[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023231485A1 - 电池电路以及车辆 - Google Patents

电池电路以及车辆 Download PDF

Info

Publication number
WO2023231485A1
WO2023231485A1 PCT/CN2023/079719 CN2023079719W WO2023231485A1 WO 2023231485 A1 WO2023231485 A1 WO 2023231485A1 CN 2023079719 W CN2023079719 W CN 2023079719W WO 2023231485 A1 WO2023231485 A1 WO 2023231485A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
switch
battery
unit
terminal
Prior art date
Application number
PCT/CN2023/079719
Other languages
English (en)
French (fr)
Inventor
熊师
冯天宇
邓林旺
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020247031428A priority Critical patent/KR20240155898A/ko
Publication of WO2023231485A1 publication Critical patent/WO2023231485A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to the field of vehicle technology, and more specifically, to a battery circuit and a vehicle.
  • An object of the present disclosure is to provide a new technical solution for battery circuits.
  • a battery circuit including: a power terminal, a first battery pack, a second battery pack of a different type from the first battery pack, a transformer unit, a first switch, a second switch and ground terminal, where:
  • the positive electrode of the first battery pack is connected to the power terminal, and the negative electrode of the first battery pack is connected to the positive electrode of the second battery pack;
  • the negative electrode of the second battery pack is connected to the ground terminal
  • the first end of the first switch is connected to the power end, and the second end of the first switch is connected to the first end of the second switch;
  • the second terminal of the second switch is connected to the ground terminal
  • the transformer unit is connected between the negative electrode of the first battery pack and the second electrode of the first switch. between ends;
  • the deviation between the rated voltage of the first battery pack and the rated voltage of the second battery pack is less than a first preset range
  • the ratio between the capacity of the first battery pack and the capacity of the second battery pack and the maximum discharge rate of the second battery pack and the maximum discharge rate of the first battery pack is smaller than the second preset range.
  • the rated voltage of the first battery pack is the same as the rated voltage of the second battery pack
  • the ratio between the capacity of the first battery pack and the capacity of the second battery pack and the maximum discharge rate of the second battery pack and the maximum discharge rate of the first battery pack are the same.
  • the battery circuit further includes:
  • a control unit the first end of the control unit is connected to the control end of the first switch, and the second end of the control unit is connected to the control end of the second switch;
  • control unit is used to control the first switch and the second switch to open or close according to a first preset control rule under a first preset condition, so that the output of the second battery pack increased power;
  • control the first switch and the second switch to open or close according to a second preset control rule, so that the first battery pack and the second battery The input power of the package is different;
  • the first switch and the second switch are controlled to be disconnected, so that the first battery pack and the second battery pack are discharged or charged in series.
  • the first battery pack is a power battery pack
  • the second battery pack is an energy battery pack
  • the first battery pack is the energy-type battery pack
  • the second battery pack is a power-type battery pack.
  • the first battery pack is a power-type battery pack
  • the second battery pack is an energy-type battery pack
  • the battery circuit further includes: a filtering unit, wherein:
  • the first end of the filter unit is connected to the positive electrode of the first battery pack
  • the second end of the filter unit is connected to the power end
  • the third end of the filter unit is connected to the positive electrode of the first battery pack. Negative connection.
  • the filtering unit includes a first inductor and a first capacitor, wherein:
  • the first end of the first inductor is connected to the positive electrode of the first battery pack, and the second end of the first inductor is connected to the power end;
  • the first end of the first capacitor is connected to the first end of the first inductor, and the second end of the first capacitor is connected to the negative electrode of the first battery pack.
  • the battery circuit further includes a first freewheeling unit and a second freewheeling unit, wherein:
  • the input end of the first freewheeling unit is connected to the second end of the first switch, and the output end of the first freewheeling unit is connected to the first end of the first switch;
  • the input end of the second freewheeling unit is connected to the second end of the second switch, and the output end of the second freewheeling unit is connected to the first end of the second switch.
  • the first freewheeling unit is a first diode
  • the second freewheeling unit is a second diode
  • the anode of the first diode is connected to the second end of the first switch, and the cathode of the first diode is connected to the first end of the first switch;
  • the anode of the second diode is connected to the second end of the second switch; the cathode of the second diode is connected to the first end of the second switch.
  • the battery circuit further includes a voltage stabilization unit, wherein:
  • the voltage stabilization unit is connected between the power terminal and the ground terminal.
  • the voltage stabilization unit is a second capacitor.
  • the transformer unit is a second inductor.
  • a vehicle including the battery circuit according to any one of the above first aspects.
  • the battery circuit provided according to an embodiment of the present disclosure can implement: for the first battery pack
  • the control of the dual battery pack composed of the second battery pack and the second battery pack provides the hardware circuit basis.
  • Figure 1 is a schematic structural diagram of a battery circuit provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram 2 of a battery circuit provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram three of a battery circuit provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram 4 of a battery circuit provided by an embodiment of the present disclosure.
  • 100-battery circuit 101-power supply terminal; 102-first battery pack; 103-second battery pack;
  • 112-voltage stabilization unit 1121-second capacitor.
  • any specific values should be construed as examples only sexually, not as a restriction. Accordingly, other examples of the exemplary embodiments may have different values.
  • the battery circuit 100 includes: a power terminal 101, a first battery pack 102, a second battery pack 103 of a different type from the first battery pack 102, and a transformer.
  • pressure unit 104, first switch 105, second switch 106 and ground terminal 107 where:
  • the positive electrode of the first battery pack 102 is connected to the power terminal 101, and the negative electrode of the first battery pack 102 is connected to the positive electrode of the second battery pack 103;
  • the negative electrode of the second battery pack 103 is connected to the ground terminal 107;
  • the first end of the first switch 105 is connected to the power terminal 101, and the second end of the first switch 105 is connected to the first end of the second switch 106;
  • the second terminal of the second switch 106 is connected to the ground terminal 107;
  • the transformer unit 104 is connected between the negative electrode of the first battery pack 102 and the second end of the first switch 105;
  • the deviation between the rated voltage of the first battery pack 102 and the rated voltage of the second battery pack 103 is less than the first preset range
  • the ratio between the capacity of the first battery pack 102 and the capacity of the second battery pack 103 and the deviation between the maximum discharge rate of the second battery pack 103 and the maximum discharge rate of the first battery pack 102 are smaller than the second Preset threshold.
  • a battery circuit including: a power terminal, a first battery pack, a second battery pack of a different type from the first battery pack, a transformer unit, a first switch, a second switch and a ground terminal, wherein: the positive electrode of the first battery pack is connected to the power supply terminal, the negative electrode of the first battery pack is connected to the positive electrode of the second battery pack; the negative electrode of the second battery pack is connected to the ground terminal; the first terminal of the first switch is connected to the power supply terminal. terminals are connected, the second terminal of the first switch is connected to the first terminal of the second switch; the second terminal of the second switch is connected to the ground terminal; the transformer unit is connected between the negative electrode of the first battery pack and the first terminal.
  • the battery circuit provided by the embodiment of the present disclosure can provide a hardware circuit basis for controlling a dual battery pack composed of a first battery pack and a second battery pack.
  • the power terminal 101 in the battery circuit 100 is used to connect the power input terminal of the load
  • the ground terminal 107 in the battery circuit 100 is used to connect the ground terminal of the load.
  • the load may be, for example, a motor of an electric vehicle or a hybrid vehicle.
  • the power terminal 101 in the battery circuit 100 is used to connect to the power output terminal of the charging device, and the ground terminal 107 in the battery circuit 100 is used to connect the ground terminal of the charging device.
  • the charging equipment may be, for example, a charging pile, or a braking system of an electric vehicle or a hybrid vehicle.
  • the transformer unit 104 may be a second inductor 1041 .
  • the transformer unit 104 can also be implemented in other ways.
  • the inductance value of the second inductor 1041 may be set in the range of 2 to 1500 uH.
  • the transformer unit 104 when the transformer unit 104 is the second inductor 1041, the transformer unit 104 has a low cost and a simple structure.
