[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023135944A1 - マルチコア光ファイバの製造方法及びマルチコア光ファイバ - Google Patents

マルチコア光ファイバの製造方法及びマルチコア光ファイバ Download PDF

Info

Publication number
WO2023135944A1
WO2023135944A1 PCT/JP2022/043417 JP2022043417W WO2023135944A1 WO 2023135944 A1 WO2023135944 A1 WO 2023135944A1 JP 2022043417 W JP2022043417 W JP 2022043417W WO 2023135944 A1 WO2023135944 A1 WO 2023135944A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
changing portion
optical fiber
holes
diameter
Prior art date
Application number
PCT/JP2022/043417
Other languages
English (en)
French (fr)
Inventor
拓志 永島
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023573879A priority Critical patent/JPWO2023135944A1/ja
Priority to CN202280080340.2A priority patent/CN118339119A/zh
Publication of WO2023135944A1 publication Critical patent/WO2023135944A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers

Definitions

  • the present disclosure relates to a method for manufacturing a multi-core optical fiber and a multi-core optical fiber.
  • This application claims priority based on Japanese application No. 2022-002526 filed on January 11, 2022, and incorporates all the descriptions described in the Japanese application.
  • MCF multi-core optical fiber
  • multiple cores are arranged in one fiber, so the core density can be improved.
  • the number of cores can be increased while keeping the outer diameter of the optical fiber cable constant. It is also possible to reduce the outer diameter of the cable while keeping the number of cores contained in the optical fiber cable constant.
  • the distance between cores can be made smaller than that of conventional optical fibers arranged in a fiber array, utilization as high-density optical wiring is also expected.
  • a refractive index changing portion having a refractive index different from that of the common clad may be provided in addition to the core.
  • Patent Literature 1 describes an MCF provided with markers for visual recognition.
  • Patent Literature 2 describes an MCF provided with a leakage reduction portion that reduces leakage light from the core region.
  • a common clad tube provided with a plurality of holes is produced, and the inner surfaces of the holes of the common clad tube are subjected to vapor phase treatment (removal of impurities and smoothing). Subsequently, the core and the glass rod serving as the refractive index changing portion are inserted into the plurality of holes, the common clad tube and the glass rod are heated and integrated, and then spun.
  • a method for manufacturing an MCF according to an aspect of the present disclosure includes a common clad, a plurality of cores having a refractive index higher than that of the common clad, and a refractive index changing portion having a refractive index different from that of the common clad. and a manufacturing method of MCF.
  • a method for manufacturing an MCF includes a step of forming a common clad tube by providing a plurality of first holes axially penetrating a first glass rod and a second hole having a diameter different from that of the first holes; A step of vapor-phase treating the inner surface of the first hole and the inner surface of the second hole, inserting one of the plurality of core rods into each of the plurality of vapor-phase-treated first holes, and and forming a second glass rod by inserting a refractive index changing portion rod into the two holes and integrating by heating.
  • the common clad tube is formed such that the diameter of the plurality of first holes is less than or equal to four times the diameter of the second holes.
  • An MCF includes a plurality of cores, a plurality of individual clads surrounding the plurality of cores, a refractive index change portion, and a common clad surrounding the plurality of individual clads and the refractive index change portion.
  • the multiple cores have a refractive index higher than that of the common cladding.
  • the refractive index change portion has a refractive index different from that of the common cladding.
  • the diameters of the plurality of individual claddings are more than 1 times and 4 times or less the diameter of the refractive index changing portion.
  • FIG. 1 is a cross-sectional view of the MCF according to the first embodiment.
  • FIG. 2 is a graph showing an example of refractive index distribution along arrow x in FIG.
  • FIG. 3 is a graph showing an example of refractive index distribution along arrow x in FIG.
  • FIG. 4 is a graph showing an example of refractive index distribution along arrow x in FIG.
  • FIG. 5 is a graph showing an example of refractive index distribution along arrow x in FIG.
  • FIG. 6 is a flow chart showing the method of manufacturing the MCF according to the first embodiment.
  • FIG. 7 is a cross-sectional view of a common clad tube.
  • FIG. 8 is a conceptual cross-sectional view for explaining vapor phase processing.
  • FIG. 8 is a conceptual cross-sectional view for explaining vapor phase processing.
  • FIG. 9 is a cross-sectional view of the second glass rod.
  • FIG. 10 is a graph showing an example of the refractive index distribution of MCF according to the comparative example.
  • FIG. 11 is a graph showing an example of the refractive index distribution of MCF according to the comparative example.
  • FIG. 12 is a cross-sectional view of the MCF according to the second embodiment.
  • FIG. 13 is a cross-sectional view of a common clad tube.
  • FIG. 14 is a cross-sectional view of the second glass rod.
  • the diameter of the core is designed to be larger than the diameter of the refractive index changing portion.
  • the easiness of flow of the gas for vapor phase treatment varies depending on the size of the holes. Since the diameter of the hole corresponding to the refractive index change portion is small, it is difficult for the gas for vapor phase treatment to flow, and the vapor phase treatment is difficult to proceed. Therefore, interfacial bubbles and foreign matter remain, which may cause variations in the clad diameter. If the overall gas flow rate is increased to solve this problem, the holes corresponding to the cores will undergo too much vapor phase processing and the clearance between the core rods and the holes will increase. As a result, there is a risk that the core will be misaligned.
  • An object of the present disclosure is to provide an MCF manufacturing method and an MCF capable of suppressing variations in clad diameter and core misalignment.
  • a method for manufacturing an MCF according to an aspect of the present disclosure includes a common clad, a plurality of cores having a refractive index higher than that of the common clad, and a refractive index changing portion having a refractive index different from that of the common clad. and a manufacturing method of MCF.
  • a method for manufacturing an MCF includes a step of forming a common clad tube by providing a plurality of first holes axially penetrating a first glass rod and a second hole having a diameter different from that of the first holes; A step of vapor-phase treating the inner surface of the first hole and the inner surface of the second hole, inserting one of the plurality of core rods into each of the plurality of vapor-phase-treated first holes, and and forming a second glass rod by inserting a refractive index changing portion rod into the two holes and integrating by heating.
  • the common clad tube is formed such that the diameter of the plurality of first holes is less than or equal to four times the diameter of the second holes.
  • the gas-phase treatment of the second holes can be advanced to the extent that interface bubbles and residual foreign matter can be suppressed, and variations in the clad diameter can be suppressed.
  • the holes are less likely to interfere with each other, and the degree of freedom in arranging the cores can be increased.
  • the diameter of the plurality of first holes may be larger than 1 times the diameter of the second holes, or may be 1.1 times or more.
  • the common clad tube may be formed such that the diameter of the plurality of first holes is 3.2 times or less the diameter of the second holes. In this case, it can be estimated that when the inner surface of the first hole is shaved by 0.2 mm by vapor phase treatment, the inner surface of the second hole is shaved by 6 ⁇ m. Therefore, depending on the surface roughness of the inner surface of the second hole, it is possible to suppress variations in clad diameter and displacement of the core.
  • the common clad tube may be formed such that the diameter of the plurality of first holes is 2.1 times or less the diameter of the second holes. In this case, it can be estimated that when the inner surface of the first hole is shaved by 0.2 mm by vapor phase treatment, the inner surface of the second hole is shaved by 20 ⁇ m. Therefore, depending on the surface roughness of the inner surface of the second hole, it is possible to suppress variations in clad diameter and displacement of the core.
  • the common clad tube may be formed so that the surface roughness of the inner surface of the second holes is smaller than the surface roughness of the inner surfaces of the plurality of first holes. In this case, even if the effect of the vapor phase treatment on the second hole is small, the surface roughness of the inner surface of the second hole after the vapor phase treatment can be brought close to the surface roughness of the inner surface of the first hole.
  • the absolute value of the difference between the maximum value of the relative refractive index of the refractive index change rod and the relative refractive index of the common clad tube is greater than 0.3%, and is common to the relative refractive index of the outer peripheral surface of the refractive index change rod.
  • the absolute value of the difference from the relative refractive index of the clad tube may be 0.2% or less.
  • XT the visibility of the refractive index changing portion or the effect of reducing crosstalk
  • a dopant is added to the refractive index changing rod, and the dopant concentration in the outer region of the refractive index changing rod may be lower than the dopant concentration in the inner region of the refractive index changing rod.
  • the relationship between the refractive index and the relative refractive index between the refractive index changing portion rod and the common clad tube can be realized.
  • a first dopant may be added to the inner region of the refractive index changing rod, and a second dopant different from the first dopant may be added to the outer region of the refractive index changing rod.
  • the relationship between the refractive index and the relative refractive index between the refractive index changing portion rod and the common clad tube can be realized.
  • the refractive index changing portion may be a marker arranged at a position asymmetric with respect to the symmetry of the arrangement of the cores. In this case, each core of the MCF can be identified.
  • the refractive index changing portion may be an XT reducing portion arranged between adjacent cores. In this case, the transmission loss of MCF is suppressed.
  • the above MCF manufacturing method further includes a step of drawing the second glass rod, and the drawing step may be performed simultaneously with the step of forming the second glass rod.
  • the common clad tube, the core rod, and the refractive index change section rod are heated and integrated to form the second glass rod, and the drawing is performed at the same time, so that the MCF can be efficiently manufactured.
  • the above MCF manufacturing method may further include the step of drawing the second glass rod, and the drawing step may be performed separately from the step of forming the second glass rod.
  • the drawing step may be performed separately from the step of forming the second glass rod.
  • the second glass rod is melted by heating again and drawn, so that the degree of freedom of the drawing temperature can be increased.
  • An MCF includes a plurality of cores, a plurality of individual clads surrounding the plurality of cores, a refractive index change portion, and a common clad surrounding the plurality of individual clads and the refractive index change portion.
  • the multiple cores have a refractive index higher than that of the common cladding.
  • the refractive index change portion has a refractive index different from that of the common cladding.
  • the diameters of the plurality of individual claddings are more than 1 times and 4 times or less the diameter of the refractive index changing portion.
