WO2023229409A1 - 건설기계용 붐 에너지 회수 유압시스템 - Google Patents
건설기계용 붐 에너지 회수 유압시스템 Download PDFInfo
- Publication number
- WO2023229409A1 WO2023229409A1 PCT/KR2023/007217 KR2023007217W WO2023229409A1 WO 2023229409 A1 WO2023229409 A1 WO 2023229409A1 KR 2023007217 W KR2023007217 W KR 2023007217W WO 2023229409 A1 WO2023229409 A1 WO 2023229409A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- line
- boom
- oil
- valve
- accumulator
- Prior art date
Links
- 238000010276 construction Methods 0.000 title claims abstract description 110
- 238000005381 potential energy Methods 0.000 title abstract description 6
- 238000011084 recovery Methods 0.000 claims description 50
- 238000009825 accumulation Methods 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 16
- 239000000446 fuel Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000009530 blood pressure measurement Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B1/00—Installations or systems with accumulators; Supply reservoir or sump assemblies
- F15B1/02—Installations or systems with accumulators
- F15B1/027—Installations or systems with accumulators having accumulator charging devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/024—Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/028—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
- F15B11/032—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of fluid-pressure converters
Definitions
- the present invention relates to a boom energy recovery hydraulic system for construction machinery, and more specifically, to improve the boom-up speed of the boom cylinder by recovering the boom energy generated when the boom of construction machinery is lowered and applying it directly to the boom-up.
- This relates to a boom energy recovery hydraulic system for construction machinery that can use boom energy for various other operations of construction machinery.
- Excavators and excavators are construction machines generally used for digging or cutting the ground, and are widely used at construction sites and various industrial sites.
- This excavator includes a boom whose end can be moved along a curved trajectory, and various tools including a bucket can be mounted on the end of the boom.
- a hydraulic cylinder is connected to the boom, and the hydraulic cylinder drives the boom while lifting and lowering. Hydraulic cylinders are raised and lowered through oil flow in the hydraulic system.
- An excavator includes power means such as an engine. The engine provides the fluidity of oil flow in the hydraulic system and can simultaneously provide power for the movement of the excavator.
- the recovered boom energy can be used to assist the driving energy of the internal combustion engine using a mechanical energy conversion unit. Additionally, the recovered boom energy is converted into electrical energy and used.
- Patent Document 1 Republic of Korea Patent No. 10-2309862
- the present invention in construction machinery, recovers the energy generated when the boom of the construction machinery is lowered and then uses the recovered boom energy directly in the boom cylinder to speed up the boom-up of the boom cylinder.
- work efficiency can be improved, and boom energy can be used for various other movements of construction equipment, saving fuel and improving performance. It can be easily installed on existing construction equipment.
- the purpose is to provide a boom energy recovery hydraulic system for construction equipment that can be turned on or off.
- a boom energy recovery hydraulic system for construction equipment includes a boom cylinder in which a rod moves up and down by the flow of oil, includes a large chamber and a small chamber formed on the upper part of the large chamber, and a boom cylinder. It includes a pressure accumulator assembly that is connected to and includes an accumulator that accumulates oil, and a boom that drives the boom up/boom down by a boom cylinder by the flow of oil, and controls the flow of oil to save energy when the boom is down.
- a boom energy recovery hydraulic system for construction equipment that recovers and reuses energy, comprising: a main control valve that booms up/down the boom of the boom cylinder; A valve assembly including a plurality of lines through which oil flows, and at least one valve installed in a selected line among the plurality of lines to control the flow rate of oil; An engine connected to the main pump by a shaft, providing oil flow to the boom cylinder, driving the construction machine, driving force for the bucket and arm, and swing driving force for the main body; and a control unit that controls the flow of oil based on the operation signal. It is characterized in that the oil flowing out of the large chamber is recovered and immediately reused by the boom down of the boom cylinder.
- the main control valve is connected to a spool that operates to direct the flow of oil toward the large chamber or small chamber of the boom cylinder, and is connected to the spool to flow oil to the large chamber by moving the spool to control the boom.
- a boom-up valve line that raises the boom a boom-down valve line that is connected to the spool and causes oil to flow into the small chamber by the movement of the spool to boom-down the boom, and a spool disposed on the boom-up valve line that allows oil to flow to the large chamber. It may include a boom-up valve that controls a boom-down valve, and a boom-down valve that is disposed on the boom-down valve line and controls the spool to allow oil to flow into the small chamber.
- control unit may be connected to a joystick that controls the boom up or boom down operation.
- control unit includes a first sensor connected to the joystick, which detects a pressure change during a boom-up operation of the joystick and generates an operation signal, and is connected to the joystick, and operates by detecting a pressure change during a boom-down operation of the joystick. It is connected to a second sensor that generates a signal to receive measured values, and can control whether to open or close the boom-up valve or boom-down valve based on the manipulation signal generated by the first sensor and the second sensor.
- control unit is connected to the third and fourth sensors that measure the hydraulic pressure of the boom cylinder and the fifth sensor that measures the pressure of the accumulator to receive measured values, and the third and fourth sensors And based on the measurement value received from the fifth sensor, the oil flow rate can be controlled by opening and closing one or more valves installed on a selected line among the plurality of lines of the valve assembly.
- the valve assembly includes a first line on one side connected to the large chamber of the boom cylinder, a second line connecting the first line and the accumulator, and a third line connecting the first line and the accumulator. line, a fifth line connected on one side to the small chamber of the boom cylinder, a sixth line branched from the first line and connected to the fifth line, a seventh line branched from the first line, and a fifth line and an eighth line connected on one side to the sixth line, an AC valve disposed in the second line to flow oil only toward the accumulator and to control the flow rate of the oil, and an AC valve disposed in the third line to control the flow rate of the oil.
- the AC valve disposed in the second line is opened to allow oil discharged from the large chamber to flow into the accumulator through the first and second lines to accumulate pressure, and is disposed in the third line.
- the CA valve By opening the CA valve, the oil accumulated in the accumulator flows into the large chamber of the boom cylinder through the third line and the first line, and the energy recovered by boom down can be used directly for boom up.
- the valve assembly includes a first line on one side connected to the large chamber of the boom cylinder, a second line on one side connected to the first line and the accumulator, and a third line on one side connected to the accumulator. And, a fifth line connected on one side to the small chamber of the boom cylinder, a sixth line branched from the first line and connected to the fifth line, a seventh line branched from the first line, a fifth line, and It includes an 8th line connected on one side to the 6th line, and a 9th line connecting the 3rd line and the main pump, and is disposed in the 2nd line to flow oil only toward the accumulator and to control the flow rate of the oil.
- AC valve AC valve
- CA valve disposed in the third line to flow oil only toward the ninth line and control the oil flow rate
- an AB valve disposed in the sixth line to control the oil flow rate
- an accumulator and oil It may include a release valve disposed on the flow path between the tanks and operating in an on-off manner.
- the AC valve disposed in the second line is opened to allow oil discharged from the large chamber to flow into the accumulator through the first and second lines to accumulate pressure, and is disposed in the third line.
- the CA valve By opening the CA valve, the oil accumulated in the accumulator flows into the main pump through the 3rd and 9th lines, and the energy recovered by boom down is used to drive the engine through the main pump to drive the construction equipment and boom. It can be used directly for the driving force of cylinders, buckets, and arms, as well as the swing driving force of the main body.
- the valve assembly includes a first line on one side connected to the large chamber of the boom cylinder, a second line connecting the first line and the accumulator, and a valve assembly connecting the first line and the accumulator.
- a second CA valve disposed in the ninth line to flow oil only through the pump through the ninth line and control the oil flow rate, an AB valve disposed in the sixth line to control the oil flow rate, and an accumulator; It may include a release valve disposed on the flow path between the oil tanks and operating in an on-off manner.
- the AC valve disposed in the second line is opened to allow oil discharged from the large chamber to flow into the accumulator through the first and second lines to accumulate pressure, and is disposed in the ninth line.
- the second CA valve disposed in the accumulator is closed, and the first CA valve disposed in the first line adjacent to the connection portion where the first line and the third line are connected is opened, and the oil accumulated in the accumulator is supplied to the third line and the first line.
- the AC valve disposed in the second line is opened to allow the oil discharged from the large chamber to flow into the accumulator through the first line and the second line to accumulate pressure, and the first line and The first CA valve disposed in the first line adjacent to the connection portion where the third line is connected is closed, and the second CA valve disposed in the ninth line is opened to allow the oil accumulated in the accumulator to be transferred to the third line and the third line.
- the boom energy recovery hydraulic system for construction equipment improves the boom-up speed of the boom cylinder by recovering the energy generated when the boom is lowered and then directly using the recovered boom energy in the boom cylinder.
- the boom-up operation can be carried out quickly to improve work efficiency, and the boom energy can be used for various other operations of construction equipment to save fuel and improve performance.
- Mechanical energy conversion to convert the boom energy The entire configuration can be made compact as the unit and the electric energy conversion unit can be removed, and it can be easily installed or removed from existing construction machinery.
- FIG. 1 is a conceptual diagram showing the overall appearance of a construction machine according to a first embodiment of the present invention.
- Figure 2 is a schematic diagram showing a boom energy recovery hydraulic system for construction equipment according to a first embodiment of the present invention.
- Figure 3 is a plan view showing a pressure accumulation assembly according to the first embodiment of the present invention.
- Figure 4 is a perspective view showing a pressure accumulation assembly according to the first embodiment of the present invention.
- Figure 5 is a plan view showing a cutaway bracket of the pressure accumulation assembly according to the first embodiment of the present invention.
- Figure 6 is a schematic diagram showing the oil flow when the oil recovered from the large chamber is accumulated when the boom is lowered in the boom energy recovery hydraulic system for construction equipment according to the first embodiment of the present invention and then supplied to the large chamber to boom up. am.
- Figure 7 is a schematic diagram showing a boom energy recovery hydraulic system for construction equipment according to a second embodiment of the present invention.
- Figure 8 shows that in the boom energy recovery hydraulic system for construction equipment according to the second embodiment of the present invention, when the boom is down, the oil recovered from the large chamber is supplied to the main pump to drive the engine to drive the construction equipment, boom cylinder,
- This is a schematic diagram showing the oil flow when used as the driving force of the bucket and arm, and the swing driving force of the main body.
- Figure 9 is a schematic diagram showing a boom energy recovery hydraulic system for construction equipment according to a third embodiment of the present invention.
- Figure 10 is a schematic diagram showing the oil flow when the oil recovered from the large chamber is accumulated when the boom is down in the boom energy recovery hydraulic system for construction equipment according to the third embodiment of the present invention and then supplied to the large chamber to boom up. am.
- Figure 11 shows that in the boom energy recovery hydraulic system for construction equipment according to the third embodiment of the present invention, when the boom is down, the oil recovered from the large chamber is supplied to the main pump to drive the engine to drive the construction equipment, boom cylinder,
- This is a schematic diagram showing the oil flow when used as the driving force of the bucket and arm, and the swing driving force of the main body.
- CA CA valve
- CA1 1st CA valve
- the present invention is a pressure accumulation assembly that includes a boom cylinder in which a rod moves up and down by the flow of oil, includes a large chamber and a small chamber formed on the upper part of the large chamber, and an accumulator connected to the boom cylinder to accumulate oil. , and a boom that drives the boom up/boom down by a boom cylinder by the flow of oil, and a boom energy recovery hydraulic system for construction equipment that recovers and reuses energy when the boom is down by controlling the flow of oil.
- a valve assembly including a plurality of lines through which oil flows, and at least one valve installed in a selected line among the plurality of lines to control the flow rate of oil;
- An engine connected to the main pump by a shaft, providing oil flow to the boom cylinder, driving the construction machine, driving force for the bucket and arm, and swing driving force for the main body; and a control unit that controls the flow of oil based on the operation signal. It provides a boom energy recovery hydraulic system for construction machinery that can recover and immediately reuse the oil leaking out of the large chamber by lowering the boom of the boom cylinder.
- FIG. 1 is a conceptual diagram showing the overall appearance of a construction machine according to a first embodiment of the present invention.
- Figure 2 is a schematic diagram showing a boom energy recovery hydraulic system for construction equipment according to the first embodiment of the present invention.
- Figure 3 is a plan view showing a pressure accumulation assembly according to the first embodiment of the present invention.
- Figure 4 is a perspective view showing a pressure accumulation assembly according to the first embodiment of the present invention.
- Figure 5 is a plan view showing a cutaway bracket of the pressure accumulation assembly according to the first embodiment of the present invention.
- Figure 6 is a schematic diagram showing the oil flow when the oil recovered from the large chamber is accumulated when the boom is lowered in the boom energy recovery hydraulic system for construction equipment according to the first embodiment of the present invention and then supplied to the large chamber to boom up. am.
- the boom energy recovery hydraulic system for construction machinery according to the first embodiment of the present invention will be described in detail.
