WO2023207412A1 - 波束管理方法、用户装置、基站、存储介质及程序产品 - Google Patents
波束管理方法、用户装置、基站、存储介质及程序产品 Download PDFInfo
- Publication number
- WO2023207412A1 WO2023207412A1 PCT/CN2023/082226 CN2023082226W WO2023207412A1 WO 2023207412 A1 WO2023207412 A1 WO 2023207412A1 CN 2023082226 W CN2023082226 W CN 2023082226W WO 2023207412 A1 WO2023207412 A1 WO 2023207412A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement information
- information
- beam measurement
- reporting
- target
- Prior art date
Links
- 238000007726 management method Methods 0.000 title claims abstract description 75
- 238000005259 measurement Methods 0.000 claims abstract description 726
- 238000012360 testing method Methods 0.000 claims abstract description 89
- 230000005540 biological transmission Effects 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 30
- 238000004590 computer program Methods 0.000 claims description 18
- 238000010586 diagram Methods 0.000 description 10
- 238000007781 pre-processing Methods 0.000 description 10
- 230000009286 beneficial effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0695—Hybrid systems, i.e. switching and simultaneous transmission using beam selection
- H04B7/06952—Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/318—Received signal strength
- H04B17/328—Reference signal received power [RSRP]; Reference signal received quality [RSRQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/336—Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
Definitions
- the present application relates to the field of communication technology, and in particular, to a beam management method, user device, base station, computer storage medium and computer program product.
- Embodiments of the present application provide a beam management method, user device, base station, computer storage medium, and computer program product, which can reduce beam reporting overhead.
- inventions of the present application provide a beam management method, which is applied to a receiving device.
- the beam management method includes:
- the target measurement information is sent to the transmitting device, so that the transmitting device predicts the optimal beam result based on the target measurement information.
- inventions of the present application also provide a beam management method applied to a transmitting device.
- the beam management method includes:
- Receive target measurement information sent by the receiving device wherein the target measurement information is selected from a plurality of beam measurement information by the receiving device according to the beam reporting instruction information, and the beam measurement information is obtained by the receiving device.
- the device measures multiple reference signal resources to obtain;
- the optimal beam result is predicted based on the target measurement information.
- embodiments of the present application further provide a user device, including: at least one processor; at least one memory for storing at least one program; when at least one of the programs is executed by at least one of the processors, the The beam management method as described in the first aspect.
- embodiments of the present application further provide a base station, including: at least one processor; at least one memory for storing at least one program; when at least one of the programs is executed by at least one of the processors, the following is implemented: The beam management method described in the second aspect.
- embodiments of the present application further provide a computer-readable storage medium in which a processor-executable program is stored, and when the processor-executable program is executed by the processor, it is used to implement the aforementioned Beam management methods.
- embodiments of the present application further provide a computer program product.
- the computer program or the computer instructions are stored in a computer-readable storage medium.
- the processor of the computer device reads the computer program from the computer-readable storage medium.
- a computer program or the computer instructions the processor executes the computer program or the computer instructions, so that the computer device performs the beam management method as described above.
- the receiving device obtains multiple beam measurement information by measuring the reference signal resources configured for the test beam from the transmitting device, and can obtain multiple beam measurement information based on the beam reporting instruction information from the transmitting device.
- Select the target measurement information that needs to be reported to the transmitting device that is, you do not need to send all the measured beam measurement information to the transmitting device, but select part of the beam measurement information from all the beam measurement information for transmission, so it can reduce Beam reporting overhead reduces uplink transmission pressure, and part of the reported beam measurement information can also assist the transmitting device in beam prediction. It will not affect the beam prediction performance of the transmitting device, and is beneficial to reducing beam training overhead, measurement power consumption and processing delay. time; therefore, in general, the beam reporting overhead on the receiving device side and the beam prediction performance on the transmitting device side can be taken into consideration, thereby filling the technical gaps in related methods.
- Figure 1 is a schematic diagram of an implementation environment for executing a beam management method provided by an embodiment of the present application
- Figure 2 is a flow chart of a beam management method provided by an embodiment of the present application.
- Figure 3 is a schematic diagram of selecting and obtaining target measurement information in the beam management method provided by an embodiment of the present application
- Figure 4 is a schematic diagram of selecting and obtaining target measurement information in a beam management method provided by another embodiment of the present application.
- Figure 5 is a schematic diagram of selecting and obtaining target measurement information in a beam management method provided by another embodiment of the present application.
- Figure 6 is a schematic diagram of selecting and obtaining target measurement information in a beam management method provided by another embodiment of the present application.
- Figure 7 is a flow chart for selecting and obtaining target measurement information in the beam management method provided by an embodiment of the present application.
- Figure 8 is a flow chart of binding multiple beam measurement information to a neighborhood subset index in a beam management method provided by an embodiment of the present application
- Figure 9 is a schematic diagram of selecting and obtaining target measurement information in a beam management method provided by another embodiment of the present application.
- Figure 10 is a schematic diagram of selecting and obtaining target measurement information in a beam management method provided by another embodiment of the present application.
- Figure 11 is a flow chart for selecting and obtaining target measurement information in a beam management method provided by another embodiment of the present application.
- Figure 12 is a flow chart for dividing multiple beam measurement information into test beam subsets in a beam management method provided by another embodiment of the present application.
- Figure 13 is a flow chart of a beam management method provided by another embodiment of the present application.
- Figure 14 is a schematic diagram of a user device provided by an embodiment of the present application.
- Figure 15 is a schematic diagram of a base station provided by an embodiment of the present application.
- the beam management method of one embodiment is applied to a receiving device.
- the beam management method includes: receiving beam reporting indication information sent by the transmitting device and multiple test beams configured with reference signal resources; measuring the multiple reference signal resources to obtain Multiple beam measurement information; select the target measurement information from multiple beam measurement information according to the beam reporting instruction information; send the target measurement information to the transmitting device, so that the transmitting device predicts the optimal beam result based on the target measurement information.
- the receiving device obtains multiple beam measurement information by measuring the reference signal resources configured for the test beam from the transmitting device, and can obtain multiple beam measurement information from the multiple beam measurement information based on the beam reporting instruction information from the transmitting device.
- the target measurement information that needs to be reported to the transmitting device that is, you do not need to send all the measured beam measurement information to the transmitting device, but select part of the beam measurement information from all the beam measurement information for transmission, so it can reduce Beam reporting overhead reduces uplink transmission pressure, and part of the reported beam measurement information can also assist the transmitting device in beam prediction. It will not affect the beam prediction performance of the transmitting device, and is beneficial to reducing beam training overhead, measurement power consumption and processing delay. time; therefore, in general, the beam reporting overhead on the receiving device side and the beam prediction performance on the transmitting device side can be taken into consideration, thereby filling the technical gaps in related methods.
- Figure 1 is a schematic diagram of an implementation environment for executing a beam management method provided by an embodiment of the present application.
- the implementation environment includes a user device 110 and a base station 120 , where wireless signals can be sent and received between the base station 120 and the user device 110 .
- the relative positions of the base station 120 and the user device 110 can be set accordingly in specific application scenarios.
- the user device 110 can move along the radiation sphere formed by the base station 120 when radiating signals to the outside. That is to say, if There are multiple user devices 110 and different user devices 110 are configured in the above manner, so that wireless signals sent by the base station 120 can be received at different spatial locations. It is worth noting that the spatial locations here can be different geographical conditions.
- the user device 110 may be called an access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal , wireless communications equipment, user agent or user device.
- the user device 110 may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, 5G networks or terminal devices in future 5G or higher networks, etc., are not specifically limited in this embodiment.
- the implementation environment used to implement the beam management method can be applied under the 3rd Generation Partnership Project (3GPP) organizational structure.
- 3GPP 3rd Generation Partnership Project
- the 3GPP organization has developed a set of beam management procedures for adjusting high The beam direction of the frequency band and maintain a suitable transmitting and receiving beam pair, including beam scanning, beam measurement, beam reporting and beam indication, etc.
- the base station 120 transmits beams at a set of predetermined intervals and directions.
- the user device 110 measures the reference signal resources carried on the transmit beam and reports the beam quality information to the base station 120.
- the base station 120 Determine the optimal beam and establish a directional communication link.
- the base station configures a channel state information instance CSI-ResourceConfig for each user device 110 Or multiple reference signal resource settings, configure one or more CSI report settings for each user device 110 in the high-level parameter CSI-ReportConfig, where the CSI-ResourceConfig configures reference signal resources for channel measurement or interference measurement, including Channel state information reference signal (CSI-Reference Symbol, CSI-RS) resources for channel measurement, synchronization signal block (Synchronization Signal and PBCH Block, SSB) resources and CSI-IM resources for interference measurement;
- CSI-ReportConfig configuration Parameters related to CSI reporting are included, including codebook type, frequency domain reporting granularity, measurement limit configuration, and CSI-related feedback quantities, such as layer indication, CSI-RS Resource Indicator (CRI), SSB Resource Index (SSB) Resource Indicator (SSBRI), physical layer reference signal receiving power L1-RSRP (Reference Signal Receiving Power) and physical layer signal-to-interference plus noise ratio L1-SINR
- NR uses L1-RSRP as a reporting parameter for beam measurement, and completes the reporting of beam-related information within the framework of CSI feedback.
- the user device 110 needs to report the reference signal resource index CRI/SSBRI and reference signal reception.
- Power RSRP where CRI/SSBRI represents the index of the CSI-RS resource selected by the user device 110 in the resource set, and RSRP represents the quality information of the measured beam. It should be noted that the number of measurement reference signal resources and the number of RSRPs that can be reported in one reporting setting depends on the capabilities of the user device 110, or the settings can be selectively adjusted according to actual application scenarios.
- beam scanning may refer to a process in which the base station 120 or the user device 110 sequentially uses different simulated beams to cover a spatial area.
- the base station 120 or the user device 110 sequentially transmits beams from the entire codebook or a subset of the codebook to find good transceiver beam pairs for data and control channels; specifically, during the transmitter beam scanning process , the base station 120 may, but is not limited to, configure a high-layer parameter resource set NZP-CSI-RS-ResourceSet.
- Each resource set contains multiple CSI-RS or/and SSB resources transmitted using different transmit beams.
- the user device 110 may use fixed receive beams.
- Receive and measure CSI-RS or/and SSB resources to complete the transmitter beam measurement process in addition, the user device 110 can use a polling mode to receive the test beam sent by the base station 120, that is, for the base station 120, for the beam
- the managed CSI-RS resources or sets are repeatedly transmitted multiple times, and the user equipment 110 uses different receiving beams to receive, thereby realizing scanning of the receiving beams.
- the base station 120 configures a high-level parameter resource set NZP-CSI-RS-ResourceSet, each resource set contains multiple CSI-RS or/and SSB resources, in this case, the user device 110 may, but is not limited to, use different receiving beams to receive and measure CSI-RS or/and SSB resources to achieve scanning of receiving beams.
- the base station 120 may use a polling method to transmit test beams as needed, that is, configure multiple CSI-RS resources or/and SSB resource sets that use different transmission beams to transmit, so as to facilitate scanning of transmission beams.
- the user equipment 110 at least has the ability to receive multiple test beams configured with reference signal resources and beam reporting indication information sent by the base station 120, measure the multiple reference signal resources to obtain multiple beam measurement information, and obtain multiple beam measurement information from the multiple beam measurement information. Select functions such as obtaining target measurement information and sending it to the base station 120, where the target measurement information can enable the base station 120 to predict optimal beam results based on the target measurement information.
- the base station 120 at least has functions such as beam management based on preset operating logic or beam management based on operator control.
- the base station 120 at least has the function of predicting and managing optimal beam results, that is, it can perform beam management based on preset operating logic or based on operator control.
- the user device 110 Under the control of the operator, the user device 110 sends beam reporting instruction information and multiple test beams configured with reference signal resources, receives the target measurement information sent by the user device 110, and predicts the optimal beam results based on the target measurement information. Function, wherein the target measurement information is selected by the user equipment 110 from multiple beam measurement information according to the beam reporting instruction information, and the beam measurement information is obtained by the user equipment 110 measuring multiple reference signal resources.
- the base station 120 can be a general mobile communication base station or a millimeter wave AAS base station, which is not specifically limited here.
- the above functions of the base station 120 and the user device 110 can be applied in different application scenarios, and are not limited here.
- Figure 2 is a flow chart of a beam management method provided by an embodiment of the present application.
- the beam management method is applied to a receiving device, such as the user device 110 in the embodiment shown in Figure 1.
- the beam management method may include but is not limited to step S110 to step S140.
- Step S110 Receive the beam reporting instruction information sent by the transmitting device and multiple test beams configured with reference signal resources.
- the receiving device in this embodiment may be, but is not limited to, the user device 110 in the embodiment shown in FIG. 1
- the transmitting device in this embodiment may be, but is not limited to, the base station in the embodiment shown in FIG. 1 120;
- those skilled in the art can choose to set up a corresponding transmitting device or receiving device according to the actual application scenario, which is not limited in this embodiment.
- the user device is used as the receiving device and the base station is used as the transmitting device.
- the target measurement information that needs to be sent to the base station is selected based on the reference signal resources and the beam reporting indication information, so as to achieve the effect of reducing the beam reporting overhead.
- the transmission method, number and direction of the test beams of the base station are determined by the preset operating logic or configured based on the control of the operator, and will not be described in detail here; however, no matter how the base station sends the test beam to the user device, Test beams, user equipment can perform subsequent steps based on the received beam reporting indication information and multiple test beams configured with reference signal resources.
- the specific execution methods can be multiple, and the specific implementation methods will be gradually described below. .
- the multiple test beams can be different from each other to simulate different beam scanning situations, or they can be the same to simulate different scanning situations of the same beam. That is to say, the specific test The number and type of beams can be set according to the actual application scenario and are not limited here.
- reference signal resources include at least one of the following:
- Synchronization signal block SSB resource Synchronization signal block SSB resource.
- the configured reference signal resources may be CSI-RS resources or/and SSB resources.
- the beam reporting indication information includes at least one of the following:
- Instruction information for instructing to report beam measurement information that meets a preset threshold condition includes a preset quality threshold condition or a preset quality ratio threshold condition;
- Instruction information used to indicate reporting beam measurement information from multiple dimensions is
- the instruction information is used to indicate the number of beam measurement information to be reported, the instruction information is used to indicate the reporting of beam measurement information that satisfies the preset threshold condition, and the instruction information is used to instruct the reporting of the beam measurement information that satisfies the preset neighborhood factor condition.
- the instruction information used to instruct the reporting of beam measurement information that satisfies the preset neighborhood subset index condition, and the instruction information used to instruct the reporting of beam measurement information from multiple dimensions can be used for instructions respectively, or two of them can be used. or more are combined for indication, which is not limited here; the specific application scenarios of each indication information will be explained step by step in the following embodiments and will not be described again here.
- the indication information for indicating the number of beam measurement information to be reported includes at least one of the following:
- Indication information used to indicate the proportional coefficient for reporting beam measurement information.
- the absolute number refers to the actual number indicating the reported beam measurement information
- the proportional coefficient refers to the ratio of the actual number indicating the reported beam measurement information to the number of all beam measurement information, both of which are used to indicate the reported beam measurement.
- Indication information for the number of information it should be noted that in actual application scenarios, the absolute number of beam measurement information to be reported or/and the proportional coefficient to indicate the beam measurement information to be reported can be modified in real time according to needs, that is, it is dynamically adjustable. Can be more suitable for more application scenarios.
- Step S120 Measure multiple reference signal resources to obtain multiple beam measurement information.
- step S110 since the user equipment has obtained multiple test beams configured with reference signal resources in step S110, multiple reference signal resources can be measured in step S120 to obtain multiple beam measurement information, so as to facilitate subsequent steps.
- the required target measurement information is selected from multiple beam measurement information according to the beam reporting instruction information.
- the user equipment can measure multiple reference signal resources in various ways, which are not limited here. For example, measurement is performed according to a preset measurement program. When the program detects that multiple reference signal resources are received, multiple reference signal resources are measured based on the preset measurement program to obtain multiple beam measurement information; another example is , the operator sets the sensing device to sense the received reference signal resources. When the sensing device prompts that the reference signal resources are received, it means that the test beam is received, so that multiple reference signal resources of multiple test beams can be processed. Measure to obtain multiple beam measurement information, etc.
- the beam measurement information includes at least one of the following:
- test signal received power may be specifically the physical layer reference signal received power L1-RSRP, or may be specifically the physical layer signal-to-interference-to-noise ratio L1-SINR, etc., which is not limited here.
- Step S130 Select the target measurement information from multiple beam measurement information according to the beam reporting instruction information.
- the user equipment can further perform multiple beam measurement information based on the received beam reporting indication information in step S130. Filter to obtain target measurement information that meets the requirements, so that the target measurement information can be sent to the base station in subsequent steps to achieve the effect of reducing beam reporting overhead.
- Step S130 may also include but is not limited to step S150.
- Step S150 Send the index information of the reference signal resources configured in the target beam to the transmitting device.
- the target beam is a test beam corresponding to the target measurement information.
- the base station by sending the index information of the reference signal resource configured in the test beam corresponding to the target measurement information to the base station, the base station can perform beam prediction while receiving the index information and the target measurement information at the same time, which is beneficial to the base station according to the The index information assists in determining the specific content of the optimal beam result, thereby improving the beneficial effect of the base station on beam prediction.
- step S130 further explains step S130.
- step S130 may include but is not limited to step S131.
- Step S131 includes at least the following: one:
- the plurality of beam measurement information are sorted from high quality to low quality to obtain a first measurement information sequence, and according to the indication information used to indicate the number of reported beam measurement information, in the first measurement information Starting from the first beam measurement information in the sequence, a first preset number of beam measurement information is selected in order as the target measurement information.
- the sorted first measurement information sequence can be obtained, and the high and low quality of each beam measurement information in the first measurement information sequence can be obtained.
- the resolution is performed in sequence, so in the first measurement information sequence, a first preset number of beam measurement information can be selected in sequence starting from the first beam measurement information as the target measurement information, and the selected target measurement information is Multiple beam measurement information of relatively high quality; understandably, this part of beam measurement information has a better effect in assisting the base station in beam prediction, and is sufficient to assist the base station in beam prediction, so there is no need to send other information to the base station.
- beam measurement information thereby reducing beam reporting overhead and ensuring that the base station has stable and reliable beam prediction performance.
- the first preset number may be indicated by the indication information used to indicate the number of beam measurement information to be reported, and the specific indication method may be specifically set according to the situation by the indication information used to indicate the number of beam measurement information reported.
