れる冷媒と第2通路H2を流れる冷媒との間で熱交換を行うように構成されている。熱交換器30は、主冷媒回路の一部である第1通路H1を流れる冷媒と、インジェクション流路101の一部である第2通路H2を流れる冷媒と、の間の熱交換を行う。このとき、第1通路H1を流れる冷媒が、被冷却側である。第1通路H1は、入口が配管82に接続され、出口が配管83に接続されている。第2通路H2は、入口が配管91に接続され、出口が配管92に接続されている。
The heat exchanger 30 has a first passage H1 and a second passage H2, and is configured to exchange heat between the refrigerant flowing through the first passage H1 and the refrigerant flowing through the second passage H2. The heat exchanger 30 performs heat exchange between the refrigerant flowing through the first passage H1, which is a part of the main refrigerant circuit, and the refrigerant flowing through the second passage H2, which is a part of the injection passage 101. At this time, the refrigerant flowing through the first passage H1 is on the side to be cooled. The first passage H1 has an inlet connected to the pipe 82 and an outlet connected to the pipe 83. The second passage H2 has an inlet connected to the pipe 91 and an outlet connected to the pipe 92.
図2は、図1に示した冷凍サイクル装置1に配置される各種センサと制御装置100とを示した構成図である。図2に示すように、室外ユニット2は、圧力センサ110~112と、温度センサ120~125と、制御装置100と、を備える。また、図2に示すように、負荷装置3は、温度センサ126を備える。
FIG. 2 is a configuration diagram showing various sensors and the control device 100 arranged in the refrigeration cycle device 1 shown in FIG. As shown in FIG. 2, the outdoor unit 2 includes pressure sensors 110 to 112, temperature sensors 120 to 125, and a control device 100. Further, as shown in FIG. 2, the load device 3 includes a temperature sensor 126.
圧力センサ110は、圧縮機10の吸入ポートG1部分の圧力PLを検出し、その検出値を制御装置100へ出力する。圧力PLは、「低圧」または「蒸発圧力」と呼ばれることがある。圧力センサ111は、圧縮機10の吐出ポートG2から吐出された冷媒の吐出圧PHを検出し、その検出値を制御装置100へ出力する。吐出圧PHは、「高圧」または「凝縮圧力」と呼ばれることがある。また、圧力センサ112は、第2通路H2の出口から流出して配管92を流れる冷媒の中間圧PMを検出し、その検出値を制御装置100へ出力する。中間圧PMは、吐出圧PHより低く、圧力PLより高い。
The pressure sensor 110 detects the pressure PL at the suction port G1 of the compressor 10 and outputs the detected value to the control device 100. Pressure PL is sometimes referred to as "low pressure" or "evaporation pressure." The pressure sensor 111 detects the discharge pressure PH of the refrigerant discharged from the discharge port G2 of the compressor 10, and outputs the detected value to the control device 100. Discharge pressure PH is sometimes referred to as "high pressure" or "condensing pressure." Further, the pressure sensor 112 detects the intermediate pressure PM of the refrigerant flowing out from the outlet of the second passage H2 and flowing through the pipe 92, and outputs the detected value to the control device 100. Intermediate pressure PM is lower than discharge pressure PH and higher than pressure PL.
以下の説明においては、冷凍サイクル装置1の冷媒の流れる方向において、圧縮機10の吐出ポートG2から第1膨張弁50の入口までの間を「高圧側」と呼び、第1膨張弁50の出口から圧縮機10の吸入ポートG1までの間を「低圧側」と呼ぶ。また、インジェクション流路101を「中間圧部分」と呼ぶ。
In the following description, in the direction in which the refrigerant of the refrigeration cycle device 1 flows, the area from the discharge port G2 of the compressor 10 to the inlet of the first expansion valve 50 will be referred to as the "high pressure side", and the outlet of the first expansion valve 50 will be referred to as the "high pressure side". The area from the air to the suction port G1 of the compressor 10 is referred to as the "low pressure side." Furthermore, the injection flow path 101 is referred to as an "intermediate pressure section."
温度センサ120は、圧縮機10から吐出された冷媒の吐出温度THを検出し、その検出値を制御装置100へ出力する。温度センサ121は、凝縮器20の出口の配管81の冷媒温度T1を検出し、その検出値を制御装置100へ出力する。温度センサ122は、熱交換器30の第1通路H1の出口の冷媒温度を、熱交換器30の出口温度T2として検出し、その検出値を制御装置100へ出力する。
The temperature sensor 120 detects the discharge temperature TH of the refrigerant discharged from the compressor 10 and outputs the detected value to the control device 100. The temperature sensor 121 detects the refrigerant temperature T1 of the pipe 81 at the outlet of the condenser 20 and outputs the detected value to the control device 100. The temperature sensor 122 detects the refrigerant temperature at the outlet of the first passage H1 of the heat exchanger 30 as the outlet temperature T2 of the heat exchanger 30, and outputs the detected value to the control device 100.
温度センサ123は、室外ユニット2の周囲温度を外気温TAとして検出し、その検出値を制御装置100へ出力する。温度センサ123は、たとえば、凝縮器20の近傍に配置されるが、室外ユニット2の筐体に配置されていてもよく、配置位置は限定されない。温度センサ124は圧縮機10の吸入ポートG1に接続された配管97の温度TLを検出し、その検出値を制御装置100へ出力する。温度センサ125は熱交換器30の第2通路H2の出口の温度を検出し、その検出値を制御装置100へ出力する。
The temperature sensor 123 detects the ambient temperature of the outdoor unit 2 as the outside air temperature TA, and outputs the detected value to the control device 100. The temperature sensor 123 is placed, for example, near the condenser 20, but may be placed on the casing of the outdoor unit 2, and the placement position is not limited. The temperature sensor 124 detects the temperature TL of the pipe 97 connected to the suction port G1 of the compressor 10 and outputs the detected value to the control device 100. The temperature sensor 125 detects the temperature at the outlet of the second passage H2 of the heat exchanger 30 and outputs the detected value to the control device 100.
温度センサ126は、蒸発器60の出口温度を検出し、第1膨張弁50を自動調整する。
The temperature sensor 126 detects the outlet temperature of the evaporator 60 and automatically adjusts the first expansion valve 50.
制御装置100は、CPU(Central Processing Unit)102と、メモリ104と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。メモリ104は、ROM(Read Only Memory)およびRAM(Random Access Memory)を有している。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、室外ユニット2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
The control device 100 includes a CPU (Central Processing Unit) 102, a memory 104, an input/output buffer (not shown) for inputting and outputting various signals, and the like. The memory 104 includes a ROM (Read Only Memory) and a RAM (Random Access Memory). The CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program. The program stored in the ROM is a program in which the processing procedure of the control device 100 is written. The control device 100 executes control of each device in the outdoor unit 2 according to these programs. This control is not limited to processing by software, but can also be performed by dedicated hardware (electronic circuit).
制御装置100は、圧縮機10、第2膨張弁71、中間開閉弁75、吸入開閉弁76の動作の制御を行う。また、制御装置100は、第1膨張弁50の制御も行うようにしてもよい。
The control device 100 controls the operations of the compressor 10, the second expansion valve 71, the intermediate on-off valve 75, and the suction on-off valve 76. Further, the control device 100 may also control the first expansion valve 50.
(冷凍機油の特性)
図3および図4は、冷凍機油と冷媒との特性を表すダニエルチャートである。図3および図4において、横軸は温度を示し、縦軸は油の粘性を示す。図3および図4における各斜線は、冷媒と冷凍機油の内冷媒との溶解度を示しており、各曲線は等圧線を示している。 (Characteristics of refrigeration oil)
3 and 4 are Daniel charts representing the characteristics of refrigerating machine oil and refrigerant. In FIGS. 3 and 4, the horizontal axis represents temperature, and the vertical axis represents oil viscosity. Each diagonal line in FIGS. 3 and 4 indicates the solubility between the refrigerant and the refrigerant in the refrigerating machine oil, and each curve indicates an isobaric line.
図3および図4は、冷凍機油と冷媒との特性を表すダニエルチャートである。図3および図4において、横軸は温度を示し、縦軸は油の粘性を示す。図3および図4における各斜線は、冷媒と冷凍機油の内冷媒との溶解度を示しており、各曲線は等圧線を示している。 (Characteristics of refrigeration oil)
3 and 4 are Daniel charts representing the characteristics of refrigerating machine oil and refrigerant. In FIGS. 3 and 4, the horizontal axis represents temperature, and the vertical axis represents oil viscosity. Each diagonal line in FIGS. 3 and 4 indicates the solubility between the refrigerant and the refrigerant in the refrigerating machine oil, and each curve indicates an isobaric line.
図3および図4に示すように、冷媒と冷凍機油との特性として、圧力を増加させた場合に、冷凍機油の粘性が下がる傾向にあることが分かる。
As shown in FIGS. 3 and 4, it can be seen that as a characteristic of the refrigerant and the refrigerating machine oil, when the pressure is increased, the viscosity of the refrigerating machine oil tends to decrease.
(第2膨張弁71による吐出温度THの制御)
通常運転時に、制御装置100は、中間開閉弁75を開にし、吸入開閉弁76は閉にした状態で、圧縮機10の吐出温度THが予め設定された目標温度に一致するように、第2膨張弁71の開度をフィードバック制御する。具体的には、制御装置100は、温度センサ120から、圧縮機10の吐出温度THを取得する。圧縮機10の吐出温度THが目標温度より高い場合には、制御装置100は、第2膨張弁71の開度を増加させる。これによって、受液器73を経由して中間圧ポートG3に流入する冷媒が増えるため、吐出温度THが低下する。 (Control of discharge temperature TH by second expansion valve 71)
During normal operation, thecontrol device 100 opens the intermediate on-off valve 75 and closes the suction on-off valve 76, and controls the second temperature so that the discharge temperature TH of the compressor 10 matches a preset target temperature. The opening degree of the expansion valve 71 is feedback-controlled. Specifically, the control device 100 acquires the discharge temperature TH of the compressor 10 from the temperature sensor 120. When the discharge temperature TH of the compressor 10 is higher than the target temperature, the control device 100 increases the opening degree of the second expansion valve 71. As a result, the amount of refrigerant flowing into the intermediate pressure port G3 via the liquid receiver 73 increases, so that the discharge temperature TH decreases.
通常運転時に、制御装置100は、中間開閉弁75を開にし、吸入開閉弁76は閉にした状態で、圧縮機10の吐出温度THが予め設定された目標温度に一致するように、第2膨張弁71の開度をフィードバック制御する。具体的には、制御装置100は、温度センサ120から、圧縮機10の吐出温度THを取得する。圧縮機10の吐出温度THが目標温度より高い場合には、制御装置100は、第2膨張弁71の開度を増加させる。これによって、受液器73を経由して中間圧ポートG3に流入する冷媒が増えるため、吐出温度THが低下する。 (Control of discharge temperature TH by second expansion valve 71)
During normal operation, the
一方、圧縮機10の吐出温度THが目標温度より低い場合には、制御装置100は、第2膨張弁71の開度を減少させる。これによって、受液器73を経由して中間圧ポートG3に流入する冷媒が減るため、吐出温度THが上昇する。
On the other hand, if the discharge temperature TH of the compressor 10 is lower than the target temperature, the control device 100 reduces the opening degree of the second expansion valve 71. As a result, the amount of refrigerant flowing into the intermediate pressure port G3 via the liquid receiver 73 decreases, so that the discharge temperature TH increases.
吐出温度THが目標温度である場合には、制御装置100は、第2膨張弁71の開度を現在の状態に維持する。
When the discharge temperature TH is the target temperature, the control device 100 maintains the opening degree of the second expansion valve 71 at the current state.
このように、制御装置100は、圧縮機10の吐出温度THが目標温度に近づくように第2膨張弁71の開度を制御する。
In this way, the control device 100 controls the opening degree of the second expansion valve 71 so that the discharge temperature TH of the compressor 10 approaches the target temperature.
(油回収運転制御)
実施の形態1に係る冷凍サイクル装置1では、継続した運転により、主冷媒回路のうち、たとえば負荷装置3または第1延長配管88などに溜まり込んだ冷凍機油を、適宜、回収する必要があり、圧縮機10の運転状態に応じて定期的な油回収運転を実施する。冷凍機油が負荷装置3または第1延長配管88に溜まり込む原因は、配管内の冷媒の流速が或る閾値を下回ることで、油の粘性に起因して滞留してしまうことにある。そのため、制御装置100は、圧縮機10の運転周波数に基づいて、油回収運転を実施するタイミングを決定する。そして、制御装置100は、決定した適切なタイミングで圧縮機10の増速を行い、冷凍サイクル装置1を循環する冷媒循環量を増加させることで、配管内の冷媒の流速を増加させて、滞留している冷凍機油を回収する。 (Oil recovery operation control)
In therefrigeration cycle device 1 according to the first embodiment, it is necessary to appropriately collect refrigeration oil that has accumulated in the main refrigerant circuit, for example, in the load device 3 or the first extension pipe 88 due to continuous operation. Periodic oil recovery operation is performed depending on the operating state of the compressor 10. The reason why the refrigerating machine oil accumulates in the load device 3 or the first extension pipe 88 is that the flow rate of the refrigerant in the pipe falls below a certain threshold value, causing the refrigerant oil to accumulate due to the viscosity of the oil. Therefore, the control device 100 determines the timing to perform the oil recovery operation based on the operating frequency of the compressor 10. Then, the control device 100 increases the speed of the compressor 10 at the determined appropriate timing and increases the amount of refrigerant circulating through the refrigeration cycle device 1, thereby increasing the flow rate of the refrigerant in the pipes and causing the refrigerant to accumulate. Collect the refrigerating machine oil.
実施の形態1に係る冷凍サイクル装置1では、継続した運転により、主冷媒回路のうち、たとえば負荷装置3または第1延長配管88などに溜まり込んだ冷凍機油を、適宜、回収する必要があり、圧縮機10の運転状態に応じて定期的な油回収運転を実施する。冷凍機油が負荷装置3または第1延長配管88に溜まり込む原因は、配管内の冷媒の流速が或る閾値を下回ることで、油の粘性に起因して滞留してしまうことにある。そのため、制御装置100は、圧縮機10の運転周波数に基づいて、油回収運転を実施するタイミングを決定する。そして、制御装置100は、決定した適切なタイミングで圧縮機10の増速を行い、冷凍サイクル装置1を循環する冷媒循環量を増加させることで、配管内の冷媒の流速を増加させて、滞留している冷凍機油を回収する。 (Oil recovery operation control)
In the
上述したように、図3及び図4においては、冷凍機油と冷媒との組み合わせによる特性を表したダニエルチャートを示している。図3及び図4のダニエルチャートから、冷凍機油は、圧力を増加させることで粘性が低下する傾向にあることが分かる。冷凍機油のこの特性を活用し、実施の形態1では、圧縮機10の低圧側の圧力を上昇させる手段として、吸入開閉弁76の開閉を制御して、吸入インジェクションを用いた油回収運転を実施する。
As mentioned above, FIGS. 3 and 4 show Daniel charts representing characteristics depending on the combination of refrigerating machine oil and refrigerant. From the Daniel charts of FIGS. 3 and 4, it can be seen that the viscosity of refrigerating machine oil tends to decrease as the pressure increases. Utilizing this characteristic of refrigerating machine oil, in the first embodiment, as a means to increase the pressure on the low pressure side of the compressor 10, the opening and closing of the suction on-off valve 76 is controlled to perform an oil recovery operation using suction injection. do.