- the boom energy recovery hydraulic system for construction machinery according to the first embodiment of the present invention is a structure that can be installed and dismounted on construction machinery, and can be installed on construction machinery to recover boom energy and reuse it.
- the boom energy recovery hydraulic system for construction equipment includes a main control valve 160, a valve assembly 230, an engine 120, and a control unit 170. It can be configured and installed by connecting to the main body 110, boom 130, and cylinder 140 of the construction machine 100.
- a boom 130 and a boom cylinder 140 may be connected to the main body 110.
- the boom cylinder 140 can move up and down by the flow of oil, and the boom 130 can rotate by the up and down operation of the boom cylinder 140.
- An engine 120 may be disposed inside the main body 110.
- the engine 120 may provide a flow of oil to the boom cylinder 140.
- the engine 120 may drive the construction machine 100 by providing driving force to a driving unit (not shown) disposed on the lower side of the main body 110.
- the engine 120 may provide a turning driving force for the main body 110, which is rotatably installed on the bucket (not shown), the arm (not shown), and the driving unit.
- the operation of the boom cylinder 140 will be examined in more detail as follows.
- the construction machine 100 may have a cabinet 150 in the main body 110 on which a worker can ride.
- a joystick 151 that can control the boom-up or boom-down operation of the boom 130 may be placed in the cabinet 150.
- the boom cylinder 140 moves up and down by the flow of oil and may include a rod 141 connected to the boom 130.
- the boom cylinder 140 may include a large chamber 142 and a small chamber 143 formed on the large chamber 142.
- the large chamber 142 and the small chamber 143 may be formed in a size of 2:1.
- the rod 141 is disposed between the small chamber 143 and the large chamber 142 of the boom cylinder 140, and rises when oil flows into the large chamber 142, and when oil flows into the small chamber 143, the rod 141 rises. You can descend. When the rod 141 rises, the boom 130 can boom up, and when the rod 141 falls, the boom 130 can boom down.
- the pressure accumulation assembly 200 is connected to the boom cylinder 140 and discharges the accumulated pressure to the boom cylinder 140, and the oil of the boom cylinder 140 can flow in and accumulate pressure.
- the pressure accumulator assembly 200 includes a bracket 210, an accumulator 220, a valve assembly 230, and a main pipe 240.
- the bracket 210 is detachably fastened to the main body 110 of the construction machine 100, and the accumulator 220, valve assembly 230, and main pipe 240 are disposed on the bracket 210.
- the bracket 210 is a part installed on the construction machine 100, and consists of the accumulator 220, the valve assembly 230, and the main pipe 240.
- the bracket 210 may be formed in a thin plate shape or a plate shape.
- the bracket 210 may be placed outside the construction machine 100.
- the bracket 210 may be provided with a fastening part (not shown) so that it can be fastened to the construction machine 100.
- the fastening part (not shown) may be provided, for example, with a screw hole into which a bolt can be inserted.
- the bracket 210 has a main pipe 240 and a valve assembly 230 disposed on the front side facing the boom 130, a hollow portion 212 is formed on the rear side, and an axis is formed between the front side and the rear side.
- a press 220 may be disposed.
- a groove 213 may be formed on the front side of the bracket 210.
- the groove portion 213 may be formed by being depressed from the front end of the bracket 210 to the rear side.
- the shape of the groove 213 is shaped to correspond to the shape of the outer surface of the cabinet 150 of the construction machine 100, thereby minimizing spatial interference between the cabinet 150 and the bracket 210.
- the main pipe 240 and the valve assembly 230 may be disposed on the front side of the bracket 210 in a portion where the groove portion 213 is not formed. That is, a groove 213 may be formed on one side of the front side of the bracket 210, and the main pipe 240 and the valve assembly 230 may be disposed on the other side.
- bracket 210 Due to this structure of the bracket 210, the portion of the bracket 210 where the main pipe 240 and the valve assembly 230 are placed can be placed closer to the boom 130, and thus the boom cylinder 140 ) can be minimized, so the flow resistance of oil flow can be minimized.
- a hollow portion 212 may be formed on the rear side of the bracket 210.
- the engine 120 may be disposed on the rear side of the pressure accumulation assembly 200.
- the hollow portion 212 may reduce the weight of the bracket 210.
- the hollow portion 212 may be formed not only on the rear side of the bracket 210, but also on the central or front side of the bracket 210.
- the accumulator 220 may be arranged to be spaced apart from the rear end (rear end) of the bracket 210. Through this, even when the accumulator assembly 200 is installed on the construction machine 100, it is convenient to open the engine room for maintenance of the engine 120, and it can be easy for workers to separate and install the accumulator 220. . In addition, it is possible to prevent heat and vibration generated from the engine 120 from being directly transmitted to the accumulator 220.
- a mount 211 may be disposed between the front and rear sides of the bracket 210.
- the mount 211 is configured to mount the accumulator 220.
- the accumulator 220 can be arranged at a predetermined distance from the upper surface of the bracket 210 by the mount 211. Accordingly, the accumulator 220 can be easily separated and installed, and heat and vibration generated in the engine 120 can be prevented from being directly transmitted to the accumulator 220.
- the bracket 210 may be detachably installed on the construction machine 100.
- the bracket 210 can be installed by modifying the exterior or interior of the existing construction machine 100.
- the specific size or detailed shape of the bracket 210 may be partially modified depending on the construction machine 100 to be installed. Due to this configuration of the bracket 210, the energy recovery device according to the present invention can be easily and conveniently installed on various existing construction machines 100.
- Oil may be accumulated in the accumulator 220, and when necessary, oil previously accumulated in the accumulator 220 may be discharged from the accumulator 220.
- the main pipe 240 is connected to the boom cylinder 140.
- the valve assembly 230 is connected to the main pipe 240.
- the main control valve 160 is connected to the boom cylinder 140 and can selectively control the flow of oil provided to the boom cylinder 140.
- the main control valve 160 may be placed on the construction machine 100.
- the main control valve 160 may be connected to the large chamber 142 through the large chamber line 144, and the main control valve 160 may be connected to the small chamber 143 through the small chamber line 145.
- a spool 161 may be disposed on the main control valve 160.
- the flow of oil may be directed toward the small chamber 143 or toward the large chamber 142 by the spool 161. That is, the rod 141 of the boom cylinder 140 can rise or fall by the operation of the spool 161 disposed on the main control valve 160.
- the spool 161 can be controlled by the boom up valve 163 and the boom down valve 164.
- An auxiliary pump 123 may be connected to the shaft 121 of the engine 120.
- the auxiliary pump 123 and the spool 161 are connected to the boom-up valve line 165, and the boom-up valve 163 may be disposed on the boom-up valve line 165.
- the auxiliary pump 123 and the spool 161 are connected to the boom down valve line 166, and the boom down valve 164 may be disposed on the boom down valve line 166.
- valve assembly 230 The opening and closing of the valve assembly 230 can be controlled by the pilot pipe 250, respectively.
- the valve assembly 230 includes a first line (L1), a second line (L2), a third line (L3), an AC valve (AC), and a CA valve (CA).
- the first line (L1) is a line connected to the large chamber 142 of the boom cylinder 140.
- the first line L1 may be connected to the large chamber line 144.
- the second line (L2) and the third line (L3) are lines connecting the first line (L1) and the accumulator 220.
- An AC valve (AC) is disposed in the second line (L2).
- the AC valve (AC) is a valve provided to control the oil flow. It controls the flow of oil only from the second line (L2) toward the accumulator 220 and charges oil to the accumulator 220. It could be a valve.
- a CA valve (CA) is disposed in the third line (L3).
- the CA valve (CA) is a valve provided to control the oil flow, and is a release valve that releases the oil in the accumulator 220 so that the oil flows only from the third line (L3) toward the first line (L1). It can be.
- the valve assembly 230 may include a fifth line (L5) and a sixth line (L6).
- the fifth line (L5) is a line connected to the small chamber 143 of the boom cylinder 140.
- One side of the fifth line L5 may be connected to the small chamber 143 of the boom cylinder 140.
- the fifth line L5 may be connected to the small chamber line 145.
- the sixth line (L6) is a line that branches off from the first line (L1) and is connected to the fifth line (L5).
- An AB valve (AB) may be disposed in the sixth line (L6) to enable control of the flow rate of oil in the sixth line (L6).
- the AB valve (AB) is a regeneration valve that introduces a portion of the oil flowing in the first line (L1) into the small chamber 143 of the boom cylinder 140 through the sixth line (L6) and the fifth line (L5). It can be.
- the valve assembly 230 may include a seventh line (L7).
- the seventh line (L7) is a line that branches off from the first line (L1) and is connected to the second oil tank (T2), which will be described later.
- An AR valve (AR, not shown) may be further disposed in the seventh line L7 to control the flow rate of oil in the seventh line L7.
- the AR valve (AR) is a return valve through which a portion of the oil flowing into the accumulator 220 flows into the accumulator 220 when the accumulator 220 is full of oil. It can be.
- the valve assembly 230 may further include an eighth line (L8) whose one side is connected to the fifth line (L5) and the sixth line (L6).
- the eighth line (L8) may be connected to the third oil tank (T3), which will be described later. Through the eighth line (L8), oil that has passed through the AB valve (AB) may flow into the third oil tank (T3).
- the valve assembly 230 may include a release valve (RE).
- the release valve (RE) is disposed on the flow path between the accumulator 220 and the first oil tank (T1), which will be described later.
- the release valve (RE) is disposed on the flow path between the accumulator 220 and the first oil tank (T1) and operates in an on-off manner.
- CA CA
- AC valve AC
- AB valve AB
- AR AR
- RE release valve
- the main pipe 240 is a pipe connected to the boom cylinder 140.
- One main pipe 240 is provided, and the first line (L1) and the fifth line (L5) can be formed simultaneously in the main pipe (240).
- two main pipes 240 may be provided, and a first line (L1) and a fifth line (L5) may be formed separately in each.
- a joint block 241 may be placed at the distal end of the main pipe 240.
- the large chamber 142 and the small chamber 143 of the boom cylinder 140 may be connected to the joint block 241.
- the engine 120 is provided with a shaft 121, and a main pump 122 may be connected to the shaft 121.
- the main pump 122 and the spool 161 are connected to the main valve line 162, and oil can flow to the spool 161 and the main control valve 160 through the main valve line 162.
- the oil tank (T) may be formed of at least one oil tank (T) to allow oil to flow in and be stored therein, or to allow the stored oil to flow out.
- the oil tank (T) is a first oil tank (T1) connected to the release valve (RE) by piping, a second oil tank (T2) connected to the 7th line, and a third oil tank (T3) connected to the 8th line. ) may include.
- the boom energy recovery hydraulic system for construction equipment may be controlled by the mobile 400, and the mobile 400 may be a terminal owned by a user or worker.
- the mobile 400 may be communicatively connected to the control unit 170. Additionally, the mobile 400 may be controllably connected to the control unit 170, and the boom energy recovery hydraulic system for construction equipment may be controlled by the mobile 400.
- the operation of various devices including the main control valve 160, the valve assembly 230, and the engine 120 can be controlled through the control unit 170 based on the operation signal of the mobile 400.
- the mobile 400 may be provided with an input means (not shown) for inputting control commands and an output means including a display means (not shown) for displaying various operating states.
- the mobile 400 may be any one of a smartphone, PDA, laptop, or tablet.
- the mobile 400 can communicate with the control unit 170 through serial communication and Ethernet communication, and can communicate with the control unit 170 using Wi-Fi, Bluetooth, and Zigbee. , communication can be made possible using beacons, RFID, etc., and the communication method of the mobile 400 is not limited to this.
- a program or application for controlling and operating the boom energy recovery hydraulic system for construction equipment may be installed in the mobile 400 through the control unit 170.
- the control unit 170 may control the operation of the construction machine 100 based on the manipulation signal.
- the control unit 170 may be an electronic control unit (ECU).
- control unit 170 controls the operation of various devices including the main control valve 160, the valve assembly 230, and the engine 120 based on the operation signal according to the control operation of the mobile 400.
- the boom energy recovery hydraulic system for construction machinery can be operated.
- the control unit 170 can control whether to open or close the boom-up valve 163 or the boom-down valve 164 based on a manipulation signal according to the control operation of the mobile 400.
- control unit 170 can control the operation of the construction equipment 100 and whether the boom-up valve 163 or the boom-down valve 164 is opened or closed based on the operation signal of the joystick 151.
- the joystick 151 may be equipped with a first sensor (S1) and a second sensor (S2).
- the first sensor (S1) detects the pressure change during the boom-up operation of the joystick 151 and generates a manipulation signal
- the second sensor (S2) detects the pressure change during the boom-down operation of the joystick 151 and operates it.
- a signal can be generated.
- the operation signal generated by the first sensor (S1) and the second sensor (S2) is transmitted to the control unit 170, and the control unit 170 operates the boom-up valve 163 or the boom-down valve ( 164) can be controlled to open or close.
