[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023286442A1 - 作業機械、及び、作業機械を制御するための方法 - Google Patents

作業機械、及び、作業機械を制御するための方法 Download PDF

Info

Publication number
WO2023286442A1
WO2023286442A1 PCT/JP2022/020619 JP2022020619W WO2023286442A1 WO 2023286442 A1 WO2023286442 A1 WO 2023286442A1 JP 2022020619 W JP2022020619 W JP 2022020619W WO 2023286442 A1 WO2023286442 A1 WO 2023286442A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
steering member
operated
angle
controller
Prior art date
Application number
PCT/JP2022/020619
Other languages
English (en)
French (fr)
Inventor
拓也 園田
貴志 前田
好秀 中江
泰久 浅野
健朗 村田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US18/558,284 priority Critical patent/US20240229419A1/en
Priority to CN202280029260.4A priority patent/CN117241985A/zh
Publication of WO2023286442A1 publication Critical patent/WO2023286442A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/04Hand wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/12Hand levers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/065Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by specially adapted means for varying pressurised fluid supply based on need, e.g. on-demand, variable assist
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2087Control of vehicle steering
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives

Definitions

  • the present invention relates to a working machine and a method for controlling the working machine.
  • Some work machines are equipped with multiple steering members for steering the running wheels left and right.
  • the working machine disclosed in Patent Document 1 includes a steering lever and a steering wheel. An operator of the work machine operates these steering members, so that the work machine changes the steering angle of the running wheels left and right. As a result, the work machine turns left and right.
  • the work machine tends to deviate from the target course due to the load of earth and sand while traveling, or due to unevenness of the road surface. Therefore, the operator must simultaneously operate the steering member to maintain the course while operating the working machine such as the blade. Such an operation is highly difficult and places a heavy operational burden on the operator.
  • Patent Document 1 discloses automatic steering control that automatically controls the steering angle so that the working machine maintains the direction of travel.
  • this automatic steering control the orientation of the work machine when the operation of the steering lever is stopped is determined as the traveling direction. Then, the steering angle is automatically controlled so that the work machine moves straight in the direction of travel.
  • the steering angle is automatically controlled when the operator stops operating the steering wheel (steering wheel) or steering lever. Therefore, automatic control may be executed by the operator releasing the steering wheel after operating the steering wheel. In this case, for the operator, after the steering wheel is operated, the steering angle is automatically changed even though the steering wheel is not operated, and the operator feels a great sense of incongruity in driving.
  • An object of the present invention is to reduce the operational burden on an operator by automatically controlling a steering angle in a work machine, and to suppress the operator's sense of discomfort due to the automatic control.
  • a work machine includes a vehicle body, running wheels, a first steering member, a second steering member, an actuator, a first operation sensor, a second operation sensor, and a controller.
  • the running wheels are supported by the vehicle body.
  • the first steering member is operable by an operator.
  • the second steering member is operable by an operator.
  • the second steering member is separate from the first steering member.
  • the actuator changes the steering angle of the running wheels according to the operation of the first steering member.
  • the actuator changes the steering angle according to the operation of the second steering member.
  • the first manipulation sensor outputs a first manipulation signal indicating manipulation of the first steering member.
  • the second operation sensor outputs a second operation signal indicating operation of the second steering member.
  • the controller acquires a first manipulation signal and a second manipulation signal.
  • the controller determines whether the first steering member has been operated.
  • the controller determines whether the first steering member was operated last among the first steering member and the second steering member.
  • the controller sets the steering angle to a predetermined target value. Execute automatic control to control the actuator to the angle. Even if the first steering member is not operated, the controller does not perform automatic control when determining that the second steering member is operated last among the first steering member and the second steering member.
  • a method is a method for controlling a working machine.
  • the work machine includes a vehicle body, running wheels, and actuators.
  • the running wheels are supported by the vehicle body.
  • the actuator changes the steering angle of the running wheels.
  • a method includes obtaining a first operation signal indicative of operation of a first steering member operable to change a steering angle; acquiring a second operation signal indicating operation of a second steering member separate from the member; determining whether the first steering member is not operated; Determining whether or not the first steering member was operated last; executing automatic control to control the actuator so that the steering angle is set to a predetermined target angle when it is determined that the first steering member has been operated; When it is determined that the second steering member of the two steering members has been operated last, the automatic control is not executed.
  • automatic control is executed when the first steering member has not been operated and the first steering member was operated last. Therefore, the automatic control reduces the operational burden on the operator. Further, even if the first steering member is not operated, automatic control is not executed when the second steering member is operated last. Therefore, the operator can run the work machine without the intervention of automatic control. As a result, the operator's sense of discomfort due to automatic control can be suppressed.
  • FIG. 1 is a perspective view of a working machine according to an embodiment; FIG. It is a side view of a working machine. 1 is a schematic diagram showing a configuration of a working machine; FIG. It is a top view which shows the front part of a working machine. It is a figure which shows an example of steering speed data.
  • FIG. 5 is a diagram showing an example of traveling of the work machine by operating the first steering member; 4 is a flowchart showing processing for determining the start of automatic control;
  • FIG. 1 is a perspective view of a working machine 1 according to an embodiment.
  • FIG. 2 is a side view of the work machine 1.
  • the working machine 1 includes a vehicle body 2, front wheels 3A and 3B, rear wheels 4A-4D, and a working machine 5.
  • the vehicle body 2 includes a front frame 11 , a rear frame 12 , a cab 13 and a power room 14 .
  • the rear frame 12 is connected to the front frame 11.
  • the front frame 11 can be articulated left and right with respect to the rear frame 12 .
  • the front, rear, left, and right directions refer to the front, rear, left, and right directions of the vehicle body 2 when the articulate angle is 0, that is, when the front frame 11 and the rear frame 12 are straight. .
  • the cab 13 and power chamber 14 are arranged on the rear frame 12 .
  • a driver's seat (not shown) is arranged in the cab 13 .
  • the power chamber 14 is arranged behind the cab 13 .
  • the front frame 11 extends forward from the rear frame 12 .
  • the front wheels 3A, 3B are attached to the front frame 11.
  • the rear wheels 4A-4D are attached to the rear frame 12. As shown in FIG.
  • the work machine 5 is movably connected to the vehicle body 2.
  • Work implement 5 includes a support member 15 and a blade 16 .
  • the support member 15 is movably connected to the vehicle body 2 .
  • Support member 15 supports blade 16 .
  • Support member 15 includes drawbar 17 and circle 18 .
  • the drawbar 17 is arranged below the front frame 11 .
  • the drawbar 17 is connected to the front portion 19 of the front frame 11 .
  • the drawbar 17 extends rearward from the front portion 19 of the front frame 11 .
  • the drawbar 17 is supported by the front frame 11 so as to be swingable at least in the vertical and horizontal directions of the vehicle body 2 .
  • front portion 19 includes a ball joint.
  • the drawbar 17 is rotatably connected to the front frame 11 via a ball joint.
  • the circle 18 is connected to the rear of the drawbar 17.
  • Circle 18 is rotatably supported with respect to drawbar 17 .
  • Blades 16 are connected to circle 18 .
  • a blade 16 is supported by a drawbar 17 via a circle 18 .
  • the blade 16 is supported by the circle 18 so as to be rotatable around the tilt shaft 21.
  • the tilt shaft 21 extends in the left-right direction.
  • the working machine 1 includes a plurality of actuators 22-26 for changing the posture of the working machine 5.
  • the plurality of actuators 22-26 includes a plurality of hydraulic cylinders 22-25.
  • a plurality of hydraulic cylinders 22 - 25 are connected to the working machine 5 .
  • the plurality of hydraulic cylinders 22-25 extend and contract by hydraulic pressure.
  • the plurality of hydraulic cylinders 22 to 25 change the attitude of the working machine 5 with respect to the vehicle body 2 by extending and contracting. In the following description, the expansion and contraction of the hydraulic cylinder is called "stroke operation".
  • the plurality of hydraulic cylinders 22 - 25 includes a left lift cylinder 22 , a right lift cylinder 23 , a drawbar shift cylinder 24 and a blade tilt cylinder 25 .
  • the left lift cylinder 22 and the right lift cylinder 23 are arranged apart from each other in the left-right direction.
  • the left lift cylinder 22 and the right lift cylinder 23 are connected to the drawbar 17 .
  • Left lift cylinder 22 and right lift cylinder 23 are connected to front frame 11 via lifter bracket 29 .
  • the draw bar 17 swings up and down due to stroke operations of the left lift cylinder 22 and the right lift cylinder 23 . Thereby, the blade 16 moves up and down.
  • the drawbar shift cylinder 24 is connected to the drawbar 17 and the front frame 11 .
  • the drawbar shift cylinder 24 is connected to the front frame 11 via a lifter bracket 29 .
  • the drawbar shift cylinder 24 extends obliquely downward from the front frame 11 toward the drawbar 17 .
  • the stroke operation of the drawbar shift cylinder 24 swings the drawbar 17 left and right.
  • a blade tilt cylinder 25 is connected to the circle 18 and the blades 16 .
  • the stroke operation of the blade tilt cylinder 25 rotates the blade 16 around the tilt shaft 21 .
  • the plurality of actuators 22 - 26 includes rotary actuators 26 .
  • a rotary actuator 26 is connected to the drawbar 17 and the circle 18 .
  • a rotary actuator 26 rotates the circle 18 relative to the drawbar 17 . Thereby, the blade 16 rotates around the rotation axis extending in the vertical direction.
  • FIG. 3 is a schematic diagram showing the configuration of the work machine 1.
  • the work machine 1 includes a drive source 31, a first hydraulic pump 32, a power transmission device 33, and a work machine valve .
  • the drive source 31 is, for example, an internal combustion engine. Alternatively, the drive source 31 may be an electric motor or a hybrid of an internal combustion engine and an electric motor.
  • the first hydraulic pump 32 is driven by the drive source 31 to discharge hydraulic oil.
  • the work machine valve 34 is connected to the first hydraulic pump 32 and the plurality of hydraulic cylinders 22-25 via a hydraulic circuit.
  • the work machine valve 34 includes a plurality of valves respectively connected to the plurality of hydraulic cylinders 22-25.
  • the work machine valve 34 controls the flow rate of hydraulic oil supplied from the first hydraulic pump 32 to the plurality of hydraulic cylinders 22-25.
  • the work machine valve 34 is, for example, an electromagnetic proportional control valve.
  • the work implement valve 34 may be a hydraulically piloted proportional control valve.
