[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023207201A1 - 一种新能源制氢系统及其控制方法 - Google Patents

一种新能源制氢系统及其控制方法 Download PDF

Info

Publication number
WO2023207201A1
WO2023207201A1 PCT/CN2022/144049 CN2022144049W WO2023207201A1 WO 2023207201 A1 WO2023207201 A1 WO 2023207201A1 CN 2022144049 W CN2022144049 W CN 2022144049W WO 2023207201 A1 WO2023207201 A1 WO 2023207201A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
new energy
electrolyzer
hydrogen production
input module
Prior art date
Application number
PCT/CN2022/144049
Other languages
English (en)
French (fr)
Inventor
李江松
孙龙林
柏杨
陈志权
Original Assignee
阳光氢能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光氢能科技有限公司 filed Critical 阳光氢能科技有限公司
Priority to AU2022455534A priority Critical patent/AU2022455534A1/en
Publication of WO2023207201A1 publication Critical patent/WO2023207201A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • This application relates to the field of new energy hydrogen production technology, and in particular to a new energy hydrogen production system and its control method.
  • Hydrogen production from new energy sources is the key path to achieving the dual-carbon goal in the future; as the demand for hydrogen energy continues to increase and the cost of electricity from new energy sources continues to decrease, the application scenarios for large-scale hydrogen production from new energy sources are becoming more and more widespread. In large-scale hydrogen production applications, which control scheme can be used to maximize system efficiency and optimize hydrogen cost is currently a key research direction.
  • the hydrogen production efficiency curve of the new energy hydrogen production system is shown in Figure 1.
  • the DC energy consumption of the electrolyzer increases as its load continues to increase. Therefore, the energy consumption of the electrolyzer is minimal when the load is light, and the DC efficiency is the lowest. The highest, but the hydrogen production at this time is low, and the public energy consumption accounts for a large proportion at this time, so the system efficiency at this time is low.
  • This application provides a new energy hydrogen production system and its control method to improve system efficiency.
  • the first aspect of this application provides a new energy hydrogen production system, including: a control system, a new energy input module, a power conversion module and at least two electrolyzers; wherein,
  • the new energy input module supplies power to each electrolyzer through the power conversion module
  • the control system is used to control the operation of the power conversion module according to the power of the new energy input module, so that among the N electrolytic cells in the operating state, at least N-1 electrolytic cells work in the preset load interval.
  • N is a positive integer
  • the preset load interval is: the load interval corresponding to the highest system efficiency among the pre-stored electrolyzer working interval division results in the control system.
  • control system is also used for:
  • the power of the electrolyzer operating in the higher load range is prioritized.
  • control system is also used for:
  • the power fluctuation value of the new energy input module is greater than the acceptable power fluctuation range of a single electrolyzer, at least two electrolyzers are controlled to bear the power fluctuation value.
  • control system is used to control at least two electrolyzers to bear the power fluctuation value, specifically for:
  • Each electrolyzer currently in operation is controlled to share the power fluctuation value in an equal or weighted distribution manner.
  • the division result of the working interval of the electrolyzer includes at least two load intervals.
  • each load interval in the division result of the electrolyzer working interval includes:
  • the first load interval is from 0 to 30% load
  • the second load interval is from 30% to 50% load
  • the third load interval is from 50% to 80% load
  • the fourth load interval is from 80% to 100% load. interval
  • the third loading interval is the preset loading interval.
  • the power conversion module includes: at least two power converters, the input end of each power converter is connected to the corresponding output end of the new energy input module, and the output end of each power converter is respectively Connect to their respective electrolytic cells.
  • control system includes: a first controller for each power converter, and a second controller for each electrolyzer;
  • the first controller is communicatively connected to the corresponding second controller
  • Each of the first controllers is communicatively connected, and the communication host therein is used to generate and issue power instructions of each of the power converters to the corresponding first controller.
  • control system includes: a system controller, a first controller of each power converter, and a second controller of each electrolyzer;
  • the first controller is communicatively connected to the corresponding second controller
  • Each first controller is communicatively connected with the system controller, and the system controller is used to generate and issue power instructions of each power converter to the corresponding first controller.
  • the second aspect of this application also provides a control method for a new energy hydrogen production system, which is applied to the control system in the new energy hydrogen production system as described in any one of the above first aspects.
  • the control method includes:
  • each electrolyzer is gradually controlled to operate and work in the preset load range until the last electrolyzer is in operation.
  • each electrolyzer is gradually controlled to reduce the load range to shutdown until all electrolyzers are shut down.
  • the previous electrolyzer cannot continue to absorb the power of the new energy input module, it is controlled to run in the preset loading interval, and the next electrolyzer is controlled to follow. The power change of the new energy input module.
  • gradually control each electrolyzer to reduce the load range to shutdown including:
  • gradually control each electrolyzer to reduce the load range to shutdown including:
  • the power of the new energy input module decreases, when its average power for each electrolyzer drops to the preset load shedding power, one of the electrolyzers is controlled to standby, and the remaining operating electrolyzers are controlled to share the new energy. Enter the power of the module; control the standby mode until the last electrolyzer cannot continue to operate.
  • Optional also includes:
  • the power of the electrolyzer working in the lower load range is given priority; when the power of the new energy input module decreases, the power of the electrolyzer working in the higher load range is given priority. The power of the electrolyzer.
  • its new energy input module supplies power to each electrolyzer through the power conversion module; and its control system is used to control the work of the power conversion module according to the power of the new energy input module, so that Among the N electrolyzers in operation, at least N-1 electrolyzers work in the preset load interval; because the preset load interval is the highest efficiency of the corresponding system among the pre-stored electrolyzer working interval division results in the control system load interval, that is, this application can make more electrolyzers work in the preset load interval with the highest system efficiency, thereby improving the system efficiency and making it as optimal as possible.