  • the first switch 105 and the second switch 106 may be a switch IC, a MOSFET (English full name: Metal Oxide Semiconductor Field Effect Transistor; Chinese full name: Metal-Oxide Semiconductor Field Effect Transistor), IGBT ( Insulated Gate Bipolar Transistor; Insulated Gate Bipolar Transistor) or SiC (Silicon Carbide) switch, etc.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor; Insulated Gate Bipolar Transistor
  • SiC Silicon Carbide
  • first switch 105 also includes a control terminal to realize control of the first switch 105 closing and opening control.
  • second switch 106 also includes a control terminal to control the closing and opening of the second switch 106 .
  • the first battery pack 102 and the second battery pack 103 are of different types.
  • the first battery pack 102 is a power battery pack
  • the second battery pack 103 is an energy battery pack.
  • the first battery pack 102 is an energy-type battery pack
  • the second battery pack 103 is a power-type battery pack.
  • the power type battery pack is designated as a battery pack with high power density.
  • the power density designation is: the maximum power of energy transfer per unit weight or volume of the battery when charging or discharging.
  • the voltage value of the power battery pack can be set in the range of 100 to 1000V.
  • Energy-type battery packs are battery packs with high energy density.
  • energy density is specified as: the energy stored by the battery per unit weight or volume.
  • the voltage value of the energy battery pack can be set in the range of 100 to 1000V.
  • the specific types of the first battery pack 102 and the second battery pack 103 are not limited, which can improve the compatibility of the battery circuit 100 provided by the embodiment of the present disclosure.
  • the deviation between the rated voltage U1 of the first battery pack 102 and the rated voltage U2 of the second battery pack 103 is less than the first preset range.
  • the first preset range is the allowed range of the deviation between the rated voltage U1 of the first battery pack 102 and the rated voltage U3 of the second battery pack 103 .
  • the deviation between the rated voltage U1 of the first battery pack 102 and the rated voltage U2 of the second battery pack 103 is less than the first preset range, it is explained that the rated voltage U1 of the first battery pack 102 and the rated voltage U2 of the second battery pack 103 Voltage U2 is basically the same.
  • the first preset range may be exemplarily 0.2*U1, or 0.2*U2.
  • the first preset range is 0.2*U1, 1.2*U1 ⁇ U2 ⁇ 0.8*U1; when the first preset range is 0.2*U2, 1.2*U2 ⁇ U1 ⁇ 0.8*U2.
  • the rated voltage U1 of the first battery pack 102 is the same as the rated voltage U2 of the second battery pack 103 . In this way, the most efficient energy transfer between the first battery pack 102 and the second battery pack 103 can be achieved.
  • Uout 550V
  • the ratio between the capacity Q1 of the first battery pack 102 and the capacity Q2 of the second battery pack 103, and the maximum discharge rate X2 of the second battery pack 103 and the maximum discharge rate X2 of the first battery pack 102 is smaller than the second preset range.
  • the second preset range is the ratio between the capacity Q1 of the first battery pack 102 and the capacity Q2 of the second battery pack 103, and the maximum discharge rate X2 of the second battery pack 103 and the first battery The allowed range of the deviation before the ratio between the maximum discharge rate X1 of the package 102.
  • the ratio between the capacity Q1 of the first battery pack 102 and the capacity Q2 of the second battery pack 103, and the deviation in the ratio between the maximum discharge rate X2 of the second battery pack 103 and the maximum discharge rate X1 of the first battery pack 102 If it is less than the second preset range, explain the ratio between the capacity Q1 of the first battery pack 102 and the capacity Q2 of the second battery pack 103, and the maximum discharge rate X2 of the second battery pack 103 and the first battery pack 102
  • the ratio between the maximum discharge rate X1 is basically the same.
  • the second preset range may be exemplarily ⁇ 0.5.
  • the capacity of the first battery pack 102 and the capacity of the second battery pack 103 are When the deviation between the ratio between the amount and the maximum discharge rate of the second battery pack 103 and the maximum discharge rate of the first battery pack 101 is less than the second preset range, the maximum external discharge current of the two can be achieved. basically the same. Based on this, for example, stable external discharge of the two in series can be achieved.
  • the ratio between the capacity Q1 of the first battery pack 102 and the capacity Q2 of the second battery pack 103, and the maximum discharge rate X2 of the second battery pack 103 and the maximum discharge rate are the same. In this way, the maximum external discharge current of the two can be exactly the same.
  • the battery circuit 100 shown in FIG. 1 provided by the embodiment of the present disclosure provides a hardware basis for controlling a dual battery pack composed of a power battery pack and an energy battery pack. Specifically, based on the battery circuit shown in Figure 1, a dual battery pack composed of a power battery pack and an energy battery pack can be controlled according to the following content.
  • the battery circuit 100 further includes a control unit 108. in:
  • the first terminal of the control unit 108 is connected to the control terminal of the first switch 105
  • the second terminal of the control unit 108 is connected to the control terminal of the second switch 106 .
  • control unit 108 may be, for example, a CPU or MCU, or the like.
  • control unit 108 is used to control the first switch 105 and the second switch 106 to open or close according to the first preset control rule under the first preset condition, so that the output power of the second battery pack 103 increases.
  • the first preset condition may be that the battery circuit 100 is in a discharge state.
  • the first preset control rule may be: perform a first on-off operation, where the first on-off operation is: control the first switch 105 to open and the second switch 106 to close within a first time period; within a second time period Control the first switch 105 to close and the second switch 106 to open; repeat the first on-off operation until The first battery pack 102 is opened.
  • the second time period is a time period adjacent to the first time period and located after the first time period.
  • the corresponding durations of the first time period and the second time period can be set based on experience or others.
  • the first switch 105 when the battery circuit 100 is in a discharge state, the first switch 105 is controlled to be turned off and the second switch 106 is turned on within a first period of time. At this time, the second battery pack 103 charges the transformer unit 104 . During the second time period, the first switch 105 is controlled to be closed and the second switch 106 is controlled to be open. At this time, the transformer unit 104 releases the stored electric energy. That is, the voltage at the output end of the transformer unit 104 (the end connected to the first switch 105) increases; by repeating this process, the voltage at the output end of the transformer unit 104 will increase to the same as the bus voltage. At this time, the first battery pack 102 is opened. In this way, only the second battery pack 103 can be discharged, and the power output by the second battery pack 103 is higher than the power that the second battery pack 103 itself can output. That is, the output power of the second battery pack 103 increases.
  • control unit 108 is also used to control the first switch 105 and the second switch 106 to open or close according to the second preset control rule under the second preset condition, so that the first battery pack 102 and the second The input power of the battery pack 103 is different.
  • the second preset condition may be that the battery circuit 100 is in a charging state.
  • the second preset control rule may be: perform a second on-off operation, where the second on-off operation is to control the first switch 105 to close and the second switch 106 to open within a third time period; control the The first switch 105 is turned off, and the second switch 106 is turned on; the second on-off operation is repeatedly performed.
  • the third time period is a time period adjacent to the fourth time period and located after the third time period.
  • the corresponding durations of the third time period and the fourth time period can be set based on experience or others.
  • the first switch 105 when the battery circuit 100 is in a charging state, the first switch 105 is controlled to be closed and the second switch 106 to be opened during the third time period. At this time, the first battery pack 102 and/or the charging device charges the transformer unit 104 . During the fourth time period, the first switch 105 is controlled to be turned off and the second switch 106 is turned on. At this time, the transformer unit 104 releases the stored electric energy to charge the second battery pack 103 together with the charging device. That is, the voltage transformation unit 104 implements the voltage boosting function. Since the first battery pack 102 is only charged by the charging device, and the second battery pack 103 is charged by the transformer unit 104 and the same charging device, The electrical devices are charged together. Therefore, by repeating this process, the input power of the second battery pack 103 can be greater than the input power of the first battery pack 102 . That is, the input power of the second battery pack 103 and the first battery pack 102 are different.
  • the second preset control rule is the opposite control rule to repeating the above-mentioned second on-off operation
  • the first switch 105 is controlled to be turned off and the second switch 106 is turned on in the third time period
  • the first switch 105 is controlled to be closed and the second switch 106 is opened; this operation is repeatedly performed.
  • the input power of the first battery pack 102 is greater than the input power of the second battery pack 103 . That is, the input power of the second battery pack 103 and the first battery pack 102 are different.
  • control unit 108 is also used to control the first switch 105 and the second switch 106 to open or close according to the third preset control rule under a third preset condition, so that the first battery pack 102 switches to the second battery.