- the indication information used to indicate the number of beam measurement information to be reported may indicate a specific value as the first preset number, or may be local content for the beam measurement information to be reported (such as The number of areas), etc. is not limited here; for another example, when the number of beam measurement information to be reported is indirectly indicated, the indication information used to indicate the number of beam measurement information to be reported may indicate an indirect number associated with the first preset number.
- the parameter may be, but is not limited to, the reporting ratio parameter. Since the user equipment can determine the number of measured multiple beam measurement information, the product of the reporting ratio parameter and the number of measured multiple beam measurement information is calculated. , that is, the number of beam measurement information to be reported can be obtained.
- multiple beam measurement information is divided into a first preset number of beam information groups according to the instruction information indicating the number of beam measurement information to be reported, and the highest quality beam information group is selected from each beam information group.
- the beam measurement information is used as the target measurement information;
- the beam measurement information with the highest quality in each beam information group can be selected separately, that is to say, it is equivalent to selecting from Select one beam measurement information with the highest quality from each of the first preset number of beam information groups, and finally select the first preset number of higher quality beam measurement information as the target measurement information; understandably, this part of the beam
- the measurement information has a good effect in assisting the base station in beam prediction and is sufficient to assist the base station in beam prediction. Therefore, there is no need to send other beam measurement information to the base station, thereby reducing the beam reporting overhead and ensuring that the base station has stable and reliable performance. Beam prediction performance.
- the plurality of beam measurement information is sorted from high quality to low quality to obtain the second measurement information sequence, and according to the user For indication information indicating the number of beam measurement information to be reported, in the second measurement information sequence, a first preset number of beam measurement information is sequentially selected starting from the first beam measurement information as the target measurement information;
- the ratio of the two adjacent beam measurement information of the beam measurement information can also be used to indirectly characterize the quality of the beam measurement information. Therefore, based on the corresponding ratio of the two adjacent beam measurement information, multiple The beam measurement information is sorted from high quality to low quality to obtain the second measurement information sequence. The sorted second measurement information sequence can be obtained. Therefore, in the second measurement information sequence, the first beam measurement information can be sequenced in sequence. Select the first preset number of beam measurement information as the target measurement information. The selected target measurement information is multiple beam measurement information with relatively high quality. It can be understood that this part of the beam measurement information assists the base station in performing beam prediction. The effect is good, and it is enough to assist the base station in beam prediction. Therefore, there is no need to send other beam measurement information to the base station, which can reduce the beam reporting overhead and ensure that the base station has stable and reliable beam prediction performance.
- the sorting methods of the second measurement information sequence and the first measurement information sequence do not affect each other. That is to say, the two can be They may be the same or they may be different. They are only related to specific grouping references and are not subject to any limitation here. The same applies to the new measurement information sequences appearing in the following embodiments.
- a first preset number of beam measurement information is randomly selected from a plurality of beam measurement information as the target measurement information according to the indication information indicating the number of beam measurement information to be reported.
- a first preset number of beam measurement information is randomly selected from the plurality of beam measurement information as the target measurement information. It can be understood that this part of the beam measurement information The information is enough to assist the base station in beam prediction, so there is no need to send other beam measurement information to the base station, which can reduce beam reporting overhead and ensure that the base station has stable and reliable beam prediction performance.
- the first preset number of beam measurement information there can be multiple ways of randomly selecting the first preset number of beam measurement information, which are not limited here. For example, after each time one is randomly selected from multiple beam measurement information, the next one is randomly selected from the remaining multiple beam measurement information in the same way, and so on, and finally the first preset number is obtained by random selection. Beam measurement information; for another example, a first preset number of beam measurement information is randomly selected from a plurality of beam measurement information only once.
- a first preset number of beam measurement information corresponding to the preset reference signal resource index is selected from the plurality of beam measurement information as Target measurement information.
- the first predetermined reference signal resource index corresponding to the preset reference signal resource index can be selected from the plurality of beam measurement information according to the indication information indicating the number of beam measurement information to be reported. Assuming a certain number of beam measurement information as target measurement information, that is to say, the beam measurement information corresponding to the target reference signal resource index can be selected and uploaded as target measurement information. It is understandable that this part of the beam measurement information is enough. Beam prediction is performed on the auxiliary base station, so there is no need to send other beam measurement information to the base station, which can reduce beam reporting overhead and ensure that the base station has stable and reliable beam prediction performance.
- predefined reference signal resource index may be a predefined reference signal resource index, or may be a fixedly set reference signal resource index, which is not limited here.
- this embodiment considers reporting the first multiple transmit beams with larger L1-RSRP or L1-SINR, or the first multiple transmit beams with larger L1-RSRP or L1-SINR ratios of adjacent reference signals, that is, the user equipment Only beam measurement information with good beam quality or large changes in adjacent beam quality needs to be reported to reduce reporting overhead.
- the base station first uses different transmit beams to transmit the configured M reference signals and/or proportional coefficients ⁇ (0 ⁇ 1) and/or the number of reported beams K ( 1 ⁇ K ⁇ M), where the reference signal is used to send beam quality measurement content, the proportion coefficient ⁇ is used to dynamically adjust the number of reported beam measurement information, and K is used to indicate the number of beam measurement information or beam measurements that need to be reported by the user device information interval.
- the proportional coefficient ⁇ and/or the number of reported beams K is not configured or is defaulted, it means that the user equipment needs to report all beam measurement information or fall back to the traditional reporting method.
- each " ⁇ " in Figure 3 represents a test beam, and the user device only reports the first few beams with better beam quality, where the beam quality information in Figure 3 is specific Presented as L1-RSRP, to avoid redundancy, it is simply recorded as "power" in Figure 3.
- the measured beam quality information L1-RSRP is sorted from large to small, that is, the "power strength" is determined as shown in Figure 3.
- Beam and select the first N beam quality information with larger values, where or or K, and Represents the upward rounding sign and the downward rounding sign respectively. Then, the user equipment chooses to report the reference signal resource index CRI/SSBRI and beam quality information corresponding to these N beams to the base station.
- the user equipment reports only the first multiple beams with better beam quality.
- the user equipment obtains M pieces of beam quality information (L1-RSRP or L1-SINR) after measuring M reference signals transmitted by different transmission beams. Then, the M pieces of beam quality information are divided into multiple beam groups in order, and the number of reference signals contained in each beam group is K. The user equipment compares the size of the beam quality information in each beam group, and reports the maximum beam quality information in each beam group and the corresponding reference signal resource index CRI/SSBRI to the base station.
- M pieces of beam quality information L1-RSRP or L1-SINR
- the user device randomly reports multiple beams.
- the user equipment randomly selects N pieces of beam quality information (L1-RSRP or L1-SINR) after measuring M reference signals transmitted by different transmission beams, where or or K, and Represents the upward rounding sign and the downward rounding sign respectively. Then, the user equipment reports the reference signal resource index CRI/SSBRI and beam quality information corresponding to these N beams to the base station.
- N pieces of beam quality information L1-RSRP or L1-SINR
- the user device reports multiple beams with fixed indices.
- the user equipment measures M reference signals transmitted by different transmission beams, it selects N pieces of beam quality information (L1-RSRP or L1-SINR) corresponding to the predefined or fixed reference signal resource index, where or or K, and Represents the upward rounding sign and the downward rounding sign respectively.
- the user equipment reports the reference signal resource index CRI/SSBRI and beam quality information corresponding to these N beams to the base station.
- each " ⁇ " in Figure 4 represents a test beam
- the user device only reports some beam pairs whose beam quality changes rapidly, where the beam quality information in Figure 4 is specific Presented as L1-RSRP, to avoid redundancy, it is simply recorded as "power" in Figure 4.
- the user equipment measures M reference signals transmitted by different transmission beams, it calculates the ratio of the beam quality information L1-RSRP of the adjacent reference signals and sorts them from large to small, as shown in Figure 4 To determine "the adjacent beam power ratio is larger than the beam”, select the top N beam quality information with a larger ratio, where or or K, and Represents the upward rounding sign and the downward rounding sign respectively. Then, the user equipment chooses to report the reference signal resource index CRI/SSBRI and beam quality information corresponding to these N beams to the base station.
- the base station uses the reference signal resource index and/or beam quality information reported by the user device as input to the AI model to perform AI-based beam prediction and infer the optimal transceiver beam pair, or the base station interpolates the beam measurement information reported by the user device. , zero padding, noise reduction, dimensionality enhancement and other data preprocessing to match the input of the AI model and improve the network's robustness to noise. Based on the reference signal resource index and/or beam quality information after data preprocessing, the base station then Perform AI-based beam prediction and reason about optimal transmit and receive beam pairs. Compared with measuring and reporting all reference signals, the technical solution of this embodiment can effectively reduce the reporting overhead, and balance the reporting overhead and beam prediction performance by dynamically adjusting the proportional coefficient ⁇ or the number of reporting beams K.
- step S130 is further described.
- the beam reporting indication information includes indication information indicating the number of beam measurement information to be reported and indication information indicating reporting of beam measurement information that satisfies the preset threshold condition.
- the indication information used to indicate the number of beam measurement information to be reported includes indication information used to indicate the minimum preset number of beam measurement information to be reported.
- Step S130 may include but is not limited to step S132.
- Step S132 may include at least one of the following:
- the instruction information for instructing to report the beam measurement information that satisfies the preset quality threshold condition select the beam measurement information whose quality is greater than the first preset threshold from the plurality of beam measurement information as the target measurement information.
- the beam measurement information whose quality is greater than the first preset threshold is selected from the plurality of beam measurement information through the preset quality threshold condition. Since the first preset threshold is a set value that meets the quality requirements, it can It is determined that the beam measurement information whose quality is greater than the first preset threshold meets the requirements, so that this part of the beam measurement information whose quality is greater than the first preset threshold can be used as the target measurement information; it can be understood that the quality of this part of the beam measurement information is relatively high , and is enough to assist the base station in beam prediction, so there is no need to send other beam measurement information to the base station, thereby reducing beam reporting overhead and ensuring that the base station has stable and reliable beam prediction performance.
- the instruction information for instructing to report the beam measurement information that satisfies the preset quality ratio threshold condition select two adjacent beam measurement information whose ratio is greater than the second preset threshold. Beam measurement information is used as target measurement information.
- the beam measurement information whose quality is greater than the second preset threshold is selected from the multiple beam measurement information through the preset quality ratio threshold condition, because the second preset threshold is the set measurement of two adjacent beams.
- the threshold value of the information ratio can indirectly represent whether the quality of the beam measurement information is high or low. Therefore, it can be determined that the beam measurement information whose ratio of the two adjacent beam measurement information is greater than the second preset threshold meets the requirements, so that this part of the quality can be Beam measurement information greater than the second preset threshold is used as target measurement information; it can be understood that the quality of this part of beam measurement information is relatively high and is enough to assist the base station in beam prediction, so there is no need to send other information to the base station. Beam measurement information can reduce beam reporting overhead while ensuring that the base station has stable and reliable beam prediction performance.
- the instruction information for instructing to report the beam measurement information that satisfies the preset quality threshold condition select the beam measurement information whose quality is greater than the first preset threshold from the plurality of beam measurement information, and when When it is determined that the number of beam measurement information with quality greater than the first preset threshold is less than the minimum preset number according to the instruction information indicating the minimum preset number of beam measurement information to be reported, the multiple beam measurement information is processed in order from high quality to low quality. Perform sorting to obtain a first measurement information sequence, and select a minimum preset number of beam measurement information in sequence starting from the first beam measurement information as the target measurement information;
- the beam measurement information whose quality is greater than the first preset threshold is selected from the plurality of beam measurement information through the preset quality threshold condition. Since the first preset threshold is a set value that meets the quality requirements, it can Determine that the beam measurement information whose quality is greater than the first preset threshold meets the requirements, and then determine whether the number of beam measurement information in this part meets the requirements of the minimum preset number of reports. If not, further perform quality control on the multiple beam measurement information. As a result of the sorting, the minimum preset number of beam measurement information is selected as the target measurement information; it can be understood that the quality of this part of the beam measurement information is relatively high and is enough to assist the base station in beam prediction, so there is no need to send it to the base station. Other beam measurement information can reduce beam reporting overhead while ensuring that the base station has stable and reliable beam prediction performance.
- the instruction information for instructing to report the beam measurement information that satisfies the preset quality ratio threshold condition select two adjacent beam measurement information whose ratio is greater than the second preset threshold. Beam measurement information, and when it is determined that the ratio of two beam measurement information adjacent to the beam measurement information is greater than the second preset threshold and the number of beam measurement information is less than
- the minimum preset number is used, the plurality of beam measurement information are sorted from high quality to low quality to obtain the first measurement information sequence. In the first measurement information sequence, the minimum preset number is selected in order starting from the first beam measurement information. The beam measurement information is used as the target measurement information.
- the beam measurement information in which the ratio of the two adjacent beam measurement information is greater than the second preset threshold is selected from the multiple beam measurement information through the preset quality ratio threshold condition. Since the second preset threshold The threshold value set for the ratio of two adjacent beam measurement information can indirectly indicate whether the quality of the beam measurement information is high or low. Therefore, it can be determined that the ratio of two adjacent beam measurement information is greater than the The beam measurement information of the two preset thresholds meets the requirements, and then it is judged whether the number of beam measurement information in this part meets the minimum preset number of reports. If not, the selection is further based on the results of quality sorting of multiple beam measurement information.
- the minimum preset number of beam measurement information is used as the target measurement information; it can be understood that the quality of this part of the beam measurement information is relatively high and is enough to assist the base station in beam prediction, so there is no need to send other beam measurements to the base station information, thereby reducing beam reporting overhead and ensuring that the base station has stable and reliable beam prediction performance.
- first preset threshold and the second preset threshold may be indicated by instruction information for instructing to report beam measurement information that satisfies the preset quality threshold condition according to specific circumstances, and are not limited here.
- the technical solution of this embodiment considers reporting the first multiple transmit beams with larger L1-RSRP or L1-SINR, or the first multiple transmit beams with larger L1-RSRP or L1-SINR ratios of adjacent reference signals. That is, the user equipment only needs to report the reference signal measurement results with better beam quality or larger changes in adjacent beam quality to reduce reporting overhead.
- the base station first uses different transmit beams to transmit the configured M reference signals and/or the absolute threshold ⁇ and/or the proportional threshold ⁇ and/or the minimum reporting number W (W ⁇ 1), where the reference signal is used to provide the signal of the test beam, the absolute threshold ⁇ is used to screen the transmission beams with better beam quality, and the proportional threshold ⁇ is used to screen the transmission beams with rich beam information.
- W defines the lower limit of the number of beams reported by the user equipment.
- the absolute threshold ⁇ and/or the proportional threshold ⁇ and/or the minimum reporting number W are not configured or defaulted, it means that the user equipment needs to report all beam measurement information or fall back to Traditional reporting method.
- the user equipment measures M reference signals transmitted by different transmission beams to obtain M pieces of beam quality information (L1-RSRP or L1-SINR).
- the user equipment selects multiple reference signals whose beam quality information is greater than the absolute threshold ⁇ , and reports the corresponding reference signal resource index CRI/SSBRI and beam quality information to the base station; or, the user equipment calculates the ratio of the beam quality information of adjacent reference signals , select multiple reference signals whose ratio is greater than the proportional threshold ⁇ and/or whose beam quality information is greater than the absolute threshold ⁇ , and report the corresponding reference signal resource index CRI/SSBRI and beam quality information to the base station.
- the user equipment should monitor all reference signals
- the beam quality information is sorted from large to small, and the first W larger beam quality information and the corresponding reference signal resource index CRI/SSBRI are selected and reported to the base station.
- the base station uses the reference signal resource index and/or beam quality information reported by the user device as input to the AI model to perform AI-based beam prediction and infer the optimal transceiver beam pair, or the base station interpolates the beam measurement information reported by the user device. , zero padding, noise reduction, dimensionality enhancement and other data preprocessing to match the input of the AI model and improve the network's robustness to noise. Based on the reference signal resource index and/or beam quality information after data preprocessing, the base station then Perform AI-based beam prediction and reason about optimal transmit and receive beam pairs. Compared with measuring and reporting all transmitted reference signals, the technical solution of this embodiment can effectively reduce the reporting overhead, and balance the reporting overhead and beam prediction performance by dynamically adjusting the absolute threshold ⁇ and/or the proportional threshold ⁇ .
- step S130 is further described.
- the beam reporting indication information includes indication information for indicating the number of beam measurement information to be reported and indication information for indicating the reporting of beam measurement information that satisfies the preset neighborhood factor conditions.
- step S130 may include but is not limited to step S133.
- Step S133 may include at least one of the following:
- the plurality of beam measurement information are sorted from high quality to low quality to obtain a first measurement information sequence, and according to the indication information used to indicate the number of reported beam measurement information, in the first measurement information sequence Select a first preset number of beam measurement information in sequence starting from the first beam measurement information, and select the first preset number according to the instruction information used to instruct reporting of beam measurement information that meets the preset neighborhood factor conditions. All beam measurement information in the adjacent target neighborhood of the beam measurement information is used as target measurement information.
- a first preset number of beam measurement information with higher quality is selected from a plurality of beam measurement information through indication information indicating the number of beam measurement information to be reported, and then based on the preset neighborhood factor conditions
- the characterized test beam domain characteristics are then selected as target measurement information all the beam measurement information in the target neighborhood adjacent to the first preset number of beam measurement information, that is, the beam measurement information with higher quality can be Other beam measurement information in the target neighborhood is sent to the base station; understandably, the quality of this part of the beam measurement information is relatively high and is enough to assist the base station in beam prediction, so there is no need to send other beam measurement information to the base station. , thereby reducing beam reporting overhead while ensuring that the base station has stable and reliable beam prediction performance.
- multiple beam measurement information is divided into a second preset number of measurement windows according to the instruction information for instructing to report beam measurement information that satisfies the preset neighborhood factor condition, and the beam measurement information is divided into a second preset number of measurement windows according to each
- the sum of all beam measurement information of the measurement windows is sorted from high quality to low quality to obtain a third measurement information sequence, and according to the indication information used to indicate the number of reported beam measurement information, in the third measurement information
- a first preset number of beam measurement information is selected in order as the target measurement information.
- the multiple beam measurement information is first divided into a second preset number of measurement windows through indication information indicating the number of beam measurement information to be reported, and each measurement window is calculated according to the sum of the beam measurement information within the measurement window.