  • Figure 1 is a schematic diagram of the hydrogen production efficiency curve of the new energy hydrogen production system provided by the existing technology
  • FIG. 2 is a schematic structural diagram of the new energy hydrogen production system provided by the embodiment of the present application.
  • Figure 3 is a schematic diagram of the division results of the electrolytic cell working area provided by the embodiment of the present application.
  • Figure 4 is a flow chart of the control method of the new energy hydrogen production system provided by the embodiment of the present application.
  • Figure 5 is another partial flow chart of the control method of the new energy hydrogen production system provided by the embodiment of the present application.
  • Figure 6 is a flow chart of the start-up control strategy of the new energy hydrogen production system provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of the electrolytic cell working interval switching provided by the embodiment of the present application.
  • This application provides a new energy hydrogen production system to improve system efficiency.
  • the new energy hydrogen production system includes: a control system (not shown in the figure), a new energy input module 10, a power conversion module 20 and at least two electrolyzers 30; wherein:
  • the new energy input module 10 supplies power to each electrolytic tank 30 through the power conversion module 20 .
  • the new energy hydrogen production system should also include a post-processing module 40.
  • the system structure can adopt a multi-electrolytic tank post-processing and purification scheme.
  • Figure 2 shows four electrolyzers.
  • the tank 30 shares the same post-processing module 40 for display.
  • the new energy input module 10 can be formed by a free combination of wind power, photovoltaic, energy storage, and power grid. Various energy sources can be output in parallel through corresponding conversion equipment.
  • the power conversion module 20 mainly includes at least two power converters, and the input ends of each power converter are respectively connected to the corresponding output ends of the new energy input module 10. Specifically, different energy output ends can be connected, or Connected in parallel to the unified output end of the new energy input module 10; each power converter serves as a hydrogen production power source for the corresponding electrolyzer 30, converting the electric energy it receives into electric energy adapted to the electrolyzer 30, which specifically can be AC/DC.
  • the converter and/or DC/DC converter can be a single-stage conversion or a multi-stage conversion, depending on the specific application scenario, both are within the protection scope of the present application;
  • the electrolytic tank 30 can be alkaline, Electrolytic cells such as proton exchange membranes and solid oxides are not specifically limited here and depend on their application environment; the hydrogen and oxygen produced by each electrolytic cell 30 are respectively collected into the post-processing module 40 to achieve unified gas-liquid separation. and purification.
  • the electrolytic tank 30 When the load level is different, its own efficiency (that is, the DC efficiency in the figure) and the corresponding system efficiency will be different.
  • the working area of the electrolytic tank 30 is divided in advance to obtain at least two loaded areas.
  • the specific number of intervals is not limited; but at least one load interval corresponding to the highest system efficiency must be determined, such as a load interval of 50% to 80% load, so that it can include the above-mentioned system efficiency optimal points, and Define it as a preset loading interval.
  • the division result of the working interval of the electrolyzer includes at least two load intervals.
  • Figure 3 which is divided into four load intervals, namely: the first load interval from 0 to 30% load. (Zone I shown in Figure 3), the second loading interval from 30% to 50% load (Zone II shown in Figure 3), the third loading interval from 50% to 80% load (such as Zone III shown in Figure 3), and a fourth loading interval of 80% to 100% load (Zone IV shown in Figure 3); wherein the third loading interval is a preset loading interval.
  • This is only an example, and is not limited to the division results of the four load intervals shown in Figure 3. It depends on the application environment, and is within the protection scope of this application.
  • the control system pre-stores the division results of the electrolytic cell working area. Furthermore, the control system can control the work of the power conversion module 20 according to the power of the new energy input module 10, such as a strategy of gradually putting in or cutting out the electrolytic cell 30. Realize the gradual input of N electrolytic cells 30 or realize the gradual cutting out of N electrolytic cells 30 to retain them, and make at least N-1 electrolytic cells 30 among the N electrolytic cells 30 in the operating state work in the preset zone load interval; leaving one electrolyzer 30 is to make the total hydrogen production power comply with the power supply of the new energy input module 10, and its power is in addition to the power of other electrolyzers 30 in the power supply of the new energy input module 10
  • the power of other electrolytic cells 30 can change within the preset loading interval, so as to adjust the power of the last electrolytic cell 30 to the preset loading interval as much as possible; that is, In this embodiment, in order to ensure optimal system efficiency, as many electrolytic cells 30 as possible are allowed to work within the preset loading range.
  • the new energy hydrogen production system provided in this embodiment, through the above principles, can make as many electrolytic cells 30 as possible to work in the preset load range with the highest system efficiency, thereby improving the system efficiency and maximizing the system efficiency. excellent.
  • control system will at least include: a first controller for each power converter, and a second controller for each electrolytic tank 30; wherein the first controller is communicatively connected with the corresponding second controller; each The first controller is connected through communication, and the communication host is used to generate and issue the power instructions of each power converter to the corresponding first controller according to the power supply of the new energy input module 10, thereby realizing the control of the corresponding electrolytic tank 30. Power Control.
  • control system may further include an additional system controller.
  • the first controller of each power converter is communicatively connected to the second controller of the corresponding electrolytic tank 30; and each first controller communicates with the system controller.
  • the system controller is used to generate and issue power instructions of each power converter to the corresponding first controller to realize power control of the corresponding electrolytic tank 30 .
  • control system may depend on its application environment, as long as it can improve the efficiency of the above system, and both are within the protection scope of this application.
  • control system in the new energy hydrogen production system is also used to: when the power of the new energy input module 10 increases, the priority is to increase the working speed at a lower level.
  • the above principle can also be used to prioritize the power changes.
  • the electrolytic cells 30 with strong bearing capacity bear the power changes of the new energy input module 10, thereby ensuring that when the overall new energy power fluctuates, each electrolytic cell 30 can be switched on and off smoothly, and the number of opening and closing times of the electrolytic cells 30 can be reduced.