  • the diameter of the plurality of individual clads may be 3.2 times or less the diameter of the refractive index changing portion. Even in this case, variations in the clad diameter and displacement of the core can be suppressed.
  • the diameter of the plurality of individual clads may be 2.1 times or less the diameter of the refractive index changing portion. Even in this case, variations in the clad diameter and displacement of the core can be suppressed.
  • the maximum absolute value of the difference between the relative refractive index of the refractive index changing portion and the relative refractive index of the common clad is greater than 0.3%, and the ratio of the relative refractive index on the outer peripheral surface of the refractive index changing portion to the common clad
  • the absolute value of the difference from the refractive index may be 0.2% or less. In this case, the visibility of the refractive index change portion or the effect of reducing XT is ensured, and the fluctuation of the clad diameter is suppressed by suppressing interface bubbles.
  • a dopant is added to the refractive index changing portion, and the dopant concentration in the outer region of the refractive index changing portion may be lower than the dopant concentration in the inner region of the refractive index changing portion.
  • the relationship between the refractive index and the relative refractive index can be realized between the refractive index changing portion and the common clad.
  • a first dopant may be added to the inner region of the refractive index changing portion, and a second dopant different from the first dopant may be added to the outer region of the refractive index changing portion.
  • the relationship between the refractive index and the relative refractive index can be realized between the refractive index changing portion and the common clad.
  • FIG. 1 is a cross-sectional view of the MCF according to the first embodiment.
  • the MCF 1 according to the first embodiment includes multiple cores 2 , multiple individual clads 3 , a refractive index changing portion 4 and a common clad 5 .
  • the number of cores 2 and the number of individual clads 3 are each four.
  • the MCF 1 is made of a silica-based glass material.
  • a plurality of cores 2 extend along the central axis of MCF1.
  • the plurality of cores 2 are arranged at positions that are rotationally symmetrical with respect to the central axis of the MCF 1 in a cross section orthogonal to the central axis of the MCF 1 .
  • the cross-sectional shapes of the plurality of cores 2 are the same circular shape.
  • the diameter of the core 2 is, for example, 6 ⁇ m or more and 12 ⁇ m or less.
  • Core 2 has a refractive index higher than that of common cladding 5 .
  • the core 2 contains, for example, germanium or the like as a dopant for adjusting the refractive index.
  • the core 2 may contain no dopant for adjusting the refractive index and the common clad 5 may contain a dopant (for example, fluorine) for lowering the refractive index.
  • a plurality of individual clads 3 surround a plurality of cores 2. Each individual cladding 3 surrounds the corresponding core 2 .
  • the individual cladding 3 is in contact with the core 2.
  • the diameter d3 of the individual clad 3 is, for example, 20 ⁇ m or more and 40 ⁇ m or less.
  • the thickness of the individual clad 3 is, for example, 4 ⁇ m or more and 17 ⁇ m or less.
  • the individual claddings 3 have a refractive index that is the same as or different from that of the common cladding 5 .
  • the refractive index changing portion 4 is provided apart from the plurality of cores 2 and the plurality of individual clads 3 .
  • the refractive index changing portion 4 is arranged at a position that is asymmetric with respect to the symmetry of the arrangement of the cores 2 , that is, at a position that destroys the symmetry of the arrangement of the cores 2 .
  • the diameter d4 of the refractive index changing portion 4 is smaller than the diameter d3 of the individual cladding 3 .
  • a ratio d3/d4 of diameter d3 to diameter d4 is greater than 1 and less than or equal to 4. That is, the diameter d3 is greater than 1 times and less than or equal to 4 times the diameter d4.
  • the ratio d3/d4 may be 3.2 times or less, or may be 2.1 times or less. That is, the diameter d3 may be 3.2 times or less the diameter d4, or may be 2.1 times or less.
  • the refractive index changing portion 4 includes an outer peripheral surface 4a, an outer region 4b including the outer peripheral surface 4a, and an inner region 4c located inside the outer region 4b.
  • the outer peripheral surface 4 a is in contact with the common clad 5 .
  • the outer region 4b is in contact with the inner region 4c.
  • the thickness of the outer region 4b is, for example, 2 ⁇ m or more and 5 ⁇ m or less.
  • the diameter of the inner region 4c is, for example, 2 ⁇ m or more and 15 ⁇ m or less.
  • the refractive index of the outer region 4b and the refractive index of the inner region 4c are different from each other.
  • the absolute value of the difference between the relative refractive indices of the inner region 4 c and the common clad 5 is greater than the absolute value of the difference between the relative refractive indices of the outer region 4 b and the common clad 5 .
  • the refractive index of the inner region 4c is uniform over the entire inner region 4c.
  • the absolute value of the difference between the relative refractive index of the inner region 4c and the relative refractive index of the common clad 5 is the maximum absolute value of the difference between the relative refractive index of the refractive index changing portion 4 and the relative refractive index of the common clad 5. be.
  • the absolute value of the difference between the maximum relative refractive index of the refractive index changing portion 4 and the relative refractive index of the common clad 5 is greater than 0.3%.
  • the refractive index of the outer region 4b may be uniform over the entire outer region 4b, or may vary.
  • the absolute value of the difference between the relative refractive index of the outer peripheral surface 4a of the refractive index changing portion 4 and the relative refractive index of the common clad 5 is 0.2% or less. At the interface between the outer region 4b and the common clad 5, the refractive index changes discontinuously.
  • a dopant for adjusting the refractive index is added to the refractive index changing portion 4 .
  • a single dopant may be added to the refractive index changing portion 4, and the refractive distribution shown in FIGS. 2 and 3 may be realized by varying the concentration of the dopant.
  • two types of dopants may be added to the refractive index changing portion 4, and the refractive index distributions shown in FIGS. 4 and 5 may be realized by using different types of dopants.
  • the refractive index of the inner region 4c is higher than the refractive index of the common cladding 5 and the refractive index of the outer region 4b.
  • the refractive index of the outer region 4b is lower than that of the inner region 4c and higher than that of the common cladding 5.
  • FIG. The refractive index of the outer region 4b changes (decreases) so as to approach the refractive index of the common clad 5 from the inner region 4c toward the outer peripheral surface 4a.
  • the change in refractive index of the outer region 4b is continuous.
  • the absolute value of the difference between the relative refractive index of the outer region 4b and the relative refractive index of the common clad 5 is the smallest at the outer peripheral surface 4a.
  • a single dopant is added to the refractive index changing portion 4 .
  • Dopants are, for example, germanium, chlorine, and the like.
  • the dopant concentration in the outer region 4b is lower than the dopant concentration in the inner region 4c.
  • the dopant concentration in the outer region 4b changes (decreases) from the inner region 4c toward the outer peripheral surface 4a.
  • the refractive index of the inner region 4c is lower than the refractive index of the common cladding 5 and the refractive index of the outer region 4b.
  • the refractive index of the outer region 4 b is higher than that of the inner region 4 c and lower than that of the common cladding 5 .
  • the refractive index of the outer region 4b changes (increases) so as to approach the refractive index of the common clad 5 from the inner region 4c toward the outer peripheral surface 4a.
  • the change in refractive index of the outer region 4b is continuous.
  • the absolute value of the difference between the relative refractive index of the outer region 4b and the relative refractive index of the common clad 5 is the smallest at the outer peripheral surface 4a.
  • a single dopant is added to the refractive index changing portion 4 .
  • a dopant is fluorine etc., for example.
  • the dopant concentration in the outer region 4b is lower than the dopant concentration in the inner region 4c.
  • the dopant concentration in the outer region 4b changes (decreases) from the inner region 4c toward the outer peripheral surface 4a.
  • the refractive index of the inner region 4c is higher than the refractive index of the common cladding 5 and the refractive index of the outer region 4b.
  • the refractive index of the outer region 4b is lower than the refractive index of the inner region 4c and the refractive index of the common cladding 5 .
  • the refractive index of the outer region 4b is uniform over the entire outer region 4b.
  • Different types of first dopant and second dopant are added to the refractive index changing portion 4 .
  • a first dopant is added to the inner region 4c.
  • the first dopant is, for example, germanium, chlorine, or the like.
  • a second dopant is added to the outer region 4b.
  • the second dopant is, for example, fluorine.
  • the refractive index of the inner region 4c is lower than the refractive index of the common cladding 5 and the refractive index of the outer region 4b.
  • the refractive index of the outer region 4b is higher than the refractive index of the inner region 4c and the refractive index of the common cladding 5 .
  • the refractive index of the outer region 4b is uniform over the entire outer region 4b.
  • Different types of first dopant and second dopant are added to the refractive index changing portion 4 .
  • a first dopant is added to the inner region 4c.
  • the first dopant is, for example, fluorine.
  • a second dopant is added to the outer region 4b.
  • the second dopant is, for example, germanium, chlorine, or the like.
  • the refractive index changing portion 4 is a marker that enables identification of the plurality of cores 2 .
  • a common clad 5 surrounds the plurality of individual clads 3 and the refractive index changing portions 4 .
  • the common clad 5 is in contact with each of the individual clads 3 and the refractive index changing portions 4 .
  • the diameter (cladding diameter) of the common clad 5 is, for example, 100 ⁇ m or more and 300 ⁇ m or less.
  • FIG. 6 is a flow chart showing the method of manufacturing the MCF according to the first embodiment. As shown in FIG. 6, the manufacturing method of MCF1 includes steps S1 to S4.
  • the step S1 is a step of forming a common clad tube 10 that will become the common clad 5.
  • FIG. 7 is a cross-sectional view of a common clad tube. As shown in FIG. 7, in step S1, by providing a plurality of first holes 11 axially penetrating a first glass rod (not shown) and second holes 12 having a different diameter from the first holes 11, , a common cladding tube 10 is formed.
  • Step S2 is performed after the step S1.
  • Step S2 is a step of subjecting the inner surfaces of the plurality of first holes 11 and the inner surfaces of the second holes 12 to vapor phase treatment.
  • the outer peripheral surface of the common clad tube 10 is heated by an external heat source 13 while the vapor-phase treatment gas flows through the plurality of first holes 11 and the second holes 12 of the common clad tube 10.
  • the external heat source 13 for example, an induction furnace, a resistance furnace, an oxyhydrogen burner, or the like is used.
  • Vapor-phase processing gas is introduced into the common clad tube 10 through the glass tube 14 connected to one end of the common clad tube 10 and is introduced into the common clad tube 10 through the glass tube 14 connected to the other end of the common clad tube 10 .
  • the tube 10 is discharged.
  • the vapor phase treatment is, for example, an etching treatment for smoothing the inner surface of the common clad tube 10 (that is, the inner surfaces of the plurality of first holes 11 and the inner surfaces of the second holes 12).