  • the battery pack 103 is charged or the second battery pack 103 charges the first battery pack 102 .
  • the third preset condition may be that the charging current of the second battery pack 103 is less than the maximum charging current of the second battery pack 103 .
  • the third preset control rule is: perform a third on-off operation, where the third on-off operation is to control the first switch 105 to close and the second switch 106 to open in the fifth time period, and in the sixth time period The first switch 105 is internally controlled to open and the second switch 106 is closed; the third on-off operation is repeated.
  • the fifth time period is a time period adjacent to the sixth time period and located after the fifth time period.
  • the corresponding durations of the fifth time period and the sixth time period can be set based on experience or others.
  • the first switch 105 when the charging current of the second battery pack 103 is less than the maximum charging current of the second battery pack 103, the first switch 105 is controlled to close and the second switch 106 to open during the fifth time period. . At this time, the first battery pack 102 charges the transformer unit 104 . During the sixth period of time, the first switch 105 is controlled to be turned off and the second switch 106 is turned on. At this time, the transformer unit 104 releases the stored electric energy to the second battery pack 103 . That is, the voltage transformation unit 104 implements the voltage boosting function. By repeating this process, the first battery pack 102 can be charged to the second battery pack 103 .
  • the third preset control rule is as follows: The control rule opposite to the above third on-off operation is to control the first one in the fifth time period.
  • the switch 105 is turned off and the second switch 106 is turned on.
  • the first switch 105 is controlled to be turned on and the second switch 106 is turned off; the operation is repeated. Based on this, the second battery pack 103 can be charged to the first battery pack 102 .
  • control unit 108 is also used to control the first switch 105 and the second switch 106 to open under the fourth preset condition, so that the first battery pack 102 and the second battery pack 103 are discharged or charged in series.
  • the fourth preset condition is that the battery circuit 100 is in a discharging state or a charging state.
  • the first switch 105 and the second switch 106 are controlled to be turned off. This enables the first battery pack 102 and the second battery pack 103 to be discharged or charged together.
  • embodiments of the present disclosure provide a variety of controls based on the battery circuit as shown in FIG. 1 .
  • a battery circuit including: a power terminal, a first battery pack, a second battery pack of a different type from the first battery pack, a transformer unit, a first switch, a second switch and a ground terminal, wherein: the positive electrode of the first battery pack is connected to the power supply terminal, the negative electrode of the first battery pack is connected to the positive electrode of the second battery pack; the negative electrode of the second battery pack is connected to the ground terminal; the first terminal of the first switch is connected to the power supply terminal.
  • the battery circuit provided by the embodiment of the present disclosure can provide a hardware circuit basis for controlling a dual battery pack composed of a first battery pack and a second battery pack.
  • the battery circuit 100 provided by the embodiment of the present disclosure is Also included is a filtering unit 109, wherein:
  • the first terminal of the filter unit 109 is connected to the positive electrode of the first battery pack 102
  • the second terminal of the filter unit 109 is connected to the power terminal 101
  • the third terminal of the filter unit 109 is connected to the negative electrode of the first battery pack 102 .
  • the power type battery pack is usually used when the electric vehicle or hybrid vehicle generates peak power during driving (such as the discharge peak power generated during the traction process and the charging peak power generated during the braking process). , which does not need to be used in other cases. Therefore, under other circumstances, the output current of the power battery pack is expected to be 0.
  • the filter unit 109 the current ripple of the first battery pack 102 can be suppressed, thereby preventing the output current of the power-type battery pack as the first battery pack 102 from fluctuating near 0. In this way, high-frequency rapid charging and discharging of the first battery pack 102 can be avoided, thereby reducing the problem of shortening the life of the first battery pack 102 .
  • the filtering unit 109 includes a first inductor 1091 and a first capacitor 1092, where:
  • the first end of the first inductor 1081 is connected to the positive electrode of the first battery pack 102, and the second end of the first inductor 1091 is connected to the power end;
  • the first terminal of the first capacitor 1092 is connected to the first terminal of the first inductor 1091 , and the second terminal of the first capacitor 1092 is connected to the negative electrode of the first battery pack 102 .
  • the first inductor 1091 is a filter inductor, and the value of the first inductor 1091 can be set in the range of 2 to 1500 uH.
  • the first capacitor 1092 is a filter capacitor, and the value of the first capacitor 1092 can be set in the range of 2 to 1500uF.
  • the first inductor 1091 and the first capacitor 1092 can be set to smaller values.
  • the first inductor 1091 is set to 2uH
  • the first capacitor 1092 is set to 2uF.
  • the first inductor 1091 and the first capacitor 1092 can be set to larger values.
  • the first inductor 1091 is set to 1500uH
  • the first capacitor 1092 is set to 1500uF.
  • a filter unit 109 with a simple structure is provided, which can reduce the hardware cost, design difficulty and board area of the battery circuit 100 .
  • the battery circuit 100 provided by the embodiment of the present disclosure also includes a first freewheeling unit 110 and a second freewheeling unit 111, wherein:
  • the input end of the first freewheeling unit 110 is connected to the second end of the first switch 105, and the output end of the first freewheeling unit 110 is connected to the first end of the first switch 105;
  • the input terminal of the second freewheeling unit 111 is connected to the second terminal of the second switch 106 , and the output terminal of the second freewheeling unit 111 is connected to the first terminal of the second switch 106 .
  • the second switch 106 is controlled to close and the first switch 105 is turned off, due to the influence of the freewheeling time and the action time of the first switch 105, it is usually impossible to control the first switch 105 to turn off immediately. open. This will cause a short-term short circuit between the first switch 105 and the second switch 106, which will further cause the first battery pack 102 and the second battery pack 103 to be burned due to the short circuit.
  • the second freewheeling unit 111 is provided to be connected in parallel at both ends of the second switch 106 , and the second freewheeling unit 111 performs freewheeling. This can delay the closing time of the second switch 106 when the first switch 105 is controlled to be turned off, thereby avoiding the problem of the first battery pack 102 and the second battery pack 103 being short-circuited and burned.
  • the first freewheeling unit 110 is provided to be connected in parallel at both ends of the first switch 105 , and the first freewheeling unit 110 performs freewheeling. This can delay the closing time of the first switch 105 when the second switch 106 is controlled to be turned off, thereby avoiding the problem of the first battery pack 102 and the second battery pack 103 being short-circuited and burned.
  • the first freewheeling unit 109 is a first diode 1101
  • the second freewheeling unit 111 is a second diode 1111, where:
  • the anode of the first diode 1101 is connected to the second terminal of the first switch 105, and the cathode of the first diode 1101 is connected to the first terminal of the first switch 105;
  • the anode of the second diode 1111 is connected to the second terminal of the second switch 106; the cathode of the second diode 1111 is connected to the first terminal of the second switch 106.
  • a first freewheeling unit 110 and a second freewheeling unit 110 with a simple structure are provided.
  • the freewheeling unit 111 can reduce the hardware cost, design difficulty and board area of the battery circuit 100 .
  • the battery circuit 100 provided by the embodiment of the present disclosure also includes a voltage stabilization unit 112, wherein:
  • the voltage stabilization unit 112 is connected between the power terminal 101 and the ground terminal 107 .
  • the voltage stabilization unit 111 is used to filter out voltage fluctuations on the bus bar, that is, the line on which the power terminal 101 of the battery circuit 100 is located, which can stabilize the voltage provided to the load. On the other hand, it is used to reduce the negative impact of voltage fluctuations jointly generated by the first battery pack 102 and the transformer unit 104 on the second battery pack 103 .
  • the voltage stabilization unit 112 may be, for example, a second capacitor 1121.
  • the voltage stabilization unit 112 can also be implemented in other ways.
  • the second capacitor 1121 is a support capacitor, and the value of the second capacitor 1121 can be set in the range of 2 to 1500uF.
  • a voltage stabilization unit 112 with a simple structure is provided, which can reduce the hardware cost, design difficulty and board area of the battery circuit 100 .
  • An embodiment of the present disclosure also provides a vehicle, which includes the battery circuit 100 provided in any of the above embodiments.
  • the vehicle is an electric vehicle or a hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池电路(100),包括电源端(101)、第一电池包(102)、第二电池包(103)、变压单元(104)、第一开关(105)、第二开关(106)及接地端(107);第一电池包(102)正极与电源端(101)连接,负极与第二电池包(103)的正极连接;第二电池包(103)负极与接地端(107)连接;第一开关(105)第一端与电源端(101)连接,第二端与第二开关(106)的第一端连接;第二开关(106)第二端与接地端(107)连接;变压单元(104)连接在第一电池包(102)负极与第一开关(105)第二端之间;第一电池包(102)的额定电压与第二电池包(103)的额定电压的偏差小于第一预设范围;第一电池包(102)的容量与第二电池包(103)的容量间的比值和第二电池包(103)的最大放电倍率与第一电池包(102)的最大放电倍率间的比值偏差小于第二预设范围。还公开一种包括电池电路的车辆。