  • the control system can also perform another kind of control, that is: the power fluctuation value of the new energy input module 10 is greater than that of a single electrolyzer.
  • the power fluctuation range of the tank 30 is acceptable, at least two electrolytic cells 30 are controlled to bear the power fluctuation value, for example, each electrolytic tank 30 currently in operation is controlled to share the power fluctuation value; in practical applications, it may be controlled Correspondingly, each electrolytic cell 30 shares the power fluctuation value in an equal or weighted distribution manner.
  • multiple electrolyzers 30 can be used to share the power fluctuations to achieve smooth power changes in a single tank. Minimize large-scale adjustments to the working status of a single slot.
  • a fixed threshold Pn1 can be set instead of calculating in real time the acceptable power fluctuation range of the single electrolyzer 30 that currently has the strongest ability to bear power fluctuations.
  • the fluctuating power is borne by a single electrolytic cell 30.
  • the power increase is borne by the electrolytic cell 30 working in the lower load range, while the power decrease is borne by the electrolytic cell 30 working in the higher load range.
  • the electrolytic cell 30 in the interval is responsible; the specific value of the threshold Pn1 can be determined according to the power fluctuation limit of the electrolytic cell, and is not limited here.
  • the system hydrogen cost is closely related to the system working mode. Under the fluctuating power input of new energy, key considerations need to be made on how each electrolyzer 30 matches its operation, how it is put in and out, and how it optimizes the system efficiency.
  • This embodiment provides a control method for a new energy hydrogen production system, which is applied to the control system in the new energy hydrogen production system as described in any of the above embodiments.
  • the structure and principle of the new energy hydrogen production system please refer to the above implementation. An example is enough and I won’t go into details here.
  • control method is shown in Figure 4, including:
  • each electrolyzer is gradually controlled to operate and work in the preset load range until the last electrolyzer is in operation.
  • the steps of gradually controlling the operation of each electrolyzer and working in the preset load interval include: as the power of the new energy input module increases, when the previous electrolyzer can no longer absorb the power of the new energy input module, control It operates in a preset load range and controls the next electrolyzer to follow the power change of the new energy input module.
  • each electrolyzer is gradually controlled to reduce the load range to shutdown until all electrolyzers are shut down.
  • the steps of gradually controlling each electrolyzer to reduce the load range to shutdown include: as the power of the new energy input module decreases, when the previous electrolyzer cannot continue to maintain the operating state, control its standby and control the next electrolyzer Follow the power changes of the new energy input module.
  • the step of gradually controlling each electrolyzer to reduce the load range to shutdown can also be set to specifically include: as the power of the new energy input module decreases, when its average power to each electrolyzer drops to the preset cutoff When the load power is high, one of the electrolyzers is controlled to standby, and the remaining operating electrolyzers are controlled to share the power of the new energy input module; until the last electrolyzer can no longer maintain operating status, it is controlled to standby.
  • this shared responsibility may refer to equal sharing or distribution based on weighting, etc., depending on the specific application environment.
  • FIG. 5 shows an example of normal operation of the system.
  • the control method also includes:
  • Zone I the area below the power limit
  • Working intervals The loading interval from 0 to 30% load is regarded as the first loading interval (i.e. Zone I), the loading interval from 30% to 50% load is regarded as the second loading interval (i.e.
  • Zone II the loading interval from 50% to 50% is regarded as the second loading interval (i.e. Zone II).
  • the loading interval of 80% load is regarded as the third loading interval (i.e., zone III), and the loading interval of 80% to 100% load is regarded as the fourth loading interval (i.e., zone IV); at the same time, the overall working status is divided into working, There are three states: shutdown and standby.
  • the standby state is defined as the electrolytic cell does not produce hydrogen and the alkali solution in the electrolytic cell is above a certain preset temperature, but the corresponding auxiliary systems have started to work, such as air compressors, pure water machines and other public utilities.
  • the specific preset temperature is determined according to the specific actual situation; that is, area I is defined as the standby state, and areas II, III, and IV are defined as the working state; and area III is the preset loading interval, and the preset cut-off
  • the load power can take a value in zone II, such as the power corresponding to 40% load.
  • P_nom is the rated power of a single electrolyzer.
  • the No. 1 electrolyzer When the power of the new energy input module (i.e., new energy power) is greater than 30%*P_nom and less than 50%*P_nom, the No. 1 electrolyzer will be transferred from the standby state of Zone I to Zone II. Normal hydrogen production; when the new energy power is greater than 50%*P_nom and less than 80%*P_nom, the No. 1 electrolyzer switches from zone 1 to zone III, and the No. 2 electrolyzer turns to standby mode; when the new energy power is greater than 80 When %*P_nom is less than 80%*P_nom+k, electrolytic tank No. 1 switches from zone 1 to zone IV, and electrolytic tank No.
  • the specific strategy when the system is shut down may not be based on the cut-out limit when each electrolyzer cannot maintain operating status, but the above-mentioned preset load shedding power as the cut-out limit.
  • the electrolyzer operation will be performed. At this time, one electrolyzer will be cut out, and the remaining three electrolyzers will work.
  • Each electrolyzer shares the load equally and works at 53.3%*P_nom; until there is only one electrolyzer left, it will be shut down according to the normal shutdown process. For example, if there is hydrogen in the oxygen or the power is below a certain limit, standby or shutdown operation will be performed.
  • the increase in power is borne by the electrolyzer working in the lower load range, while the power decrease is borne by the electrolyzer working in the higher band.
  • the specific value of the threshold Pn1 can be determined according to the power fluctuation limit of the electrolyzer, and is not limited here.
  • This embodiment is aimed at new energy hydrogen production, especially in large-scale hydrogen production systems.
  • the system efficiency optimization principle is considered, the number of electrolytic cell switching times is reduced, and the fluctuating power is smoothed, making the electrolytic cells more suitable. Equipped with new energy power fluctuations, new energy hydrogen production is more efficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本申请提供一种新能源制氢系统及其控制方法,该新能源制氢系统中,新能源输入模块通过功率变换模块,为各电解槽供电;而且,其控制系统用于根据该新能源输入模块的功率,控制该功率变换模块工作,使处于运行状态下的N个电解槽中,至少N-1个电解槽工作于预设带载区间;由于该预设带载区间为控制系统中预存的电解槽工作区间划分结果中对应系统效率最高的带载区间,也即本申请能够尽量使更多的电解槽分别工作于系统效率最高的预设带载区间,进而提高了系统效率,尽量使其达到最优。