  • the rotary actuator 26 is a hydraulic motor.
  • the work machine valve 34 is connected to the first hydraulic pump 32 and the rotary actuator 26 via a hydraulic circuit.
  • the work machine valve 34 controls the flow rate of hydraulic oil supplied from the first hydraulic pump 32 to the rotary actuator 26 .
  • the rotary actuator 26 may be an electric motor.
  • the power transmission device 33 transmits the driving force from the drive source 31 to the rear wheels 4A-4D.
  • the power transmission device 33 may include a torque converter and/or multiple transmission gears.
  • the power transmission device 33 may be a transmission such as HST (Hydraulic Static Transmission) or HMT (Hydraulic Mechanical Transmission).
  • the work machine 1 includes a work machine operation member 35, a shift member 53, an accelerator operation member 36, and a controller 37.
  • the work machine operating member 35 can be operated by the operator to change the attitude of the work machine 5 .
  • the work machine operating member 35 includes, for example, a plurality of operating levers. Alternatively, the work machine operation member 35 may be another member such as a switch or a touch panel.
  • the work machine operation member 35 outputs a signal indicating the operation of the work machine operation member 35 by the operator.
  • the shift member 53 can be operated by an operator to switch the working machine 1 between forward and reverse.
  • the shift member 53 includes, for example, a shift lever.
  • the shift member 53 may be another member such as a switch or a touch panel.
  • the shift member 53 outputs a signal indicating the operation of the shift member 53 by the operator.
  • the accelerator operating member 36 can be operated by an operator to cause the work machine 1 to travel.
  • the accelerator operating member 36 includes, for example, an accelerator pedal.
  • the accelerator operation member 36 may be another member such as a switch or a touch panel.
  • the accelerator operation member 36 outputs a signal indicating the operation of the accelerator operation member 36 by the operator.
  • the controller 37 controls the power transmission device 33 in accordance with the operation of the shift member 53 to switch the working machine 1 between forward and reverse.
  • shift member 53 may be mechanically connected to power transmission device 33 .
  • the forward and reverse gears of the power transmission device 33 may be switched by mechanically transmitting the operation of the shift member 53 to the power transmission device 33 .
  • the controller 37 causes the work machine 1 to travel by controlling the drive source 31 and the power transmission device 33 according to the operation of the accelerator operation member 36 . Further, the controller 37 operates the work implement 5 by controlling the first hydraulic pump 32 and the work implement valve 34 according to the operation of the work implement operation member 35 .
  • the controller 37 includes a storage device 38 and a processor 39 .
  • the processor 39 is a CPU, for example, and executes a program for controlling the work machine 1 .
  • the storage device 38 includes memories such as RAM and ROM, and auxiliary storage devices such as SSD or HDD.
  • the storage device 38 stores programs and data for controlling the work machine 1 .
  • the work machine 1 is equipped with a direction sensor 52.
  • the direction sensor 52 detects the traveling direction of the vehicle body 2 .
  • the direction sensor 52 outputs a direction signal indicating the traveling direction of the vehicle body 2 .
  • the controller 37 acquires the traveling direction of the vehicle body 2 from the direction signal from the direction sensor 52 .
  • the traveling direction of the vehicle body 2 is indicated by the yaw angle of the vehicle body 2, for example.
  • Direction sensor 52 is, for example, an IMU (inertial measurement unit).
  • the controller 37 calculates the traveling direction of the vehicle body 2 based on the acceleration and angular velocity of the vehicle body 2 .
  • the orientation sensor 52 may be a GNSS (Global Navigation Satellite System) receiver, such as a GPS (Global Positioning System).
  • the controller 37 may acquire the traveling direction of the vehicle body 2 from the change in the position of the work machine 1 detected by the direction sensor 52 .
  • GNSS Global Navigation Satellite System
  • the working machine 1 includes a steering angle sensor 40, a steering actuator 41, and a steering valve 42.
  • the steering actuator 41 is a hydraulic cylinder.
  • the steering actuator 41 is expanded and contracted by hydraulic fluid from the first hydraulic pump 32 .
  • the steering actuator 41 steers the front wheels 3A and 3B by expanding and contracting.
  • FIG. 4 is a top view showing the front part of the work machine 1.
  • the front wheels 3A, 3B include a first front wheel 3A and a second front wheel 3B.
  • the first front wheel 3A and the second front wheel 3B are arranged apart from each other in the left-right direction.
  • the first front wheel 3A is supported by the front frame 11 so as to be rotatable about the first steering shaft 43.
  • the second front wheel 3B is supported by the front frame 11 so as to be rotatable about the second steering shaft 44.
  • the first steering shaft 43 and the second steering shaft 44 extend vertically.
  • the steering actuator 41 is connected to the front wheels 3A, 3B and the front frame 11.
  • the steering actuator 41 changes the steering angle ⁇ 1 of the front wheels 3A, 3B from a predetermined neutral angle to the left and right.
  • the steering angle .theta.1 is the orientation angle of the front wheels 3A and 3B with respect to the front-rear direction of the work machine 1.
  • the front-rear direction of the work machine 1 means the front-rear direction of the front frame 11 .
  • the front-rear direction of the work machine 1 may mean the front-rear direction of the rear frame 12 .
  • the neutral angle is the steering angle ⁇ 1 of 0 degrees. Therefore, the fact that the steering angle ⁇ 1 is the neutral angle means that the front wheels 3A and 3B are facing directly in front of the work machine 1 .
  • 3A' indicates the first front wheel 3A that is steered leftward from the neutral angle by the steering angle ?1.
  • 3B' indicates the second front wheel 3B steered leftward from the neutral angle by the steering angle ?1.
  • the steering valve 42 is connected to the first hydraulic pump 32 and the steering actuator 41 via a hydraulic circuit.
  • the steering valve 42 controls the flow rate of hydraulic fluid supplied from the first hydraulic pump 32 to the steering actuator 41 .
  • the steering valve 42 is a hydraulic pilot type control valve.
  • the steering angle sensor 40 detects the steering angle ⁇ 1.
  • the steering angle sensor 40 outputs an angle signal indicating the steering angle ⁇ 1.
  • the controller 37 acquires the current steering angle ⁇ 1 from the angle signal from the steering angle sensor 40 .
  • the steering angle sensor 40 detects, for example, the stroke amount of the steering actuator 41 .
  • the steering angle ⁇ 1 is calculated from the stroke amount of the steering actuator 41 .
  • the steering angle sensor 40 may directly detect the steering angle ⁇ 1.
  • the work machine 1 includes a first steering member 45 and a second steering member 46.
  • the first steering member 45 and the second steering member 46 can be operated by the operator in order to change the steering angle ⁇ 1 of the front wheels 3A, 3B to the left and right.
  • the first steering member 45 is a lever such as a joystick. Alternatively, the first steering member 45 may be a member other than a lever.
  • the first steering member 45 can be tilted left and right from the neutral position N1.
  • the first steering member 45 is connected to the first operation sensor 51 .
  • the first manipulation sensor 51 outputs a first manipulation signal indicating manipulation of the first steering member 45 by the operator.
  • the controller 37 acquires the operation amount of the first steering member 45 based on the first operation signal from the first operation sensor 51 .
  • the second steering member 46 is a steering wheel. Alternatively, the second steering member 46 may be a member other than the steering wheel.
  • the second steering member 46 is rotatable around the rotation axis Ax1.
  • a second operation sensor 47 is attached to the second steering member 46 .
  • the second operation sensor 47 outputs a second operation signal indicating the operation of the second steering member 46 by the operator. For example, the second operation sensor 47 detects angular displacement of the second steering member 46 around the rotation axis Ax1.
  • the controller 37 acquires the operation amount of the second steering member 46 based on the second operation signal from the second operation sensor 47 . It should be noted that the second steering member 46 is held at the last operated position when not operated by the operator.
  • the working machine 1 includes a second hydraulic pump 48, a first pilot valve 49, and a second pilot valve 50.
  • the second hydraulic pump 48 is driven by the drive source 31 to discharge hydraulic oil.
  • the first pilot valve 49 is connected to the second hydraulic pump 48 and the steering valve 42 via hydraulic circuits.
  • the first pilot valve 49 controls the pressure of hydraulic fluid supplied from the second hydraulic pump 48 to the pilot port of the steering valve 42 .
  • the first pilot valve 49 is an electromagnetic proportional control valve.
  • the first pilot valve 49 is controlled by a signal from the controller 37.
  • the controller 37 expands and contracts the steering actuator 41 by controlling the first pilot valve 49 according to the first operation signal from the first operation sensor 51 .
  • the controller 37 controls the steering actuator 41 so as to change the steering angle ⁇ 1 of the front wheels 3A and 3B in accordance with the operation of the first steering member 45 . Control of the steering angle ⁇ 1 by the first steering member 45 will be described in detail later.
  • the second pilot valve 50 is connected to the second hydraulic pump 48 and the steering valve 42 via a hydraulic circuit.
  • a second pilot valve 50 is connected to the second steering member 46 .
  • the second pilot valve 50 controls the pressure of hydraulic fluid supplied from the second hydraulic pump 48 to the pilot port of the steering valve 42 according to the operation of the second steering member 46 .
  • the steering actuator 41 changes the steering angle ⁇ 1 of the front wheels 3A, 3B so that the steering angle ⁇ 1 of the front wheels 3A, 3B becomes an angle corresponding to the amount of operation of the second steering member 46 .
  • the second pilot valve 50 may be an electromagnetic proportional control valve, like the first pilot valve 49 . In that case, the controller 37 may control the second pilot valve 50 according to the operation of the second steering member 46 .
  • the controller 37 refers to the steering speed data and determines the target steering speed from the operation amount of the first steering member 45 .
  • the controller 37 controls the steering actuator 41 so that the steering angle ⁇ 1 changes at the target steering speed.
  • the steering speed data defines a target steering speed for the amount of operation of the first steering member 45 .
  • FIG. 5 is a diagram showing an example of steering speed data.
  • the first steering member 45 can be operated in a neutral range, a left steering range, and a right steering range.
  • the neutral range is a range including the position where the operation amount of the first steering member 45 is 0, that is, the neutral position N1.
  • the neutral range is located between the left steering range and the right steering range.
  • the left steering range is located to the left of the neutral range.
  • the right steering range is located to the right of the neutral range.
  • the steering speed data is a leftward target steering speed that increases between 0 and a leftward maximum speed VL in response to an increase in the leftward operation amount of the first steering member 45 in the left steering range. stipulate. Therefore, when the first steering member 45 is positioned within the left steering range, the controller 37 changes the steering angle ⁇ 1 of the front wheels 3A and 3B at a speed corresponding to the operation amount of the first steering member 45. The steering actuator 41 is controlled to change to the left.
  • the controller 37 determines the steering speed V1 corresponding to the operation amount A1 as the target steering speed.