Description

电池电路以及车辆
本公开要求于2022年05月31日提交中国专利局的公开号为202210614132.8、公开名称为“电池电路以及车辆”的中国专利公开的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,更具体地,涉及一种电池电路以及一种车辆。
背景技术
相关技术中,提出了由功率型电池包和能量型电池包组成的双电池包。
但是,如何为控制由功率型电池包和能量型电池包组成的双电池包提供硬件基础,成为亟待解决的技术问题。
发明内容
本公开的一个目的是提供一种用于电池电路的新技术方案。
根据本公开的第一方面,提供了一种电池电路,包括:电源端、第一电池包、与所述第一电池包类型不同的第二电池包、变压单元、第一开关、第二开关以及接地端,其中:
所述第一电池包的正极与所述电源端连接,所述第一电池包的负极与第二电池包的正极连接;
所述第二电池包的负极与所述接地端连接;
所述第一开关的第一端与所述电源端连接,所述第一开关的第二端与所述第二开关的第一端连接;
所述第二开关的第二端与所述接地端连接;
所述变压单元连接在所述第一电池包的负极与所述第一开关的第二 端之间;
其中,所述第一电池包的额定电压与所述第二电池包的额定电压的偏差小于第一预设范围;
和/或,所述第一电池包的容量与所述第二电池包的容量之间的比值和所述第二电池包的最大放电倍率与所述第一电池包的最大放电倍率之间的比值偏差小于第二预设范围。
根据本公开的实施例,所述第一电池包的额定电压与所述第二电池包的额定电压相同;
和/或,所述第一电池包的容量与所述第二电池包的容量之间的比值和所述第二电池包的最大放电倍率与所述第一电池包的最大放电倍率之间的比值相同。
根据本公开的实施例,所述电池电路还包括:
控制单元,所述控制单元的第一端与所述第一开关的控制端连接,所述控制单元的第二端与所述第二开关的控制端连接;
其中,所述控制单元用于在第一预设条件下,控制所述第一开关和所述第二开关按照第一预设控制规则断开或闭合,以使得所述第二电池包的输出功率增大;
和/或,在第二预设条件下,控制所述第一开关和所述第二开关按照第二预设控制规则断开或闭合,以使得所述第一电池包与所述第二电池包的输入功率不同;
和/或,在第三预设条件下,控制所述第一开关和所述第二开关按照第三预设控制规则断开或闭合,以使得所述第一电池包向所述第二电池包充电,或所述第二电池包向所述第一电池包充电;
和/或,在第四预设条件下,控制所述第一开关和所述第二开关断开,以使得所述第一电池包和所述第二电池包串联放电或充电。
根据本公开的实施例,所述第一电池包为功率型电池包,所述第二电池包为能量型电池包;
或者,所述第一电池包为所述能量型电池包,所述第二电池包为功率型电池包。
根据本公开的实施例,所述第一电池包为功率型电池包,所述第二电池包为能量型电池包,所述电池电路还包括:滤波单元,其中:
所述滤波单元的第一端与所述第一电池包的正极连接,所述滤波单元的第二端与所述电源端连接,所述滤波单元的第三端与所述第一电池包的负极连接。
根据本公开的实施例,所述滤波单元包括第一电感和第一电容,其中:
所述第一电感的第一端与所述第一电池包的正极连接,所述第一电感的第二端与所述电源端连接;
所述第一电容的第一端与所述第一电感的第一端连接,所述第一电容的第二端与所述第一电池包的负极连接。
根据本公开的实施例,所述电池电路还包括第一续流单元和第二续流单元,其中:
所述第一续流单元的输入端与所述第一开关的第二端连接,所述第一续流单元的输出端与所述第一开关的第一端连接;
所述第二续流单元的输入端与所述第二开关的第二端连接,所述第二续流单元的输出端与所述第二开关的第一端连接。
根据本公开的实施例,所述第一续流单元为第一二极管,所述第二续流单元为第二二极管,其中:
所述第一二极管的阳极与所述第一开关的第二端连接,所述第一二极管的阴极与所述第一开关的第一端连接;
所述第二二极管的阳极与所述第二开关的第二端连接;所述第二二极管的阴极与所述第二开关的第一端连接。
根据本公开的实施例,所述电池电路还包括电压维稳单元,其中:
所述电压维稳单元连接在所述电源端与所述接地端之间。
根据本公开的实施例,所述电压维稳单元为第二电容。
根据本公开的实施例,所述变压单元为第二电感。
根据本公开的第二方面,提供了一种车辆,所述车辆包括如上述第一方面中任一项所述的电池电路。
根据本公开的一个实施例提供的电池电路可实现:为对由第一电池包 和第二电池包组成的双电池包的控制,提供硬件电路基础。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且连同其说明一起用于解释本公开的原理。
图1是本公开实施例提供的一种电池电路的结构示意图一;
图2是本公开实施例提供的一种电池电路的结构示意图二;
图3是本公开实施例提供的一种电池电路的结构示意图三;
图4是本公开实施例提供的一种电池电路的结构示意图四;
附图标记:
100-电池电路;101-电源端;102-第一电池包;103-第二电池包;
104-变压单元;1041-第二电感;105-第一开关;
106-第二开关;107-接地端;108-控制单元;
109-滤波单元;1091-第一电感;1092-第一电容;
110-第一续流单元;1101-第一二极管;
111-第二续流单元;1111-第二二极管;
112-电压维稳单元;1121-第二电容。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例 性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本公开实施例提供了一种电池电路100,如图1所示,该电池电路100包括:电源端101、第一电池包102、与第一电池包102类型不同的第二电池包103、变压单元104、第一开关105、第二开关106以及接地端107,其中:
第一电池包102的正极与电源端101连接,第一电池包102的负极与第二电池包103的正极连接;
第二电池包103的负极与接地端107连接;
第一开关105的第一端与电源端101连接,第一开关105的第二端与第二开关106的第一端连接;
第二开关106的第二端与接地端107连接;
变压单元104连接在第一电池包102的负极与第一开关105的第二端之间;
其中第一电池包102的额定电压与第二电池包103的额定电压的偏差小于第一预设范围;
和/或,第一电池包102的容量与第二电池包103的容量之间的比值和第二电池包103的最大放电倍率与第一电池包102的最大放电倍率之间的偏差小于第二预设阈值。
在本公开实施例中,提供了一种电池电路,包括:电源端、第一电池包、与第一电池包类型不同的第二电池包、变压单元、第一开关、第二开关以及接地端,其中:第一电池包的正极与电源端连接,第一电池包的负极与第二电池包的正极连接;第二电池包的负极与接地端连接;第一开关的第一端与电源端连接,第一开关的第二端与第二开关的第一端连接;第二开关的第二端与接地端连接;变压单元连接在第一电池包的负极与第一 开关的第二端之间;其中,第一电池包的额定电压与第二电池包的额定电压的偏差小于第一预设范围;第一电池包的容量与第二电池包的容量之间的比值和第二电池包的最大放电倍率与第一电池包的最大放电倍率之间的比值偏差小于第二预设范围。这样,本公开实施例提供的电池电路可实现:为对由第一电池包和第二电池包组成的双电池包的控制,提供硬件电路基础。
在本公开实施例中,在电池电路100处于放电状态的情况下,电池电路100中的电源端101用于连接负载的电源输入端,电池电路100中的接地端107用于连接负载的接地端。其中,负载可示例性的为电动车辆或混合动力车辆的电机。
或者,在电池电路100处于充电状态的情况下,电池电路100中的电源端101用于连接充电设备的电源输出端,电池电路100中的接地端107用于连接充电设备的接地端。其中,充电设备可示例性的为充电桩,或者为电动车辆或者混合车辆的制动系统。
在本公开的一个实施例中,如图4所示,变压单元104为可以为第二电感1041。当然,变压单元104还可以采取其他方式实现。
在本公开的一个实施例中,第二电感1041的电感值可在设置在2~1500uH的范围内。
在本公开实施例中,在变压单元104为第二电感1041的情况下,变压单元104的成本低且结构简单。