Description

一种新能源制氢系统及其控制方法
本申请要求于2022年04月29日提交中国专利局、申请号为202210467711.4、发明名称为“一种新能源制氢系统及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源制氢技术领域,特别涉及一种新能源制氢系统及其控制方法。
背景技术
新能源制氢是未来实现双碳目标的关键路径;随着氢能需求的不断增加,以及新能源度电成本的不断降低,新能源规模化制氢的应用场景越来越广泛。在规模化制氢应用中,系统采用哪种控制方案可以实现系统效率最大,进而实现氢气成本最优,是当前的重点研究方向。
新能源制氢系统的制氢效率曲线,如图1所示,其中,电解槽的直流能耗随着其负载的不断增大而增大,因此,电解槽轻载时能耗最小、直流效率最高,但此时的产氢量低,且此时的公用工程能耗占比大,所以此时的系统效率低。
在规模化制氢场景,如果所有电解槽均工作在最轻载,则设备利用率低且氢气成本高;因此,现有技术通常会在电解槽工作在额定载之后,再控制下一台电解槽启动运行,但是这样会由于电解槽效率低,导致制氢边际成本高,系统效率低。
发明内容
本申请提供一种新能源制氢系统及其控制方法,以提高系统效率。
为实现上述目的,本申请提供如下技术方案:
本申请第一方面提供了一种新能源制氢系统,包括:控制系统、新能源输入模块、功率变换模块及至少两个电解槽;其中,
所述新能源输入模块通过所述功率变换模块,为各电解槽供电;
所述控制系统用于根据所述新能源输入模块的功率,控制所述功率变换模块工作,使处于运行状态下的N个电解槽中,至少N-1个电解槽工作于预设带载区间;N为正整数,所述预设带载区间为:所述控制系统中预存的电解槽工作区间划分结果中,对应系统效率最高的带载区间。
可选的,所述控制系统还用于:
在所述新能源输入模块的功率增加时,优先增加工作于较低带载区间的电解槽的功率;
在所述新能源输入模块的功率降低时,优先降低工作于较高带载区间的电解槽的功率。
可选的,所述控制系统还用于:
在所述新能源输入模块的功率波动值大于单个电解槽可接受的功率波动范围时,控制至少两个电解槽承担所述功率波动值。
可选的,所述控制系统用于控制至少两个电解槽承担所述功率波动值时,具体用于:
控制当前处于运行状态下的各电解槽,以均分或者加权的分配方式,来共同承担所述功率波动值。
可选的,所述电解槽工作区间划分结果中,包括至少两个带载区间。
可选的,所述电解槽工作区间划分结果中的各个带载区间,包括:
0至30%负载的第一带载区间,30%至50%负载的第二带载区间,50%至80%负载的第三带载区间,以及80%至100%负载的第四带载区间;
其中,所述第三带载区间为所述预设带载区间。
可选的,所述功率变换模块包括:至少两个功率变换器,各所述功率变换器的输入端连接至所述新能源输入模块的相应输出端,各所述功率变换器的输出端分别连接至各自对应的电解槽。
可选的,所述控制系统包括:各所述功率变换器的第一控制器,和,各所述电解槽的第二控制器;
所述第一控制器与对应所述第二控制器通信连接;
各所述第一控制器通信连接,其中的通信主机用于生成并下发各所述功率变换器的功率指令至相应的所述第一控制器。
可选的,所述控制系统包括:系统控制器,各所述功率变换器的第一控制器,以及,各所述电解槽的第二控制器;
所述第一控制器与对应所述第二控制器通信连接;
各所述第一控制器均与所述系统控制器通信连接,所述系统控制器用于生 成并下发各所述功率变换器的功率指令至相应的所述第一控制器。
本申请第二方面还提供了一种新能源制氢系统的控制方法,其应用于如上述第一方面任一种所述的新能源制氢系统中的控制系统,所述控制方法包括:
在所述新能源制氢系统启动时,根据所述新能源制氢系统中新能源输入模块的功率,逐步控制各电解槽运行并工作于预设带载区间,直至最后一个电解槽处于运行状态;
在所述新能源制氢系统停机时,根据新能源输入模块的功率,逐步控制各电解槽降低带载区间至停机,直至全部电解槽均停机。
可选的,逐步控制各电解槽运行并工作于预设带载区间,包括:
随着所述新能源输入模块的功率增加,在前一个电解槽不能继续消纳所述新能源输入模块的功率时,控制其运行于所述预设带载区间,并控制下一个电解槽跟随所述新能源输入模块的功率变化。
可选的,逐步控制各电解槽降低带载区间至停机,包括:
随着所述新能源输入模块的功率减少,在前一个电解槽不能继续维持运行状态时,控制其待机,并控制下一个电解槽跟随所述新能源输入模块的功率变化。
可选的,逐步控制各电解槽降低带载区间至停机,包括:
随着所述新能源输入模块的功率减少,当其对于各电解槽的均分功率下降至预设切负荷功率时,控制其中一个电解槽待机,并控制剩余运行电解槽共同承担所述新能源输入模块的功率;直至最后一个电解槽不能继续维持运行状态时,控制其待机。
可选的,还包括:
在所述新能源输入模块的功率波动时,判断所述新能源输入模块的功率波动值是否大于单个电解槽可接受的功率波动范围;
若是,则控制至少两个电解槽承担所述功率波动值;
否则,在所述新能源输入模块的功率增加时,优先增加工作于较低带载区间的电解槽的功率;在所述新能源输入模块的功率降低时,优先降低工作于较高带载区间的电解槽的功率。
本申请提供的新能源制氢系统,其新能源输入模块通过功率变换模块,为 各电解槽供电;而且,其控制系统用于根据该新能源输入模块的功率,控制该功率变换模块工作,使处于运行状态下的N个电解槽中,至少N-1个电解槽工作于预设带载区间;由于该预设带载区间为控制系统中预存的电解槽工作区间划分结果中对应系统效率最高的带载区间,也即本申请能够尽量使更多的电解槽分别工作于系统效率最高的预设带载区间,进而提高了系统效率,尽量使其达到最优。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为现有技术提供的新能源制氢系统的制氢效率曲线示意图;
图2为本申请实施例提供的新能源制氢系统的结构示意图;
图3为本申请实施例提供的电解槽工作区间划分结果的示意图;
图4为本申请实施例提供的新能源制氢系统的控制方法的流程图;
图5为本申请实施例提供的新能源制氢系统的控制方法的另外部分流程图;
图6为本申请实施例提供的新能源制氢系统启动控制策略的流程图;
图7为本申请实施例提供的电解槽工作区间切换示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备 中还存在另外的相同要素。