  • the controller 37 controls the steering actuator 41 so that the steering angle ⁇ 1 of the front wheels 3A and 3B is changed leftward at the steering speed V1. Further, while the first steering member 45 is maintained at the leftward operation amount A1, the steering angle ⁇ 1 of the front wheels 3A and 3B is maintained at the steering speed V1 until the maximum leftward steering angle is reached. Keep changing to the left.
  • the steering speed data is a rightward target steering that increases between 0 and a rightward maximum speed VR in accordance with an increase in the rightward operation amount of the first steering member 45 in the rightward steering range. Define speed. Therefore, when the first steering member 45 is positioned within the right steering range, the controller 37 changes the steering angle ⁇ 1 of the front wheels 3A and 3B at a speed corresponding to the amount of operation of the first steering member 45. The steering actuator 41 is controlled to change to the right.
  • the controller 37 determines the steering speed V2 corresponding to the operation amount A2 as the target steering speed. Then, the controller 37 controls the steering actuator 41 so that the steering angle ⁇ 1 of the front wheels 3A, 3B is changed rightward at the steering speed V2. Further, while the first steering member 45 is held at the rightward operation amount A2, the steering angle ⁇ 1 of the front wheels 3A and 3B is maintained at the steering speed V2 until the maximum rightward steering angle is reached. Keep moving to the right.
  • the controller 37 controls the steering actuator 41 so as to maintain the steering angle ⁇ 1 at the neutral angle.
  • the steering angle ⁇ 1 is the neutral angle and the first steering member 45 is positioned within the neutral range, the steering angle ⁇ 1 does not change and is maintained at the neutral angle.
  • the controller 37 gives priority to the operation of the second steering member 46 . Therefore, when the first steering member 45 and the second steering member 46 are operated simultaneously, the controller 37 does not control the steering angle ⁇ 1 by the first steering member 45 as described above. Therefore, the steering angle ⁇ 1 changes according to the operation of the second steering member 46 .
  • the controller 37 performs automatic control to control the steering actuator 41 so that the steering angle ⁇ 1 becomes a predetermined target angle.
  • Automatic control includes center return mode and steering stabilizer mode.
  • the controller 37 automatically returns the steering angle ⁇ 1 to the neutral angle when the first steering member 45 is returned from the left steering range or the right steering range to the neutral range. 41.
  • the controller 37 determines that the steering angle ⁇ 1 is a predetermined angle to the left from the neutral angle.
  • the steering actuator 41 is controlled so as to return to .
  • the controller 37 causes the steering angle ⁇ 1 to return to the neutral angle from the predetermined angle to the right.
  • the steering actuator 41 is controlled.
  • FIG. 6 is a diagram showing an example of traveling of the working machine 1 by operating the first steering member 45.
  • FIG. 6 when the work machine 1 is at the point P1, the first steering member 45 is positioned at the neutral position N1.
  • the steering angle ⁇ 1 is a neutral angle, and the work machine 1 is traveling straight.
  • the steering angle ⁇ 1 of the front wheels 3A and 3B starts to change leftward from the neutral angle. As a result, the work machine 1 turns to the left.
  • the steering angle ⁇ 1 of the front wheels 3A and 3B decreases from the maximum steering angle ⁇ max toward the neutral angle due to the center return mode.
  • the steering angle ⁇ 1 of the front wheels 3A, 3B returns to the neutral angle.
  • the controller 37 controls the steering angle ⁇ 1 so as to keep the traveling direction of the vehicle body 2 in the target direction. As shown in FIG. 6, at point P3, after the operator returns the first steering member 45 to the neutral range, the controller 37 determines whether the steering angle ⁇ 1 has returned to the neutral angle. The controller 37 determines that the steering angle ⁇ 1 has returned to the neutral angle at point P5. The controller 37 determines the traveling direction H1 of the vehicle body 2 when it is determined that the steering angle ⁇ 1 has returned to the neutral angle as the target direction. After that, the controller 37 controls the steering actuator 41 so that the traveling direction of the vehicle body 2 is maintained in the target direction (H1). As a result, the work machine 1 moves straight toward the target direction (H1).
  • the controller 37 determines the target angle of the steering angle ⁇ 1 based on the difference between the current traveling direction of the vehicle body 2 and the target direction.
  • the controller 37 controls the steering actuator 41 so that the steering angle ⁇ 1 becomes the target angle.
  • the controller 37 determines the target steering angle ⁇ 1 by multiplying the difference between the current traveling direction of the vehicle body 2 and the target direction by a predetermined gain.
  • the controller 37 decreases the gain as the vehicle speed increases. Accordingly, the target angle becomes smaller as the vehicle speed increases.
  • the controller 37 controls the steering actuator 41 through feedback control so that the steering angle ⁇ 1 is maintained at the target angle.
  • the controller 37 may calculate the vehicle speed from the change in the position of the work machine 1 detected by the GNSS receiver described above.
  • the work machine 1 may be provided with a rotation sensor that detects the output rotation speed of the power transmission device 33 .
  • the controller 37 may calculate the vehicle speed from the output rotational speed of the power transmission device 33 .
  • FIG. 7 is a flowchart showing processing for determining the start of automatic control. As shown in FIG. 7, in step S101, the controller 37 determines whether a steering operation is being performed. The controller 37 determines that a steering operation is being performed when at least one of the first steering member 45 and the second steering member 46 is being operated.
  • the controller 37 determines that the first steering member 45 is operated when the first steering member 45 is positioned within the left steering range or the right steering range according to the first operation signal. The controller 37 determines that the first steering member 45 is not being operated when the first steering member 45 is positioned within the neutral range according to the first operation signal.
  • the controller 37 acquires the operation speed of the second steering member 46 from the second operation signal. The controller 37 determines that the second steering member 46 is being operated when the operating speed is greater than the threshold. The controller 37 determines that the second steering member 46 is not operated when the operation speed is equal to or less than the threshold. For example, the controller 37 calculates the angular velocity of the second steering member 46 . The controller 37 determines that the second steering member 46 is not being operated when the angular velocity of the second steering member 46 is equal to or less than the threshold.
  • step S101 the steering operation is being performed
  • the process proceeds to step S106.
  • step S106 the steering actuator 41 is controlled in manual mode. That is, the controller 37 does not perform automatic control, and the steering actuator 41 is controlled according to the operation of the first steering member 45 or the second steering member 46 by the operator, as described above.
  • step S101 the process proceeds to step S102.
  • step S102 the controller 37 determines whether the first steering member 45 out of the first steering member 45 and the second steering member 46 was operated last.
  • step S106 the process proceeds to step S106. That is, when the second steering member 46 was operated last, the controller 37 does not perform automatic control, and the steering actuator 41 is controlled in the manual mode.
  • step S102 determines in step S102 that the first steering member 45 has been operated last
  • step S103 the controller 37 determines whether the steering angle ⁇ 1 has returned to the neutral angle even once after the manual mode is switched to the automatic control.
  • step S104 the process proceeds to step S104.
  • step S104 the controller 37 controls the steering actuator 41 in center return mode. That is, the controller 37 controls the steering actuator 41 so as to return the steering angle ⁇ 1 to the neutral angle as shown from point P3 to point P5 in FIG.
  • step S103 when the controller 37 determines that the steering angle ⁇ 1 has returned to the neutral angle even once after the transition from manual mode to automatic control, the process proceeds to step S105.
  • step S105 the controller 37 controls the steering actuator 41 in the steering stabilizer mode. As shown at point P5 in FIG. 6, in the steering stabilizer mode, the controller 37 controls the steering angle ⁇ 1 so that the traveling direction of the vehicle body 2 is maintained in the target direction (H1).
  • the controller 37 controls that the first steering member 45 is not operated, and the first steering member 45 or the second steering member 46 is the first steering member. 45 is operated last, automatic control is executed. Further, even if the first steering member 45 is not operated, the controller 37 determines that of the first steering member 45 and the second steering member 46, the second steering member 46 is operated last. , do not perform automatic control.
  • the operator when operating the second steering member 46, the operator can run the work machine 1 with a natural driving feeling without the intervention of automatic control. As a result, the unintended intervention of the automatic driving is prevented, thereby reducing the feeling of strangeness for the operator. Further, when the operator operates the first steering member 45, by stopping the operation of the first steering member 45, automatic control can be smoothly started without operating a separate switch or the like. Thereby, the operation burden on the operator is further reduced by automatic operation.
  • the work machine 1 is not limited to a motor grader, and may be other work machines such as wheel loaders, dump trucks, and forklifts.
  • the number of steering actuators 41 is not limited to one, and may be two or more.
  • the steering actuator 41 is not limited to a hydraulic cylinder, and may be a hydraulic motor or an electric motor.
  • the steering speed data is not limited to the above embodiment, and may be changed. Alternatively, the center return mode may be omitted.
  • the controller 37 controls the steering actuator 41 so as to change the steering angle ⁇ 1 at a speed corresponding to the amount of operation of the first steering member 45 .
  • the controller 37 may control the steering actuator 41 so that the steering angle ⁇ 1 becomes an angle corresponding to the amount of operation of the first steering member 45 . That is, the control of the steering angle ⁇ 1 by the first steering member 45 is not limited to the speed control type, and may be the position control type.
  • the processing by the controller 37 in the steering stabilizer mode is not limited to the above embodiment, and may be modified.
  • the controller 37 may determine the traveling direction H2 of the vehicle body 2 when the operator returns the first steering member 45 to the neutral range as the target direction.
  • the automatic control of the steering angle is not limited to the above-mentioned center return mode and steering stabilizer mode, and may be changed.
  • automatic control may include an automatic steering mode that causes work machine 1 to travel according to a predetermined target path.
  • controller 37 may determine a target angle for steering angle ⁇ 1 such that work machine 1 moves along the target path.
  • the target route may be entered into controller 37 by an operator.
  • the target route may be input to controller 37 from an external computer.
  • controller 37 may automatically generate the target route.
  • the operation burden on the operator can be reduced by automatically controlling the steering angle, and the discomfort felt by the operator due to the automatic control can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Operation Control Of Excavators (AREA)
  • Steering Controls (AREA)
  • Power Steering Mechanism (AREA)