- the manipulation signal generated by the first sensor S1 and the second sensor S2 may be transmitted to the mobile 400 through the control unit 170. Through this, it is possible to control whether the boom-up valve 163 or the boom-down valve 164 is opened or closed using the mobile 400.
- the boom down valve 164 may also be placed in the large chamber line 144. That is, the boom down valve 164 can control not only the flow of the boom down valve line 166 but also the flow of the large chamber line 144. In this case, depending on the situation, during the boom-down operation of the joystick 151, the control unit 170 controls the boom-down valve 164 to close, allowing oil to flow from the large chamber 142 to the main control valve 160. It may also block the flow.
- the oil leaking out of the large chamber 142 is recovered by the boom down of the boom cylinder 140 through the control unit 170, and is used to boom up or drive the construction machine 100, boom cylinder, and bucket. , It can be immediately reused as the driving force of the arm and the turning driving force of the main body 110.
- These settings and de-settings can be accomplished by controlling the control unit 170 through the mobile device 400. Additionally, it can be controlled by the control unit 170 through a manipulation signal from the joystick 151.
- a third sensor (S3) and a fourth sensor (S4) may be placed on the first line (L1) and the fifth line (L5), and the third sensor (S3) and fourth sensor (S4) are always Oil pressure can be measured, and the measured oil pressure value can be transmitted to the control unit 170.
- the third sensor (S3) and the fourth sensor (S4) measure the hydraulic pressure of the boom cylinder 140
- the fifth sensor (S5) measures the pressure of the accumulator 220
- the control unit detects the third sensor (S3). ) and receiving the hydraulic pressure measurement value of the boom cylinder 140 through the fourth sensor (S4), receiving the hydraulic pressure measurement value of the accumulator 220 through the fifth sensor (S5), and then receiving the hydraulic pressure measurement value of the accumulator 220 through the fifth sensor (S5)
- the oil flow rate is controlled by opening and closing one or more valves installed on the selected line among the plurality of lines of the valve assembly 230. can do.
- the boom down valve 164 When the boom 130 goes down, the boom down valve 164 is closed and oil flows into the small chamber 143 of the boom cylinder 140 to lower the rod 141 of the boom cylinder 140, As the rod 141 descends, the oil inside the large chamber 142 is discharged through the first line (L1).
- the AC valve (AC) disposed in the second line (L2) is opened to allow oil discharged from the large chamber 122 to flow into the accumulator 220 through the first line (L1) and the second line (L2). Accumulate pressure.
- the CA valve (CA) disposed in the third line (L3) is opened to allow the oil accumulated in the accumulator 220 to flow into the boom cylinder 140 through the third line (L3) and the first line (L1).
- the energy recovered by boom down can be directly used for boom up.
- the boom energy of the boom 130 can be stored in the accumulator 220, and the stored boom energy can be used to boom up the boom 130 to save fuel or improve the performance of the construction machine 100. You can do it.
- the oil accumulated in the accumulator 220 immediately assists the boom-up operation of the boom 130, thereby eliminating the need for a mechanical energy conversion unit or/and an electrical energy conversion unit to convert energy, making it possible to slim the device. do.
- the boom-up speed can be increased by increasing the amount of oil flowing into the large chamber 142, such as by flowing oil into the large chamber 142 through the line L1.
- the AB valve (AB), AR valve (AR), and boom down valve 164 are closed, and only the CA valve (CA) disposed in the third line (L3) is opened to allow oil to flow into the third line (L3).
- the power required for the boom-up operation can be assisted by allowing it to flow only into the large chamber 142 through the first line (L1).
- FIG 7 is a schematic diagram showing a boom energy recovery hydraulic system for construction equipment according to a second embodiment of the present invention.
- Figure 8 shows that in the boom energy recovery hydraulic system for construction equipment according to the second embodiment of the present invention, when the boom is down, the oil recovered from the large chamber is supplied to the main pump to drive the engine to drive the construction equipment, boom cylinder,
- This is a schematic diagram showing the oil flow when used as the driving force of the bucket and arm, and the swing driving force of the main body.
- the boom energy recovery hydraulic system for construction equipment according to the second embodiment of the present invention is the first embodiment of the present invention, except that the third line connected to the accumulator is connected to the main pump of the engine through the ninth line. Since it has the same structure as the boom energy recovery hydraulic system for construction equipment according to the example, redundant description of the same configuration will be omitted.
- the valve assembly according to the second embodiment of the present invention includes a third line (L3) on one side connected to the accumulator 220, a third line (L3), and a main pump. It may include a ninth line (L9) connecting (122).
- CA valve (CA) is disposed in the third line (L3) to control the flow rate of oil, allowing oil to flow only from the third line (L3) toward the ninth line (L9).
- the boom down valve 164 is closed, and oil flows into the small chamber 143 of the boom cylinder 140 to lower the rod 141 of the boom cylinder 140. And, as the rod 141 descends, the oil inside the large chamber 142 is discharged through the first line (L1).
- the AC valve (AC) disposed in the second line (L2) is opened to allow oil discharged from the large chamber 142 to flow into the accumulator 220 through the first line (L1) and the second line (L2). It can accumulate pressure.
- the CA valve (CA) disposed in the third line (L3) is opened to allow the oil accumulated in the accumulator 220 to flow to the main pump 122 through the third line (L3) and the ninth line (L9).
- the energy recovered by the boom down is used to drive the engine 120 through the main pump 122 to drive the construction machine 100, drive the boom cylinder 140, bucket, and arm, and use the energy recovered from the boom down to drive the engine 120. It can be used directly for turning driving force.
- the AC valve (AC) disposed in the second line (L2) By closing, the oil accumulated in the accumulator 220 can only flow into the main pump.
- the boom energy of the boom 130 can be stored in the accumulator 220, and the stored boom energy is provided to the engine 120 to drive the construction machine 100, the boom cylinder 140, the bucket, It can be used for the driving force of the arm and the turning driving force of the main body 110.
- the oil accumulated in the accumulator 220 can immediately assist the power of the engine 120, thereby saving fuel or improving the performance of the construction machine 100.
- Figure 9 is a schematic diagram showing a boom energy recovery hydraulic system for construction equipment according to a third embodiment of the present invention.
- Figure 10 is a schematic diagram showing the oil flow when the oil recovered from the large chamber is accumulated when the boom is down in the boom energy recovery hydraulic system for construction equipment according to the third embodiment of the present invention and then supplied to the large chamber to boom up. am.
- Figure 11 shows that in the boom energy recovery hydraulic system for construction equipment according to the third embodiment of the present invention, when the boom is down, the oil recovered from the large chamber is supplied to the main pump to drive the engine to drive the construction equipment, boom cylinder,
- This is a schematic diagram showing the oil flow when used as the driving force of the bucket and arm, and the swing driving force of the main body.
- the boom energy recovery hydraulic system for construction equipment according to the third embodiment of the present invention is, except that the third line connected to the accumulator is connected to the first line, the position of the valve is changed, and the valve is added. Since the structure is the same as that of the boom energy recovery hydraulic system for construction equipment according to the second embodiment of the invention, redundant description of the same structure will be omitted.
- the third line (L3) connects the first line (L1) and the accumulator 220, and the ninth line (L9) can connect the third line (L3) and the main pump (122).
- the first CA valve (CA1) that controls the second CA valve (CA2) is disposed on the ninth line (L9) and flows oil only to the main pump 122 through the ninth line (L9) and controls the flow rate of the oil. ) may include.
- the boom down valve 164 When the boom 130 goes down, the boom down valve 164 is closed and oil flows into the small chamber 143 of the boom cylinder 140 to lower the rod 141 of the boom cylinder 140, As the rod 141 descends, the oil inside the large chamber 142 is discharged through the first line (L1).
- the AC valve (AC) disposed in the second line (L2) is opened and the oil is discharged from the large chamber 142. flows into the accumulator 220 through the first line (L1) and the second line (L2) to accumulate pressure.
- the first CA valve (CA) disposed in the third line (L3) is opened to allow the oil accumulated in the accumulator 220 to flow into the boom cylinder 140 through the third line (L3) and the first line (L1). ) into the large chamber 142, the energy recovered by boom down can be used directly for boom up.
- the boom energy of the boom 130 can be stored in the accumulator 220, and the stored boom energy can be used to boom up the boom 130 to save fuel or improve the performance of the construction machine 100. You can do it.
- the AC valve (AC) disposed in the second line (L2) is opened to open the large chamber (142). ) can be accumulated by flowing the oil discharged from the oil into the accumulator 220 through the first line (L1) and the second line (L2).
- the second CA valve (CA2) disposed in the third line (L3) is opened to allow the oil accumulated in the accumulator 220 to be pumped through the main pump (122) through the third line (L3) and the ninth line (L9).
- the energy recovered by the boom down can be used to drive the engine 120 through the main pump 122 and be directly used for the driving force of the construction machine, the driving force of the boom cylinder, bucket, and arm, and the swing driving force of the main body. .
- the boom energy of the boom 130 can be stored in the accumulator 220, and the stored boom energy is provided to the engine to use the driving force of the construction machine, the driving force of the boom cylinder, bucket, and arm, and the swing driving force of the main body. You can use it.
- the spring energy recovery hydraulic system for construction machinery includes a first CA valve (CA1) disposed in the third line (L3) or a second CA valve (CA1) disposed in the ninth line (L9)
- CA1 CA1
- CA1 CA1
- CA1 CA1
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Operation Control Of Excavators (AREA)
Abstract
본 발명은 건설기계용 붐 에너지 회수 유압시스템에 관한 것으로, 건설기계의 붐의 붐다운 시 발생되는 붐 에너지를 회수하여 바로 붐업에 적용함으로써 붐 실린더의 붐업 속도를 향상시킴과 함께, 붐 에너지를 건설기계의 각종 다른 동작에 사용할 수 있는 건설기계용 붐 에너지 회수 유압시스템에 관한 것이다. 이러한 본 발명에 따르면, 붐다운 시 버려지는 에너지를 회수하고, 이를 활용할 수 있고, 또한, 기존의 건설기계에 쉽게 설치되거나, 해제될 수 있는 장점이 있다.
Description
본 발명은 건설기계용 붐 에너지 회수 유압시스템에 관한 것으로, 보다 상세하게는 건설기계의 붐의 붐다운 시 발생되는 붐 에너지를 회수하여 바로 붐업에 적용함으로써 붐 실린더의 붐업 속도를 향상시킴과 함께, 붐 에너지를 건설기계의 각종 다른 동작에 사용할 수 있는 건설기계용 붐 에너지 회수 유압시스템에 관한 것이다.
포크레인 내지 굴착기는 일반적으로 땅을 파거나 깎을 때 사용되는 건설기계로서, 건설 현장 및 다양한 산업 현장에서 널리 쓰이고 있다. 이러한 포크레인은 끝단이 곡선의 궤적을 따라서 이동될 수 있는 붐을 포함하고, 붐의 끝단에는 버킷을 포함하는 다양한 툴이 장착될 수 있다.
붐에는 유압실린더가 연결되고, 유압실린더는 승강 작동하면서 붐을 구동시킨다. 유압실린더는 유압계통의 오일 유동을 통해서 승강 작동된다. 포크레인은 엔진 등의 동력 수단을 포함한다. 엔진은 유압계통에서 오일 유동의 유동력을 제공하고, 동시에 포크레인의 이동을 위한 동력을 제공할 수 있다.
일반적으로, 포크레인은 그 중량이 매우 크기 때문에 이동에 따른 연료 소모가 매우 크다. 또한, 붐의 자중 또한 무겁기 때문에 붐을 구동시키기 위해서도 많은 연료가 소모된다.
최근 친환경 이슈가 대두되면서, 포크레인 등의 건설기계 분야에도 연비를 향상시키기 위한 다양한 기술 개발 및 연구가 이루어지고 있다. 예를 들어, 포크레인의 붐이 붐다운하는 경우, 붐의 붐 에너지(potential energy)를 회수한 뒤, 이를 일시적으로 저장하여, 포크레인의 이동이나 붐의 구동을 보조하는 기술 등이 제안된 바 있다.
그러나, 이러한 종래의 기술에는 붐의 작업 동작이나, 작업 속도 등에 큰 제약을 가하여 작업능률을 저하시키는 문제가 있었고, 또한, 기존의 다양한 포크레인에 설치되기가 매우 어렵다는 문제가 있었다.
한편, 포크레인 또는 굴착기를 포함하는 건설기계에서 붐 에너지의 회수 시 회수된 붐 에너지는 기계식 에너지 변환부를 이용하여 내연기관의 구동 에너지를 보조하는데 사용할 수 있다. 또한, 회수된 붐 에너지는 전기 에너지로 변환하여 사용한다.