本申请提供一种新能源制氢系统,以提高系统效率。
参见图2,该新能源制氢系统,包括:控制系统(图中未展示)、新能源输入模块10、功率变换模块20及至少两个电解槽30;其中:
新能源输入模块10通过功率变换模块20,为各电解槽30供电。实际应用中,该新能源制氢系统中还应当包括后处理模块40,对于规模化制氢系统而言,其系统结构可以采用多电解槽共后处理及纯化的方案,图2以四个电解槽30共用同一个后处理模块40来进行展示,其中,新能源输入模块10可以由风电、光伏、储能、电网四种能源自由组合形成,各种能源可以通过相应的变换设备实现并联输出,也可以分别独立输出;功率变换模块20主要包括至少两个功率变换器,各功率变换器的输入端分别连接至新能源输入模块10的相应输出端,具体可以连接不同的能源输出端,也可以并联至新能源输入模块10的统一输出端;各功率变换器分别作为相应电解槽30的制氢电源,将自身接收到的电能转化为适配电解槽30的电能,其具体可以是AC/DC变换器和/或DC/DC变换器,而且可以是单级变换,也可以是多级变换,由具体应用场景而定,均在本申请的保护范围内;该电解槽30可以是碱性、质子交换膜、固体氧化物等电解槽,此处不做具体限定,视其应用环境而定即可;各电解槽30所产生的氢气与氧气分别汇集到后处理模块40,统一实现气液分离及纯化。
对于制氢系统而言,由于电解槽30的组成结构形式不一样、公用工程组成也不一样,并不能够得到一个确切的系统效率最优点,所以考虑图1所示的情况,即电解槽30所带负载程度不同时,其自身的效率(即图中的直流效率)和对应的系统效率都会有所不同,本实施例提前将电解槽30的工作区间进行划分,划分得到至少两个带载区间,其具体个数不限;但至少要能够确定出一个对应系统效率最高的带载区间,比如50%至80%负载的带载区间,使其能够包含上述系统效率最优点在内,并将其定义为一个预设带载区间。
实际应用中,该电解槽工作区间划分结果中,包括至少两个带载区间,比如,参见图3,共分为四个带载区间,分别为:0至30%负载的第一带载区间(如图3中所示的I区),30%至50%负载的第二带载区间(如图3中所示的 II区),50%至80%负载的第三带载区间(如图3中所示的III区),以及,80%至100%负载的第四带载区间(如图3中所示的IV区);其中,第三带载区间为预设带载区间。此处仅为一种示例,并不仅限于图3所示的四个带载区间的划分结果,视其应用环境而定即可,均在本申请的保护范围内。
该控制系统中预先存储有该电解槽工作区间划分结果,进而,该控制系统能够根据新能源输入模块10的功率,控制功率变换模块20工作,比如进行电解槽30逐步投入或切出的策略,实现N个电解槽30的逐步投入或实现逐步切出后保留N个电解槽30,并且使处于运行状态下的N个电解槽30中,至少N-1个电解槽30工作于该预设带载区间;留下一个电解槽30是为了使总的制氢功率符合新能源输入模块10的功率供给,其功率是该新能源输入模块10的功率供给中除其他各电解槽30的功率之外的剩余功率,实际应用中其他各电解槽30的功率可以在该预设带载区间内发生变化,以尽量将最后一个电解槽30的功率也调整至该预设带载区间内;也即,本实施例为了保证系统效率最优,尽量让更多的电解槽30工作在该预设带载区间内。
本实施例提供的该新能源制氢系统,通过上述原理,能够尽量使更多的电解槽30分别工作于系统效率最高的预设带载区间,进而提高了系统效率,尽量使系统效率达到最优。
实际应用中,该控制系统中会至少包括:各功率变换器的第一控制器,和,各电解槽30的第二控制器;其中,第一控制器与对应第二控制器通信连接;各第一控制器通信连接,其中的通信主机用于根据新能源输入模块10的功率供给,生成并下发各功率变换器的功率指令至相应的第一控制器,进而实现对于相应电解槽30的功率控制。
或者,该控制系统还可以再额外包括一个系统控制器,各功率变换器的第一控制器与对应电解槽30的第二控制器通信连接;而各第一控制器均与该系统控制器通信连接,由该系统控制器用于生成并下发各功率变换器的功率指令至相应的第一控制器,实现对于相应电解槽30的功率控制。
该控制系统的具体构成可以视其应用环境而定,能够实现上述系统效率的提高即可,均在本申请的保护范围内。
值得说明的是,针对电解水而言,由于其隔膜特性影响,其在低功率时存在氢中氧与氧中氢浓度超标的问题,不能很好的匹配新能源功率波动;在新能源功率波动达到碱性电解槽下限时,不能长时间工作,需要关机;所以针对新能源电解水制氢,会存在频繁开关机的现象,而开关机次数过多会影响电解槽寿命及其能效,进而会降低系统的经济性。
因此,本实施例在上一实施例的基础之上,优选的,该新能源制氢系统中的控制系统,还用于:在新能源输入模块10的功率增加时,优先增加工作于较低带载区间的电解槽30的功率;而在新能源输入模块10的功率降低时,优先降低工作于较高带载区间的电解槽30的功率。
为了适配新能源功率波动,对于规模化制氢而言,本实施例除了根据该电解槽工作区间划分结果,进行逐步投入及切出的策略,还可以通过上述原理,优先由对于功率变动的承担能力较强的电解槽30来承担新能源输入模块10的功率变化,进而确保整体新能源功率波动时,各电解槽30实现平稳投切,并降低电解槽30开、关次数。
若新能源功率波动较大,单个电解槽30不能承担该波动,则更进一步的,还可以由该控制系统来进行另一种控制,即:在新能源输入模块10的功率波动值大于单个电解槽30可接受的功率波动范围时,控制至少两个电解槽30承担功率波动值,比如控制当前处于运行状态下的各电解槽30来共同承担该功率波动值;实际应用中,具体可以是控制相应各电解槽30,以均分或者加权的分配方式,来共同承担功率波动值。
也即,为了适配新能源功率波动,当新能源功率波动大于单个电解槽30可接受的功率波动范围时,可以采取多个电解槽30来共同承担功率波动,实现单槽的平稳功率变化,尽量减小单槽工作状态的大范围调整。
实际应用中,在整体新能源功率波动时,为了防止单个电解槽30的工作区间跳变过大,尽量减小电解槽30的开关机次数,此处会存在一个平滑功率波动的需求;因此,可以设置一个固定的阈值Pn1,而不必实时计算当前对于功率变动的承担能力最强的单个电解槽30可接受的功率波动范围,当新能源功率波动值ΔP超过该阈值Pn1时,即认为系统输入的波动功率大于单个电解槽限值,其中,ΔP=|P(t)-P(t-1)|,P(t)为当前时刻t下新能源输入模块10的功 率,P(t-1)为上一时刻(t-1)下新能源输入模块10的功率;此时,确定该波动功率由目前在线的电解槽30共同来承担,分配原则可以是均分或者加权等处理;否则,系统输入的波动功率小于单个电解槽限值,该波动功率由单个电解槽30来承担,功率增大由工作于较低带载区间的电解槽30承担,而功率降低由工作于较高带载区间的电解槽30来承担;该阈值Pn1的具体取值可以根据电解槽功率波动限值来确定,此处不做限定。