  • an etching gas such as SF6 , for example, is used as the vapor phase processing gas.
  • the vapor phase treatment is, for example, a cleaning process for removing foreign matter from the inner surface of the common clad tube 10 (that is, foreign matter from the inner surfaces of the plurality of first holes 11 and foreign matter from the inner surfaces of the second holes 12).
  • a cleansing gas such as chlorine or oxygen (that is, a baking gas) is used as the vapor phase treatment gas.
  • Step S3 is performed after step S2.
  • Step S3 is a step of inserting a plurality of core rods 21 into a plurality of first holes 11, inserting a refractive index change portion rod 22 into a plurality of second holes 12, and heating and integrating them to form a second glass rod 20.
  • FIG. 9 is a cross-sectional view of the second glass rod.
  • the second glass rod 20 is an MCF base material.
  • the core rod 21 used in step S3 has a core portion 23 that serves as the core 2 and an individual clad portion 24 that serves as the individual clad 3 .
  • the refractive index changing portion rod 22 becomes the refractive index changing portion 4 .
  • the refractive index changing portion rod 22 includes an outer peripheral surface 22a that serves as the outer peripheral surface 4a, an outer region 22b that serves as the outer region 4b, and an inner region 22c that serves as the inner region 4c.
  • the refractive index of the refractive index changing portion rod 22 corresponds to the refractive index of the refractive index changing portion 4 .
  • the absolute value of the difference between the maximum value of the relative refractive index of the refractive index changing portion rod 22 and the relative refractive index of the common clad tube 10 is greater than 0.3%.
  • the absolute value of the difference between the relative refractive index of the outer peripheral surface 22a of the refractive index changing portion rod 22 and the relative refractive index of the common clad tube 10 is 0.2% or less.
  • the dopant added to the refractive index changing portion rod 22 corresponds to the dopant added to the refractive index changing portion 4 . That is, the index change rod 22 corresponding to the examples shown in FIGS. 2 and 3 is doped with a single dopant. The dopant concentration in the outer region of the refractive index changing rod 22 is lower than the dopant concentration in the inner region of the refractive index changing rod 22 . Different kinds of first dopant and second dopant are added to the refractive index changing portion rod 22 corresponding to the examples shown in FIGS. 4 and 5 . A first dopant is added to the inner region of the refractive index changing portion rod 22 . A second dopant is added to the outer region of the refractive index changing portion rod 22 .
  • the refractive index changing portion rod 22 corresponding to the examples shown in FIGS. 4 and 5 is produced by, for example, a VAD (Vapor-phase Axial Deposition) method, an OVD (Outside Vapor Deposition) method, a collapse method, or the like.
  • VAD Vapor-phase Axial Deposition
  • OVD Outside Vapor Deposition
  • Step S4 is a step of drawing the second glass rod 20 formed in step S3.
  • MCF1 is manufactured.
  • Process S4 is performed simultaneously with process S3, for example.
  • the common clad tube 10, the core rod 21, and the refractive index change portion rod 22 are heat-integrated to form the second glass rod 20, and the drawing is performed at the same time.
  • Step S4 may be performed separately from step S3. In this case, after the second glass rod 20 is formed, the second glass rod 20 is melted by heating again for wire drawing, so the degree of freedom of the wire drawing temperature can be increased.
  • the easiness of flow of the vapor phase treatment gas varies depending on the size of the holes. Therefore, it is difficult to smooth the inner surface of the small-diameter hole, and it is difficult to obtain the effect of removing foreign matter.
  • air bubbles tend to remain.
  • foreign matter remains on the inner surface of the common clad tube, it will lead to a decrease in fiber strength and aggravation of transmission loss. In either case, quality defects such as variations in clad diameter are likely to occur during fiberization. Markers are often arranged closer to the outer periphery of the common clad than the core, and it is known that bubbles at the interface between the markers and the common clad tend to swell during fiberization.
  • the range of ratio d11/d12 of the diameter d11 of the plurality of first holes 11 to the diameter d12 of the second holes 12 of the common clad tube 10 is defined.
  • the pressure loss ⁇ P is proportional to the average flow velocity in the pipe and inversely proportional to the square of the hole diameter. Since the pressure difference between the upstream and downstream sides of the common clad tube 10 (that is, both ends of the common clad tube 10) is constant, the pressure loss in each hole 11, 12 is assumed to be equal.
  • the average gas flow velocity is proportional to the square of the diameters d11 and d12 of the holes 11 and 12, respectively.
  • the volume of glass that reacts in each of the holes 11 and 12 is proportional to the flow rate of the gas flowing through each of the holes 11 and 12 .
  • the hole with a larger inner surface area that is, a larger diameter
  • the thickness to be cut at each of the holes 11 and 12 is inversely proportional to the diameters d11 and d12). Taking this into consideration, the ratio of the thickness cut by the holes 11 and 12 can be calculated.
  • the etching thickness of the inner surface of the hole is proportional to the cube of the diameter of the hole, it can be estimated as follows, assuming that the etching thickness of the inner surface of the first hole 11 is suppressed to 0.2 mm or less. - When the ratio d11/d12 is 4.0, the etching thickness of the inner surface of the second hole 12 is 3 ⁇ m. - When the ratio d11/d12 is 3.2, the etching thickness of the inner surface of the second hole 12 is 6 ⁇ m. - When the ratio d11/d12 is 2.1, the etching thickness of the inner surface of the second hole 12 is 20 ⁇ m.
  • the common clad tube 10 is formed such that the ratio d11/d12 is 4 times or less, that is, the diameter d11 is 4 times or less than the diameter d12.
  • the common clad tube 10 is formed so that the ratio d11/d12 is 3.2 times or less, that is, the diameter d11 is 3.2 times or less than the diameter d12, depending on the surface roughness of the inner surface of the second hole 12.
  • the ratio d11/d12 may be 2.1 times or less, that is, the diameter d11 may be formed to be 2.1 times or less than the diameter d12.
  • step S1 the common clad tube 10 is formed so that the ratio d11/d12 is four times or less. Therefore, the vapor phase treatment of the second holes 12 can be advanced to the extent that interface bubbles and residual foreign matter can be suppressed, and variations in the clad diameter can be suppressed. In addition, it is possible to suppress the progress of the vapor phase treatment of the first hole 11 to the extent that it is possible to suppress the clearance between the core rod 21 and the first hole 11 from becoming large, thereby suppressing the displacement of the core 2 . .
  • the refractive index changing portion is designed to be smaller than the core.
  • the optical properties of MCF vary greatly depending on the design of the core.
  • the refractive index change portion is a marker, it is sufficient if it can be identified, and if it is an XT reduction portion, it is sufficient if XT can be reduced.
  • the refractive index changing portion can be arranged. Limited area. Further, when the refractive index changing portion is a marker, it is necessary to offset the refractive index changing portion in order to destroy the symmetry of the core arrangement. If the refractive index change portion is large, the offset amount cannot be increased, making it difficult to function as a marker.
  • the absolute value of the difference between the maximum value of the relative refractive index of the refractive index changing portion rod 22 and the relative refractive index of the common clad tube 10 is greater than 0.3%. Thereby, the visibility of the refractive index changing portion 4 can be ensured.
  • the absolute value of the difference between the relative refractive index of the outer peripheral surface 22a of the refractive index changing portion rod 22 and the relative refractive index of the common clad tube 10A is 0.2% or less. As a result, the difference in viscosity at the collapse interface between the refractive index changing portion 4 and the common clad 5 can be reduced, and the generation of interface bubbles can be suppressed.
  • FIGS. 10 and 11 are graphs showing examples of refractive index distributions of MCFs according to comparative examples.
  • a single dopant is uniformly added over the entire refractive index changing portion 4, and the refractive index of the refractive index changing portion 4 is 4 is uniform over the entire area, which is different from the MCF 1 according to the first embodiment. Therefore, in the comparative example, the relationship between the refractive index and the relative refractive index between the refractive index changing portion 4 and the common clad 5 as in the present embodiment cannot be realized.
  • the refractive index changing portion rod 22 is doped with a single dopant, and the dopant concentration in the outer region 22b is lower than the dopant concentration in the inner region 22c.
  • the relationship between the refractive index and the relative refractive index between the refractive index change portion 4 and the common clad 5 is realized.
  • a first dopant is added to the inner region 22c, and a second dopant different from the first dopant is added to the outer region 22b.
  • FIGS. 4 and 5 the relationship between the refractive index and the relative refractive index between the refractive index change portion 4 and the common clad 5 can be realized.
  • FIG. 12 is a cross-sectional view of the MCF according to the second embodiment.
  • the refractive index change portion 4A is an XT reduction portion that is arranged between adjacent cores 2 and serves as a barrier for XT reduction.
  • the absolute value of the difference between the maximum relative refractive index of the refractive index changing portion 4A and the relative refractive index of the common clad 5 is greater than 0.3%. This ensures the XT reduction effect of the refractive index changing portion 4A.
  • the MCF 1A includes, for example, a plurality of refractive index changing portions 4A, and the refractive index changing portions 4A are arranged at a plurality of locations.
  • the MCF 1A has four refractive index changing portions 4A.
  • the common clad tube 10A shown in FIG. 13 is formed in step S1.
  • the common clad tube 10A differs from the common clad tube 10 in that second holes 12A are provided instead of the second holes 12A.
  • the common clad tube 10A is provided with, for example, a plurality of second holes 12A.
  • the common clad tube 10A is provided with four second holes 12A.
  • Step S2 is performed in the same manner as step S2 of the manufacturing method of MCF1.
  • step S3 the core rod 21 and the refractive index changing portion rod 22A are inserted into the common clad tube 10A and integrated by heating to form the second glass rod 20A shown in FIG.
  • the second glass rod 20A differs from the second glass rod 20 in that instead of the common clad tube 10 and the refractive index change rod 22, a common clad tube 10A and a refractive index change rod 22A are provided.
  • Step S4 is performed in the same manner as step S4 of the manufacturing method of MCF1.
  • the common clad tube 10 may be formed such that the surface roughness of the inner surface of the second holes 12 is smaller than the surface roughness of the inner surfaces of the plurality of first holes 11 .
  • the surface roughness of the inner surfaces of the second holes 12 after the vapor phase treatment is brought close to the surface roughness of the inner surfaces of the first holes 11. be able to.
  • a method of changing the surface roughness of the inner surface of the second hole 12 there are a method of changing the number of the drill used for drilling, a method of slowing the processing speed, and a method of polishing the inner surface after drilling.
  • the surface roughness can be measured with a commercially available surface roughness measuring instrument.
  • Surface roughness is, for example, arithmetic mean roughness.
  • the surface roughness can be confirmed by measuring a range of about 5 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