図5は、実施の形態1に係る冷凍サイクル装置1における通常運転から油回収運転へ移行する処理手順を示すフローチャートである。
FIG. 5 is a flowchart showing a procedure for transitioning from normal operation to oil recovery operation in the refrigeration cycle device 1 according to the first embodiment.
図5に示すように、制御装置100は、圧縮機10が起動状態であるかを判定する(ステップS1)。圧縮機10が起動していない場合(ステップS1でYES)は、流路切替装置である中間開閉弁75および吸入開閉弁76の制御を用いた圧縮機10の起動制御を実施する(ステップS2)。ステップS2で行う圧縮機10の起動制御については、図8を用いて後述する。
As shown in FIG. 5, the control device 100 determines whether the compressor 10 is in the activated state (step S1). If the compressor 10 is not started (YES in step S1), start-up control of the compressor 10 is performed using control of the intermediate on-off valve 75 and the suction on-off valve 76, which are flow path switching devices (step S2). . The startup control of the compressor 10 performed in step S2 will be described later using FIG. 8.
一方、圧縮機10が起動している場合(ステップS1でNO)は、制御装置100は、圧縮機10の現在の運転周波数が、予め設定された第2最低周波数を下回っているか否かを判定する(ステップS3)。第2最低周波数は、制御装置100が、油回収運転を行う際に、圧縮機10の制御に用いる最低周波数である。
On the other hand, if the compressor 10 is activated (NO in step S1), the control device 100 determines whether the current operating frequency of the compressor 10 is lower than a preset second minimum frequency. (Step S3). The second lowest frequency is the lowest frequency used by the control device 100 to control the compressor 10 when performing the oil recovery operation.
圧縮機10の現在の運転周波数が、第2最低周波数を下回っている場合(ステップS3でYES)は、制御装置100は、ステップS4の処理に進む。一方、圧縮機10の現在の運転周波数が、第2最低周波数以上の場合は、そのまま、図5のフローを終了する。
If the current operating frequency of the compressor 10 is lower than the second minimum frequency (YES in step S3), the control device 100 proceeds to the process of step S4. On the other hand, if the current operating frequency of the compressor 10 is equal to or higher than the second lowest frequency, the flow in FIG. 5 is directly ended.
ステップS4では、制御装置100は、圧縮機10の運転周波数が、第2最低周波数未満の状態が、予め設定された第1期間以上の間、継続しているか否かを判定する。すなわち、制御装置100は、ステップS3で圧縮機10の運転周波数が、第2最低周波数を下回っていると判定された時点から、第1期間以上が経過しているか否かを判定する。なお、第1期間は、例えば、1時間であるが、これに限定されない。
In step S4, the control device 100 determines whether the operating frequency of the compressor 10 continues to be lower than the second minimum frequency for a preset first period or more. That is, the control device 100 determines whether or not a first period or more has elapsed since the operating frequency of the compressor 10 was determined to be lower than the second minimum frequency in step S3. Note that the first period is, for example, one hour, but is not limited thereto.
圧縮機10の運転周波数が第2最低周波数未満の状態が第1期間以上継続していると判定した場合(ステップS4でYES)、制御装置100は、ステップS6またはステップS7の油回収運転を実施する。
If it is determined that the operating frequency of the compressor 10 is lower than the second minimum frequency for the first period or longer (YES in step S4), the control device 100 performs the oil recovery operation in step S6 or step S7. do.
ステップS6およびステップS7のいずれを選択するかの判定は、ステップS5において、制御装置100が、圧縮機10の吸入ポートG1が液バック状態であるか否かを判定して判断する。すなわち、制御装置100は、油回収運転を開始する前に、圧縮機10の吸入ポートG1の状態が液バックの状態であるかを判定し、液バック状態の有無に基づいて、油回収運転の制御の種類を切り替える(ステップS5)。ここでは、油回収運転の制御の種類として、制御装置100が、第1制御と第2制御とを有している場合を例に挙げて説明する。なお、液バックの状態とは、圧縮機10が吸入する冷媒が蒸発器60で完全に蒸発しておらず、ガス冷媒と共に液冷媒が継続的に圧縮機10に吸入されることである。なお、圧縮機10の吸入ポートG1の状態が液バックの状態のときには、下記の条件を満たしている。
The control device 100 determines whether or not the suction port G1 of the compressor 10 is in a liquid back state in step S5 to determine which of step S6 and step S7 to select. That is, before starting the oil recovery operation, the control device 100 determines whether the state of the suction port G1 of the compressor 10 is in a liquid back state, and controls the oil recovery operation based on the presence or absence of the liquid back state. The type of control is switched (step S5). Here, an example will be described in which the control device 100 has first control and second control as types of control for oil recovery operation. Note that the liquid back state means that the refrigerant sucked into the compressor 10 is not completely evaporated in the evaporator 60, and liquid refrigerant is continuously sucked into the compressor 10 together with the gas refrigerant. Note that when the suction port G1 of the compressor 10 is in a liquid back state, the following conditions are satisfied.
(圧力PLにおける飽和温度)-(温度TL)<第1閾値 (1)
(Saturation temperature at pressure PL) - (temperature TL) <first threshold (1)
すなわち、ステップS5において、制御装置100は、上記の条件を満たしているか否かを判定することで、液バックの有無を判定する。そのため、制御装置100は、圧力センサ110から、圧縮機10の吸入ポートG1部分の圧力PLを取得する。そして、制御装置100は、圧力PLに基づいて、圧力PLにおける冷媒の飽和温度を演算する。また、制御装置100は、温度センサ124から、圧縮機10の吸入配管の温度TLを取得する。そして、制御装置100は、圧力PLにおける冷媒の飽和温度と温度TLとの差分DLが、予め設定された第1閾値未満か否かを判定する。なお、第1閾値は、例えば、5K(ケルビン)であるが、これに限定されない。
That is, in step S5, the control device 100 determines the presence or absence of liquid back by determining whether the above conditions are satisfied. Therefore, the control device 100 acquires the pressure PL at the suction port G1 portion of the compressor 10 from the pressure sensor 110. Then, the control device 100 calculates the saturation temperature of the refrigerant at the pressure PL based on the pressure PL. The control device 100 also acquires the temperature TL of the suction pipe of the compressor 10 from the temperature sensor 124. Then, the control device 100 determines whether the difference DL between the saturation temperature of the refrigerant at the pressure PL and the temperature TL is less than a first threshold value set in advance. Note that the first threshold is, for example, 5K (Kelvin), but is not limited to this.
差分DLが第1閾値未満の場合、制御装置100は、圧縮機10が液バック状態であると判定し(ステップS5でNO)、ステップS7の第2制御による油回収運転を実施する。
If the difference DL is less than the first threshold, the control device 100 determines that the compressor 10 is in a liquid back state (NO in step S5), and performs the oil recovery operation under the second control in step S7.
一方、差分DLが第1閾値以上の場合、制御装置100は、圧縮機10が液バック状態でないと判定し(ステップS5でYES)、ステップS6の第1制御による油回収運転を実施する。
On the other hand, if the difference DL is greater than or equal to the first threshold value, the control device 100 determines that the compressor 10 is not in the liquid back state (YES in step S5), and performs the oil recovery operation according to the first control in step S6.
なお、実施の形態1では、圧縮機10がインバータ圧縮機であるため、圧縮機10の運転周波数が変動する。そのため、図5のフローに示すように、制御装置100が、圧縮機10の運転周波数に基づいて、油回収運転を実施するタイミングを決定している。しかしながら、実施の形態1は、その場合に限定されない。例えば、圧縮機10が、インバータ圧縮機ではなく、一定速の圧縮機である場合は、周波数変動がないため、予め設定された周期での定期的な油回収運転を行うようにしてもよい。その場合、図5のフローのステップS3およびステップS4の代わりに、制御装置100は、圧縮機10の運転時間の積算値が、予め設定された閾値以上か否かの判定を行う。そして、圧縮機10の運転時間の積算値が閾値以上の場合、ステップS5に進み、圧縮機10の運転時間の積算値が閾値未満の場合、そのまま、図5のフローを終了する。
Note that in the first embodiment, since the compressor 10 is an inverter compressor, the operating frequency of the compressor 10 varies. Therefore, as shown in the flowchart of FIG. 5, the control device 100 determines the timing to perform the oil recovery operation based on the operating frequency of the compressor 10. However, the first embodiment is not limited to that case. For example, if the compressor 10 is not an inverter compressor but a constant-speed compressor, there is no frequency fluctuation, so regular oil recovery operation may be performed at a preset cycle. In that case, instead of steps S3 and S4 in the flow of FIG. 5, the control device 100 determines whether the integrated value of the operating time of the compressor 10 is equal to or greater than a preset threshold. If the integrated value of the operating time of the compressor 10 is equal to or greater than the threshold value, the process proceeds to step S5, and if the integrated value of the operating time of the compressor 10 is less than the threshold value, the flow of FIG. 5 is directly ended.
(液バックが無い場合の油回収運転)
図6は、実施の形態1に係る冷凍サイクル装置1における第1制御による油回収運転の処理手順を示すフローチャートである。図6においては、制御装置100が、図5のステップS5で液バックが無いと判定して、ステップS6に進んで、流路切替装置である吸入開閉弁76を用いた油回収運転を行う制御フローを示している。 (Oil recovery operation when there is no liquid back)
FIG. 6 is a flowchart showing the processing procedure of the oil recovery operation under the first control in therefrigeration cycle device 1 according to the first embodiment. In FIG. 6, the control device 100 determines that there is no liquid back in step S5 of FIG. It shows the flow.
図6は、実施の形態1に係る冷凍サイクル装置1における第1制御による油回収運転の処理手順を示すフローチャートである。図6においては、制御装置100が、図5のステップS5で液バックが無いと判定して、ステップS6に進んで、流路切替装置である吸入開閉弁76を用いた油回収運転を行う制御フローを示している。 (Oil recovery operation when there is no liquid back)
FIG. 6 is a flowchart showing the processing procedure of the oil recovery operation under the first control in the
制御装置100は、図5のステップS6に移行すると、図6に示すように、吸入開閉弁76を開く(ステップS11)。これにより、冷凍サイクル装置1の高圧側と低圧側とがバイパスされるので、圧力センサ110で検知される低圧部分の圧力PLを上昇させることができる。
When the control device 100 moves to step S6 in FIG. 5, as shown in FIG. 6, the control device 100 opens the suction on-off valve 76 (step S11). Thereby, the high pressure side and the low pressure side of the refrigeration cycle device 1 are bypassed, so that the pressure PL of the low pressure portion detected by the pressure sensor 110 can be increased.
次に、制御装置100は、圧力PLが、予め設定された第2閾値を超えているかを判定する(ステップS12)。圧力PLが第2閾値を超えていた場合、ステップS13に進む。一方、圧力PLが第2閾値以下の場合、ステップS16に進む。ステップS16では、制御装置100は、ステップS12の判定を最初に行った時点から、予め設定された第2期間以上経過したかを判定する。第2期間は、たとえば3分であるが、これに限定されない。ステップS16の判定で、第2期間以上経過していない場合(ステップS16でNO)は、制御装置100は、ステップS12の処理に戻る。一方、ステップS16の判定で、第2期間以上経過した場合(ステップS16でYES)は、制御装置100は、ステップS13の処理に進む。
Next, the control device 100 determines whether the pressure PL exceeds a preset second threshold (step S12). If the pressure PL exceeds the second threshold, the process advances to step S13. On the other hand, if the pressure PL is less than or equal to the second threshold, the process advances to step S16. In step S16, the control device 100 determines whether a preset second period or more has elapsed since the first determination in step S12. The second period is, for example, 3 minutes, but is not limited thereto. If it is determined in step S16 that the second period or more has not elapsed (NO in step S16), the control device 100 returns to the process in step S12. On the other hand, if it is determined in step S16 that the second period or more has elapsed (YES in step S16), the control device 100 proceeds to the process in step S13.
このようにして、吸入開閉弁76の開放により、ステップS12とステップS16にて、圧力PLの十分な上昇を完了させた場合、吸入開閉弁76を閉じる(ステップS13)。なお、ステップS16の処理を行う理由は、以下の通りである。もし圧力PLが上がりきらないモードになってしまった場合に、吸入開閉弁76を開き続けると、蒸発器60側への冷媒循環量がその期間減少することとなる。その場合、冷凍サイクル装置1の冷凍能力が不足し、冷却対象空間が不冷となる。そのため、ある程度、冷凍機油の粘性を下げることができた段階で、すなわち、第2期間が経過した段階で、吸入開閉弁76を閉じることが望ましいためである。
In this way, when the pressure PL has been sufficiently increased in steps S12 and S16 by opening the suction on-off valve 76, the suction on-off valve 76 is closed (step S13). Note that the reason for performing the process in step S16 is as follows. If the mode is such that the pressure PL cannot rise completely and the suction on-off valve 76 is kept open, the amount of refrigerant circulating to the evaporator 60 will decrease during that period. In that case, the refrigeration capacity of the refrigeration cycle device 1 becomes insufficient, and the space to be cooled becomes uncooled. Therefore, it is desirable to close the suction on-off valve 76 when the viscosity of the refrigerating machine oil can be reduced to some extent, that is, after the second period has elapsed.
次に、制御装置100は、最低周波数を、通常運転時の第1最低周波数から、油回収運転時の第2最低周波数に変更する(ステップS14)。なお、第2最低周波数は、第1最低周波数より大きい周波数に設定されている。
Next, the control device 100 changes the lowest frequency from the first lowest frequency during normal operation to the second lowest frequency during oil recovery operation (step S14). Note that the second lowest frequency is set to a higher frequency than the first lowest frequency.
このように、ステップS14で、圧縮機10の最低周波数を、油回収運転に必要な第2最低周波数へと設定変更することで、以降の運転では、第2最低周波数以上での運転を継続することができる。
In this way, in step S14, by changing the setting of the lowest frequency of the compressor 10 to the second lowest frequency necessary for the oil recovery operation, the operation continues at the second lowest frequency or higher in subsequent operations. be able to.
次に、制御装置100は、第2最低周波数以上の運転を、予め設定された第3期間以上継続したかを判定する(ステップS15)。第3期間は、たとえば5分であるが、これに限定されない。制御装置100は、第2最低周波数以上の運転が第3期間以上継続していない場合(ステップS15でNO)、ステップS14の処理に戻る。一方、制御装置100は、第2最低周波数以上の運転が第3期間以上継続した場合(ステップS15でYES)、最低周波数を元の第1最低周波数に戻し(ステップS17)、通常運転へ移行する。
Next, the control device 100 determines whether the operation at the second lowest frequency or higher continues for a preset third period or longer (step S15). The third period is, for example, 5 minutes, but is not limited to this. If the operation at the second lowest frequency or higher has not continued for the third period or longer (NO in step S15), the control device 100 returns to the process in step S14. On the other hand, if the operation at the second lowest frequency or higher continues for a third period or longer (YES in step S15), the control device 100 returns the lowest frequency to the original first lowest frequency (step S17) and shifts to normal operation. .