- Perform quality sorting due to the beam measurement of the measurement window
- the size of the sum of the amount of information can characterize the overall quality of the beam measurement information of the measurement window. Therefore, through the above steps, the third measurement information sequence can be used to distinguish measurement windows of different qualities, and it is also possible to obtain the measurement windows from the third measurement information sequence.
- the first beam measurement information begins to sequentially select the first preset number of beam measurement information as the target measurement information; it can be understood that the quality of this part of the beam measurement information is relatively high and is enough to assist the base station in beam prediction. Therefore, there is no need to send other beam measurement information to the base station, thereby reducing beam reporting overhead and ensuring that the base station has stable and reliable beam prediction performance.
- the second preset number may be indicated by indication information used to indicate the number of reported beam measurement information.
- the specific indication method may be indicated by indication information used to indicate the number of reported beam measurement information.
- the indication information is specifically set according to the situation. Since the first preset number has been described in detail in the previous embodiment, it will not be described again here.
- the technical solution of this embodiment is not to report multiple transmit beams with larger L1-RSRP or L1-SINR, but to report L1-RSRP or L1-SINR. Larger multiple beam areas. That is, the user equipment only needs to report the measurement results of part of the transmit beams and their adjacent beams to reduce reporting overhead.
- the base station first configures M reference signals and/or proportional coefficient ⁇ (0 ⁇ 1) and/or reports the number of beam areas K (1 ⁇ K ⁇ M) and/or Neighborhood factor ⁇ , where the reference signal is used to provide the signal of the test beam, the proportion coefficient ⁇ is used to adjust the number of reported measurement beams, K is used to indicate the number of reference signal areas that need to be reported by the user device, and the neighborhood factor ⁇ is used to indicate the need to report adjacent beam range.
- the proportional coefficient ⁇ and/or the number of reporting beam areas K and/or the neighborhood factor ⁇ are not configured or are defaulted, it means that the user equipment needs to report all beam measurement information or fall back to the traditional reporting method.
- ⁇ when ⁇ is not configured or the default value of ⁇ is 0, it means that the user device reports the measurement results of the first multiple beams with better beam quality; or, when ⁇ is not configured or the default value of ⁇ is 1 , indicating that the user device reports the measurement results of the first multiple beams with better beam quality and their first-order adjacent beams; when ⁇ is configured to be greater than 1, it indicates that the user device reports the first multiple beams with better beam quality and their first-order adjacent beams. Measurement results of adjacent beams.
- each " ⁇ " in Figure 5 represents a test beam
- the beam quality information in Figure 5 is specifically presented as L1-RSRP.
- L1-RSRP the beam quality information in Figure 5
- the user equipment measures M reference signals transmitted by different transmission beams, it sorts the measured beam quality information L1-RSRP from large to small, that is, determines the "strong power beam” as shown in Figure 5, and selects The first N beam quality information with larger values, where or or K, and Represents the upward rounding sign and the downward rounding sign respectively.
- the user equipment selects the range [ri - ⁇ , r i + ⁇ ] (1 ⁇ i ⁇ N) All reference signal resource indices CRI/SSBRI and corresponding beam measurement information are reported to the base station.
- each " ⁇ " in Figure 6 represents a test beam
- the beam quality information in Figure 6 is specifically presented as L1-RSRP.
- the user equipment measures M reference signals transmitted by different transmission beams, it obtains M pieces of beam quality information L1-RSRP.
- the adjacent ⁇ reference signals are formed into a measurement window, the sum of the beam quality information (L1-RSRP or L1-SINR) of each measurement window is calculated, and sorted from large to small, as shown in Figure 6 "Beams in the window with strong total power", select the first N measurement windows with larger values, where or or K, and Represents the upward rounding sign and the downward rounding sign respectively.
- the user equipment reports all reference signal resource indices CRI/SSBRI and corresponding beam measurement information within these N measurement windows to the base station.
- the base station uses the reference signal resource index and/or beam quality information reported by the user device as input to the AI model to perform AI-based beam prediction and infer the optimal transceiver beam pair, or the base station interpolates the beam measurement information reported by the user device. , zero padding, noise reduction, dimensionality enhancement and other data preprocessing to match the input of the AI model and improve the network's robustness to noise. Based on the reference signal resource index and/or beam quality information after data preprocessing, the base station then Perform AI-based beam prediction and reason about optimal transmit and receive beam pairs.
- the technical solution of this embodiment can effectively reduce the reporting overhead, and take into account both the reporting overhead and the beam by dynamically adjusting the proportion coefficient ⁇ or the number of reporting beam areas K or the neighborhood factor ⁇ . Predict performance.
- step S130 further explains step S130.
- the beam reporting indication information includes indication information indicating the number of beam measurement information to be reported
- step S130 may include but is not limited to step S134. Go to S135.
- Step S134 Bind multiple beam measurement information to neighborhood subset index
- Step S135 Select the target measurement information from multiple beam measurement information according to the indication information indicating the number of beam measurement information to be reported and the neighborhood subset index.
- multiple beam measurement information is bound to the neighborhood subset index, that is to say, the neighborhood subset beam of each beam measurement information is The measurement information is taken into account, and the target measurement information that meets the requirements is selected from multiple beam measurement information according to the indication information and the neighborhood subset index used to indicate the number of reported beam measurement information; understandably, the selected The quality of this part of the beam measurement information is sufficient to assist the base station in beam prediction, so there is no need to send other beam measurement information to the base station, thereby reducing beam reporting overhead and ensuring that the base station has stable and reliable beam prediction performance.
- step S134 further explains step S134.
- step S134 may include but not Limited to step S1341.
- Step S1341 For each beam measurement information, bind the beam measurement information to the neighborhood subset index corresponding to the beam measurement information according to the instruction information for instructing to report the beam measurement information that satisfies the preset neighborhood subset index condition. .
- the beam can be assigned to the user device through the indication information.
- the measurement information is bound to the neighborhood subset index corresponding to the beam measurement information, so that in subsequent steps, the target measurement information can be further selected based on the bound neighborhood subset index.
- Step S134 may include but is not limited to steps S1342 to S1344.
- Step S1342 Receive transmission pattern information for multiple test beams sent by the transmitting device
- Step S1343 Determine the neighborhood subset index corresponding to each beam measurement information based on the transmission pattern information for multiple test beams;
- Step S1344 For each beam measurement information, bind the beam measurement information to the neighborhood subset index corresponding to the beam measurement information.
- the corresponding test beam can be determined through the transmission pattern information for multiple test beams, and then the measurement of each beam is determined based on this
- the neighborhood subset index corresponding to the information and the beam measurement information is bound to the neighborhood subset index corresponding to the beam measurement information, so that in subsequent steps, the target measurement can be further selected based on the bound neighborhood subset index. information.
- Step S135 may include but is not limited to step S1351.
- Step S1351 includes at least one of the following:
- the plurality of beam measurement information are sorted from high quality to low quality to obtain a first measurement information sequence, and according to the indication information used to indicate the number of reported beam measurement information, in the first measurement information
- a first preset number of beam measurement information is selected in order, and the first preset number of beam measurement information and the first preset number of beam measurement information are bound to the neighborhood sub-areas. All beam measurement information under the set index is used as target measurement information.
- the plurality of beam measurement information are first sorted according to quality to obtain the sorted first measurement information sequence, so that a first preset number of beams with better quality can be selected from the first measurement information sequence.
- measurement information and then consider the neighborhood subset index of the selected beam measurement information, so as to bind the first preset number of beam measurement information and the first preset number of beam measurement information to the neighborhood subset index.
- All beam measurement information is used as target measurement information; it can be understood that the quality of this part of beam measurement information is relatively high, and it is enough to assist the base station in beam prediction, so there is no need to send other beam measurement information to the base station, so It can reduce beam reporting overhead while ensuring that the base station has stable and reliable beam prediction performance.
- the neighborhood subset index is sorted from high quality to low quality to obtain the fourth measurement information sequence, and in the fourth Select a first preset number of neighborhood subset indexes in sequence starting from the first neighborhood subset index in the measurement information sequence, and use all beam measurement information under the first preset number of neighborhood subset indexes as target measurements information.
- the beam measurement information with the same neighborhood subset index can be regarded as the same type of beam measurement information
- further comparison can be made based on the beam measurement information with the same neighborhood subset index, that is, Said, by comparing the sum of all beam measurement information under the same neighborhood subset index to rank the quality of different neighborhood subset indexes, and then select the first preset number from the sorted fourth measurement sequence.
- All beam measurement information under the neighborhood subset index of Other beam measurement information can reduce beam reporting overhead while ensuring that the base station has stable and reliable beam prediction performance.
- the technical solution of this embodiment is not to report multiple transmit beams with larger L1-RSRP or L1-SINR, but to report L1-RSRP or L1-SINR. Larger multiple beam areas. That is, the user equipment only needs to report the measurement results of part of the transmit beams and their adjacent beams to reduce reporting overhead.
- the base station first configures M reference signals and/or proportional coefficients ⁇ (0 ⁇ 1) and/or reports the number of beam areas K (1 ⁇ K ⁇ M), where the reference The signal is used to provide the signal of the test beam, the proportion coefficient ⁇ is used to adjust the number of reported measurement beams, and K is used to indicate the number of reference signal areas that need to be reported by the user device.
- the proportional coefficient ⁇ and/or the number of reporting beam areas K is not configured or is defaulted, it means that the user equipment needs to report all beam measurement information or fall back to the traditional reporting method.
- these M reference signals are respectively bound to the neighborhood subset index SubsetIndex.
- the transmission beam directions of all reference signals under the same neighborhood subset index are adjacent, including the first dimension and the second dimension.
- the base station instructs the user device to transmit a beam pattern through signaling, including the direction and number of beams in the first and second dimensions, and the user device can autonomously infer the neighborhood subset of each transmit beam based on the transmit beam pattern.
- each " ⁇ " in Figure 9 represents a test beam
- the beam quality information in Figure 9 is specifically presented as L1-RSRP.
- L1-RSRP the measured beam quality information
- the user equipment After the user equipment measures M reference signals transmitted by different transmission beams, it sorts the measured beam quality information L1-RSRP from large to small, that is, determines the "strong power beam” as shown in Figure 9, and selects The first N beam quality information with larger values, where or or K, and Represents the upward rounding sign and the downward rounding sign respectively. Then, the user equipment selects the index CRI/SSBRI and beam quality information of these N reference signals, and the N All reference signal resource indexes and beam quality information within the subset of reference signals are reported to the base station.
- each " ⁇ " in Figure 10 represents a test beam
- the beam quality information in Figure 10 is specifically presented as L1-RSRP.
- the user equipment measures M reference signals transmitted by different transmission beams, it obtains M pieces of beam quality information L1-RSRP. Then, calculate the sum of the beam quality information within the same neighborhood subset index SubsetIndex, and sort them from large to small, that is, determine the "test beam subset with strong total power” as shown in Figure 4, and select the one with a larger value
- the user equipment reports all reference signal resource indexes CRI/SSBRI and corresponding beam measurement information in these N neighborhood subsets to the base station.
- the base station uses the reference signal resource index and/or beam quality information reported by the user device as input to the AI model to perform AI-based beam prediction and infer the optimal transceiver beam pair, or the base station interpolates the beam measurement information reported by the user device. , zero padding, noise reduction, dimensionality enhancement and other data preprocessing to match the input of the AI model and improve the network's robustness to noise. Based on the reference signal resource index and/or beam quality information after data preprocessing, the base station then Perform AI-based beam prediction and reason about optimal transmit and receive beam pairs. Compared with measuring and reporting all transmitted reference signals, the technical solution of this embodiment can effectively reduce the reporting overhead, and take into account both the reporting overhead and the Beam prediction performance.
- an embodiment of the present application further explains step S130.
- the beam reporting indication information includes indication information for instructing to report beam measurement information from multiple dimensions
- the target measurement information includes an indication for reporting beam measurement information from multiple dimensions.
- Step S130 may include but is not limited to steps S136 to S137 for the first target measurement information sent to the base station in the absolute value reporting mode and the second target measurement information sent to the base station in the differential reporting mode.
- Step S136 Divide the multiple beam measurement information into a first preset number of test beam subsets according to the instruction information for instructing to report beam measurement information from multiple dimensions;
- Step S137 Select the beam measurement information with the highest quality in each test beam subset as the first target measurement information, and select the remaining beam measurement information in each test beam subset except the beam measurement information with the highest quality as the second target measurement information.
- the multiple beam measurement information is divided into subsets through the instruction information used to instruct the beam measurement information to be reported from multiple dimensions, so as to select the beam measurement information with the highest quality from the divided subsets as the first target measurement. information, and select the remaining beam measurement information except the first target measurement information from the divided subset as the second target measurement information, because the first target measurement information is used to send to the base station in an absolute value reporting manner, and the second The target measurement information is used to send to the base station in a differential reporting manner, so it is equivalent to sending multiple beam measurement information to the base station in multiple dimensions, that is, increasing the number of reference beam measurement information.
- This solution can not only take into account the beam reporting overhead and the beam prediction performance on the base station side, but also improve the accuracy of the reported beam measurement information by increasing the number of reference beam measurement information, which is conducive to further improving the beam prediction effect of the base station.
- more target measurement information can also be obtained from more dimensions, and the beam prediction effect of the base station can be further improved based on more target measurement information.
- the basic principle is the same as that of the above embodiment. Similar, will not be described in detail here.
- step S136 may include but is not limited to steps S1361 to S1362.
- Step S1361 Sort the reception qualities of multiple reference signals from high quality to low quality to obtain the fifth measurement information sequence
- Step S1362 According to the instruction information for instructing to report beam measurement information from multiple dimensions, divide the multiple reference signal reception qualities into a first preset number of test beam subsets in the fifth measurement information sequence.
- the fifth measurement information sequence is obtained by sorting the reference signal reception quality from high quality to low quality, so as to divide the multiple reference signal reception qualities into a first preset number of test beam subsets according to the quality level.
- the test beam subset obtained in this way can include multiple different reference signal reception qualities to reflect differences, so that target measurement information can be obtained based on the test beam subset selection in subsequent steps.
- Step S136 may include but is not limited to step S1363.
- Step S1363 When the receiving beam information for multiple test beams is determined, according to the instruction information for instructing to report beam measurement information from multiple dimensions and the receiving beam information for multiple test beams, the same for multiple test beams is determined. The beam measurement information corresponding to the received beam information of the test beam is divided into the same test beam subset.
- the receiving beam information for multiple test beams can be used to characterize the receiving beam information of the user equipment receiving reference signal resources, it can be based on the indication information used to indicate reporting beam measurement information from multiple dimensions and for multiple For the receiving beam information of each test beam, the beam measurement information corresponding to the same receiving beam is divided into the same test beam subset.
- test beam subsets can be divided into equal divisions, that is, all beam measurement information is equally divided into a first preset number of test beam subsets; another example is to measure from all beams each time Only one of the information is selected for classification, and by analogy, all beam measurement information can be classified to obtain the final test beam subset.
- this embodiment considers setting multiple reference beam quality information, that is, multiple reference RSRPs or reference SINRs.
- This embodiment takes RSRP reporting as an example. Multiple selected reference RSRPs are reported in an absolute value manner, and RSRPs corresponding to other reference signals are reported in a differential manner.
- the base station first configures M reference signals and/or reference RSRP factors ⁇ , where the reference signal is used to provide a test beam signal, and ⁇ is used to indicate the number of reference RSRPs.
- ⁇ is not configured or ⁇ is defaulted, it means that the number of reference RSRPs is 1, or it means that the user device independently determines the number of reference RSRPs, or it falls back to the traditional reporting method.
- the measured beam quality information RSRP is divided into ⁇ subsets. For example, the user equipment sorts the M reference signal received powers RSRP from large to small and divides them equally into ⁇ subsets; or the user equipment divides the M reference signal received powers RSRP into ⁇ subsets according to the different receiving beam directions. .
- the maximum RSRP in each subset is used as the reference RSRP, and absolute value reporting is adopted.
- the maximum RSRP in each subset is quantized as a 7-bit payload in the range of [-140, -44]dBm, with a step size of 1dB.
- the number of payloads can be increased or the step size can be reduced to improve reporting accuracy.
- User devices need Report these ⁇ reference RSRPs and the corresponding reference signal resource index CRI/SSBRI.
- Other RSRPs in each subset use the maximum RSRP in the same subset as the reference RSRP and use differential reporting.
- the differential RSRP is quantized as a 4-bit payload in the range of [-30, 0]dB, with a step size of 2dB.
- the number of payloads can be reduced or the step size can be increased to reduce reporting overhead.
- the user equipment in addition to reporting the differential RSRP and the corresponding reference signal resource index CRI/SSBRI, the user equipment also needs to report the referenced maximum RSRP and/or the reference signal resource index CRI/SSBRI corresponding to the maximum RSRP.
- the base station uses the reference signal resource index and/or beam quality information reported by the user device as input to the AI model to perform AI-based beam prediction and infer the optimal transceiver beam pair, or the base station interpolates the beam measurement information reported by the user device. , zero padding, noise reduction, dimensionality enhancement and other data preprocessing to match the input of the AI model and improve the network's robustness to noise. Based on the reference signal resource index and/or beam quality information after data preprocessing, the base station then Perform AI-based beam prediction and reason about optimal transmit and receive beam pairs. Compared with only selecting the maximum measured RSRP in the same reporting instance as the reference RSRP, the technical solution of this embodiment takes into account reporting overhead, RSRP reporting accuracy, and beam prediction performance by increasing the number of reference RSRPs.
- the base station instructs the user equipment through signaling which reporting method to use to report the CSI feedback amount, and at the same time, the base station uses signaling to
- the auxiliary information required to indicate the user equipment in this reporting mode includes the number of reporting beams and/or the reporting proportional coefficient and/or the preset threshold, etc., which is not limited.
- Step S140 Send the target measurement information to the transmitting device, so that the transmitting device predicts the optimal beam result based on the target measurement information.
- the user device obtains multiple beam measurement information by measuring the reference signal resources configured in the test beam from the base station, and can select from the multiple beam measurement information according to the beam reporting instruction information from the base station to obtain the required information.
- the target measurement information is reported to the base station. That is to say, there is no need to send all the measured beam measurement information to the base station. Instead, some of the beam measurement information is selected from all the beam measurement information for transmission. Therefore, the beam reporting overhead can be reduced. There is little uplink transmission pressure, so the base station can perform beam prediction based on the assistance of some of the reported beam measurement information.