MCFの製造方法は、共通クラッドと、共通クラッドの屈折率よりも高い屈折率を有する複数のコアと、共通クラッドの屈折率とは異なる屈折率を有する屈折率変化部と、を備えるMCFの製造方法である。MCFの製造方法は、第1ガラスロッドに軸方向に貫通する複数の第1孔、及び、第1孔と異なる直径を有する第2孔を設けることにより、共通クラッド管を形成する工程と、複数の第1孔の内面、及び、第2孔の内面を気相処理する工程と、気相処理された複数の第1孔の各々に複数のコアロッドのうちの1つをそれぞれ挿入すると共に、第2孔に屈折率変化部ロッドを挿入し、加熱一体化することにより第2ガラスロッドを形成する工程と、を含む。共通クラッド管は、複数の第1孔の直径が第2孔の直径の4倍以下となるように形成される。

Description

マルチコア光ファイバの製造方法及びマルチコア光ファイバ
 本開示は、マルチコア光ファイバの製造方法及びマルチコア光ファイバに関する。本出願は、2022年1月11日出願の日本出願第2022-002526号に基づく優先権を主張し、日本出願に記載された全ての記載内容を援用するものである。
 マルチコア光ファイバ(以下、MCF)では、1本のファイバに複数のコアが配置されるので、コア密度を向上できる。これにより、光ファイバケーブルの外径を一定に保ったままコア数を増加させることができる。また、光ファイバケーブルに内蔵するコア数を一定に保ったままケーブル外径を細くすることもできる。更に、従来の光ファイバを並べてファイバアレイにするよりもコア間距離を小さくすることができるので、高密度な光配線としての活用も期待される。
 MCFでは、コア以外に共通クラッドの屈折率と異なる屈折率を有する屈折率変化部が設けられる場合がある。特許文献1には、視認用マーカが設けられたMCFが記載されている。特許文献2には、コア領域からの漏れ光を低減する漏洩低減部が設けられたMCFが記載されている。このようなMCFを製造するには、複数の孔が設けられた共通クラッド管を作製し、共通クラッド管の孔内面に対して気相処理(不純物の除去および平滑化)を行う。続いて、コア及び屈折率変化部となるガラスロッドを複数の孔に挿入し、共通クラッド管とガラスロッドとを加熱一体化した後、紡糸する。
特開2011-170099号公報 国際公開第2010/082656号公報
 本開示の一態様に係るMCFの製造方法は、共通クラッドと、共通クラッドの屈折率よりも高い屈折率を有する複数のコアと、共通クラッドの屈折率とは異なる屈折率を有する屈折率変化部と、を備えるMCFの製造方法である。MCFの製造方法は、第1ガラスロッドに軸方向に貫通する複数の第1孔、及び、第1孔と異なる直径を有する第2孔を設けることにより、共通クラッド管を形成する工程と、複数の第1孔の内面、及び、第2孔の内面を気相処理する工程と、気相処理された複数の第1孔の各々に複数のコアロッドのうちの1つをそれぞれ挿入すると共に、第2孔に屈折率変化部ロッドを挿入し、加熱一体化することにより第2ガラスロッドを形成する工程と、を含む。共通クラッド管は、複数の第1孔の直径が第2孔の直径の4倍以下となるように形成される。
 本開示の一態様に係るMCFは、複数のコアと、複数のコアを取り囲む複数の個別クラッドと、屈折率変化部と、複数の個別クラッドと屈折率変化部とを取り囲む共通クラッドと、を備える。複数のコアは、共通クラッドの屈折率よりも高い屈折率を有する。屈折率変化部は、共通クラッドの屈折率とは異なる屈折率を有する。複数の個別クラッドの直径は、屈折率変化部の直径の1倍より大きく4倍以下である。
図1は、第1実施形態に係るMCFの断面図である。 図2は、図1の矢印xに沿っての屈折率分布の例を示すグラフである。 図3は、図1の矢印xに沿っての屈折率分布の例を示すグラフである。 図4は、図1の矢印xに沿っての屈折率分布の例を示すグラフである。 図5は、図1の矢印xに沿っての屈折率分布の例を示すグラフである。 図6は、第1実施形態に係るMCFの製造方法を示すフローチャートである。 図7は、共通クラッド管の断面図である。 図8は、気相処理について説明するための概念的な断面図である。 図9は、第2ガラスロッドの断面図である。 図10は、比較例に係るMCFの屈折率分布の例を示すグラフである。 図11は、比較例に係るMCFの屈折率分布の例を示すグラフである。 図12は、第2実施形態に係るMCFの断面図である。 図13は、共通クラッド管の断面図である。 図14は、第2ガラスロッドの断面図である。
[本開示が解決しようとする課題]
 一般にコアの直径は、屈折率変化部の直径よりも大きく設計される。共通クラッド管の気相処理では、孔の大きさによって気相処理用ガスの流れ易さが異なる。屈折率変化部に対応する孔では、直径が小さいために気相処理用ガスが流れ難く、気相処理が進行し難い。よって、界面気泡や異物残留が生じ、クラッド径の変動を引き起こすおそれがある。この問題を解決するために全体のガス流量を増やすと、コアに対応する孔では、気相処理が進行し過ぎ、コアロッドと孔との間のクリアランスが大きくなる。その結果、コアの位置ずれが生じるおそれがある。
 本開示は、クラッド径の変動及びコアの位置ずれを抑制可能なMCFの製造方法及びMCFを提供することを目的とする。
[本開示の効果]
 本開示によれば、クラッド径の変動及びコアの位置ずれを抑制可能なMCFの製造方法及びMCFを提供することができる。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。本開示の一態様に係るMCFの製造方法は、共通クラッドと、共通クラッドの屈折率よりも高い屈折率を有する複数のコアと、共通クラッドの屈折率とは異なる屈折率を有する屈折率変化部と、を備えるMCFの製造方法である。MCFの製造方法は、第1ガラスロッドに軸方向に貫通する複数の第1孔、及び、第1孔と異なる直径を有する第2孔を設けることにより、共通クラッド管を形成する工程と、複数の第1孔の内面、及び、第2孔の内面を気相処理する工程と、気相処理された複数の第1孔の各々に複数のコアロッドのうちの1つをそれぞれ挿入すると共に、第2孔に屈折率変化部ロッドを挿入し、加熱一体化することにより第2ガラスロッドを形成する工程と、を含む。共通クラッド管は、複数の第1孔の直径が第2孔の直径の4倍以下となるように形成される。
 上記MCFの製造方法では、複数の第1孔の直径が第2孔の直径の4倍の場合、直径が大きい第1孔の内面を気相処理により0.2mm削る際、第2孔の内面は3μm削られると試算できる。よって、界面気泡や異物残留を抑制可能な程度に第2孔の気相処理を進行させ、クラッド径の変動を抑制することができる。また、コアロッドと第1孔との間のクリアランスが大きくなることを抑制可能な程度に第1孔の気相処理の進行を抑制し、コアの位置ずれを抑制することができる。更に、第1孔の直径を小さくすることで孔同士が干渉しにくくなり、コア配置の自由度を増すことができる。なお、複数の第1孔の直径が第2孔の直径の1倍より大きくてもよく、1.1倍以上であってもよい。
 共通クラッド管は、複数の第1孔の直径が第2孔の直径の3.2倍以下となるように形成されてもよい。この場合、第1孔の内面を気相処理により0.2mm削る際、第2孔の内面は6μm削られると試算できる。したがって、第2孔の内面の表面粗さによっては、クラッド径の変動及びコアの位置ずれを抑制可能である。
 共通クラッド管は、複数の第1孔の直径が第2孔の直径の2.1倍以下となるように形成されてもよい。この場合、第1孔の内面を気相処理により0.2mm削る際、第2孔の内面は20μm削られると試算できる。したがって、第2孔の内面の表面粗さによっては、クラッド径の変動及びコアの位置ずれを抑制可能である。
 共通クラッド管は、第2孔の内面の表面粗さが、複数の第1孔の内面の表面粗さよりも小さくなるように形成されてもよい。この場合、第2孔において気相処理の効果が薄かったとしても、気相処理後の第2孔の内面の表面粗さを第1孔の内面の表面粗さに近づけることができる。
 屈折率変化部ロッドの比屈折率の最大値と共通クラッド管の比屈折率との差の絶対値は、0.3%よりも大きく、屈折率変化部ロッドの外周面における比屈折率と共通クラッド管の比屈折率との差の絶対値は、0.2%以下であってもよい。この場合、屈折率変化部の視認性又はクロストーク(以下、XT)低減効果を確保すると共に、屈折率変化部の外周面と共通クラッドとの粘性差を低減し、界面気泡の発生を抑制することができる。なお、本明細書において、「比屈折率」とは、純シリカガラスの屈折率で規格化した対象物の屈折率を示す。