以上のように、図6のフローでは、吸入開閉弁76を開放することで、圧力センサ110で検出される低圧側の圧力PLを上昇させている。それにより、図3および図4のダニエルチャートを用いて上述した冷凍機油の特徴である粘性を低下させることができる利点がある。また、負荷装置3に溜まった冷凍機油を回収するためには、圧縮機10を増速する必要がある。しかしながら、通常運転時の目標蒸発温度に設定したまま、油回収運転のために圧縮機10の増速を行うと、すぐに、蒸発温度が目標蒸発温度を下回り、サーモOFFしてしまい、十分に油回収の運転を継続できない場合がある。そこで、図6のフローでは、吸入開閉弁76を開くことで、圧力センサ110により検知される圧力PLの飽和温度を上昇させている。これにより、制御装置100による圧縮機10の容量制御によって、自然に、圧縮機10の運転周波数の上昇が行われ、十分に高い運転周波数での油回収運転を継続することができる。上記の特許文献1では、一定時間で運転を停止することでサーモOFFを回避してきたが、その場合、冷凍サイクル装置の発停により、冷凍サイクル装置の運転効率が悪くなっていた。これに対し、実施の形態1では、吸入開閉弁76を開放することで、サーモOFFを回避して、油回収運転を十分な期間だけ継続させることが可能であるため、冷凍サイクル装置1の発停回数を減らすことができる。その結果、冷凍サイクル装置の運転効率の向上が図れる。また、吸入開閉弁76を開放することで、冷凍機油の特性である粘性を下げた状態で油回収運転を実施することができる。
As described above, in the flow of FIG. 6, the low pressure side pressure PL detected by the pressure sensor 110 is increased by opening the suction on-off valve 76. Thereby, there is an advantage that the viscosity, which is a characteristic of refrigerating machine oil, described above using the Daniel charts of FIGS. 3 and 4 can be reduced. Furthermore, in order to recover the refrigerating machine oil accumulated in the load device 3, it is necessary to increase the speed of the compressor 10. However, if the speed of the compressor 10 is increased for oil recovery operation with the target evaporation temperature set during normal operation, the evaporation temperature will immediately fall below the target evaporation temperature and the thermostat will be turned off, causing the Oil recovery operations may not be able to continue. Therefore, in the flow of FIG. 6, the saturation temperature of the pressure PL detected by the pressure sensor 110 is increased by opening the suction on-off valve 76. Thereby, the operating frequency of the compressor 10 is naturally increased by the capacity control of the compressor 10 by the control device 100, and the oil recovery operation can be continued at a sufficiently high operating frequency. In Patent Document 1 mentioned above, thermo-off is avoided by stopping operation for a certain period of time, but in that case, the operating efficiency of the refrigeration cycle apparatus deteriorates due to the start and stop of the refrigeration cycle apparatus. On the other hand, in the first embodiment, by opening the suction on-off valve 76, it is possible to avoid turning off the thermostat and continue the oil recovery operation for a sufficient period of time. The number of stops can be reduced. As a result, the operating efficiency of the refrigeration cycle device can be improved. Furthermore, by opening the suction on-off valve 76, oil recovery operation can be performed with the viscosity, which is a characteristic of refrigerating machine oil, reduced.
(液バックが有る場合の油回収運転)
図7は、実施の形態1に係る冷凍サイクル装置1における第2制御による油回収運転の処理手順を示すフローチャートである。図7においては、制御装置100が、図5のステップS5で液バックが有ると判定して、ステップS7に進んで、流路切替装置である吸入開閉弁76を用いた油回収運転を行う制御フローを示している。 (Oil recovery operation when there is liquid back)
FIG. 7 is a flowchart showing the processing procedure of the oil recovery operation under the second control in therefrigeration cycle device 1 according to the first embodiment. In FIG. 7, the control device 100 determines that there is a liquid back in step S5 of FIG. It shows the flow.
図7は、実施の形態1に係る冷凍サイクル装置1における第2制御による油回収運転の処理手順を示すフローチャートである。図7においては、制御装置100が、図5のステップS5で液バックが有ると判定して、ステップS7に進んで、流路切替装置である吸入開閉弁76を用いた油回収運転を行う制御フローを示している。 (Oil recovery operation when there is liquid back)
FIG. 7 is a flowchart showing the processing procedure of the oil recovery operation under the second control in the
図7の第2制御は、図5のステップS5にて、液バック有りの判定となった場合に実施される。液バック状態で吸入開閉弁76を開放する場合、配管83からの液状態の冷媒から第1接続部P2にインジェクションされることで、圧縮機10の吸入ポートG1が湿り気味になる傾向が助長される恐れがある。そのため、負荷装置3の状態に起因して、すでに液バックでの運転状態中に、吸入開閉弁76を開放した油回収運転を実施してしまうと液バックが助長され、アキュムレータ40がオーバーフローして圧縮機10の故障に繋がる可能性がある。
The second control in FIG. 7 is performed when it is determined in step S5 in FIG. 5 that there is liquid back. When the suction on-off valve 76 is opened in a liquid back state, the refrigerant in the liquid state from the pipe 83 is injected into the first connection part P2, which promotes a tendency for the suction port G1 of the compressor 10 to become slightly damp. There is a risk of Therefore, due to the condition of the load device 3, if oil recovery operation is performed with the suction on-off valve 76 opened while the operation is already in liquid back mode, liquid back up will be promoted and the accumulator 40 will overflow. This may lead to failure of the compressor 10.
そこで、実施の形態1では、制御装置100が、圧力センサ110と温度センサ124の検出値により、液バック状態を検知している場合、図7に示すように、はじめに、圧縮機10を停止させる(ステップS21)。
Therefore, in the first embodiment, when the control device 100 detects the liquid back state based on the detected values of the pressure sensor 110 and the temperature sensor 124, the compressor 10 is first stopped as shown in FIG. (Step S21).
そして、圧縮機10を停止させた状態で、吸入開閉弁76を開放する(ステップS22)。
Then, with the compressor 10 stopped, the suction on-off valve 76 is opened (step S22).
次に、制御装置100は、最低周波数を、通常運転時の第1最低周波数から、油回収運転時の第2最低周波数に変更し、吸入開閉弁76を閉じた状態で、再度、圧縮機10を起動させる(ステップS23)。なお、ステップS22からステップS23に移行する際に、図6のステップS12およびステップS16と同様の処理を行ってもよい。
Next, the control device 100 changes the lowest frequency from the first lowest frequency during normal operation to the second lowest frequency during oil recovery operation, and then restarts the compressor 10 with the suction on-off valve 76 closed. (Step S23). Note that when moving from step S22 to step S23, processing similar to step S12 and step S16 in FIG. 6 may be performed.
次に、制御装置100は、圧縮機10の運転周波数を、第2最低周波数まで増速させる(ステップS24)。そして、制御装置100は、第2最低周波数以上の運転を、予め設定された第4期間以上継続したかを判定する(ステップS25)。第4期間は、たとえば5分であるが、これに限定されない。制御装置100は、第2最低周波数以上の運転が第4期間以上継続していない場合(ステップS25でNO)、ステップS24の処理に戻る。一方、制御装置100は、第2最低周波数以上の運転が第4期間以上継続した場合(ステップS25でYES)、最低周波数を通常運転時の第1最低周波数に戻し(ステップS26)、通常運転へ移行する。
Next, the control device 100 increases the operating frequency of the compressor 10 to the second lowest frequency (step S24). Then, the control device 100 determines whether the operation at the second lowest frequency or higher continues for a preset fourth period or longer (step S25). The fourth period is, for example, 5 minutes, but is not limited to this. If the operation at the second lowest frequency or higher has not continued for the fourth period or longer (NO in step S25), the control device 100 returns to the process in step S24. On the other hand, if the operation at the second lowest frequency or higher continues for a fourth period or longer (YES in step S25), the control device 100 returns the lowest frequency to the first lowest frequency during normal operation (step S26) and returns to normal operation. Transition.
以上のように、図7のフローでは、圧縮機10を運転停止状態にして、吸入開閉弁76を開放することで、圧縮機10の吸入ポートG1側への湿り冷媒の流入を抑制することができる。また、上記の特許文献1での油回収制御では、圧縮機の停止後に、圧力センサにて検知される低圧を十分に上昇させるために、一定時間経過後に、圧縮機の再起動を行っていた。これに対して、実施の形態1では、吸入開閉弁76を開放することで、即座に、低圧側の圧力PLを上昇させることができる。よって、図6のフローのように圧縮機10が運転した状態での吸入開閉弁76の開放と同様に、図7のフローにおいても、圧力PLを上昇させることができる。その結果、図7のフローにおいても、サーモOFFを回避して、油回収運転を十分な期間だけ継続させることが可能であるため、冷凍サイクル装置1の発停回数を減らすことができる。これにより、冷凍サイクル装置の運転効率の向上が図れる。また、吸入開閉弁76を開放することで、冷凍機油の特性である粘性を下げた状態で油回収運転を実施することができる。
As described above, in the flow of FIG. 7, by bringing the compressor 10 into a stopped state and opening the suction on-off valve 76, it is possible to suppress the flow of wet refrigerant into the suction port G1 side of the compressor 10. can. In addition, in the oil recovery control in Patent Document 1 mentioned above, after the compressor is stopped, the compressor is restarted after a certain period of time has passed in order to sufficiently increase the low pressure detected by the pressure sensor. . On the other hand, in the first embodiment, by opening the suction on-off valve 76, the pressure PL on the low pressure side can be immediately increased. Therefore, the pressure PL can be increased in the flow of FIG. 7 as well as in the flow of FIG. 7 when the suction on-off valve 76 is opened while the compressor 10 is operating as in the flow of FIG. As a result, even in the flow of FIG. 7, it is possible to avoid turning off the thermostat and continue the oil recovery operation for a sufficient period of time, so the number of times the refrigeration cycle device 1 starts and stops can be reduced. Thereby, the operating efficiency of the refrigeration cycle device can be improved. Furthermore, by opening the suction on-off valve 76, oil recovery operation can be performed with the viscosity, which is a characteristic of refrigerating machine oil, reduced.
(通常運転時の圧縮機10の起動時の制御フロー)
図8は、実施の形態1に係る冷凍サイクル装置1における通常運転時の圧縮機10が起動する場合の制御フローチャートである。図8の制御フローは、図5のステップS2で実施される制御フローである。 (Control flow when starting thecompressor 10 during normal operation)
FIG. 8 is a control flowchart when thecompressor 10 is started during normal operation in the refrigeration cycle device 1 according to the first embodiment. The control flow in FIG. 8 is the control flow executed in step S2 in FIG.
図8は、実施の形態1に係る冷凍サイクル装置1における通常運転時の圧縮機10が起動する場合の制御フローチャートである。図8の制御フローは、図5のステップS2で実施される制御フローである。 (Control flow when starting the
FIG. 8 is a control flowchart when the
図8に示すように、通常運転時の定常状態において、圧縮機10の運転が停止した場合、制御装置100は、中間開閉弁75および吸入開閉弁76を閉止する(ステップS31)。
As shown in FIG. 8, when the operation of the compressor 10 is stopped in the steady state during normal operation, the control device 100 closes the intermediate on-off valve 75 and the suction on-off valve 76 (step S31).
次に、制御装置100は、圧縮機10を起動させ(ステップS32)、圧縮機10の運転周波数を増速させる(ステップS33)。
Next, the control device 100 starts the compressor 10 (step S32) and increases the operating frequency of the compressor 10 (step S33).
次に、制御装置100は、圧縮機10の現在の運転周波数が、通常運転時の第1最低周波数以上になったか否かの判定を行う(ステップS34)。
Next, the control device 100 determines whether the current operating frequency of the compressor 10 has become equal to or higher than the first lowest frequency during normal operation (step S34).
制御装置100は、圧縮機10の現在の運転周波数が、通常運転時の第1最低周波数未満の場合(ステップS34でNO)は、ステップS33の処理に戻る。一方、圧縮機10の現在の運転周波数が、通常運転時の第1最低周波数まで上昇したことを確認した場合(ステップS34でYES)、制御装置100は、ステップS35の処理に進む。
If the current operating frequency of the compressor 10 is less than the first lowest frequency during normal operation (NO in step S34), the control device 100 returns to the process in step S33. On the other hand, if it is confirmed that the current operating frequency of the compressor 10 has increased to the first lowest frequency during normal operation (YES in step S34), the control device 100 proceeds to the process of step S35.
ステップS35では、制御装置100は、中間開閉弁75を開放し、通常運転を行う。通常運転では、前述した第2膨張弁71による吐出温度THの制御を行うものとする。
In step S35, the control device 100 opens the intermediate on-off valve 75 and performs normal operation. In normal operation, the discharge temperature TH is controlled by the second expansion valve 71 described above.
以上のように、実施の形態1では、制御装置100が油回収運転を行うときに、吸入開閉弁76を開にする。これにより、高圧側と低圧側とがバイパスされ、配管83に配置された第1分岐部P1から、アキュムレータ40の上流に配置された第1接続部P2へ冷媒が流入する。その結果、低圧側の圧力PLが上昇する。冷凍機油は、圧力を増加させることで、粘性が低下する特性を有している。そのため、圧力PLが上昇することで、主冷媒回路内に滞留している冷凍機油の粘性が低下する。これにより、主冷媒回路の各配管の冷凍機油を、冷媒の流速によって容易に回収することができる。このように、実施の形態1では、冷凍機油の特性を利用して、循環流路である主冷媒回路へのインジェクション流路101からの冷媒の流入の有無を制御することで、冷媒と冷凍機油との状態に合わせた十分な返油能力を確保することができる。
As described above, in the first embodiment, when the control device 100 performs the oil recovery operation, the suction on-off valve 76 is opened. As a result, the high-pressure side and the low-pressure side are bypassed, and the refrigerant flows from the first branch part P1 arranged in the pipe 83 to the first connecting part P2 arranged upstream of the accumulator 40. As a result, the pressure PL on the low pressure side increases. Refrigerating machine oil has a property that its viscosity decreases as the pressure increases. Therefore, as the pressure PL increases, the viscosity of the refrigerating machine oil remaining in the main refrigerant circuit decreases. Thereby, the refrigerating machine oil in each pipe of the main refrigerant circuit can be easily recovered depending on the flow rate of the refrigerant. As described above, in the first embodiment, the refrigerant and the refrigerant oil are controlled by controlling whether or not the refrigerant flows into the main refrigerant circuit, which is the circulation flow path, from the injection flow path 101 by utilizing the characteristics of the refrigerant oil. Sufficient oil return capacity can be ensured according to the conditions.