Abstract

作業機械は、車体と、走行輪と、第1ステアリング部材と、第2ステアリング部材と、アクチュエータと、コントローラとを備える。アクチュエータは、第1ステアリング部材と第2ステアリング部材との操作に応じて、走行輪の操舵角を変化させる。コントローラは、第1ステアリング部材が操作されておらず、且つ、第1ステアリング部材と第2ステアリング部材とのうち、第1ステアリング部材が最後に操作されたと判定した場合に、操舵角を所定の目標角度とするようにアクチュエータを制御する自動制御を実行する。コントローラは、第1ステアリング部材が操作されていなくても、第1ステアリング部材と第2ステアリング部材とのうち、第2ステアリング部材が最後に操作されたと判定した場合には、自動制御を実行しない。

Description

作業機械、及び、作業機械を制御するための方法
 本発明は、作業機械、及び、作業機械を制御するための方法に関する。
 作業機械には、走行輪を左右に操舵するための複数のステアリング部材を備えるものがある。例えば、特許文献1の作業機械は、ステアリングレバーとステアリングホイールとを備えている。作業機械のオペレータが、これらのステアリング部材を操作することで、作業機械は、走行輪の操舵角を左右に変更する。それにより、作業機械が左右に旋回する。
 作業機械は、走行中に土砂による負荷、或いは路面の不均一により、目標とする進路から逸れやすい。そのため、オペレータは、ブレードなどの作業機を操作しながら、進路を維持するためにステアリング部材の操作を同時に行う必要がある。このような操作は、難易度が高く、オペレータへの操作負担が大きい。
 そこで、特許文献1では、作業機械が進行方向を維持するように、操舵角を自動的に制御するステアリング自動制御が開示されている。このステアリング自動制御では、ステアリングレバーの操作が停止されたときの作業機械の向きが、進行方向として決定される。そして、作業機械が進行方向に直進するように、操舵角が自動的に制御される。
特開2021-054269号公報
 上述した作業機械では、オペレータが、ステアリングホイール(ハンドル)、又はステアリングレバーの操作を停止したときに、操舵角の自動制御が実行される。そのため、オペレータがステアリングホイールを操作した後にステアリングホイールから手を離すことによって、自動制御が実行される場合がある。その場合、オペレータにとっては、ステアリングホイールの操作後に、ステアリングホイールを操作していないのに操舵角が自動的に変化することになり、運転感覚への違和感が大きい。本発明の目的は、作業機械において、操舵角の自動制御によってオペレータへの操作負担を軽減すると共に、自動制御によるオペレータへの違和感を抑えることにある。
 本発明の一態様に係る作業機械は、車体と、走行輪と、第1ステアリング部材と、第2ステアリング部材と、アクチュエータと、第1操作センサと、第2操作センサと、コントローラとを備える。走行輪は、車体に支持される。第1ステアリング部材は、オペレータによって操作可能である。第2ステアリング部材は、オペレータによって操作可能である。第2ステアリング部材は、第1ステアリング部材と別体である。アクチュエータは、第1ステアリング部材の操作に応じて走行輪の操舵角を変化させる。アクチュエータは、第2ステアリング部材の操作に応じて操舵角を変化させる。第1操作センサは、第1ステアリング部材の操作を示す第1操作信号を出力する。第2操作センサは、第2ステアリング部材の操作を示す第2操作信号を出力する。コントローラは、第1操作信号と第2操作信号とを取得する。
 コントローラは、第1ステアリング部材が操作されていないかを判定する。コントローラは、第1ステアリング部材と第2ステアリング部材とのうち、第1ステアリング部材が最後に操作されたかを判定する。コントローラは、第1ステアリング部材が操作されておらず、且つ、第1ステアリング部材と第2ステアリング部材とのうち、第1ステアリング部材が最後に操作されたと判定した場合に、操舵角を所定の目標角度とするようにアクチュエータを制御する自動制御を実行する。コントローラは、第1ステアリング部材が操作されていなくても、第1ステアリング部材と第2ステアリング部材とのうち、第2ステアリング部材が最後に操作されたと判定した場合には、自動制御を実行しない。
 本発明の他の態様に係る方法は、作業機械を制御するための方法である。作業機械は、車体と、走行輪と、アクチュエータとを含む。走行輪は、車体に支持される。アクチュエータは、走行輪の操舵角を変化させる。本態様に係る方法は、操舵角を変化させるために操作可能な第1ステアリング部材の操作を示す第1操作信号を取得することと、操舵角を変化させるために操作可能であり、第1ステアリング部材と別体の第2ステアリング部材の操作を示す第2操作信号を取得することと、第1ステアリング部材が操作されていないかを判定することと、第1ステアリング部材と第2ステアリング部材とのうち、第1ステアリング部材が最後に操作されたかを判定することと、第1ステアリング部材が操作されておらず、且つ、第1ステアリング部材と第2ステアリング部材とのうち、第1ステアリング部材が最後に操作されたと判定した場合に、操舵角を所定の目標角度とするようにアクチュエータを制御する自動制御を実行することと、第1ステアリング部材が操作されていなくても、第1ステアリング部材と第2ステアリング部材とのうち、第2ステアリング部材が最後に操作されたと判定した場合には、自動制御を実行しないこと、を備える。
 本発明によれば、第1ステアリング部材が操作されておらず、且つ、第1ステアリング部材が最後に操作された場合に、自動制御が実行される。そのため、自動制御によってオペレータへの操作負担が軽減される。また、第1ステアリング部材が操作されていなくても、第2ステアリング部材が最後に操作された場合には、自動制御が実行されない。そのため、オペレータは、自動制御の介入無しで、作業機械を走行させることができる。それにより、自動制御によるオペレータへの違和感が抑えられる。
実施形態に係る作業機械の斜視図である。 作業機械の側面図である。 作業機械の構成を示す模式図である。 作業機械の前部を示す上面図である。 操舵速度データの一例を示す図である。 第1ステアリング部材の操作による作業機械の走行の一例を示す図である。 自動制御の開始を判定するための処理を示すフローチャートである。
 以下図面を参照して、本発明の実施形態について説明する。図1は、実施形態に係る作業機械1の斜視図である。図2は、作業機械1の側面図である。図1に示すように、作業機械1は、車体2と、前輪3A,3Bと、後輪4A-4Dと、作業機5とを備える。車体2は、フロントフレーム11と、リアフレーム12と、キャブ13と、動力室14とを含む。
 リアフレーム12は、フロントフレーム11に接続されている。フロントフレーム11は、リアフレーム12に対して、左右にアーティキュレート可能である。なお、以下の説明において、前後左右の各方向は、アーティキュレート角が0、すなわち、フロントフレーム11とリアフレーム12とが真っすぐな状態での車体2の前後左右の各方向を意味するものとする。
 キャブ13と動力室14とは、リアフレーム12上に配置されている。キャブ13には、図示しない運転席が配置されている。動力室14は、キャブ13の後方に配置されている。フロントフレーム11は、リアフレーム12から前方へ延びている。前輪3A,3Bは、フロントフレーム11に取り付けられている。後輪4A-4Dは、リアフレーム12に取り付けられている。
 作業機5は、車体2に対して可動的に接続されている。作業機5は、支持部材15とブレード16とを含む。支持部材15は、車体2に可動的に接続されている。支持部材15は、ブレード16を支持している。支持部材15は、ドローバ17とサークル18とを含む。ドローバ17は、フロントフレーム11の下方に配置される。
 ドローバ17は、フロントフレーム11の前部19に接続されている。ドローバ17は、フロントフレーム11の前部19から後方へ延びている。ドローバ17は、フロントフレーム11に対して、少なくとも車体2の上下方向と左右方向とに揺動可能に支持されている。例えば、前部19は、ボールジョイントを含む。ドローバ17は、ボールジョイントを介して、フロントフレーム11に対して回転可能に接続されている。
 サークル18は、ドローバ17の後部に接続されている。サークル18は、ドローバ17に対して回転可能に支持される。ブレード16は、サークル18に接続される。ブレード16は、サークル18を介して、ドローバ17に支持されている。図2に示すように、ブレード16は、チルト軸21回りに回転可能にサークル18に支持されている。チルト軸21は、左右方向に延びている。
 作業機械1は、作業機5の姿勢を変更するための複数のアクチュエータ22-26を備えている。複数のアクチュエータ22-26は、複数の油圧シリンダ22-25を含む。複数の油圧シリンダ22-25は、作業機5に接続されている。複数の油圧シリンダ22-25は、油圧によって伸縮する。複数の油圧シリンダ22-25は、伸縮することで、車体2に対する作業機5の姿勢を変更する。以下の説明では、油圧シリンダの伸縮を「ストローク動作」と呼ぶ。