 屈折率変化部ロッドには、ドーパントが添加されており、屈折率変化部ロッドの外側領域におけるドーパントの濃度は、屈折率変化部ロッドの内側領域におけるドーパントの濃度よりも低くてもよい。この場合、屈折率変化部ロッドと共通クラッド管との間の上記屈折率及び比屈折率の関係を実現できる。
 屈折率変化部ロッドの内側領域には、第1ドーパントが添加されており、屈折率変化部ロッドの外側領域には、第1ドーパントとは異なる第2ドーパントが添加されていてもよい。この場合、屈折率変化部ロッドと共通クラッド管との間の上記屈折率及び比屈折率の関係を実現できる。
 屈折率変化部は、複数のコアの配置の対称性に対して非対称となる位置に配置されているマーカであってもよい。この場合、MCFの各コアを識別することができる。
 屈折率変化部は、隣り合うコア間に配置されるXT低減部であってもよい。この場合、MCFの伝送損失が抑制される。
 上記MCFの製造方法は、第2ガラスロッドを線引きする工程を更に含み、線引きする工程は、第2ガラスロッドを形成する工程と同時に行われてもよい。この場合、共通クラッド管、コアロッド、及び屈折率変化部ロッドを加熱一体化することにより第2ガラスロッドを形成しながら、同時に線引きを行うので、効率的にMCFを製造することができる。
 上記MCFの製造方法は、第2ガラスロッドを線引きする工程を更に含み、線引きする工程は、第2ガラスロッドを形成する工程とは別に行われてもよい。この場合、第2ガラスロッドを形成した後に第2ガラスロッドを再度加熱により溶融させて線引きを行うので、線引き温度の自由度を増すことができる。
 本開示の一態様に係るMCFは、複数のコアと、複数のコアを取り囲む複数の個別クラッドと、屈折率変化部と、複数の個別クラッドと屈折率変化部とを取り囲む共通クラッドと、を備える。複数のコアは、共通クラッドの屈折率よりも高い屈折率を有する。屈折率変化部は、共通クラッドの屈折率とは異なる屈折率を有する。複数の個別クラッドの直径は、屈折率変化部の直径の1倍より大きく4倍以下である。
 上記MCFでは、界面気泡や異物残留が抑制されていることにより、クラッド径の変動が抑制されている。コアの位置ずれが抑制されている。
 複数の個別クラッドの直径は、屈折率変化部の直径の3.2倍以下であってもよい。この場合であっても、クラッド径の変動及びコアの位置ずれを抑制可能である。
 複数の個別クラッドの直径は、屈折率変化部の直径の2.1倍以下であってもよい。この場合であっても、クラッド径の変動及びコアの位置ずれを抑制可能である。
 屈折率変化部の比屈折率と共通クラッドの比屈折率との差の絶対値の最大値は、0.3%よりも大きく、屈折率変化部の外周面における比屈折率と共通クラッドの比屈折率との差の絶対値は、0.2%以下であってもよい。この場合、屈折率変化部の視認性又はXT低減効果が確保されていると共に、界面気泡が抑制されることにより、クラッド径の変動が抑制されている。
 屈折率変化部には、ドーパントが添加されており、屈折率変化部の外側領域におけるドーパントの濃度は、屈折率変化部の内側領域におけるドーパントの濃度よりも低くてもよい。この場合、屈折率変化部と共通クラッドとの間の上記屈折率及び比屈折率の関係を実現できる。
 屈折率変化部の内側領域には、第1ドーパントが添加されており、屈折率変化部の外側領域には、第1ドーパントとは異なる第2ドーパントが添加されてもよい。この場合、屈折率変化部と共通クラッドとの間の上記屈折率及び比屈折率の関係を実現できる。
[本開示の実施形態の詳細]
 本開示のMCFの製造方法及びMCFの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
 図1は、第1実施形態に係るMCFの断面図である。図1に示されるように、第1実施形態に係るMCF1は、複数のコア2と、複数の個別クラッド3と、屈折率変化部4と、共通クラッド5と、を備える。本実施形態では、コア2の数、及び、個別クラッド3の数は、それぞれ4である。MCF1は、シリカ系ガラス材料からなる。
 複数のコア2は、MCF1の中心軸に沿って延在している。複数のコア2は、MCF1の中心軸に直交する断面において、MCF1の中心軸に対して回転対称をなす位置に配置されている。複数のコア2の断面形状は、互いに同じ円形状である。コア2の直径は、例えば、6μm以上12μm以下である。コア2は、共通クラッド5の屈折率よりも高い屈折率を有する。コア2は、屈折率を調整するためのドーパントとして、例えば、ゲルマニウム等を含んでいる。あるいはコア2は屈折率を調整するためのドーパントを含まず、共通クラッド5が屈折率を下げるためのドーパント(例えば弗素等)を含んでいても良い。
 複数の個別クラッド3は、複数のコア2を取り囲んでいる。各個別クラッド3は、対応するコア2を取り囲んでいる。個別クラッド3は、コア2と接している。個別クラッド3の直径d3は、例えば、20μm以上40μm以下である。個別クラッド3の厚さは、例えば、4μm以上17μm以下である。個別クラッド3は、共通クラッド5の屈折率と同等もしくは異なる屈折率を有する。
 屈折率変化部4は、複数のコア2及び複数の個別クラッド3から離隔して設けられている。屈折率変化部4は、複数のコア2の配置の対称性に対して非対称となる位置、すなわち、複数のコア2の配置の対称性を崩す位置に配置されている。屈折率変化部4の直径d4は、個別クラッド3の直径d3よりも小さい。直径d4に対する直径d3の比d3/d4は、1倍より大きく4倍以下である。すなわち、直径d3は、直径d4の1倍より大きく4倍以下である。比d3/d4は、3.2倍以下であってもよく、2.1倍以下であってもよい。すなわち、直径d3は、直径d4の3.2倍以下であってもよく、2.1倍以下であってもよい。
 図2~図5は、図1の矢印xに沿っての屈折率分布の例を示すグラフである。図2~図5に示されるように、屈折率変化部4は、共通クラッド5の屈折率とは異なる屈折率を有している。屈折率変化部4は、外周面4aと、外周面4aを含む外側領域4bと、外側領域4bの内側に位置する内側領域4cと、を含む。外周面4aは、共通クラッド5と接している。外側領域4bは、内側領域4cと接している。外側領域4bの厚さは、例えば、2μm以上5μm以下である。内側領域4cの直径は、例えば、2μm以上15μm以下である。
 外側領域4bの屈折率と内側領域4cの屈折率とは、互いに異なる。内側領域4cの比屈折率と共通クラッド5の比屈折率との差の絶対値は、外側領域4bの比屈折率と共通クラッド5の比屈折率との差の絶対値よりも大きい。内側領域4cの屈折率は、内側領域4cの全域にわたって均一である。内側領域4cの比屈折率と共通クラッド5の比屈折率との差の絶対値は、屈折率変化部4の比屈折率と共通クラッド5の比屈折率との差の絶対値の最大値である。屈折率変化部4の比屈折率の最大値と共通クラッド5の比屈折率との差の絶対値は、0.3%よりも大きい。
 外側領域4bの屈折率は、外側領域4bの全域にわたって均一であってもよいし、変化していてもよい。屈折率変化部4の外周面4aにおける比屈折率と共通クラッド5の比屈折率との差の絶対値は、0.2%以下である。外側領域4bと共通クラッド5と間の界面では、屈折率が不連続的に変化している。
 屈折率変化部4には、屈折率を調整するためのドーパントが添加されている。屈折率変化部4には、例えば、単一のドーパントが添加されており、ドーパントの濃度が異なることにより、図2及び図3に示されるような屈折分布が実現されていてもよい。屈折率変化部4には、例えば、2種類のドーパントが添加されており、ドーパントの種類が異なることにより、図4及び図5に示されるような屈折率分布が実現されていてもよい。
 図2に示される例では、内側領域4cの屈折率は、共通クラッド5の屈折率及び外側領域4bの屈折率よりも高い。外側領域4bの屈折率は、内側領域4cの屈折率よりも低く、共通クラッド5の屈折率よりも高い。外側領域4bの屈折率は、内側領域4cから外周面4aに向かうにつれて、共通クラッド5の屈折率に近づくように変化(減少)している。外側領域4bの屈折率の変化は、連続的である。外側領域4bの比屈折率と共通クラッド5の比屈折率との差の絶対値は、外周面4aで最も小さくなる。屈折率変化部4には、単一のドーパントが添加されている。ドーパントは、例えば、ゲルマニウム、塩素等である。外側領域4bにおけるドーパントの濃度は、内側領域4cにおけるドーパントの濃度よりも低い。外側領域4bにおけるドーパントの濃度は、内側領域4cから外周面4aに向かうにつれて、変化(減少)している。
