[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023206316A1 - 探测基板、其制作方法及平板探测器 - Google Patents

探测基板、其制作方法及平板探测器 Download PDF

Info

Publication number
WO2023206316A1
WO2023206316A1 PCT/CN2022/090128 CN2022090128W WO2023206316A1 WO 2023206316 A1 WO2023206316 A1 WO 2023206316A1 CN 2022090128 W CN2022090128 W CN 2022090128W WO 2023206316 A1 WO2023206316 A1 WO 2023206316A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible substrate
scintillator layer
layer
scintillator
peripheral
Prior art date
Application number
PCT/CN2022/090128
Other languages
English (en)
French (fr)
Inventor
尚建兴
肖立友
李建河
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/090128 priority Critical patent/WO2023206316A1/zh
Priority to US18/247,846 priority patent/US20240369722A1/en
Priority to CN202280001014.8A priority patent/CN117321770A/zh
Publication of WO2023206316A1 publication Critical patent/WO2023206316A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof

Definitions

  • the present disclosure relates to the field of photoelectric detection technology, and in particular to a detection substrate, a manufacturing method thereof and a flat panel detector.
  • X-ray detection technology is widely used in industrial non-destructive testing, container scanning, circuit board inspection, medical care, security, industry and other fields, and has broad application prospects.
  • Traditional X-Ray imaging technology is analog signal imaging, with low resolution and poor image quality.
  • X-ray digital imaging technology uses X-ray flat panel detectors to directly convert X-ray images into digital images. Because the converted digital images are clear, high-resolution, and easy to save and transmit, it has been widely developed and applied.
  • X-ray flat panel detectors usually include thin film transistors (Thin Film Transistor, TFT) and photodiodes. Under X-ray irradiation, the scintillator layer or phosphor layer of the indirect conversion X-ray flat panel detector converts X-ray photons into visible light, and then converts the visible light into electrical signals under the action of the photodiode, and finally reads the electrical signals through TFT. The electrical signal is converted into a digital signal through A/D conversion, and the computer then performs image processing on the digital signal to form an X-ray digital image.
  • TFT Thin Film Transistor
  • Embodiments of the present disclosure provide a detection substrate, a manufacturing method thereof, and a flat panel detector.
  • the specific solutions are as follows:
  • Embodiments of the present disclosure provide a detection substrate, including:
  • the scintillator layer is located on one side of the flexible substrate; the scintillator layer includes a central part and a peripheral part located on at least one side of the central part, and the central part and the peripheral part are an integrated structure;
  • the thickness of the central portion is approximately equal at various locations; along the direction from the edge of the flexible substrate toward the center, the thickness of the peripheral portion shows an increasing trend;
  • a reinforcing structure, the reinforcing structure and the scintillator layer are located on the same side of the flexible substrate; the reinforcing structure at least covers part of the peripheral portion.
  • the maximum thickness of the reinforcing structure is less than or equal to the thickness of the central part and greater than or equal to 50% of the thickness of the central part. %.
  • the maximum thickness of the reinforcing structure is approximately equal to the thickness of the central portion.
  • the peripheral portion has a preset distance between an orthographic projection edge on the flexible substrate and an edge of the flexible substrate.
  • the reinforcing structure also covers at least part of the area of the flexible substrate that is not covered by the peripheral portion.
  • the flexible substrate includes a photosensitive area and a peripheral area arranged around the photosensitive area, and the central portion is located in the photosensitive area, The peripheral part is located in the peripheral area, and the peripheral part is provided around the central part.
  • the flexible substrate includes a photosensitive area and a peripheral area arranged around the photosensitive area, and the central portion is located in the photosensitive area, The peripheral portion is at least partially located in the photosensitive area, and the peripheral portion is provided around the central portion.
  • the flexible substrate includes a photosensitive area and a peripheral area arranged around the photosensitive area, and the peripheral area includes a binding area and a non-binding area. In the binding area, only one side of the binding area is provided with the peripheral portion.
  • the reinforcing structure is an integrated structure.
  • the material of the reinforcing structure of the integrated structure includes Tape glue or UV glue.
  • the reinforcing structure includes: a first reinforcing structure located on the side of the peripheral part away from the central part, and a first reinforcing structure located on the side of the peripheral part away from the central part. a second reinforcing structure between the first reinforcing structure and the peripheral portion; the first reinforcing structure and the second reinforcing structure are in contact with each other.
  • the material of the first reinforcing structure includes Tape glue
  • the material of the second reinforcing structure includes UV glue
  • the above-mentioned detection substrate provided by the embodiment of the present disclosure also includes an encapsulation layer located between the scintillator layer and the reinforcing structure, and the encapsulation layer completely covers the scintillator layer.
  • the body layer is formed into a body layer, and the peripheral area of the encapsulation layer is in contact with the flexible substrate, and the encapsulation layer is arranged according to the topography of the scintillator layer.
  • the above-mentioned detection substrate provided by an embodiment of the present disclosure further includes a support layer located on a side of the flexible substrate away from the scintillator layer.
  • the above detection substrate provided by the embodiment of the present disclosure further includes: a transistor located between the flexible substrate and the scintillator layer, and a transistor located between the transistor and the scintillator layer. a photoelectric conversion device between layers, and a bias voltage line located between the photoelectric conversion device and the scintillator layer; the bottom electrode of the photoelectric conversion device is electrically connected to the transistor, and the bias voltage line It is electrically connected to the top electrode of the photoelectric conversion device.
  • Embodiments of the present disclosure provide a detection substrate, including:
  • a scintillator layer is located on one side of the flexible substrate, and the thickness of the scintillator layer at various locations is approximately equal.
  • the above-mentioned detection substrate provided by the embodiment of the present disclosure also includes an encapsulation layer provided on the side of the scintillator layer facing away from the flexible substrate, and the encapsulation layer completely covers the The scintillator layer is provided, and the peripheral area of the encapsulation layer is in contact with the flexible substrate, and the encapsulation layer is arranged according to the topography of the scintillator layer.
  • the above-mentioned detection substrate provided by an embodiment of the present disclosure further includes a support layer located on a side of the flexible substrate away from the scintillator layer.
  • the above detection substrate provided by the embodiment of the present disclosure further includes: a transistor located between the flexible substrate and the scintillator layer, and a transistor located between the transistor and the scintillator layer. a photoelectric conversion device between layers, and a bias voltage line located between the photoelectric conversion device and the scintillator layer; the bottom electrode of the photoelectric conversion device is electrically connected to the transistor, and the bias voltage line It is electrically connected to the top electrode of the photoelectric conversion device.
  • Embodiments of the present disclosure provide a detection substrate, including:
  • the scintillator layer includes a central part and a peripheral part located around the central part, and the central part and the peripheral part are an integrated structure; the central part The thickness at each position is approximately equal; in the direction from the edge of the flexible substrate toward the center, the thickness of the peripheral portion shows an increasing trend;
  • the support layer is located on the side of the flexible substrate facing away from the scintillator layer; wherein, an adsorption base of a laminating device is used to attach the support layer to the side of the flexible substrate facing away from the scintillator layer.
  • an adsorption base of a laminating device is used to attach the support layer to the side of the flexible substrate facing away from the scintillator layer.
  • the above-mentioned detection substrate provided by the embodiment of the present disclosure also includes an encapsulation layer provided on the side of the scintillator layer facing away from the flexible substrate, and the encapsulation layer completely covers the The scintillator layer is provided, and the peripheral area of the encapsulation layer is in contact with the flexible substrate, and the encapsulation layer is arranged according to the topography of the scintillator layer.
  • the above detection substrate provided by the embodiment of the present disclosure further includes: a transistor located between the flexible substrate and the scintillator layer, and a transistor located between the transistor and the scintillator layer. a photoelectric conversion device between layers, and a bias voltage line located between the photoelectric conversion device and the scintillator layer; the bottom electrode of the photoelectric conversion device is electrically connected to the transistor, and the bias voltage line It is electrically connected to the top electrode of the photoelectric conversion device.
  • an embodiment of the present disclosure also provides a flat panel detector, including any of the above detection substrates provided by an embodiment of the present disclosure.
  • embodiments of the present disclosure also provide a method for manufacturing a detection substrate, which is used to produce any of the above-mentioned detection substrates provided by embodiments of the disclosure, including:
  • a scintillator layer is formed on one side of the flexible substrate; the scintillator layer includes a central part and a peripheral part located on at least one side of the central part; wherein the central part and the peripheral part are an integral structure, and The thickness of the central portion is approximately equal at various locations; along the direction from the edge of the flexible substrate toward the center, the thickness of the peripheral portion shows an increasing trend;
  • a reinforcing structure is formed on one side of the flexible substrate; the reinforcing structure and the scintillator layer are located on the same side of the flexible substrate, and the reinforcing structure covers at least part of the peripheral portion.
  • the flexible substrate includes a binding area and a non-binding area; the scintillator layer is formed on one side of the flexible substrate, It also includes: removing the peripheral portion on the non-binding area side of the flexible substrate to form the scintillator layer including the central portion and the peripheral portion on the binding area side of the flexible substrate.
  • the method further includes:
  • the support layer is attached to the side of the flexible substrate facing away from the scintillator layer.
  • the support layer is attached to the side of the flexible substrate away from the scintillator layer, specifically:
  • the support layer is placed on the support base in the laminating equipment, and the support layer is bonded to the side of the flexible substrate away from the scintillator layer by rolling.
  • the method further includes:
  • An encapsulation layer is formed on the side of the scintillator layer facing away from the flexible substrate; wherein the encapsulation layer completely covers the scintillator layer, and the peripheral area of the encapsulation layer is in contact with the flexible substrate, and The encapsulation layer is arranged according to the topography of the scintillator layer.
  • embodiments of the present disclosure also provide a method for manufacturing a detection substrate, which is used to produce any of the above-mentioned detection substrates provided by embodiments of the disclosure, including:
  • a scintillator film is formed on one side of the flexible substrate; the scintillator film includes a central part and a peripheral part located around the central part; wherein the central part and the peripheral part are an integrated structure, and the central part
  • the thickness at each position is approximately equal; in the direction from the edge of the flexible substrate toward the center, the thickness of the peripheral portion shows an increasing trend;
  • the method further includes:
  • the support layer is attached to the side of the flexible substrate facing away from the scintillator layer.
  • the support layer is attached to the side of the flexible substrate away from the scintillator layer, specifically:
  • the support layer is placed on the support base in the laminating equipment, and the support layer is bonded to the side of the flexible substrate away from the scintillator layer by rolling.
  • An encapsulation layer is formed on the side of the scintillator layer facing away from the flexible substrate; wherein the encapsulation layer completely covers the scintillator layer, and the peripheral area of the encapsulation layer is in contact with the flexible substrate, and The encapsulation layer is arranged according to the topography of the scintillator layer.
  • embodiments of the present disclosure also provide a method for manufacturing a detection substrate, which is used to produce any of the above-mentioned detection substrates provided by embodiments of the disclosure, including:
  • a scintillator layer is formed on one side of the flexible substrate; the scintillator layer includes a central part and a peripheral part located around the central part; wherein the central part and the peripheral part are an integral structure, and the central part
  • the thickness at each position is approximately equal; in the direction from the edge of the flexible substrate toward the center, the thickness of the peripheral portion shows an increasing trend;
  • the surface of the scintillator layer on the side facing away from the flexible substrate is embedded in the concave structure arranged accordingly on the adsorption base;
  • the support layer is attached to the side of the flexible substrate facing away from the scintillator layer.
  • the support layer is attached to the side of the flexible substrate away from the scintillator layer, specifically:
  • the support layer is placed on the support base in the laminating equipment, and the support layer is bonded to the side of the flexible substrate away from the scintillator layer by rolling.
  • An encapsulation layer is formed on the side of the scintillator layer facing away from the flexible substrate; wherein, the encapsulation layer completely covers the surface of the scintillator layer that is not in contact with the flexible substrate, and the encapsulation layer The peripheral area is in contact with the flexible substrate, and the encapsulation layer is arranged according to the topography of the scintillator layer.
  • Figure 1 is a schematic diagram of an ideal structure of a detection substrate provided in the related art
  • Figure 2 is a schematic diagram of the lamination process of a support layer in a detection substrate provided in the related art
  • Figure 3 is a schematic diagram of the actual structure of a detection substrate provided in the related art
  • FIGS 4-10 and 11A are schematic structural diagrams of several detection substrates provided by embodiments of the present disclosure.
  • Figure 11B is a schematic diagram of the lamination process of the support layer in the detection substrate shown in Figure 11A;
  • Figures 12 to 17 are further structural schematic diagrams of a detection substrate provided by embodiments of the present disclosure.
  • Figure 18 is a schematic structural diagram of a detection substrate provided by an embodiment of the present disclosure.
  • Figure 19 is a schematic flow chart of a method for manufacturing a detection substrate provided by an embodiment of the present disclosure.
  • Figure 20 is a schematic diagram of the lamination process of the support layer in the detection substrate shown in Figure 4;
  • Figure 21 is a schematic diagram of the lamination process of the support layer in the detection substrate shown in Figure 5;
  • Figure 22 is a schematic diagram of the lamination process of the support layer in the detection substrate shown in Figure 6;
  • Figure 23 is a schematic diagram of the lamination process of the support layer in the detection substrate shown in Figure 7;
  • Figure 24 is a schematic diagram of the lamination process of the support layer in the detection substrate shown in Figure 8;
  • Figure 25 is a schematic diagram of the lamination process of the support layer in the detection substrate shown in Figure 9;
  • Figure 26 is a schematic flow chart of another method for manufacturing a detection substrate provided by an embodiment of the present disclosure.
  • Figure 27 is a schematic diagram of the lamination process of the support layer in the detection substrate shown in Figure 10;
  • Figure 28 is a schematic flow chart of another method for manufacturing a detection substrate provided by an embodiment of the present disclosure.
  • Figure 29 is a schematic plan view of a detection substrate provided by an embodiment of the present disclosure.
  • Figure 30 is a schematic cross-sectional view along the CC' direction in Figure 29;
  • Figure 31 is a schematic cross-sectional view along the EE' direction in Figure 29;
  • Figure 32 is a schematic plan view of a flat panel detector provided by an embodiment of the present disclosure.
  • a flexible flat panel detector usually mainly includes a stacked support layer 1, a flexible substrate 2, a thin film transistor (not shown), a photodiode (not shown), a scintillator layer 3 and Encapsulation layer 4.
  • the manufacturing process of a flexible flat panel detector is roughly as follows: forming a stacked flexible substrate 2, a thin film transistor (not shown), a photodiode (not shown), a scintillator layer 3 and an encapsulation layer 4 on a rigid substrate. Then the rigid substrate is peeled off, and then the support layer 1 is bonded to the side of the flexible substrate 2 facing away from the scintillator layer 3 by rolling. Among them, the scintillator layer 3 is usually made by evaporation. The characteristics of the scintillator layer made by this method are better than those of the attached type. The specific advantages are that the fluorescence path is shorter and the scattering is smaller.
  • the ideal structure of the scintillator layer 3 is to form a scintillator layer 3 with a uniform thickness only in the photosensitive area (AA area) of the flat-panel detector.
  • the scintillator layer 3 is formed in the AA area.
  • FIG 1 is an ideal planar structure flat panel detector, but during the lamination process of the support layer 1, as shown in Figure 2, Figure 2 shows the structure after peeling off the rigid substrate and placing it in the lamination equipment.
  • the encapsulation layer 4 is adsorbed by the adsorption base 5 in the lamination equipment, and the support layer 1 is placed on the support base 6 From above, it can be seen that due to the height difference between the AA area and the edge area of the scintillator layer 3, during the rolling process of the roller 7 (roller), the edges of the flexible substrate 2 and the support layer 1 are warped, and the rolling process
  • the rod 7 lifts the scintillator layer 3 in the edge area to the side of the adsorption base 5, causing the scintillator layer 3 in the edge area to deform, as shown in Figure 3.
  • Figure 3 shows the structure of the actually formed flexible flat panel detector.
  • the substrate 2 and the support layer 1 are warped at the edges, resulting in unevenness, and the scintillator layer 3 is damaged due to deformation, resulting in a bright defect problem in a bright picture.
  • a detection substrate as shown in Figures 4-9, including:
  • the scintillator layer 3 is located on one side of the flexible substrate 2; the scintillator layer 3 includes a central part 31 and a peripheral part 32 located on at least one side of the central part 31.
  • the central part 31 and the peripheral part 32 are an integrated structure; the central part 31 is on The thickness H1 at each position is approximately equal; along the direction from the edge of the flexible substrate 2 to the center (shown by arrow L), the thickness of the peripheral portion 32 shows an increasing trend;