针对规模化制氢应用场景,系统氢气成本与系统工作模式紧密相关。对于新能源波动功率输入下,各电解槽30怎么匹配工作,怎么投入、切出、怎么实现系统效率最优都是需要重点考虑的。
现有技术中的新能源制氢方案,其前一电解槽工作在额定负载后,下一台电解槽再工作,存在开关次数多,且没有兼顾整体系统效率问题;造成整体系统没有关注在最优工作状态,同时开关次数增多造成电解槽寿命及性能影响。
本实施例提供一种新能源制氢系统的控制方法,其应用于如上述任一实施例所述的新能源制氢系统中的控制系统,该新能源制氢系统的结构及原理参见上述实施例即可,此处不再一一赘述。
该控制方法如图4所示,包括:
S101、在新能源制氢系统启动时,根据新能源输入模块的功率,逐步控制各电解槽运行并工作于预设带载区间,直至最后一个电解槽处于运行状态。
其中,逐步控制各电解槽运行并工作于预设带载区间的步骤,具体包括:随着新能源输入模块的功率增加,在前一个电解槽不能继续消纳新能源输入模块的功率时,控制其运行于预设带载区间,并控制下一个电解槽跟随新能源输入模块的功率变化。
S102、在新能源制氢系统停机时,根据新能源输入模块的功率,逐步控制各电解槽降低带载区间至停机,直至全部电解槽均停机。
其中,逐步控制各电解槽降低带载区间至停机的步骤,包括:随着新能源输入模块的功率减少,在前一个电解槽不能继续维持运行状态时,控制其待机,并控制下一个电解槽跟随新能源输入模块的功率变化。
实际应用中,逐步控制各电解槽降低带载区间至停机的步骤,还可以设置 为具体包括:随着新能源输入模块的功率减少,当其对于各电解槽的均分功率下降至预设切负荷功率时,控制其中一个电解槽待机,并控制剩余运行电解槽共同承担新能源输入模块的功率;直至最后一个电解槽不能继续维持运行状态时,控制其待机。实际应用中,该共同承担,可以是指均分,也可以是指按加权等进行分配,视其具体应用环境而定即可。
而且,任意时刻,该新能源输入模块的功率都有可能出现波动,图5中以系统正常工作时为例进行展示,该控制方法,还包括:
S201、在新能源输入模块的功率波动时,判断新能源输入模块的功率波动值是否大于单个电解槽可接受的功率波动范围。
若是,则执行步骤S202;否则,执行步骤S203。
S202、控制至少两个电解槽承担功率波动值。
S203、在新能源输入模块的功率增加时,优先增加工作于较低带载区间的电解槽的功率;在新能源输入模块的功率降低时,优先降低工作于较高带载区间的电解槽的功率。
由于具体电解槽的结构及公用工程组成不一,系统效率一般在50%至80%负载的带载区间内最高;一般对于PEM电解槽、碱性电解槽都有功率限制要求,比如碱性电解槽一般在功率低于30%以下时,其氢气或氧气纯度不合格,因此,将功率限值以下区域作为I区;比如参考碱性制氢系统而言,可以划分为图3所示的四个工作区间:0至30%负载的带载区间作为第一带载区间(即I区),30%至50%负载的带载区间作为第二带载区间(即II区),50%至80%负载的带载区间作为第三带载区间(即III区),80%至100%负载的带载区间作为第四带载区间(即IV区);同时将整体工作状态分为工作、关机、待机三种状态,在待机状态下定义为电解槽不产氢,且电解槽碱液在一定预设温度以上,但相应的辅助系统已开始工作,比如空压机、纯水机等公用工程设备,具体预设温度根据具体实际情况而定;也即,I区定义为待机状态,II、III、IV区定义为工作状态;而且III区为该预设带载区间,该预设切负荷功率可以取值于II区,比如40%负载时所对应的功率。
以图2和图3所示情况为例,在新能源制氢系统启动时,其具体的启动控制策略如图6所示:
记P_nom为单台电解槽的额定功率,当新能源输入模块的功率(即新能源功率)大于30%*P_nom且小于50%*P_nom时,1号电解槽由I区待机状态转为II区正常产氢;当新能源功率大于50%*P_nom且小于80%*P_nom时,1号电解槽由1区转为III区工作,且2号电解槽转为待机模式;当新能源功率大于80%*P_nom且小于80%*P_nom+k时,1号电解槽由1区转为IV区工作,2号电解槽仍工作在待机模式;其中,k为预设裕度,其不大于20%*P_nom,具体取值由实际情况而定;当新能源功率大于80%*P_nom+k且小于100%*P_nom+k时,1号电解槽工作区间由IV区转为III区,且功率为50*P_nom+k,2号电解槽由待机1区转为2区正常产氢;具体每个电解槽的工作区间切换如图7所示,可以设置每个区间切换都存在滞环处理,防止误抖动,而且每个电解槽投切时都尽量保证工作在III区;重复上述逻辑,直至每个电解槽都工作在III区,保证系统效率最优。系统停机时的具体策略与此思想相同,尽量使每个电解槽都在III区工作即可,此处不再一一赘述。
或者,系统停机时的具体策略,也可以不以各电解槽无法维持运行状态时为切出界限,而是以上述预设切负荷功率为切出界限,具体的:假设总共四台电解槽,当新能源输入模块的功率降低到4倍的预设切负荷功率时,比如4*40%*P_nom,则进行切电解槽操作,此时切出一台电解槽,剩余三台电解槽工作,每台电解槽均分负荷,工作在53.3%*P_nom;直到只剩下一台电解槽,按照正常停机流程停机,比如氧中氢或功率低于某个限值,进行待机或关机操作。
实际应用中,在整体新能源功率波动时,为了防止单个电解槽的工作区间跳变过大,尽量减小电解槽的开关机次数,此处会存在一个平滑功率波动的需求,具体控制策略如图5所示;因此,可以设置一个固定的阈值Pn1,而不必实时计算当前对于功率变动的承担能力最强的单个电解槽可接受的功率波动范围,当新能源功率波动值ΔP超过该阈值Pn1时,即认为系统输入的波动功率大于单个电解槽限值,其中,ΔP=|P(t)-P(t-1)|,P(t)为当前时刻t下新能源输入模块的功率,P(t-1)为上一时刻(t-1)下新能源输入模块的功率;此时,确定该波动功率由目前在线的电解槽共同来承担,分配原则可以是均分或者加权等处理;否则,系统输入的波动功率小于单个电解槽限值,该波动功率由单个电解 槽来承担,功率增大由工作于较低带载区间的电解槽承担,而功率降低由工作于较高带载区间的电解槽来承担;该阈值Pn1的具体取值可以根据电解槽功率波动限值来确定,此处不做限定。