- prediction is based on the artificial intelligence AI model that has been trained and implanted in the base station. Since the target measurement information can assist the AI beam prediction on the base station side, prediction based on it can enhance the robustness and generalization of the AI model. For another example, the operator inputs the received target measurement information into the beam prediction network inside the trained base station, thereby obtaining the optimal beam result output by the beam prediction network, etc.
- the optimal beam result includes at least one of the following:
- At least one beam pair adjacent to at least one optimal beam pair At least one beam pair adjacent to at least one optimal beam pair.
- the optimal beam result can be, but is not limited to, one or more optimal beam pairs.
- Each optimal beam pair includes an optimal transmit beam and an optimal receive beam, and is selected and set according to the actual application scenario. Not limited.
- Figure 13 is a flow chart of a beam management method provided by another embodiment of the present application.
- the beam management method is applied to a transmitting device, such as the base station 120 in the embodiment shown in Figure 1.
- the beam management method may include but is not limited to step S210 to step S230.
- Step S210 Send beam reporting indication information and multiple test beams configured with reference signal resources to the receiving device.
- the transmitting device in this embodiment may be, but is not limited to, the base station 120 in the embodiment shown in FIG. 1
- the receiving device in this embodiment may be, but is not limited to, the user equipment in the embodiment shown in FIG. 1 110;
- those skilled in the art can choose to set up a corresponding transmitting device or receiving device according to the actual application scenario, which is not limited in this embodiment.
- the base station is used as the transmitting device and the user device is used as the receiving device.
- the user equipment by sending beam reporting indication information and multiple test beams configured with reference signal resources to the user equipment, the user equipment can obtain target measurement information based on the beam reporting indication information and multiple test beams configured with reference signal resources, Among them, the The target measurement information is used to provide the base station for beam prediction.
- the transmitting device can have multiple beam transmitting directions, which are determined by preset operating logic or based on operator control. When the transmitting device has determined all beam transmitting directions, the transmitting device can select In at least part of the beam transmission directions, that is to say, configuration can be performed in two cases of selecting part or all of the beam transmission directions, thereby obtaining multiple test beams.
- test beams can be different from each other to simulate different beam scanning situations.
- the specific number of test beams can be set according to the actual application scenario, and is not limited here.
- reference signal resources include at least one of the following:
- Synchronization signal block SSB resource Synchronization signal block SSB resource.
- the configured reference signal resources may be CSI-RS resources or/and SSB resources.
- Step S220 Receive the target measurement information sent by the receiving device.
- the target measurement information is selected by the receiving device from multiple beam measurement information according to the beam reporting instruction information, and the beam measurement information is obtained by the receiving device measuring multiple reference signal resources.
- the user equipment can obtain the result based on the beam reporting indication information and multiple test beams configured with reference signal resources.
- Target measurement information to facilitate beam prediction based on the target measurement information in subsequent steps.
- the beam reporting indication information includes at least one of the following:
- Instruction information for instructing to report beam measurement information that meets a preset threshold condition includes a preset quality threshold condition or a preset quality ratio threshold condition;
- Instruction information used to indicate reporting beam measurement information from multiple dimensions is
- the instruction information is used to indicate the number of beam measurement information to be reported, the instruction information is used to indicate the reporting of beam measurement information that satisfies the preset threshold condition, and the instruction information is used to instruct the reporting of the beam measurement information that satisfies the preset neighborhood factor condition.
- the instruction information used to instruct the reporting of beam measurement information that satisfies the preset neighborhood subset index condition, and the instruction information used to instruct the reporting of beam measurement information from multiple dimensions can be used for instructions respectively, or two of them can be used. or more are combined for indication, which is not limited here; the specific application scenarios of each indication information will be explained step by step in the following embodiments and will not be described again here.
- the indication information for indicating the number of beam measurement information to be reported includes at least one of the following:
- Indication information used to indicate the proportional coefficient for reporting beam measurement information.
- the absolute number refers to the actual number indicating the reported beam measurement information
- the proportional coefficient refers to the ratio of the actual number indicating the reported beam measurement information to the number of all beam measurement information, both of which are used to indicate the reported beam measurement.
- Indication information for the number of information it should be noted that in actual application scenarios, the absolute number of beam measurement information to be reported or/and the proportional coefficient to indicate the beam measurement information to be reported can be modified in real time according to needs, that is, it is dynamically adjustable. Can be more suitable for more application scenarios.
- the beam measurement information includes at least one of the following:
- the beam measurement information listed in the above embodiments is only a specific example. That is to say, those skilled in the art can set less or more specific content of the beam measurement information in specific application scenarios. Here Not limited.
- Step S230 Predict the optimal beam result based on the target measurement information.
- the user device obtains multiple beam measurement information by measuring the reference signal resources configured in the test beam from the base station, and can select from the multiple beam measurement information according to the beam reporting instruction information from the base station to obtain the required information.
- the target measurement information is reported to the base station. That is to say, there is no need to send all the measured beam measurement information to the base station. Instead, some of the beam measurement information is selected from all the beam measurement information for transmission. Therefore, the beam reporting overhead can be reduced.
- the base station can be based on Beam prediction is performed with the assistance of some of the reported beam measurement information, which will not affect the beam prediction performance of the base station and is beneficial to reducing beam training overhead, measurement power consumption and processing delay; therefore, overall, it can take into account the user device side Beam reporting overhead and beam prediction performance on the base station side can fill the technical gaps in related methods.
- prediction is based on the artificial intelligence AI model that has been trained and implanted in the base station. Since the target measurement information can assist the AI beam prediction on the base station side, prediction based on it can enhance the robustness and generalization of the AI model. For another example, the operator inputs the received target measurement information into the beam prediction network inside the trained base station, thereby obtaining the optimal beam result output by the beam prediction network, etc.
- the optimal beam result includes at least one of the following:
- At least one beam pair adjacent to at least one optimal beam pair At least one beam pair adjacent to at least one optimal beam pair.
- the optimal beam result can be, but is not limited to, one or more optimal beam pairs.
- Each optimal beam pair includes an optimal transmit beam and an optimal receive beam, and is selected and set according to the actual application scenario. Not limited.
- step S230 may also include but is not limited to step S240.
- Step S240 Receive index information of reference signal resources configured in the target beam sent by the receiving device.
- the target beam is a test beam corresponding to the target measurement information.
- beam prediction can be performed while receiving the index information and the target measurement information at the same time, which is beneficial to assisting based on the index information. Determine the specific content of the optimal beam result, thereby improving the beneficial effect of beam prediction.
- Step S230 may include but is not limited to step S231.
- Step S231 Predict the optimal beam result based on the target measurement information and the index information of the reference signal resource configured for the target beam.