在本公开的一个实施例中,第一开关105和第二开关106可以为开关IC、MOSFET(英文全称:Metal Oxide Semiconductor Field Effect Transistor;中文全称:金属-氧化物半导体场效应晶体管)、IGBT(Insulated Gate Bipolar Transistor;绝缘栅双极型晶体管)或者SiC(碳化硅)开关等。
可以理解的是,第一开关105还包括控制端,以实现对第一开关105 的闭合和断开的控制。同理,第二开关106也还包括控制端,以实现对第二开关106的闭合和断开的控制。
在本公开实施例中,第一电池包102和第二电池包103的类型不同。具体的,第一电池包102为功率型电池包,第二电池包103为能量型电池包。或者,第一电池包102为能量型电池包,第二电池包103为功率型电池包。
在本公开实施例中,功率型电池包指定是功率密度高的电池包。其中,功率密度指定是:单位重量或体积的电池在充电或放电时进行能量转移的最大功率。且在本公开实施例中,功率型电池包的电压取值可设置在100~1000V的范围内。
能量型电池包为能量密度高的电池包。其中,能量密度指定是:单位重量或体积的电池所储存的能量。且在本公开实施例中,能量型电池包的电压取值可设置在100~1000V的范围内。
在本公开实施例中,对第一电池包102和第二电池包103的具体类型不做限定,可提高本公开实施例提供的电池电路100的兼容性。
在本公开实施例中,第一电池包102的额定电压U1与第二电池包103的额定电压U2的偏差小于第一预设范围。
在本公开实施例中,第一预设范围为第一电池包102的额定电压U1与第二电池包103的额定电压U3之间的偏差所被允许的范围。在第一电池包102的额定电压U1与第二电池包103的额定电压U2的偏差小于第一预设范围的情况下,说明第一电池包102的额定电压U1和第二电池包103的额定电压U2基本相同。
在本公开的一个实施例中,第一预设范围可示例性为0.2*U1,或者0.2*U2。在第一预设范围为0.2*U1的情况下,1.2*U1≥U2≥0.8*U1;在第一预设范围为0.2*U2的情况下,1.2*U2≥U1≥0.8*U2。
需要说明的是,本公开实施例对第一预设范围的具体取值不做限定。
在本公开实施例中,在第一电池包102的额定电压U1与第二电池包 103的额定电压U2的偏差小于第一预设范围的情况下,则可实现第一电池包102与第二电池包103之间的高效的能量传递。例如,可实现第一电池包102和第二电池包103之间进行高效的互相充电等。
需要说明的是,通常第一电池包102的额定电压U1与第二电池包103的额定电压U1的和等于负载所需的总电压Uout,即U1+U2=Uout。
在本公开的一个实施例中,第一电池包102的额定电压U1与第二电池包103的额定电压U2相同。这样,可实现第一电池包102与第二电池包103最高效的能量传递。
基于上述内容,在一个示例中,Uout=550V,在此基础上,可设置U1=U2=275V。
在本公开实施例中,第一电池包102的容量Q1与第二电池包103的容量Q2之间的比值,和第二电池包103的最大放电倍率X2与第一电池包102的最大放电倍率X1之间的比值偏差小于第二预设范围。
其中,最大放电倍率表示的是电池包最大放电电流与电池容量的比值。例如,对于一个电池容量为10Ah的电池包,其最大放电电流为50A,则最大放电倍率为50A/10Ah=5C。
在本公开实施例中,第二预设范围为第一电池包102的容量Q1与第二电池包103的容量Q2之间的比值,和第二电池包103的最大放电倍率X2与第一电池包102的最大放电倍率X1之间的比值之前的偏差所被允许的范围。在第一电池包102的容量Q1与第二电池包103的容量Q2之间的比值,和第二电池包103的最大放电倍率X2与第一电池包102的最大放电倍率X1之间的比值偏差小于第二预设范围的情况下,说明第一电池包102的容量Q1与第二电池包103的容量Q2之间的比值,和第二电池包103的最大放电倍率X2与第一电池包102的最大放电倍率X1之间的比值基本相同。
在本公开的一个实施例中,第二预设范围可示例性的为±0.5。
需要说明的是,本公开实施例对第二预设范围的具体取值不做限定。
在本公开实施例中,在第一电池包102的容量与第二电池包103的容 量之间的比值和第二电池包103的最大放电倍率与第一电池包101的最大放电倍率之间的比值偏差小于第二预设范围的情况下,则可实现两者对外的最大放电电流基本相同。基于此,例如可实现两者串联稳定的对外放电。
需要说明的是,通常第一电池包102的容量Q1与第二电池包103的容量Q2的和等于负载所需的总容量Qnom,即Q1+Q2=Qnom。
在本公开的一个实施例中,第一电池包102的容量Q1与第二电池包103的容量Q2之间的比值,和第二电池包103的最大放电倍率X2与第一电池包102的最大放电倍率X1之间的比值相同。这样,可实现两者对外最大放电电流完全相同。
基于上述内容,在一个示例中,Qnom=120Ah,在此基础上,可设置Q1=100Ah,Q2=20Ah,X1=1C,X2=5C。
本公开实施例提供的如图1所示的电池电路100,为控制由功率型电池包和能量型电池包组成的双电池包提供了硬件基础。具体的,基于如图1所示的电池电路,可根据如下内容对由功率型电池包和能量型电池包组成的双电池包进行控制。
为实现对第一开关105和第二开关106的控制,如图2所示,电池电路100还包括控制单元108。其中:
控制单元108的第一端与第一开关105的控制端连接,控制单元108的第二端与第二开关106的控制端连接。
在本公开的一个实施例中,控制单元108可示例性的为CPU或者MCU等。
以及,控制单元108用于在第一预设条件下,控制第一开关105和第二开关106按照第一预设控制规则断开或闭合,以使得第二电池包103的输出功率增大。
在本实施例中,第一预设条件可以为电池电路100处于放电状态。第一预设控制规则可以为:执行第一通断操作,其中第一通断操作为:在第一时间段内控制第一开关105断开,第二开关106闭合;在第二时间段内控制第一开关105闭合,第二开关106断开;重复执行第一通断操作,直 至第一电池包102被开路。
在本实施例中,第二时间段为与第一时间段相邻,且位于第一时间段后的时间段。第一时间段和第二时间段对应的时长可根据经验或者其他进行设置。
在本实施例中,在电池电路100处于放电状态下,在第一时间段内控制第一开关105断开,第二开关106闭合。此时,第二电池包103给变压单元104充电。在第二时间段内控制第一开关105闭合,第二开关106断开。此时,变压单元104释放存储的电能。即变压单元104输出端(连接第一开关105的一端)电压升高;重复该过程,变压单元104的输出端的电压将升高至与母线电压相同。此时,第一电池包102被开路。这样可实现仅由第二电池包103放电,且第二电池包103输出的功率高于第二电池包103本身所能输出的功率。即,第二电池包103的输出功率增大。
和/或,控制单元108还用于在第二预设条件下,控制第一开关105和第二开关106按照第二预设控制规则断开或闭合,以使得第一电池包102与第二电池包103的输入功率不同。
在本实施例中,第二预设条件可以为电池电路100处于充电状态。第二预设控制规则可以为:执行第二通断操作,其中第二通断操作为在第三时间段内控制第一开关105闭合,第二开关106断开;在第四时间段内控制第一开关105断开,第二开关106闭合;重复执行第二通断操作。
在本实施例中,第三时间段为与第四时间段相邻,且位于第三时间段后的时间段。第三时间段和第四时间段对应的时长可根据经验或者其他进行设置。
在本实施例中,在电池电路100处于充电状态下,在第三时间段内控制第一开关105闭合,第二开关106断开。此时,第一电池包102和/或充电设备给变压单元104充电。在第四时间段内控制第一开关105断开,第二开关106闭合。此时,变压单元104释放存储的电能,以和充电设备共同向第二电池包103充电。即变压单元104实现升压功能。由于第一电池包102仅由充电设备充电,而第二电池包103由变压单元104以及同一充 电设备共同充电,因此,重复该过程,便可实现第二电池包103的输入功率大于第一电池包的102输入功率。即第二电池包103与第一电池包102的输入功率不同。