本实施例针对新能源制氢,特别在规模化制氢系统中,针对多台电解槽的投切,考虑了系统效率最优原则、降低电解槽开关次数、平滑波动功率,让电解槽更加适配新能源功率波动,新能源制氢更高效。
本说明书中的各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,本说明书中各实施例中记载的特征可以相互替换或者组合,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种新能源制氢系统,其特征在于,包括:控制系统、新能源输入模块、功率变换模块及至少两个电解槽;其中,
    所述新能源输入模块通过所述功率变换模块,为各电解槽供电;
    所述控制系统用于根据所述新能源输入模块的功率,控制所述功率变换模块工作,使处于运行状态下的N个电解槽中,至少N-1个电解槽工作于预设带载区间;N为正整数,所述预设带载区间为:所述控制系统中预存的电解槽工作区间划分结果中,对应系统效率最高的带载区间。
  2. 根据权利要求1所述的新能源制氢系统,其特征在于,所述控制系统还用于:
    在所述新能源输入模块的功率增加时,优先增加工作于较低带载区间的电解槽的功率;
    在所述新能源输入模块的功率降低时,优先降低工作于较高带载区间的电解槽的功率。
  3. 根据权利要求1所述的新能源制氢系统,其特征在于,所述控制系统还用于:
    在所述新能源输入模块的功率波动值大于单个电解槽可接受的功率波动范围时,控制至少两个电解槽承担所述功率波动值。
  4. 根据权利要求3所述的新能源制氢系统,其特征在于,所述控制系统用于控制至少两个电解槽承担所述功率波动值时,具体用于:
    控制当前处于运行状态下的各电解槽,以均分或者加权的分配方式,来共同承担所述功率波动值。
  5. 根据权利要求1至4任一项所述的新能源制氢系统,其特征在于,所述电解槽工作区间划分结果中,包括至少两个带载区间。
  6. 根据权利要求5所述的新能源制氢系统,其特征在于,所述电解槽工作区间划分结果中的各个带载区间,包括:
    0至30%负载的第一带载区间,30%至50%负载的第二带载区间,50%至80%负载的第三带载区间,以及80%至100%负载的第四带载区间;
    其中,所述第三带载区间为所述预设带载区间。
  7. 根据权利要求1至4任一项所述的新能源制氢系统,其特征在于,所述功率变换模块包括:至少两个功率变换器,各所述功率变换器的输入端连接至所述新能源输入模块的相应输出端,各所述功率变换器的输出端分别连接至各自对应的电解槽。
  8. 根据权利要求7所述的新能源制氢系统,其特征在于,所述控制系统包括:各所述功率变换器的第一控制器,和,各所述电解槽的第二控制器;
    所述第一控制器与对应所述第二控制器通信连接;
    各所述第一控制器通信连接,其中的通信主机用于生成并下发各所述功率变换器的功率指令至相应的所述第一控制器。
  9. 根据权利要求7所述的新能源制氢系统,其特征在于,所述控制系统包括:系统控制器,各所述功率变换器的第一控制器,以及,各所述电解槽的第二控制器;
    所述第一控制器与对应所述第二控制器通信连接;
    各所述第一控制器均与所述系统控制器通信连接,所述系统控制器用于生成并下发各所述功率变换器的功率指令至相应的所述第一控制器。
  10. 一种新能源制氢系统的控制方法,其特征在于,应用于如权利要求1至9任一项所述的新能源制氢系统中的控制系统,所述控制方法包括:
    在所述新能源制氢系统启动时,根据所述新能源制氢系统中新能源输入模块的功率,逐步控制各电解槽运行并工作于预设带载区间,直至最后一个电解槽处于运行状态;
    在所述新能源制氢系统停机时,根据新能源输入模块的功率,逐步控制各电解槽降低带载区间至停机,直至全部电解槽均停机。
  11. 根据权利要求10所述的新能源制氢系统的控制方法,其特征在于,逐步控制各电解槽运行并工作于预设带载区间,包括:
    随着所述新能源输入模块的功率增加,在前一个电解槽不能继续消纳所述新能源输入模块的功率时,控制其运行于所述预设带载区间,并控制下一个电解槽跟随所述新能源输入模块的功率变化。
  12. 根据权利要求10所述的新能源制氢系统的控制方法,其特征在于, 逐步控制各电解槽降低带载区间至停机,包括:
    随着所述新能源输入模块的功率减少,在前一个电解槽不能继续维持运行状态时,控制其待机,并控制下一个电解槽跟随所述新能源输入模块的功率变化。
  13. 根据权利要求10所述的新能源制氢系统的控制方法,其特征在于,逐步控制各电解槽降低带载区间至停机,包括:
    随着所述新能源输入模块的功率减少,当其对于各电解槽的均分功率下降至预设切负荷功率时,控制其中一个电解槽待机,并控制剩余运行电解槽共同承担所述新能源输入模块的功率;直至最后一个电解槽不能继续维持运行状态时,控制其待机。
  14. 根据权利要求10至13任一项所述的新能源制氢系统的控制方法,其特征在于,还包括:
    在所述新能源输入模块的功率波动时,判断所述新能源输入模块的功率波动值是否大于单个电解槽可接受的功率波动范围;
    若是,则控制至少两个电解槽承担所述功率波动值;
    否则,在所述新能源输入模块的功率增加时,优先增加工作于较低带载区间的电解槽的功率;在所述新能源输入模块的功率降低时,优先降低工作于较高带载区间的电解槽的功率。
PCT/CN2022/144049 2022-04-29 2022-12-30 一种新能源制氢系统及其控制方法 WO2023207201A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022455534A AU2022455534A1 (en) 2022-04-29 2022-12-30 New energy hydrogen production system and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210467711.4A CN114990600B (zh) 2022-04-29 2022-04-29 一种新能源制氢系统及其控制方法
CN202210467711.4 2022-04-29