- beam prediction can be performed based on the target measurement information and the index information of the reference signal resource configured for the target beam to obtain the optimal beam result, which is beneficial to improving the actual effect of beam prediction and improving the accuracy of beam prediction.
- one embodiment of the present application also discloses a user device 200, including: at least one processor 210; at least one memory 220, used to store at least one program; when at least one program is processed by at least one
- steps S110 to S140, step S150, step S131, step S132, step S133 in FIG. 2, steps S134 to S135, step S1341 in FIG. 7 are implemented.
- one embodiment of the present application also discloses a base station 300, including: at least one processor 310; at least one memory 320, used to store at least one program; when at least one program is processed by at least one When the processor 310 is executed, steps S210 to S230, step S240 or step S231 in FIG. 13 of the beam management method in any of the previous embodiments are implemented.
- an embodiment of the present application also discloses a computer-readable storage medium in which computer-executable instructions are stored, and the computer-executable instructions are used to execute the beam management method as in any of the previous embodiments.
- an embodiment of the present application also discloses a computer program product, which includes a computer program or computer instructions.
- the computer program or computer instructions are stored in a computer-readable storage medium.
- the processor of the computer device reads the computer program from the computer-readable storage medium.
- the computer program or computer instructions are obtained, and the processor executes the computer program or computer instructions, so that the computer device performs the beam management method as in any of the previous embodiments.
- Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
- communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mathematical Physics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种波束管理方法及其装置、存储介质、程序产品。其中,一种波束管理方法,应用于接收装置,包括:接收由发射装置发送的波束上报指示信息以及多个配置有参考信号资源的测试波束;对多个参考信号资源进行测量得到多个波束测量信息;根据波束上报指示信息从多个波束测量信息中选择得到目标测量信息;向发射装置发送目标测量信息,使得发射装置根据目标测量信息预测得到最优波束结果。
Description
相关申请的交叉引用
本申请基于申请号为202210460677.8、申请日为2022年04月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及通信技术领域,尤其是一种波束管理方法、用户装置、基站、计算机存储介质及计算机程序产品。
目前,在基站侧进行基于配置模型的波束预测,以便实现用户侧和基站侧的波束对齐,这一过程需要有足够的波束上报信息作为模型输入,因此用户侧需要向基站上报大量的信道状态信息(Channel State Information,CSI)反馈量参数,这导致了巨大的信令开销,同时增加了用户侧上行传输的压力。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种波束管理方法、用户装置、基站、计算机存储介质及计算机程序产品,能够降低波束上报开销。
第一方面,本申请实施例提供了一种波束管理方法,应用于接收装置,所述波束管理方法包括:
接收由发射装置发送的波束上报指示信息以及多个配置有参考信号资源的测试波束;
对多个所述参考信号资源进行测量得到多个波束测量信息;
根据所述波束上报指示信息从所述多个波束测量信息中选择得到目标测量信息;
向所述发射装置发送所述目标测量信息,使得所述发射装置根据所述目标测量信息预测得到最优波束结果。
第二方面,本申请实施例还提供了一种波束管理方法,应用于发射装置,所述波束管理方法包括:
向接收装置发送波束上报指示信息以及多个配置有参考信号资源的测试波束;
接收由所述接收装置发送的目标测量信息,其中,所述目标测量信息由所述接收装置根据所述波束上报指示信息从多个波束测量信息中选择得到,所述波束测量信息由所述接收装置对多个所述参考信号资源进行测量得到;
根据所述目标测量信息预测得到最优波束结果。
第三方面,本申请实施例还提供了一种用户装置,包括:至少一个处理器;至少一个存储器,用于存储至少一个程序;当至少一个所述程序被至少一个所述处理器执行时实现如第一方面所述的波束管理方法。
第四方面,本申请实施例还提供了一种基站,包括:至少一个处理器;至少一个存储器,用于存储至少一个程序;当至少一个所述程序被至少一个所述处理器执行时实现如第二方面所述的波束管理方法。
第五方面,本申请实施例还提供了一种计算机可读存储介质,其中存储有处理器可执行的程序,所述处理器可执行的程序被处理器执行时用于实现如前面所述的波束管理方法。
第六方面,本申请实施例还提供了一种计算机程序产品,计算机程序或所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机程序或所述计算机指令,所述处理器执行所述计算机程序或所述计算机指令,使得所述计算机设备执行如前面所述的波束管理方法。
本申请实施例中,接收装置通过对来自发射装置的测试波束所配置的参考信号资源进行测量而得到多个波束测量信息,并且可以根据来自发射装置的波束上报指示信息从多个波束测量信息中选择得到需要上报至发射装置的目标测量信息,也就是说,不需要将测量得到的所有波束测量信息向发射装置发送,而是从所有波束测量信息中选择部分波束测量信息进行发送,因此能够降低波束上报开销,减小上行传输压力,并且所上报的部分波束测量信息同样能够辅助发射装置进行波束预测,不会影响发射装置的波束预测性能,有利于降低波束训练开销、测量功耗和处理延时;因此,从总体来说能够兼顾接收装置侧的波束上报开销和发射装置侧的波束预测性能,从而可以弥补相关方法中的技术空白。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
图1是本申请一个实施例提供的用于执行波束管理方法的实施环境的示意图;
图2是本申请一个实施例提供的波束管理方法的流程图;
图3是本申请一个实施例提供的波束管理方法中选择得到目标测量信息的示意图;
图4是本申请另一个实施例提供的波束管理方法中选择得到目标测量信息的示意图;
图5是本申请另一个实施例提供的波束管理方法中选择得到目标测量信息的示意图;
图6是本申请另一个实施例提供的波束管理方法中选择得到目标测量信息的示意图;
图7是本申请一个实施例提供的波束管理方法中选择得到目标测量信息的流程图;
图8是本申请一个实施例提供的波束管理方法中将多个波束测量信息绑定邻域子集索引的流程图;
图9是本申请另一个实施例提供的波束管理方法中选择得到目标测量信息的示意图;
图10是本申请另一个实施例提供的波束管理方法中选择得到目标测量信息的示意图;
图11是本申请另一个实施例提供的波束管理方法中选择得到目标测量信息的流程图;
图12是本申请另一个实施例提供的波束管理方法中将多个波束测量信息划分到测试波束子集中的流程图;
图13是本申请另一个实施例提供的波束管理方法的流程图;
图14是本申请一个实施例提供的用户装置的示意图;
图15是本申请一个实施例提供的基站的示意图。
为了使本申请的目的、技术方法及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种波束管理方法、用户装置、基站、计算机存储介质、计算机程序产品。其中一个实施例的波束管理方法,应用于接收装置,波束管理方法包括:接收由发射装置发送的波束上报指示信息以及多个配置有参考信号资源的测试波束;对多个参考信号资源进行测量得到多个波束测量信息;根据波束上报指示信息从多个波束测量信息中选择得到目标测量信息;向发射装置发送目标测量信息,使得发射装置根据目标测量信息预测得到最优波束结果。在该实施例中,接收装置通过对来自发射装置的测试波束所配置的参考信号资源进行测量而得到多个波束测量信息,并且可以根据来自发射装置的波束上报指示信息从多个波束测量信息中选择得到需要上报至发射装置的目标测量信息,也就是说,不需要将测量得到的所有波束测量信息向发射装置发送,而是从所有波束测量信息中选择部分波束测量信息进行发送,因此能够降低波束上报开销,减小上行传输压力,并且所上报的部分波束测量信息同样能够辅助发射装置进行波束预测,不会影响发射装置的波束预测性能,有利于降低波束训练开销、测量功耗和处理延时;因此,从总体来说能够兼顾接收装置侧的波束上报开销和发射装置侧的波束预测性能,从而可以弥补相关方法中的技术空白。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的用于执行波束管理方法的实施环境的示意图。
在图1的示例中,该实施环境包括用户装置110和基站120,其中,基站120和用户装置110之间可以进行无线信号的发送、接收。
需要说明的是,基站120和用户装置110的相对位置可以在具体应用场景中相应设置,例如用户装置110可以沿着基站120在对外辐射信号时所形成的辐射球面进行移动,也就是说,若存在多个用户装置110且不同的用户装置110按照上述方式进行设置,从而可以在不同空间位置接收基站120所发送的无线信号,值得注意的是,此处的空间位置可以为不同的地域条件。
在一可行的实施方式中,用户装置110可以称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。例如,用户装置110可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络或者未来5G以上网络中的终端设备等,本实施例对此并不作具体限定。
需要说明的是,用于执行波束管理方法的实施环境可以应用于第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)组织架构下,3GPP组织制定了一整套波束管理的程序,用于调整高频段的波束方向并维护一个合适的收发波束对,包括波束扫描、波束测量、波束上报和波束指示等。例如,在一种发送波束扫描过程中,基站120以一组预先规定的间隔和方向发送波束,用户装置110对发送波束上承载的参考信号资源进行测量并上报波束质量信息给基站120,最后基站120确定最优波束并建立一个定向的通信链路。具体而言,基站在信道状态信息实例CSI-ResourceConfig中为每个用户装置110配置一个
或多个参考信号资源设置,在高层参数CSI-ReportConfig中为每个用户装置110配置一个或多个CSI上报设置,其中,CSI-ResourceConfig配置了用于信道测量或干扰测量的参考信号资源,包括用于信道测量的信道状态信息参考信号(CSI-Reference Symbol,CSI-RS)资源、同步信号块(Synchronization Signal and PBCH Block,SSB)资源和用于干扰测量的CSI-IM资源;CSI-ReportConfig配置了CSI上报相关的参数,包括码本类型、频域上报颗粒度、测量限制配置以及CSI相关反馈量,比如层指示、CSI-RS资源索引CRI(CSI-RS Resource Indicator)、SSB资源索引(SSB Resource Indicator,SSBRI)、物理层参考信号接收功率L1-RSRP(Reference Signal Receiving Power)和物理层信干噪比L1-SINR(Signal to Interference plus Noise Ratio)等。NR将L1-RSRP作为波束测量的上报参数,在CSI反馈的框架内完成波束相关信息的上报。在波束测量中,将CSI上报设置中的CSI反馈量参数reportQuantity配置为“CRI-RSRP”或者“SSB-Index-RSRP”,此时用户装置110需要上报参考信号资源索引CRI/SSBRI和参考信号接收功率RSRP,其中,CRI/SSBRI代表了用户装置110选择的CSI-RS资源在资源集合中的索引,RSRP代表了测量的波束的质量信息。需要说明的是,在一次上报设置中所能上报的测量参考信号资源数和RSRP数具体取决于用户装置110的能力,或者,也可以根据实际应用场景进行选择性地调整设置。
在一可行的实施方式中,波束扫描可以指基站120或用户装置110依次使用不同的模拟波束覆盖一个空间区域的过程。在波束扫描期间,基站120或用户装置110顺序地发送来自整个码本或码本子集的波束,以便为数据、控制通道找到良好的收发波束对;具体而言,在发送端波束扫描过程中,基站120可以但不限于配置高层参数资源集NZP-CSI-RS-ResourceSet,每个资源集中包含多个采用不同发送波束传输的CSI-RS或/和SSB资源,用户装置110可以采用固定接收波束接收和测量CSI-RS或/和SSB资源,以完成发送端波束测量过程;此外,用户装置110可以采用轮巡方式以接收由基站120发送的测试波束,即对于基站120而言,用于波束管理的CSI-RS资源或集合重复传输多次,用户装置110分别使用不同的接收波束进行接收,从而实现接收波束的扫描。
在另一可行的实施方式中,在接收端波束扫描中,基站120配置高层参数资源集NZP-CSI-RS-ResourceSet,每个资源集中包含多个采用相同发送波束传输的CSI-RS或/和SSB资源,在这种情况下,用户装置110可以但不限于采用不同接收波束接收和测量CSI-RS或/和SSB资源,以实现接收波束的扫描。此外,基站120可以根据需要采用轮巡发送测试波束的方式,即配置多个采用不同发送波束传输的CSI-RS资源或/和SSB资源集合,以便于实现发送波束的扫描。
用户装置110至少具有接收由基站120发送的多个配置有参考信号资源的测试波束和波束上报指示信息,并对多个参考信号资源进行测量得到多个波束测量信息,以及从多个波束测量信息中选择得到目标测量信息并将其向基站120发送等功能,其中,目标测量信息可以使得基站120根据目标测量信息预测得到最优波束结果。
基站120至少具有基于预设的运行逻辑进行波束管理或者基于操作人员的控制进行波束管理等功能,例如基站120至少具有预测、管理最优波束结果的功能,即能够基于预设的运行逻辑或者基于操作人员的控制,向用户装置110发送波束上报指示信息以及多个配置有参考信号资源的测试波束,并接收由用户装置110发送的目标测量信息,以及基于目标测量信息预测得到最优波束结果等功能,其中,目标测量信息由用户装置110根据波束上报指示信息从多个波束测量信息中选择得到,波束测量信息由用户装置110对多个参考信号资源进行测量得到。值得注意的是,基站120可以是一般的移动通信基站,也可以是毫米波AAS基站,此处不作具体限定。
需要说明的是,基站120和用户装置110所具有的上述功能,可以应用于不同的应用场景中,此处并未限制。
本领域技术人员可以理解的是,该实施环境可以应用于5G、6G通信网络系统以及后续演进的移动通信网络系统等,本实施例对此并不作具体限定。
本领域技术人员可以理解的是,图1中示出的实施环境并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于上述实施环境,下面提出本申请的波束管理方法的各个实施例。
如图2所示,图2是本申请一个实施例提供的波束管理方法的流程图,该波束管理方法应用于接收装置,例如图1所示实施例中的用户装置110。该波束管理方法可以包括但不限于步骤S110至步骤S140。
步骤S110:接收由发射装置发送的波束上报指示信息以及多个配置有参考信号资源的测试波束。
需要说明的是,本实施例中的接收装置可以但不限于为图1所示实施例中的用户装置110,本实施例中的发射装置可以但不限于为图1所示实施例中的基站120;或者,本领域的技术人员可以根据实际应用场景选择设置相应的发射装置或者接收装置,本实施例不做限制。为了更方便地描述本申请的应用场景及原理,以下各相关实施例中以用户装置为接收装置、基站为发射装置进行描述,但不应将其理解为对本申请实施例的限制。
本步骤中,通过接收由基站发送的波束上报指示信息以及多个配置有参考信号资源的测试波束,便于
在后续步骤中根据参考信号资源和波束上报指示信息选择得到需要向基站发送的目标测量信息,以达到降低波束上报开销的效果。
需要说明的是,基站的测试波束的发送方式、数目以及方向等,具体由预设的运行逻辑进行确定或者基于操作人员的控制进行配置,此处不再赘述;但无论基站如何向用户装置发送测试波束,用户装置均能够基于接收到的波束上报指示信息以及多个配置有参考信号资源的测试波束进行后续步骤执行,具体执行方式可以为多种,以下将逐步给出具体的实施方式进行描述。
需要说明的是,多个测试波束可以为互不相同的,以用于模拟不同的波束扫描情况,也可以为相同的,以用于模拟同一波束的不同扫描情况,也就是说,具体的测试波束的数目、类型等可以根据实际应用场景进行设置,此处不作限制。
需要说明的是,参考信号资源包括如下至少之一:
信道状态信息参考信号CSI-RS资源;
同步信号块SSB资源。
也就是说,所配置的参考信号资源可以是CSI-RS资源或/和SSB资源,通过配置上述资源以实现用户装置侧的波束测量、扫描,由于CSI-RS资源、SSB资源为本领域技术人员所熟知且在前述实施例中已对其进行阐述,在此不作赘述。
需要说明的是,波束上报指示信息包括如下至少之一:
用于指示上报波束测量信息的数目的指示信息;
用于指示上报满足预设阈值条件的波束测量信息的指示信息,其中,预设阈值条件包括预设质量阈值条件或预设质量比值阈值条件;
用于指示上报满足预设邻域因子条件的波束测量信息的指示信息;
用于指示上报满足预设邻域子集索引条件的波束测量信息的指示信息;
用于指示从多个维度上报波束测量信息的指示信息。
其中,用于指示上报波束测量信息的数目的指示信息、用于指示上报满足预设阈值条件的波束测量信息的指示信息、用于指示上报满足预设邻域因子条件的波束测量信息的指示信息、用于指示上报满足预设邻域子集索引条件的波束测量信息的指示信息以及用于指示从多个维度上报波束测量信息的指示信息,可以分别用于指示,也可以将其中的两个或更多个组合起来用于指示,此处不作限定;关于每个指示信息的具体应用场景,在以下各实施例中逐步说明,此处不赘述。
在一可行的实施方式中,当波束上报指示信息包括用于指示上报波束测量信息的数目的指示信息时,用于指示上报波束测量信息的数目的指示信息包括如下至少之一:
用于指示上报波束测量信息的绝对数目的指示信息;
用于指示上报波束测量信息的比例系数的指示信息。
可以理解地是,绝对数目指的为指示上报的波束测量信息的实际数目,比例系数为指示上报的波束测量信息的实际数目与所有波束测量信息的数目的比值,均属于用于指示上报波束测量信息的数目的指示信息;需要说明的是,在实际应用场景中,指示上报波束测量信息的绝对数目或/和指示上报波束测量信息的比例系数可以根据需求实时修改,即具有动态可调整性,能够更加适用于更多应用场景中。
步骤S120:对多个参考信号资源进行测量得到多个波束测量信息。
本步骤中,由于在步骤S110中用户装置已经得到多个配置有参考信号资源的测试波束,因此在步骤S120中可以对多个参考信号资源进行测量得到多个波束测量信息,以便于在后续步骤中根据波束上报指示信息从多个波束测量信息中选择得到所需求的目标测量信息。
需要说明的是,用户装置对多个参考信号资源进行测量的方式可以为多种,此处并未限定。例如,根据预设的测量程序进行测量,当该程序检测到接收到多个参考信号资源时,则基于该预设的测量程序对多个参考信号资源进行测量得到多个波束测量信息;又如,操作人员设置感应装置对于接收到的参考信号资源进行感知,当该感应装置提示感知到接收参考信号资源时,则说明接收到测试波束,从而可以对多个测试波束的多个参考信号资源进行测量而得到多个波束测量信息等。
需要说明的是,波束测量信息包括如下至少之一:
参考信号资源的接收信号;
参考信号接收功率;
参考信号接收质量;
信噪比;
信干噪比;
信道状态信息。
需要说明的是,上述实施例中罗列的波束测量信息仅为具体示例说明,也就是说,本领域技术人员可以在具体应用场景下设置更少或者更多的波束测量信息的具体内容,例如,在后续的部分实施例中,该参
考信号接收功率可以具体为物理层参考信号接收功率L1-RSRP,或者可以具体为物理层信干噪比L1-SINR等,此处并未限定。