可以理解的是,在第二预设控制规则为与重复上述第二通断操作相反的控制规则的情况下,即在第三时间段内控制第一开关105断开,第二开关106闭合;在第四时间段内控制第一开关105闭合,第二开关106断开;重复执行该操作。可实现第一电池包102的输入功率大于第二电池包103的输入功率。即第二电池包103与第一电池包102的输入功率不同。
和/或,控制单元108还用于在第三预设条件,控制第一开关105和第二开关106按照第三预设控制规则断开或闭合,以使得第一电池包102向第二电池包103充电或第二电池包103向第一电池包102充电。
在本实施例中,第三预设条件可以为在第二电池包103的充入电流小于第二电池包103的最大充入电流。对应的,第三预设控制规则为:执行第三通断操作,其中第三通断操作为在第五时间段内控制第一开关105闭合,第二开关106断开,在第六时间段内控制第一开关105断开,第二开关106闭合;重复第三通断操作。
在本实施例中,第五时间段为与第六时间段相邻,且位于第五时间段后的时间段。第五时间段和第六时间段对应的时长可根据经验或者其他进行设置。
在本实施例中,在第二电池包103的充入电流小于第二电池包103的最大充入电流的情况下,在第五时间段内控制第一开关105闭合,第二开关106断开。此时,第一电池包102给变压单元104充电。在第六时间段内控制第一开关105断开,第二开关106闭合。此时,变压单元104释放存储的电能至第二电池包103。即变压单元104实现升压功能。重复该过程,便可实现第一电池包102向第二电池包103充电。
可以理解的是,在第三预设条件为:在第一电池包102的充入电流小于第一电池包102的最大充入电流的情况下,对应的,第三预设控制规则为与重复上述第三通断操作相反的控制规则,即在第五时间段内控制第一 开关105断开,第二开关106闭合,在第六时间段内控制第一开关105闭合,第二开关106断开;重复该操作。基于此,可实现第二电池包103向第一电池包102充电。
和/或,控制单元108还用于在第四预设条件下,控制第一开关105和第二开关106断开,以使得第一电池包102和第二电池包103串联放电或充电。
在本实施例中,第四预设条件为电池电路100处于放电状态或充电状态下。在第四预设条件下,控制第一开关105和第二开关106断开。这可实现第一电池包102和第二电池包103共同放电或充电。
基于上述内容,本公开实施例提供了对基于如图1所示的电池电路的多种控制。
在本公开实施例中,提供了一种电池电路,包括:电源端、第一电池包、与第一电池包类型不同的第二电池包、变压单元、第一开关、第二开关以及接地端,其中:第一电池包的正极与电源端连接,第一电池包的负极与第二电池包的正极连接;第二电池包的负极与接地端连接;第一开关的第一端与电源端连接,第一开关的第二端与第二开关的第一端连接;第二开关的第二端与接地端连接;变压单元连接在第一电池包的负极与第一开关的第二端之间;其中,第一电池包的额定电压与第二电池包的额定电压的偏差小于第一预设范围;第一电池包的容量与第二电池包的容量之间的比值和第二电池包的最大放电倍率与第一电池包的最大放电倍率之间的比值偏差小于第二预设范围。这样,本公开实施例提供的电池电路可实现:为对由第一电池包和第二电池包组成的双电池包的控制,提供硬件电路基础。
在本公开的一个实施例中,在第一电池包102为功率型电池包,第二电池包103为能量型电池包的情况下,如图3所示,本公开实施例提供的电池电路100还包括滤波单元109,其中:
滤波单元109的第一端与第一电池包102的正极连接,滤波单元109的第二端与电源端101连接,滤波单元109的第三端与第一电池包102的负极连接。
在本公开实施例中,由于功率型电池包通常在电动车辆或混合动力车辆行驶过程中产生峰值功率(如牵引过程产生的放电峰值功率、制动过程产生的充电峰值功率)的情况下被使用,而在其他情况下则是无需被使用的。因此,在其他情况下则期望功率型电池包的输出电流为0。而在该情况下,通过设置滤波单元109可抑制第一电池包102的电流纹波,避免作为第一电池包102的功率型电池包的输出电流在0附近波动。这样,可避免第一电池包102高频的快速充放电,从而降低第一电池包102的寿命减少的问题发生。
在本公开的一个实施例中,如图4所示,滤波单元109包括第一电感1091和第一电容1092,其中:
第一电感1081的第一端与第一电池包102的正极连接,第一电感1091的第二端与电源端连接;
第一电容1092的第一端与第一电感1091的第一端连接,第一电容1092的第二端与第一电池包102的负极连接。
当然,还可以采用其他结构的滤波单元109,对此,本公开实施例不再赘述。
在本公开实施例中,第一电感1091为滤波电感,第一电感1091的取值可设置在2~1500uH的范围内。第一电容1092为滤波电容,第一电容1092的取值可设置在2~1500uF的范围内。
需要说明的是,在第一电池包102自带滤波功能的情况下,第一电感1091和第一电容1092可设置较小的值。例如,第一电感1091设置2uH,第一电容1092设置2uF。
对应的,在第一电池包102未自带滤波功能的情况下,第一电感1091和第一电容1092可设置较大的值。例如,第一电感1091设置1500uH,第一电容1092设置1500uF。
在本公开实施例中,提供了一种结构简单的滤波单元109,这样可降低电池电路100的硬件成本、设计难度以及占板面积。
在本公开的一个实施例中,如图3所示,本公开实施例提供的电池电路100还包括第一续流单元110和第二续流单元111,其中:
第一续流单元110的输入端与第一开关105的第二端连接,第一续流单元110的输出端与第一开关105的第一端连接;
第二续流单元111的输入端与第二开关106的第二端连接,第二续流单元111的输出端与第二开关106的第一端连接。
在本公开实施例中,在控制第二开关106闭合,第一开关105断开的初始时刻,由于第一开关105的续流时间以及动作时间的影响,通常无法实现控制第一开关105立即断开。而这将导致第一开关105和第二开关106之间短时间的短路,进而导致第一电池包102和第二电池包103之间因短路而烧毁。
在本公开实施例中,设置第二续流单元111以并联在第二开关106的两端,由第二续流单元111进行续流。这样可在控制第一开关105断开时延迟第二开关106闭合的时间,从而避免第一电池包102和第二电池包103短路而烧毁的问题发生。
同理,在本公开实施例中,设置第一续流单元110以并联在第一开关105的两端,由第一续流单元110进行续流。这样可在控制第二开关106断开时延迟第一开关105闭合的时间,从而避免第一电池包102和第二电池包103短路而烧毁的问题发生。
在本公开的一个实施例中,如图4所示,第一续流单元109为第一二极管1101,第二续流单元111为第二二极管1111,其中:
第一二极管1101的阳极与第一开关105的第二端连接,第一二极管1101的阴极与第一开关105的第一端连接;
第二二极管1111的阳极与第二开关106的第二端连接;第二二极管1111的阴极与第二开关106的第一端连接。
在本公开实施例中,提供了一种结构简单的第一续流单元110和第二 续流单元111,这样可降低电池电路100的硬件成本、设计难度以及占板面积。
在本公开的一个实施例中,如图3所示,本公开实施例提供的电池电路100还包电压维稳单元112,其中:
电压维稳单元112连接在电源端101与接地端107之间。
在本公开实施例中,电压维稳单元111一方面用于滤除母线,即电池电路100的电源端101所在线路上的电压波动,这可稳定提供给负载的电压。另一方面用于降低第一电池包102和变压单元104所共同产生的电压波动给第二电池包103带来的负面影响。
在本公开的一个实施例中,如图4所示,电压维稳单元112可示例性的为第二电容1121。当然,电压维稳单元112还可以采用其他方式实现。
在本公开的一个实施例中,第二电容1121为支撑电容,第二电容1121的取值可设置在2~1500uF的范围内。
在本公开实施例中,提供了一种结构简单的电压维稳单元112,这样可降低电池电路100的硬件成本、设计难度以及占板面积。
本公开实施例还提供了一种车辆,该车辆包括如上述任一实施例提供的电池电路100。
在本公开实施例中,车辆为电动车辆,或者混合动力车辆。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。本公开的范围由所附权利要求来限定。