 図3に示される例では、内側領域4cの屈折率は、共通クラッド5の屈折率及び外側領域4bの屈折率よりも低い。外側領域4bの屈折率は、内側領域4cの屈折率よりも高く、共通クラッド5の屈折率よりも低い。外側領域4bの屈折率は、内側領域4cから外周面4aに向かうにつれて、共通クラッド5の屈折率に近づくように変化(増加)している。外側領域4bの屈折率の変化は、連続的である。外側領域4bの比屈折率と共通クラッド5の比屈折率との差の絶対値は、外周面4aで最も小さくなる。屈折率変化部4には、単一のドーパントが添加されている。ドーパントは、例えば、弗素等である。外側領域4bにおけるドーパントの濃度は、内側領域4cにおけるドーパントの濃度よりも低い。外側領域4bにおけるドーパントの濃度は、内側領域4cから外周面4aに向かうにつれて、変化(減少)している。
 図4に示される例では、内側領域4cの屈折率は、共通クラッド5の屈折率及び外側領域4bの屈折率よりも高い。外側領域4bの屈折率は、内側領域4cの屈折率及び共通クラッド5の屈折率よりも低い。外側領域4bの屈折率は、外側領域4bの全域にわたって均一である。屈折率変化部4には、互いに異なる種類の第1ドーパント及び第2ドーパントが添加されている。内側領域4cには、第1ドーパントが添加されている。第1ドーパントは、例えば、ゲルマニウム、塩素等である。外側領域4bには、第2ドーパントが添加されている。第2ドーパントは、例えば、弗素等である。
 図5に示される例では、内側領域4cの屈折率は、共通クラッド5の屈折率及び外側領域4bの屈折率よりも低い。外側領域4bの屈折率は、内側領域4cの屈折率及び共通クラッド5の屈折率よりも高い。外側領域4bの屈折率は、外側領域4bの全域にわたって均一である。屈折率変化部4には、互いに異なる種類の第1ドーパント及び第2ドーパントが添加されている。内側領域4cには、第1ドーパントが添加されている。第1ドーパントは、例えば、弗素等である。外側領域4bには、第2ドーパントが添加されている。第2ドーパントは、例えば、ゲルマニウム、塩素等である。
 本実施形態では、屈折率変化部4は、複数のコア2の識別を可能にするマーカである。共通クラッド5は、複数の個別クラッド3と屈折率変化部4とを取り囲んでいる。共通クラッド5は、複数の個別クラッド3及び屈折率変化部4のそれぞれと接している。共通クラッド5の直径(クラッド径)は、例えば、100μm以上300μm以下である。
 図6は、第1実施形態に係るMCFの製造方法を示すフローチャートである。図6に示されるように、MCF1の製造方法は、工程S1から工程S4を含む。
 工程S1は、共通クラッド5となる共通クラッド管10を形成する工程である。図7は、共通クラッド管の断面図である。図7に示されるように、工程S1では、第1ガラスロッド(不図示)に軸方向に貫通する複数の第1孔11及び第1孔11と異なる直径を有する第2孔12を設けることにより、共通クラッド管10が形成される。
 工程S2は、工程S1後に実施される。工程S2は、複数の第1孔11の内面、及び、第2孔12の内面を気相処理する工程である。図8に示されるように、共通クラッド管10の複数の第1孔11、及び、第2孔12に気相処理用ガスを流しながら、共通クラッド管10の外周面を外部熱源13により加熱することで、気相処理が行われる。外部熱源13として、例えば、誘導炉、抵抗炉、酸水素バーナー等が用いられる。気相処理用ガスは、共通クラッド管10の一端に接続されたガラス管14を介して共通クラッド管10に導入され、共通クラッド管10の他端に接続されたガラス管14を介して共通クラッド管10から排出される。
 気相処理は、例えば、共通クラッド管10の内面(すなわち、複数の第1孔11の内面、及び、第2孔12の内面)を平滑化するためのエッチング処理である。この場合、気相処理用ガスとして、例えば、SF等のエッチングガスが用いられる。気相処理は、例えば、共通クラッド管10の内面異物(すなわち、複数の第1孔11の内面異物、及び、第2孔12の内面異物)を除去するための清浄化処理である。この場合、気相処理用ガスとして、塩素や酸素等の清浄化処理用ガス(すなわち、空焼きガス)が用いられる。
 工程S3は、工程S2後に実施される。工程S3は、複数の第1孔11に複数のコアロッド21を挿入すると共に、第2孔12に屈折率変化部ロッド22を挿入し、加熱一体化することにより第2ガラスロッド20を形成する工程である。図9は、第2ガラスロッドの断面図である。第2ガラスロッド20は、MCF母材である。工程S3で用いられるコアロッド21は、コア2となるコア部23と、個別クラッド3となる個別クラッド部24と、を有している。屈折率変化部ロッド22は、屈折率変化部4となる。屈折率変化部ロッド22は、外周面4aとなる外周面22aと、外側領域4bとなる外側領域22bと、内側領域4cとなる内側領域22cと、を含む。
 屈折率変化部ロッド22の屈折率は、屈折率変化部4の屈折率と対応している。屈折率変化部ロッド22の比屈折率の最大値と共通クラッド管10の比屈折率との差の絶対値は、0.3%よりも大きい。屈折率変化部ロッド22の外周面22aにおける比屈折率と共通クラッド管10の比屈折率との差の絶対値は、0.2%以下である。
 屈折率変化部ロッド22に添加されたドーパントは、屈折率変化部4に添加されたドーパントと対応している。すなわち、図2及び図3に示される例と対応している屈折率変化部ロッド22には、単一のドーパントが添加されている。屈折率変化部ロッド22の外側領域におけるドーパントの濃度は、屈折率変化部ロッド22の内側領域におけるドーパントの濃度よりも低い。図4及び図5に示される例と対応している屈折率変化部ロッド22には、互いに異なる種類の第1ドーパント及び第2ドーパントが添加されている。屈折率変化部ロッド22の内側領域には、第1ドーパントが添加されている。屈折率変化部ロッド22の外側領域には、第2ドーパントが添加されている。図4及び図5に示される例と対応している屈折率変化部ロッド22は、例えば、VAD(Vapor-phase Axial Deposition)法、OVD(Outside Vapor Deposition)法、コラプス法等によって作製される。
 工程S4は、工程S3で形成された第2ガラスロッド20を線引きする工程である。これにより、MCF1が製造される。工程S4は、例えば、工程S3と同時に行われる。この場合、共通クラッド管10、コアロッド21、及び屈折率変化部ロッド22を加熱一体化することにより第2ガラスロッド20を形成しながら、同時に線引きを行う。つまり、第2ガラスロッド20が加熱された状態のままで線引きを行うことができるので、効率的にMCFを製造することができる。工程S4は、工程S3とは別に行われてもよい。この場合、第2ガラスロッド20を形成した後に第2ガラスロッド20を再度加熱により溶融させて線引きを行うので、線引き温度の自由度を増すことができる。
 上述のように、共通クラッド管の気相処理では、孔の大きさによって気相処理用ガスの流れ易さが異なる。そのため、直径の小さな孔の内面は平滑化され難く、また、異物除去の効果も得られ難い。一般に共通クラッド管の内面の平滑度が低い場合、気泡が残り易い。また、共通クラッド管の内面に異物が残留している場合、ファイバ強度の低下や伝送損失の悪化につながる。いずれの場合も、ファイバ化の際にクラッド径変動という品質不良が生じ易い。マーカは、コアよりも共通クラッドの外周部側に配置されることが多く、マーカと共通クラッドとの間の界面の気泡は、ファイバ化の際に膨らみ易いことが知られている。
 本実施形態では、上述の問題を解決するため、共通クラッド管10の第2孔12の直径d12に対する複数の第1孔11の直径d11の比d11/d12の範囲を規定する。一般に管内のガスの流れが層流の場合、圧力損失ΔPは、管内の平均流速に比例し、孔の直径の自乗に反比例する。共通クラッド管10の上流及び下流(すなわち、共通クラッド管10の両端)の圧力差が一定であることから、各孔11,12の圧力損失が等しいと考えると、各孔11,12内を流れるガスの平均流速は、各孔11,12の直径d11,d12の自乗に比例する。(流量)=(流速)×(断面積)であるから、ガスの密度がほぼ一定であると仮定すると、各孔に流れるガスの流量は、各孔11,12の直径d11,d12の4乗に比例する。