步骤S130:根据波束上报指示信息从多个波束测量信息中选择得到目标测量信息。
本步骤中,由于步骤S120中已经通过对多个参考信号资源进行测量得到了多个波束测量信息,因此用户装置在步骤S130中能够进一步根据接收到的波束上报指示信息对多个波束测量信息进行筛选,从而得到符合要求的目标测量信息,以便于在后续步骤中将目标测量信息向基站发送,达到降低波束上报开销的效果。
本申请的一个实施例,对步骤S130之后的步骤进行进一步的说明,步骤S130之后还可以包括但不限于步骤S150。
步骤S150:向发射装置发送目标波束所配置的参考信号资源的索引信息。
需要说明的是,目标波束为与目标测量信息对应的测试波束。
本步骤中,通过向基站发送与目标测量信息对应的测试波束所配置的参考信号资源的索引信息,使得基站能够在同时接收到该索引信息以及目标测量信息的情况下进行波束预测,有利于根据索引信息辅助判断得到最优波束结果的具体内容,从而提高基站对波束进行预测的有益效果。
本申请的一个实施例,对步骤S130进行进一步的说明,当波束上报指示信息包括用于指示上报波束测量信息的数目的指示信息时,步骤S130可以包括但不限于步骤S131,步骤S131包括如下至少之一:
在一可行的实施方式中,对多个波束测量信息按照由高质量到低质量进行排序得到第一测量信息序列,并根据用于指示上报波束测量信息的数目的指示信息,在第一测量信息序列中从第一个波束测量信息开始按序选择第一预设数量的波束测量信息作为目标测量信息。
本步骤中,通过对多个波束测量信息进行关于质量高、低的排序,可以得到排序后的第一测量信息序列,而第一测量信息序列中的各个波束测量信息的质量高、低已经可以通过顺序来进行分辨,因此可以在第一测量信息序列中,从第一个波束测量信息开始按序选择第一预设数量的波束测量信息作为目标测量信息,所选出的目标测量信息即为质量相对较高的多个波束测量信息;可以理解地是,这部分波束测量信息辅助基站进行波束预测的效果较好,且已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
需要说明的是,第一预设数量可以由用于指示上报波束测量信息的数目的指示信息进行指示,具体指示方式可以由用于指示上报波束测量信息的数目的指示信息分情况具体设置。例如,当直接指示上报波束测量信息的数目,则用于指示上报波束测量信息的数目的指示信息可以指示一个具体数值作为第一预设数量,也可以为针对上报波束测量信息的局部内容(比如区域)的数目等,此处不作限定;又如,当间接指示上报波束测量信息的数目,则用于指示上报波束测量信息的数目的指示信息可以指示一个与第一预设数量相关联的间接参数,比如可以但不限于为上报比例参数,由于用户装置对于测量得到的多个波束测量信息的数目是可以确定的,因此通过计算上报比例参数与测量得到的多个波束测量信息的数目之积,即可以得到待上报的波束测量信息的数目。
在另一可行的实施方式中,根据用于指示上报波束测量信息的数目的指示信息,将多个波束测量信息划分到第一预设数量的波束信息组中,选择各个波束信息组内质量最高的波束测量信息作为目标测量信息;
本步骤中,通过将多个波束测量信息划分到第一预设数量的波束信息组中,因此可以将各个波束信息组中的质量最高的波束测量信息分别选择出来,也就是说,相当于从第一预设数量的波束信息组中各选出一个质量最高的波束测量信息,最终选择得到第一预设数量的质量较高的波束测量信息作为目标测量信息;可以理解地是,这部分波束测量信息辅助基站进行波束预测的效果较好,且已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
在另一可行的实施方式中,根据各个波束测量信息相邻的两个波束测量信息之比,对多个波束测量信息按照由高质量到低质量进行排序得到第二测量信息序列,并根据用于指示上报波束测量信息的数目的指示信息,在第二测量信息序列中从第一个波束测量信息开始按序选择第一预设数量的波束测量信息作为目标测量信息;
本步骤中,波束测量信息相邻的两个波束测量信息之比也可以用于间接表征波束测量信息的质量高、低,因此基于相应的相邻的两个波束测量信息之比以对多个波束测量信息按照由高质量到低质量进行排序得到第二测量信息序列,可以得到排序后的第二测量信息序列,因此可以在第二测量信息序列中,从第一个波束测量信息开始按序选择第一预设数量的波束测量信息作为目标测量信息,所选出的目标测量信息即为质量相对较高的多个波束测量信息;可以理解地是,这部分波束测量信息辅助基站进行波束预测的效果较好,且已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
需要说明的是,第二测量信息序列与第一测量信息序列的排序方式互不影响,也就是说,两者可以是
相同的,也可以是不同的,仅与具体的分组参照相关,此处不作任何限定,下面各实施例中出现的新的测量信息序列与此同理。
在另一可行的实施方式中,根据用于指示上报波束测量信息的数目的指示信息,从多个波束测量信息中随机选择第一预设数量的波束测量信息作为目标测量信息。
本步骤中,根据用于指示上报波束测量信息的数目的指示信息,从多个波束测量信息中随机选择第一预设数量的波束测量信息作为目标测量信息,可以理解地是,这部分波束测量信息已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
需要说明的是,随机选择第一预设数量的波束测量信息的方式可以为多种,此处并未限定。例如,每次从多个波束测量信息中随机选择一个之后,再以同样的方式从剩下的多个波束测量信息中随机选择下一个,以此类推,最终随机选择得到第一预设数量的波束测量信息;又如,仅一次就从多个波束测量信息中随机选择第一预设数量的波束测量信息。
在另一可行的实施方式中,根据用于指示上报波束测量信息的数目的指示信息,从多个波束测量信息中选择预设的参考信号资源索引对应的第一预设数量的波束测量信息作为目标测量信息。
本步骤中,由于已经确定相应的参考信号资源索引,因此可以根据用于指示上报波束测量信息的数目的指示信息,从多个波束测量信息中选择预设的参考信号资源索引对应的第一预设数量的波束测量信息作为目标测量信息,也就是说,能够将作为目标的参考信号资源索引对应的波束测量信息选择出来作为目标测量信息上传,可以理解地是,这部分波束测量信息已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
需要说明的是,上述实施例中“预设的参考信号资源索引”可以为预先定义好的参考信号资源索引,也可以为固定设置的参考信号资源索引,此处并未限定。
以下结合附图给出具体示例对上述实施例进行说明。
示例一:
考虑L1-RSRP或L1-SINR较大的波束测量信息对于基站的波束预测更为重要,并且相邻波束质量变化较大的波束方向所蕴含的信息更为丰富,更有利于基站侧进行模型推理和波束预测。因此,本实施例考虑上报L1-RSRP或L1-SINR较大的前多个发送波束,或者相邻参考信号的L1-RSRP或L1-SINR比值较大的前多个发送波束,也即用户装置只需要上报波束质量较好或相邻波束质量变化较大的波束测量信息,以达到降低上报开销的目的。
具体而言,基站为实现下行发送端波束调整,首先用不同发送波束向用户装置传输所配置的M个参考信号和/或比例系数ρ(0<ρ≤1)和/或上报波束数目K(1≤K≤M),其中参考信号用于发送波束质量测量内容,比例系数ρ用于动态调整上报的波束测量信息的数目,K用于指示需要用户装置上报的波束测量信息的数目或波束测量信息的间隔。当比例系数ρ和/或上报波束数目K不被配置或缺省时,表示用户装置需要上报所有的波束测量信息或回退到传统的上报方式。
在一些实施例中,如图3所示,图3中的每个“○”表示一个测试波束,用户装置只上报波束质量较好的前多个波束,其中,图3中的波束质量信息具体呈现为L1-RSRP,为免冗余,在图3中将其简单记为“功率”。这种情况下,用户装置对不同发送波束传输的M个参考信号进行测量后,将测量得到的波束质量信息L1-RSRP由大到小进行排序,即如图3中所示的确定“功率强波束”,并选择数值较大的前N个波束质量信息,其中或或K,和分别表示向上取整符号和向下取整符号。然后,用户装置选择将这N个波束相应的参考信号资源索引CRI/SSBRI和波束质量信息上报给基站。
在一些实施例中,用户装置只上报波束质量较好的前多个波束。这种情况下,用户装置对不同发送波束传输的M个参考信号进行测量后,得到M个波束质量信息(L1-RSRP或L1-SINR)。然后,将这M个波束质量信息按顺序分成多个波束组,每个波束组中包含的参考信号数目为K。用户装置比较每个波束组内的波束质量信息的大小,并将每个波束组内最大的波束质量信息以及相应的参考信号资源索引CRI/SSBRI上报给基站。
在一些实施例中,用户装置随机上报多个波束。这种情况下,用户装置对不同发送波束传输的M个参考信号进行测量后,随机选择N个波束质量信息(L1-RSRP或L1-SINR),其中或或K,和
分别表示向上取整符号和向下取整符号。然后,用户装置将这N个波束相应的参考信号资源索引CRI/SSBRI和波束质量信息上报给基站。
在一些实施例中,用户装置上报具有固定索引的多个波束。这种情况下,用户装置对不同发送波束传输的M个参考信号进行测量后,选择预先定义的或固定的参考信号资源索引对应的N个波束质量信息(L1-RSRP或L1-SINR),其中或或K,和分别表示向上取整符号和向下取整符号。然后,用户装置将这N个波束相应的参考信号资源索引CRI/SSBRI和波束质量信息上报给基站。
在一些实施例中,如图4所示,图4中的每个“○”表示一个测试波束,用户装置只上报波束质量变化较快的部分波束对,其中,图4中的波束质量信息具体呈现为L1-RSRP,为免冗余,在图4中将其简单记为“功率”。这种情况下,用户装置对不同发送波束传输的M个参考信号进行测量后,计算相邻参考信号的波束质量信息L1-RSRP的比值并由大到小进行排序,即如图4中所示的确定“邻波束功率比大波束”,选择比值较大的前N个波束质量信息,其中或或K,和分别表示向上取整符号和向下取整符号。然后,用户装置选择将这N个波束相应的参考信号资源索引CRI/SSBRI和波束质量信息上报给基站。
最终,基站将用户装置上报的参考信号资源索引和/或波束质量信息作为AI模型输入,进行基于AI的波束预测,推理最优的收发波束对,或者基站对用户装置上报的波束测量信息进行插值、补零、降噪、升维等数据预处理,以匹配AI模型的输入,并提升网络对噪声的鲁棒性,基于数据预处理后的参考信号资源索引和/或波束质量信息,基站再进行基于AI的波束预测并推理最优的收发波束对。相比于对所有的参考信号进行测量和上报,本实施例的技术方案可以有效降低上报开销,并通过动态调节比例系数ρ或上报波束数目K,兼顾了上报开销和波束预测性能。
本申请的一个实施例,对步骤S130进行进一步的说明,当波束上报指示信息包括用于指示上报波束测量信息的数目的指示信息以及用于指示上报满足预设阈值条件的波束测量信息的指示信息时,用于指示上报波束测量信息的数目的指示信息包括用于指示上报波束测量信息的最小预设数目的指示信息,步骤S130可以包括但不限于步骤S132,步骤S132包括如下至少之一:
在一可行的实施方式中,根据用于指示上报满足预设质量阈值条件的波束测量信息的指示信息,从多个波束测量信息中选择质量大于第一预设阈值的波束测量信息作为目标测量信息。
本步骤中,通过预设质量阈值条件从多个波束测量信息中筛选出质量大于第一预设阈值的波束测量信息,由于第一预设阈值为所设定的符合质量要求的数值,因此可以确定质量大于第一预设阈值的波束测量信息符合要求,从而可以将这部分质量大于第一预设阈值的波束测量信息作为目标测量信息;可以理解地是,这部分波束测量信息质量相对较高,且已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
在另一可行的实施方式中,根据用于指示上报满足预设质量比值阈值条件的波束测量信息的指示信息,选择波束测量信息相邻的两个波束测量信息之比大于第二预设阈值的波束测量信息作为目标测量信息。
本步骤中,通过预设质量比值阈值条件从多个波束测量信息中筛选出质量大于第二预设阈值的波束测量信息,由于第二预设阈值为所设定的相邻的两个波束测量信息之比的阈值,可以间接表征波束测量信息的质量高、低,因此可以确定相邻的两个波束测量信息之比大于第二预设阈值的波束测量信息符合要求,从而可以将这部分质量大于第二预设阈值的波束测量信息作为目标测量信息;可以理解地是,这部分波束测量信息质量相对较高,且已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
在另一可行的实施方式中,根据用于指示上报满足预设质量阈值条件的波束测量信息的指示信息,从多个波束测量信息中选择质量大于第一预设阈值的波束测量信息,并且当根据用于指示上报波束测量信息的最小预设数目的指示信息确定质量大于第一预设阈值的波束测量信息的数目小于最小预设数目时,对多个波束测量信息按照由高质量到低质量进行排序得到第一测量信息序列,在第一测量信息序列中从第一个波束测量信息开始按序选择最小预设数目的波束测量信息作为目标测量信息;
本步骤中,通过预设质量阈值条件从多个波束测量信息中筛选出质量大于第一预设阈值的波束测量信息,由于第一预设阈值为所设定的符合质量要求的数值,因此可以确定质量大于第一预设阈值的波束测量信息符合要求,进而判断该部分的波束测量信息的数目是否符合上报的最小预设数目的要求,若否,则进一步根据对于多个波束测量信息进行质量排序的结果选择最小预设数目的波束测量信息作为目标测量信息;可以理解地是,这部分波束测量信息质量相对较高,且已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
在另一可行的实施方式中,根据用于指示上报满足预设质量比值阈值条件的波束测量信息的指示信息,选择波束测量信息相邻的两个波束测量信息之比大于第二预设阈值的波束测量信息,并且当根据用于指示上报波束测量信息的最小预设数目的指示信息,确定波束测量信息相邻的两个波束测量信息之比大于第二预设阈值的波束测量信息的数目小于最小预设数目时,对多个波束测量信息按照由高质量到低质量进行排序得到第一测量信息序列,在第一测量信息序列中从第一个波束测量信息开始按序选择最小预设数目的波束测量信息作为目标测量信息。
本步骤中,通过预设质量比值阈值条件从多个波束测量信息中筛选出波束测量信息相邻的两个波束测量信息之比大于第二预设阈值的波束测量信息,由于第二预设阈值为所设定的相邻的两个波束测量信息之比的阈值,可以间接表征波束测量信息的质量高、低,因此可以确定相邻的两个波束测量信息之比大于第
二预设阈值的波束测量信息符合要求,进而判断该部分的波束测量信息的数目是否符合上报的最小预设数目的要求,若否,则进一步根据对于多个波束测量信息进行质量排序的结果选择最小预设数目的波束测量信息作为目标测量信息;可以理解地是,这部分波束测量信息质量相对较高,且已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
需要说明的是,第一预设阈值、第二预设阈值可以由用于指示上报满足预设质量阈值条件的波束测量信息的指示信息根据具体情况进行指示,此处不作限定。
以下给出具体示例对上述实施例进行说明。
示例二:
考虑L1-RSRP或L1-SINR较大的波束测量信息对基站的波束预测较为重要,并且相邻波束质量变化较大的波束方向所蕴含的信息更为丰富,更有利于基站侧进行模型推理和波束预测。因此,本实施例的技术方案考虑上报L1-RSRP或L1-SINR较大的前多个发送波束,或者相邻参考信号的L1-RSRP或L1-SINR比值较大的前多个发送波束。也即,用户装置只需要上报波束质量较好或邻波束质量变化较大的参考信号测量结果,以降低上报开销。
具体而言,基站为实现下行发送端波束调整,首先用不同发送波束向用户装置传输所配置的M个参考信号和/或绝对阈值α和/或比例阈值β和/或最小上报数目W(W≥1),其中参考信号用于提供测试波束的信号,绝对阈值α用于筛选波束质量较好的发送波束,比例阈值β用于筛选波束信息丰富的发送波束。W限定了用户装置上报波束数目的下限,当绝对阈值α和/或比例阈值β和/或最小上报数目W不被配置或缺省时,表示用户装置需要上报所有的波束测量信息或回退到传统的上报方式。
然后,用户装置对不同发送波束传输的M个参考信号进行测量,得到M个波束质量信息(L1-RSRP或L1-SINR)。用户装置选择出波束质量信息大于绝对阈值α的多个参考信号,将相应的参考信号资源索引CRI/SSBRI和波束质量信息上报给基站;或者,用户装置计算相邻参考信号的波束质量信息的比值,选择出比值大于比例阈值β且/或波束质量信息大于绝对阈值α的多个参考信号,将相应的参考信号资源索引CRI/SSBRI和波束质量信息上报给基站。若波束质量信息大于绝对阈值α的参考信号数目小于W,或者相邻波束质量信息比值大于比例阈值β且/或波束质量信息大于绝对阈值α的参考信号数目小于W,用户装置应该对所有参考信号的波束质量信息由大到小进行排序,并选择较大的前W个波束质量信息和相应的参考信号资源索引CRI/SSBRI上报给基站。
最终,基站将用户装置上报的参考信号资源索引和/或波束质量信息作为AI模型输入,进行基于AI的波束预测,推理最优的收发波束对,或者基站对用户装置上报的波束测量信息进行插值、补零、降噪、升维等数据预处理,以匹配AI模型的输入,并提升网络对噪声的鲁棒性,基于数据预处理后的参考信号资源索引和/或波束质量信息,基站再进行基于AI的波束预测并推理最优的收发波束对。相比于对所有发送参考信号进行测量和上报,本实施例的技术方案可以有效降低上报开销,并通过动态调节绝对阈值α和/或比例阈值β,兼顾了上报开销和波束预测性能。
本申请的一个实施例,对步骤S130进行进一步的说明,当波束上报指示信息包括用于指示上报波束测量信息的数目的指示信息和用于指示上报满足预设邻域因子条件的波束测量信息的指示信息时,步骤S130可以包括但不限于步骤S133,步骤S133包括如下至少之一:
在一可行的实施方式中,对多个波束测量信息按照由高质量到低质量进行排序得到第一测量信息序列,根据用于指示上报波束测量信息的数目的指示信息,在第一测量信息序列中从第一个波束测量信息开始按序选择第一预设数量的波束测量信息,并根据用于指示上报满足预设邻域因子条件的波束测量信息的指示信息,选择与第一预设数量的波束测量信息相邻的目标邻域内的所有波束测量信息作为目标测量信息。
本步骤中,首先通过用于指示上报波束测量信息的数目的指示信息从多个波束测量信息中排序选出质量较高的第一预设数量的波束测量信息,再根据预设邻域因子条件所表征的测试波束的领域特性,进而选择出与第一预设数量的波束测量信息相邻的目标邻域内的所有波束测量信息作为目标测量信息,也即能够将质量较高的波束测量信息的目标邻域内的其他波束测量信息向基站发送;可以理解地是,这部分波束测量信息质量相对较高,且已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
在另一可行的实施方式中,根据用于指示上报满足预设邻域因子条件的波束测量信息的指示信息,将多个波束测量信息划分到第二预设数量的测量窗中,并根据各个测量窗的所有波束测量信息之和对多个测量窗按照由高质量到低质量进行排序得到第三测量信息序列,并根据用于指示上报波束测量信息的数目的指示信息,在第三测量信息序列中从第一个波束测量信息开始按序选择第一预设数量的波束测量信息作为目标测量信息。
本步骤中,首先通过用于指示上报波束测量信息的数目的指示信息将多个波束测量信息划分到第二预设数量的测量窗,并对各个测量窗按照测量窗内的波束测量信息之和进行质量排序,由于测量窗的波束测
量信息之和的大小可以表征测量窗的波束测量信息的整体质量高低,因此通过上述步骤即可利用第三测量信息序列区分得到不同质量的测量窗,也就能够在第三测量信息序列中从第一个波束测量信息开始按序选择第一预设数量的波束测量信息作为目标测量信息;可以理解地是,这部分波束测量信息质量相对较高,且已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
需要说明的是,与第一预设数量类似的,第二预设数量可以由用于指示上报波束测量信息的数目的指示信息进行指示,具体指示方式可以由用于指示上报波束测量信息的数目的指示信息分情况具体设置,由于前述实施例中对于第一预设数量已进行详细说明,故此处不作赘述。
以下结合附图给出具体示例对上述实施例进行说明。
示例三:
考虑最优发送波束会向周围的波束方向上辐射能量,因此本实施例的技术方案不在于上报L1-RSRP或L1-SINR较大的多个发送波束,而是上报L1-RSRP或L1-SINR较大的多个波束区域。也即,用户装置只需要上报部分发送波束及其相邻波束的测量结果,以降低上报开销。
具体而言,基站为实现下行发送端波束调整,首先配置M个参考信号和/或比例系数ρ(0<ρ≤1)和/或上报波束区域数目K(1≤K≤M)和/或邻域因子Ω,其中参考信号用于提供测试波束的信号,比例系数ρ用于调整上报测量波束数目,K用于指示需要用户装置上报的参考信号区域数目,邻域因子Ω用于指示需要上报的相邻波束范围。当比例系数ρ和/或上报波束区域数目K和/或邻域因子Ω不被配置或缺省时,表示用户装置需要上报所有的波束测量信息或回退到传统的上报方式。或者,当Ω不被配置或Ω的缺省值取0时,表示用户装置上报波束质量较好的前多个波束的测量结果;或者,当Ω不被配置或Ω的缺省值取1时,表示用户装置上报波束质量较好的前多个波束及其一阶相邻波束的测量结果;当Ω被配置为大于1时,表示用户装置上报波束质量较好的前多个波束及其多阶相邻波束的测量结果。
在一些实施例中,如图5所示,图5中的每个“○”表示一个测试波束,图5中的波束质量信息具体呈现为L1-RSRP,为免冗余,在图5中将其简单记为“功率”。用户装置对不同发送波束传输的M个参考信号进行测量后,将测量得到的波束质量信息L1-RSRP由大到小进行排序,即如图5中所示的确定“功率强波束”,并选择数值较大的前N个波束质量信息,其中或或K,和分别表示向上取整符号和向下取整符号。定义这N个波束相应的参考信号资源索引CRI/SSBRI为ri(1≤i≤N),则用户装置选择将[ri-Ω,ri+Ω](1≤i≤N)范围内的所有参考信号资源索引CRI/SSBRI以及相应的波束测量信息上报给基站。
在一些实施例中,如图6所示,图6中的每个“○”表示一个测试波束,图6中的波束质量信息具体呈现为L1-RSRP,为免冗余,在图6中将其简单记为“功率”。用户装置对不同发送波束传输的M个参考信号进行测量后,得到M个波束质量信息L1-RSRP。然后,将相邻的Ω个参考信号组成一个测量窗,计算每个测量窗的波束质量信息(L1-RSRP或L1-SINR)总和,并由大到小进行排序,即如图6中所示的“总功率强的窗内波束”,选择数值较大的前N个测量窗,其中或或K,和分别表示向上取整符号和向下取整符号。最后,用户装置将这N个测量窗内的所有参考信号资源索引CRI/SSBRI、相应的波束测量信息上报给基站。
最终,基站将用户装置上报的参考信号资源索引和/或波束质量信息作为AI模型输入,进行基于AI的波束预测,推理最优的收发波束对,或者基站对用户装置上报的波束测量信息进行插值、补零、降噪、升维等数据预处理,以匹配AI模型的输入,并提升网络对噪声的鲁棒性,基于数据预处理后的参考信号资源索引和/或波束质量信息,基站再进行基于AI的波束预测并推理最优的收发波束对。相比于对所有发送参考信号进行测量和上报,本实施例的技术方案可以有效降低上报开销,并通过动态调节比例系数ρ或上报波束区域数目K或邻域因子Ω,兼顾了上报开销和波束预测性能。