그러나, 회수된 붐 에너지를 사용하기 위한 에너지 변환 시 에너지의 변환 단계가 많고, 변환부의 구성이 복잡하여 많은 에너지 손실이 발생된다는 문제점이 있었다. 또한, 붐 에너지를 변환하기 위한 변환부의 제작 및 설치 비용이 상당하여 전체 제작 비용 또한 증대된다는 문제점이 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허 10-2309862호
상기한 바와 같은 기술적 배경을 바탕으로, 본 발명은 건설기계에 있어서, 건설기계의 붐의 붐다운 시 발생되는 에너지를 회수한 후 회수된 붐 에너지를 붐 실린더에 바로 사용함으로써 붐 실런더의 붐업 속도를 향상시켜 붐업 동작을 신속하게 진행할 수 있어 작업 효율을 향상시킬 수 있으며, 붐 에너지를 건설기계의 각종 다른 동작에 사용할 수 있어 연료 절감 및 성능 향상을 도모할 수 있으며, 기존의 건설기계에 쉽게 설치되거나, 해제될 수 있는 건설기계용 붐 에너지 회수 유압시스템을 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템은, 오일의 유동에 의해 로드가 승강 작동하고, 라지챔버 및 라지챔버의 상부에 형성되는 스몰챔버를 포함하는 붐 실린더와, 붐 실린더에 연결되어 오일을 축압하는 축압기를 포함하는 축압어셈블리, 및 오일의 유동에 의한 붐 실린더에 의해 붐업/붐다운 구동하는 붐을 포함하고, 오일의 유동을 제어하여 붐다운 시 에너지를 붐다운 시 에너지를 회수하여 재사용하는 건설기계용 붐 에너지 회수 유압시스템에 있어서, 붐 실린더의 붐을 붐업/붐다운시키는 메인컨트롤밸브; 오일이 유동하는 복수의 라인과, 복수의 라인 중 선택된 라인에 적어도 하나 이상으로 설치되어 오일의 유량을 제어하는 밸브를 포함하는 밸브어셈블리; 메인펌프에 샤프트로 연결되어, 붐 실린더에 오일의 유동을 제공하고, 건설기계의 주행과 버킷, 암의 구동력 및 본체의 선회 구동력을 제공하는 엔진; 및 조작신호에 기초하여, 오일의 유동을 제어하는 제어부; 를 포함하고, 붐 실린더의 붐다운에 의해 라지챔버에서 유출되는 오일을 회수하여 바로 재사용하는 것을 특징으로 한다.
하나의 실시형태로서, 메인컨트롤밸브는, 오일의 유동이 붐 실린더의 라지챔버 또는 스몰챔버로 향하도록 동작하는 스풀과, 스풀에 연결되어, 스풀의 이동에 의해 라지챔버로 오일을 유동시켜 붐을 붐업시키는 붐업밸브라인과, 스풀에 연결되어, 스풀의 이동에 의해 스몰챔버로 오일을 유동시켜 붐을 붐다운시키는 붐다운밸브라인과, 붐업밸브라인에 배치되어, 라지챔버로 오일이 유동하도록 스풀을 제어하는 붐업밸브, 및 붐다운밸브라인에 배치되어, 스몰챔버로 오일이 유동하도록 스풀을 제어하는 붐다운밸브를 포함할 수 있다.
다른 하나의 실시형태로서, 제어부는, 붐의 붐업 또는 붐다운 동작을 제어하는 조이스틱에 연결될 수 있다.
구체적인 실시형태로서, 제어부는, 조이스틱에 연결되어, 조이스틱의 붐업 동작 시 압력 변화를 감지하여 조작 신호를 생성하는 제1 센서, 및 조이스틱에 연결되어, 조이스틱의 붐다운 동작 시 압력 변화를 감지하여 조작 신호를 생성하는 제2 센서에 연결되어 측정값을 수신하고, 제1 센서 및 제2 센서에 의해 생성된 조작 신호에 기초하여, 붐업밸브 또는 붐다운밸브의 개폐 여부를 제어할 수 있다.
다른 구체적인 실시형태로서, 제어부는, 붐 실린더의 유압을 측정하는 제3 및 제4 센서와, 축압기의 압력을 측정하는 제5 센서에 연결되어 측정값을 수신하고, 제3 센서와 제4 센서 및 제5 센서로부터 수신된 측정값에 기초하여, 밸브어셈블리의 복수의 라인 중 선택된 라인에 설치되는 어느 하나 이상의 밸브를 개폐하여 오일의 유량을 제어할 수 있다.
하나의 실시형태로서, 밸브어셈블리는, 붐 실린더의 라지챔버에 일측이 연결되는 제1 라인과, 제1 라인과 축압기를 연결하는 제2 라인과, 제1 라인과 축압기를 연결하는 제3 라인과, 붐 실린더의 스몰챔버에 일측이 연결되는 제5 라인과, 제1 라인에서 분기되고, 제5 라인에 연결되는 제6 라인과, 제1 라인에서 분기되는 제7 라인, 및 제5 라인 및 제6 라인에 일측이 연결되는 제8 라인을 포함하고, 제2 라인에 배치되어 축압기를 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 AC 밸브와, 제3 라인에 배치되어 제1 라인을 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 CA 밸브와, 제6 라인에 배치되어 오일 유량을 제어하는 AB 밸브, 및 축압기와 오일탱크 사이의 유로 상에 배치되어 온오프 방식으로 작동하는 릴리즈 밸브를 포함할 수 있다.
구체적인 실시형태로서, 붐의 붐다운 시 제2 라인에 배치된 AC 밸브를 개방하여 라지챔버에서 토출되는 오일을 제1 라인 및 제2 라인을 통해 축압기로 유입시켜 축압하고, 제3 라인에 배치된 CA 밸브를 개방하여 축압기에 축압된 오일을 제3 라인 및 제1 라인을 통해 붐 실린더의 라지챔버로 유입시켜, 붐다운에 의해 회수된 에너지를 바로 붐업에 사용할 수 있다.
다른 하나의 실시형태로서, 밸브어셈블리는, 붐 실린더의 라지챔버에 일측이 연결되는 제1 라인과, 제1 라인과 축압기를 연결하는 제2 라인과, 축압기에 일측이 연결되는 제3 라인과, 붐 실린더의 스몰챔버에 일측이 연결되는 제5 라인과, 제1 라인에서 분기되고, 제5 라인에 연결되는 제6 라인과, 제1 라인에서 분기되는 제7 라인과, 제5 라인 및 제6 라인에 일측이 연결되는 제8 라인, 및 제3 라인과 메인펌프를 연결하는 제9 라인를 포함하고, 제2 라인에 배치되어 축압기를 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 AC 밸브와, 제3 라인에 배치되어 제9라인을 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 CA 밸브와, 제6 라인에 배치되어 오일 유량을 제어하는 AB 밸브, 및 축압기와 오일탱크 사이의 유로 상에 배치되어 온오프 방식으로 작동하는 릴리즈 밸브를 포함할 수 있다.
구체적인 실시형태로서, 붐의 붐다운 시 제2 라인에 배치된 AC 밸브를 개방하여 라지챔버에서 토출되는 오일을 제1 라인 및 제2 라인을 통해 축압기로 유입시켜 축압하고, 제3 라인에 배치된 CA 밸브를 개방하여 축압기에 축압된 오일을 제3 라인 및 제9라인을 통해 메인펌프로 유입시켜, 붐다운에 의해 회수된 에너지로 메인펌프를 통해 엔진을 구동시켜 건설기계의 주행, 붐 실린더, 버킷, 암의 구동력 및 본체의 선회 구동력에 바로 사용할 수 있다.
또 다른 하나의 실시형태로서, 밸브어셈블리는, 붐 실린더의 라지챔버에 일측이 연결되는 제1 라인과, 제1 라인과 축압기를 연결하는 제2 라인과, 제1 라인과 축압기를 연결하는 제3 라인과, 붐 실린더의 스몰챔버에 일측이 연결되는 제5 라인과, 제1 라인에서 분기되고, 제5 라인에 연결되는 제6 라인과, 제1 라인에서 분기되는 제7 라인과, 제5 라인 및 제6 라인에 일측이 연결되는 제8 라인, 및 제3 라인과 메인펌프를 연결하는 제9 라인을 포함하고, 제2 라인에 배치되어 축압기를 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 AC 밸브와, 제1 라인과 제3 라인이 연결되는 연결부위에 인접하는 제1 라인에 배치되어 제1 라인을 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 제1 CA 밸브와, 제9 라인에 배치되어 제9 라인을 통해 펌프로만 오일을 유동시키고, 오일의 유량을 제어하는 제2 CA 밸브와, 제6 라인에 배치되어 오일 유량을 제어하는 AB 밸브, 및 축압기와 오일탱크 사이의 유로 상에 배치되어 온오프 방식으로 작동하는 릴리즈 밸브를 포함할 수 있다.
구체적인 실시형태로서, 붐의 붐다운 시 제2 라인에 배치된 AC 밸브를 개방하여 라지챔버에서 토출되는 오일을 제1 라인 및 제2 라인을 통해 축압기로 유입시켜 축압하고, 제9 라인에 배치된 제2 CA 밸브를 폐쇄하고, 제1 라인과 제3 라인이 연결되는 연결부위에 인접하는 제1 라인에 배치된 제1 CA 밸브를 개방하여 축압기에 축압된 오일을 제3 라인 및 제1 라인을 통해 붐 실린더의 라지챔버로 유입시켜, 붐다운에 의해 회수된 에너지를 바로 붐업에 사용할 수 있다.
다른 구체적인 실시형태로서, 붐의 붐다운 시 제2 라인에 배치된 AC 밸브를 개방하여 라지챔버에서 토출되는 오일을 제1 라인 및 제2 라인을 통해 축압기로 유입시켜 축압하고, 제1 라인과 제3 라인이 연결되는 연결부위에 인접하는 제1 라인에 배치된 제1 CA 밸브를 폐쇄하고, 제9 라인에 배치된 제2 CA 밸브를 개방하여 축압기에 축압된 오일을 제3 라인 및 제9라인을 통해 메인펌프로 유입시켜, 붐다운에 의해 회수된 에너지로 메인펌프를 통해 엔진을 구동시켜 건설기계의 주행, 붐 실린더, 버킷, 암의 구동력 및 본체의 선회 구동력에 바로 사용할 수 있다.
상기한 바와 같이 본 발명에 따르면, 건설기계용 붐 에너지 회수 유압시스템은, 붐의 붐다운 시 발생되는 에너지를 회수한 후 회수된 붐 에너지를 붐 실린더에 바로 사용함으로써 붐 실런더의 붐업 속도를 향상시켜 붐업 동작을 신속하게 진행할 수 있어 작업 효율을 향상시킬 수 있으며, 붐 에너지를 건설기계의 각종 다른 동작에 사용할 수 있어 연료 절감 및 성능 향상을 도모할 수 있으며, 붐 에너지를 변환하기 위한 기계식 에너지 변환부 및 전기식 에너지 변환부의 삭제가 가능하여 전체 구성을 컴팩트하게 할 수 있으며, 기존의 건설기계에 쉽게 설치되거나, 해제될 수 있는 효과가 있다.
도 1은 본 발명의 제1 실시예에 따른 건설기계의 전체적인 모습을 나타내는 개념도이다.
도 2는 본 발명의 제1 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템을 나타내는 계통도이다.
도 3은 본 발명의 제1 실시예에 따른 축압어셈블리를 나타내는 평면도이다.
도 4는 본 발명의 제1 실시예에 따른 축압어셈블리를 나타내는 사시도이다.
도 5는 본 발명의 제1 실시예에 따른 축압어셈블리의 브라켓을 절개하여 나타내는 평면도이다.
도 6은 본 발명의 제1 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템에서 붐의 붐다운 시 라지챔버에서 회수된 오일을 축압한 후 라지챔버로 공급하여 붐업하는 경우의 오일 유동을 나타내는 계통도이다.
도 7은 본 발명의 제2 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템을 나타내는 계통도이다.
도 8은 본 발명의 제2 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템에서 붐의 붐다운 시 라지챔버에서 회수된 오일을 메인펌프로 공급하여 엔진을 구동시켜 건설기계의 주행, 붐 실린더, 버킷, 암의 구동력 및 본체의 선회 구동력으로 사용하는 경우의 오일 유동을 나타내는 계통도이다.
도 9는 본 발명의 제3 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템을 나타내는 계통도이다.
도 10은 본 발명의 제3 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템에서 붐의 붐다운 시 라지챔버에서 회수된 오일을 축압한 후 라지챔버로 공급하여 붐업하는 경우의 오일 유동을 나타내는 계통도이다.
도 11은 본 발명의 제3 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템에서 붐의 붐다운 시 라지챔버에서 회수된 오일을 메인펌프로 공급하여 엔진을 구동시켜 건설기계의 주행, 붐 실린더, 버킷, 암의 구동력 및 본체의 선회 구동력으로 사용하는 경우의 오일 유동을 나타내는 계통도이다.