 詳細には、複数の油圧シリンダ22-25は、左リフトシリンダ22と、右リフトシリンダ23と、ドローバシフトシリンダ24と、ブレードチルトシリンダ25とを含む。左リフトシリンダ22と右リフトシリンダ23とは、左右方向に互いに離れて配置されている。左リフトシリンダ22と右リフトシリンダ23とは、ドローバ17に接続されている。左リフトシリンダ22と右リフトシリンダ23とは、リフタブラケット29を介して、フロントフレーム11に接続されている。左リフトシリンダ22と右リフトシリンダ23とのストローク動作により、ドローバ17は、上下に揺動する。それにより、ブレード16が上下に移動する。
 ドローバシフトシリンダ24は、ドローバ17とフロントフレーム11とに接続されている。ドローバシフトシリンダ24は、リフタブラケット29を介してフロントフレーム11に接続されている。ドローバシフトシリンダ24は、フロントフレーム11からドローバ17に向かって、斜め下方に延びている。ドローバシフトシリンダ24のストローク動作により、ドローバ17は、左右に揺動する。ブレードチルトシリンダ25は、サークル18とブレード16とに接続されている。ブレードチルトシリンダ25のストローク動作により、ブレード16がチルト軸21回りに回転する。
 複数のアクチュエータ22-26は、回転アクチュエータ26を含む。回転アクチュエータ26は、ドローバ17とサークル18とに接続されている。回転アクチュエータ26は、ドローバ17に対してサークル18を回転させる。それにより、ブレード16が、上下方向に延びる回転軸回りに回転する。
 図3は、作業機械1の構成を示す模式図である。図3に示すように、作業機械1は、駆動源31と、第1油圧ポンプ32と、動力伝達装置33と、作業機バルブ34とを含む。駆動源31は、例えば内燃機関である。或いは、駆動源31は、電動モータ、或いは内燃機関と電動モータとのハイブリッドであってもよい。第1油圧ポンプ32は、駆動源31によって駆動されることで、作動油を吐出する。
 作業機バルブ34は、油圧回路を介して、第1油圧ポンプ32と複数の油圧シリンダ22-25とに接続されている。作業機バルブ34は、複数の油圧シリンダ22-25にそれぞれ接続される複数の弁を含む。作業機バルブ34は、第1油圧ポンプ32から複数の油圧シリンダ22-25に供給される作動油の流量を制御する。作業機バルブ34は、例えば電磁比例制御弁である。或いは、作業機バルブ34は、油圧パイロット式の比例制御弁であってもよい。
 本実施形態では、回転アクチュエータ26は、油圧モータである。作業機バルブ34は、油圧回路を介して第1油圧ポンプ32と回転アクチュエータ26とに接続されている。作業機バルブ34は、第1油圧ポンプ32から回転アクチュエータ26に供給される作動油の流量を制御する。なお、回転アクチュエータ26は、電動モータであってもよい。
 動力伝達装置33は、駆動源31からの駆動力を後輪4A-4Dに伝達する。動力伝達装置33は、トルクコンバータ、及び/又は、複数の変速ギアを含んでもよい。或いは、動力伝達装置33は、HST(Hydraulic Static Transmission)、或いは、HMT(Hydraulic Mechanical Transmission)などのトランスミッションであってもよい。
 作業機械1は、作業機操作部材35と、シフト部材53と、アクセル操作部材36と、コントローラ37とを含む。作業機操作部材35は、作業機5の姿勢を変更するためにオペレータによって操作可能である。作業機操作部材35は、例えば複数の操作レバーを含む。或いは、作業機操作部材35は、スイッチ、或いはタッチパネルなどの他の部材であってもよい。作業機操作部材35は、オペレータによる作業機操作部材35への操作を示す信号を出力する。
 シフト部材53は、作業機械1の前進と後進とを切り換えるためのオペレータによって操作可能である。シフト部材53は、例えばシフトレバーを含む。或いは、シフト部材53は、スイッチ、或いはタッチパネルなどの他の部材であってもよい。シフト部材53は、オペレータによるシフト部材53への操作を示す信号を出力する。アクセル操作部材36は、作業機械1を走行させるためにオペレータによって操作可能である。アクセル操作部材36は、例えばアクセルペダルを含む。或いは、アクセル操作部材36は、スイッチ、或いはタッチパネルなどの他の部材であってもよい。アクセル操作部材36は、オペレータによるアクセル操作部材36への操作を示す信号を出力する。
 コントローラ37は、シフト部材53の操作に応じて、動力伝達装置33を制御することで、作業機械1の前進と後進とを切り換える。或いは、シフト部材53は、機械的に動力伝達装置33に接続されてもよい。シフト部材53の動作が機械的に動力伝達装置33に伝達されることで、動力伝達装置33の前進と後進のギアが切り替えられてもよい。
 コントローラ37は、アクセル操作部材36の操作に応じて、駆動源31及び動力伝達装置33を制御することで、作業機械1を走行させる。また、コントローラ37は、作業機操作部材35の操作に応じて、第1油圧ポンプ32と作業機バルブ34とを制御することで、作業機5を動作させる。
 コントローラ37は、記憶装置38とプロセッサ39とを含む。プロセッサ39は、例えばCPUであり、作業機械1を制御するためのプログラムを実行する。記憶装置38は、RAM及びROMなどのメモリと、SSD或いはHDDなどの補助記憶装置を含む。記憶装置38は、作業機械1を制御するためのプログラムとデータとを記憶している。
 作業機械1は、方向センサ52を備えている。方向センサ52は、車体2の進行方向を検出する。方向センサ52は、車体2の進行方向を示す方向信号を出力する。コントローラ37は、方向センサ52からの方向信号により、車体2の進行方向を取得する。車体2の進行方向は、例えば車体2のヨー角で示される。方向センサ52は、例えばIMU(慣性計測装置)である。コントローラ37は、車体2の加速度および角速度に基づいて、車体2の進行方向を算出する。或いは、方向センサ52は、GPS(Global Positioning System)などのGNSS(Global Navigation Satellite System)レシーバであってもよい。コントローラ37は、方向センサ52が検出した作業機械1の位置の変化から、車体2の進行方向を取得してもよい。
 図3に示すように、作業機械1は、操舵角センサ40と、ステアリングアクチュエータ41と、ステアリングバルブ42とを備えている。ステアリングアクチュエータ41は、油圧シリンダである。ステアリングアクチュエータ41は、第1油圧ポンプ32からの作動油によって伸縮する。ステアリングアクチュエータ41は、伸縮することで、前輪3A,3Bを操舵する。
 図4は、作業機械1の前部を示す上面図である。図4に示すように、前輪3A,3Bは、第1前輪3Aと第2前輪3Bとを含む。第1前輪3Aと第2前輪3Bとは、左右方向に離れて配置されている。第1前輪3Aは、第1ステアリング軸43回りに回動可能にフロントフレーム11に支持されている。第2前輪3Bは、第2ステアリング軸44回りに回動可能にフロントフレーム11に支持されている。第1ステアリング軸43と第2ステアリング軸44とは、上下方向に延びている。
 ステアリングアクチュエータ41は、前輪3A,3Bとフロントフレーム11とに接続されている。ステアリングアクチュエータ41は、前輪3A,3Bの操舵角θ1を所定の中立角から左右に変化させる。図4に示すように、操舵角θ1は、作業機械1の前後方向に対する前輪3A,3Bの向きの角度である。作業機械1の前後方向は、フロントフレーム11の前後方向を意味するものとする。ただし、作業機械1の前後方向は、リアフレーム12の前後方向を意味してもよい。
 中立角は、0度の操舵角θ1である。従って、操舵角θ1が中立角であることは、前輪3A,3Bが作業機械1の真正面を向いていることを意味する。なお、図4において、3A’は、中立角から左方に操舵角θ1だけ操舵された第1前輪3Aを示している。3B’は、中立角から左方に操舵角θ1だけ操舵された第2前輪3Bを示している。
 ステアリングバルブ42は、油圧回路を介して、第1油圧ポンプ32とステアリングアクチュエータ41とに接続されている。ステアリングバルブ42は、第1油圧ポンプ32からステアリングアクチュエータ41に供給される作動油の流量を制御する。ステアリングバルブ42は、油圧パイロット式の制御弁である。
 操舵角センサ40は、操舵角θ1を検出する。操舵角センサ40は、操舵角θ1を示す角度信号を出力する。コントローラ37は、操舵角センサ40からの角度信号により現在の操舵角θ1を取得する。操舵角センサ40は、例えば、ステアリングアクチュエータ41のストローク量を検出する。操舵角θ1は、ステアリングアクチュエータ41のストローク量から算出される。或いは、操舵角センサ40は、操舵角θ1を直接的に検出してもよい。