如图7所示,本申请的一个实施例,对步骤S130进行进一步的说明,当波束上报指示信息包括用于指示上报波束测量信息的数目的指示信息时,步骤S130可以包括但不限于步骤S134至S135。
步骤S134:将多个波束测量信息绑定邻域子集索引;
步骤S135:根据用于指示上报波束测量信息的数目的指示信息和邻域子集索引从多个波束测量信息中选择得到目标测量信息。
本步骤中,考虑到最优发送波束会向邻域波束方向上辐射能量,因此通过将多个波束测量信息绑定邻域子集索引,也就是说将各个波束测量信息的邻域子集波束测量信息考虑在内,进而根据用于指示上报波束测量信息的数目的指示信息和邻域子集索引,从多个波束测量信息中选择得到符合要求的目标测量信息;可以理解地是,所选择的该部分波束测量信息质量已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
本申请的一个实施例,对步骤S134进行进一步的说明,当波束上报指示信息还包括用于指示上报满足预设邻域子集索引条件的波束测量信息的指示信息时,步骤S134可以包括但不限于步骤S1341。
步骤S1341:对于每个波束测量信息,根据用于指示上报满足预设邻域子集索引条件的波束测量信息的指示信息,将波束测量信息绑定到与波束测量信息对应的邻域子集索引。
本步骤中,由于用于指示上报满足预设邻域子集索引条件的波束测量信息的指示信息可以用于向用户装置指示各个波束测量信息的邻域子集,因此通过该指示信息可以将波束测量信息绑定到与波束测量信息对应的邻域子集索引,以便于在后续步骤中基于所绑定的邻域子集索引以进一步选择得到目标测量信息。
如图8所示,本申请的一个实施例,对步骤S134进行进一步的说明,步骤S134可以包括但不限于步骤S1342至S1344。
步骤S1342:接收由发射装置发送的对于多个测试波束的发送图样信息;
步骤S1343:根据对于多个测试波束的发送图样信息,确定每个波束测量信息对应的邻域子集索引;
步骤S1344:对于每个波束测量信息,将波束测量信息绑定到与波束测量信息对应的邻域子集索引。
本步骤中,由于对于多个测试波束的发送图样信息能够保证多个测试波束的参数特征,因此通过对于多个测试波束的发送图样信息可以确定相应的测试波束,进而基于此确定每个波束测量信息对应的邻域子集索引并将波束测量信息绑定到与波束测量信息对应的邻域子集索引,以便于在后续步骤中基于所绑定的邻域子集索引以进一步选择得到目标测量信息。
本申请的一个实施例,对步骤S135进行进一步的说明,步骤S135可以包括但不限于步骤S1351,步骤S1351包括如下至少之一:
在一可行的实施方式中,对多个波束测量信息按照由高质量到低质量进行排序得到第一测量信息序列,并根据用于指示上报波束测量信息的数目的指示信息,在第一测量信息序列中从第一个波束测量信息开始按序选择第一预设数量的波束测量信息,并将第一预设数量的波束测量信息、第一预设数量的波束测量信息绑定的邻域子集索引下的所有波束测量信息作为目标测量信息。
本步骤中,首先通过对多个波束测量信息按照质量高低进行排序以得到排序后的第一测量信息序列,从而能够从第一测量信息序列中选择出质量较好的第一预设数量的波束测量信息,再考虑到所选择得到的波束测量信息的邻域子集索引,从而将第一预设数量的波束测量信息以及第一预设数量的波束测量信息绑定的邻域子集索引下的所有波束测量信息作为目标测量信息;可以理解地是,这部分波束测量信息质量相对较高,且已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
在另一可行的实施方式中,根据邻域子集索引下的所有波束测量信息之和,对邻域子集索引按照由高质量到低质量进行排序得到第四测量信息序列,并在第四测量信息序列中从第一个邻域子集索引开始按序选择第一预设数量的邻域子集索引,将第一预设数量的邻域子集索引下的所有波束测量信息作为目标测量信息。
本步骤中,由于具有相同的邻域子集索引的波束测量信息可以看作是同一类的波束测量信息,因此可以基于具有相同的邻域子集索引的波束测量信息进行进一步地比较,也就是说,通过比较相同的邻域子集索引下的所有波束测量信息之和以对不同的邻域子集索引进行质量高低的排序,进而从排序后的第四测量序列中选择第一预设数量的邻域子集索引下的所有波束测量信息作为目标测量信息;可以理解地是,这部分波束测量信息质量相对较高,且已经足够用于辅助基站进行波束预测,因此不需要再向基站发送其他的波束测量信息,从而能够降低波束上报开销,同时确保基站具有稳定可靠的波束预测性能。
以下结合附图给出具体示例对上述实施例进行说明。
示例四:
考虑最优发送波束会向周围的波束方向上辐射能量,因此本实施例的技术方案不在于上报L1-RSRP或L1-SINR较大的多个发送波束,而是上报L1-RSRP或L1-SINR较大的多个波束区域。也即,用户装置只需要上报部分发送波束及其相邻波束的测量结果,以降低上报开销。
具体而言,基站为实现下行发送端波束调整,首先配置M个参考信号和/或比例系数ρ(0<ρ≤1)和/或上报波束区域数目K(1≤K≤M),其中参考信号用于提供测试波束的信号,比例系数ρ用于调整上报测量波束数目,K用于指示需要用户装置上报的参考信号区域数目。比例系数ρ和/或上报波束区域数目K不被配置或缺省时,表示用户装置需要上报所有的波束测量信息或回退到传统的上报方式。此外,将这M个参考信号分别绑定邻域子集索引SubsetIndex。同一邻域子集索引下所有参考信号的发送波束方向相邻,包括第一维度和第二维度。或者,基站通过信令指示用户装置发送波束图样,包括第一维度和第二维度上波束方向和数目,用户装置则能够根据发送波束图样自主推测每个发送波束的邻域子集。
在一些实施例中,如图9所示,图9中的每个“○”表示一个测试波束,图9中的波束质量信息具体呈现为L1-RSRP,为免冗余,在图9中将其简单记为“功率”。用户装置对不同发送波束传输的M个参考信号进行测量后,将测量得到的波束质量信息L1-RSRP由大到小进行排序,即如图9中所示的确定“功率强波束”,并选择数值较大的前N个波束质量信息,其中或或K,和分别表示向上取整符号和向下取整符号。然后,用户装置选择将这N个参考信号的索引CRI/SSBRI和波束质量信息,以及这N
个参考信号所在子集内的所有参考信号资源索引和波束质量信息上报给基站。
在一些实施例中,如图10所示,图10中的每个“○”表示一个测试波束,图10中的波束质量信息具体呈现为L1-RSRP,为免冗余,在图10中将其简单记为“功率”。用户装置对不同发送波束传输的M个参考信号进行测量后,得到M个波束质量信息L1-RSRP。然后,计算相同邻域子集索引SubsetIndex内的波束质量信息总和,并由大到小进行排序,即如图4中所示的确定“总功率强的测试波束子集”,选择数值较大的前N个邻域子集,其中或或K,和分别表示向上取整符号和向下取整符号。最后,用户装置将这N个邻域子集内的所有参考信号资源索引CRI/SSBRI以及相应的波束测量信息上报给基站。
最终,基站将用户装置上报的参考信号资源索引和/或波束质量信息作为AI模型输入,进行基于AI的波束预测,推理最优的收发波束对,或者基站对用户装置上报的波束测量信息进行插值、补零、降噪、升维等数据预处理,以匹配AI模型的输入,并提升网络对噪声的鲁棒性,基于数据预处理后的参考信号资源索引和/或波束质量信息,基站再进行基于AI的波束预测并推理最优的收发波束对。相比于对所有发送参考信号进行测量和上报,本实施例的技术方案可以有效降低上报开销,并通过动态调节比例系数ρ或上报波束区域数目K或邻域子集大小,兼顾了上报开销和波束预测性能。
如图11所示,本申请的一个实施例,对步骤S130进行进一步的说明,当波束上报指示信息包括用于指示从多个维度上报波束测量信息的指示信息时,目标测量信息包括用于以绝对值上报方式向基站发送的第一目标测量信息和用于以差分上报方式向基站发送的第二目标测量信息,步骤S130可以包括但不限于步骤S136至S137。
步骤S136:根据用于指示从多个维度上报波束测量信息的指示信息,将多个波束测量信息划分到第一预设数量的测试波束子集中;
步骤S137:选择各个测试波束子集中质量最高的波束测量信息作为第一目标测量信息,选择各个测试波束子集中除质量最高的波束测量信息之外的其余波束测量信息作为第二目标测量信息。
本步骤中,通过用于指示从多个维度上报波束测量信息的指示信息对多个波束测量信息进行子集划分,以便于从划分得到的子集中选择质量最高的波束测量信息作为第一目标测量信息,以及从划分得到的子集中选择除第一目标测量信息之外的其余波束测量信息作为第二目标测量信息,由于第一目标测量信息用于以绝对值上报方式向基站发送,而第二目标测量信息用于以差分上报方式向基站发送,因此相当于以多个维度的形式向基站发送了多个波束测量信息,即增加了参考波束测量信息的个数,因此,相比于传统技术方案,不仅能够兼顾波束上报开销和基站侧的波束预测性能,同时通过增加参考波束测量信息个数达到提高上报波束测量信息准确性的效果,有利于进一步提升基站的波束预测效果。
需要说明的是,不限定的是,还可以从更多的维度上选择得到更多的目标测量信息,基于更多的目标测量信息以进一步提升基站的波束预测效果,其基本原理与上述实施例相类似,此处不作赘述。
如图12所示,本申请的一个实施例,对步骤S136进行进一步的说明,当波束测量信息包括参考信号接收质量时,步骤S136可以包括但不限于步骤S1361至S1362。
步骤S1361:对多个参考信号接收质量按照由高质量到低质量进行排序得到第五测量信息序列;
步骤S1362:根据用于指示从多个维度上报波束测量信息的指示信息,在第五测量信息序列中将多个参考信号接收质量划分到第一预设数量的测试波束子集中。
本步骤中,通过对参考信号接收质量按照由高质量到低质量进行排序得到第五测量信息序列,以便于根据质量高低将多个参考信号接收质量划分到第一预设数量的测试波束子集中,这样得到的测试波束子集可以包括多个不同的参考信号接收质量从而体现差异性,以便于在后续步骤中基于测试波束子集选择得到目标测量信息。
本申请的一个实施例,对步骤S136进行进一步的说明,步骤S136可以包括但不限于步骤S1363。
步骤S1363:在确定对于多个测试波束的接收波束信息的情况下,根据用于指示从多个维度上报波束测量信息的指示信息以及对于多个测试波束的接收波束信息,将相同的对于多个测试波束的接收波束信息对应的波束测量信息划分到同一个测试波束子集中。
本步骤中,由于对于多个测试波束的接收波束信息可以用于表征用户装置接收参考信号资源的接收波束的信息,因此可以根据用于指示从多个维度上报波束测量信息的指示信息以及对于多个测试波束的接收波束信息,将同一接收波束对应的波束测量信息划分到同一个测试波束子集中。
需要说明的是,划分测试波束子集的方式并未限定。例如,可以采用等分划定的方式划分测试波束子集,也就是说,将所有波束测量信息等分地划分到第一预设数量的测试波束子集中;又如,每次从所有波束测量信息中只选出一个进行归类,以此类推,对于所有波束测量信息都能够进行归类从而得到最终的测试波束子集。
以下结合附图给出具体示例对上述实施例进行说明。
示例五:
相比于传统的波束上报机制,基站所执行的波束预测方法中所需要上报的波束数目更多,波束质量信息(L1-RSRP或L1-SINR)的取值范围更大。因此,为了减少上报开销同时保证上报精度,本实施例考虑设置多个参考波束质量信息,即多个参考RSRP或参考SINR。本实施例以RSRP上报为例,所选择的多个参考RSRP采取绝对值上报方式,其他参考信号对应的RSRP采取差分上报方式。
具体而言,基站为实现下行发送端波束调整,首先配置M个参考信号和/或参考RSRP因子γ,其中参考信号用于提供测试波束的信号,γ用于指示参考RSRP的个数。当γ不被配置或者γ缺省时,表示参考RSRP个数为1,或者表示由用户装置自主决定参考RSRP个数,或者回退到传统的上报方式。用户装置对不同发送波束传输的M个参考信号进行测量后,将测量得到的波束质量信息RSRP分为γ个子集。比如,用户装置将M个参考信号接收功率RSRP从大到小排序,并等分为γ个子集;或者,用户装置根据接收波束方向的不同,将M个参考信号接收功率RSRP分为γ个子集。
对于L1-RSRP的上报,每个子集中的最大RSRP作为参考RSRP,采取绝对值上报方式。比如,将每个子集中的最大RSRP量化为[-140,-44]dBm范围内的7位有效载荷,步长为1dB,同时可以增加有效载荷数或降低步长来提升上报精度,用户装置需要上报这γ个参考RSRP及相应的参考信号资源索引CRI/SSBRI。每个子集中的其他RSRP以同一子集中的最大RSRP作为参考RSRP,采取差分上报方式。比如,差分RSRP被量化为[-30,0]dB范围内的4位有效载荷,步长为2dB,同时可以降低有效载荷数或增加步长来降低上报开销。对于差分RSRP的上报,用户装置除了上报差分RSRP及相应的参考信号资源索引CRI/SSBRI,还需要上报所参考的最大RSRP和/或最大RSRP对应的参考信号资源索引CRI/SSBRI。
最终,基站将用户装置上报的参考信号资源索引和/或波束质量信息作为AI模型输入,进行基于AI的波束预测,推理最优的收发波束对,或者基站对用户装置上报的波束测量信息进行插值、补零、降噪、升维等数据预处理,以匹配AI模型的输入,并提升网络对噪声的鲁棒性,基于数据预处理后的参考信号资源索引和/或波束质量信息,基站再进行基于AI的波束预测并推理最优的收发波束对。相比于只选择同一上报实例中的最大测量RSRP作为参考RSRP,本实施例的技术方案通过增加参考RSRP个数,兼顾了上报开销、RSRP上报准确性和波束预测性能。
此外,需要说明的是,可组合使用上述的任意两个或两个以上实施例或示例,例如基站通过信令指示用户装置使用哪一种上报方式进行CSI反馈量的上报,同时基站通过信令指示该上报方式下用户装置所需要的辅助信息,包括上报波束数目和/或上报比例系数和/或预设阈值等,这并未限定。
步骤S140:向发射装置发送目标测量信息,使得发射装置根据目标测量信息预测得到最优波束结果。
本步骤中,由于用户装置通过对来自基站的测试波束所配置的参考信号资源进行测量而得到多个波束测量信息,并且可以根据来自基站的波束上报指示信息从多个波束测量信息中选择得到需要上报至基站的目标测量信息,也就是说,不需要将测量得到的所有波束测量信息向基站发送,而是从所有波束测量信息中选择部分波束测量信息进行发送,因此能够降低波束上报开销,减小上行传输压力,因此基站可以基于所上报的部分波束测量信息的辅助进行波束预测,这不会影响基站的波束预测性能,有利于降低波束训练开销、测量功耗和处理延时;因此,从总体来说能够兼顾用户装置侧的波束上报开销和基站侧的波束预测性能,从而可以弥补相关方法中的技术空白。
需要说明的是,预测最优波束结果的方式可以为多种,不作限定。例如,基于基站内已经训练好并植入的人工智能AI模型进行预测,由于目标测量信息可以辅助基站侧的AI波束预测,因此基于其进行预测可以增强AI模型的鲁棒性和泛化性。又如,操作人员将接收到的目标测量信息输入到训练好的基站内部的波束预测网络中,从而得到由波束预测网络输出的最优波束结果等。
需要说明的是,最优波束结果包括如下至少之一:
至少一个最优波束对;
与至少一个最优波束对相邻的至少一个波束对。
也就是说,最优波束结果可以但不限于为一个或多个最优波束对,每个最优波束对包括一个最优发送波束和一个最优接收波束,具体根据实际应用场景进行选择设置,并未限定。
如图13所示,图13是本申请另一个实施例提供的波束管理方法的流程图,该波束管理方法应用于发射装置,例如图1所示实施例中的基站120。该波束管理方法可以包括但不限于步骤S210至步骤S230。
步骤S210:向接收装置发送波束上报指示信息以及多个配置有参考信号资源的测试波束。
需要说明的是,本实施例中的发射装置可以但不限于为图1所示实施例中的基站120,本实施例中的接收装置可以但不限于为图1所示实施例中的用户装置110;或者,本领域的技术人员可以根据实际应用场景选择设置相应的发射装置或者接收装置,本实施例不做限制。为了更方便地描述本申请的应用场景及原理,以下各相关实施例中以基站为发射装置、用户装置为接收装置进行描述,但不应将其理解为对本申请实施例的限制。
本步骤中,通过向用户装置发送波束上报指示信息以及多个配置有参考信号资源的测试波束,使得用户装置能够基于波束上报指示信息以及多个配置有参考信号资源的测试波束得到目标测量信息,其中,该
目标测量信息用于提供给基站进行波束预测。
需要说明的是,发射装置的波束发送方向可以为多个,具体由预设的运行逻辑进行确定或者基于操作人员的控制进行确定,当发射装置已经确定好全部波束发送方向,则发射装置可以选择在其中的至少一部分波束发送方向上,也就是说,可以在选择其中一部分或者全部的波束发送方向的这两种情况下进行配置,从而得到多个测试波束。
需要说明的是,多个测试波束可以为互不相同的以用于模拟不同的波束扫描情况,具体的测试波束的数目可以根据实际应用场景进行设置,此处不作限制。
需要说明的是,参考信号资源包括如下至少之一:
信道状态信息参考信号CSI-RS资源;
同步信号块SSB资源。
也就是说,所配置的参考信号资源可以是CSI-RS资源或/和SSB资源,通过配置上述资源以实现用户装置侧的波束测量、扫描,由于CSI-RS资源、SSB资源为本领域技术人员所熟知且在前述实施例中已对其进行阐述,在此不作赘述。
步骤S220:接收由接收装置发送的目标测量信息。
需要说明的是,目标测量信息由接收装置根据波束上报指示信息从多个波束测量信息中选择得到,波束测量信息由接收装置对多个参考信号资源进行测量得到。
本步骤中,由于步骤S210中已经向用户装置发送波束上报指示信息以及多个配置有参考信号资源的测试波束,使得用户装置能够基于波束上报指示信息以及多个配置有参考信号资源的测试波束得到目标测量信息,以便于在后续步骤中根据该目标测量信息进行波束预测。
需要说明的是,波束上报指示信息包括如下至少之一:
用于指示上报波束测量信息的数目的指示信息;
用于指示上报满足预设阈值条件的波束测量信息的指示信息,其中,预设阈值条件包括预设质量阈值条件或预设质量比值阈值条件;
用于指示上报满足预设邻域因子条件的波束测量信息的指示信息;
用于指示上报满足预设邻域子集索引条件的波束测量信息的指示信息;
用于指示从多个维度上报波束测量信息的指示信息。
其中,用于指示上报波束测量信息的数目的指示信息、用于指示上报满足预设阈值条件的波束测量信息的指示信息、用于指示上报满足预设邻域因子条件的波束测量信息的指示信息、用于指示上报满足预设邻域子集索引条件的波束测量信息的指示信息以及用于指示从多个维度上报波束测量信息的指示信息,可以分别用于指示,也可以将其中的两个或更多个组合起来用于指示,此处不作限定;关于每个指示信息的具体应用场景,在以下各实施例中逐步说明,此处不赘述。
在一可行的实施方式中,当波束上报指示信息包括用于指示上报波束测量信息的数目的指示信息时,用于指示上报波束测量信息的数目的指示信息包括如下至少之一:
用于指示上报波束测量信息的绝对数目的指示信息;
用于指示上报波束测量信息的比例系数的指示信息。
可以理解地是,绝对数目指的为指示上报的波束测量信息的实际数目,比例系数为指示上报的波束测量信息的实际数目与所有波束测量信息的数目的比值,均属于用于指示上报波束测量信息的数目的指示信息;需要说明的是,在实际应用场景中,指示上报波束测量信息的绝对数目或/和指示上报波束测量信息的比例系数可以根据需求实时修改,即具有动态可调整性,能够更加适用于更多应用场景中。
需要说明的是,波束测量信息包括如下至少之一:
参考信号资源的接收信号;
参考信号接收功率;
参考信号接收质量;
信噪比;
信干噪比;
信道状态信息。
需要说明的是,上述实施例中罗列的波束测量信息仅为具体示例说明,也就是说,本领域技术人员可以在具体应用场景下设置更少或者更多的波束测量信息的具体内容,此处并未限定。
步骤S230:根据目标测量信息预测得到最优波束结果。
本步骤中,由于用户装置通过对来自基站的测试波束所配置的参考信号资源进行测量而得到多个波束测量信息,并且可以根据来自基站的波束上报指示信息从多个波束测量信息中选择得到需要上报至基站的目标测量信息,也就是说,不需要将测量得到的所有波束测量信息向基站发送,而是从所有波束测量信息中选择部分波束测量信息进行发送,因此能够降低波束上报开销,减小上行传输压力,因此基站可以基于
所上报的部分波束测量信息的辅助进行波束预测,这不会影响基站的波束预测性能,有利于降低波束训练开销、测量功耗和处理延时;因此,从总体来说能够兼顾用户装置侧的波束上报开销和基站侧的波束预测性能,从而可以弥补相关方法中的技术空白。
需要说明的是,预测最优波束结果的方式可以为多种,不作限定。例如,基于基站内已经训练好并植入的人工智能AI模型进行预测,由于目标测量信息可以辅助基站侧的AI波束预测,因此基于其进行预测可以增强AI模型的鲁棒性和泛化性。又如,操作人员将接收到的目标测量信息输入到训练好的基站内部的波束预测网络中,从而得到由波束预测网络输出的最优波束结果等。
需要说明的是,最优波束结果包括如下至少之一:
至少一个最优波束对;
与至少一个最优波束对相邻的至少一个波束对。
也就是说,最优波束结果可以但不限于为一个或多个最优波束对,每个最优波束对包括一个最优发送波束和一个最优接收波束,具体根据实际应用场景进行选择设置,并未限定。
本申请的一个实施例,步骤S230之前还可以包括但不限于步骤S240。
步骤S240,接收由接收装置发送的目标波束所配置的参考信号资源的索引信息。
需要说明的是,目标波束为与目标测量信息对应的测试波束。
本步骤中,通过接收与目标测量信息对应的测试波束所配置的参考信号资源的索引信息,从而能够在同时接收到该索引信息以及目标测量信息的情况下进行波束预测,有利于根据索引信息辅助判断得到最优波束结果的具体内容,从而提高对波束进行预测的有益效果。
本申请的一个实施例,对步骤S230进行进一步的说明,步骤S230可以包括但不限于步骤S231。
步骤S231:根据目标测量信息和目标波束所配置的参考信号资源的索引信息预测得到最优波束结果。
本步骤中,能够基于目标测量信息和目标波束所配置的参考信号资源的索引信息配合进行波束预测以得到最优波束结果,有利于提高对波束进行预测的实际效果,提高对于波束预测的精确度。
另外,如图14所示,本申请的一个实施例还公开了一种用户装置200,包括:至少一个处理器210;至少一个存储器220,用于存储至少一个程序;当至少一个程序被至少一个处理器210执行时实现如前面实施例中的波束管理方法的图2中的步骤S110至S140、步骤S150、步骤S131、步骤S132、步骤S133、图7中的步骤S134至S135、步骤S1341、图8中的骤S1342至S1344、步骤S1351、图11中的步骤S136至S137、图12中的步骤S1361至S1362或步骤S1363。
另外,如图15所示,本申请的一个实施例还公开了一种基站300,包括:至少一个处理器310;至少一个存储器320,用于存储至少一个程序;当至少一个程序被至少一个处理器310执行时实现如前面任意实施例中的波束管理方法的图13中的步骤S210至S230、步骤S240或步骤S231。