[부호의 설명]
100 : 건설기계
110 : 본체
120 : 엔진
121 : 샤프트
122 : 메인펌프
123 : 보조펌프
130 : 붐
140 : 붐 실린더
141 : 로드
142 : 라지챔버
143 : 스몰챔버
144 : 라지챔버라인
145 : 스몰챔버라인
150 : 캐비넷
151 : 조이스틱
160 : 메인컨트롤밸브
161 : 스풀
162 : 메인밸브라인
163 : 붐업밸브
164 : 붐다운밸브
165 : 붐업밸브라인
166 : 붐다운밸브라인
170 : 제어부
200 : 축압어셈블리
210 : 브라켓
211 : 마운트
212 : 중공부
213 : 홈부
220 : 축압기
230 : 밸브어셈블리
240 : 메인배관
241 : 조인트블럭
250 : 파일럿배관
400 : 모바일
CA : CA 밸브
CA1 : 제1 CA 밸브
CA2 : 제2 CA 밸브
AC : AC 밸브
AB : AB 밸브
RE : 릴리즈 밸브
L1 : 제1 라인
L2 : 제2 라인
L3 : 제3 라인
L5 : 제5 라인
L6 : 제6 라인
L7 : 제7 라인
L8 : 제8 라인
L9 : 제9 라인
S1 : 제1 센서
S2 : 제2 센서
S3 : 제3 센서
S4 : 제4 센서
S5 : 제5 센서
T : 오일탱크
T1 : 제1 오일탱크
T2 : 제2 오일탱크
T3 : 제3 오일탱크
본 발명은, 오일의 유동에 의해 로드가 승강 작동하고, 라지챔버 및 라지챔버의 상부에 형성되는 스몰챔버를 포함하는 붐 실린더와, 붐 실린더에 연결되어 오일을 축압하는 축압기를 포함하는 축압어셈블리, 및 오일의 유동에 의한 붐 실린더에 의해 붐업/붐다운 구동하는 붐을 포함하고, 오일의 유동을 제어하여 붐다운 시 에너지를 붐다운 시 에너지를 회수하여 재사용하는 건설기계용 붐 에너지 회수 유압시스템에 있어서, 붐 실린더의 붐을 붐업/붐다운시키는 메인컨트롤밸브; 오일이 유동하는 복수의 라인과, 복수의 라인 중 선택된 라인에 적어도 하나 이상으로 설치되어 오일의 유량을 제어하는 밸브를 포함하는 밸브어셈블리; 메인펌프에 샤프트로 연결되어, 붐 실린더에 오일의 유동을 제공하고, 건설기계의 주행과 버킷, 암의 구동력 및 본체의 선회 구동력을 제공하는 엔진; 및 조작신호에 기초하여, 오일의 유동을 제어하는 제어부; 를 포함하고, 붐 실린더의 붐다운에 의해 라지챔버에서 유출되는 오일을 회수하여 바로 재사용할 수 있는 건설기계용 붐 에너지 회수 유압시스템을 제공한다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 발명에서, '포함하다' 또는 '가지다' 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의한다.
또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다.
(제1 실시예)
이하에서는, 첨부된 도면들을 참조하여, 본 발명에 따른 건설기계용 붐 에너지 회수 유압시스템 및 이를 포함하는 건설기계에 대하여 상세히 설명한다.
도 1은 본 발명의 제1 실시예에 따른 건설기계의 전체적인 모습을 나타내는 개념도이다. 도 2는 본 발명의 제1 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템을 나타내는 계통도이다. 도 3은 본 발명의 제1 실시예에 따른 축압어셈블리를 나타내는 평면도이다. 도 4는 본 발명의 제1 실시예에 따른 축압어셈블리를 나타내는 사시도이다. 도 5는 본 발명의 제1 실시예에 따른 축압어셈블리의 브라켓을 절개하여 나타내는 평면도이다. 도 6은 본 발명의 제1 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템에서 붐의 붐다운 시 라지챔버에서 회수된 오일을 축압한 후 라지챔버로 공급하여 붐업하는 경우의 오일 유동을 나타내는 계통도이다.
본 발명의 제1 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템에 대하여 상세하게 설명한다. 본 발명의 제1 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템은, 건설기계에 설치 및 해제가 가능한 구조로서, 건설기계에 설치되어 붐 에너지를 회수하여 재사용 및 재사용할 수 있다.
이를 위하여, 건설기계 및 상기 건설기계에 설치되는 본 발명의 건설기계용 붐 에너지 회수 유압시스템에 대하여 상세하게 설명한다.
도면을 참조하여 설명하면, 본 발명의 제1 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템은 메인컨트롤밸브(160)와 밸브어셈블리(230)와 엔진(120) 및 제어부(170)를 포함하여 구성될 수 있으며, 건설기계(100)의 본체(110)와 붐(130) 및 실린더(140)에 연결하여 설치될 수 있다.
구체적으로, 상기 본체(110)에는 붐(130) 및 붐 실린더(140)가 연결될 수 있다. 붐 실린더(140)는 오일의 유동에 의해 승강 작동할 수 있으며, 붐 실린더(140)의 승강 작동에 의해 붐(130)이 회전 운동을 할 수 있다.
본체(110)의 내부에는 엔진(120)이 배치될 수 있다. 엔진(120)은 붐 실린더(140)에 오일의 유동을 제공할 수 있다. 엔진(120)은 본체(110)의 하측에 배치된 구동부(미도시)에 구동력을 제공하여 건설기계(100)를 주행할 수 있다. 엔진(120)은 버킷(미도시)과 암(미도시) 및 구동부 상에 선회 가능하게 설치되는 본체(110)의 선회 구동력을 제공할 수 있다.
붐 실린더(140)의 동작에 대하여, 더욱 상세히 살펴보면 다음과 같다. 건설기계(100)는 본체(110)에 작업자가 탑승할 수 있는 캐비넷(150)이 배치될 수 있다. 캐비넷(150)에는 붐(130)의 붐업 또는 붐다운 동작을 제어할 수 있는 조이스틱(151)이 배치될 수 있다.
구체적으로, 붐 실린더(140)는 오일의 유동에 의해 승강 작동하고, 붐(130)과 연결되는 로드(141)를 포함할 수 있다. 붐 실린더(140)는 라지챔버(142)와 라지챔버(142)의 상부에 형성되는 스몰챔버(143)를 포함할 수 있다. 라지챔버(142)와 스몰챔버(143)은 2 : 1의 크기로 형성될 수 있다.
로드(141)는 붐 실린더(140)의 스몰챔버(143)와 라지챔버(142) 사이에 배치되고, 라지챔버(142)에 오일이 유입되면 상승하고, 스몰챔버(143)에 오일이 유입되면 하강할 수 있다. 로드(141)가 상승하면 붐(130)이 붐업될 수 있고, 로드(141)가 하강하면 붐(130)이 붐다운할 수 있다.
축압어셈블리(200)는 붐 실린더(140)에 연결되어 축압된 오일을 붐 실린더(140)로 토출하고, 붐 실린더(140)의 오일이 유입되어 축압될 수 있다. 구체적으로, 축압어셈블리(200)는 브라켓(210), 축압기(220), 밸브어셈블리(230), 메인배관(240)을 포함한다.
브라켓(210)은 건설기계(100)의 본체(110)에 착탈 가능하게 체결되고, 브라켓(210)에는 축압기(220), 밸브어셈블리(230), 메인배관(240)이 배치된다. 브라켓(210)은 건설기계(100)에 설치되는 부분이고, 축압기(220), 밸브어셈블리(230), 메인배관(240)이 배치되는 구성이다.
브라켓(210)은 얇은 판형 내지 플레이트 형상으로 형성될 수 있다. 브라켓(210)은 건설기계(100)의 외부에 배치될 수 있다. 브라켓(210)에는 건설기계(100)에 체결될 수 있도록 체결부(미도시)가 구비될 수 있다. 체결부(미도시)는 예를 들어서 볼트가 삽입될 수 있는 나사홀 등으로 구비될 수 있다.
브라켓(210)은 붐(130)을 향하는 전방측에 메인배관(240) 및 밸브어셈블리(230)가 배치되고, 후방측에 중공부(212)가 형성되며, 전방측과 후방측의 사이에 축압기(220)가 배치될 수 있다. 브라켓(210)의 전방측에는 홈부(213)가 형성될 수 있다.
홈부(213)는 브라켓(210)의 전단에서 후방측으로 함몰되어 형성될 수 있다. 홈부(213)의 형상은 건설기계(100)의 캐비넷(150)의 외면의 형상과 대응되도록 형상되어, 캐비넷(150)과 브라켓(210) 간의 공간적 간섭을 최소화할 수 있다. 메인배관(240)과 밸브어셈블리(230)는 브라켓(210)의 전방측에서 홈부(213)가 형성되지 않은 부분에 배치될 수 있다. 즉, 브라켓(210)의 전방측에서 어느 한 쪽에는 홈부(213)가 형성되고, 나머지 다른 한 쪽에는 메인배관(240)과 밸브어셈블리(230)가 배치될 수 있다.
이러한 브라켓(210)의 구조에 의해서, 메인배관(240)과 밸브어셈블리(230)가 배치되는 브라켓(210)의 부분은 붐(130)에 더욱 근접하여 배치될 수 있고, 이에 따라 붐 실린더(140)에 연결되는 각종 배관 내지 라인들의 길이가 최소화될 수 있어, 오일 유동의 유동 저항을 최소화할 수 있다.
브라켓(210)의 후방측에는 중공부(212)가 형성될 수 있다. 축압어셈블리(200)의 후방측에는 엔진(120)이 배치될 수 있다. 중공부(212)에 의해서, 엔진(120)에서 발생하는 열이 축압기(220)에 미치는 영향을 줄일 수 있다. 또한, 중공부(212)는 브라켓(210)의 중량을 감소시킬 수도 있다. 중공부(212)는 브라켓(210)의 후방측뿐만 아니라, 브라켓(210)의 중앙부나 전방측에도 형성될 수 포함할 수 있다.
또한, 축압기(220)는 브라켓(210)의 후단부(후방측의 단부)와 이격되어 배치될 수 있다. 이를 통해서, 축압어셈블리(200)가 건설기계(100)에 설치된 상태에서도, 엔진(120)을 정비하기 위해 엔진룸을 열기 편리하고, 작업자가 축압기(220)를 분리 및 설치하기도 용이할 수 있다. 뿐만 아니라, 엔진(120)에서 발생하는 열과 진동 등이 축압기(220)에 직접 전달되는 것을 방지할 수 있다.
브라켓(210)의 전방측과 후방측 사이에는 마운트(211)가 배치될 수 있다. 마운트(211)는 축압기(220)를 마운팅하는 구성이다. 마운트(211)에 의해서 축압기(220)는 브라켓(210)의 상면으로부터 소정 거리 이격되어 배치될 수 있다. 이에 따라, 축압기(220)의 분리 및 설치가 용이할 수 있고, 엔진(120)에서 발생하는 열과 진동이 축압기(220)에 직접 전달되는 것을 방지할 수 있다.
브라켓(210)은 건설기계(100)에 착탈 가능하게 설치될 수 있다. 브라켓(210)은 기존의 건설기계(100)의 외부 또는 내부를 개조하는 방식으로 설치될 수 있다. 브라켓(210)의 구체적인 크기나 세부적인 형태는 설치될 건설기계(100)에 따라서 일부 수정될 수 있다. 이러한 브라켓(210)의 구성으로 인해서 본 발명에 따른 에너지 회수 장치가 기존의 다양한 건설기계(100)에 쉽고 간편하게 설치될 수 있다.
축압기(220)에는 오일이 축압될 수 있고, 필요 시에 축압기(220)에 미리 축압된 오일이 축압기(220)로부터 토출될 수 있다. 메인배관(240)은 붐 실린더(140)와 연결된다. 밸브어셈블리(230)는 메인배관(240)에 연결된다.
메인컨트롤밸브(160)는 붐 실린더(140)에 연결되어 붐 실린더(140)로 제공되는 오일의 유동을 선택적으로 제어할 수 있다. 메인컨트롤밸브(160)는 건설기계(100)에 배치될 수 있다.
여기서, 메인컨트롤밸브(160)는 라지챔버(142)에 라지챔버라인(144)으로 연결될 수 있고, 메인컨트롤밸브(160)는 스몰챔버(143)에 스몰챔버라인(145)으로 연결될 수 있다.
그리고, 메인컨트롤밸브(160)에는 스풀(161)이 배치될 수 있다.
스풀(161)에 의해 오일의 유동이 스몰챔버(143) 측으로 향하거나, 라지챔버(142) 측으로 향할 수 있다. 즉, 메인컨트롤밸브(160)에 배치되는 스풀(161)의 동작에 의해서, 붐 실린더(140)의 로드(141)가 상승 또는 하강할 수 있다.