また、実施の形態1においては、制御装置100は、図5の制御フローに従って、油回収運転を行うタイミングを決定している。すなわち、制御装置100は、圧縮機10が運転中であり、圧縮機10の現在の運転周波数が、油回収運転が必要な第2最低周波数を下回っているときに、油回収運転を実施すると決定する。これにより、一定周期で定期的に油回収運転を行う場合に比べて、適切なタイミングで油回収運転を行うことができる。その結果、不要なタイミングで油回収運転を行うことがないため、油回収運転の発停による運転効率の低下を抑えることができる。
Furthermore, in the first embodiment, the control device 100 determines the timing to perform the oil recovery operation according to the control flow shown in FIG. That is, the control device 100 determines to perform the oil recovery operation when the compressor 10 is in operation and the current operating frequency of the compressor 10 is lower than the second minimum frequency that requires the oil recovery operation. do. Thereby, the oil recovery operation can be performed at appropriate timing compared to the case where the oil recovery operation is performed periodically at a fixed period. As a result, the oil recovery operation is not performed at an unnecessary timing, so it is possible to suppress a decrease in operating efficiency due to starting and stopping of the oil recovery operation.
また、実施の形態1においては、制御装置100は、油回収運転を実施するときに、圧縮機10の最低周波数を、通常運転時の最低周波数である第1最低周波数より高い第2最低周波数に設定する。上述したように、圧縮機10の周波数を上げると、蒸発圧力が下がり、目標とする蒸発圧力を下回ってしまうことになる。そのため、実施の形態1では、吸入開閉弁76を開くことで低圧側の圧力PLを上昇させた後に、圧縮機10の周波数を第2最低周波数へ増速することで、吸入開閉弁76を開かない場合に比べ、サーモOFFの頻度を下げることができる。その結果、サーモOFFになって油回収運転が中断することを抑制できるため、冷凍機油を回収する時間を確保することができる。
Further, in the first embodiment, when performing the oil recovery operation, the control device 100 sets the lowest frequency of the compressor 10 to a second lowest frequency higher than the first lowest frequency, which is the lowest frequency during normal operation. Set. As described above, when the frequency of the compressor 10 is increased, the evaporation pressure decreases and falls below the target evaporation pressure. Therefore, in the first embodiment, after the pressure PL on the low pressure side is increased by opening the suction on-off valve 76, the frequency of the compressor 10 is increased to the second lowest frequency, and the suction on-off valve 76 is opened. The frequency of turning off the thermostat can be reduced compared to the case without it. As a result, it is possible to prevent the oil recovery operation from being interrupted due to the thermostat being turned off, and thus it is possible to secure time to recover the refrigerating machine oil.
また、実施の形態1においては、制御装置100は、図5の制御フローに従って、油回収運転を実施する前に、圧縮機10の吸入ポートG1の状態が、液バックの状態か否かを判定している。制御装置100は、液バックの有無に基づいて、油回収運転の制御の種類を切り替える。すなわち、液バックが無い場合は、図6の制御フローに従って、第1制御による油回収運転を行う。一方、液バックが有る場合は、図7の制御フローに従って、第2制御による油回収運転を行う。すでに液バックの状態において吸入開閉弁76を開にすると、液バックが助長される。そこで、第2制御においては、圧縮機10を停止した状態で吸入開閉弁76を開にする。これにより、液バックの影響を受けずに、低圧側の圧力PLを上昇させることができる。
Further, in the first embodiment, the control device 100 determines whether or not the state of the suction port G1 of the compressor 10 is in a liquid back state before performing the oil recovery operation according to the control flow shown in FIG. are doing. The control device 100 switches the type of oil recovery operation control based on the presence or absence of liquid back. That is, if there is no liquid back, the oil recovery operation is performed using the first control according to the control flow shown in FIG. On the other hand, if there is liquid back, oil recovery operation is performed using the second control according to the control flow shown in FIG. If the suction on-off valve 76 is opened in a state where liquid back is already present, liquid back will be promoted. Therefore, in the second control, the suction on-off valve 76 is opened while the compressor 10 is stopped. Thereby, the pressure PL on the low pressure side can be increased without being affected by liquid back.
実施の形態2.
図9は、実施の形態2に係る冷凍サイクル装置1の全体構成を示す構成図である。図10は、図9に示した冷凍サイクル装置1に配置される各種センサと制御装置100とを示した構成図である。なお、図9では、冷凍サイクル装置1における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。Embodiment 2.
FIG. 9 is a configuration diagram showing the overall configuration of therefrigeration cycle device 1 according to the second embodiment. FIG. 10 is a configuration diagram showing various sensors and a control device 100 arranged in the refrigeration cycle device 1 shown in FIG. Note that FIG. 9 functionally shows the connection relationship and arrangement of each device in the refrigeration cycle device 1, and does not necessarily show the arrangement in a physical space.
図9は、実施の形態2に係る冷凍サイクル装置1の全体構成を示す構成図である。図10は、図9に示した冷凍サイクル装置1に配置される各種センサと制御装置100とを示した構成図である。なお、図9では、冷凍サイクル装置1における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
FIG. 9 is a configuration diagram showing the overall configuration of the
実施の形態1と実施の形態2との違いは、実施の形態2に係る冷凍サイクル装置1においては、図1に示す室外ユニット2の代わりに、室外ユニット2Aが設けられている点である。室外ユニット2Aにおいては、受液器73Aが、インジェクション流路101に配置されている。また、インジェクション流路101に、流量調整弁72と、配管93および94と、ガス抜き通路95と、が追加されている。さらに、アキュムレータ40の上流に配置された配管89に、逆止弁77が追加されている。逆止弁77は、主冷媒回路の冷媒の流れと逆の方向に冷媒が流れることを阻止する弁である。他の構成については、図1と同様であるため、同一符号を付して示し、ここでは、その説明を省略する。なお、図9において、中間開閉弁75は必ずしも設けなくてもよい。中間開閉弁75が無い場合、中間圧ポートG3への冷媒の流入量の制御、または、流入の有無の制御は、第2膨張弁71で行う。
The difference between the first embodiment and the second embodiment is that in the refrigeration cycle device 1 according to the second embodiment, an outdoor unit 2A is provided instead of the outdoor unit 2 shown in FIG. In the outdoor unit 2A, a liquid receiver 73A is arranged in the injection flow path 101. Further, a flow rate adjustment valve 72, pipes 93 and 94, and a gas vent passage 95 are added to the injection flow path 101. Furthermore, a check valve 77 is added to the piping 89 disposed upstream of the accumulator 40. The check valve 77 is a valve that prevents refrigerant from flowing in a direction opposite to the flow of refrigerant in the main refrigerant circuit. Since the other configurations are the same as those in FIG. 1, they are denoted by the same reference numerals, and the explanation thereof will be omitted here. In addition, in FIG. 9, the intermediate on-off valve 75 does not necessarily need to be provided. If the intermediate opening/closing valve 75 is not provided, the second expansion valve 71 controls the amount of refrigerant flowing into the intermediate pressure port G3, or controls whether or not the refrigerant flows into the intermediate pressure port G3.
図9および図10に示すように、実施の形態2においては、受液器73Aがインジェクション流路101に備えられている場合の実施の形態について説明する。
As shown in FIGS. 9 and 10, in the second embodiment, an embodiment will be described in which a liquid receiver 73A is provided in the injection flow path 101.
実施の形態2においては、インジェクション流路101は、第1分岐部P1Aから第1接続部P2Aの間に設けられている。第1分岐部P1Aは、主冷媒回路における凝縮器20と負荷装置3との間に配置されている。さらに詳細に言えば、第1分岐部P1Aは、主冷媒回路における凝縮器20の出口と第1通路H1の入口との間に配置されている。一方、第1接続部P2Aは、圧縮機10の吸入ポートG1の上流側に配置されている。さらに詳細に言えば、第1接続部P2Aは、アキュムレータ40の後述するインジェクション配管44に接続されている。しかしながら、これに限定されず、実施の形態2においても、実施の形態1の第1接続部P2と同様に、第1接続部P2Aを負荷装置3とアキュムレータ40との間に配置するようにしてもよい。
In the second embodiment, the injection flow path 101 is provided between the first branch portion P1A and the first connection portion P2A. The first branch P1A is arranged between the condenser 20 and the load device 3 in the main refrigerant circuit. More specifically, the first branch P1A is arranged between the outlet of the condenser 20 and the inlet of the first passage H1 in the main refrigerant circuit. On the other hand, the first connection portion P2A is arranged upstream of the suction port G1 of the compressor 10. More specifically, the first connecting portion P2A is connected to an injection pipe 44 of the accumulator 40, which will be described later. However, the present invention is not limited to this, and in the second embodiment, the first connection part P2A is disposed between the load device 3 and the accumulator 40, similarly to the first connection part P2 of the first embodiment. Good too.
インジェクション流路101は、配管91A、91B、93、94から構成される「第1冷媒流路」と、配管96から構成される「第3冷媒流路」と、配管92、98から構成される「第2冷媒流路」と、を含む。
The injection flow path 101 is comprised of a "first refrigerant flow path" comprised of pipes 91A, 91B, 93, and 94, a "third refrigerant flow path" comprised of pipe 96, and pipes 92, 98. and a "second refrigerant flow path."
「第1冷媒流路」(配管91A、91B、93、94)は、主冷媒回路の高圧部である配管81から、熱交換器30の第2通路H2の入口へ冷媒を流すための冷媒流路である。「第1冷媒流路」の一端は配管81に接続され、「第1冷媒流路」の他端は、第2通路H2の入口に接続されている。配管91Aは、配管81に配置された第1分岐部P1Aと第2膨張弁71との間の配管である。配管91Bは、第2膨張弁71と受液器73Aの入口との間の配管である。配管93は、受液器73Aの出口と流量調整弁72との間に接続された配管である。配管94は、流量調整弁72と第2通路H2の入口との間に接続された配管である。
The "first refrigerant flow path" ( pipes 91A, 91B, 93, 94) is a refrigerant flow path for flowing the refrigerant from the high-pressure part of the main refrigerant circuit, ie, the pipe 81, to the inlet of the second passage H2 of the heat exchanger 30. It is a road. One end of the "first refrigerant flow path" is connected to the pipe 81, and the other end of the "first refrigerant flow path" is connected to the entrance of the second passage H2. The pipe 91A is a pipe between the first branch part P1A arranged in the pipe 81 and the second expansion valve 71. The pipe 91B is a pipe between the second expansion valve 71 and the inlet of the liquid receiver 73A. The pipe 93 is a pipe connected between the outlet of the liquid receiver 73A and the flow rate adjustment valve 72. The pipe 94 is a pipe connected between the flow rate regulating valve 72 and the inlet of the second passage H2.
「第3冷媒流路」(配管96)は、実施の形態1と同様に、「第2冷媒流路」から分岐して、第2通路H2の出口から、圧縮機10の中間圧ポートG3に冷媒を流す冷媒流路である。
As in the first embodiment, the "third refrigerant flow path" (piping 96) branches from the "second refrigerant flow path" and connects from the outlet of the second passage H2 to the intermediate pressure port G3 of the compressor 10. This is a refrigerant flow path through which refrigerant flows.
「第2冷媒流路」(配管92、98)は、実施の形態1と同様に、第1接続部P2Aに接続されている。「第2冷媒流路」(配管92、98)は、第2通路H2の出口から、第1接続部P2Aに冷媒を流す冷媒流路である。
The "second refrigerant flow path" (piping 92, 98) is connected to the first connection part P2A, as in the first embodiment. The "second refrigerant flow path" (piping 92, 98) is a refrigerant flow path that allows the refrigerant to flow from the outlet of the second passage H2 to the first connection portion P2A.
(室外ユニット2Aの構成)
図9に示すように、室外ユニット2Aにおいては、インジェクション流路101の「第1冷媒流路」には、冷媒を貯留する受液器73Aと、第2膨張弁71と、が配置されている。なお、受液器73Aは、レシーバと呼ばれることがある。受液器73Aの入口は、配管91Aおよび91Bを介して、配管81に接続されている。配管81は、凝縮器20の出口と第1通路H1の入口との間に接続された配管である。また、第2膨張弁71は、配管91Aと配管91Bとの間に配置されている。 (Configuration ofoutdoor unit 2A)
As shown in FIG. 9, in theoutdoor unit 2A, a liquid receiver 73A for storing refrigerant and a second expansion valve 71 are arranged in the "first refrigerant flow path" of the injection flow path 101. . Note that the liquid receiver 73A is sometimes called a receiver. The inlet of liquid receiver 73A is connected to piping 81 via piping 91A and 91B. The pipe 81 is a pipe connected between the outlet of the condenser 20 and the inlet of the first passage H1. Further, the second expansion valve 71 is arranged between the pipe 91A and the pipe 91B.
図9に示すように、室外ユニット2Aにおいては、インジェクション流路101の「第1冷媒流路」には、冷媒を貯留する受液器73Aと、第2膨張弁71と、が配置されている。なお、受液器73Aは、レシーバと呼ばれることがある。受液器73Aの入口は、配管91Aおよび91Bを介して、配管81に接続されている。配管81は、凝縮器20の出口と第1通路H1の入口との間に接続された配管である。また、第2膨張弁71は、配管91Aと配管91Bとの間に配置されている。 (Configuration of
As shown in FIG. 9, in the
インジェクション流路101の「第1冷媒流路」には、さらに、流量調整弁72と、ガス抜き通路95とが配置されている。流量調整弁72は、受液器73Aの出口に接続された配管93と、第2通路H2に接続された配管94と、の間に配置される膨張弁である。また、ガス抜き通路95は、受液器73Aのガス排出口と第2通路H2の入口とを接続する配管で、受液器73A内の冷媒ガスを排出する。
In the "first refrigerant flow path" of the injection flow path 101, a flow rate adjustment valve 72 and a gas vent passage 95 are further arranged. The flow rate adjustment valve 72 is an expansion valve arranged between a pipe 93 connected to the outlet of the liquid receiver 73A and a pipe 94 connected to the second passage H2. Further, the gas vent passage 95 is a pipe that connects the gas discharge port of the liquid receiver 73A and the inlet of the second passage H2, and discharges the refrigerant gas in the liquid receiver 73A.