  • the reinforcing structure 8, the reinforcing structure 8 and the scintillator layer 3 are located on the same side of the flexible substrate 2; the reinforcing structure 8 at least covers part of the peripheral portion 32, and the maximum thickness H2 of the reinforcing structure 8 is equal to the thickness H1 of the central portion 32 roughly equal.
  • the reinforcing structure 8 located on the same side as the scintillator layer 3 is provided on the flexible substrate 2, and the maximum thickness H2 of the reinforcing structure 8 is approximately equal to the thickness H1 of the central portion 31.
  • the reinforcing structure 8 can make up for the height difference between the central area (AA area) and the edge area of the scintillator layer 3. Therefore, the supporting layer 1 is subsequently attached to the side of the flexible substrate 2 away from the scintillator layer 3 (described later).
  • the embodiment of the disclosure takes the detection substrate as a planar structure as an example for description.
  • the detection substrate provided by the embodiment of the disclosure may also have a curved structure.
  • the peripheral portion 32 of the scintillator layer 3 is a slope portion (Slope region), and the central portion 31 is a flat portion with approximately the same thickness.
  • the material of the flexible substrate may include, but is not limited to, polyimide, polyvinyl ether phthalate, polyethylene naphthalate, polycarbonate, polyarylate, polyether acyl Plastic substrates with excellent heat resistance and durability such as imine or polyethersulfone.
  • the material of the scintillator layer is a material that can convert X-rays into visible light. It is mainly composed of scintillator.
  • the scintillator itself is a type of material that can emit light after absorbing high-energy particles or rays. It is usually processed in applications.
  • the scintillation crystal is formed into a crystal, which is called a scintillation crystal; the embodiment of the present disclosure does not limit the specific material of the scintillation crystal of the scintillator layer, which can be cesium iodide (CsI), cadmium tungstate, barium fluoride, gadolinium oxysulfide (GOS) wait.
  • CsI cesium iodide
  • GOS gadolinium oxysulfide
  • the reinforcing structure 8 completely covers the peripheral portion 32, so that when the side of the flexible substrate 2 away from the scintillator layer 3 is attached to the support layer 1 (described later), the rolling rod 7 (roller) During the rolling process, all positions of the scintillator layer 3 are uniformly stressed.
  • the maximum thickness H2 of the reinforcing structure 8 is less than or equal to the thickness H1 of the central portion 31 and is greater than or equal to the central portion 31 .
  • the maximum thickness H2 of the reinforcing structure 8 is approximately equal to the thickness of the central portion 31 . In this way, the reinforcing structure 8 can almost completely compensate for the height difference between the AA region and the edge region of the scintillator layer 3 , thereby further avoiding the problem of deformation of the scintillator layer 3 .
  • the peripheral portion has a preset value between the orthographic projection edge on the flexible substrate 2 and the edge of the flexible substrate 2 .
  • the reinforcing structure 8 also covers at least part of the area of the flexible substrate 2 that is not covered by the peripheral portion 32 .
  • the reinforcing structure 8 covers all areas of the flexible substrate 2 that are not covered by the peripheral portion 32 .
  • the flexible substrate 2 facing away from the scintillator layer 3 when the side of the flexible substrate 2 facing away from the scintillator layer 3 is attached to the support layer 1, during the rolling process of the roller 7 (roller), the flexible substrate 2 is evenly stressed at each position, and the flexibility is The edges of the substrate 2 and the support layer 1 will not warp, and it can further ensure that the edge of the scintillator layer 3 will not be lifted up by the roller 7, so that the mutual contact surfaces of the support layer 1 and the flexible substrate 2 are on a flat surface. plane to ensure that the scintillator layer 3 does not deform.
  • the flexible substrate 2 includes a photosensitive area AA and a peripheral area BB arranged around the photosensitive area AA, and the central portion 31 is located at the photosensitive area AA.
  • the peripheral portion 32 is located in the peripheral area BB, and the peripheral portion 32 is provided around the central portion 31 .
  • the reinforcing structure 8 surrounding the central part 31 is provided on the peripheral part 32 to make up for the step difference between the central part 31 and the surrounding peripheral parts 32.
  • the support layer 1 is attached to the side of the flexible substrate 2 away from the scintillator layer 3.
  • the flexible substrate 2 is evenly stressed at each position, avoiding the problems of the flexible substrate 2 and the support layer 1 being warped in the edge area and the scintillator layer 3 being deformed. .
  • the flexible substrate 2 includes a photosensitive area AA and a peripheral area arranged around the photosensitive area AA, and the peripheral area includes a binding area B1 and the non-binding area
  • the scintillator layer 3 is provided with a peripheral portion 32 only on one side of the binding area B1.
  • the initially formed scintillator layer 3 has a structure with peripheral portions 32 formed around the central portion 31 as shown in Figures 4 to 6.
  • the scintillator layer 3 shown in Figures 7 to 9 of the embodiment of the present disclosure is only provided with a peripheral portion 32 on one side of the binding area B1. That is, the embodiment of the present disclosure can adjust the structure of the initially formed scintillator layer 3. For example, the peripheral portion 32 on the non-binding area side is removed, leaving only the peripheral portion 32 on the binding area B1 side. Since the binding area B1 is generally provided with a binding Pad, which is used to electrically connect the signal lines (such as the scanning signal line SL and the read signal line RL) of the photosensitive area AA to the external chip, in order to prevent the binding from being damaged when the peripheral portion 32 is removed.
  • a binding Pad which is used to electrically connect the signal lines (such as the scanning signal line SL and the read signal line RL) of the photosensitive area AA to the external chip, in order to prevent the binding from being damaged when the peripheral portion 32 is removed.
  • the embodiment of the present disclosure can only remove the peripheral portion 32 of the non-bonding area.
  • the area where the peripheral part 32 is retained can solve the step difference between the central part 31 and the peripheral part 32 of the scintillator layer 3 due to the provision of the reinforcing structure 8; the area where the peripheral part 32 is removed does not have a step area, so the flexible lining can be avoided.
  • FIG. 4 to FIG. 9 are all based on the example that the central part 31 is located in the photosensitive area AA and the peripheral part 32 is located in the peripheral area BB.
  • the central part 31 is located in the photosensitive area AA
  • the peripheral part 32 may be at least partially located in the photosensitive area AA; for example, a part of the peripheral part 32 is located in the photosensitive area AA, and the other part is located in the peripheral area BB; for another example, the peripheral part 32 is located in the photosensitive area AA.
  • the reinforcing structure 8 provided by the embodiment of the present disclosure can be used to compensate for the height difference.
  • the reinforcing structure 8 can be One-piece structure. Specifically, as shown in Figures 4, 5, 12 and 13, the reinforcing structure 8 is a closed integrated structure arranged around the central portion 31; as shown in Figures 7, 8, 15 and 16, The reinforcing structure 8 is a non-closed integrated structure that is only provided in the binding area B1.
  • Materials may include but are not limited to Tape glue or UV glue.
  • the material of the reinforcing structure 8 is Tape glue.
  • Tape glue is a relatively thick tape.
  • Tape glue is mostly attached manually and requires repeated correction. Improve the alignment effect and make the surface flush; as shown in Figure 5, Figure 8, Figure 13 and Figure 16, the material of the reinforcing structure 8 is UV glue, which is liquid when applied and has certain fluidity. Wetting angle, so the surface of the reinforced structure formed by UV glue will not be completely flat after curing.
  • UV glue is that the shape is plastic. Before curing by UV light, the position and amount of UV glue can be fine-tuned, so that The surface of the formed reinforcing structure 8 facing away from the flexible substrate 2 is substantially flush with the surface of the central portion 31 facing away from the flexible substrate 2 .
  • the reinforcing structure 8 may include: located on the side of the peripheral part 32 away from the central part 31 The first reinforcing structure 81, and the second reinforcing structure 82 located between the first reinforcing structure 81 and the peripheral portion 32; the first reinforcing structure 81 and the second reinforcing structure 82 are in contact with each other.
  • the first reinforcing structure 81 and the second reinforcing structure 82 are closed integrated structures arranged around the central portion 31; as shown in Figures 9 and 17, the first reinforcing structure 81 and the second reinforcing structure 82 are closed integrated structures. Both the reinforcing structure 81 and the second reinforcing structure 82 are non-closed integrated structures provided only in the binding area B1.
  • the material of the first reinforcing structure 81 may include Tape glue
  • the second reinforcing structure 82 materials can include UV glue.
  • Tape glue can be used to form the first reinforcing structure 81 on the edge of the flexible substrate 2, and a groove can be formed between the first reinforcing structure 81 and the central part 32, and then UV glue with good fluidity can be used to fill the groove.
  • UV glue with good fluidity can be used to fill the groove.
  • the second reinforcing structure 82 can be formed by curing the UV glue.
  • the structure of the detection substrate shown in FIGS. 4-9 and 12-17 provided by the embodiments of the present disclosure can compensate for the scintillator layer 3 by arranging the reinforcing structure 8 on the peripheral portion 32 of the scintillator layer 3 There is a height difference between the central part 31 and the peripheral part 32, so that during the attachment process of the support layer 1, the flexible substrate 2 can be evenly stressed at each position, thereby preventing the flexible substrate 2 and the support layer 1 from warping at the edges. And avoid the problem of deformation of the scintillator layer 3 .
  • the above detection substrate provided by the embodiment of the present disclosure also includes an encapsulation layer 4 located between the scintillator layer 3 and the reinforcing structure 8 , the encapsulation layer 4 completely covers the scintillator layer 3, and the peripheral area of the encapsulation layer 4 is in contact with the flexible substrate 2, and the encapsulation layer 4 is arranged according to the topography of the scintillator layer 3.
  • the material of the encapsulation layer 4 can be aluminum, but is not limited thereto; the encapsulation layer 4 can play a certain role in blocking water and oxygen, and the encapsulation layer 4 avoids damage to the scintillator layer due to collisions, etc.
  • the peripheral area of the flexible substrate 2 has a binding area, and the binding area is generally provided with a binding pad, and the binding pad and FPC (flexible circuit) board) is bound to form Data COF 100 (that is, the pad on the flexible substrate 2 is bound to the pad on the FPC for connection with the read signal line RL of the photosensitive area AA) and Gate COF 200 (that is, the pad on the flexible substrate 2 is bound
  • Data COF 100 that is, the pad on the flexible substrate 2 is bound to the pad on the FPC for connection with the read signal line RL of the photosensitive area AA
  • Gate COF 200 that is, the pad on the flexible substrate 2 is bound
  • the pad is bound to the pad on the FPC and is used to connect to the scanning signal line SL of the photosensitive area AA).
  • Figures 4 to 9 and 12 to 17 only illustrate the Data COF 100.
  • the detection substrate provided by the embodiment of the present disclosure, as shown in Figure 18, it also includes: a transistor 10 located between the flexible substrate 2 and the scintillator layer 3; The photoelectric conversion device 11 between them, and the bias voltage line 12 between the photoelectric conversion device 11 and the scintillator layer 3; the bottom electrode 111 of the photoelectric conversion device 11 is electrically connected to the transistor 10, and the bias voltage line 12 is connected to the photoelectric conversion device 11.
  • the top electrode 112 of device 11 is electrically connected.
  • the photoelectric conversion device 11 may include a bottom electrode 111 and a top electrode 112 arranged oppositely, and a photoelectric conversion layer 113 located between the bottom electrode 111 and the top electrode 112 .
  • the photoelectric conversion layer 113 converts light into The signal is converted into an electrical signal.
  • the photoelectric conversion layer may have a PN structure or a PIN structure.
  • the PIN structure includes an N-type doped N-type semiconductor layer, an undoped intrinsic semiconductor layer I, and a P-type doped P-type semiconductor layer.
  • the thickness of the intrinsic semiconductor layer I may be greater than the thickness of the P-type semiconductor layer and the N-type semiconductor layer.
  • the photoelectric conversion layer 113 illustrated in the embodiment of the present disclosure includes an N-type semiconductor layer 1131 , an intrinsic semiconductor layer 1132 and a P-type semiconductor layer 1131 , which are sequentially stacked in the direction in which the flexible substrate 2 points to the scintillator layer 3 .
  • the transistor 10 may include a gate electrode 101 , a gate insulating layer 102 , an active layer 103 , a source electrode 104 and a drain electrode 105 located on the flexible substrate 2 , and a bottom electrode 111 of the photoelectric conversion device 11 electrically connected to source 104 .
  • the detection substrate also includes: a first passivation layer 13 located between the bottom electrode 111 and the source electrode 104 of the photoelectric conversion device 11, and a passivation layer 13 located between the bias voltage line 12 and the top electrode 112.
  • the buffer layer 14 , the flat layer 15 between the buffer layer 14 and the bias voltage line 12 , and the second passivation layer 16 between the bias voltage line 12 and the scintillator layer 3 may also be included, such as shielding layers.
  • the transistor 10 may be an amorphous silicon thin film transistor, an oxide thin film transistor, an LTPS thin film transistor, or the like.
  • FIG. 18 is a specific structure based on the structure shown in FIG. 4. Of course, the structures shown in FIGS. film layers such as the conversion device 11 and the bias voltage line 12.
  • the scintillator layer converts the kinetic energy of the high-energy particles into light energy under the impact of high-energy particles of X-rays.
  • a flash visible light signal
  • the optical signal can be converted into an electrical signal through a photoelectric conversion device and read out through a transistor to obtain an X-ray image through subsequent signal processing (including amplification, conversion, etc.).
  • the detection substrate shown in FIGS. 4-9 and 12-17 provided by the embodiments of the present disclosure can solve the problem of warpage of the flexible substrate and the support layer and the problem of deformation of the scintillator layer. This can solve the problem of bright Defect not appearing in bright images and improve the performance of the detection substrate.
  • An embodiment of the present disclosure also provides a detection substrate, as shown in Figure 10, including:
  • the scintillator layer 3 is located on one side of the flexible substrate 2, and the scintillator layer 3 has approximately the same thickness at various locations.
  • the scintillator layer 3 is generally formed by evaporation.
  • the initially formed scintillator layer 3 is as shown in Figure 4-Fig.
  • the thickness of the scintillator layer 3 shown in Figure 10 in the embodiment of the present disclosure is approximately equal at each position, that is, the embodiment of the present disclosure can be used for the initially formed
  • the structure of the scintillator layer 3 is adjusted, for example, the peripheral portion 32 of the surrounding edges of the scintillator layer 3 is removed, leaving only the central portion located in the photosensitive area AA (that is, the thickness of the scintillator layer 3 at various locations is approximately equal).
  • the binding area is generally provided with Data COF 100 and Gate COF 200, which are used to connect the signal lines of the photosensitive area AA (such as the scanning signal line SL and the read signal line RL) with The external chip is electrically connected.
  • the embodiment of the present disclosure can use a protective layer (such as a silicon nitride insulating layer, etc.) to protect the signal line after bonding. After protecting the scintillator layer 3 with the external chip, the peripheral portion 32 around the edges of the scintillator layer 3 is removed. After that, the protective layer can be removed or retained.
  • the above detection substrate provided by the embodiment of the present disclosure also includes an encapsulation layer 4 provided on the side of the scintillator layer 3 facing away from the flexible substrate 2, and the encapsulation layer 4 completely covers the scintillator.
  • Layer 3, and the peripheral area of the encapsulation layer 4 is in contact with the flexible substrate 2, and the encapsulation layer 4 is arranged according to the topography of the scintillator layer 3.
  • the material of the encapsulation layer 4 can be aluminum, but is not limited thereto; the encapsulation layer 4 can play a certain role in blocking water and oxygen, and the encapsulation layer 4 avoids damage to the scintillator layer due to collisions, etc.
  • the flexible substrate 2 and the scintillator layer 3 of the detection substrate shown in Figure 10 provided by the embodiment of the present disclosure also include a transistor 10, a photoelectric conversion device 11 and a bias voltage line as shown in Figure 18 12 and other film layers.
  • a transistor 10 a photoelectric conversion device 11 and a bias voltage line as shown in Figure 18 12 and other film layers.
  • An embodiment of the present disclosure also provides a detection substrate, as shown in Figure 11A, including:
  • the scintillator layer 3 is located on one side of the flexible substrate 2.
  • the scintillator layer 3 includes a central part 31 and a peripheral part 32 located around the central part 31.
  • the central part 31 and the peripheral part 32 are an integrated structure; the central part 31 is at various positions.
  • the thickness H1 at the positions is approximately equal; in the direction from the edge of the flexible substrate 2 to the center (shown by arrow L), the thickness of the peripheral portion 32 shows an increasing trend;
  • the support layer 1 is located on the side of the flexible substrate 2 facing away from the scintillator layer 3.
  • the adsorption base 5 of the laminating equipment is attached to the side of the flexible substrate 2 facing away from the scintillator layer 3.
  • the scintillator layer 3 is configured to be embedded in the concave structure provided along with the adsorption base 5 .
  • the detection substrate shown in FIG. 11A is not provided with the reinforcing structure shown in FIGS. 4-9 and 12-17 , it is not like removing all the peripheral parts as shown in Figure 10.
  • the detection substrate shown in Figure 11A is attached to the support layer 1 on the side of the flexible substrate 2 facing away from the scintillator layer 3, as shown in Figure 11B, lamination can be used
  • the adsorption base 5 of the device attaches the support layer 1 to the side of the flexible substrate 2 facing away from the scintillator layer 3
  • the scintillator layer 3 is configured to be embedded in the concave structure provided accordingly on the adsorption base 5.
  • the side of the scintillator layer 3 facing away from the flexible substrate 2 can be accommodated in the concave structure of the adsorption base 5 , that is, the adsorption base 5
  • the concave structure is consistent with the side of the scintillator layer 3 facing away from the flexible substrate 2.
  • the support layer 1 is located on the support base 6, so that when the support layer 1 is attached, the side of the flexible substrate 2 facing away from the support layer 1