 作業機械1は、第1ステアリング部材45と第2ステアリング部材46とを含む。第1ステアリング部材45と第2ステアリング部材46とは、前輪3A,3Bの操舵角θ1を左右に変化させるために、オペレータによって操作可能である。第1ステアリング部材45は、ジョイスティックなどのレバーである。或いは、第1ステアリング部材45は、レバー以外の部材であってもよい。第1ステアリング部材45は、中立位置N1から左右に傾倒可能である。第1ステアリング部材45は、第1操作センサ51に接続されている。第1操作センサ51は、オペレータによる第1ステアリング部材45への操作を示す第1操作信号を出力する。コントローラ37は、第1操作センサ51からの第1操作信号により、第1ステアリング部材45の操作量を取得する。
 第2ステアリング部材46は、ステアリングホイールである。或いは、第2ステアリング部材46は、ステアリングホイール以外の部材であってもよい。第2ステアリング部材46は、回転軸Ax1回りに回転可能である。第2ステアリング部材46には、第2操作センサ47が取り付けられている。第2操作センサ47は、オペレータによる第2ステアリング部材46への操作を示す第2操作信号を出力する。例えば、第2操作センサ47は、第2ステアリング部材46の回転軸Ax1回りの角度変位を検出する。コントローラ37は、第2操作センサ47からの第2操作信号により、第2ステアリング部材46の操作量を取得する。なお、第2ステアリング部材46は、オペレータによって操作されていない場合には、最後に操作された位置に保持される。
 作業機械1は、第2油圧ポンプ48と、第1パイロットバルブ49と、第2パイロットバルブ50とを含む。第2油圧ポンプ48は、駆動源31によって駆動されることで、作動油を吐出する。第1パイロットバルブ49は、油圧回路を介して、第2油圧ポンプ48とステアリングバルブ42とに接続されている。第1パイロットバルブ49は、第2油圧ポンプ48からステアリングバルブ42のパイロットポートに供給される作動油の圧力を制御する。第1パイロットバルブ49は、電磁比例制御弁である。
 第1パイロットバルブ49は、コントローラ37からの信号によって制御される。コントローラ37は、第1操作センサ51からの第1操作信号に応じて、第1パイロットバルブ49を制御することで、ステアリングアクチュエータ41を伸縮させる。それにより、コントローラ37は、第1ステアリング部材45の操作に応じて、前輪3A,3Bの操舵角θ1を変更するように、ステアリングアクチュエータ41を制御する。第1ステアリング部材45による操舵角θ1の制御については、後に詳細に説明する。
 第2パイロットバルブ50は、油圧回路を介して、第2油圧ポンプ48とステアリングバルブ42とに接続されている。第2パイロットバルブ50は、第2ステアリング部材46に接続されている。第2パイロットバルブ50は、第2ステアリング部材46の操作に応じて、第2油圧ポンプ48からステアリングバルブ42のパイロットポートに供給される作動油の圧力を制御する。それにより、ステアリングアクチュエータ41は、前輪3A,3Bの操舵角θ1が、第2ステアリング部材46の操作量に応じた角度となるように、前輪3A,3Bの操舵角θ1を変化させる。
 第2ステアリング部材46の操作量が一定に保持されている場合には、ステアリングアクチュエータ41は、前輪3A,3Bの操舵角θ1を、第2ステアリング部材46の操作量に応じた角度に保持する。なお、第2パイロットバルブ50は、第1パイロットバルブ49と同様に、電磁比例制御弁であってもよい。その場合、コントローラ37は、第2ステアリング部材46の操作に応じて、第2パイロットバルブ50を制御してもよい。
 次に、第1ステアリング部材45による操舵角θ1の制御について説明する。コントローラ37は、操舵速度データを参照して、第1ステアリング部材45の操作量から、目標操舵速度を決定する。コントローラ37は、操舵角θ1が目標操舵速度で変化するように、ステアリングアクチュエータ41を制御する。操舵速度データは、第1ステアリング部材45の操作量に対する目標操舵速度を規定する。
 図5は、操舵速度データの一例を示す図である。図5に示すように、第1ステアリング部材45は、中立範囲と、左操舵範囲と、右操舵範囲とに操作可能である。中立範囲は、第1ステアリング部材45の操作量0の位置、すなわち中立位置N1を含む範囲である。中立範囲は、左操舵範囲と右操舵範囲との間に位置する。左操舵範囲は、中立範囲の左方に位置する。右操舵範囲は、中立範囲の右方に位置する。
 操舵速度データは、左操舵範囲において、第1ステアリング部材45の左方への操作量の増大に応じて、0から左方への最大速度VLまでの間で増大する左方への目標操舵速度を規定する。従って、コントローラ37は、第1ステアリング部材45が、左操舵範囲内に位置している場合には、前輪3A,3Bの操舵角θ1を、第1ステアリング部材45の操作量に応じた速度で、左方に変化させるように、ステアリングアクチュエータ41を制御する。
 例えば、コントローラ37は、第1ステアリング部材45が、左方への操作量A1で操作された場合には、操作量A1に応じた操舵速度V1を、目標操舵速度として決定する。そして、コントローラ37は、前輪3A,3Bの操舵角θ1を、操舵速度V1で、左方に変化させるように、ステアリングアクチュエータ41を制御する。また、第1ステアリング部材45が、左方への操作量A1に保持されている間、前輪3A,3Bの操舵角θ1は、左方への最大操舵角に到達するまで、操舵速度V1で、左方に変化し続ける。
 操舵速度データは、右操舵範囲において、第1ステアリング部材45の右方への操作量の増大に応じて、0から右方方への最大速度VRまでの間で増大する右方への目標操舵速度を規定する。従って、コントローラ37は、第1ステアリング部材45が、右操舵範囲内に位置している場合には、前輪3A,3Bの操舵角θ1を、第1ステアリング部材45の操作量に応じた速度で、右方に変化させるように、ステアリングアクチュエータ41を制御する。
 例えば、コントローラ37は、第1ステアリング部材45が、右方への操作量A2で操作された場合には、操作量A2に応じた操舵速度V2を、目標操舵速度として決定する。そして、コントローラ37は、前輪3A,3Bの操舵角θ1を、操舵速度V2で、右方に変化させるように、ステアリングアクチュエータ41を制御する。また、第1ステアリング部材45が、右方への操作量A2に保持されている間、前輪3A,3Bの操舵角θ1は、右方への最大操舵角に到達するまで、操舵速度V2で、右方に変化し続ける。
 コントローラ37は、第1ステアリング部材45が、中立範囲内に位置している場合には、操舵角θ1を中立角に保持するように、ステアリングアクチュエータ41を制御する。例えば、操舵角θ1が中立角であるときに第1ステアリング部材45が、中立範囲内に位置している場合には、操舵角θ1は変化せず、中立角に保持される。
 なお、第1ステアリング部材45と第2ステアリング部材46とが同時に操作されている場合には、コントローラ37は、第2ステアリング部材46の操作を優先する。従って、第1ステアリング部材45と第2ステアリング部材46とが同時に操作されている場合には、コントローラ37は、上述した第1ステアリング部材45による操舵角θ1の制御を行わない。そのため、操舵角θ1は、第2ステアリング部材46の操作に応じて変化する。
 次に、操舵角θ1の自動制御について説明する。コントローラ37は、操舵角θ1を所定の目標角度とするように、ステアリングアクチュエータ41を制御する自動制御を実行する。自動制御は、センターリターンモードとステアリングスタビライザモードとを含む。
 センターリターンモードでは、コントローラ37は、第1ステアリング部材45が左操舵範囲、又は、右操舵範囲から中立範囲に戻されたときに、操舵角θ1を自動的に中立角に戻すように、ステアリングアクチュエータ41を制御する。
 例えば、操舵角θ1が、左方への所定角度であるときに、第1ステアリング部材45が、中立範囲に戻されると、コントローラ37は、操舵角θ1が、左方への所定角度から中立角に戻るように、ステアリングアクチュエータ41を制御する。操舵角θ1が、右方への所定角度であるときに、第1ステアリング部材45が、中立範囲に戻されると、コントローラ37は、操舵角θ1が、右方への所定角度から中立角に戻るように、ステアリングアクチュエータ41を制御する。
 図6は、第1ステアリング部材45の操作による作業機械1の走行の一例を示す図である。図6に示すように、作業機械1が地点P1では、第1ステアリング部材45は中立位置N1に位置している。操舵角θ1は中立角であり、作業機械1は直進している。地点P2において、オペレータが第1ステアリング部材45を左操作範囲内の操作量A1に操作すると、前輪3A,3Bの操舵角θ1が中立角から左方へ変化し始める。それにより、作業機械1は左方へ旋回する。
 地点P2から地点P3までの間、オペレータが第1ステアリング部材45を操作量A1に保持すると、前輪3A,3Bの操舵角θ1は、左方への最大操舵角θmaxまで増大し続ける。それにより、作業機械1は、左方へ旋回し続ける。
 そして、地点P3において、オペレータが第1ステアリング部材45を中立範囲に戻すと、センターリターンモードにより、前輪3A,3Bの操舵角θ1は、最大操舵角θmaxから中立角へ向かって減少する。そして、地点P5において、前輪3A,3Bの操舵角θ1が中立角に戻る。