受液器73Aは、第2膨張弁71で減圧されて二相となった冷媒が流入される。受液器73Aは、当該二相となった冷媒に対して内部で気液の分離を行って冷媒を貯蔵し、主冷媒回路の冷媒量を調整することができる容器である。受液器73Aの上部に接続されるガス抜き通路95と、受液器73Aの下部に接続される配管93とは、受液器73Aの中でガス冷媒と液冷媒とに分離した冷媒を、分離した状態で取り出すための配管である。すなわち、ガス抜き通路95は、ガス冷媒を取り出すための配管であり、配管93は、液冷媒を取り出すための配管である。流量調整弁72は、受液器73Aから排出される液冷媒の循環量を調整する弁である。流量調整弁72を用いて、配管93から排出される液冷媒の循環量を調整することで、受液器73Aの冷媒量を調整することができる。流量調整弁72の開度は、制御装置100によって制御される。
A two-phase refrigerant that has been depressurized by the second expansion valve 71 flows into the liquid receiver 73A. The liquid receiver 73A is a container that internally separates the two-phase refrigerant into gas and liquid, stores the refrigerant, and can adjust the amount of refrigerant in the main refrigerant circuit. A gas vent passage 95 connected to the upper part of the liquid receiver 73A and a pipe 93 connected to the lower part of the liquid receiver 73A separate the refrigerant into gas refrigerant and liquid refrigerant in the liquid receiver 73A. This is a pipe for taking out the product in a separated state. That is, the gas vent passage 95 is a pipe for taking out gas refrigerant, and the pipe 93 is a pipe for taking out liquid refrigerant. The flow rate adjustment valve 72 is a valve that adjusts the amount of circulating liquid refrigerant discharged from the liquid receiver 73A. By adjusting the circulating amount of liquid refrigerant discharged from the pipe 93 using the flow rate adjustment valve 72, the amount of refrigerant in the liquid receiver 73A can be adjusted. The opening degree of the flow rate adjustment valve 72 is controlled by the control device 100.
一般に、たとえばCO2のように、冷媒の種類によっては、圧縮機10からの吐出圧PHが冷媒の臨界圧を超える場合がある。そのような高圧超臨界冷媒を用いている場合に、主冷媒回路の高圧部である配管91Aおよび91Bに受液器73Aを設けると、配管91Aおよび91B内の冷媒が超臨界状態となり、受液器73Aへ液冷媒を貯蔵することができない。その場合、受液器73Aによる余剰冷媒量のバッファ機能が失われてしまう。
Generally, depending on the type of refrigerant, such as CO2 , the discharge pressure PH from the compressor 10 may exceed the critical pressure of the refrigerant. When such a high-pressure supercritical refrigerant is used, if the receiver 73A is provided in the pipes 91A and 91B, which are the high-pressure parts of the main refrigerant circuit, the refrigerant in the pipes 91A and 91B becomes supercritical, and the receiver Liquid refrigerant cannot be stored in the container 73A. In that case, the buffer function of the excess refrigerant amount by the liquid receiver 73A is lost.
これに対し、本実施の形態2においては、受液器73Aの入口側に、第2膨張弁71を設けている。第2膨張弁71は、配管91Aを流れた冷媒の圧力を、高圧から中間圧まで減圧する。そのため、配管91Bを流れる冷媒の圧力は、中間圧になっている。受液器73Aを、中間圧部分である配管92に設けることで、超臨界状態での運転においても、受液器73Aへ液冷媒を貯蔵することが可能になる。その結果、受液器73Aによる余剰冷媒量のバッファ機能が維持され、冷媒量の調整が可能となる。
In contrast, in the second embodiment, a second expansion valve 71 is provided on the inlet side of the liquid receiver 73A. The second expansion valve 71 reduces the pressure of the refrigerant flowing through the pipe 91A from high pressure to intermediate pressure. Therefore, the pressure of the refrigerant flowing through the pipe 91B is an intermediate pressure. By providing the liquid receiver 73A in the pipe 92, which is an intermediate pressure section, it becomes possible to store liquid refrigerant in the liquid receiver 73A even in operation in a supercritical state. As a result, the buffer function of the surplus refrigerant amount by the liquid receiver 73A is maintained, and the amount of refrigerant can be adjusted.
このように、実施の形態2においては、第2膨張弁71により、インジェクション流路101における冷媒の乾き度をコントロールすることができる。そのため、液バックが発生しないように冷媒の乾き度をコントロールすれば、前述した図6に示した液バック無しの場合の第1制御による油回収運転のみを実施するだけでも良いことになる。その場合、圧縮機10を油回収運転のために停止することがないため、油回収運転における発停を完全になくすことができる。
In this manner, in the second embodiment, the dryness of the refrigerant in the injection flow path 101 can be controlled by the second expansion valve 71. Therefore, if the dryness of the refrigerant is controlled so that liquid back does not occur, it is sufficient to perform only the oil recovery operation according to the first control in the case of no liquid back shown in FIG. 6 described above. In this case, since the compressor 10 is not stopped for oil recovery operation, starting and stopping during oil recovery operation can be completely eliminated.
(油回収運転制御)
実施の形態2では、実施の形態1と同様に、前述した図5の制御フローに従って、通常運転から油回収運転へ移行する。図5の制御フローについては、実施の形態1で説明した内容と同じであるため、ここでは、その説明を省略する。但し、実施の形態2においては、図5のステップS2の「圧縮機起動制御」の処理の内容が、実施の形態1と異なる。実施の形態2における、図5のステップS2の「圧縮機起動制御」の処理については、図11を用いて後述する。また、図5のステップS6の「第1制御による油回収運転」の処理およびステップS7の「第2制御による油回収運転」の処理については、実施の形態1の説明において図6および図7を用いて説明した通りであるため、ここでは、その説明を省略する。 (Oil recovery operation control)
In the second embodiment, similarly to the first embodiment, the normal operation is shifted to the oil recovery operation according to the control flow shown in FIG. 5 described above. Since the control flow in FIG. 5 is the same as that described inEmbodiment 1, the description thereof will be omitted here. However, in the second embodiment, the content of the "compressor start control" process in step S2 in FIG. 5 is different from the first embodiment. The process of "compressor start control" in step S2 in FIG. 5 in the second embodiment will be described later using FIG. 11. Further, regarding the process of "oil recovery operation using first control" in step S6 of FIG. 5 and the process of "oil recovery operation using second control" of step S7, FIGS. Since this is the same as described above, the explanation thereof will be omitted here.
実施の形態2では、実施の形態1と同様に、前述した図5の制御フローに従って、通常運転から油回収運転へ移行する。図5の制御フローについては、実施の形態1で説明した内容と同じであるため、ここでは、その説明を省略する。但し、実施の形態2においては、図5のステップS2の「圧縮機起動制御」の処理の内容が、実施の形態1と異なる。実施の形態2における、図5のステップS2の「圧縮機起動制御」の処理については、図11を用いて後述する。また、図5のステップS6の「第1制御による油回収運転」の処理およびステップS7の「第2制御による油回収運転」の処理については、実施の形態1の説明において図6および図7を用いて説明した通りであるため、ここでは、その説明を省略する。 (Oil recovery operation control)
In the second embodiment, similarly to the first embodiment, the normal operation is shifted to the oil recovery operation according to the control flow shown in FIG. 5 described above. Since the control flow in FIG. 5 is the same as that described in
(通常運転時の圧縮機10の起動時の制御フロー)
図11は、実施の形態2に係る冷凍サイクル装置1における通常運転時の圧縮機10が起動する場合の制御フローチャートである。図11では、配管89において逆止弁77が設置されている場合の圧縮機10の起動時の制御フローを示している。 (Control flow when starting thecompressor 10 during normal operation)
FIG. 11 is a control flowchart when thecompressor 10 is started during normal operation in the refrigeration cycle device 1 according to the second embodiment. FIG. 11 shows a control flow when starting up the compressor 10 when the check valve 77 is installed in the pipe 89.
図11は、実施の形態2に係る冷凍サイクル装置1における通常運転時の圧縮機10が起動する場合の制御フローチャートである。図11では、配管89において逆止弁77が設置されている場合の圧縮機10の起動時の制御フローを示している。 (Control flow when starting the
FIG. 11 is a control flowchart when the
圧縮機10によっては、起動時に高圧側の圧力と低圧側の圧力とが均圧状態で無ければ圧縮機10に負荷がかかってしまい、圧縮機10の起動性の悪化を引き起こす可能性がある。そのため、実施の形態2では、配管89に、逆止弁77を設置している。また、インジェクション流路101の吸入開閉弁76の接続先である第1接続部P2Aを、逆止弁77の下流に設置している。これにより、圧縮機10の起動時に、吸入開閉弁76を開放することで、高圧側の圧力と圧縮機10の吸入ポートG1部分の圧力とが同一圧力値となり、圧縮機10の起動性を確保することができる。以下、図11を用いて、実施の形態2における通常運転時の圧縮機10の起動時の制御について説明する。
Depending on the compressor 10, if the pressure on the high pressure side and the pressure on the low pressure side are not equal at the time of startup, a load will be applied to the compressor 10, which may cause deterioration in the startup performance of the compressor 10. Therefore, in the second embodiment, a check valve 77 is installed in the pipe 89. Further, the first connection portion P2A to which the suction on-off valve 76 of the injection flow path 101 is connected is installed downstream of the check valve 77. As a result, by opening the suction on-off valve 76 when starting the compressor 10, the pressure on the high pressure side and the pressure at the suction port G1 portion of the compressor 10 become the same pressure value, ensuring the startability of the compressor 10. can do. Hereinafter, control at startup of the compressor 10 during normal operation in Embodiment 2 will be described using FIG. 11.
図11に示すように、通常運転時の定常状態において、圧縮機10の運転が停止した場合、制御装置100は、中間開閉弁75および吸入開閉弁76を閉止する(ステップS41)。
As shown in FIG. 11, when the operation of the compressor 10 is stopped in the steady state during normal operation, the control device 100 closes the intermediate on-off valve 75 and the suction on-off valve 76 (step S41).
次に、制御装置100は、圧縮機10を起動させる(ステップS42)。
Next, the control device 100 starts the compressor 10 (step S42).
次に、制御装置100は、圧縮機10の運転を継続された状態で、吸入開閉弁76を開放する(ステップS43)。
Next, the control device 100 opens the suction on-off valve 76 while the compressor 10 continues to operate (step S43).
次に、制御装置100は、圧縮機10の運転周波数を増速させる(ステップS44)。
Next, the control device 100 increases the operating frequency of the compressor 10 (step S44).
次に、制御装置100は、圧縮機10の現在の運転周波数が、通常運転時の第1最低周波数以上になったか否かの判定を行う(ステップS45)。
Next, the control device 100 determines whether the current operating frequency of the compressor 10 has become equal to or higher than the first minimum frequency during normal operation (step S45).
制御装置100は、圧縮機10の現在の運転周波数が、通常運転時の第1最低周波数未満の場合(ステップS45でNO)は、ステップS44の処理に戻る。一方、圧縮機10の現在の運転周波数が、通常運転時の第1最低周波数まで上昇したことを確認した場合(ステップS45でYES)、制御装置100は、ステップS46の処理に進む。
If the current operating frequency of the compressor 10 is less than the first lowest frequency during normal operation (NO in step S45), the control device 100 returns to the process in step S44. On the other hand, if it is confirmed that the current operating frequency of the compressor 10 has increased to the first lowest frequency during normal operation (YES in step S45), the control device 100 proceeds to the process of step S46.
ステップS46では、制御装置100は、吸入開閉弁76を閉止し、中間開閉弁75を開放して、通常運転を行う。通常運転では、実施の形態1で説明した第2膨張弁71による吐出温度THの制御を行うものとする。当該制御の内容については、実施の形態1で説明した通りであるため、ここでは、その説明を省略する。
In step S46, the control device 100 closes the suction on-off valve 76, opens the intermediate on-off valve 75, and performs normal operation. In normal operation, the discharge temperature TH is controlled by the second expansion valve 71 described in the first embodiment. Since the content of the control is the same as described in Embodiment 1, the description thereof will be omitted here.
実施の形態2においては、逆止弁77を負荷装置3の下流に設けたことで、圧縮機10の起動時に、毎回、吸入開閉弁76を開放することができる。この構成により、圧縮機10の起動時に、圧力PLを上昇させる効果がもたらされることで、冷凍機油の特性である粘性を下がることができる。そのため、通常運転における圧縮機10の起動時にも油回収を行うことができ、油回収の効率をより改善することができる。
In the second embodiment, by providing the check valve 77 downstream of the load device 3, the suction on-off valve 76 can be opened every time the compressor 10 is started. With this configuration, when the compressor 10 is started, the effect of increasing the pressure PL is brought about, so that the viscosity, which is a characteristic of refrigerating machine oil, can be reduced. Therefore, oil can be recovered even when the compressor 10 is started during normal operation, and the efficiency of oil recovery can be further improved.
以上のように、実施の形態2においては、実施の形態1と同様に、制御装置100が油回収運転を行うときに、吸入開閉弁76を開にする。これにより、高圧側と低圧側とがバイパスされ、配管81に配置された第1分岐部P1Aから、圧縮機10の吸入ポートG1の上流に配置された第1接続部P2Aへ冷媒が流入する。その結果、低圧側の圧力PLが上昇する。冷凍機油は、圧力を増加させることで、粘性が低下する特性を有している。そのため、圧力PLが上昇することで、主冷媒回路内に滞留している冷凍機油の粘性が低下する。これにより、主冷媒回路の各配管の冷凍機油を、冷媒の流速によって容易に回収することができる。このように、実施の形態2では、実施の形態1と同様に、冷凍機油の特性を利用して、循環流路である主冷媒回路へのインジェクション流路101からの冷媒の流入の有無を制御している。そして、インジェクション流路101から第1接続部P2Aに冷媒を流入させることで、冷媒と冷凍機油との状態に合わせた十分な返油能力を確保している。
As described above, in the second embodiment, similarly to the first embodiment, the suction on-off valve 76 is opened when the control device 100 performs the oil recovery operation. As a result, the high pressure side and the low pressure side are bypassed, and the refrigerant flows from the first branch part P1A arranged in the pipe 81 to the first connection part P2A arranged upstream of the suction port G1 of the compressor 10. As a result, the pressure PL on the low pressure side increases. Refrigerating machine oil has a property that its viscosity decreases as the pressure increases. Therefore, as the pressure PL increases, the viscosity of the refrigerating machine oil remaining in the main refrigerant circuit decreases. Thereby, the refrigerating machine oil in each pipe of the main refrigerant circuit can be easily recovered depending on the flow rate of the refrigerant. As described above, in the second embodiment, similarly to the first embodiment, the characteristics of refrigerating machine oil are used to control whether or not refrigerant flows into the main refrigerant circuit, which is a circulation flow path, from the injection flow path 101. are doing. By allowing the refrigerant to flow into the first connection portion P2A from the injection flow path 101, sufficient oil return capacity is ensured in accordance with the conditions of the refrigerant and refrigerating machine oil.
また、実施の形態2においては、実施の形態1と同様に、制御装置100は、図5の制御フローに従って、油回収運転を行うタイミングを決定している。すなわち、制御装置100は、圧縮機10が運転中であり、圧縮機10の現在の運転周波数が、油回収運転が必要な第2最低周波数を下回っているときに、油回収運転を実施すると決定する。これにより、一定周期で定期的に油回収運転を行う場合に比べて、適切なタイミングで油回収運転を行うことができる。その結果、不要なタイミングで油回収運転を行うことがないため、油回収運転の発停による運転効率の低下を抑えることができる。
Furthermore, in the second embodiment, similarly to the first embodiment, the control device 100 determines the timing to perform the oil recovery operation according to the control flow shown in FIG. That is, the control device 100 determines to perform the oil recovery operation when the compressor 10 is in operation and the current operating frequency of the compressor 10 is lower than the second minimum frequency that requires the oil recovery operation. do. Thereby, the oil recovery operation can be performed at appropriate timing compared to the case where the oil recovery operation is performed periodically at a fixed period. As a result, the oil recovery operation is not performed at an unnecessary timing, so it is possible to suppress a decrease in operating efficiency due to starting and stopping of the oil recovery operation.