  • the thickness of the film layer at each position on the side is consistent, so the flexible substrate 2 is evenly stressed at each position, thereby avoiding the problems of warping of the flexible substrate 2 and the support layer 1 and deformation of the scintillator layer 3. Therefore, by using the adsorption base 5 with an inner concave structure that matches the side of the scintillator layer 3 facing away from the flexible substrate 2, a detection substrate in which the flexible substrate 2, the support layer 1 and the scintillator layer 3 are not deformed can be obtained. .
  • the above-mentioned detection substrate provided by the embodiment of the present disclosure also includes an encapsulation layer 4 provided on the side of the scintillator layer 3 facing away from the flexible substrate 2.
  • the encapsulation layer 4 completely covers the scintillator.
  • Layer 3, and the peripheral area of the encapsulation layer 4 is in contact with the flexible substrate 2, and the encapsulation layer 4 is arranged according to the topography of the scintillator layer 3.
  • the material of the encapsulation layer 4 can be aluminum, but is not limited thereto; the encapsulation layer 4 can play a certain role in blocking water and oxygen, and the encapsulation layer 4 avoids damage to the scintillator layer due to collisions, etc.
  • the detection substrate shown in FIG. 11A provided by the embodiment of the present disclosure also includes a transistor 10, a photoelectric conversion device 11 and a bias voltage line as shown in FIG. 18 between the flexible substrate 2 and the scintillator layer 3. 12 and other film layers.
  • a transistor 10 a photoelectric conversion device 11
  • a bias voltage line as shown in FIG. 18 between the flexible substrate 2 and the scintillator layer 3. 12 and other film layers.
  • the detection substrate shown in FIG. 11A provided by the embodiment of the present disclosure can solve the problem of warpage of the flexible substrate 2 and the support layer 1 and the problem of deformation of the scintillator layer 3, thereby solving the problem of in the bright state. There will be no bright-state Defect problem on the screen, which can improve the performance of the detection substrate.
  • an embodiment of the present disclosure also provides a method for manufacturing a detection substrate, which is used to produce the detection substrate shown in Figures 4-9 and 12-17 provided by the embodiment of the present disclosure, as shown in Figure 19 indication, including:
  • the scintillator layer forms a scintillator layer on one side of the flexible substrate; the scintillator layer includes a central part and a peripheral part located on at least one side of the central part; wherein the central part and the peripheral part are an integrated structure, and the thickness of the central part at each position Roughly equal; in the direction from the edge of the flexible substrate to the center, the thickness of the peripheral portion shows an increasing trend;
  • the above-mentioned detection substrate provided by the embodiment of the present disclosure is provided with a reinforcing structure located on the same side as the scintillator layer on the flexible substrate. Since the maximum thickness of the reinforcing structure is The thickness of the central part is roughly equal, so that the reinforcing structure can make up for the height difference between the central area and the edge area of the scintillator layer. Therefore, when the side of the flexible substrate away from the scintillator layer is attached to the support layer, the roller is rolled.
  • the force on each position of the scintillator layer is roughly uniform, so the edge of the scintillator layer will not be pushed up by the rolling rod, and the scintillator layer will not be deformed, thus causing no bright state in the bright screen. Defect problems can improve the performance of the detection substrate.
  • forming the scintillator layer on one side of the flexible substrate may specifically include: using evaporation to form a layer on the flexible substrate including a central part and a central part located in the center.
  • the scintillator layer is a peripheral portion of at least one side of the scintillator layer.
  • a scintillator layer 3 including a central portion 31 and a peripheral portion 32 located around the central portion 31 is formed on the flexible substrate 2 by evaporation.
  • the scintillator layer 3 including the central portion 31 and the peripheral portion 32 located around the central portion 31 is first formed on the flexible substrate 2 by evaporation, and then the scintillator layer 3 on the non-binding area side of the flexible substrate 2 is removed.
  • the peripheral portion 32 forms the scintillator layer 3 including a central portion 31 and a peripheral portion 32 located on the side of the binding area B1 of the flexible substrate 2, as shown in Figures 7-9 and 15-17.
  • the support layer 1 is attached to the side of the flexible substrate 2 facing away from the scintillator layer 3 .
  • the support layer 1 is attached to a side of the flexible substrate 2 facing away from the scintillator layer 3.
  • Side specifically it can be:
  • the support layer is placed on the support base in the laminating equipment, and the support layer is bonded to the side of the flexible substrate away from the scintillator layer by rolling.
  • An encapsulation layer is formed on the side of the scintillator layer facing away from the flexible substrate; the encapsulation layer completely covers the scintillator layer, and the peripheral area of the encapsulation layer is in contact with the flexible substrate, and the encapsulation layer is arranged according to the topography of the scintillator layer.
  • a package is formed on the side of the scintillator layer 3 facing away from the flexible substrate 2 Layer 4; wherein, the encapsulation layer 4 completely contacts and covers the surface of the scintillator layer 3 that is not in contact with the flexible substrate 2, and the peripheral area of the encapsulation layer 4 is in contact with the flexible substrate 2, and the encapsulation layer 4 follows the direction of the scintillator layer 3. Shape settings.
  • the manufacturing method of the detection substrate shown in Figure 4 includes: sequentially forming a stacked flexible substrate 2, a transistor 10, a first passivation layer 13, a photoelectric conversion device 11, and a buffer on a rigid substrate (such as a glass substrate). layer 14, flat layer 15, bias voltage line 12, and second passivation layer 16; then, evaporation is used to form a central portion 31 and a peripheral portion 32 located around the central portion 31 on the second passivation layer 16.
  • the adsorption base 5 adsorbs the side of the encapsulation layer 4 away from the flexible substrate 2, and the laminating equipment It also includes a support base 6, place the support layer 1 on the support base 6, and use a roller 7 (roller) to attach the support layer 1 to the side of the flexible substrate 2 away from the scintillator layer 3. Since the reinforcing structure 8 can make up for the step difference between the central part 31 and the peripheral part 32 of the scintillator layer 3, the flexible substrate 2 and the support layer 1 will not warp during the rolling process with the roller 7 (roller). , are all flat structures, and the scintillator layer 3 will not be lifted up by the roller rod 7, that is, the scintillator layer 3 will not be deformed.
  • FIG. 4 only illustrates the support layer 1, the flexible substrate 2, the scintillator layer 3, the encapsulation layer 4 and the reinforcing structure 8.
  • the difference between the manufacturing method of the detection substrate shown in Figure 5 and the manufacturing method of the detection substrate shown in Figure 4 is that UV glue is used to make the reinforcing structure 8, and the other film layers are made in the same way.
  • the support layer 1 shown in Figure 5 The schematic diagram of the attachment process is shown in Figure 21.
  • the difference between the manufacturing method of the detection substrate shown in Figure 6 and the manufacturing method of the detection substrate shown in Figure 4 is that Tape glue is used to first make the first reinforcing structure 81, and then UV glue is used to make the second reinforcing structure 82, and the remaining films
  • Tape glue is used to first make the first reinforcing structure 81
  • UV glue is used to make the second reinforcing structure 82
  • the remaining films The manufacturing method of the layers is the same, and the schematic diagram of the attachment process of the support layer 1 shown in Figure 6 is shown in Figure 22.
  • the difference between the manufacturing method of the detection substrate shown in Figure 7 and the manufacturing method of the detection substrate shown in Figure 4 is that the structure of the scintillator layer 3 is different.
  • the manufacturing method of the peripheral part 32 and other film layers is the same.
  • the schematic diagram of the attachment process of the support layer 1 shown in Figure 7 is shown in Figure 23.
  • the difference between the manufacturing method of the detection substrate shown in Figure 8 and the manufacturing method of the detection substrate shown in Figure 4 is that the structure of the scintillator layer 3 is different and the material of the reinforcing structure 8 is different.
  • the structure of the scintillator layer 3 in Figure 8 it is necessary to remove the peripheral portion 32 of the non-binding area, and use UV glue to make the reinforcing structure 8.
  • the other film layers are made in the same way.
  • the schematic diagram of the attachment process of the support layer 1 shown in Figure 8 is shown in Figure 24.
  • the difference between the manufacturing method of the detection substrate shown in Figure 9 and the manufacturing method of the detection substrate shown in Figure 4 is that the structure of the scintillator layer 3 is different and the material of the reinforcing structure 8 is different.
  • the structure of the scintillator layer 3 in Figure 9 it is necessary to remove the peripheral part 32 of the non-binding area, and use Tape glue to first make the first reinforcing structure 81, and then use UV glue to make the second reinforcing structure 82.
  • the other film layers are made in the same way, as shown in Figure 9
  • the schematic diagram of the attachment process of support layer 1 is shown in Figure 25.
  • an embodiment of the present disclosure also provides a method for making a detection substrate, which is used to make the detection substrate shown in Figure 10 provided by the embodiment of the present disclosure, as shown in Figure 26, including:
  • the scintillator film Form a scintillator film on one side of the flexible substrate; the scintillator film includes a central part and a peripheral part located around the central part; wherein the central part and the peripheral part are an integrated structure, and the thickness of the central part at each position is approximately equal. ; Along the direction from the edge of the flexible substrate to the center, the thickness of the peripheral portion shows an increasing trend;
  • the scintillator layer 3 including the central part 31 and the peripheral part 32 located around the central part 31 is first formed on the flexible substrate 2 by evaporation, and then all the peripheral parts 32 are removed to form a thickness of H1 is approximately equal to scintillator layer 3, as shown in Figure 10.
  • the support layer 1 is attached to the side of the flexible substrate 2 facing away from the scintillator layer 3 .
  • the support layer 1 is attached to the side of the flexible substrate 2 facing away from the scintillator layer 3.
  • the support layer 1 can be as follows:
  • the support layer is placed on the support base in the laminating equipment, and the support layer is bonded to the side of the flexible substrate away from the scintillator layer by rolling.
  • Also after forming the scintillator layer and before placing one side of the scintillator layer on the adsorption base of the laminating device ,Also includes:
  • An encapsulation layer is formed on the side of the scintillator layer facing away from the flexible substrate; the encapsulation layer completely covers the scintillator layer, and the peripheral area of the encapsulation layer is in contact with the flexible substrate, and the encapsulation layer is arranged according to the topography of the scintillator layer.
  • the encapsulation layer 4 is formed on one side of the substrate 2; the encapsulation layer 4 completely covers the scintillator layer 3, and the peripheral area of the encapsulation layer 4 is in contact with the flexible substrate 2, and the encapsulation layer 4 is arranged according to the topography of the scintillator layer 3 .
  • the difference between the manufacturing method of the detection substrate shown in Figure 10 and the manufacturing method of the detection substrate shown in Figure 4 is that the structure of the scintillator layer 3 is different and there is no need to form the reinforcing structure 8 in Figure 10.
  • the scintillator layer 3 is formed. , all the peripheral parts need to be removed, and the remaining film layers are made in the same way.
  • the schematic diagram of the attachment process of the support layer 1 shown in Figure 10 is shown in Figure 27.
  • an embodiment of the present disclosure also provides a method for making a detection substrate, which is used to make the detection substrate shown in Figure 11A provided by the embodiment of the present disclosure, as shown in Figure 28, including:
  • the scintillator layer Form a scintillator layer on one side of the flexible substrate; the scintillator layer includes a central part and a peripheral part located around the central part; wherein the central part and the peripheral part are an integrated structure, and the thickness of the central part at each position is approximately equal. ; Along the direction from the edge of the flexible substrate to the center, the thickness of the peripheral portion shows an increasing trend;
  • the support layer is attached to the side of the flexible substrate facing away from the scintillator layer, specifically as follows:
  • the support layer is placed on the support base in the laminating equipment, and the support layer is bonded to the side of the flexible substrate away from the scintillator layer by rolling.
  • the surface of the scintillator layer on the side facing away from the flexible substrate is embedded in the concave shape of the adsorption base.
  • Structure before art also includes:
  • An encapsulation layer is formed on the side of the scintillator layer facing away from the flexible substrate; the encapsulation layer completely covers the scintillator layer, and the peripheral area of the encapsulation layer is in contact with the flexible substrate, and the encapsulation layer is arranged according to the topography of the scintillator layer.
  • the scintillator layer 3 after the scintillator layer 3 is formed, and before the surface of the scintillator layer 3 facing away from the flexible substrate 2 is embedded in the concave structure of the adsorption base 5 . , also includes: forming an encapsulation layer 4 on the side of the scintillator layer 3 away from the flexible substrate 2; wherein the encapsulation layer 4 completely covers the scintillator layer 3, and the peripheral area of the encapsulation layer 4 is in contact with the flexible substrate 2, and the encapsulation layer 4 is in contact with the flexible substrate 2.
  • Layer 4 is arranged according to the topography of scintillator layer 3 .
  • the difference between the manufacturing method of the detection substrate shown in Figure 11A and the manufacturing method of the detection substrate shown in Figure 4 is that there is no need to make a reinforcing structure 8, but an adsorption base 5 with a concave structure is used, and the concave structure and the encapsulation layer 4 are matched with each other on one side, and the other film layers are made in the same way.
  • the schematic diagram of the attachment process of the support layer 1 shown in Figure 11A is shown in Figure 11B.
  • the manufacturing method of the detection substrate provided by the embodiments of the present disclosure can solve the problem of warpage of the flexible substrate and the support layer and the problem of deformation of the scintillator layer, thereby solving the problem that does not occur in bright images.
  • the bright state Defect problem can improve the performance of the detection substrate.
  • Figure 29 is a schematic plan view of the flat panel detector shown in Figure 18 provided by an embodiment of the present disclosure, including a photosensitive area AA and a peripheral area BB arranged around the photosensitive area AA.
  • the central portion 31 is located in the photosensitive area AA.
  • the peripheral area BB is also provided with a Data COF 100 (that is, the pad on the flexible substrate 2 and the FPC on the Pad binding, used to connect to the read signal line RL of the photosensitive area AA), Gate COF 200 (that is, the pad on the flexible substrate 2 is bound to the pad on the FPC, used to connect to the scanning signal line SL of the photosensitive area AA connection);
  • the reinforcing structure 8 is a structure set after binding.
  • the material of the reinforcing structure 8 is Tape glue.
  • the orthographic projection of the reinforcing structure 8 on the flexible substrate 2 covers the peripheral part 32 on the flexible substrate 2 Orthographic projection and flexible substrate 2 covering the outside of peripheral portion 32 .
  • Figure 30 is a schematic cross-sectional view along the CC' direction in Figure 29, and Figure 31 is a cross-sectional schematic view along the EE' direction in Figure 29.
  • the size (flexibility) of the detection substrate shown in the embodiment of the present disclosure The size of the substrate 2) takes 365mm ⁇ 443mm as an example.
  • the width of the Data COF 100 can be 1mm ⁇ 4mm.
  • the distance w1 between the Data COF 100 and the edge of the flexible substrate 2 can be less than 0.8mm.
  • the distance w2 between the COF 100 and the encapsulation layer 4 may be 1 mm ⁇ 3 mm, and the distance w3 between the edge of the peripheral part 32 and the edge of the encapsulation layer 4 may be 1 mm ⁇ 3 mm; the peripheral part 32 on the opposite side of the Data COF 100
  • the distance w4 between the edge of the data COF 100 and the edge of the encapsulation layer 4 may be 1 mm ⁇ 5 mm
  • the distance w5 between the edge of the encapsulation layer 4 and the edge of the flexible substrate 2 on the opposite side of the Data COF 100 may be 1 mm ⁇ 3 mm.
  • the size of the Gate COF 200 can be 1.5mm ⁇ 2mm, the distance w6 between the Gate COF 200 and the edge of the flexible substrate 2 can be less than 0.8mm, and the distance w7 between the Gate COF 200 and the packaging layer 4 can
  • the distance w8 between the edge of the peripheral portion 32 and the edge of the packaging layer 4 can be 1mm ⁇ 3mm; the distance between the edge of the peripheral portion 32 and the edge of the packaging layer 4 on the opposite side of the Gate COF 200 w9 may be 1 mm ⁇ 5 mm, and the distance w10 between the edge of the encapsulation layer 4 and the edge of the flexible substrate 2 on the opposite side of the Gate COF 200 may be 1 mm ⁇ 3 mm.
  • an embodiment of the present disclosure also provides a flat panel detector, including the above detection substrate provided by an embodiment of the present disclosure. Since the problem-solving principle of this flat-panel detector is similar to that of the aforementioned detection substrate, the implementation of this flat-panel detector can be referred to the implementation of the aforementioned detection substrate, and repeated details will not be repeated.
  • each detection pixel unit includes a transistor and a photoelectric conversion device.
  • the drains of the transistors in the same column are electrically connected to the same read signal line RL
  • the gates of the transistors in the same row are electrically connected to the same scan signal line SL
  • the bias voltage line can extend in the same direction as the read signal line RL.
  • the flat-panel detector also includes an FPGA (Field-Programmable Gate Array) chip; the scanning signal line SL is connected to the FPGA chip through a COF (Chip On Flex, Chip On Film, often called chip on film); among them, The COF includes a gate driver IC.
  • the read signal line RL is connected to the FPGA chip through the signal readout chip (Readout IC).
  • Embodiments of the present disclosure provide a detection substrate, a manufacturing method thereof, and a flat panel detector. Since the contact surfaces of the support layer and the flexible substrate are located in a flat plane, the support layer and the flexible substrate do not warp at the edges. Therefore, the scintillator layer will not be lifted up during the bonding process of the support layer, that is, the edge region of the scintillator layer will not be deformed. Therefore, the detection substrate provided by the embodiment of the present disclosure will not have the problem that the support layer and the flexible substrate are not warped at the edge and the scintillator layer is deformed in the edge area, so that there will be no bright Defect problem in the bright screen. The performance of the detection substrate can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