스풀(161)은 붐업밸브(163) 및 붐다운밸브(164)에 의해서 제어될 수 있다. 엔진(120)의 샤프트(121)에는 보조펌프(123)가 연결될 수 있다. 보조펌프(123)와 스풀(161)은 붐업밸브라인(165)으로 연결되고, 붐업밸브라인(165)에는 붐업밸브(163)가 배치될 수 있다. 보조펌프(123)와 스풀(161)은 붐다운밸브라인(166)으로 연결되고, 붐다운밸브라인(166)에는 붐다운밸브(164)가 배치될 수 있다. 붐업밸브(163)가 열리면 스풀(161)이 이동하여, 오일이 라지챔버(142)로 유동할 수 있고, 붐다운밸브(164)가 열리면 스풀(161)이 이동하여, 오일이 스몰챔버(143)로 유동할 수 있다.
밸브어셈블리(230)는 파일럿배관(250)에 의해서 각각 개폐가 조절될 수 있다. 구체적으로, 밸브어셈블리(230)는 제1 라인(L1), 제2 라인(L2), 제3 라인(L3), AC 밸브(AC), CA 밸브(CA)를 포함한다.
제1 라인(L1)은 붐 실린더(140)의 라지챔버(142)와 연결되는 라인이다. 제1 라인(L1)은 라지챔버라인(144)과 연결될 수 있다. 제2 라인(L2) 및 제3 라인(L3)은 제1 라인(L1)과 축압기(220)의 사이를 연결하는 라인이다.
제2 라인(L2)에는 AC 밸브(AC)가 배치된다. AC 밸브(AC)는 오일 유동의 제어가 가능하도록 구비되는 밸브로서, 제2 라인(L2)에서 축압기(220)를 향해서만 오일의 유동을 제어하여 축압기(220)에 오일을 차징하는 차징 밸브일 수 있다.
제3 라인(L3)에는 CA 밸브(CA)가 배치된다. CA 밸브(CA)는 오일 유동의 제어가 가능하도록 구비되는 밸브로서, 제3 라인(L3)에서 제1 라인(L1)을 향해서만 오일이 유동하도록 축압기(220) 내의 오일을 방출하는 방출 밸브일 수 있다.
밸브어셈블리(230)는 제5 라인(L5)과 제6 라인(L6)을 포함할 수 있다. 제5 라인(L5)은 붐 실린더(140)의 스몰챔버(143)와 연결되는 라인이다. 제5 라인(L5)은 붐 실린더(140)의 스몰챔버(143)에 일측이 연결될 수 있다. 제5 라인(L5)은 스몰챔버라인(145)과 연결될 수 있다.
제6 라인(L6)은 제1 라인(L1)에서 분기되고, 제5 라인(L5)과 연결되는 라인이다. 제6 라인(L6)에는 제6 라인(L6)에서 오일의 유량 제어가 가능하도록 구비되는 AB 밸브(AB)가 배치될 수 있다. AB 밸브(AB)는 제1 라인(L1)에서 유동하는 오일의 일부를 제6 라인(L6) 및 제5 라인(L5)을 통해 붐 실린더(140)의 스몰챔버(143)로 유입하는 재생 밸브일 수 있다.
밸브어셈블리(230)는 제7 라인(L7)을 포함할 수 있다. 제7 라인(L7)은 제1 라인(L1)에서 분기되고, 후술하는 제2 오일탱크(T2)와 연결되는 라인이다. 제7 라인(L7)에는 제7 라인(L7)에서 오일의 유량 제어가 가능하도록 구비되는 AR 밸브(AR, 미도시)가 더 배치될 수 있다. 제7 라인(L7)에 AR 밸브(AR)이 배치되면, AR 밸브(AR)는 축압기(220)에 오일이 가득 찬 경우, 축압기(220)로 유동하는 오일의 일부가 유입되는 리턴 밸브일 수 있다.
밸브어셈블리(230)는 제5 라인(L5) 및 제6 라인(L6)에 일측이 연결되는 제8 라인(L8)을 더 포함할 수 있다. 제8 라인(L8)은 후술하는 제3 오일탱크(T3)와 연결될 수 있다. 제8 라인(L8)을 통해서, AB 밸브(AB)를 통과한 오일이 제3 오일탱크(T3)로 유입될 수도 있다
밸브어셈블리(230)는 릴리즈 밸브(RE)를 포함할 수 있다. 릴리즈 밸브(RE)는 축압기(220) 및 후술하는 제1 오일탱크(T1) 사이의 유로 상에 배치된다. 릴리즈 밸브(RE)는 축압기(220)와 제1 오일탱크(T1) 사이의 유로 상에 배치되어 온오프(on-off) 방식으로 작동된다.
상기에서 살펴본 밸브어셈블리(230)의 CA 밸브(CA), AC 밸브(AC), AB 밸브(AB), AR 밸브(AR, 미도시), 릴리즈 밸브(RE) 등은 모두 제어부(170)에 의해 제어될 수 있다.
메인배관(240)은 붐 실린더(140)와 연결되는 배관이다. 메인배관(240)은 하나가 구비되고, 제1 라인(L1) 및 제5 라인(L5)이 메인배관(240)에 동시에 형성될 수 있다. 또는, 메인배관(240)은 두개가 구비되고, 각각에 제1 라인(L1) 및 제5 라인(L5)이 별개로 형성될 수도 있다. 메인배관(240)의 선단부에는 조인트블럭(241)이 배치될 수 있다. 조인트블럭(241)에는 붐 실린더(140)의 라지챔버(142)와 스몰챔버(143)가 연결될 수 있다.
엔진(120)에는 샤프트(121)가 구비되고, 샤프트(121)에는 메인펌프(122)가 연결될 수 있다. 메인펌프(122)와 스풀(161)은 메인밸브라인(162)으로 연결되고, 메인밸브라인(162)을 통해 스풀(161) 및 메인컨트롤밸브(160)에 오일이 유동될 수 있다.
오일탱크(T)는 오일이 유입되어 저장되거나, 저장된 오일을 유출할 수 있도록 적어도 하나 이상으로 형성될 수 있다.
오일탱크(T)는 릴리즈 밸브(RE)에 배관으로 연결되는 제1 오일탱크(T1), 제7 라인에 연결되는 제2 오일탱크(T2), 제8 라인에 연결되는 제3 오일탱크(T3)를 포함할 수 있다.
한편, 본 발명의 제1 실시예에 의한 건설기계용 붐 에너지 회수 유압시스템은 모바일(400)에 의해 제어될 수 있고, 모바일(400)은 사용자 또는 작업자가 갖는 단말기일 수 있다.
모바일(400)은 제어부(170)와 통신 가능하게 연결될 수 있다. 또한, 모바일(400)은 제어부(170)에 제어 가능하게 연결될 수 있으며, 모바일(400)에 의해 건설기계용 붐 에너지 회수 유압시스템이 제어될 수 있다.
구체적으로, 모바일(400)의 조작 신호에 기초하여 제어부(170)를 통해 메인컨트롤밸브(160)와 밸브어셈블리(230) 및 엔진(120)을 포함하는 각종 장치의 동작을 제어할 수 있다.
모바일(400)은 제어명령을 입력하는 입력수단(미도시)과, 각종 동작 상태를 디스플레이하기 위한 디스플레이수단(미도시)을 포함하는 출력수단을 구비할 수 있다.
여기서, 모바일(400)은 스마트폰, PDA, 노트북, 태블릿 중 어느 하나일 수 있다.
또한, 모바일(400)은 제어부(170)와 시리얼 통신(Serial Communication), 이더넷 통신(Ethernet Communication)으로 통신이 가능하도록 이루어질 수 있으며, 와이파이(Wi-Fi), 블루투스(Bluetooth), 지그비(Zigbee), 비콘(Beacon), RFID 등으로 통신이 가능하도록 이루어질 수 있으며, 모바일(400)의 통신 방식은 이에 제한되는 것은 아니다.
이를 위하여, 모바일(400)에는 제어부(170)를 통해 건설기계용 붐 에너지 회수 유압시스템을 제어 및 동작시키기 위한 프로그램 또는 어플리케이션이 설치될 수 있다.
제어부(170)는 조작 신호에 기초하여 건설기계(100)의 동작을 제어할 수 있다. 이를 위하여, 상기 제어부(170)는 전자제어유닛(ECU)일 수 있다.
구체적으로, 제어부(170)는 모바일(400)의 제어동작에 따른 조작 신호에 기초하여, 메인컨트롤밸브(160)와 밸브어셈블리(230) 및 엔진(120)을 포함하는 각종 장치의 동작을 제어하여 건설기계용 붐 에너지 회수 유압시스템을 동작시킬 수 있다.
제어부(170)는 모바일(400)의 제어동작에 따른 조작 신호에 기초하여, 붐업밸브(163) 또는 붐다운밸브(164)의 개폐 여부를 제어할 수 있다.
또한, 제어부(170)는 조이스틱(151)의 조작 신호에 기초하여, 건설기계(100)의 동작을 제어하고, 붐업밸브(163) 또는 붐다운밸브(164)의 개폐 여부를 제어할 수 있다.
이를 위하여, 조이스틱(151)에는 제1 센서(S1) 및 제2 센서(S2)가 구비될 수 있다. 제1 센서(S1)는 조이스틱(151)의 붐업 동작 시의 압력 변화를 감지하여 조작 신호를 생성하고, 제2 센서(S2)는 조이스틱(151)의 붐다운 동작 시의 압력 변화를 감지하여 조작 신호를 생성할 수 있다.
제1 센서(S1) 및 제2 센서(S2)에 의해 생성된 조작 신호는 제어부(170)로 전달되고, 제어부(170)는 이러한 조작 신호에 기초하여, 붐업밸브(163) 또는 붐다운밸브(164)의 개폐 여부를 제어할 수 있다.
여기서, 제1 센서(S1) 및 제2 센서(S2)에 의해 생성된 조작 신호는 제어부(170)를 통해 모바일(400)로 전송될 수 있다. 이를 통해, 모바일(400)로 붐업밸브(163) 또는 붐다운밸브(164)의 개폐 여부를 제어할 수 있다.
한편, 붐다운밸브(164)는 라지챔버라인(144)에도 배치될 수 있다. 즉, 붐다운밸브(164)는 붐다운밸브라인(166)의 유동뿐만 아니라, 라지챔버라인(144)의 유동도 제어할 수 있다. 이 경우, 상황에 따라서, 조이스틱(151)의 붐다운 동작 시에, 제어부(170)가 붐다운밸브(164)를 폐쇄되도록 제어하여, 라지챔버(142)로부터 메인컨트롤밸브(160)로 오일이 유동하는 것을 차단할 수도 있다.
상기한 바와 같은 구조에 의하여, 제어부(170)를 통해 붐 실린더(140)의 붐다운에 의해 라지챔버(142)에서 유출되는 오일을 회수하여 붐업 또는 건설기계(100)의 주행, 붐 실린더, 버킷, 암의 구동력 및 본체(110)의 선회 구동력으로 바로 재사용할 수 있다.
이러한 설정 및 설정 해제는 모바일(400)을 통한 제어부(170)의 제어에 의해 이루어질 수 있다. 또한, 조이스틱(151)의 조작 신호를 통한 제어부(170)의 제어에 의해 이루어질 수 있다.
한편, 제1 라인(L1)과 제5 라인(L5)에는 제3 센서(S3) 및 제4 센서(S4)가 배치될 수 있으며, 제3 센서(S3) 및 제4 센서(S4)는 상시 유압을 측정할 수 있고, 측정된 유압의 측정값을 제어부(170)에 전달할 수 있다.
제3 센서(S3) 및 제4 센서(S4)는 붐 실린더(140)의 유압을 측정하고, 제5 센서(S5)는 축압기(220)의 압력을 측정하고, 제어부는 제3 센서(S3)과 제4 센서(S4)를 통해 붐 실린더(140)의 유압 측정값을 수신하고, 제5 센서(S5)를 통해 축압기(220)의 유압 측정값을 수신한 후 제3 센서(S3)와 제4 센서(S4) 및 제5 센서(S5)로부터 수신된 측정값에 기초하여, 밸브어셈블리(230)의 복수의 라인 중 선택된 라인에 설치되는 어느 하나 이상의 밸브를 개폐하여 오일의 유량을 제어할 수 있다.
이하, 도 6을 참조하여 본 발명의 제1 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템의 동작과정을 간략하게 설명한다.
붐(130)이 붐다운하는 경우, 붐다운밸브(164)를 폐쇄하고, 붐 실린더(140)의 스몰챔버(143)로 오일을 유입하여 붐 실린더(140)의 로드(141)를 하강시키며, 로드(141)의 하강에 따른 라지챔버(142) 내부의 오일을 제1 라인(L1)을 통해 토출시킨다.
제2 라인(L2)에 배치된 AC 밸브(AC)를 개방하여 라지챔버(122)에서 토출되는 오일을 제1 라인(L1) 및 제2 라인(L2)을 통해 축압기(220)로 유입시켜 축압한다.
그리고, 제3 라인(L3)에 배치된 CA 밸브(CA)를 개방하여 축압기(220)에 축압된 오일을 제3 라인(L3) 및 제1 라인(L1)을 통해 붐 실린더(140)의 라지챔버(142)로 유입시켜, 붐다운에 의해 회수된 에너지를 바로 붐업에 사용할 수 있다.