 ステアリングスタビライザモードでは、コントローラ37は、車体2の進行方向を目標方向に保持するように、操舵角θ1を制御する。図6に示すように、地点P3において、オペレータが第1ステアリング部材45を中立範囲に戻した後、コントローラ37は、操舵角θ1が中立角に戻ったかを判定する。コントローラ37は、地点P5において、操舵角θ1が中立角に戻ったと判定する。コントローラ37は、操舵角θ1が中立角に戻ったと判定したときの車体2の進行方向H1を、目標方向として決定する。その後、コントローラ37は、車体2の進行方向を目標方向(H1)に保持するように、ステアリングアクチュエータ41を制御する。それにより、作業機械1は、目標方向(H1)に向かって直進する。
 詳細には、コントローラ37は、車体2の現在の進行方向と目標方向との差に基づいて、操舵角θ1の目標角度を決定する。コントローラ37は、操舵角θ1が目標角度となるように、ステアリングアクチュエータ41を制御する。例えば、コントローラ37は、車体2の現在の進行方向と目標方向との差に、所定のゲインを乗じることで、操舵角θ1の目標角度を決定する。コントローラ37は、車速が大きいほどゲインを小さくする。それにより、車速が大きいほど、目標角度が小さくなる。コントローラ37は、操舵角θ1が目標角度に保持されるように、フィードバック制御により、ステアリングアクチュエータ41を制御する。
 なお、コントローラ37は、上述したGNSSレシーバによって検出された作業機械1の位置の変化から、車速を算出してもよい。或いは、動力伝達装置33の出力回転速度を検出する回転センサが作業機械1に設けられてもよい。コントローラ37は、動力伝達装置33の出力回転速度から、車速を算出してもよい。
 図7は、自動制御の開始を判定するための処理を示すフローチャートである。図7に示すように、ステップS101では、コントローラ37は、ステアリング操作がなされているかを判定する。コントローラ37は、第1ステアリング部材45と第2ステアリング部材46との少なくとも一方が操作されているときに、ステアリング操作がなされていると判定する。
 コントローラ37は、第1操作信号により、第1ステアリング部材45が、左操舵範囲、または、右操舵範囲内に位置している場合に、第1ステアリング部材45が操作されていると判定する。コントローラ37は、第1操作信号により、第1ステアリング部材45が、中立範囲内に位置している場合に、第1ステアリング部材45が操作されていないと判定する。
 コントローラ37は、第2操作信号により、第2ステアリング部材46の操作速度を取得する。コントローラ37は、操作速度が閾値より大きいあるときに、第2ステアリング部材46が操作されていると判定する。コントローラ37は、操作速度が閾値以下であるときに、第2ステアリング部材46が操作されていないと判定する。例えば、コントローラ37は、第2ステアリング部材46の角速度を算出する。コントローラ37は、第2ステアリング部材46の角速度が閾値以下であるときに、第2ステアリング部材46が操作されていないと判定する。
 ステップS101において、コントローラ37が、ステアリング操作がなされていると判定したときには、処理はステップS106に進む。ステップS106では、マニュアルモードにて、ステアリングアクチュエータ41が制御される。すなわち、コントローラ37は、自動制御を実行せず、上述したように、オペレータによる、第1ステアリング部材45、或いは、第2ステアリング部材46の操作に応じて、ステアリングアクチュエータ41が制御される。
 ステップS101において、コントローラ37が、ステアリング操作がなされていないと判定したときには、処理はステップS102に進む。ステップS102では、コントローラ37は、第1ステアリング部材45と第2ステアリング部材46とのうち、第1ステアリング部材45が最後に操作されたかを判定する。ステップS102において、第1ステアリング部材45と第2ステアリング部材46とのうち、第1ステアリング部材45が最後に操作されていないと、コントローラ37が判定したときには、処理はステップS106に進む。すなわち、最後に操作されたのが第2ステアリング部材46であるときには、コントローラ37は自動制御を実行せず、マニュアルモードにてステアリングアクチュエータ41が制御される。
 ステップS102において、第1ステアリング部材45が最後に操作されたとコントローラ37が判定したときには、処理はステップS103に進む。ステップS103では、コントローラ37は、マニュアルモードから自動制御に遷移後、一度でも操舵角θ1が中立角に戻ったかを判定する。マニュアルモードから自動制御に遷移後、一度も操舵角θ1が中立角に戻っていないとコントローラ37が判定したときには、処理はステップS104に進む。
 ステップS104において、コントローラ37は、センターリターンモードにて、ステアリングアクチュエータ41を制御する。すなわち、コントローラ37は、図6の地点P3から地点P5に示すように、操舵角θ1を中立角に戻すように、ステアリングアクチュエータ41を制御する。
 ステップS103において、マニュアルモードから自動制御に遷移後、一度でも操舵角θ1が中立角に戻ったとコントローラ37が判定したときには、処理はステップS105に進む。ステップS105において、コントローラ37は、ステアリングスタビライザモードにて、ステアリングアクチュエータ41を制御する。図6の地点P5に示すように、ステアリングスタビライザモードでは、コントローラ37は、車体2の進行方向を目標方向(H1)に保持するように、操舵角θ1を制御する。
 以上説明した本実施形態に係る作業機械1では、コントローラ37は、第1ステアリング部材45が操作されておらず、且つ、第1ステアリング部材45と第2ステアリング部材46とのうち、第1ステアリング部材45が最後に操作されたと判定した場合に、自動制御を実行する。また、コントローラ37は、第1ステアリング部材45が操作されていなくても、第1ステアリング部材45と第2ステアリング部材46とのうち、第2ステアリング部材46が最後に操作されたと判定した場合には、自動制御を実行しない。
 そのため、オペレータは、第2ステアリング部材46による操作時には、自動制御の介入無しで、自然な運転感覚で、作業機械1を走行させることができる。それにより、意図しない自動運転の介入が防止されることで、オペレータへの違和感が軽減される。また、オペレータは、第1ステアリング部材45による操作時には、第1ステアリング部材45の操作を停止することで、別途のスイッチ等の操作無しで、円滑に自動制御を開始させることができる。それにより、オペレータへの操作負担が、自動運転によって、さらに軽減される。
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 作業機械1は、モータグレーダに限らず、ホイールローダ、ダンプトラック、フォークリフトなどの他の作業機械であってもよい。ステアリングアクチュエータ41の数は1つに限らず、2つ以上であってもよい。ステアリングアクチュエータ41は、油圧シリンダに限らず、油圧モータ、或いは電動モータであってもよい。
 操舵速度データは、上記の実施形態のものに限らず、変更されてもよい。或いは、センターリターンモードは、省略されてもよい。上記の実施形態では、コントローラ37は、第1ステアリング部材45の操作量に応じた速度で、操舵角θ1を変化させるように、ステアリングアクチュエータ41を制御する。しかし、コントローラ37は、操舵角θ1が、第1ステアリング部材45の操作量に応じた角度となるように、ステアリングアクチュエータ41を制御してもよい。すなわち、第1ステアリング部材45による操舵角θ1の制御は、速度制御型に限らず、位置制御型であってもよい。
 ステアリングスタビライザモードでのコントローラ37による処理は、上記の実施形態のものに限らず、変更されてもよい。例えば、図6の地点P3に示すように、コントローラ37は、オペレータが第1ステアリング部材45を中立範囲に戻したときの車体2の進行方向H2を、目標方向として決定してもよい。
 操舵角の自動制御は、上述したセンターリターンモードとステアリングスタビライザモードに限らず、変更されてもよい。例えば、自動制御は、作業機械1を所定の目標経路に従って走行させる自動ステアリングモードを含んでもよい。自動ステアリングモードにおいて、コントローラ37は、作業機械1が目標経路に従って移動するように、操舵角θ1の目標角度を決定してもよい。目標経路は、オペレータによってコントローラ37に入力されてもよい。目標経路は、外部のコンピュータからコントローラ37に入力されてもよい。或いは、コントローラ37は、目標経路を自動的に生成してもよい。
 本発明によれば、作業機械において、操舵角の自動制御によってオペレータへの操作負担を軽減すると共に、自動制御によるオペレータへの違和感を抑えることができる。
2:車体
3A,3B:前輪
37:コントローラ
41:ステアリングアクチュエータ
45:第1ステアリング部材
46:第2ステアリング部材
47:第2操作センサ
51:第1操作センサ
 