また、実施の形態2においては、実施の形態1と同様に、制御装置100は、油回収運転を実施するときに、圧縮機10の最低周波数を、通常運転時の最低周波数である第1最低周波数より高い第2最低周波数に設定する。このように、実施の形態2においても、実施の形態1と同様に、吸入開閉弁76を開くことで低圧側の圧力PLを上昇させた後に、圧縮機10の周波数を第2最低周波数へ増速させる。これにより、吸入開閉弁76を開かない場合に比べ、サーモOFFの頻度を下げることができる。その結果、サーモOFFになって油回収運転が中断することを抑制できるため、冷凍機油を回収する時間を確保することができる。
Further, in the second embodiment, as in the first embodiment, the control device 100 sets the lowest frequency of the compressor 10 to the first lowest frequency, which is the lowest frequency during normal operation, when performing the oil recovery operation. The second lowest frequency is set higher than the frequency. In this manner, in the second embodiment, as in the first embodiment, the frequency of the compressor 10 is increased to the second lowest frequency after the pressure PL on the low pressure side is increased by opening the suction on-off valve 76. speed up Thereby, the frequency of thermo-off can be reduced compared to the case where the suction on-off valve 76 is not opened. As a result, it is possible to prevent the oil recovery operation from being interrupted due to the thermostat being turned off, and thus it is possible to secure time to recover the refrigerating machine oil.
また、実施の形態2においては、実施の形態1と同様に、制御装置100は、図5の制御フローに従って、油回収運転を実施する前に、圧縮機10の吸入ポートG1の状態が、液バックの状態か否かを判定している。制御装置100は、液バックの有無に基づいて、油回収運転の制御の種類を切り替える。すなわち、液バックが無い場合は、図6の制御フローに従って、第1制御による油回収運転を行う。一方、液バックが有る場合は、図7の制御フローに従って、第2制御による油回収運転を行う。第2制御においては、圧縮機10を停止した状態で吸入開閉弁76を開にする。これにより、液バックの影響を受けずに、低圧側の圧力PLを上昇させることができる。
In addition, in the second embodiment, as in the first embodiment, the control device 100 determines whether the state of the suction port G1 of the compressor 10 is liquid before performing the oil recovery operation according to the control flow of FIG. It is determined whether the camera is in the back position or not. The control device 100 switches the type of oil recovery operation control based on the presence or absence of liquid back. That is, if there is no liquid back, the oil recovery operation is performed using the first control according to the control flow shown in FIG. On the other hand, if there is liquid back, oil recovery operation is performed using the second control according to the control flow shown in FIG. In the second control, the suction on-off valve 76 is opened while the compressor 10 is stopped. Thereby, the pressure PL on the low pressure side can be increased without being affected by liquid back.
さらに、実施の形態2においては、受液器73Aの入口側に、冷媒の圧力を中間圧まで減圧する第2膨張弁71を設けている。そのため、超臨界状態での運転においても、受液器73Aへ液冷媒を貯蔵することが可能になる。その結果、受液器73Aによる余剰冷媒量のバッファ機能が維持され、冷媒量の調整が可能となる。
Furthermore, in the second embodiment, a second expansion valve 71 that reduces the pressure of the refrigerant to an intermediate pressure is provided on the inlet side of the liquid receiver 73A. Therefore, even in operation in a supercritical state, liquid refrigerant can be stored in the liquid receiver 73A. As a result, the buffer function of the surplus refrigerant amount by the liquid receiver 73A is maintained, and the amount of refrigerant can be adjusted.
さらに、実施の形態2においては、受液器73Aの出口側に、受液器73Aから排出される液冷媒の循環量を調整する流量調整弁72を設けている。流量調整弁72を用いて、受液器73Aから排出される液冷媒の循環量を調整することで、受液器73Aの冷媒量を調整することができる。その結果、圧縮機10の吐出圧PHが冷媒の臨界圧を超える超臨界状態の場合においても、流量調整弁72の開度に基づいて、主冷媒回路およびインジェクション流路101に含まれる冷媒量を調整することができる。
Furthermore, in the second embodiment, a flow rate adjustment valve 72 is provided on the outlet side of the liquid receiver 73A to adjust the circulation amount of the liquid refrigerant discharged from the liquid receiver 73A. The amount of refrigerant in the liquid receiver 73A can be adjusted by adjusting the circulating amount of liquid refrigerant discharged from the liquid receiver 73A using the flow rate adjustment valve 72. As a result, even in a supercritical state where the discharge pressure PH of the compressor 10 exceeds the critical pressure of the refrigerant, the amount of refrigerant contained in the main refrigerant circuit and the injection flow path 101 is controlled based on the opening degree of the flow rate adjustment valve 72. Can be adjusted.
実施の形態3.
図12は、実施の形態3に係る冷凍サイクル装置1に設けられたアキュムレータ40の構成を模式的に示す図である。図12に示すように、実施の形態3においては、インジェクション流路101を、アキュムレータ40のケーシング41の下部に接続している。なお、冷凍サイクル装置1の構成については、実施の形態1または実施の形態2で説明した通りであるため、ここでは、その接続を省略する。Embodiment 3.
FIG. 12 is a diagram schematically showing the configuration of anaccumulator 40 provided in the refrigeration cycle device 1 according to the third embodiment. As shown in FIG. 12, in the third embodiment, the injection flow path 101 is connected to the lower part of the casing 41 of the accumulator 40. Note that the configuration of the refrigeration cycle device 1 is as described in Embodiment 1 or Embodiment 2, so its connections will be omitted here.
図12は、実施の形態3に係る冷凍サイクル装置1に設けられたアキュムレータ40の構成を模式的に示す図である。図12に示すように、実施の形態3においては、インジェクション流路101を、アキュムレータ40のケーシング41の下部に接続している。なお、冷凍サイクル装置1の構成については、実施の形態1または実施の形態2で説明した通りであるため、ここでは、その接続を省略する。
FIG. 12 is a diagram schematically showing the configuration of an
アキュムレータ40は、ケーシング41と、流入管42と、流出管43と、インジェクション配管44と、を備えている。
The accumulator 40 includes a casing 41, an inflow pipe 42, an outflow pipe 43, and an injection pipe 44.
ケーシング41は、内部に冷媒と冷凍機油とを貯留する容器である。アキュムレータ40は、ケーシング41による密閉構造となっている。
The casing 41 is a container that stores refrigerant and refrigerator oil inside. The accumulator 40 has a sealed structure with a casing 41.
流入管42は、ケーシング41の上部を貫通して配置されている。流入管42の上端部42aはケーシング41の外部に配置され、流入管42の下端部42bはケーシング41の内部に配置されている。流入管42は、たとえば、L字形状を有しているが、それに限定されない。流入管42は、配管89から流れ込んできた冷媒を、ケーシング41の内部空間へ向かい入れる。そのため、流入管42は、ケーシング41の上部を貫通し、流入管42の下端部42bは、ケーシング41の内部空間の上部にて開放されている。
The inflow pipe 42 is arranged to pass through the upper part of the casing 41. An upper end 42a of the inflow pipe 42 is arranged outside the casing 41, and a lower end 42b of the inflow pipe 42 is arranged inside the casing 41. The inflow pipe 42 has, for example, an L-shape, but is not limited thereto. The inflow pipe 42 directs the refrigerant flowing from the pipe 89 into the internal space of the casing 41 . Therefore, the inflow pipe 42 passes through the upper part of the casing 41, and the lower end 42b of the inflow pipe 42 is open at the upper part of the internal space of the casing 41.
流出管43は、ケーシング41の上部を貫通して配置されている。流出管43は、U字型形状を有している。流出管43は、ケーシング41の内部空間で分離されたガス冷媒と冷凍機油とを、配管97を通じて、圧縮機10の吸入ポートG1(図1および図9参照)へ流入させる。そのため、流出管43は、ケーシング41の上部を貫通して設置されており、流出管43の一端43aは、ケーシング41の外部に配置されている。また、流出管43の他端43bは、ケーシング41の内部空間の上部にて開放されている。流出管43は、ケーシング41の内部空間の下方に配置された曲管部43cを有している。曲管部43cの最下部には、油戻し穴45が形成されている。さらに、流出管43は、均圧穴46を有している。均圧穴46は、流出管43の一端43a側に配置され、ケーシング41の上部より下方に配置されている。流出管43は、流出管43がケーシング41を貫通している貫通部付近に配置されている。均圧穴46は、ケーシング41の内部に配置されている。
The outflow pipe 43 is arranged to pass through the upper part of the casing 41. The outflow pipe 43 has a U-shape. The outflow pipe 43 causes the gas refrigerant and refrigerating machine oil separated in the internal space of the casing 41 to flow into the suction port G1 (see FIGS. 1 and 9) of the compressor 10 through the pipe 97. Therefore, the outflow pipe 43 is installed to penetrate the upper part of the casing 41, and one end 43a of the outflow pipe 43 is arranged outside the casing 41. Further, the other end 43b of the outflow pipe 43 is open at the upper part of the internal space of the casing 41. The outflow pipe 43 has a curved pipe portion 43c located below the internal space of the casing 41. An oil return hole 45 is formed at the lowest part of the curved pipe portion 43c. Furthermore, the outflow pipe 43 has a pressure equalizing hole 46 . The pressure equalizing hole 46 is arranged on the one end 43a side of the outflow pipe 43, and is arranged below the upper part of the casing 41. The outflow pipe 43 is arranged near the penetration part where the outflow pipe 43 penetrates the casing 41. The pressure equalizing hole 46 is arranged inside the casing 41.
インジェクション配管44は、ケーシング41の下部を貫通して配置されている。インジェクション配管44は、第2冷媒流路である配管92、98が接続された、第1接続部P2(図1参照)または第1接続部P2A(図9参照)そのものを形成し、第1接続部P2またはP2Aとして機能している。もしくは、インジェクション配管44は、第1接続部P2(図1参照)または第1接続部P2A(図9参照)に接続されている。吸入開閉弁76が開放された場合に、インジェクション配管44には、第2冷媒流路からの冷媒が流入される。インジェクション配管44は、当該冷媒を、ケーシング41の内部空間に流入させる。なお、「インジェクション配管44」は「バイパス配管」と呼ばれることがある。
The injection pipe 44 is arranged to penetrate the lower part of the casing 41. The injection pipe 44 forms the first connection part P2 (see FIG. 1) or the first connection part P2A (see FIG. 9) itself, to which the pipes 92 and 98, which are the second refrigerant flow paths, are connected. It functions as part P2 or P2A. Alternatively, the injection pipe 44 is connected to the first connection portion P2 (see FIG. 1) or the first connection portion P2A (see FIG. 9). When the suction on-off valve 76 is opened, the refrigerant from the second refrigerant flow path flows into the injection pipe 44. The injection pipe 44 allows the refrigerant to flow into the internal space of the casing 41 . Note that the "injection piping 44" is sometimes called "bypass piping".
このように、実施の形態3においては、吸入開閉弁76が設けられた配管98の先端を、インジェクション配管44として、ケーシング41の下部を貫通するように設置している。これにより、吸入開閉弁76を開放した場合は、高圧側からの冷媒が勢いをもってアキュムレータ40のケーシング41内に流入してくる構成となっている。
As described above, in the third embodiment, the tip of the pipe 98 provided with the suction on-off valve 76 is installed as the injection pipe 44 so as to penetrate through the lower part of the casing 41. Thereby, when the suction on-off valve 76 is opened, the refrigerant from the high pressure side flows into the casing 41 of the accumulator 40 with force.
この構成により、実施の形態1および2で説明した圧力PLの上昇により冷凍機油の粘性を下げつつ、アキュムレータ40内に溜まっている冷媒と冷凍機油とを強制的に攪拌することができる。
With this configuration, the refrigerant accumulated in the accumulator 40 and the refrigerating machine oil can be forcibly stirred while lowering the viscosity of the refrigerating machine oil by increasing the pressure PL as described in Embodiments 1 and 2.
冷媒と冷凍機油との組み合わせによっては、図12の左図に示すように、冷媒と冷凍機油とが二相分離する場合がある。そのような場合に、たとえば、冷凍機油が冷媒の上部に分離してしまうと、油戻し穴45による圧縮機10への冷凍機油の回収ができなくなる。そのため、実施の形態3では、アキュムレータ40の下部にインジェクション配管44を設けて、アキュムレータ40の内部空間の下方に対して、冷媒を強制的に流入させている。このように、インジェクション配管44より冷媒を勢いよく強制的に流入させることで、図12の右図に示すように、アキュムレータ40の内部空間の冷媒と冷凍機油とが攪拌される。その結果、冷媒の上部に分離していた冷凍機油が、攪拌によって、冷媒と均一に混ざり合うため、油戻し穴45により冷凍機油を回収することができる。
Depending on the combination of refrigerant and refrigerating machine oil, the refrigerant and refrigerating machine oil may separate into two phases, as shown in the left diagram of FIG. In such a case, for example, if the refrigerating machine oil separates into the upper part of the refrigerant, it becomes impossible to recover the refrigerating machine oil to the compressor 10 through the oil return hole 45. Therefore, in the third embodiment, an injection pipe 44 is provided at the lower part of the accumulator 40 to force the refrigerant to flow into the lower part of the internal space of the accumulator 40. By forcefully forcing the refrigerant into the injection pipe 44 in this way, the refrigerant and refrigerating machine oil in the internal space of the accumulator 40 are agitated, as shown in the right diagram of FIG. As a result, the refrigerating machine oil that has been separated above the refrigerant mixes uniformly with the refrigerant through stirring, so that the refrigerating machine oil can be recovered through the oil return hole 45.
上述した実施の形態1および2で述べた油回収運転において、実施の形態3で示したアキュムレータ40の構成を組み合わせることで、油回収運転を実施するときには、攪拌により、常に、冷媒と冷凍機油とが混ざり合った状態にすることができる。このように、アキュムレータ40内を冷媒と冷凍機油とが混ざり合った状態にして油回収運転を実施することができるため、油回収の効率をより高めることができる。
In the oil recovery operation described in the first and second embodiments described above, by combining the configuration of the accumulator 40 shown in the third embodiment, when performing the oil recovery operation, the refrigerant and the refrigerating machine oil are always mixed by stirring. can be in a mixed state. In this way, the oil recovery operation can be carried out with the refrigerant and refrigerating machine oil mixed inside the accumulator 40, thereby making it possible to further improve the efficiency of oil recovery.