本公开实施例提供了一种探测基板、其制作方法及平板探测器,该探测基板包括:柔性衬底;闪烁体层,位于柔性衬底的一侧;闪烁体层包括中心部以及位于中心部至少一侧的周边部,中心部和周边部为一体结构;中心部在各个位置处的厚度大致相等;沿柔性衬底边缘指向中心的方向上,周边部的厚度呈递增趋势;补强结构,补强结构与闪烁体层位于柔性衬底的同一侧;补强结构至少覆盖部分周边部。

Description

探测基板、其制作方法及平板探测器 技术领域
本公开涉及光电检测技术领域,特别涉及一种探测基板、其制作方法及平板探测器。
背景技术
X射线检测技术广泛应用于工业无损检测、集装箱扫描、电路板检查、医疗、安防、工业等领域,具有广阔的应用前景。传统的X-Ray成像技术属于模拟信号成像,分辨率不高,图像质量较差。X射线数字化成像技术采用X射线平板探测器直接将X影像转换为数字图像,因其转换的数字图像清晰,分辨率高,且易于保存和传送,已得到了广泛的开发与应用。
X射线平板探测器通常包括薄膜晶体管(Thin Film Transistor,TFT)与光电二极管。在X射线照射下,间接转换型X射线平板探测器的闪烁体层或荧光体层将X射线光子转换为可见光,然后在光电二极管的作用下将可见光转换为电信号,最终通过TFT读取电信号并将电信号输出,该电信号经过A/D转换后形成数字信号,计算机再将数字信号进行图像处理从而形成X射线数字影像。
发明内容
本公开实施例提供了一种探测基板、其制作方法及平板探测器,具体方案如下:
本公开实施例提供了一种探测基板,包括:
柔性衬底;
闪烁体层,位于所述柔性衬底的一侧;所述闪烁体层包括中心部以及位于所述中心部至少一侧的周边部,所述中心部和所述周边部为一体结构;所述中心部在各个位置处的厚度大致相等;沿所述柔性衬底边缘指向中心的方 向上,所述周边部的厚度呈递增趋势;
补强结构,所述补强结构与所述闪烁体层位于所述柔性衬底的同一侧;所述补强结构至少覆盖部分所述周边部。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,所述补强结构的最大厚度小于或等于所述中心部的厚度,且大于或等于所述中心部厚度的50%。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,所述补强结构的最大厚度与所述中心部的厚度大致相等。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,所述周边部在所述柔性衬底上的正投影边缘与所述柔性衬底的边缘之间具有预设距离,所述补强结构还覆盖所述柔性衬底中未被所述周边部覆盖的至少部分区域。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,所述柔性衬底包括感光区和围绕所述感光区设置的周边区,所述中心部位于所述感光区,所述周边部位于所述周边区,且所述中心部的四周均设置有所述周边部。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,所述柔性衬底包括感光区和围绕所述感光区设置的周边区,所述中心部位于所述感光区,所述周边部至少部分位于所述感光区,且所述中心部的四周均设置有所述周边部。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,所述柔性衬底包括感光区和围绕所述感光区设置的周边区,所述周边区包括绑定区和非绑定区,仅所述绑定区的一侧设置有所述周边部。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,所述补强结构为一体结构。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,一体结构的所述补强结构的材料包括Tape胶或UV胶。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,所述补强结构包括:位于所述周边部远离所述中心部一侧的第一补强结构,以及位于所述第一补强结构和所述周边部之间的第二补强结构;所述第一补强结构和所述第二补强结构相互接触。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,所述第一补强结构的材料包括Tape胶,所述第二补强结构的材料包括UV胶。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,还包括位于所述闪烁体层和所述补强结构之间的封装层,所述封装层完全覆盖所述闪烁体层,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层的形貌设置。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,还包括位于所述柔性衬底背离所述闪烁体层一侧的支撑层。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,还包括:位于所述柔性衬底和所述闪烁体层之间的晶体管,位于所述晶体管和所述闪烁体层之间的光电转换器件,以及位于所述光电转换器件和所述闪烁体层之间的偏置电压线;所述光电转换器件的底电极与所述晶体管电连接,所述偏置电压线与所述光电转换器件的顶电极电连接。
本公开实施例提供了一种探测基板,包括:
柔性衬底;
闪烁体层,位于所述柔性衬底的一侧,所述闪烁体层在各个位置处的厚度大致相等。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,还包括在所述闪烁体层背离所述柔性衬底一侧设置的封装层,所述封装层完全覆盖所述闪烁体层,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层的形貌设置。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,还包括位于所述柔性衬底背离所述闪烁体层一侧的支撑层。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,还包括:位于所述柔性衬底和所述闪烁体层之间的晶体管,位于所述晶体管和所述闪烁体层之间的光电转换器件,以及位于所述光电转换器件和所述闪烁体层之间的偏置电压线;所述光电转换器件的底电极与所述晶体管电连接,所述偏置电压线与所述光电转换器件的顶电极电连接。
本公开实施例提供了一种探测基板,包括:
柔性衬底;
闪烁体层,位于所述柔性衬底的一侧;所述闪烁体层包括中心部以及位于所述中心部四周的周边部,所述中心部和所述周边部为一体结构;所述中心部在各个位置处的厚度大致相等;沿所述柔性衬底边缘指向中心的方向上,所述周边部的厚度呈递增趋势;
支撑层,位于所述柔性衬底背离所述闪烁体层的一侧;其中,采用贴合设备的吸附基台在所述柔性衬底背离所述闪烁体层的一侧贴附所述支撑层时,所述闪烁体层被配置为内嵌于所述吸附基台随形设置的内凹结构中。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,还包括在所述闪烁体层背离所述柔性衬底一侧设置的封装层,所述封装层完全覆盖所述闪烁体层,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层的形貌设置。
在一种可能的实现方式中,在本公开实施例提供的上述探测基板中,还包括:位于所述柔性衬底和所述闪烁体层之间的晶体管,位于所述晶体管和所述闪烁体层之间的光电转换器件,以及位于所述光电转换器件和所述闪烁体层之间的偏置电压线;所述光电转换器件的底电极与所述晶体管电连接,所述偏置电压线与所述光电转换器件的顶电极电连接。
相应地,本公开实施例还提供了一种平板探测器,包括本公开实施例提供的上述任一项所述的探测基板。
相应地,本公开实施例还提供了一种探测基板的制作方法,用于制作本公开实施例提供的上述任一项所述的探测基板,包括:
在柔性衬底的一侧形成闪烁体层;所述闪烁体层包括中心部以及位于所述中心部至少一侧的周边部;其中,所述中心部和所述周边部为一体结构,所述中心部在各个位置处的厚度大致相等;沿所述柔性衬底边缘指向中心的方向上,所述周边部的厚度呈递增趋势;
在所述柔性衬底的一侧形成补强结构;所述补强结构与所述闪烁体层位于所述柔性衬底的同一侧,所述补强结构至少覆盖部分所述周边部。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述柔性衬底包括绑定区和非绑定区;所述在柔性衬底的一侧形成闪烁体层,还包括:去除所述柔性衬底的非绑定区一侧的周边部,形成包括所述中心部和位于所述柔性衬底的绑定区一侧的周边部的所述闪烁体层。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,在形成所述补强结构之后,还包括:
将所述闪烁体层的一侧置于贴合设备的吸附基台上,使所述闪烁体层的一侧与所述吸附基台完全贴合;
将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧,具体为:
将所述支撑层置于贴合设备内的支撑基台上,采用滚压的方式将所述支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,在形成所述闪烁体层之后,且在形成所述补强结构之前,还包括:
在所述闪烁体层背离所述柔性衬底的一侧形成封装层;其中,所述封装层完全覆盖所述闪烁体层,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层的形貌设置。
相应地,本公开实施例还提供了一种探测基板的制作方法,用于制作本公开实施例提供的上述任一项所述的探测基板,包括:
在柔性衬底的一侧形成闪烁体薄膜;所述闪烁体薄膜包括中心部以及位 于所述中心部四周的周边部;其中,所述中心部和所述周边部为一体结构,所述中心部在各个位置处的厚度大致相等;沿所述柔性衬底边缘指向中心的方向上,所述周边部的厚度呈递增趋势;
去除所有所述周边部,形成在各个位置处的厚度大致相等的所述闪烁体层。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,在形成所述闪烁体层之后,还包括:
将所述闪烁体层的一侧置于贴合设备的吸附基台上,使所述闪烁体层的一侧与所述吸附基台完全贴合;
将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧,具体为:
将所述支撑层置于贴合设备内的支撑基台上,采用滚压的方式将所述支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,在形成所述闪烁体层之后,且在将所述闪烁体层的一侧置于贴合设备的吸附基台上之前,还包括:
在所述闪烁体层背离所述柔性衬底的一侧形成封装层;其中,所述封装层完全覆盖所述闪烁体层,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层的形貌设置。
相应地,本公开实施例还提供了一种探测基板的制作方法,用于制作本公开实施例提供的上述任一项所述的探测基板,包括:
在柔性衬底的一侧形成闪烁体层;所述闪烁体层包括中心部以及位于所述中心部四周的周边部;其中,所述中心部和所述周边部为一体结构,所述中心部在各个位置处的厚度大致相等;沿所述柔性衬底边缘指向中心的方向上,所述周边部的厚度呈递增趋势;
将所述闪烁体层背离所述柔性衬底一侧的表面内嵌于所述吸附基台随形 设置的内凹结构中;
将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,所述将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧,具体为:
将所述支撑层置于贴合设备内的支撑基台上,采用滚压的方式将所述支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
在一种可能的实现方式中,在本公开实施例提供的上述制作方法中,在形成所述闪烁体层之后,且在将所述闪烁体层背离所述柔性衬底一侧的表面内嵌于所述吸附基台随形设置的内凹结构中艺之前,还包括:
在所述闪烁体层背离所述柔性衬底的一侧形成封装层;其中,所述封装层完全覆盖所述闪烁体层中未与所述柔性衬底接触的表面,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层的形貌设置。
附图说明
图1为相关技术中提供的一种探测基板的理想结构示意图;
图2为相关技术中提供的一种探测基板中支撑层贴合过程的示意图;
图3为相关技术中提供的一种探测基板的实际结构示意图;
图4-图10、图11A为本公开实施例提供的一种探测基板的几种结构示意图;
图11B为图11A所示的探测基板中支撑层贴合过程的示意图;
图12-图17为本公开实施例提供的一种探测基板的又几种结构示意图;
图18为本公开实施例提供的一种探测基板的具体结构示意图;
图19为本公开实施例提供的一种探测基板的制作方法流程示意图;
图20为图4所示的探测基板中支撑层贴合过程的示意图;
图21为图5所示的探测基板中支撑层贴合过程的示意图;
图22为图6所示的探测基板中支撑层贴合过程的示意图;
图23为图7所示的探测基板中支撑层贴合过程的示意图;
图24为图8所示的探测基板中支撑层贴合过程的示意图;
图25为图9所示的探测基板中支撑层贴合过程的示意图;
图26为本公开实施例提供的又一种探测基板的制作方法流程示意图;
图27为图10所示的探测基板中支撑层贴合过程的示意图;
图28为本公开实施例提供的又一种探测基板的制作方法流程示意图;
图29为本公开实施例提供的一种探测基板的平面示意图;
图30为图29中沿CC’方向的截面示意图;
图31为图29中沿EE’方向的截面示意图;
图32为本公开实施例提供的一种平板探测器平面示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
随着人们对移动式平板探测器的需求的提高(例如更轻薄、质轻、省电、耐用、不易碎、方便携带等),使得柔性平板探测器已经被视为取代现有玻璃基板平板探测器的下一代装置。相关技术中,如图1所示,柔性平板探测器通常主要包括层叠设置的支撑层1、柔性衬底2、薄膜晶体管(未示出)、光电二极管(未示出)、闪烁体层3和封装层4。柔性平板探测器的制作过程大致为:在一刚性衬底上形成层叠设置的柔性衬底2、薄膜晶体管(未示出)、光电二极管(未示出)、闪烁体层3和封装层4,然后将刚性衬底剥离,接着在柔性衬底2背离闪烁体层3的一侧采用滚压的方式将支撑层1贴合在柔性衬底2背离闪烁体层3的一侧。其中,闪烁体层3通常采用蒸镀的方式制作,该方式制作得的闪烁体层的特性优于贴附式,具体优势表现为荧光路程更短,散射更小。针对平面结构的探测基板而言,闪烁体层3的理想结构是仅在平板探测器的感光区(AA区)形成厚度一致的闪烁体层3,但由于制作工艺影响,闪烁体层3在AA区的外侧边缘存在Slope(斜坡)区域(如图1所示的闪烁体层3的斜坡部分),因此闪烁体层3在封装时,存在边缘Dummy区域等,使得闪烁体层3在AA区与边缘区域存在高度差。图1所示的结构是理想的平面结构的平板探测器,但是在支撑层1贴合工艺时,如图2所示,图2为将刚性衬底剥离之后的结构置于贴合设备中采用滚压的方式将支撑层1贴合在柔性衬底2背离闪烁体层3的一侧的示意图,封装层4被贴合设备内的吸附基台5吸附,支撑层1置于支撑基台6上,可以看出,由于闪烁体层3在AA区与边缘区域存在高度差,在滚棒7(roller)滚压过程中,柔性衬底2和支撑层1的边缘均发生翘曲,并且滚棒7将边缘区域的闪烁体层3顶起至吸附基台5一侧,造成边缘区域的闪烁体层3形变,如图3所示,图3为实际形成的柔性平板探测器的结构,柔性衬底2和支撑层1在边缘发生翘曲导致不平整,且闪烁体层3由于形变,造成闪烁体层3损伤,导致在亮态画面下出现亮态缺陷(Defect)问题。