 気相処理用ガスが十分に反応したとすると、各孔11,12で反応するガラスの体積は、各孔11,12を流れるガスの流量に比例する。同じ体積が削られた場合、内表面積が大きな(すなわち、直径が大きな)孔ほど削られる厚みが小さくなる(具体的には各孔11,12で削られる厚みは直径d11,d12に反比例する)ことを考慮すると、各孔11,12で削られる厚みの比が計算できる。
 第1孔11の直径が大きくなり過ぎると、加熱一体化の際にコアロッド21と第1孔11との間のクリアランスが大きくなる。その結果、コア2の位置ずれが生じるおそれがある。孔の内面のエッチング厚さは、孔の直径の3乗に比例するから、第1孔11の内面のエッチング厚さを0.2mm以下に抑えるという前提をつけると、以下のように試算できる。
・比d11/d12が4.0の場合、第2孔12の内面のエッチング厚さは3μm。
・比d11/d12が3.2の場合、第2孔12の内面のエッチング厚さは6μm。
・比d11/d12が2.1の場合、第2孔12の内面のエッチング厚さは20μm。
 機械加工で共通クラッド管10に孔を開けた場合でも、内面の表面粗さはμmオーダである。したがって、工程S1において、共通クラッド管10は、比d11/d12が4倍以下、すなわち、直径d11が直径d12の4倍以下となるように、形成される。共通クラッド管10は、第2孔12の内面の表面粗さによっては、比d11/d12が3.2倍以下、すなわち、直径d11が直径d12の3.2倍以下となるように形成されてもよく、比d11/d12が2.1倍以下、すなわち、直径d11が直径d12の2.1倍以下となるように形成されてもよい。
 以上説明したように、MCF1の製造方法では、工程S1において、共通クラッド管10は、比d11/d12が4倍以下となるように形成される。このため、界面気泡や異物残留を抑制可能な程度に、第2孔12の気相処理を進行させ、クラッド径の変動を抑制することができる。また、コアロッド21と第1孔11との間のクリアランスが大きくなることを抑制可能な程度に、第1孔11の気相処理の進行を抑制し、コア2の位置ずれを抑制することができる。
 気相処理の進行のばらつきを抑制するため、共通クラッド管10の各孔11,12の大きさを揃えることも考えられる。しかしながら、一般にMCFではコアの設計が優先され、屈折率変化部はコアよりも小さく設計される。MCFの光学特性は、コアの設計によって大きく変化する。これに対し、屈折率変化部は、マーカであれば、識別さえできればよく、XT低減部であれば、XTが低減できればよい。特に、伝送損失低減のため、コア径を大きくしたり、XT低減のためにコアにトレンチを設けたりすると、複数のコアが共通クラッド内に占める割合が大きくなるので、屈折率変化部を配置できる領域が限られる。また、屈折率変化部がマーカである場合、コア配置の対称性を崩すために屈折率変化部をオフセットさせて配置する必要がある。屈折率変化部が大きいと、オフセット量を大きくすることができず、マーカとしての役割を果たし難くなる。
 屈折率変化部ロッド22の比屈折率の最大値と共通クラッド管10の比屈折率との差の絶対値は、0.3%よりも大きい。これにより、屈折率変化部4の視認性を確保することができる。屈折率変化部ロッド22の外周面22aにおける比屈折率と共通クラッド管10Aの比屈折率との差の絶対値は、0.2%以下である。これにより、屈折率変化部4と共通クラッド5とのコラプス界面における粘性差を低減し、界面気泡の発生を抑制することができる。
 図10及び図11は、比較例に係るMCFの屈折率分布の例を示すグラフである。図10及び図11に示されるように、比較例に係るMCFでは、屈折率変化部4の全域にわたって単一のドーパントが均一に添加され、屈折率変化部4の屈折率は、屈折率変化部4の全域にわたって均一である点で、第1実施形態に係るMCF1と相違している。このため、比較例では、本実施形態のような屈折率変化部4と共通クラッド5との間の上記屈折率及び比屈折率の関係を実現できない。すなわち、屈折率変化部4と共通クラッド5との間で比屈折率に大きな差をつければ、屈折率変化部4と共通クラッド5との粘性差が増し、界面気泡が発生しやすい。一方、屈折率変化部4と共通クラッド5との間で比屈折率の差を小さくすれば、屈折率変化部4の視認性を確保することができない。
 本実施形態では、例えば、屈折率変化部ロッド22には、単一のドーパントが添加されており、外側領域22bにおけるドーパントの濃度は、内側領域22cにおけるドーパントの濃度よりも低い。これにより、図2及び図3に示されるように、屈折率変化部4と共通クラッド5との間の上記屈折率及び比屈折率の関係が実現される。また例えば、内側領域22cには、第1ドーパントが添加されており、外側領域22bには、第1ドーパントとは異なる第2ドーパントが添加されている。これにより、図4及び図5に示されるように、屈折率変化部4と共通クラッド5との間の上記屈折率及び比屈折率の関係を実現できる。
(第2実施形態)
 図12は、第2実施形態に係るMCFの断面図である。図12に示される第2実施形態に係るMCF1Aは、屈折率変化部4の代わりに屈折率変化部4Aを備える点で、MCF1と相違している。屈折率変化部4Aは、隣り合うコア2間に配置され、XT低減用の障壁となるXT低減部である。MCF1Aにおいても、屈折率変化部4Aの比屈折率の最大値と共通クラッド5の比屈折率との差の絶対値は、0.3%よりも大きい。これにより、屈折率変化部4AによるXT低減効果が確保される。
 MCF1Aは、例えば、複数の屈折率変化部4Aを備え、複数箇所に屈折率変化部4Aが配置されている。本実施形態では、MCF1Aは4つの屈折率変化部4Aを備える。
 第2実施形態に係るMCF1Aの製造方法は、工程S1において、図13に示される共通クラッド管10Aが形成される。共通クラッド管10Aは、第2孔12の代わりに第2孔12Aが設けられている点で、共通クラッド管10と相違している。共通クラッド管10Aには、例えば、複数の第2孔12Aが設けられている。本実施形態では、共通クラッド管10Aには、4つの第2孔12Aが設けられている。工程S2は、MCF1の製造方法の工程S2と同様に行われる。
 MCF1Aの製造方法では、工程S3において、共通クラッド管10Aにコアロッド21及び屈折率変化部ロッド22Aを挿入し、加熱一体化することにより、図14に示される第2ガラスロッド20Aが形成される。第2ガラスロッド20Aは、共通クラッド管10及び屈折率変化部ロッド22の代わりに、共通クラッド管10A及び屈折率変化部ロッド22Aを備える点で、第2ガラスロッド20と相違している。工程S4は、MCF1の製造方法の工程S4と同様に行われる。
 第2実施形態においても、第1実施形態と同様に、クラッド径の変動及びコア2の位置ずれ抑制することができる。
 以上、実施形態について説明してきたが、本開示は必ずしも上述した実施形態及び変形例に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
 工程S1において、共通クラッド管10は、第2孔12の内面の表面粗さが、複数の第1孔11の内面の表面粗さよりも小さくなるように形成されてもよい。これにより、工程S2において、第2孔12の気相処理効果が薄かったとしても、気相処理後の第2孔12の内面の表面粗さを第1孔11の内面の表面粗さに近づけることができる。第2孔12の内面の表面粗さを変える方法として、孔開け加工に用いるドリルの番手を変える方法、加工速度を遅くする方法、及び、孔開け後に内面を研磨する方法等が考えられる。
 表面粗さは、市販の表面粗さ測定器で測定できる。表面粗さは、例えば、算術平均粗さである。表面粗さは、5mm程度の範囲を測定すれば、確認できる。
 上記実施形態及び変形例は、適宜組み合わせられてもよい。
1,1A…MCF
2…コア
3…個別クラッド
4…屈折率変化部
4a…外周面
4b…外側領域
4c…内側領域
5…共通クラッド
10…共通クラッド管
11…第1孔
12…第2孔
13…外部熱源
14…ガラス管
20…第2ガラスロッド
21…コアロッド
22…屈折率変化部ロッド
22a…外周面
22b…外側領域
22c…内側領域
23…コア部
24…個別クラッド部
d3…直径
d4…直径
d11…直径
d12…直径