Publications (1)

Publication Number Publication Date
WO2023207201A1 true WO2023207201A1 (zh) 2023-11-02

Family

ID=83025702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144049 WO2023207201A1 (zh) 2022-04-29 2022-12-30 一种新能源制氢系统及其控制方法

Country Status (3)

Country Link
CN (1) CN114990600B (zh)
AU (1) AU2022455534A1 (zh)
WO (1) WO2023207201A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117802535A (zh) * 2023-12-28 2024-04-02 广东卡沃罗氢科技有限公司 一种电解制氢装置的安全监控方法、装置、系统及设备
CN117904674A (zh) * 2024-01-29 2024-04-19 北京氢羿能源科技有限公司 一种pem电解水制氢多层控制系统和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990600B (zh) * 2022-04-29 2024-05-10 阳光氢能科技有限公司 一种新能源制氢系统及其控制方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585297A (zh) * 2020-06-12 2020-08-25 阳光电源股份有限公司 一种直流耦合制氢系统及其控制方法
CN112003382A (zh) * 2020-08-27 2020-11-27 新疆工程学院 一种基于储能装置的风电储能制氢系统及方法
CN112290581A (zh) * 2019-07-12 2021-01-29 合肥阳光新能源科技有限公司 一种新能源离网制氢系统
CN112725832A (zh) * 2020-12-18 2021-04-30 阳光电源股份有限公司 一种水电解制氢控制方法、系统及控制器
CN112803472A (zh) * 2019-10-28 2021-05-14 阳光电源股份有限公司 一种直流耦合制氢系统及其控制方法
CN112899725A (zh) * 2019-11-19 2021-06-04 阳光电源股份有限公司 新能源复合制氢系统及其控制方法
CN213425790U (zh) * 2020-09-01 2021-06-11 阳光电源股份有限公司 一种可再生能源制氢系统
CN113249738A (zh) * 2021-05-28 2021-08-13 全球能源互联网研究院有限公司 一种新型电解水制氢系统及其运行方法
CN113279002A (zh) * 2021-04-29 2021-08-20 全球能源互联网研究院有限公司 多槽并联电解制氢的控制方法及系统
CN113293396A (zh) * 2021-06-22 2021-08-24 阳光电源股份有限公司 一种新能源制氢系统及其控制方法
CN113325712A (zh) * 2021-05-28 2021-08-31 全球能源互联网研究院有限公司 一种电解制氢系统中的自适应响应控制方法、系统及装置
CN114086203A (zh) * 2021-11-19 2022-02-25 中国华能集团清洁能源技术研究院有限公司 一种间歇、波动电解制氢控制方法
CN114243714A (zh) * 2021-11-30 2022-03-25 清华大学 电解槽控制方法、装置、计算机设备和存储介质
CN114990600A (zh) * 2022-04-29 2022-09-02 阳光氢能科技有限公司 一种新能源制氢系统及其控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842577B2 (ja) * 2005-07-29 2011-12-21 本田技研工業株式会社 水電解システムの運転方法
WO2007142693A2 (en) * 2005-12-15 2007-12-13 Gm Global Technology Operations, Inc. Optimizing photovoltaic-electrolyzer efficiency
CN101565832A (zh) * 2008-04-25 2009-10-28 清华大学 太阳能电池电解水制氢系统
WO2017037849A1 (ja) * 2015-08-31 2017-03-09 株式会社 東芝 制御装置、制御方法、プログラム、及び水素エネルギー貯蔵システム
KR101816839B1 (ko) * 2016-09-09 2018-01-09 권오정 신재생 에너지 직접 연계형 수소 발생 장치를 위한 복합 전력회로 및 이의 제어 방법
JP6721537B2 (ja) * 2017-05-15 2020-07-15 株式会社東芝 水素電解製造用電解液タンク、水素電解製造用電解装置、および水素製造システム
JP6936179B2 (ja) * 2018-03-28 2021-09-15 東邦瓦斯株式会社 水素製造システム
CN112217227B (zh) * 2019-07-12 2022-09-13 阳光电源股份有限公司 直流耦合光伏离网制氢系统及其控制方法
CN112751354B (zh) * 2019-10-29 2023-04-07 阳光新能源开发股份有限公司 光伏离网制氢系统、控制方法及控制器
CN112981437B (zh) * 2021-02-07 2022-12-16 阳光氢能科技有限公司 一种水电解制氢系统及其气体纯度控制方法
CN113235121B (zh) * 2021-05-07 2022-08-23 宝武清洁能源有限公司 一种混合式多槽制氢系统及其控制方法
CN113862691B (zh) * 2021-09-18 2023-04-07 河北建投新能源有限公司 光伏制氢的控制方法、装置、存储介质及电子设备
CN114086204A (zh) * 2021-12-10 2022-02-25 清华四川能源互联网研究院 一种电解槽阵列系统与电解水系统控制方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112290581A (zh) * 2019-07-12 2021-01-29 合肥阳光新能源科技有限公司 一种新能源离网制氢系统
CN112803472A (zh) * 2019-10-28 2021-05-14 阳光电源股份有限公司 一种直流耦合制氢系统及其控制方法
CN112899725A (zh) * 2019-11-19 2021-06-04 阳光电源股份有限公司 新能源复合制氢系统及其控制方法
CN111585297A (zh) * 2020-06-12 2020-08-25 阳光电源股份有限公司 一种直流耦合制氢系统及其控制方法
CN112003382A (zh) * 2020-08-27 2020-11-27 新疆工程学院 一种基于储能装置的风电储能制氢系统及方法
CN213425790U (zh) * 2020-09-01 2021-06-11 阳光电源股份有限公司 一种可再生能源制氢系统
CN112725832A (zh) * 2020-12-18 2021-04-30 阳光电源股份有限公司 一种水电解制氢控制方法、系统及控制器
CN113279002A (zh) * 2021-04-29 2021-08-20 全球能源互联网研究院有限公司 多槽并联电解制氢的控制方法及系统
CN113249738A (zh) * 2021-05-28 2021-08-13 全球能源互联网研究院有限公司 一种新型电解水制氢系统及其运行方法
CN113325712A (zh) * 2021-05-28 2021-08-31 全球能源互联网研究院有限公司 一种电解制氢系统中的自适应响应控制方法、系统及装置
CN113293396A (zh) * 2021-06-22 2021-08-24 阳光电源股份有限公司 一种新能源制氢系统及其控制方法
CN114086203A (zh) * 2021-11-19 2022-02-25 中国华能集团清洁能源技术研究院有限公司 一种间歇、波动电解制氢控制方法
CN114243714A (zh) * 2021-11-30 2022-03-25 清华大学 电解槽控制方法、装置、计算机设备和存储介质
CN114990600A (zh) * 2022-04-29 2022-09-02 阳光氢能科技有限公司 一种新能源制氢系统及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117802535A (zh) * 2023-12-28 2024-04-02 广东卡沃罗氢科技有限公司 一种电解制氢装置的安全监控方法、装置、系统及设备
CN117904674A (zh) * 2024-01-29 2024-04-19 北京氢羿能源科技有限公司 一种pem电解水制氢多层控制系统和方法

Also Published As

Publication number Publication date
CN114990600B (zh) 2024-05-10
AU2022455534A1 (en) 2024-09-05
CN114990600A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023207201A1 (zh) 一种新能源制氢系统及其控制方法
CN112899725B (zh) 新能源复合制氢系统及其控制方法
KR101926010B1 (ko) 신재생에너지를 이용한 전력변환 시스템
KR102046045B1 (ko) 재생에너지 저장 시스템 및 그 동작 방법
CN112725832A (zh) 一种水电解制氢控制方法、系统及控制器
EP4057476A2 (en) System for producing hydrogen from renewable energy and control method thereof
CN113659632B (zh) 一种可实现大规模波动能源消纳的电解制氢系统及运行方法
CN114351164A (zh) 一种模块化水电解制氢系统及其控制方法
CN112491032A (zh) 一种直流耦合离网制氢系统及其控制方法
WO2024207689A1 (zh) 一种制氢系统及其控制方法
CN113644750A (zh) 一种制氢单元的运行状态控制方法及相关装置
CN213425790U (zh) 一种可再生能源制氢系统
CN114790558B (zh) 一种新能源制氢系统及其投切控制方法
CN113949054A (zh) 电网自治系统及方法
JP5469120B2 (ja) 分散型電源の発電出力制御システムおよび制御方法
CN113794194B (zh) 一种可再生能源直流微网制氢的自适应管控方法
CN116145166A (zh) 混合电解水制氢系统及混合电解水制氢系统的控制方法
CN118480818A (zh) 一种适用于交流微电网下的水电解制氢多槽接入系统及高效运行方法
US20240318336A1 (en) Method for controllong an electrolyzer arrangement having at least two electrolyzers for optimized balance of plant
CN216864343U (zh) 一种模块化水电解制氢系统
CN114204605B (zh) 一种电-热-氢综合能源系统运行模式优化设计方法
CN115882497B (zh) 一种绿电制氢系统、方法、装置及其介质
CN118727016A (zh) 基于风光发电负荷特性的阵列电解槽系统及优化配置方法
CN114374220A (zh) 一种电化学电池-电解水制氢-储氢-氢燃料电池耦合储能系统及控制方法
CN117913872A (zh) 一种风光氢火储耦合系统协调运行控制系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU22455534

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022455534

Country of ref document: AU

Date of ref document: 20221230

Kind code of ref document: A