另外,本申请的一个实施例还公开了一种计算机可读存储介质,其中存储有计算机可执行指令,计算机可执行指令用于执行如前面任意实施例中的波束管理方法。
此外,本申请的一个实施例还公开了一种计算机程序产品,包括计算机程序或计算机指令,计算机程序或计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取计算机程序或计算机指令,处理器执行计算机程序或计算机指令,使得计算机设备执行如前面任意实施例中的波束管理方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请本质的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。
Claims (27)
- 一种波束管理方法,应用于接收装置,所述波束管理方法包括:接收由发射装置发送的波束上报指示信息以及多个配置有参考信号资源的测试波束;对多个所述参考信号资源进行测量得到多个波束测量信息;根据所述波束上报指示信息从所述多个波束测量信息中选择得到目标测量信息;向所述发射装置发送所述目标测量信息,使得所述发射装置根据所述目标测量信息预测得到最优波束结果。
- 根据权利要求1所述的波束管理方法,其中,所述参考信号资源包括如下至少之一:信道状态信息参考信号资源;同步信号块资源。
- 根据权利要求1所述的波束管理方法,其中,所述波束上报指示信息包括如下至少之一:用于指示上报波束测量信息的数目的指示信息;用于指示上报满足预设阈值条件的所述波束测量信息的指示信息,其中,所述预设阈值条件包括预设质量阈值条件或预设质量比值阈值条件;用于指示上报满足预设邻域因子条件的所述波束测量信息的指示信息;用于指示上报满足预设邻域子集索引条件的所述波束测量信息的指示信息;用于指示从多个维度上报所述波束测量信息的指示信息。
- 根据权利要求3所述的波束管理方法,其中,当所述波束上报指示信息包括所述用于指示上报波束测量信息的数目的指示信息时,所述用于指示上报波束测量信息的数目的指示信息包括如下至少之一:用于指示上报波束测量信息的绝对数目的指示信息;用于指示上报波束测量信息的比例系数的指示信息。
- 根据权利要求1所述的波束管理方法,其中,所述波束测量信息包括如下至少之一:所述参考信号资源的接收信号;参考信号接收功率;参考信号接收质量;信噪比;信干噪比;信道状态信息。
- 根据权利要求4所述的波束管理方法,其中,当所述波束上报指示信息包括所述用于指示上报波束测量信息的数目的指示信息,所述根据所述波束上报指示信息从所述多个波束测量信息中选择得到目标测量信息,包括如下至少之一:对所述多个波束测量信息按照由高质量到低质量进行排序得到第一测量信息序列,并根据所述用于指示上报波束测量信息的数目的指示信息,在所述第一测量信息序列中从第一个所述波束测量信息开始按序选择第一预设数量的所述波束测量信息作为目标测量信息;根据所述用于指示上报波束测量信息的数目的指示信息,将所述多个波束测量信息划分到第一预设数量的波束信息组中,选择各个所述波束信息组内质量最高的所述波束测量信息作为目标测量信息;根据各个所述波束测量信息相邻的两个所述波束测量信息之比,对所述多个波束测量信息按照由高质量到低质量进行排序得到第二测量信息序列,并根据所述用于指示上报波束测量信息的数目的指示信息,在所述第二测量信息序列中从第一个所述波束测量信息开始按序选择第一预设数量的所述波束测量信息作为目标测量信息;根据所述用于指示上报波束测量信息的数目的指示信息,从所述多个波束测量信息中随机选择第一预设数量的所述波束测量信息作为目标测量信息;根据所述用于指示上报波束测量信息的数目的指示信息,从所述多个波束测量信息中选择预设的参考信号资源索引对应的第一预设数量的所述波束测量信息作为目标测量信息。
- 根据权利要求3所述的波束管理方法,其中,当所述波束上报指示信息包括所述用于指示上报波束测量信息的数目的指示信息以及所述用于指示上报满足预设阈值条件的所述波束测量信息的指示信息时,所述用于指示上报波束测量信息的数目的指示信息包括用于指示上报波束测量信息的最小预设数目的指示信息;所述根据所述波束上报指示信息从所述多个波束测量信息中选择得到目标测量信息,包括如下至少之一:根据所述用于指示上报满足预设质量阈值条件的所述波束测量信息的指示信息,从所述多个波束测量 信息中选择质量大于第一预设阈值的所述波束测量信息作为目标测量信息;根据所述用于指示上报满足预设质量比值阈值条件的所述波束测量信息的指示信息,选择所述波束测量信息相邻的两个所述波束测量信息之比大于第二预设阈值的所述波束测量信息作为目标测量信息;根据所述用于指示上报满足预设质量阈值条件的所述波束测量信息的指示信息,从所述多个波束测量信息中选择质量大于第一预设阈值的所述波束测量信息,并且当根据所述用于指示上报波束测量信息的最小预设数目的指示信息确定质量大于所述第一预设阈值的所述波束测量信息的数目小于所述最小预设数目时,对所述多个波束测量信息按照由高质量到低质量进行排序得到第一测量信息序列,在所述第一测量信息序列中从第一个所述波束测量信息开始按序选择所述最小预设数目的所述波束测量信息作为目标测量信息;根据所述用于指示上报满足预设质量比值阈值条件的所述波束测量信息的指示信息,选择所述波束测量信息相邻的两个所述波束测量信息之比大于第二预设阈值的所述波束测量信息,并且当根据所述用于指示上报波束测量信息的最小预设数目的指示信息,确定所述波束测量信息相邻的两个所述波束测量信息之比大于第二预设阈值的所述波束测量信息的数目小于所述最小预设数目时,对所述多个波束测量信息按照由高质量到低质量进行排序得到第一测量信息序列,在所述第一测量信息序列中从第一个所述波束测量信息开始按序选择所述最小预设数目的所述波束测量信息作为目标测量信息。
- 根据权利要求4所述的波束管理方法,其中,当所述波束上报指示信息包括所述用于指示上报波束测量信息的数目的指示信息和所述用于指示上报满足预设邻域因子条件的所述波束测量信息的指示信息时,所述根据所述波束上报指示信息从所述多个波束测量信息中选择得到目标测量信息,包括如下至少之一:对所述多个波束测量信息按照由高质量到低质量进行排序得到第一测量信息序列,根据所述用于指示上报波束测量信息的数目的指示信息,在所述第一测量信息序列中从第一个所述波束测量信息开始按序选择第一预设数量的所述波束测量信息,并根据所述用于指示上报满足预设邻域因子条件的所述波束测量信息的指示信息,选择与第一预设数量的所述波束测量信息相邻的目标邻域内的所有所述波束测量信息作为目标测量信息;根据所述用于指示上报满足预设邻域因子条件的所述波束测量信息的指示信息,将所述多个波束测量信息划分到第二预设数量的测量窗中,并根据各个所述测量窗的所有所述波束测量信息之和对所述多个测量窗按照由高质量到低质量进行排序得到第三测量信息序列,并根据所述用于指示上报波束测量信息的数目的指示信息,在所述第三测量信息序列中从第一个所述波束测量信息开始按序选择第一预设数量的所述波束测量信息作为目标测量信息。
- 根据权利要求4所述的波束管理方法,其中,当所述波束上报指示信息包括所述用于指示上报波束测量信息的数目的指示信息时,所述根据所述波束上报指示信息从所述多个波束测量信息中选择得到目标测量信息,包括:将所述多个波束测量信息绑定邻域子集索引;根据所述用于指示上报波束测量信息的数目的指示信息和所述邻域子集索引从所述多个波束测量信息中选择得到目标测量信息。
- 根据权利要求9所述的波束管理方法,其中,当所述波束上报指示信息还包括所述用于指示上报满足预设邻域子集索引条件的所述波束测量信息的指示信息,所述将所述多个波束测量信息绑定邻域子集索引,包括:对于每个所述波束测量信息,根据所述用于指示上报满足预设邻域子集索引条件的所述波束测量信息的指示信息,将所述波束测量信息绑定到与所述波束测量信息对应的邻域子集索引。
- 根据权利要求9所述的波束管理方法,其中,所述将所述多个波束测量信息绑定邻域子集索引,包括:接收由所述发射装置发送的对于所述多个测试波束的发送图样信息;根据所述对于所述多个测试波束的发送图样信息,确定每个所述波束测量信息对应的邻域子集索引;对于每个所述波束测量信息,将所述波束测量信息绑定到与所述波束测量信息对应的所述邻域子集索引。
- 根据权利要求9所述的波束管理方法,其中,所述根据所述用于指示上报波束测量信息的数目的指示信息和所述邻域子集索引从所述多个波束测量信息中选择得到目标测量信息,包括如下至少之一:对所述多个波束测量信息按照由高质量到低质量进行排序得到第一测量信息序列,并根据所述用于指示上报波束测量信息的数目的指示信息,在所述第一测量信息序列中从第一个所述波束测量信息开始按序选择第一预设数量的所述波束测量信息,并将第一预设数量的所述波束测量信息、第一预设数量的所述波束测量信息绑定的所述邻域子集索引下的所有所述波束测量信息作为目标测量信息;根据所述邻域子集索引下的所有所述波束测量信息之和,对所述邻域子集索引按照由高质量到低质量 进行排序得到第四测量信息序列,并在所述第四测量信息序列中从第一个所述邻域子集索引开始按序选择第一预设数量的所述邻域子集索引,将第一预设数量的所述邻域子集索引下的所有所述波束测量信息作为目标测量信息。
- 根据权利要求1所述的波束管理方法,其中,当所述波束上报指示信息包括用于指示从多个维度上报所述波束测量信息的指示信息时,所述目标测量信息包括用于以绝对值上报方式向所述发射装置发送的第一目标测量信息和用于以差分上报方式向所述发射装置发送的第二目标测量信息,所述根据所述波束上报指示信息从所述多个波束测量信息中选择得到目标测量信息,包括:根据所述用于指示从多个维度上报所述波束测量信息的指示信息,将所述多个波束测量信息划分到第一预设数量的测试波束子集中;选择各个所述测试波束子集中质量最高的所述波束测量信息作为所述第一目标测量信息,选择各个所述测试波束子集中除质量最高的所述波束测量信息之外的其余所述波束测量信息作为所述第二目标测量信息。
- 根据权利要求13所述的波束管理方法,其中,当所述波束测量信息包括参考信号接收质量时,所述根据所述用于指示从多个维度上报所述波束测量信息的指示信息,将所述多个波束测量信息划分到第一预设数量的测试波束子集中,包括:对所述多个参考信号接收质量按照由高质量到低质量进行排序得到第五测量信息序列;根据所述用于指示从多个维度上报所述波束测量信息的指示信息,在所述第五测量信息序列中将所述多个参考信号接收质量划分到第一预设数量的测试波束子集中。
- 根据权利要求13所述的波束管理方法,其中,所述根据所述用于指示从多个维度上报所述波束测量信息的指示信息,将所述多个波束测量信息划分到第一预设数量的测试波束子集中,包括:在确定对于所述多个测试波束的接收波束信息的情况下,根据所述用于指示从多个维度上报所述波束测量信息的指示信息以及对于所述多个测试波束的接收波束信息,将相同的所述对于所述多个测试波束的接收波束信息对应的所述波束测量信息划分到同一个所述测试波束子集中。
- 根据权利要求1所述的波束管理方法,其中,所述根据所述波束上报指示信息从所述多个波束测量信息中选择得到目标测量信息之后,还包括:向所述发射装置发送目标波束所配置的所述参考信号资源的索引信息,其中,所述目标波束为与所述目标测量信息对应的所述测试波束。
- 一种波束管理方法,应用于发射装置,所述波束管理方法包括:向接收装置发送波束上报指示信息以及多个配置有参考信号资源的测试波束;接收由所述接收装置发送的目标测量信息,其中,所述目标测量信息由所述接收装置根据所述波束上报指示信息从多个波束测量信息中选择得到,所述波束测量信息由所述接收装置对多个所述参考信号资源进行测量得到;根据所述目标测量信息预测得到最优波束结果。
- 根据权利要求17所述的波束管理方法,其中,所述参考信号资源包括如下至少之一:信道状态信息参考信号资源;同步信号块资源。
- 根据权利要求17所述的波束管理方法,其中,所述波束上报指示信息包括如下至少之一:用于指示上报波束测量信息的数目的指示信息;用于指示上报满足预设阈值条件的所述波束测量信息的指示信息;用于指示上报满足预设邻域因子条件的所述波束测量信息的指示信息;用于指示上报满足预设邻域子集索引条件的所述波束测量信息的指示信息;用于指示从多个维度上报所述波束测量信息的指示信息。
- 根据权利要求19所述的波束管理方法,其中,当所述波束上报指示信息包括所述用于指示上报波束测量信息的数目的指示信息时,所述用于指示上报波束测量信息的数目的指示信息包括如下至少之一:用于指示上报波束测量信息的绝对数目的指示信息;用于指示上报波束测量信息的比例系数的指示信息。
- 根据权利要求17所述的波束管理方法,其中,所述波束测量信息包括如下至少之一:所述参考信号资源的接收信号;参考信号接收功率;参考信号接收质量;信噪比;信干噪比;信道状态信息。
- 根据权利要求17所述的波束管理方法,其中,所述根据所述目标测量信息预测得到最优波束结果之前,还包括:接收由所述接收装置发送的目标波束所配置的所述参考信号资源的索引信息,其中,所述目标波束为与所述目标测量信息对应的所述测试波束。
- 根据权利要求22所述的波束管理方法,其中,所述根据所述目标测量信息预测得到最优波束结果,包括:根据所述目标测量信息和所述目标波束所配置的所述参考信号资源的索引信息预测得到最优波束结果。
- 一种用户装置,包括:至少一个处理器;至少一个存储器,用于存储至少一个程序;当至少一个所述程序被至少一个所述处理器执行时实现如权利要求1至16任意一项所述的波束管理方法。
- 一种基站,包括:至少一个处理器;至少一个存储器,用于存储至少一个程序;当至少一个所述程序被至少一个所述处理器执行时实现如权利要求17至23任意一项所述的波束管理方法。
- 一种计算机可读存储介质,其中存储有处理器可执行的程序,所述处理器可执行的程序被处理器执行时用于实现如权利要求1至23任意一项所述的波束管理方法。
- 一种计算机程序产品,包括计算机程序或计算机指令,所述计算机程序或所述计算机指令存储在计算机可读存储介质中,计算机设备的处理器从所述计算机可读存储介质读取所述计算机程序或所述计算机指令,所述处理器执行所述计算机程序或所述计算机指令,使得所述计算机设备执行如权利要求1至23任意一项所述的波束管理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247032196A KR20240154060A (ko) | 2022-04-28 | 2023-03-17 | 빔 관리 방법, 사용자 장치, 기지국, 저장 매체 및 프로그램 제품 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210460677.8 | 2022-04-28 | ||
CN202210460677.8A CN117041997A (zh) | 2022-04-28 | 2022-04-28 | 波束管理方法、用户装置、基站、存储介质及程序产品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023207412A1 true WO2023207412A1 (zh) | 2023-11-02 |
Family
ID=88517292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/082226 WO2023207412A1 (zh) | 2022-04-28 | 2023-03-17 | 波束管理方法、用户装置、基站、存储介质及程序产品 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20240154060A (zh) |
CN (1) | CN117041997A (zh) |
WO (1) | WO2023207412A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108243430A (zh) * | 2016-12-23 | 2018-07-03 | 维沃移动通信有限公司 | 一种波束管理信息的配置、处理方法、终端及基站 |
CN109041251A (zh) * | 2017-06-08 | 2018-12-18 | 中兴通讯股份有限公司 | 随机接入方法、装置、基站、终端及计算机可读存储介质 |
CN110446232A (zh) * | 2018-05-04 | 2019-11-12 | 中国移动通信有限公司研究院 | 测量上报配置方法、测量上报方法、小区切换方法及设备 |
WO2020029296A1 (zh) * | 2018-08-10 | 2020-02-13 | Oppo广东移动通信有限公司 | 一种信道状态信息上报方法、终端设备及网络设备 |
-
2022
- 2022-04-28 CN CN202210460677.8A patent/CN117041997A/zh active Pending
-
2023
- 2023-03-17 KR KR1020247032196A patent/KR20240154060A/ko active Search and Examination
- 2023-03-17 WO PCT/CN2023/082226 patent/WO2023207412A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108243430A (zh) * | 2016-12-23 | 2018-07-03 | 维沃移动通信有限公司 | 一种波束管理信息的配置、处理方法、终端及基站 |
CN109041251A (zh) * | 2017-06-08 | 2018-12-18 | 中兴通讯股份有限公司 | 随机接入方法、装置、基站、终端及计算机可读存储介质 |
CN110446232A (zh) * | 2018-05-04 | 2019-11-12 | 中国移动通信有限公司研究院 | 测量上报配置方法、测量上报方法、小区切换方法及设备 |
WO2020029296A1 (zh) * | 2018-08-10 | 2020-02-13 | Oppo广东移动通信有限公司 | 一种信道状态信息上报方法、终端设备及网络设备 |
Non-Patent Citations (1)
Title |
---|
VIVO: "Discussion on beam measurement, beam reporting and beam indication", 3GPP DRAFT; R1-1717472_DISCUSSION ON BEAM MEASUREMENT, BEAM REPORTING AND BEAM INDICATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051340660 * |
Also Published As
Publication number | Publication date |
---|---|
CN117041997A (zh) | 2023-11-10 |
KR20240154060A (ko) | 2024-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6030754B2 (ja) | デバイス再開のためのアウターループリンク適応 | |
RU2486708C2 (ru) | Способ адаптации канала, базовая станция и терминал в lte системе | |
CN110139325B (zh) | 一种网络参数调优方法及装置 | |
US11832251B2 (en) | Apparatus for CSI prediction control | |
US9622184B2 (en) | Transport block size and channel condition assessment based power consumption reduction for cellular communication | |
CN109495959A (zh) | 功率控制方法、网络设备及终端 | |
US9295063B2 (en) | Adaptive generation of channel state feedback (CSF) based on base station CSF scheduling | |
CN106455083A (zh) | 一种d2d通信资源复用选择的方法及基站、终端 | |
EP3117669B1 (en) | Method and apparatus for uplink power control in a radio communication network | |
WO2021163931A1 (zh) | 一种数据传输方法、终端设备、网络设备 | |
US20240078439A1 (en) | Training Data Set Obtaining Method, Wireless Transmission Method, and Communications Device | |
CN110769456A (zh) | 通信方法及装置 | |
CN112312455B (zh) | 波束测量方法及装置 | |
WO2022012609A1 (zh) | 一种测量反馈方法及装置 | |
Marí-Altozano et al. | A QoE-driven traffic steering algorithm for LTE networks | |
WO2023207412A1 (zh) | 波束管理方法、用户装置、基站、存储介质及程序产品 | |
CN114285520A (zh) | 配置授权的自适应配置方法、装置、存储介质及电子设备 | |
CN115276908B (zh) | 一种无线通信方法及设备、存储介质 | |
US11778500B2 (en) | Signal reporting method, terminal device, and network device | |
WO2018223274A1 (zh) | 传输信号的方法、终端设备和网络设备 | |
CN110650522B (zh) | 闭环功率控制方法、网络侧设备和终端 | |
CN113824543A (zh) | 自适应调整pdcch聚合度的方法、基站及存储介质 | |
US20230179477A1 (en) | Determining cell upgrade | |
WO2015058725A1 (zh) | 控制上行发送功率的方法及装置 | |
US10856233B2 (en) | Coverage extension for wireless devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23794847 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20247032196 Country of ref document: KR Kind code of ref document: A |