 

Claims (19)

  1.  共通クラッドと、前記共通クラッドの屈折率よりも高い屈折率を有する複数のコアと、前記共通クラッドの屈折率とは異なる屈折率を有する屈折率変化部と、を備えるマルチコア光ファイバの製造方法であって、
     第1ガラスロッドに軸方向に貫通する複数の第1孔、及び、前記第1孔と異なる直径を有する第2孔を設けることにより、共通クラッド管を形成する工程と、
     前記複数の第1孔の内面、及び、前記第2孔の内面を気相処理する工程と、
     前記気相処理された前記複数の第1孔の各々に複数のコアロッドのうちの1つをそれぞれ挿入すると共に、前記第2孔に屈折率変化部ロッドを挿入し、加熱一体化することにより第2ガラスロッドを形成する工程と、を含み、
     前記共通クラッド管は、前記複数の第1孔の直径が前記第2孔の直径の4倍以下となるように形成される、
     マルチコア光ファイバの製造方法。
  2.  前記共通クラッド管は、前記複数の第1孔の直径が前記第2孔の直径の3.2倍以下となるように形成される、
     請求項1に記載のマルチコア光ファイバの製造方法。
  3.  前記共通クラッド管は、前記複数の第1孔の直径が前記第2孔の直径の2.1倍以下となるように形成される、
     請求項1または請求項2に記載のマルチコア光ファイバの製造方法。
  4.  前記共通クラッド管は、前記第2孔の内面の表面粗さが、前記複数の第1孔の内面の表面粗さよりも小さくなるように形成される、
     請求項1から請求項3のいずれか一項に記載のマルチコア光ファイバの製造方法。
  5.  前記屈折率変化部ロッドの比屈折率の最大値と前記共通クラッド管の比屈折率との差の絶対値は、0.3%よりも大きく、
     前記屈折率変化部ロッドの外周面における比屈折率と前記共通クラッド管の比屈折率との差の絶対値は、0.2%以下である、
     請求項1から請求項4のいずれか一項に記載のマルチコア光ファイバの製造方法。
  6.  前記屈折率変化部ロッドには、ドーパントが添加されており、
     前記屈折率変化部ロッドの外側領域における前記ドーパントの濃度は、前記屈折率変化部ロッドの内側領域における前記ドーパントの濃度よりも低い、
     請求項5に記載のマルチコア光ファイバの製造方法。
  7.  前記屈折率変化部ロッドの内側領域には、第1ドーパントが添加されており、
     前記屈折率変化部ロッドの外側領域には、前記第1ドーパントとは異なる第2ドーパントが添加されている、
     請求項5に記載のマルチコア光ファイバの製造方法。
  8.  前記屈折率変化部は、前記複数のコアの配置の対称性に対して非対称となる位置に配置されている、
     請求項1から請求項7のいずれか一項に記載のマルチコア光ファイバの製造方法。
  9.  前記屈折率変化部は、隣り合うコア間に配置されるクロストーク低減部である、
     請求項1から請求項7のいずれか一項に記載のマルチコア光ファイバの製造方法。
  10.  前記第2ガラスロッドを線引きする工程を更に含み、
     前記線引きする工程は、前記第2ガラスロッドを形成する工程と同時に行われる、
     請求項1から請求項9のいずれか一項に記載のマルチコア光ファイバの製造方法。
  11.  前記第2ガラスロッドを線引きする工程を更に含み、
     前記線引きする工程は、前記第2ガラスロッドを形成する工程とは別に行われる、
     請求項1から請求項9のいずれか一項に記載のマルチコア光ファイバの製造方法。
  12.  複数のコアと、
     前記複数のコアを取り囲む複数の個別クラッドと、
     屈折率変化部と、
     前記複数の個別クラッドと前記屈折率変化部とを取り囲む共通クラッドと、を備え、
     前記複数のコアは、前記共通クラッドの屈折率よりも高い屈折率を有し、
     前記屈折率変化部は、前記共通クラッドの屈折率とは異なる屈折率を有し、
     前記複数の個別クラッドの直径は、前記屈折率変化部の直径の1倍より大きく4倍以下である、
     マルチコア光ファイバ。
  13.  前記複数の個別クラッドの直径は、前記屈折率変化部の直径の3.2倍以下である、
     請求項12に記載のマルチコア光ファイバ。
  14.  前記複数の個別クラッドの直径は、前記屈折率変化部の直径の2.1倍以下である、
     請求項12または請求項13に記載のマルチコア光ファイバ。
  15.  前記屈折率変化部の比屈折率と前記共通クラッドの比屈折率との差の絶対値の最大値は、0.3%よりも大きく、
     前記屈折率変化部の外周面における比屈折率と前記共通クラッドの比屈折率との差の絶対値は、0.2%以下である、
     請求項12から請求項14のいずれか一項に記載のマルチコア光ファイバ。
  16.  前記屈折率変化部には、ドーパントが添加されており、
     前記屈折率変化部の外側領域における前記ドーパントの濃度は、前記屈折率変化部の内側領域における前記ドーパントの濃度よりも低い、
     請求項15に記載のマルチコア光ファイバ。
  17.  前記屈折率変化部の内側領域には、第1ドーパントが添加されており、
     前記屈折率変化部の外側領域には、前記第1ドーパントとは異なる第2ドーパントが添加されている、
     請求項15に記載のマルチコア光ファイバ。
  18.  前記屈折率変化部は、前記複数のコアの配置の対称性に対して非対称となる位置に配置されている、
     請求項12から請求項17のいずれか一項に記載のマルチコア光ファイバ。
  19.  前記屈折率変化部は、隣り合うコア間に配置されるクロストーク低減部である、
     請求項12から請求項17のいずれか一項に記載のマルチコア光ファイバ。

     
PCT/JP2022/043417 2022-01-11 2022-11-24 マルチコア光ファイバの製造方法及びマルチコア光ファイバ WO2023135944A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023573879A JPWO2023135944A1 (ja) 2022-01-11 2022-11-24
CN202280080340.2A CN118339119A (zh) 2022-01-11 2022-11-24 多芯光纤的制造方法和多芯光纤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-002526 2022-01-11
JP2022002526 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023135944A1 true WO2023135944A1 (ja) 2023-07-20

Family

ID=87278922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043417 WO2023135944A1 (ja) 2022-01-11 2022-11-24 マルチコア光ファイバの製造方法及びマルチコア光ファイバ

Country Status (3)

Country Link
JP (1) JPWO2023135944A1 (ja)
CN (1) CN118339119A (ja)
WO (1) WO2023135944A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280704A (ja) * 1986-05-30 1987-12-05 Nippon Telegr & Teleph Corp <Ntt> 単一偏波光フアイバおよびその製造方法
WO2006112071A1 (ja) * 2005-03-30 2006-10-26 Fujitsu Limited 光ファイバ及びその製造方法並びに光増幅器
WO2010082656A1 (ja) 2009-01-19 2010-07-22 住友電気工業株式会社 マルチコア光ファイバ
JP2011170099A (ja) 2010-02-18 2011-09-01 Sumitomo Electric Ind Ltd マルチコア光ファイバ
WO2012121027A1 (ja) * 2011-03-04 2012-09-13 株式会社フジクラ マルチコアファイバ、及び、それを用いたマルチコアファイバの接続方法
JP2015168597A (ja) * 2014-03-06 2015-09-28 古河電気工業株式会社 光ファイバ母材の製造方法および光ファイバの製造方法
JP2020019680A (ja) * 2018-08-01 2020-02-06 株式会社フジクラ マルチコアファイバ用母材の製造方法およびマルチコアファイバの製造方法
JP2022002526A (ja) 2015-05-06 2022-01-11 ヤンセン バイオテツク,インコーポレーテツド 前立腺特異的膜抗原結合フィブロネクチンiii型ドメイン

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280704A (ja) * 1986-05-30 1987-12-05 Nippon Telegr & Teleph Corp <Ntt> 単一偏波光フアイバおよびその製造方法
WO2006112071A1 (ja) * 2005-03-30 2006-10-26 Fujitsu Limited 光ファイバ及びその製造方法並びに光増幅器
WO2010082656A1 (ja) 2009-01-19 2010-07-22 住友電気工業株式会社 マルチコア光ファイバ
JP2011170099A (ja) 2010-02-18 2011-09-01 Sumitomo Electric Ind Ltd マルチコア光ファイバ
WO2012121027A1 (ja) * 2011-03-04 2012-09-13 株式会社フジクラ マルチコアファイバ、及び、それを用いたマルチコアファイバの接続方法
JP2015168597A (ja) * 2014-03-06 2015-09-28 古河電気工業株式会社 光ファイバ母材の製造方法および光ファイバの製造方法
JP2022002526A (ja) 2015-05-06 2022-01-11 ヤンセン バイオテツク,インコーポレーテツド 前立腺特異的膜抗原結合フィブロネクチンiii型ドメイン
JP2020019680A (ja) * 2018-08-01 2020-02-06 株式会社フジクラ マルチコアファイバ用母材の製造方法およびマルチコアファイバの製造方法

Also Published As

Publication number Publication date
CN118339119A (zh) 2024-07-12
JPWO2023135944A1 (ja) 2023-07-20

Similar Documents

Publication Publication Date Title
FI77217C (fi) Foerfarande foer framstaellning av en polarisationsbevarande optisk fiber.
JP4465527B2 (ja) 微細構造光ファイバ、プリフォーム及び微細構造光ファイバの製造方法
JP5489713B2 (ja) アルカリ金属酸化物を含有する光ファイバ
EP3133426B1 (en) Optical fiber article for handling h igher power and method of fabricating or using it
EP1705157A1 (en) Method of manufacturing microstructured optical fiber
JP5476125B2 (ja) 光ファイバ及びその製造方法
JP6402466B2 (ja) マルチコア光ファイバの製造方法
CN102089687A (zh) 弯曲不敏感型光纤,作为生产它的半成品的石英玻璃管,和用于生产所述纤维的方法
US8196437B2 (en) Increasing the cladding-to-core ratio (D/d) of low D/d core rods in optical fiber preforms
JP2009211066A (ja) フォトニックバンドギャップ光ファイバ及びその製造方法
JP2010102276A (ja) 光ファイバ及びその製造方法
WO2023135944A1 (ja) マルチコア光ファイバの製造方法及びマルチコア光ファイバ
CN104777552A (zh) 一种双包层有源光纤及其制造方法
WO2018138736A2 (en) Optical fiber draw assembly and fabricated optical fiber thereof
US20230204853A1 (en) Multicore fiber
CN112777927B (zh) 一种弯曲不敏感光纤预制棒及其制备方法
CN110937796B (zh) 宽带多模光纤预制棒的制造方法
JP5735468B2 (ja) 光ファイバおよびその製造方法、光ファイバ母材の製造方法
CN110981183B (zh) 一种宽带多模光纤预制棒的制造方法
WO2024190234A1 (ja) マルチコア光ファイバ
RU2301782C1 (ru) Способ изготовления одномодового волоконного световода, сохраняющего поляризацию излучения
JP2008020796A (ja) イメージファイバ及びその光ファイバ母材
WO2024171282A1 (ja) 光ファイバ及びその製造方法
JP7502080B2 (ja) 光ファイバ、ならびにその処理方法および製造方法
KR100782475B1 (ko) 광섬유 모재의 제조 방법 및 광섬유 모재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023573879

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280080340.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18721388

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022920464

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022920464

Country of ref document: EP

Effective date: 20240812