여기서, 축압기(220)에 축압된 오일을 제3 라인(L3) 및 제1 라인(L1)을 통해 붐 실린더(140)의 라지챔버(142)로 유입 시 제2 라인(L2)에 배치되는 AC 밸브(AC)는 폐쇄함으로써 축압기(220)에 축압된 오일을 붐 실린더(140)로만 유입시킬 수 있다.
이때, 붐다운밸브(164)는 잠겨 있기 때문에, 오일이 메인컨트롤밸브(160) 측으로 유동하지 않고, 제1 라인(L1)으로만 토출될 수 있다.
이러한 과정을 통해서, 붐(130)의 붐 에너지를 축압기(220)에 저장할 수 있고, 저장된 붐 에너지를 붐(130)의 붐업에 활용하여 건설기계(100)의 연료를 절감하거나, 성능을 향상시킬 수 있다.
즉, 축압기(220)에 축압된 오일을 즉시 붐(130)의 붐업 동작에 동력을 보조함으로써 에너지를 변환하기 위한 기계식 에너지 변환부 또는/및 전기식 에너지 변환부가 요구되지 않아, 장치의 슬림화가 가능하다.
또한, 엔진(130)의 메인펌프(122)에 의하여 라지챔버라인(144)을 통해 라지챔버(142)로 오일이 유입되는 것에 더하여, 축압기(220)로부터 제3 라인(L3) 및 제1 라인(L1)을 통해 라지챔버(142)로 오일을 유입시키는 등 라지챔버(142)로 오일의 유입량을 증대시켜 붐업 속도를 증가시킬 수 있다.
이때에는, AB 밸브(AB), AR 밸브(AR) 및 붐다운밸브(164)는 폐쇄되고, 제3 라인(L3)에 배치된 CA 밸브(CA)만을 개방하여 오일이 제3 라인(L3) 및 제1 라인(L1)을 통해 라지챔버(142)로만 유입되도록 함으로써 붐업 동작에 필요한 동력을 보조할 수 있다.
(제2 실시예)
도 7은 본 발명의 제2 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템을 나타내는 계통도이다. 도 8은 본 발명의 제2 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템에서 붐의 붐다운 시 라지챔버에서 회수된 오일을 메인펌프로 공급하여 엔진을 구동시켜 건설기계의 주행, 붐 실린더, 버킷, 암의 구동력 및 본체의 선회 구동력으로 사용하는 경우의 오일 유동을 나타내는 계통도이다.
본 발명의 제2 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템은, 축압기에 연결되는 제3 라인이 엔진의 메인펌프에 제9 라인으로 연결되는 것을 제외하고는, 본 발명의 제1 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템과 동일한 구조이므로, 동일한 구성에 대한 중복 설명은 생략하기로 한다.
도 7 및 도 8을 참조하여 설명하면, 본 발명의 제2 실시예에 의한 밸브어셈블리는, 축압기(220)에 일측이 연결되는 제3 라인(L3) 및 제3 라인(L3)과 메인펌프(122)를 연결하는 제9 라인(L9)을 포함할 수 있다.
그리고, CA 밸브(CA)가 제3 라인(L3)에 배치되어 오일의 유량을 제어하여, 제3 라인(L3)에서 제9 라인(L9)을 향해서만 오일을 유동시킬 수 있다.
따라서, 붐(130)이 붐다운하는 경우, 붐다운밸브(164)를 폐쇄하고, 붐 실린더(140)의 스몰챔버(143)로 오일을 유입하여 붐 실린더(140)의 로드(141)를 하강시키며, 로드(141)의 하강에 따른 라지챔버(142) 내부의 오일을 제1 라인(L1)을 통해 토출시킨다.
제2 라인(L2)에 배치된 AC 밸브(AC)를 개방하여 라지챔버(142)에서 토출되는 오일을 제1 라인(L1) 및 제2 라인(L2)을 통해 축압기(220)로 유입시켜 축압할 수 있다.
그리고, 제3 라인(L3)에 배치된 CA 밸브(CA)를 개방하여 축압기(220)에 축압된 오일을 제3 라인(L3) 및 제9 라인(L9)을 통해 메인펌프(122)로 유입시켜, 붐다운에 의해 회수된 에너지로 메인펌프(122)를 통해 엔진(120)을 구동하여 건설기계(100)의 주행, 붐 실린더(140), 버킷, 암의 구동력 및 본체(110)의 선회 구동력에 바로 사용할 수 있다.
여기서, 축압기(220)에 축압된 오일을 제3 라인(L3) 및 제9 라인(L9)을 통해 메인펌프(122)로 유입 시 제2 라인(L2)에 배치되는 AC 밸브(AC)는 폐쇄함으로써 축압기(220)에 축압된 오일을 메인펌프로만 유입시킬 수 있다.
이때, 붐다운밸브(164)는 잠겨 있기 때문에, 오일이 메인컨트롤밸브(160) 측으로 유동하지 않고, 제1 라인(L1)으로만 토출될 수 있다.
이러한 과정을 통해서, 붐(130)의 붐 에너지를 축압기(220)에 저장할 수 있고, 저장된 붐 에너지를 엔진(120)에 제공하여 건설기계(100)의 주행, 붐 실린더(140), 버킷, 암의 구동력 및 본체(110)의 선회 구동력에 사용할 수 있다.
즉, 축압기(220)에 축압된 오일을 즉시 엔진(120)의 동력을 보조함으로써 건설기계(100)의 연료를 절감하거나, 성능을 향상시킬 수 있다.
(제3 실시예)
도 9는 본 발명의 제3 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템을 나타내는 계통도이다. 도 10은 본 발명의 제3 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템에서 붐의 붐다운 시 라지챔버에서 회수된 오일을 축압한 후 라지챔버로 공급하여 붐업하는 경우의 오일 유동을 나타내는 계통도이다. 도 11은 본 발명의 제3 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템에서 붐의 붐다운 시 라지챔버에서 회수된 오일을 메인펌프로 공급하여 엔진을 구동시켜 건설기계의 주행, 붐 실린더, 버킷, 암의 구동력 및 본체의 선회 구동력으로 사용하는 경우의 오일 유동을 나타내는 계통도이다.
본 발명의 제3 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템은, 축압기에 연결되는 제3 라인이 제1 라인에 연결되고, 밸브의 위치 변경 및 밸브가 추가되는 것을 제외하고는, 본 발명의 제2 실시예에 따른 건설기계용 붐 에너지 회수 유압시스템과 동일한 구조이므로, 동일한 구성에 대한 중복 설명은 생략하기로 한다.
도 9 내지 도 11을 참조하여 설명하면, 본 발명의 제3 실시예에 의한 밸브어셈블리는, 제3 라인(L3)이 제1 라인(L1)과 축압기(220)를 연결하고, 제9 라인(L9)이 제3 라인(L3)과 메인펌프(122)를 연결할 수 있다.
그리고, 제1 라인(L1)과 제3 라인(L3)이 연결되는 연결부위에 인접하는 제1 라인(L1)에 배치되어 제1 라인(L1)을 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 제1 CA 밸브(CA1) 및 제9 라인(L9)에 배치되어 제9 라인(L9)을 통해 메인펌프(122)로만 오일을 유동시키고, 오일의 유량을 제어하는 제2 CA 밸브(CA2)를 포함할 수 있다.
붐(130)이 붐다운하는 경우, 붐다운밸브(164)를 폐쇄하고, 붐 실린더(140)의 스몰챔버(143)로 오일을 유입하여 붐 실린더(140)의 로드(141)를 하강시키며, 로드(141)의 하강에 따른 라지챔버(142) 내부의 오일을 제1 라인(L1)을 통해 토출시킨다.
붐다운에 의해 회수된 에너지를 바로 붐업에 사용하는 경우, 도 10에 도시하고 있는 바와 같이, 제2 라인(L2)에 배치된 AC 밸브(AC)를 개방하여 라지챔버(142)에서 토출되는 오일을 제1 라인(L1) 및 제2 라인(L2)을 통해 축압기(220)로 유입시켜 축압한다.
그리고, 제3 라인(L3)에 배치된 제1 CA 밸브(CA)를 개방하여 축압기(220)에 축압된 오일을 제3 라인(L3) 및 제1 라인(L1)을 통해 붐 실린더(140)의 라지챔버(142)로 유입시켜, 붐다운에 의해 회수된 에너지를 바로 붐업에 사용할 수 있다.
여기서, 축압기(220)에 축압된 오일을 제3 라인(L3) 및 제1 라인(L1)을 통해 붐 실린더(140)의 라지챔버(142)로 유입 시 제2 라인(L2)에 배치되는 AC 밸브(AC)는 폐쇄함으로써 축압기(220)에 축압된 오일을 붐 실린더(140)로만 유입시킬 수 있다.
이때, 붐다운밸브(164)는 잠겨 있기 때문에, 오일이 메인컨트롤밸브(160) 측으로 유동하지 않고, 제1 라인(L1)으로만 토출될 수 있다.
이러한 과정을 통해서, 붐(130)의 붐 에너지를 축압기(220)에 저장할 수 있고, 저장된 붐 에너지를 붐(130)의 붐업에 활용하여 건설기계(100)의 연료를 절감하거나, 성능을 향상시킬 수 있다.
한편, 붐다운에 의해 회수된 에너지로 건설기계의 각종 동작에 사용하는 경우, 도 11에 도시하고 있는 바와 같이, 제2 라인(L2)에 배치된 AC 밸브(AC)를 개방하여 라지챔버(142)에서 토출되는 오일을 제1 라인(L1) 및 제2 라인(L2)을 통해 축압기(220)로 유입시켜 축압할 수 있다.
그리고, 제3 라인(L3)에 배치된 제2 CA 밸브(CA2)를 개방하여 축압기(220)에 축압된 오일을 제3 라인(L3) 및 제9 라인(L9)을 통해 메인펌프(122)로 유입시켜, 붐다운에 의해 회수된 에너지로 메인펌프(122)를 통해 엔진(120)을 구동하여 건설기계의 주행, 붐 실린더, 버킷, 암의 구동력 및 본체의 선회 구동력에 바로 사용할 수 있다.
여기서, 축압기(220)에 축압된 오일을 제3 라인(L3) 및 제9 라인(L9)을 통해 메인펌프(122)로 유입 시 제2 라인(L2)에 배치되는 AC 밸브(AC) 및 제1 라인(L1)에 배치되는 제1 CA 밸브(CA1)는 폐쇄함으로써 축압기(220)에 축압된 오일은 메인펌프(122)로만 유입된다.
이때, 붐다운밸브(164)는 잠겨 있기 때문에, 오일이 메인컨트롤밸브(160) 측으로 유동하지 않고, 제1 라인(L1)으로만 토출될 수 있다.
이러한 과정을 통해서, 붐(130)의 붐 에너지를 축압기(220)에 저장할 수 있고, 저장된 붐 에너지를 엔진에 제공하여 건설기계의 주행, 붐 실린더, 버킷, 암의 구동력 및 본체의 선회 구동력에 사용할 수 있다.