Claims (14)

  1.  車体と、
     前記車体に支持される走行輪と、
     オペレータによって操作可能な第1ステアリング部材と、
     オペレータによって操作可能であり、前記第1ステアリング部材と別体の第2ステアリング部材と、
     前記第1ステアリング部材の操作に応じて前記走行輪の操舵角を変化させ、前記第2ステアリング部材の操作に応じて前記操舵角を変化させるアクチュエータと、
     前記第1ステアリング部材の操作を示す第1操作信号を出力する第1操作センサと、
     前記第2ステアリング部材の操作を示す第2操作信号を出力する第2操作センサと、
     前記第1操作信号と前記第2操作信号とを取得するコントローラと、
    を備え、
     前記コントローラは、
      前記第1ステアリング部材が操作されていないかを判定し、
      前記第1ステアリング部材と前記第2ステアリング部材とのうち、前記第1ステアリング部材が最後に操作されたかを判定し、
      前記第1ステアリング部材が操作されておらず、且つ、前記第1ステアリング部材と前記第2ステアリング部材とのうち、前記第1ステアリング部材が最後に操作されたと判定した場合に、前記操舵角を所定の目標角度とするように前記アクチュエータを制御する自動制御を実行し、
      前記第1ステアリング部材が操作されていなくても、前記第1ステアリング部材と前記第2ステアリング部材とのうち、前記第2ステアリング部材が最後に操作されたと判定した場合には、前記自動制御を実行しない、
    作業機械。
  2.  前記第1ステアリング部材は、レバーである、
    請求項1に記載の作業機械。
  3.  前記第2ステアリング部材は、ステアリングホイールである、
    請求項1又は2に記載の作業機械。
  4.  前記コントローラは、前記自動制御において、
      前記車体の進行方向の目標方向を決定し、
      前記車体の進行方向を前記目標方向に保持するように、前記目標角度を決定する、
    請求項1から3のいずれかに記載の作業機械。
  5.  前記第1ステアリング部材は、左操舵範囲と、右操舵範囲と、前記左操舵範囲と前記右操舵範囲との間の中立範囲とに操作可能であり、
     前記コントローラは、前記第1ステアリング部材の操作位置が前記中立範囲内であるときに、前記第1ステアリング部材が操作されていないと判定する、
    請求項1から4のいずれかに記載の作業機械。
  6.  前記コントローラは、
      前記第2ステアリング部材が操作されているかを判定し、
      前記第2ステアリング部材が操作されていると判定したときには、前記自動制御を実行しない、
    請求項1から5のいずれかに記載の作業機械。
  7.  前記コントローラは、
      前記第2ステアリング部材の操作速度を検出し、
      前記操作速度が閾値以下であるときに、前記第2ステアリング部材が操作されていないと判定する、
    請求項6に記載の作業機械。
  8.  車体と、前記車体に支持される走行輪と、前記走行輪の操舵角を変化させるアクチュエータとを含む作業機械を制御するための方法であって、
     前記操舵角を変化させるために操作可能な第1ステアリング部材の操作を示す第1操作信号を取得することと、
     前記操舵角を変化させるために操作可能であり、前記第1ステアリング部材と別体の第2ステアリング部材の操作を示す第2操作信号を取得することと、
     前記第1ステアリング部材が操作されていないかを判定することと、
     前記第1ステアリング部材と前記第2ステアリング部材とのうち、前記第1ステアリング部材が最後に操作されたかを判定することと、
     前記第1ステアリング部材が操作されておらず、且つ、前記第1ステアリング部材と前記第2ステアリング部材とのうち、前記第1ステアリング部材が最後に操作されたと判定した場合に、前記操舵角を所定の目標角度とするように前記アクチュエータを制御する自動制御を実行することと、
     前記第1ステアリング部材が操作されていなくても、前記第1ステアリング部材と前記第2ステアリング部材とのうち、前記第2ステアリング部材が最後に操作されたと判定した場合には、前記自動制御を実行しないこと、
    を備える方法。
  9.  前記第1ステアリング部材は、レバーである、
    請求項8に記載の方法。
  10.  前記第2ステアリング部材は、ステアリングホイールである、
    請求項8又は9に記載の方法。
  11.  前記自動制御において、前記車体の進行方向の目標方向を決定し、前記車体の進行方向を前記目標方向に保持するように、前記目標角度を決定すること、
    をさらに備える請求項8から10のいずれかに記載の方法。
  12.  前記第1ステアリング部材は、左操舵範囲と、右操舵範囲と、前記左操舵範囲と前記右操舵範囲との間の中立範囲とに操作可能であり、
     前記第1ステアリング部材の操作位置が前記中立範囲内であるときに、前記第1ステアリング部材が操作されていないと判定することをさらに備える、
    請求項8から11のいずれかに記載の方法。
  13.  前記第2ステアリング部材が操作されているかを判定することと、
     前記第2ステアリング部材が操作されていると判定したときには、前記自動制御を実行しないこと、
    をさらに備える請求項8から12のいずれかに記載の方法。
  14.  前記第2ステアリング部材の操作速度を検出することと、
     前記操作速度が閾値以下であるときに、前記第2ステアリング部材が操作されていないと判定すること、
    をさらに備える請求項13に記載の方法。
     
PCT/JP2022/020619 2021-07-16 2022-05-18 作業機械、及び、作業機械を制御するための方法 WO2023286442A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/558,284 US20240229419A1 (en) 2021-07-16 2022-05-18 Work machine and method for controlling work machine
CN202280029260.4A CN117241985A (zh) 2021-07-16 2022-05-18 作业机械以及用于控制作业机械的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-117774 2021-07-16
JP2021117774A JP2023013529A (ja) 2021-07-16 2021-07-16 作業機械、及び、作業機械を制御するための方法

Publications (1)

Publication Number Publication Date
WO2023286442A1 true WO2023286442A1 (ja) 2023-01-19

Family

ID=84919189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020619 WO2023286442A1 (ja) 2021-07-16 2022-05-18 作業機械、及び、作業機械を制御するための方法

Country Status (4)

Country Link
US (1) US20240229419A1 (ja)
JP (1) JP2023013529A (ja)
CN (1) CN117241985A (ja)
WO (1) WO2023286442A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080116000A1 (en) * 2006-10-30 2008-05-22 Caterpillar Inc. Steering system having multiple strategies and variable deadzone
US20140182277A1 (en) * 2012-12-27 2014-07-03 Caterpillar Inc. Electro-Hydraulic Steering System with Spool-Based Steering Event Detection
JP2017087779A (ja) * 2015-11-03 2017-05-25 日立建機株式会社 ホイール式作業車両
US20190071115A1 (en) * 2017-09-05 2019-03-07 Cnh Industrial America Llc Automatic Steering With Selective Engagement Of Four-Wheel Steering
JP2020007795A (ja) * 2018-07-09 2020-01-16 株式会社小松製作所 作業機械およびモータグレーダ
US20200299930A1 (en) * 2019-03-19 2020-09-24 Deere & Company Selectable velocity-based or position-based work vehicle operator control system
JP2021054270A (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 制御システム、作業車両の制御方法、および、作業車両
JP2021054269A (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 制御システム、作業車両の制御方法、および、作業車両

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080116000A1 (en) * 2006-10-30 2008-05-22 Caterpillar Inc. Steering system having multiple strategies and variable deadzone
US20140182277A1 (en) * 2012-12-27 2014-07-03 Caterpillar Inc. Electro-Hydraulic Steering System with Spool-Based Steering Event Detection
JP2017087779A (ja) * 2015-11-03 2017-05-25 日立建機株式会社 ホイール式作業車両
US20190071115A1 (en) * 2017-09-05 2019-03-07 Cnh Industrial America Llc Automatic Steering With Selective Engagement Of Four-Wheel Steering
JP2020007795A (ja) * 2018-07-09 2020-01-16 株式会社小松製作所 作業機械およびモータグレーダ
US20200299930A1 (en) * 2019-03-19 2020-09-24 Deere & Company Selectable velocity-based or position-based work vehicle operator control system
JP2021054270A (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 制御システム、作業車両の制御方法、および、作業車両
JP2021054269A (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 制御システム、作業車両の制御方法、および、作業車両

Also Published As

Publication number Publication date
CN117241985A (zh) 2023-12-15
JP2023013529A (ja) 2023-01-26
US20240229419A1 (en) 2024-07-11

Similar Documents

Publication Publication Date Title
JP2017171091A (ja) モータグレーダにおける制御方法およびモータグレーダ
WO2019030828A1 (ja) 作業車両の制御システム、方法、及び作業車両
JP4212510B2 (ja) 産業用車両
WO2023286442A1 (ja) 作業機械、及び、作業機械を制御するための方法
WO2023286443A1 (ja) 作業機械、及び、作業機械を制御するための方法
JP7182947B2 (ja) ステアリング装置、ステアリングシステム、および作業車両
US20240337089A1 (en) Work machine and method for controlling work machine
WO2023286444A1 (ja) 作業機械、及び作業機械を制御するための方法
WO2023021825A1 (ja) 作業機械、及び、作業機械を制御するための方法
JP7406414B2 (ja) モータグレーダおよびモータグレーダの制御方法
WO2024089987A1 (ja) 作業機械及び作業機械を制御するための方法
WO2023112563A1 (ja) 作業機械、作業機械を制御するための方法、及びシステム
WO2023112560A1 (ja) 作業機械、作業機械を制御するための方法、及びシステム
WO2024232167A1 (ja) 作業機械、及び作業機械を制御するための方法
JP6180764B2 (ja) 建設機械の油圧回路及びその制御方法
WO2024053259A1 (ja) 作業機械、及び、作業機械を制御するための方法
EP4101737A1 (en) Steering device and operating machine
JP7406415B2 (ja) モータグレーダおよびモータグレーダの制御方法
WO2023053700A1 (ja) 作業機械を制御するためのシステムおよび方法
WO2023021826A1 (ja) 作業機械、及び、作業機械を制御するための方法
WO2024084791A1 (ja) 作業機械、及び、作業機械を制御するための方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280029260.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18558284

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22841789

Country of ref document: EP

Kind code of ref document: A1