有鉴于此,本公开实施例提供了一种探测基板,如图4-图9所示,包括:
柔性衬底2;
闪烁体层3,位于柔性衬底2的一侧;闪烁体层3包括中心部31以及位于中心部31至少一侧的周边部32,中心部31和周边部32为一体结构;中心部31在各个位置处的厚度H1大致相等;沿柔性衬底2边缘指向中心的方向上(箭头L所示),周边部32的厚度呈递增趋势;
补强结构8,补强结构8与闪烁体层3位于柔性衬底2的同一侧;补强结构8至少覆盖部分周边部32,且补强结构8的最大厚度H2与中心部32的厚度H1大致相等。
本公开实施例提供的上述探测基板,由于在柔性衬底2上设置与闪烁体层3位于同一侧的补强结构8,由于补强结构8的最大厚度H2与中心部31的厚度H1大致相等,这样补强结构8可以弥补闪烁体层3在中心区(AA区)与边缘区域存在的高度差,因此后续在柔性衬底2背离闪烁体层3的一侧贴合支撑层1(后续介绍)时,在滚棒7(roller)滚压的过程中,闪烁体层3各位置处受力大致均匀,因此闪烁体层3的边缘不会被滚棒7顶起,闪烁体层3不会发生形变,从而不会导致在亮态画面下出现亮态缺陷(Defect)问题,可以提高探测基板的性能。
需要说明的是,本公开实施例以探测基板为平面结构为例进行说明,当然,在具体实施时,本公开实施例提供的探测基板也可以为曲面结构。
在具体实施时,本公开实施例提供的探测基板为平面结构时,闪烁体层3的周边部32即为斜坡部(Slope区域),中心部31即为厚度大概一致的平整部。
可选地,柔性衬底的材料可以包括但不限于聚酰亚胺、聚乙烯醚邻苯二甲酸酯、聚萘二甲酸乙二醇酯、聚碳酸酯、多芳基化合物、聚醚酰亚胺或聚醚砜等具有优良的耐热性和耐久性的塑料基板。
具体地,闪烁体层的材料为能够将X光转换为可见光的材料,其主要由闪烁体构成,闪烁体自身是一类吸收高能粒子或射线后能够发光的材料,通常在应用中将其加工成晶体,称为闪烁晶体;本公开实施例对于闪烁体层的闪烁晶体的具体材料不做限定,其可以为碘化铯(CsI)、钨酸镉、氟化钡、硫 氧化钆(GOS)等。
优选地,如图4-图9所示,补强结构8完全覆盖周边部32,这样在柔性衬底2背离闪烁体层3的一侧贴合支撑层1(后续介绍)时,在滚棒7(roller)滚压的过程中,闪烁体层3各位置处均受力均匀。
在具体实施时,在本公开实施例提供的上述探测基板中,如图4-图9所示,补强结构8的最大厚度H2小于或等于中心部31的厚度H1,且大于或等于中心部31厚度H1的50%。这样可以保证补强结构8起到弥补闪烁体层3在AA区与边缘区域存在的高度差的作用。
在具体实施时,在本公开实施例提供的上述探测基板中,如图4-图9所示,补强结构8的最大厚度H2与中心部31的厚度大致相等。这样补强结构8几乎可以完全弥补闪烁体层3在AA区与边缘区域存在的高度差,从而可以进一步避免闪烁体层3发生形变的问题。
在具体实施时,在本公开实施例提供的上述探测基板中,如图4-图9所示,周边部在柔性衬底2上的正投影边缘与柔性衬底2的边缘之间具有预设距离D,补强结构8还覆盖柔性衬底2中未被周边部32覆盖的至少部分区域。优选地,补强结构8覆盖柔性衬底2中未被周边部32覆盖的全部区域。这样本公开实施例在柔性衬底2背离闪烁体层3的一侧贴合支撑层1时,在滚棒7(roller)滚压的过程中,柔性衬底2各位置处受力均匀,柔性衬底2和支撑层1的边缘均不会发生翘曲,并且可以进一步保证闪烁体层3的边缘不会被滚棒7顶起,使得支撑层1和柔性衬底2相互接触的表面位于平整的平面内,保证闪烁体层3不发生形变。
在具体实施时,在本公开实施例提供的上述探测基板中,如图4-图6所示,柔性衬底2包括感光区AA和围绕感光区AA设置的周边区BB,中心部31位于感光区AA,周边部32位于周边区BB,且中心部31的四周均设置有周边部32。这样在周边部32上设置围绕中心部31的补强结构8,弥补中心部31与四周周边部32之间的段差,这样在柔性衬底2背离闪烁体层3的一侧贴合支撑层1时,在滚棒7(roller)滚压的过程中,柔性衬底2各位置处 受力均匀,避免柔性衬底2和支撑层1在边缘区域发生翘曲以及闪烁体层3发生变形的问题。
在具体实施时,在本公开实施例提供的上述探测基板中,如图7-图9所示,柔性衬底2包括感光区AA和围绕感光区AA设置的周边区,周边区包括绑定区B1和非绑定区,闪烁体层3仅在绑定区B1的一侧设置有周边部32。具体地,在采用蒸镀法形成闪烁体层3时,由于制作工艺影响,最初形成的闪烁体层3为图4-图6所示的在中心部31四周均形成有周边部32的结构,本公开实施例图7-图9所示的闪烁体层3仅在绑定区B1的一侧设置有周边部32,即本公开实施例可以对最初形成的闪烁体层3的结构进行调整,例如将非绑定区侧的周边部32去除,仅保留位于绑定区B1一侧的周边部32。由于绑定区B1一般设置有绑定Pad,用于将感光区AA的信号线(例如扫描信号线SL和读取信号线RL)与外部芯片电连接,为了防止在去除周边部32时损坏绑定区B1的信号线和外部芯片,本公开实施例可以仅去除非绑定区的周边部32。这样保留有周边部32的区域由于设置补强结构8,可以解决闪烁体层3的中心部31和周边部32之间的段差;去除周边部32的区域不存在段差区域,因此可以避免柔性衬底2和支撑层1翘曲以及闪烁体层3形变的问题。
具体地,图4-图9均是以中心部31位于感光区AA,周边部32位于周边区BB为例,当然,在具体实施时,在本公开实施例提供的上述探测基板中,如图12-图17所示,中心部31位于感光区AA,周边部32可以至少部分位于感光区AA;例如,周边部32的一部分位于感光区AA,另一部分位于周边区BB;又例如,周边部32完全位于感光区AA;但是由于制作工艺的影响,很难做到周边部32完全位于感光区AA,或周边部32完全位于周边区BB(图4-图9)。本公开实施例的图12-图17是以周边部32的一部分位于感光区AA,另一部分位于周边区BB为例。但是无论周边部32的位置如何,只要具有厚度不一致的周边部,均可以采用本公开实施例提供的补强结构8进行弥补高度差。
在具体实施时,在本公开实施例提供的上述探测基板中,如图4、图5、 图7、图8、图12、图13、图15和图16所示,补强结构8可以为一体结构。具体地,如图4、图5、图12和图13所示,补强结构8为围绕中心部31四周设置的封闭的一体结构;如图7、图8、图15和图16所示,补强结构8为仅设置在绑定区B1的非封闭的一体结构。
在具体实施时,在本公开实施例提供的上述探测基板中,如图4、图5、图7、图8、图12、图13、图15和图16所示,一体结构的补强结构8的材料可以包括但不限于Tape胶或UV胶。具体地,如图4、图7、图12和图15所示,补强结构8的材料为Tape胶,Tape胶是一种比较厚的胶带,目前Tape胶大都通过手动贴附,需要反复校正提高对位效果以及使得表面齐平;如图5、图8、图13和图16所示,补强结构8的材料为UV胶,UV胶在涂覆时为液体,具有一定的流动性、润湿角,因此采用UV胶形成的补强结构在固化后,表面不会完全平整,UV胶的好处在于外形可塑,在照UV光固化前,可以对UV胶的位置、多少进行微调,使得形成的补强结构8背离柔性衬底2的表面与中心部31背离柔性衬底2的表面大致齐平。
在具体实施时,在本公开实施例提供的上述探测基板中,如图6、图9、图14和图17所示,补强结构8可以包括:位于周边部32远离中心部31一侧的第一补强结构81,以及位于第一补强结构81和周边部32之间的第二补强结构82;第一补强结构81和第二补强结构82相互接触。具体地,如图6和图14所示,第一补强结构81和第二补强结构82均为围绕中心部31四周设置的封闭的一体结构;如图9和图17所示,第一补强结构81和第二补强结构82均为仅设置在绑定区B1的非封闭的一体结构。
在具体实施时,在本公开实施例提供的上述探测基板中,如图6、图9、图14和图17所示,第一补强结构81的材料可以包括Tape胶,第二补强结构82的材料可以包括UV胶。这样可以先在柔性衬底2的边缘采用Tape胶形成第一补强结构81,第一补强结构81和中心部32之间形成沟槽,然后采用流动性较好的UV胶填充在沟槽出,固化UV胶即可形成第二补强结构82。
因此,本公开实施例提供的图4-图9、图12-图17所示的探测基板的结 构,通过在闪烁体层3的周边部32上设置补强结构8,可以弥补闪烁体层3的中心部31与周边部32的高度差,从而在支撑层1贴附过程中,可以使得柔性衬底2各位置处受力均匀,从而避免柔性衬底2和支撑层1在边缘发生翘曲以及避免闪烁体层3发生形变的问题。
在具体实施时,在本公开实施例提供的上述探测基板中,如图4-图11A、图12-图17所示,还包括位于闪烁体层3和补强结构8之间的封装层4,封装层4完全覆盖闪烁体层3,且封装层4的周边区域与柔性衬底2接触,且封装层4随闪烁体层3的形貌设置。具体地,封装层4的材料可以为铝,但不限于此;封装层4可以起到一定的水氧阻隔作用,并且封装层4避免了闪烁体层因碰撞等发生的损害等。
需要说明的是,如图4-图9、图12-图17所示,补强结构8的最大厚度H2要小于或等于中心部31的厚度H1和封装层4的厚度H3之和;优选地,H1=H2+H3。
具体地,如图7-图9、图15-图17所示,去除周边部32的一侧实现封装层4侧向垂直封装,就可以免去涂覆UV胶或贴附Tape胶的工艺。
在具体实施时,如图4-图9、图12-图17所示,柔性衬底2的周边区具有绑定区,绑定区一般设置有绑定Pad,绑定pad与FPC(柔性电路板)绑定形成Data COF 100(即将柔性衬底2上的pad与FPC上的pad绑定,用于与感光区AA的读取信号线RL连接)和Gate COF 200(即将柔性衬底2上的pad与FPC上的pad绑定,用于与感光区AA的扫描信号线SL连接),图4-图9、图12-图17仅示意Data COF 100。
在具体实施时,在本公开实施例提供的上述探测基板中,如图18所示,还包括:位于柔性衬底2和闪烁体层3之间的晶体管10,位于晶体管10和闪烁体层3之间的光电转换器件11,以及位于光电转换器件11和闪烁体层3之间的偏置电压线12;光电转换器件11的底电极111与晶体管10电连接,偏置电压线12与光电转换器件11的顶电极112电连接。
具体地,如图18所示,该光电转换器件11可以包括相对设置的底电极 111和顶电极112,以及位于底电极111和顶电极112之间的光电转换层113,光电转换层113将光信号转化为电信号,光电转换器件11的底电极111和顶电极112之间存在正对面积,两者之间形成存储电容,经过光电转换层113转换后的电信号存储在上述存储电容中。
具体地,光电转换层可以为PN结构或PIN结构。具体的,PIN结构包括N型掺杂的N型半导体层、不掺杂的本征半导体层I和P型掺杂的P型半导体层。本征半导体层I的厚度可以大于P型半导体层和N型半导体层的厚度。
具体的,如图18所示,本公开实施例示意的光电转换层113包括沿柔性衬底2指向闪烁体层3的方向依次层叠设置的N型半导体层1131、本征半导体层1132和P型半导体层1133。
具体的,如图18所示,晶体管10可以包括位于柔性衬底2上的栅极101、栅绝缘层102、有源层103、源极104和漏极105,光电转换器件11的底电极111与源极104电连接。
具体的,如图18所示,探测基板还包括:位于光电转换器件11的底电极111与源极104之间的第一钝化层13,位于偏置电压线12和顶电极112之间的缓冲层14,位于缓冲层14和偏置电压线12之间的平坦层15,位于偏置电压线12和闪烁体层3之间的第二钝化层16。当然,还可以包括其它膜层,例如遮挡层等。
可选地,晶体管10可以采用非晶硅薄膜晶体管、氧化物薄膜晶体管、LTPS薄膜晶体管等。
需要说明的是,图18是以在图4所示的结构的基础上的具体结构,当然图5-图9、图12-图17所示的结构均具有图18所示的晶体管10、光电转换器件11和偏置电压线12等膜层。
本公开实施例提供的图4-图9、图12-图17所示的探测基板的工作过程为:闪烁体层在X射线的高能粒子的撞击下,将高能粒子的动能转变为光能而发出闪光(可见光信号),通过光电转换器件能够将该光信号转化为电信号,并通过晶体管读出,以通过后续对信号的处理(包括放大、转换等)得到X射线 影像。
综上所述,本公开实施例提供的图4-图9、图12-图17所示的探测基板可以解决柔性衬底和支撑层发生翘曲的问题以及解决闪烁体层发生形变的问题,从而可以解决在亮态画面下不会出现亮态Defect问题,可以提高探测基板的性能。
本公开实施例还提供了一种探测基板,如图10所示,包括:
柔性衬底2;
闪烁体层3,位于柔性衬底2的一侧,闪烁体层3在各个位置处的厚度大致相等。
本公开实施例提供的上述探测基板,闪烁体层3一般采用蒸镀法形成,在采用蒸镀法形成闪烁体层3时,由于制作工艺影响,最初形成的闪烁体层3为图4-图6所示的在中心部31四周均形成有周边部32的结构,本公开实施例图10所示的闪烁体层3在各个位置处的厚度大致相等,即本公开实施例可以对最初形成的闪烁体层3的结构进行调整,例如将闪烁体层3四周边缘的周边部32均去除,仅保留位于感光区AA的中心部(即闪烁体层3在各个位置处的厚度大致相等)。由于柔性衬底2的周边区具有绑定区,绑定区一般设置有Data COF 100和Gate COF 200,用于将感光区AA的信号线(例如扫描信号线SL和读取信号线RL)与外部芯片电连接,为了防止在去除周边部32时损坏绑定区B1的信号线和外部芯片,本公开实施例可以在绑定之后,采用保护层(例如氮化硅绝缘层等)将信号线和外部芯片保护起来,再去除闪烁体层3四周边缘的周边部32,之后保护层可以去除,也可以保留下来。这样闪烁体层3四周边缘由于不具有周边部32,因此闪烁体层3不存在段差区域,从而可以避免闪烁体层3形变的问题,从而不会导致在亮态画面下出现亮态缺陷(Defect)问题,可以提高探测基板的性能。
在具体实施时,在本公开实施例提供的上述探测基板中,如图10所示,还包括在闪烁体层3背离柔性衬底2一侧设置的封装层4,封装层4完全覆盖闪烁体层3,且封装层4的周边区域与柔性衬底2接触,且封装层4随闪烁体 层3的形貌设置。具体地,封装层4的材料可以为铝,但不限于此;封装层4可以起到一定的水氧阻隔作用,并且封装层4避免了闪烁体层因碰撞等发生的损害等。
具体地,如图10所示,所有的周边部32均去除,因此可以在闪烁体层3的四周实现封装层4侧向垂直封装,使得闪烁体层3整体膜层的厚度均匀,完全免去涂覆UV胶或贴附Tape胶的工艺。
在具体实施时,本公开实施例提供的图10所示的探测基板的柔性衬底2和闪烁体层3之间还包括如图18所示的晶体管10、光电转换器件11和偏置电压线12等膜层,具体可以参见图18中相关结构的描述,在此不做赘述。
本公开实施例还提供了一种探测基板,如图11A所示,包括:
柔性衬底2;
闪烁体层3,位于柔性衬底2的一侧,闪烁体层3包括中心部31以及位于中心部31四周的周边部32,中心部31和周边部32为一体结构;中心部31在各个位置处的厚度H1大致相等;沿柔性衬底2边缘指向中心的方向上(箭头L所示),周边部32的厚度呈递增趋势;
支撑层1,位于柔性衬底2背离闪烁体层3的一侧;其中,如图11B所示,采用贴合设备的吸附基台5在柔性衬底2背离闪烁体层3的一侧贴附支撑层1时,闪烁体层3被配置为内嵌于吸附基台5随形设置的内凹结构中。