Claims (12)

  1. 一种电池电路(100),其特征在于,包括:电源端(101)、第一电池包(102)、与所述第一电池包(102)类型不同的第二电池包(103)、变压单元(104)、第一开关(105)、第二开关(106)以及接地端(107),其中:
    所述第一电池包(102)的正极与所述电源端(101)连接,所述第一电池包(102)的负极与第二电池包(103)的正极连接;
    所述第二电池包(103)的负极与所述接地端(107)连接;
    所述第一开关(105)的第一端与所述电源端(101)连接,所述第一开关(105)的第二端与所述第二开关(106)的第一端连接;
    所述第二开关(106)的第二端与所述接地端(107)连接;
    所述变压单元(104)连接在所述第一电池包(102)的负极与所述第一开关(105)的第二端之间;
    其中,所述第一电池包(102)的额定电压与所述第二电池包(103)的额定电压的偏差小于第一预设范围;
    和/或,所述第一电池包(102)的容量与所述第二电池包(103)的容量之间的比值和所述第二电池包(103)的最大放电倍率与所述第一电池包(102)的最大放电倍率之间的比值偏差小于第二预设范围。
  2. 根据权利要求1所述的电池电路(100),其特征在于,所述第一电池包(102)的额定电压与所述第二电池包(103)的额定电压相同;
    和/或,所述第一电池包(102)的容量与所述第二电池包(103)的容量之间的比值和所述第二电池包(103)的最大放电倍率与所述第一电池包(102)的最大放电倍率之间的比值相同。
  3. 根据权利要求1或2所述电池电路(100),其特征在于,所述电池电路(100)还包括:
    控制单元(108),所述控制单元(108)的第一端与所述第一开关(105) 的控制端连接,所述控制单元(108)的第二端与所述第二开关(106)的控制端连接;
    其中,所述控制单元(108)用于在第一预设条件下,控制所述第一开关(105)和所述第二开关(106)按照第一预设控制规则断开或闭合,以使得所述第二电池包(103)的输出功率增大;
    和/或,在第二预设条件下,控制所述第一开关(105)和所述第二开关(106)按照第二预设控制规则断开或闭合,以使得所述第一电池包(102)与所述第二电池包(103)的输入功率不同;
    和/或,在第三预设条件下,控制所述第一开关(105)和所述第二开关(106)按照第三预设控制规则断开或闭合,以使得所述第一电池包(102)向所述第二电池包(103)充电,或所述第二电池包(103)向所述第一电池包(102)充电;
    和/或,在第四预设条件下,控制所述第一开关(105)和所述第二开关(106)断开,以使得所述第一电池包(102)和所述第二电池包(103)串联放电或充电。
  4. 根据权利要求1至3中任一项所述的电池电路(100),其特征在于,所述第一电池包(102)为功率型电池包,所述第二电池包(103)为能量型电池包;
    或者,所述第一电池包(102)为所述能量型电池包,所述第二电池包(103)为功率型电池包。
  5. 根据权利要求4所述的电池电路(100),其特征在于,所述第一电池包(102)为功率型电池包,所述第二电池包(103)为能量型电池包,所述电池电路(100)还包括:滤波单元(109),其中:
    所述滤波单元(109)的第一端与所述第一电池包(102)的正极连接,所述滤波单元(109)的第二端与所述电源端(101)连接,所述滤波单元(109)的第三端与所述第一电池包(102)的负极连接。
  6. 根据权利要求5所述的电池电路(100),其特征在于,所述滤波单元(109)包括第一电感(1091)和第一电容(1092),其中:
    所述第一电感(1091)的第一端与所述第一电池包(102)的正极连接,所述第一电感(1091)的第二端与所述电源端(101)连接;
    所述第一电容(1092)的第一端与所述第一电感(1091)的第一端连接,所述第一电容(1092)的第二端与所述第一电池包(102)的负极连接。
  7. 根据权利要求1至6中任一项所述的电池电路(100),其特征在于,所述电池电路(100)还包括第一续流单元(110)和第二续流单元(111),其中:
    所述第一续流单元(110)的输入端与所述第一开关(105)的第二端连接,所述第一续流单元(110)的输出端与所述第一开关(105)的第一端连接;
    所述第二续流单元(111)的输入端与所述第二开关(106)的第二端连接,所述第二续流单元(111)的输出端与所述第二开关(106)的第一端连接。
  8. 根据权利要求7所述的电池电路(100),其特征在于,所述第一续流单元(110)为第一二极管(1101),所述第二续流单元(111)为第二二极管(1111),其中:
    所述第一二极管(1101)的阳极与所述第一开关(105)的第二端连接,所述第一二极管(1101)的阴极与所述第一开关(105)的第一端连接;
    所述第二二极管(1111)的阳极与所述第二开关(106)的第二端连接;所述第二二极管(1111)的阴极与所述第二开关(106)的第一端连接。
  9. 根据权利要求1至8中任一项所述的电池电路(100),其特征在于,所述电池电路(100)还包括电压维稳单元(112),其中:
    所述电压维稳单元(112)连接在所述电源端(101)与所述接地端(107)之间。
  10. 根据权利要求9所述的电池电路(100),其特征在于,所述电压维稳单元(112)为第二电容(1121)。
  11. 根据权利要求1至10中任一项所述的电池电路(100),其特征在于,所述变压单元(104)为第二电感(1041)。
  12. 一种车辆,其特征在于,所述车辆包括如权利要求1-11任一项所述的电池电路(100)。
PCT/CN2023/079719 2022-05-31 2023-03-06 电池电路以及车辆 WO2023231485A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247031428A KR20240155898A (ko) 2022-05-31 2023-03-06 배터리 회로 및 차량