본 발명의 제3 실시예에 따른 건설기계용 봄 에너지 회수 유압시스템은, 제3 라인(L3)에 배치되는 제1 CA 밸브(CA1) 또는 제9 라인(L9)에 배치되는 제2 CA 밸브(CA2)를 선택적으로 제어하여 붐(130)의 붐다운 시 발생되는 붐 에너지를 붐업에 사용하거나, 엔진(120)의 동력으로 사용함으로써 작업 효율을 향상시킴과 함께, 연료를 절감하고, 성능을 향상시킬 수 있다.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이러한 수정, 변경 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
Claims (12)
- 오일의 유동에 의해 로드가 승강 작동하고, 라지챔버 및 상기 라지챔버의 상부에 형성되는 스몰챔버를 포함하는 붐 실린더와, 상기 붐 실린더에 연결되어 오일을 축압하는 축압기를 포함하는 축압어셈블리, 및 상기 오일의 유동에 의한 붐 실린더에 의해 붐업/붐다운 구동하는 붐을 포함하고, 상기 오일의 유동을 제어하여 붐다운 시 에너지를 붐다운 시 에너지를 회수하여 재사용하는 건설기계용 붐 에너지 회수 유압시스템에 있어서,상기 붐 실린더의 붐을 붐업/붐다운시키는 메인컨트롤밸브;상기 오일이 유동하는 복수의 라인과, 상기 복수의 라인 중 선택된 라인에 적어도 하나 이상으로 설치되어 오일의 유량을 제어하는 밸브를 포함하는 밸브어셈블리;메인펌프에 샤프트로 연결되어, 붐 실린더에 오일의 유동을 제공하고, 건설기계의 주행과 버킷, 암의 구동력 및 본체의 선회 구동력을 제공하는 엔진; 및조작신호에 기초하여, 오일의 유동을 제어하는 제어부;를 포함하고,상기 붐 실린더의 붐다운에 의해 라지챔버에서 유출되는 오일을 회수하여 바로 재사용하는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
- 청구항 1에 있어서,상기 메인컨트롤밸브는,오일의 유동이 붐 실린더의 라지챔버 또는 스몰챔버로 향하도록 동작하는 스풀과, 상기 스풀에 연결되어, 스풀의 이동에 의해 상기 라지챔버로 오일을 유동시켜 붐을 붐업시키는 붐업밸브라인과, 상기 스풀에 연결되어, 스풀의 이동에 의해 상기 스몰챔버로 오일을 유동시켜 붐을 붐다운시키는 붐다운밸브라인과, 상기 붐업밸브라인에 배치되어, 라지챔버로 오일이 유동하도록 스풀을 제어하는 붐업밸브, 및 상기 붐다운밸브라인에 배치되어, 스몰챔버로 오일이 유동하도록 스풀을 제어하는 붐다운밸브를 포함하는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
- 청구항 2에 있어서,상기 제어부는,상기 붐의 붐업 또는 붐다운 동작을 제어하는 조이스틱에 연결되는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
- 청구항 3에 있어서,상기 제어부는,상기 조이스틱에 연결되어, 조이스틱의 붐업 동작 시 압력 변화를 감지하여 조작 신호를 생성하는 제1 센서, 및 상기 조이스틱에 연결되어, 조이스틱의 붐다운 동작 시 압력 변화를 감지하여 조작 신호를 생성하는 제2 센서에 연결되어 측정값을 수신하고,상기 제1 센서 및 제2 센서에 의해 생성된 조작 신호에 기초하여, 붐업밸브 또는 붐다운밸브의 개폐 여부를 제어하는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
- 청구항 3에 있어서,상기 제어부는,상기 붐 실린더의 유압을 측정하는 제3 및 제4 센서와, 축압기의 압력을 측정하는 제5 센서에 연결되어 측정값을 수신하고,상기 제3 센서와 제4 센서 및 제5 센서로부터 수신된 측정값에 기초하여, 상기 밸브어셈블리의 복수의 라인 중 선택된 라인에 설치되는 어느 하나 이상의 밸브를 개폐하여 오일의 유량을 제어하는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
- 청구항 1에 있어서,상기 밸브어셈블리는,상기 붐 실린더의 라지챔버에 일측이 연결되는 제1 라인과, 상기 제1 라인과 축압기를 연결하는 제2 라인과, 상기 제1 라인과 축압기를 연결하는 제3 라인과, 상기 붐 실린더의 스몰챔버에 일측이 연결되는 제5 라인과, 상기 제1 라인에서 분기되고, 상기 제5 라인에 연결되는 제6 라인과, 상기 제1 라인에서 분기되는 제7 라인, 및 상기 제5 라인 및 제6 라인에 일측이 연결되는 제8 라인을 포함하고,상기 제2 라인에 배치되어 축압기를 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 AC 밸브와, 상기 제3 라인에 배치되어 제1 라인을 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 CA 밸브와, 상기 제6 라인에 배치되어 오일 유량을 제어하는 AB 밸브, 및 축압기와 오일탱크 사이의 유로 상에 배치되어 온오프 방식으로 작동하는 릴리즈 밸브를 포함하는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
- 청구항 6에 있어서,상기 붐의 붐다운 시 제2 라인에 배치된 AC 밸브를 개방하여 라지챔버에서 토출되는 오일을 제1 라인 및 제2 라인을 통해 축압기로 유입시켜 축압하고,상기 제3 라인에 배치된 CA 밸브를 개방하여 축압기에 축압된 오일을 제3 라인 및 제1 라인을 통해 붐 실린더의 라지챔버로 유입시켜, 붐다운에 의해 회수된 에너지를 바로 붐업에 사용하는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
- 청구항 1에 있어서,상기 밸브어셈블리는,상기 붐 실린더의 라지챔버에 일측이 연결되는 제1 라인과, 상기 제1 라인과 축압기를 연결하는 제2 라인과, 상기 축압기에 일측이 연결되는 제3 라인과, 상기 붐 실린더의 스몰챔버에 일측이 연결되는 제5 라인과, 상기 제1 라인에서 분기되고, 상기 제5 라인에 연결되는 제6 라인과, 상기 제1 라인에서 분기되는 제7 라인과, 상기 제5 라인 및 제6 라인에 일측이 연결되는 제8 라인, 및 상기 제3 라인과 메인펌프를 연결하는 제9 라인을 포함하고,상기 제2 라인에 배치되어 축압기를 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 AC 밸브와, 상기 제3 라인에 배치되어 제9라인을 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 CA 밸브와, 상기 제6 라인에 배치되어 오일 유량을 제어하는 AB 밸브, 및 축압기와 오일탱크 사이의 유로 상에 배치되어 온오프 방식으로 작동하는 릴리즈 밸브를 포함하는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
- 청구항 8에 있어서,상기 붐의 붐다운 시 제2 라인에 배치된 AC 밸브를 개방하여 라지챔버에서 토출되는 오일을 제1 라인 및 제2 라인을 통해 축압기로 유입시켜 축압하고,제3 라인에 배치된 CA 밸브를 개방하여 축압기에 축압된 오일을 제3 라인 및 제9라인을 통해 메인펌프로 유입시켜, 붐다운에 의해 회수된 에너지로 메인펌프를 통해 엔진을 구동시켜 건설기계의 주행, 붐 실린더, 버킷, 암의 구동력 및 본체의 선회 구동력에 바로 사용하는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
- 청구항 1에 있어서,상기 밸브어셈블리는,상기 붐 실린더의 라지챔버에 일측이 연결되는 제1 라인과, 상기 제1 라인과 축압기를 연결하는 제2 라인과, 상기 제1 라인과 축압기를 연결하는 제3 라인과, 상기 붐 실린더의 스몰챔버에 일측이 연결되는 제5 라인과, 상기 제1 라인에서 분기되고, 상기 제5 라인에 연결되는 제6 라인과, 상기 제1 라인에서 분기되는 제7 라인과, 상기 제5 라인 및 제6 라인에 일측이 연결되는 제8 라인, 및 상기 제3 라인과 메인펌프를 연결하는 제9 라인을 포함하고,상기 제2 라인에 배치되어 축압기를 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 AC 밸브와, 상기 제1 라인과 제3 라인이 연결되는 연결부위에 인접하는 제1 라인에 배치되어 제1 라인을 향해서만 오일을 유동시키고, 오일의 유량을 제어하는 제1 CA 밸브와, 상기 제9 라인에 배치되어 제9 라인을 통해 펌프로만 오일을 유동시키고, 오일의 유량을 제어하는 제2 CA 밸브와, 상기 제6 라인에 배치되어 오일 유량을 제어하는 AB 밸브, 및 축압기와 오일탱크 사이의 유로 상에 배치되어 온오프 방식으로 작동하는 릴리즈 밸브를 포함하는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
- 청구항 10에 있어서,상기 붐의 붐다운 시 제2 라인에 배치된 AC 밸브를 개방하여 라지챔버에서 토출되는 오일을 제1 라인 및 제2 라인을 통해 축압기로 유입시켜 축압하고,제9 라인에 배치된 제2 CA 밸브를 폐쇄하고, 상기 제1 라인과 제3 라인이 연결되는 연결부위에 인접하는 제1 라인에 배치된 제1 CA 밸브를 개방하여 축압기에 축압된 오일을 제3 라인 및 제1 라인을 통해 붐 실린더의 라지챔버로 유입시켜, 붐다운에 의해 회수된 에너지를 바로 붐업에 사용하는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
- 청구항 10에 있어서,상기 붐의 붐다운 시 제2 라인에 배치된 AC 밸브를 개방하여 라지챔버에서 토출되는 오일을 제1 라인 및 제2 라인을 통해 축압기로 유입시켜 축압하고,상기 제1 라인과 제3 라인이 연결되는 연결부위에 인접하는 제1 라인에 배치된 제1 CA 밸브를 폐쇄하고, 제9 라인에 배치된 제2 CA 밸브를 개방하여 축압기에 축압된 오일을 제3 라인 및 제9라인을 통해 메인펌프로 유입시켜, 붐다운에 의해 회수된 에너지로 메인펌프를 통해 엔진을 구동시켜 건설기계의 주행, 붐 실린더, 버킷, 암의 구동력 및 본체의 선회 구동력에 바로 사용하는 것을 특징으로 하는 건설기계용 붐 에너지 회수 유압시스템.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20220065458 | 2022-05-27 | ||
KR10-2022-0065458 | 2022-05-27 | ||
KR10-2023-0067001 | 2023-05-24 | ||
KR1020230067001A KR20230165717A (ko) | 2022-05-27 | 2023-05-24 | 건설기계용 붐 에너지 회수 유압시스템 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023229409A1 true WO2023229409A1 (ko) | 2023-11-30 |
Family
ID=88919784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/007217 WO2023229409A1 (ko) | 2022-05-27 | 2023-05-25 | 건설기계용 붐 에너지 회수 유압시스템 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023229409A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040083168A (ko) * | 2003-03-21 | 2004-10-01 | 학교법인 울산공업학원 | 유압에너지 회수 및 재생장치 |
JP2010230039A (ja) * | 2009-03-26 | 2010-10-14 | Caterpillar Sarl | 流体圧回路 |
JP2017057865A (ja) * | 2015-09-14 | 2017-03-23 | 株式会社神戸製鋼所 | 作業機械の油圧駆動装置 |
JP2019031989A (ja) * | 2017-08-04 | 2019-02-28 | コベルコ建機株式会社 | 建設機械 |
JP6752963B2 (ja) * | 2017-03-29 | 2020-09-09 | 日立建機株式会社 | 作業機械 |
-
2023
- 2023-05-25 WO PCT/KR2023/007217 patent/WO2023229409A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040083168A (ko) * | 2003-03-21 | 2004-10-01 | 학교법인 울산공업학원 | 유압에너지 회수 및 재생장치 |
JP2010230039A (ja) * | 2009-03-26 | 2010-10-14 | Caterpillar Sarl | 流体圧回路 |
JP2017057865A (ja) * | 2015-09-14 | 2017-03-23 | 株式会社神戸製鋼所 | 作業機械の油圧駆動装置 |
JP6752963B2 (ja) * | 2017-03-29 | 2020-09-09 | 日立建機株式会社 | 作業機械 |
JP2019031989A (ja) * | 2017-08-04 | 2019-02-28 | コベルコ建機株式会社 | 建設機械 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012169676A1 (ko) | 건설기계용 유압시스템 | |
WO2013051741A1 (ko) | 건설기계용 우선 제어시스템 | |
WO2018021642A1 (ko) | 유압식 타격 기기 및 이를 포함하는 건설 장비 | |
WO2012070703A1 (ko) | 건설기계용 유량 제어밸브 | |
WO2014014146A1 (ko) | 건설기계용 유량 컨트롤밸브 | |
WO2014208828A1 (ko) | 플로팅기능을 갖는 건설기계용 유압회로 및 플로팅기능 제어방법 | |
WO2014112668A1 (ko) | 건설기계의 유량 제어장치 및 제어방법 | |
WO2013100458A1 (ko) | 건설기계의 붐 실린더 제어회로 | |
WO2015111775A1 (ko) | 건설기계용 재생유량 제어장치 및 그 제어방법 | |
WO2015102120A1 (ko) | 유압제어장치 및 이를 구비한 건설기계 | |
WO2012153880A1 (ko) | 하이브리드 액츄에이터의 급정지 장치가 구비되는 하이브리드 굴삭기 | |
WO2016104832A1 (ko) | 건설기계의 선회 제어장치 및 그 제어방법 | |
WO2016043365A1 (ko) | 건설기계용 유압회로 | |
WO2017094986A1 (ko) | 건설기계의 유압 시스템 및 유압 제어 방법 | |
WO2016006815A1 (ko) | 천공작업 능률 개선과 내구성을 향상시킨 변속이 가능한 오거 | |
WO2015064782A1 (ko) | 플로트 기능을 구비한 건설장비용 유압장치 | |
WO2014069702A1 (ko) | 건설기계의 선회 제어장치 및 그 제어방법 | |
WO2018048291A1 (ko) | 건설기계의 제어 시스템 및 건설기계의 제어 방법 | |
WO2014098284A1 (ko) | 플로팅 기능이 구비된 건설기계 | |
WO2023229409A1 (ko) | 건설기계용 붐 에너지 회수 유압시스템 | |
WO2017094985A1 (ko) | 건설기계의 유압 제어 장치 및 유압 제어 방법 | |
WO2014115907A1 (ko) | 건설기계의 유량 제어장치 및 제어방법 | |
WO2015099437A1 (ko) | 건설기계의 유압시스템 및 유압시스템의 제어방법 | |
WO2016175352A1 (ko) | 건설기계의 유량 제어장치 및 제어방법 | |
WO2014081053A1 (ko) | 건설기계의 우선 기능 제어장치 및 그 제어방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23812183 Country of ref document: EP Kind code of ref document: A1 |