在具体实施时,在本公开实施例提供的上述探测基板中,如图11A所示,图11A所示的探测基板不设置如图4-图9、图12-图17所示的补强结构,也不像图10那样去除所有的周边部,图11A所示的探测基板在柔性衬底2背离闪烁体层3的一侧贴合支撑层1时,如图11B所示,可以采用贴合设备的吸附基台5在柔性衬底2背离闪烁体层3的一侧贴附支撑层1时,闪烁体层3被配置为内嵌于吸附基台5随形设置的内凹结构中。具体地,如图11B所示,采用具有内凹结构的吸附基台5,闪烁体层3背离柔性衬底2的一侧可以容纳于吸附基台5的内凹结构中,即吸附基台5具有的内凹结构与闪烁体层3背离柔性衬底2的一侧相互吻合,支撑层1位于支撑基台6上,这样在贴合支 撑层1时,柔性衬底2背离支撑层1的一侧各位置处膜层厚度一致,因此柔性衬底2各位置处受力均匀,从而可以避免柔性衬底2和支撑层1翘曲以及闪烁体层3形变的问题。因此,采用具有与闪烁体层3背离柔性衬底2一侧相互吻合的内凹结构的吸附基台5,可以得到柔性衬底2、支撑层1和闪烁体层3均未发生形变的探测基板。
在具体实施时,在本公开实施例提供的上述探测基板中,如图11A所示,还包括在闪烁体层3背离柔性衬底2一侧设置的封装层4,封装层4完全覆盖闪烁体层3,且封装层4的周边区域与柔性衬底2接触,且封装层4随闪烁体层3的形貌设置。具体地,封装层4的材料可以为铝,但不限于此;封装层4可以起到一定的水氧阻隔作用,并且封装层4避免了闪烁体层因碰撞等发生的损害等。
在具体实施时,本公开实施例提供的图11A所示的探测基板的柔性衬底2和闪烁体层3之间还包括如图18所示的晶体管10、光电转换器件11和偏置电压线12等膜层,具体可以参见图18中相关结构的描述,在此不做赘述。
综上所述,本公开实施例提供的图11A所示的探测基板可以解决柔性衬底2和支撑层1发生翘曲的问题以及解决闪烁体层3发生形变的问题,从而可以解决在亮态画面下不会出现亮态Defect问题,可以提高探测基板的性能。
基于同一发明构思,本公开实施例还提供了一种探测基板的制作方法,用于制作本公开实施例提供的图4-图9和图12-图17所示的探测基板,如图19所示,包括:
S1901、在柔性衬底的一侧形成闪烁体层;闪烁体层包括中心部以及位于中心部至少一侧的周边部;其中,中心部和周边部为一体结构,中心部在各个位置处的厚度大致相等;沿柔性衬底边缘指向中心的方向上,周边部的厚度呈递增趋势;
S1902、在柔性衬底的一侧形成补强结构;补强结构与闪烁体层位于柔性衬底的同一侧,补强结构至少覆盖部分周边部。
本公开实施例提供的上述探测基板的制作方法,本公开实施例提供的上 述探测基板,由于在柔性衬底上设置与闪烁体层位于同一侧的补强结构,由于补强结构的最大厚度与中心部的厚度大致相等,这样补强结构可以弥补闪烁体层在中心区与边缘区域存在的高度差,因此后续在柔性衬底背离闪烁体层的一侧贴合支撑层时,在滚棒滚压的过程中,闪烁体层各位置处受力大致均匀,因此闪烁体层的边缘不会被滚棒顶起,闪烁体层不会发生形变,从而不会导致在亮态画面下出现亮态缺陷(Defect)问题,可以提高探测基板的性能。
在具体实施时,在本公开实施例提供的上述制作方法中,在柔性衬底的一侧形成闪烁体层,具体可以包括:采用蒸镀的方式在柔性衬底上形成包括中心部以及位于中心部至少一侧的周边部的闪烁体层。
具体地,如图4-图6、图12-图14所示,采用蒸镀的方式在柔性衬底2上形成包括中心部31以及位于中心部31四周的周边部32的闪烁体层3。
在具体实施时,在本公开实施例提供的上述制作方法中,柔性衬底包括绑定区和非绑定区;在柔性衬底的一侧形成闪烁体层,还可以包括:去除柔性衬底的非绑定区一侧的周边部,形成包括中心部和位于柔性衬底的绑定区一侧的周边部的闪烁体层。
具体地,首先采用蒸镀的方式在柔性衬底2上形成包括中心部31以及位于中心部31四周的周边部32的闪烁体层3,然后去除柔性衬底2的非绑定区一侧的周边部32,形成包括中心部31和位于柔性衬底2的绑定区B1一侧的周边部32的闪烁体层3,如图7-图9、图15-图17所示。
在具体实施时,在本公开实施例提供的上述制作方法中,如图4-图9、图12-图17所示,在形成补强结构8之后,还包括:
将闪烁体层3的一侧置于贴合设备的吸附基台5上,使闪烁体层3的一侧与吸附基台5完全贴合;
将支撑层1贴合在柔性衬底2背离闪烁体层3的一侧。
在具体实施时,在本公开实施例提供的上述制作方法中,如图4-图9、图12-图17所示,将支撑层1贴合在柔性衬底2背离闪烁体层3的一侧,具体可 以为:
将支撑层置于贴合设备内的支撑基台上,采用滚压的方式将支撑层贴合在柔性衬底背离闪烁体层的一侧。
在具体实施时,在本公开实施例提供的上述制作方法中,如图4-图9、图12-图17所示,在形成闪烁体层之后,且在形成补强结构之前,还包括:
在闪烁体层背离柔性衬底的一侧形成封装层;其中,封装层完全覆盖闪烁体层,且封装层的周边区域与柔性衬底接触,且封装层随闪烁体层的形貌设置。
具体地,如图4-图9、图12-图17所示,在形成闪烁体层3之后,且在形成补强结构8之前,在闪烁体层3背离柔性衬底2的一侧形成封装层4;其中,封装层4完全接触覆盖闪烁体层3中未与柔性衬底2接触的表面,且封装层4的周边区域与柔性衬底2接触,且封装层4随闪烁体层3的形貌设置。
下面对本公开实施例提供的图4-图9所示的探测基板制作方法进行详细说明:
图4所示的探测基板的制作方法包括:在一刚性衬底(例如玻璃衬底)上依次形成层叠设置的柔性衬底2、晶体管10、第一钝化层13、光电转换器件11、缓冲层14、平坦层15、偏置电压线12、第二钝化层16;接着在第二钝化层16上采用蒸镀的方式形成包括中心部31以及位于中心部31四周的周边部32的闪烁体层3;接着在闪烁体层3上形成封装层4,封装层4与柔性衬底2接触;接着在封装层4上采用Tape胶形成补强结构8;接着采用激光剥离的方式将刚性衬底剥离;如图20所示,接着将剥离刚性衬底的结构置于贴合设备的吸附基台5上,吸附基台5吸附封装层4背离柔性衬底2的一侧,贴合设备还包括支撑基台6,将支撑层1置于支撑基台6上,采用滚棒7(roller)将支撑层1贴附于柔性衬底2背离闪烁体层3的一侧。由于补强结构8可以弥补闪烁体层3的中心部31和周边部32之间的段差,因此在滚棒7(roller)滚压过程中,柔性衬底2和支撑层1不会发生翘曲,均为平整的结构,闪烁体层3也不会被滚棒7顶起,即闪烁体层3不会发生形变。
需要说明的是,图4仅示意支撑层1、柔性衬底2、闪烁体层3、封装层4和补强结构8。
图5所示的探测基板的制作方法与图4所示的探测基板的制作方法的区别在于采用UV胶制作补强结构8,其余膜层的制作方法相同,图5所示的支撑层1的贴附过程示意图如图21所示。
图6所示的探测基板的制作方法与图4所示的探测基板的制作方法的区别在于采用Tape胶先制作第一补强结构81,再采用UV胶制作第二补强结构82,其余膜层的制作方法相同,图6所示的支撑层1的贴附过程示意图如图22所示。
图7所示的探测基板的制作方法与图4所示的探测基板的制作方法的区别在于形成闪烁体层3的结构不同,图7在形成闪烁体层3时,需要去除非绑定区的周边部32,其余膜层的制作方法相同,图7所示的支撑层1的贴附过程示意图如图23所示。
图8所示的探测基板的制作方法与图4所示的探测基板的制作方法的区别在于形成闪烁体层3的结构不同以及补强结构8的材料不同,图8在形成闪烁体层3时,需要去除非绑定区的周边部32,以及采用UV胶制作补强结构8,其余膜层的制作方法相同,图8所示的支撑层1的贴附过程示意图如图24所示。
图9所示的探测基板的制作方法与图4所示的探测基板的制作方法的区别在于形成闪烁体层3的结构不同以及补强结构8的材料不同,图9在形成闪烁体层3时,需要去除非绑定区的周边部32,以及采用Tape胶先制作第一补强结构81,再采用UV胶制作第二补强结构82,其余膜层的制作方法相同,图9所示的支撑层1的贴附过程示意图如图25所示。
需要说明的是,图12-图17所示的探测基板制作方法与图4-图9所示的探测基板制作方法相同,在此不做赘述。
基于同一发明构思,本公开实施例还提供了一种探测基板的制作方法,用于制作本公开实施例提供的图10所示的探测基板,如图26所示,包括:
S2601、在柔性衬底的一侧形成闪烁体薄膜;闪烁体薄膜包括中心部以及位于中心部四周的周边部;其中,中心部和周边部为一体结构,中心部在各个位置处的厚度大致相等;沿柔性衬底边缘指向中心的方向上,周边部的厚度呈递增趋势;
S2602、去除所有周边部,形成在各个位置处的厚度大致相等的闪烁体层。
具体地,首先采用蒸镀的方式在柔性衬底2上形成包括中心部31以及位于中心部31四周的周边部32的闪烁体层3,然后去除所有周边部32,形成在各个位置处的厚度H1大致相等的闪烁体层3,如图10所示。
在具体实施时,在本公开实施例提供的上述制作方法中,如图10所示,在形成闪烁体层3之后,还包括:
将闪烁体层3的一侧置于贴合设备的吸附基台5上,使闪烁体层3的一侧与吸附基台5完全贴合;
将支撑层1贴合在柔性衬底2背离闪烁体层3的一侧。
在具体实施时,在本公开实施例提供的上述制作方法中,如图10所示,将支撑层1贴合在柔性衬底2背离闪烁体层3的一侧,具体可以为:
将支撑层置于贴合设备内的支撑基台上,采用滚压的方式将支撑层贴合在柔性衬底背离闪烁体层的一侧。
在具体实施时,在本公开实施例提供的上述制作方法中,如图10所示,在形成闪烁体层之后,且在将闪烁体层的一侧置于贴合设备的吸附基台上之前,还包括:
在闪烁体层背离柔性衬底的一侧形成封装层;其中,封装层完全覆盖闪烁体层,且封装层的周边区域与柔性衬底接触,且封装层随闪烁体层的形貌设置。
具体地,如图10所示,在形成闪烁体层3之后,且在将闪烁体层3的一侧置于贴合设备的吸附基台5上之前,还包括:在闪烁体层3背离柔性衬底2的一侧形成封装层4;其中,封装层4完全覆盖闪烁体层3,且封装层4的周边区域与柔性衬底2接触,且封装层4随闪烁体层3的形貌设置。
下面对本公开实施例提供的图10所示的探测基板制作方法进行详细说明:
图10所示的探测基板的制作方法与图4所示的探测基板的制作方法的区别在于形成闪烁体层3的结构不同以及图10无需形成补强结构8,图10在形成闪烁体层3时,需要去除所有的周边部,其余膜层的制作方法相同,图10所示的支撑层1的贴附过程示意图如图27所示。
基于同一发明构思,本公开实施例还提供了一种探测基板的制作方法,用于制作本公开实施例提供的图11A所示的探测基板,如图28所示,包括:
S2801、在柔性衬底的一侧形成闪烁体层;闪烁体层包括中心部以及位于中心部四周的周边部;其中,中心部和周边部为一体结构,中心部在各个位置处的厚度大致相等;沿柔性衬底边缘指向中心的方向上,周边部的厚度呈递增趋势;
S2802、将闪烁体层背离所柔性衬底一侧的表面内嵌于吸附基台随形设置的内凹结构中;
S2803、将支撑层贴合在柔性衬底背离闪烁体层的一侧。
在具体实施时,在本公开实施例提供的上述制作方法中,将支撑层贴合在柔性衬底背离闪烁体层的一侧,具体为:
将支撑层置于贴合设备内的支撑基台上,采用滚压的方式将支撑层贴合在柔性衬底背离闪烁体层的一侧。
在具体实施时,在本公开实施例提供的上述制作方法中,在形成闪烁体层之后,且在将闪烁体层背离柔性衬底一侧的表面内嵌于吸附基台随形设置的内凹结构中艺之前,还包括:
在闪烁体层背离柔性衬底的一侧形成封装层;其中,封装层完全覆盖闪烁体层,且封装层的周边区域与柔性衬底接触,且封装层随闪烁体层的形貌设置。
具体地,如图11A所示,在形成闪烁体层3之后,且在将闪烁体层3背离柔性衬底2一侧的表面内嵌于吸附基台5随形设置的内凹结构中艺之前,还包括:在闪烁体层3背离柔性衬底2的一侧形成封装层4;其中,封装层4 完全覆盖闪烁体层3,且封装层4的周边区域与柔性衬底2接触,且封装层4随闪烁体层3的形貌设置。
下面对本公开实施例提供的图11A所示的探测基板制作方法进行详细说明:
图11A所示的探测基板的制作方法与图4所示的探测基板的制作方法的区别在于无需制作补强结构8,而是采用具有内凹结构的吸附基台5,内凹结构与封装层4一侧相互吻合,其余膜层的制作方法相同,图11A所示的支撑层1的贴附过程示意图如图11B所示。
综上所述,本公开实施例提供的探测基板的制作方法可以解决柔性衬底和支撑层发生翘曲的问题以及解决闪烁体层发生形变的问题,从而可以解决在亮态画面下不会出现亮态Defect问题,可以提高探测基板的性能。
如图29所示,图29为本公开实施例提供的图18所示的平板探测器的平面示意图,包括感光区AA和围绕感光区AA设置的周边区BB,中心部31位于感光区AA,周边部32一部分位于周边区BB,另一部分位于周边区BB,且中心部31的四周均设置有周边部32;周边区BB还设置Data COF 100(即将柔性衬底2上的pad与FPC上的pad绑定,用于与感光区AA的读取信号线RL连接)、Gate COF 200(即将柔性衬底2上的pad与FPC上的pad绑定,用于与感光区AA的扫描信号线SL连接);补强结构8是在绑定之后设置的结构,补强结构8的材质为Tape胶,补强结构8在柔性衬底2上的正投影覆盖周边部32在柔性衬底2上的正投影以及覆盖周边部32外侧的柔性衬底2。
如图30和图31所示,图30为图29中沿CC’方向的截面示意图,图31为图29中沿EE’方向的截面示意图,本公开实施例所示的探测基板的尺寸(柔性衬底2的尺寸)以365mm×443mm为例,如图28所示,Data COF 100的宽度可以为1mm~4mm,Data COF 100与柔性衬底2边缘之间的距离w1可以小于0.8mm,Data COF 100与封装层4之间的距离w2可以为1mm~3mm,周边部32的边缘与封装层4的边缘之间的距离w3可以为1mm~3mm;在Data  COF 100的相对侧的周边部32的边缘与封装层4的边缘之间的距离w4可以为1mm~5mm,在Data COF 100的相对侧的封装层4的边缘与柔性衬底2的边缘之间的距离w5可以为1mm~3mm。
如图31所示,Gate COF 200的尺寸可以为1.5mm~2mm,Gate COF 200与柔性衬底2边缘之间的距离w6可以小于0.8mm,Gate COF 200与封装层4之间的距离w7可以为1mm~3mm,周边部32的边缘与封装层4的边缘之间的距离w8可以为1mm~3mm;在Gate COF 200的相对侧的周边部32的边缘与封装层4的边缘之间的距离w9可以为1mm~5mm,在Gate COF 200的相对侧的封装层4的边缘与柔性衬底2的边缘之间的距离w10可以为1mm~3mm。
需要说明的是,图29-图31的相关参数仅是本公开实施例提供的一种探测基板的尺寸进行设置的,当然各参数可以根据探测基板的实际尺寸进行设置。
基于同一发明构思,本公开实施例还提供了一种平板探测器,包括本公开实施例提供的上述探测基板。由于该平板探测器解决问题的原理与前述一种探测基板相似,因此该平板探测器的实施可以参见前述探测基板的实施,重复之处不再赘述。
具体地,如图32所示,图32为平板探测器的平面示意图,扫描信号线SL和读取信号线RL交叉限定出多个探测像素单元P,每一探测像素单元包括晶体管和光电转换器件,同一列晶体管的漏极与同一条读取信号线RL电连接,同一行晶体管的栅极与同一条扫描信号线SL电连接,偏置电压线可以与读取信号线RL延伸方向相同。该平板探测器还包括FPGA(Field-Programmable Gate Array,现场可编程门阵列)芯片;扫描信号线SL通过COF(Chip On Flex、Chip On Film、常称覆晶薄膜)与FPGA芯片连接;其中,该COF包括栅极驱动芯片(Gate Driver IC)。读取信号线RL通过信号读取芯片(Readout IC)与FPGA芯片连接。
本公开实施例提供了一种探测基板、其制作方法及平板探测器,由于支撑层和柔性衬底相互接触的表面位于平整的平面内,因此支撑层和柔性衬底 在边缘未发生翘曲,从而闪烁体层在支撑层贴合的过程中不会被顶起,即闪烁体层的边缘区域不会发生形变。因此,本公开实施例提供的探测基板不会出现支撑层和柔性衬底在边缘未发生翘曲以及闪烁体层在边缘区域形变的问题,从而在亮态画面下不会出现亮态Defect问题,可以提高探测基板的性能。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (34)