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210614132.8 2022-05-31
CN202210614132.8A CN117183813A (zh) 2022-05-31 2022-05-31 电池电路以及车辆

Publications (1)

Publication Number Publication Date
WO2023231485A1 true WO2023231485A1 (zh) 2023-12-07

Family

ID=89002254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079719 WO2023231485A1 (zh) 2022-05-31 2023-03-06 电池电路以及车辆

Country Status (3)

Country Link
KR (1) KR20240155898A (zh)
CN (1) CN117183813A (zh)
WO (1) WO2023231485A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030029654A1 (en) * 2001-08-10 2003-02-13 Honda Giken Kogyo Kabushiki Kaisha Power supply apparatus and electric vehicle using the same
JP2010057291A (ja) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd 車両用の電源装置
US20130127398A1 (en) * 2010-07-30 2013-05-23 Byd Company Limited Circuits and methods for heating batteries in series using resonance components in series
US20130304342A1 (en) * 2012-05-08 2013-11-14 General Electric Company Systems and methods for energy transfer control
CN111422100A (zh) * 2019-11-29 2020-07-17 蜂巢能源科技有限公司 电池包的加热电路、电源系统和电动车辆
CN112677821A (zh) * 2020-12-30 2021-04-20 珠海冠宇动力电池有限公司 电池系统及电动车辆
CN113696785A (zh) * 2021-09-06 2021-11-26 鲨港科技(上海)有限公司 一种串联电源组的控制电路、充放电的方法及车辆
CN113824168A (zh) * 2020-06-19 2021-12-21 马自达汽车株式会社 车辆用驱动系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029709B1 (fr) * 2014-12-05 2018-01-19 Valeo Equipements Electriques Moteur Dispositif d'alimentation et convertisseur de tension continue ameliore
WO2018031719A1 (en) * 2016-08-10 2018-02-15 Briggs & Stratton Corporation User-scalable power unit including removable battery packs
CN209823441U (zh) * 2018-12-21 2019-12-20 蔚来汽车有限公司 动力电池的电压转换控制装置和电动汽车
GB2584829B (en) * 2019-06-04 2023-01-11 Jaguar Land Rover Ltd Vehicle traction battery circuit and control system
CN112848969A (zh) * 2019-11-27 2021-05-28 光阳工业股份有限公司 电动车辆的电池并联控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030029654A1 (en) * 2001-08-10 2003-02-13 Honda Giken Kogyo Kabushiki Kaisha Power supply apparatus and electric vehicle using the same
JP2010057291A (ja) * 2008-08-28 2010-03-11 Sanyo Electric Co Ltd 車両用の電源装置
US20130127398A1 (en) * 2010-07-30 2013-05-23 Byd Company Limited Circuits and methods for heating batteries in series using resonance components in series
US20130304342A1 (en) * 2012-05-08 2013-11-14 General Electric Company Systems and methods for energy transfer control
CN111422100A (zh) * 2019-11-29 2020-07-17 蜂巢能源科技有限公司 电池包的加热电路、电源系统和电动车辆
CN113824168A (zh) * 2020-06-19 2021-12-21 马自达汽车株式会社 车辆用驱动系统
CN112677821A (zh) * 2020-12-30 2021-04-20 珠海冠宇动力电池有限公司 电池系统及电动车辆
CN113696785A (zh) * 2021-09-06 2021-11-26 鲨港科技(上海)有限公司 一种串联电源组的控制电路、充放电的方法及车辆

Also Published As

Publication number Publication date
CN117183813A (zh) 2023-12-08
KR20240155898A (ko) 2024-10-29

Similar Documents

Publication Publication Date Title
US8823317B2 (en) Circuits and methods for heating batteries in series using resonance components in series
US20240258591A1 (en) Battery system and power supply system
US9209644B2 (en) Circuits and methods for heating batteries in series using resonance components in series
EP3534484B1 (en) Charge and discharge device
JP7576104B2 (ja) エネルギー変換装置及びその安全制御方法
WO2023231484A1 (zh) 电池电路以及车辆
CN110027490A (zh) 一种汽车双电压供电系统及其控制方法
WO2023231485A1 (zh) 电池电路以及车辆
CN106169885A (zh) 一种级联式六开关多电平逆变器
CN111049383A (zh) 一种直挂高压电源的升压电路及软启动方法
WO2022193605A1 (zh) 储能装置的放电系统及新能源交通车辆的地面放电系统
CN114844168A (zh) 串联电池组均衡系统及主动均衡控制方法
WO2023231483A1 (zh) 电池电路以及车辆
WO2023231486A1 (zh) 电池电路以及车辆
CN117183812B (zh) 电池电路以及车辆
Myneni Analysis of Different Charging methods of Batteries for EV Applications with Charge Equalization
CN215042226U (zh) 一种动力电池充电平衡管理系统
CN214227826U (zh) 一种基于预充电换相电容的阻感型直流故障限流器
CN115001121A (zh) 一种用于高效储能系统的限流电路、控制方法及系统
CN211166517U (zh) 一种超级电容复合系统的充放电电路
CN117183811A (zh) 电池电路以及车辆
CN202906813U (zh) 一种大电流无刷直流电机的主电路
CN220562583U (zh) 电动车的多组电池并联控制系统
CN216819431U (zh) 一种脉冲充放电系统端口电路及脉冲充放电系统
CN218463506U (zh) 电池电路及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247031428

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247031428

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2401006829

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024021490

Country of ref document: BR