以上のように、実施の形態3においては、油回収運転を行うときに、吸入開閉弁76を開放することで、アキュムレータ40内が、インジェクション配管から勢いよく流入される冷媒によって攪拌される。これにより、冷媒と冷凍機油とが混ざり合った状態にして油回収運転を実施することができるため、油回収の効率をより高めることができる。
As described above, in the third embodiment, when the oil recovery operation is performed, by opening the suction on-off valve 76, the inside of the accumulator 40 is agitated by the refrigerant forcefully flowing in from the injection pipe. Thereby, the oil recovery operation can be performed in a state where the refrigerant and the refrigerating machine oil are mixed, so that the efficiency of oil recovery can be further improved.
また、実施の形態3においては、アキュムレータ40内を攪拌した冷媒が、流出管43から、配管97に流入される。これにより、実施の形態1および2と同様に、高圧側と低圧側とがバイパスされたことになり、低圧側の圧力PLが上昇する。冷凍機油は、圧力を増加させることで、粘性が低下する特性を有している。そのため、圧力PLが上昇することで、主冷媒回路内に滞留している冷凍機油の粘性が低下する。これにより、主冷媒回路の各配管の冷凍機油を、冷媒の流速によって容易に回収することができる。
Further, in the third embodiment, the refrigerant stirred in the accumulator 40 flows into the pipe 97 from the outflow pipe 43. As a result, similarly to Embodiments 1 and 2, the high pressure side and the low pressure side are bypassed, and the pressure PL on the low pressure side increases. Refrigerating machine oil has a property that its viscosity decreases as the pressure increases. Therefore, as the pressure PL increases, the viscosity of the refrigerating machine oil remaining in the main refrigerant circuit decreases. Thereby, the refrigerating machine oil in each pipe of the main refrigerant circuit can be easily recovered depending on the flow rate of the refrigerant.
なお、上述の実施の形態1~3においては冷凍サイクル装置を備える冷凍機を例示して説明したが、冷凍サイクル装置は空気調和機などに利用されても良い。
Note that in the first to third embodiments described above, a refrigerator including a refrigeration cycle device was described as an example, but the refrigeration cycle device may also be used in an air conditioner or the like.
また、上述の実施の形態1~3においては、圧縮機10が中間圧ポートG3を有している場合について説明したが、その場合に限定されない。すなわち、圧縮機10は、中間圧ポートG3を有していなくてもよい。その場合、冷凍サイクル装置1において、図1および図9に示した配管96および中間開閉弁75も設置されない。なお、この場合においても、冷凍サイクル装置1の動作は、実施の形態1~3と基本的に同じであり、異なる点は、圧縮機10に吸入される冷媒が、すべて、吸入ポートG1から吸入される点である。従って、この場合においても、実施の形態1~3と同様に、制御装置100が、油回収運転を行う前に、吸入開閉弁76を開にすることで、低圧側の圧力PLを上昇させる。これにより、上述の実施の形態1~3と同様に、十分な返油能力を確保できる。
Further, in the first to third embodiments described above, the case where the compressor 10 has the intermediate pressure port G3 has been described, but the present invention is not limited to that case. That is, the compressor 10 does not need to have the intermediate pressure port G3. In that case, in the refrigeration cycle apparatus 1, the piping 96 and the intermediate on-off valve 75 shown in FIGS. 1 and 9 are also not installed. In this case as well, the operation of the refrigeration cycle device 1 is basically the same as in the first to third embodiments, except that all the refrigerant sucked into the compressor 10 is sucked through the suction port G1. This is the point. Therefore, in this case as well, as in the first to third embodiments, the control device 100 opens the suction on-off valve 76 before performing the oil recovery operation to increase the pressure PL on the low pressure side. Thereby, as in the first to third embodiments described above, sufficient oil return capacity can be ensured.
今回開示された実施の形態1~3は、すべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
Embodiments 1 to 3 disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present disclosure is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.
また、実施の形態1~3においては、冷媒として、たとえば、R32などのHFC(Hydro Fluoro Carbon)冷媒、R1234yfなどのHFO(Hydro Fluoro Orefin)系冷媒が、使用可能である。また、実施の形態1~3では、冷媒として、たとえば、CO2などの高圧超臨界冷媒を用いることも可能である。さらに、実施の形態1~3においては、非共沸冷媒も使用可能であり、非共沸冷媒のうち、特に、R463AなどのCO2混合冷媒を使用することも可能である。
Further, in the first to third embodiments, as the refrigerant, for example, an HFC (Hydro Fluoro Carbon) refrigerant such as R32, or an HFO (Hydro Fluoro Orefin) refrigerant such as R1234yf can be used. Furthermore, in Embodiments 1 to 3, it is also possible to use, for example, a high-pressure supercritical refrigerant such as CO 2 as the refrigerant. Furthermore, in Embodiments 1 to 3, non-azeotropic refrigerants can also be used, and among the non-azeotropic refrigerants, it is also possible to use, in particular, a CO 2 mixed refrigerant such as R463A.
1 冷凍サイクル装置、2 室外ユニット、2A 室外ユニット、3 負荷装置、10 圧縮機、20 凝縮器、22 ファン、28 開閉弁、30 熱交換器、40 アキュムレータ、41 ケーシング、42 流入管、42a 上端部、42b 下端部、43 流出管、43a 一端、43b 他端、43c 曲管部、44 インジェクション配管、45 油戻し穴、46 均圧穴、50 第1膨張弁、60 蒸発器、71 第2膨張弁、72 流量調整弁、73 受液器、73A 受液器、75 中間開閉弁、76 吸入開閉弁、77 逆止弁、80 配管、81 配管、82 配管、83 配管、84 第2延長配管、85 配管、86 配管、87 配管、88 第1延長配管、89 配管、91 配管、91A 配管、91B 配管、92 配管、93 配管、94 配管、95 ガス抜き通路、96 配管、97 配管、98 配管、100 制御装置、101 インジェクション流路、102 CPU、104 メモリ、110 圧力センサ、111 圧力センサ、112 圧力センサ、120 温度センサ、121 温度センサ、122 温度センサ、123 温度センサ、124 温度センサ、125 温度センサ、126 温度センサ、DL 差分、G1 吸入ポート、G2 吐出ポート、G3 中間圧ポート、H1 第1通路、H2 第2通路、P1 第1分岐部、P1A 第1分岐部、P2 第1接続部、P2A 第1接続部、PH 吐出圧、PL 圧力、PM 中間圧、T1 冷媒温度、T2 出口温度、TA 外気温、TH 吐出温度、TL 温度。
1 Refrigeration cycle device, 2 outdoor unit, 2A outdoor unit, 3 load device, 10 compressor, 20 condenser, 22 fan, 28 on-off valve, 30 heat exchanger, 40 accumulator, 41 casing, 42 inflow pipe, 42a upper end , 42b lower end, 43 outflow pipe, 43a one end, 43b other end, 43c bent pipe section, 44 injection pipe, 45 oil return hole, 46 pressure equalization hole, 50 first expansion valve, 60 evaporator, 71 second expansion valve, 72 Flow rate adjustment valve, 73 Liquid receiver, 73A Liquid receiver, 75 Intermediate on-off valve, 76 Suction on-off valve, 77 Check valve, 80 Piping, 81 Piping, 82 Piping, 83 Piping, 84 Second extension piping, 85 Piping , 86 piping, 87 piping, 88 first extension piping, 89 piping, 91 piping, 91A piping, 91B piping, 92 piping, 93 piping, 94 piping, 95 gas vent passage, 96 piping, 97 piping, 98 piping, 100 control Device, 101 Injection channel, 102 CPU, 104 Memory, 110 Pressure sensor, 111 Pressure sensor, 112 Pressure sensor, 120 Temperature sensor, 121 Temperature sensor, 122 Temperature sensor, 123 Temperature sensor, 124 Temperature sensor, 125 Temperature sensor, 126 Temperature sensor, DL differential, G1 suction port, G2 discharge port, G3 intermediate pressure port, H1 first passage, H2 second passage, P1 first branch, P1A first branch, P2 first connection, P2A first Connection, PH discharge pressure, PL pressure, PM intermediate pressure, T1 refrigerant temperature, T2 outlet temperature, TA outside temperature, TH discharge temperature, TL temperature.
Claims (17)
- 第1膨張弁と蒸発器とを含む負荷装置に対して接続されるように構成された、室外ユニットであって、
吸入ポートおよび吐出ポートを有する圧縮機と、
凝縮器と、
第1通路および第2通路を有し、前記第1通路を流れる冷媒と前記第2通路を流れる冷媒との間で熱交換を行う熱交換器と、
制御装置と、
を備え、
前記圧縮機、前記凝縮器、前記熱交換器の前記第1通路、前記負荷装置の前記第1膨張弁、および、前記負荷装置の前記蒸発器は、冷媒が循環する循環流路を形成し、
前記循環流路における前記凝縮器の出口と前記負荷装置との間に配置された第1分岐部から、前記吸入ポートと前記負荷装置との間に配置された第1接続部に冷媒を流す、バイパス流路をさらに備え、
前記バイパス流路は、
前記第1接続部への冷媒の流入の有無を切り替える吸入開閉弁
を有し、
前記制御装置は、前記圧縮機、および、前記吸入開閉弁を制御するものであって、
前記制御装置は、前記循環流路内に滞留する冷凍機油を回収する油回収運転を実施する場合、前記油回収運転を開始する前に、前記吸入開閉弁を開放して、前記バイパス流路から前記第1接続部へ冷媒を流入させる、
室外ユニット。 An outdoor unit configured to be connected to a load device including a first expansion valve and an evaporator,
a compressor having a suction port and a discharge port;
a condenser;
A heat exchanger having a first passage and a second passage, and performing heat exchange between a refrigerant flowing in the first passage and a refrigerant flowing in the second passage;
a control device;
Equipped with
The compressor, the condenser, the first passage of the heat exchanger, the first expansion valve of the load device, and the evaporator of the load device form a circulation flow path in which refrigerant circulates,
flowing a refrigerant from a first branch located between the outlet of the condenser and the load device in the circulation flow path to a first connection located between the suction port and the load device; Further equipped with a bypass flow path,
The bypass flow path is
a suction on-off valve that switches whether or not refrigerant flows into the first connection part;
The control device controls the compressor and the suction on-off valve,
When performing an oil recovery operation to recover refrigerating machine oil remaining in the circulation flow path, the control device opens the suction on-off valve and removes oil from the bypass flow path before starting the oil recovery operation. causing a refrigerant to flow into the first connection part;
outdoor unit. - 前記制御装置は、前記吸入開閉弁を開放して前記負荷装置から前記吸入ポートまでの間の前記循環流路内の冷媒の圧力を上昇させた後に、前記吸入開閉弁を閉止して、前記油回収運転を開始する、
請求項1に記載の室外ユニット。 The control device opens the suction on-off valve to increase the pressure of the refrigerant in the circulation flow path between the load device and the suction port, and then closes the suction on-off valve to increase the pressure of the refrigerant in the circulation flow path between the load device and the suction port. Start recovery operation,
The outdoor unit according to claim 1. - 前記制御装置は、前記圧縮機の最低周波数を、通常運転時の第1最低周波数より高い第2最低周波数に設定して、前記油回収運転を実施する、
請求項1または2に記載の室外ユニット。 The control device sets the lowest frequency of the compressor to a second lowest frequency higher than the first lowest frequency during normal operation, and performs the oil recovery operation.