  1. 一种探测基板,其中,包括:
    柔性衬底;
    闪烁体层,位于所述柔性衬底的一侧;所述闪烁体层包括中心部以及位于所述中心部至少一侧的周边部,所述中心部和所述周边部为一体结构;所述中心部在各个位置处的厚度大致相等;沿所述柔性衬底边缘指向中心的方向上,所述周边部的厚度呈递增趋势;
    补强结构,所述补强结构与所述闪烁体层位于所述柔性衬底的同一侧;所述补强结构至少覆盖部分所述周边部。
  2. 根据权利要求1所述的探测基板,其中,所述补强结构的最大厚度小于或等于所述中心部的厚度,且大于或等于所述中心部厚度的50%。
  3. 根据权利要求1所述的探测基板,其中,所述补强结构的最大厚度与所述中心部的厚度大致相等。
  4. 根据权利要求1-3任一项所述的探测基板,其中,所述周边部在所述柔性衬底上的正投影边缘与所述柔性衬底的边缘之间具有预设距离,所述补强结构还覆盖所述柔性衬底中未被所述周边部覆盖的至少部分区域。
  5. 根据权利要求1-4任一项所述的探测基板,其中,所述柔性衬底包括感光区和围绕所述感光区设置的周边区,所述中心部位于所述感光区,所述周边部位于所述周边区,且所述中心部的四周均设置有所述周边部。
  6. 根据权利要求1-4任一项所述的探测基板,其中,所述柔性衬底包括感光区和围绕所述感光区设置的周边区,所述中心部位于所述感光区,所述周边部至少部分位于所述感光区,且所述中心部的四周均设置有所述周边部。
  7. 根据权利要求1-4任一项所述的探测基板,其中,所述柔性衬底包括感光区和围绕所述感光区设置的周边区,所述周边区包括绑定区和非绑定区,仅所述绑定区的一侧设置有所述周边部。
  8. 根据权利要求1-7任一项所述的探测基板,其中,所述补强结构为一 体结构。
  9. 根据权利要求8所述的探测基板,其中,一体结构的所述补强结构的材料包括Tape胶或UV胶。
  10. 根据权利要求1-7任一项所述的探测基板,其中,所述补强结构包括:位于所述周边部远离所述中心部一侧的第一补强结构,以及位于所述第一补强结构和所述周边部之间的第二补强结构;所述第一补强结构和所述第二补强结构相互接触。
  11. 根据权利要求10所述的探测基板,其中,所述第一补强结构的材料包括Tape胶,所述第二补强结构的材料包括UV胶。
  12. 根据权利要求1-11任一项所述的探测基板,其中,还包括位于所述闪烁体层和所述补强结构之间的封装层,所述封装层完全覆盖所述闪烁体层,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层的形貌设置。
  13. 根据权利要求1-12任一项所述的探测基板,其中,还包括位于所述柔性衬底背离所述闪烁体层一侧的支撑层。
  14. 根据权利要求1-13任一项所述的探测基板,其中,还包括:位于所述柔性衬底和所述闪烁体层之间的晶体管,位于所述晶体管和所述闪烁体层之间的光电转换器件,以及位于所述光电转换器件和所述闪烁体层之间的偏置电压线;所述光电转换器件的底电极与所述晶体管电连接,所述偏置电压线与所述光电转换器件的顶电极电连接。
  15. 一种探测基板,其中,包括:
    柔性衬底;
    闪烁体层,位于所述柔性衬底的一侧,所述闪烁体层在各个位置处的厚度大致相等。
  16. 根据权利要求15所述的探测基板,其中,还包括在所述闪烁体层背离所述柔性衬底一侧设置的封装层,所述封装层完全覆盖所述闪烁体层,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层 的形貌设置。
  17. 根据权利要求16所述的探测基板,其中,还包括位于所述柔性衬底背离所述闪烁体层一侧的支撑层。
  18. 根据权利要求15-17任一项所述的探测基板,其中,还包括:位于所述柔性衬底和所述闪烁体层之间的晶体管,位于所述晶体管和所述闪烁体层之间的光电转换器件,以及位于所述光电转换器件和所述闪烁体层之间的偏置电压线;所述光电转换器件的底电极与所述晶体管电连接,所述偏置电压线与所述光电转换器件的顶电极电连接。
  19. 一种探测基板,其中,包括:
    柔性衬底;
    闪烁体层,位于所述柔性衬底的一侧;所述闪烁体层包括中心部以及位于所述中心部四周的周边部,所述中心部和所述周边部为一体结构;所述中心部在各个位置处的厚度大致相等;沿所述柔性衬底边缘指向中心的方向上,所述周边部的厚度呈递增趋势;
    支撑层,位于所述柔性衬底背离所述闪烁体层的一侧;其中,采用贴合设备的吸附基台在所述柔性衬底背离所述闪烁体层的一侧贴附所述支撑层时,所述闪烁体层被配置为内嵌于所述吸附基台随形设置的内凹结构中。
  20. 根据权利要求19所述的探测基板,其中,还包括在所述闪烁体层背离所述柔性衬底一侧设置的封装层,所述封装层完全覆盖所述闪烁体层,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层的形貌设置。
  21. 根据权利要求20所述的探测基板,其中,还包括:位于所述柔性衬底和所述闪烁体层之间的晶体管,位于所述晶体管和所述闪烁体层之间的光电转换器件,以及位于所述光电转换器件和所述闪烁体层之间的偏置电压线;所述光电转换器件的底电极与所述晶体管电连接,所述偏置电压线与所述光电转换器件的顶电极电连接。
  22. 一种平板探测器,其中,包括如权利要求1-21任一项所述的探测基 板。
  23. 一种探测基板的制作方法,用于制作如权利要求1-14任一项所述的探测基板,其中,包括:
    在柔性衬底的一侧形成闪烁体层;所述闪烁体层包括中心部以及位于所述中心部至少一侧的周边部;其中,所述中心部和所述周边部为一体结构,所述中心部在各个位置处的厚度大致相等;沿所述柔性衬底边缘指向中心的方向上,所述周边部的厚度呈递增趋势;
    在所述柔性衬底的一侧形成补强结构;所述补强结构与所述闪烁体层位于所述柔性衬底的同一侧,所述补强结构至少覆盖部分所述周边部。
  24. 根据权利要求23所述的制作方法,其中,所述柔性衬底包括绑定区和非绑定区;所述在柔性衬底的一侧形成闪烁体层,还包括:去除所述柔性衬底的非绑定区一侧的周边部,形成包括所述中心部和位于所述柔性衬底的绑定区一侧的周边部的所述闪烁体层。
  25. 根据权利要求23或24所述的制作方法,其中,在形成所述补强结构之后,还包括:
    将所述闪烁体层的一侧置于贴合设备的吸附基台上,使所述闪烁体层的一侧与所述吸附基台完全贴合;
    将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
  26. 根据权利要求25所述的制作方法,其中,所述将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧,具体为:
    将所述支撑层置于贴合设备内的支撑基台上,采用滚压的方式将所述支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
  27. 根据权利要求23-26任一项所述的制作方法,其中,在形成所述闪烁体层之后,且在形成所述补强结构之前,还包括:
    在所述闪烁体层背离所述柔性衬底的一侧形成封装层;其中,所述封装层完全覆盖所述闪烁体层,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层的形貌设置。
  28. 一种探测基板的制作方法,用于制作如权利要求15-18任一项所述的探测基板,其中,包括:
    在柔性衬底的一侧形成闪烁体薄膜;所述闪烁体薄膜包括中心部以及位于所述中心部四周的周边部;其中,所述中心部和所述周边部为一体结构,所述中心部在各个位置处的厚度大致相等;沿所述柔性衬底边缘指向中心的方向上,所述周边部的厚度呈递增趋势;
    去除所有所述周边部,形成在各个位置处的厚度大致相等的所述闪烁体层。
  29. 根据权利要求28所述的制作方法,其中,在形成所述闪烁体层之后,还包括:
    将所述闪烁体层的一侧置于贴合设备的吸附基台上,使所述闪烁体层的一侧与所述吸附基台完全贴合;
    将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
  30. 根据权利要求29所述的制作方法,其中,所述将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧,具体为:
    将所述支撑层置于贴合设备内的支撑基台上,采用滚压的方式将所述支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
  31. 根据权利要求29所述的制作方法,其中,在形成所述闪烁体层之后,且在将所述闪烁体层的一侧置于贴合设备的吸附基台上之前,还包括:
    在所述闪烁体层背离所述柔性衬底的一侧形成封装层;其中,所述封装层完全覆盖所述闪烁体层,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层的形貌设置。
  32. 一种探测基板的制作方法,用于制作如权利要求19-21任一项所述的探测基板,其中,包括:
    在柔性衬底的一侧形成闪烁体层;所述闪烁体层包括中心部以及位于所述中心部四周的周边部;其中,所述中心部和所述周边部为一体结构,所述中心部在各个位置处的厚度大致相等;沿所述柔性衬底边缘指向中心的方向 上,所述周边部的厚度呈递增趋势;
    将所述闪烁体层背离所述柔性衬底一侧的表面内嵌于所述吸附基台随形设置的内凹结构中;
    将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
  33. 根据权利要求32所述的制作方法,其中,所述将支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧,具体为:
    将所述支撑层置于贴合设备内的支撑基台上,采用滚压的方式将所述支撑层贴合在所述柔性衬底背离所述闪烁体层的一侧。
  34. 根据权利要求32或33所述的制作方法,其中,在形成所述闪烁体层之后,且在将所述闪烁体层背离所述柔性衬底一侧的表面内嵌于所述吸附基台随形设置的内凹结构中艺之前,还包括:
    在所述闪烁体层背离所述柔性衬底的一侧形成封装层;其中,所述封装层完全覆盖所述闪烁体层中未与所述柔性衬底接触的表面,且所述封装层的周边区域与所述柔性衬底接触,且所述封装层随所述闪烁体层的形貌设置。
PCT/CN2022/090128 2022-04-29 2022-04-29 探测基板、其制作方法及平板探测器 WO2023206316A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/090128 WO2023206316A1 (zh) 2022-04-29 2022-04-29 探测基板、其制作方法及平板探测器
US18/247,846 US20240369722A1 (en) 2022-04-29 2022-04-29 Detection substrate, manufacturing method therefor and flat panel detector
CN202280001014.8A CN117321770A (zh) 2022-04-29 2022-04-29 探测基板、其制作方法及平板探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090128 WO2023206316A1 (zh) 2022-04-29 2022-04-29 探测基板、其制作方法及平板探测器