The outdoor unit according to claim 1 or 2. - 前記制御装置は、前記吸入開閉弁を開放して、前記バイパス流路から前記第1接続部へ冷媒を流入させた後に、前記吸入開閉弁を閉止し、その後、前記圧縮機の最低周波数を前記第2最低周波数に設定する、
請求項3に記載の室外ユニット。 The control device opens the suction on-off valve to allow refrigerant to flow from the bypass flow path to the first connection portion, then closes the suction on-off valve, and then adjusts the lowest frequency of the compressor to the Set to the second lowest frequency,
The outdoor unit according to claim 3. - 前記制御装置は、前記圧縮機が運転中で、且つ、前記圧縮機の現在の運転周波数が、通常運転時の第1最低周波数より高い第2最低周波数を一定時間下回っている場合に、前記油回収運転を実施する、
請求項1~4のいずれか1項に記載の室外ユニット。 When the compressor is in operation and the current operating frequency of the compressor is below a second minimum frequency higher than the first minimum frequency during normal operation for a certain period of time, the control device controls the oil Carry out recovery operations;
The outdoor unit according to any one of claims 1 to 4. - 前記制御装置は、前記油回収運転を開始する前に、前記圧縮機の前記吸入ポートの状態が液バック状態であるかを判定し、前記液バック状態の有無に基づいて、前記油回収運転の制御の種類を切り替える、
請求項1~5のいずれか1項に記載の室外ユニット。 Before starting the oil recovery operation, the control device determines whether the state of the suction port of the compressor is in a liquid back condition, and controls the oil recovery operation based on the presence or absence of the liquid back condition. Switch the type of control,
The outdoor unit according to any one of claims 1 to 5. - 前記制御装置は、前記圧縮機の前記吸入ポートの状態が前記液バック状態でない場合に、前記圧縮機の運転を継続させた状態で、前記吸入開閉弁を開放し、前記バイパス流路から前記第1接続部への冷媒の流入により、前記負荷装置から前記圧縮機の前記吸入ポートまでの間の冷媒の圧力を上昇させる、前記油回収運転の第1制御を行う、
請求項6に記載の室外ユニット。 When the state of the suction port of the compressor is not the liquid back state, the control device opens the suction on-off valve while continuing operation of the compressor, and supplies the air from the bypass flow path to the performing a first control of the oil recovery operation, which increases the pressure of the refrigerant between the load device and the suction port of the compressor by flowing the refrigerant into the first connection;
The outdoor unit according to claim 6. - 前記制御装置は、前記圧縮機の前記吸入ポートの状態が前記液バック状態である場合に、前記圧縮機を停止させた状態で、前記吸入開閉弁を開放し、前記バイパス流路から前記第1接続部への冷媒の流入により、前記負荷装置から前記圧縮機の前記吸入ポートまでの間の冷媒の圧力を上昇させる、前記油回収運転の第2制御を行う、
請求項6または7に記載の室外ユニット。 When the state of the suction port of the compressor is in the liquid back state, the control device opens the suction on-off valve while the compressor is stopped, and drains the first air from the bypass flow path. performing a second control of the oil recovery operation, which increases the pressure of the refrigerant between the load device and the suction port of the compressor by flowing the refrigerant into the connection part;
The outdoor unit according to claim 6 or 7. - 前記第1分岐部は、前記循環流路における前記第1通路の出口と前記負荷装置との間に配置され、
前記バイパス流路は、
前記第1分岐部から前記第2通路の入口に冷媒を流す第1冷媒流路と、
前記第2通路の出口から前記第1接続部に冷媒を流す第2冷媒流路と、
前記第2冷媒流路に配置され、前記第2冷媒流路からの前記第1接続部への冷媒の流入の有無を切り替える前記吸入開閉弁と、
を有する、
請求項1~8のいずれか1項に記載の室外ユニット。 The first branch part is arranged between the outlet of the first passage in the circulation flow path and the load device,
The bypass flow path is
a first refrigerant flow path that allows refrigerant to flow from the first branch to the entrance of the second passage;
a second refrigerant flow path that allows refrigerant to flow from the outlet of the second passage to the first connection part;
the suction on-off valve that is disposed in the second refrigerant flow path and switches whether or not refrigerant flows from the second refrigerant flow path to the first connection portion;
has,
The outdoor unit according to any one of claims 1 to 8. - 前記第1分岐部は、前記循環流路における前記凝縮器の出口と前記第1通路の入口との間に配置され、
前記バイパス流路は、
前記第1分岐部から前記第2通路の入口に冷媒を流す第1冷媒流路と、
前記第2通路の出口から前記第1接続部に冷媒を流す第2冷媒流路と、
前記第2冷媒流路に配置され、前記第2冷媒流路からの前記第1接続部への冷媒の流入の有無を切り替える前記吸入開閉弁と、
を有する、
請求項1~8のいずれか1項に記載の室外ユニット。 The first branch part is arranged between the outlet of the condenser and the inlet of the first passage in the circulation flow path,
The bypass flow path is
a first refrigerant flow path that allows refrigerant to flow from the first branch to the entrance of the second passage;
a second refrigerant flow path that allows refrigerant to flow from the outlet of the second passage to the first connection part;
the suction on-off valve that is disposed in the second refrigerant flow path and switches whether or not refrigerant flows from the second refrigerant flow path to the first connection portion;
has,
The outdoor unit according to any one of claims 1 to 8. - 前記バイパス流路は、
前記第1冷媒流路に配置される受液器と、
前記第1冷媒流路における前記第1分岐部と前記受液器の入口との間に配置され、前記第1冷媒流路から流入される冷媒の圧力を中間圧まで減圧して、前記受液器に流入させる、第2膨張弁と、
前記第1冷媒流路における前記受液器の出口と前記第2通路の入口との間に配置され、前記第2通路に流入させる冷媒量を調整する、流量調整弁と、
を有し、
前記制御装置は、前記圧縮機、前記吸入開閉弁、前記第2膨張弁、および、前記流量調整弁を制御するものであって、
前記制御装置は、前記圧縮機の吐出圧が前記冷媒の臨界圧を超える超臨界状態である場合に、前記流量調整弁の開度に基づいて、前記循環流路および前記バイパス流路に含まれる冷媒量を調整する、
請求項10に記載の室外ユニット。 The bypass flow path is
a liquid receiver disposed in the first refrigerant flow path;
It is disposed between the first branch part in the first refrigerant flow path and the inlet of the liquid receiver, and reduces the pressure of the refrigerant flowing from the first refrigerant flow path to an intermediate pressure, and reduces the pressure of the refrigerant flowing into the liquid receiver to an intermediate pressure. a second expansion valve that allows the flow to flow into the vessel;
a flow rate adjustment valve that is disposed between the outlet of the liquid receiver and the inlet of the second passage in the first refrigerant flow path and adjusts the amount of refrigerant flowing into the second passage;
has
The control device controls the compressor, the suction on-off valve, the second expansion valve, and the flow rate adjustment valve,
The control device is included in the circulation flow path and the bypass flow path based on the opening degree of the flow rate adjustment valve when the discharge pressure of the compressor is in a supercritical state exceeding the critical pressure of the refrigerant. Adjust the amount of refrigerant,
The outdoor unit according to claim 10. - 前記圧縮機は、中間圧ポートを有し、
前記バイパス流路は、
前記第1分岐部と前記中間圧ポートとの間に配置され、前記中間圧ポートへの冷媒の流入量を調整する第2膨張弁
を有する、
請求項1~8のいずれか1項に記載の室外ユニット。 The compressor has an intermediate pressure port,
The bypass flow path is
a second expansion valve that is disposed between the first branch part and the intermediate pressure port and adjusts the amount of refrigerant flowing into the intermediate pressure port;
The outdoor unit according to any one of claims 1 to 8. - 前記第1分岐部は、前記循環流路における前記第1通路の出口と前記負荷装置との間に配置され、
前記バイパス流路は、
前記第1分岐部から前記第2通路の入口に冷媒を流す第1冷媒流路と、
前記第2通路の出口から前記第1接続部に冷媒を流す第2冷媒流路と、
前記第2冷媒流路から分岐し、前記中間圧ポートに接続される第3冷媒流路と、
を有する、
請求項12に記載の室外ユニット。 The first branch part is arranged between the outlet of the first passage in the circulation flow path and the load device,
The bypass flow path is
a first refrigerant flow path that allows refrigerant to flow from the first branch to the entrance of the second passage;
a second refrigerant flow path that allows refrigerant to flow from the outlet of the second passage to the first connection part;
a third refrigerant flow path branching from the second refrigerant flow path and connected to the intermediate pressure port;
has,
The outdoor unit according to claim 12. - 前記第1分岐部は、前記循環流路における前記凝縮器の出口と前記第1通路の入口との間に配置され、
前記バイパス流路は、
前記第1分岐部から前記第2通路の入口に冷媒を流す第1冷媒流路と、
前記第2通路の出口から前記第1接続部に冷媒を流す第2冷媒流路と、
前記第2冷媒流路から分岐し、前記中間圧ポートに接続される第3冷媒流路と、
前記第1冷媒流路に配置される受液器と、
前記第1冷媒流路における前記第1分岐部と前記受液器の入口との間に配置され、前記第1冷媒流路から流入される冷媒の圧力を中間圧まで減圧して、前記受液器に流入させる、前記第2膨張弁と、
前記第1冷媒流路における前記受液器の出口と前記第2通路の入口との間に配置され、前記第2通路に流入させる冷媒量を調整する、流量調整弁と、
を有し、
前記制御装置は、前記圧縮機、前記吸入開閉弁、前記第2膨張弁、および、前記流量調整弁を制御するものであって、
前記制御装置は、前記圧縮機の吐出圧が前記冷媒の臨界圧を超える超臨界状態である場合に、前記流量調整弁の開度に基づいて、前記循環流路および前記バイパス流路に含まれる冷媒量を調整する、
請求項12に記載の室外ユニット。 The first branch part is arranged between the outlet of the condenser and the inlet of the first passage in the circulation flow path,
The bypass flow path is
a first refrigerant flow path that allows refrigerant to flow from the first branch to the entrance of the second passage;
a second refrigerant flow path that allows refrigerant to flow from the outlet of the second passage to the first connection part;
a third refrigerant flow path branching from the second refrigerant flow path and connected to the intermediate pressure port;
a liquid receiver disposed in the first refrigerant flow path;
It is disposed between the first branch part in the first refrigerant flow path and the inlet of the liquid receiver, and reduces the pressure of the refrigerant flowing from the first refrigerant flow path to an intermediate pressure, and reduces the pressure of the refrigerant flowing into the liquid receiver to an intermediate pressure. the second expansion valve that allows the flow into the vessel;
a flow rate adjustment valve that is disposed between the outlet of the liquid receiver and the inlet of the second passage in the first refrigerant flow path and adjusts the amount of refrigerant flowing into the second passage;
has
The control device controls the compressor, the suction on-off valve, the second expansion valve, and the flow rate adjustment valve,
The control device is included in the circulation flow path and the bypass flow path based on the opening degree of the flow rate adjustment valve when the discharge pressure of the compressor is in a supercritical state exceeding the critical pressure of the refrigerant. Adjust the amount of refrigerant,
The outdoor unit according to claim 12. - 前記循環流路における前記第1接続部の上流側に配置され、前記循環流路の冷媒の流れと逆の方向に冷媒が流れることを阻止する、逆止弁を備え、
前記制御装置は、前記圧縮機の起動時に、前記吸入開閉弁を開放して、前記第2冷媒流路から前記第1接続部へ冷媒を流入させることにより、前記循環流路の高圧側と低圧側とをバイパスし、前記逆止弁の作用により、前記負荷装置から前記吸入ポートまでの間の前記循環流路内の冷媒の圧力を前記高圧側と同一圧力値まで上昇させる、
請求項14に記載の室外ユニット。 comprising a check valve disposed upstream of the first connection part in the circulation flow path to prevent the refrigerant from flowing in a direction opposite to the flow of the refrigerant in the circulation flow path;
The control device opens the suction on-off valve and causes refrigerant to flow from the second refrigerant flow path to the first connection portion when the compressor is started, so that the high pressure side and the low pressure side of the circulation flow path are connected to each other. bypassing the side and increasing the pressure of the refrigerant in the circulation flow path between the load device and the suction port to the same pressure value as the high pressure side by the action of the check valve;
The outdoor unit according to claim 14. - 前記圧縮機の前記吸入ポートに接続されたアキュムレータを備え、
前記アキュムレータは、
内部に冷媒と冷凍機油とを貯留するケーシングと、
前記ケーシングの上部を貫通して配置され、前記負荷装置からの冷媒を前記ケーシングの内部に流入させる流入管と、
U字型形状を有し、一端が前記ケーシングの上部を貫通して前記ケーシングの外部に配置され、他端が前記ケーシングの内部に配置され、前記一端から前記圧縮機の前記吸入ポートへ冷媒を流出させる流出管と、
前記第1接続部として機能し、前記ケーシングの下部を貫通して配置された、バイパス配管と、
を有し、
前記バイパス配管は、前記吸入開閉弁が開放された場合に、前記バイパス流路からの冷媒を前記ケーシングの内部に流入させる、
請求項1~15のいずれか1項に記載の室外ユニット。 an accumulator connected to the suction port of the compressor;
The accumulator is
a casing that stores refrigerant and refrigeration oil inside;
an inflow pipe that is disposed through an upper part of the casing and allows refrigerant from the load device to flow into the inside of the casing;
It has a U-shape, one end passing through the upper part of the casing and disposed outside the casing, and the other end disposed inside the casing, and the refrigerant is supplied from the one end to the suction port of the compressor. an outflow pipe for outflowing;
a bypass pipe that functions as the first connection part and is disposed to penetrate a lower part of the casing;
has
The bypass piping allows the refrigerant from the bypass passage to flow into the casing when the suction on-off valve is opened.
The outdoor unit according to any one of claims 1 to 15. - 請求項1~16のいずれか1項に記載の室外ユニットと、
前記室外ユニットに接続された前記負荷装置と、
を備えた、冷凍サイクル装置。 The outdoor unit according to any one of claims 1 to 16,
the load device connected to the outdoor unit;
A refrigeration cycle device equipped with
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/021891 WO2023233452A1 (en) | 2022-05-30 | 2022-05-30 | Outdoor unit and refrigeration cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/021891 WO2023233452A1 (en) | 2022-05-30 | 2022-05-30 | Outdoor unit and refrigeration cycle device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023233452A1 true WO2023233452A1 (en) | 2023-12-07 |
Family
ID=89025890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/021891 WO2023233452A1 (en) | 2022-05-30 | 2022-05-30 | Outdoor unit and refrigeration cycle device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023233452A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH085168A (en) * | 1994-06-23 | 1996-01-12 | Mitsubishi Heavy Ind Ltd | Air conditioner for vehicle |
JP2003114062A (en) * | 2001-08-01 | 2003-04-18 | Daikin Ind Ltd | Freezer device |
JP2004044883A (en) * | 2002-07-11 | 2004-02-12 | Hitachi Ltd | Air conditioner |
JP2012225630A (en) * | 2011-04-22 | 2012-11-15 | Mitsubishi Electric Corp | Heat source-side unit and refrigerating cycle device |
JP2014214913A (en) * | 2013-04-23 | 2014-11-17 | 三菱電機株式会社 | Oil return controller and refrigerator |
WO2016194186A1 (en) * | 2015-06-03 | 2016-12-08 | 三菱電機株式会社 | Refrigeration cycle device and air-conditioning device |
WO2019234986A1 (en) * | 2018-06-07 | 2019-12-12 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device and liquid heating device comprising same |
WO2020202555A1 (en) * | 2019-04-05 | 2020-10-08 | 三菱電機株式会社 | Refrigeration cycle device |
WO2021048898A1 (en) * | 2019-09-09 | 2021-03-18 | 三菱電機株式会社 | Outdoor unit and refrigeration cycle device |
-
2022
- 2022-05-30 WO PCT/JP2022/021891 patent/WO2023233452A1/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH085168A (en) * | 1994-06-23 | 1996-01-12 | Mitsubishi Heavy Ind Ltd | Air conditioner for vehicle |
JP2003114062A (en) * | 2001-08-01 | 2003-04-18 | Daikin Ind Ltd | Freezer device |
JP2004044883A (en) * | 2002-07-11 | 2004-02-12 | Hitachi Ltd | Air conditioner |
JP2012225630A (en) * | 2011-04-22 | 2012-11-15 | Mitsubishi Electric Corp | Heat source-side unit and refrigerating cycle device |
JP2014214913A (en) * | 2013-04-23 | 2014-11-17 | 三菱電機株式会社 | Oil return controller and refrigerator |
WO2016194186A1 (en) * | 2015-06-03 | 2016-12-08 | 三菱電機株式会社 | Refrigeration cycle device and air-conditioning device |
WO2019234986A1 (en) * | 2018-06-07 | 2019-12-12 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device and liquid heating device comprising same |
WO2020202555A1 (en) * | 2019-04-05 | 2020-10-08 | 三菱電機株式会社 | Refrigeration cycle device |
WO2021048898A1 (en) * | 2019-09-09 | 2021-03-18 | 三菱電機株式会社 | Outdoor unit and refrigeration cycle device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100856991B1 (en) | Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner | |
JP4734161B2 (en) | Refrigeration cycle apparatus and air conditioner | |
JP5784121B2 (en) | Refrigeration cycle equipment | |
WO2010013392A1 (en) | Refrigerating device | |
EP3267130B1 (en) | Refrigeration cycle device | |
JP4905018B2 (en) | Refrigeration equipment | |
JP2008096033A (en) | Refrigerating device | |
JP5258197B2 (en) | Air conditioning system | |
JP5173857B2 (en) | Air conditioner | |
JP6052456B2 (en) | Refrigeration equipment | |
EP4015936B1 (en) | Heat source unit and refrigeration device | |
JP7224480B2 (en) | Outdoor unit and refrigeration cycle equipment | |
JPH0796973B2 (en) | Refrigerating apparatus with economizer and operation control method thereof | |
JP4868049B2 (en) | Refrigeration equipment | |
JP2005083704A (en) | Refrigerating cycle and air conditioner | |
JP6653463B2 (en) | Refrigeration equipment | |
WO2023233452A1 (en) | Outdoor unit and refrigeration cycle device | |
JP5659909B2 (en) | Heat pump equipment | |
JP7331021B2 (en) | refrigeration cycle equipment | |
JP4274250B2 (en) | Refrigeration equipment | |
JP7378561B2 (en) | Outdoor unit and refrigeration cycle equipment | |
JP2009293887A (en) | Refrigerating device | |
JP2006125762A (en) | Indoor unit, air conditioning device comprising the same, and its operating method | |
WO2020234994A1 (en) | Air conditioning device | |
KR20210073990A (en) | Heat pump system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22944742 Country of ref document: EP Kind code of ref document: A1 |