Publications (1)

Publication Number Publication Date
WO2023206316A1 true WO2023206316A1 (zh) 2023-11-02

Family

ID=88517019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090128 WO2023206316A1 (zh) 2022-04-29 2022-04-29 探测基板、其制作方法及平板探测器

Country Status (3)

Country Link
US (1) US20240369722A1 (zh)
CN (1) CN117321770A (zh)
WO (1) WO2023206316A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080116381A1 (en) * 2006-11-22 2008-05-22 Masashi Kondo Scintillator panel, method of manufacturing the same and radiation imaging apparatus
CN102779565A (zh) * 2011-05-09 2012-11-14 Bmr技术株式会社 闪烁体面板以及制造闪烁体面板的方法
CN103646680A (zh) * 2013-11-13 2014-03-19 江苏龙信电子科技有限公司 一种碘化铯闪烁体屏及其封装方法
CN103744103A (zh) * 2013-12-09 2014-04-23 江苏龙信电子科技有限公司 碘化铯转换屏结构
CN106662658A (zh) * 2014-06-16 2017-05-10 东芝电子管器件株式会社 放射线检测器及其制造方法
CN110286398A (zh) * 2018-03-19 2019-09-27 富士胶片株式会社 放射线检测器以及放射线图像拍摄装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080116381A1 (en) * 2006-11-22 2008-05-22 Masashi Kondo Scintillator panel, method of manufacturing the same and radiation imaging apparatus
CN102779565A (zh) * 2011-05-09 2012-11-14 Bmr技术株式会社 闪烁体面板以及制造闪烁体面板的方法
CN103646680A (zh) * 2013-11-13 2014-03-19 江苏龙信电子科技有限公司 一种碘化铯闪烁体屏及其封装方法
CN103744103A (zh) * 2013-12-09 2014-04-23 江苏龙信电子科技有限公司 碘化铯转换屏结构
CN106662658A (zh) * 2014-06-16 2017-05-10 东芝电子管器件株式会社 放射线检测器及其制造方法
CN110286398A (zh) * 2018-03-19 2019-09-27 富士胶片株式会社 放射线检测器以及放射线图像拍摄装置

Also Published As

Publication number Publication date
CN117321770A (zh) 2023-12-29
US20240369722A1 (en) 2024-11-07

Similar Documents

Publication Publication Date Title
US6671347B2 (en) Radiation imaging apparatus and radiation imaging system using the same
JP3595759B2 (ja) 撮像装置および撮像システム
US10514470B2 (en) Radiation detector, and method for producing radiation detector
JP5693173B2 (ja) 放射線検出装置及び放射線検出システム
US11609347B2 (en) Radiation detector, radiographic imaging device, and radiation detector manufacturing method
US11309451B2 (en) Flat panel detector and manufacturing method thereof
JP3880094B2 (ja) 放射線検出装置及びその製造方法
US20170329023A1 (en) Radiation detector and method for manufacturing same
JP7342184B2 (ja) 放射線検出器、放射線画像撮影装置及び放射線検出器の製造方法
US20180313961A1 (en) Radiation detector and radiographic imaging apparatus
WO2023206316A1 (zh) 探测基板、其制作方法及平板探测器
JP2020079787A (ja) 放射線検出モジュール、放射線検出器、及び放射線検出モジュールの製造方法
JP2019184278A (ja) 放射線検出器
CN110707117B (zh) 一种平板探测器
US11187817B2 (en) Radiation detector, radiography apparatus, and method for manufacturing radiation detector
JP2012037454A (ja) 放射線検出器及びその製造方法
JP6948815B2 (ja) 放射線検出器
TWI486618B (zh) Radiation detector and manufacturing method thereof
JP2003133654A (ja) フレキシブル基板、半導体装置、撮像装置、放射線撮像装置及び放射線撮像システム
JP4746811B2 (ja) 医用イメージング・デバイス用の封止式検出器の製造方法及び装着方法
JP2014215159A (ja) 放射線検出器およびその製造方法
WO2020100809A1 (ja) 放射線検出モジュール、放射線検出器、及び放射線検出モジュールの製造方法
JP2008292401A (ja) 放射線検出器
CN217955860U (zh) 一种用于ct系统的曲面探测器
JP6598518B2 (ja) 放射線検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939166

Country of ref document: EP

Kind code of ref document: A1