[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023131235A1 - 一种传输信息的方法、装置及系统 - Google Patents

一种传输信息的方法、装置及系统 Download PDF

Info

Publication number
WO2023131235A1
WO2023131235A1 PCT/CN2023/070687 CN2023070687W WO2023131235A1 WO 2023131235 A1 WO2023131235 A1 WO 2023131235A1 CN 2023070687 W CN2023070687 W CN 2023070687W WO 2023131235 A1 WO2023131235 A1 WO 2023131235A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
domain resource
time domain
data
symbol
Prior art date
Application number
PCT/CN2023/070687
Other languages
English (en)
French (fr)
Inventor
余健
邵家枫
李怡然
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP23737097.8A priority Critical patent/EP4447587A1/en
Publication of WO2023131235A1 publication Critical patent/WO2023131235A1/zh
Priority to US18/765,033 priority patent/US20240365298A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communications. In particular, it relates to a method, device and system for transmitting information.
  • the transport block size (transport block size, TBS) of each scheduling is small, the coding gain is low, and the terminal equipment needs to demodulate the physical downlink control channel (physical downlink control channel, PDCCH) frequently , with high complexity. Therefore, how to reduce the complexity of data demodulation by the terminal device and improve the efficiency of data transmission is an urgent problem to be solved.
  • Embodiments of the present application propose a method, device, and system for transmitting information, which can reduce the complexity of demodulation of terminal equipment and improve data transmission efficiency.
  • a method for transmitting information may include: receiving first indication information, where the first indication information is used to indicate a first time domain resource within a first time period, and the first time period includes two or a plurality of time slots, the first time domain resource is located in at least M time slots of the first time period, and M is an integer greater than 1; receiving scheduling information, the scheduling information is used to indicate the second time slot receiving the first data A time domain resource, the second time domain resource is a subset or a complete set of the first time domain resource, the second time domain resource belongs to at least two time slots, the at least two time slots include the first time slot, the second time domain resource Two time-domain resources include a first symbol and a second symbol on the first time slot, and there are N symbols between the first symbol and the second symbol, and the first symbol and the second symbol are the second time domain Two adjacent symbols on domain resources, N is an integer greater than or equal to 1,
  • the at least two time slots include a first time slot and a second time slot
  • the symbols included in the first time slot by the second time domain resource are the same as those included in the second time slot by the second time domain resource.
  • the symbols are different
  • the number of symbols included in at least one of the at least two time slots in the second time domain resource is 1;
  • the first data is received on the second time domain resource.
  • This method transmits data through sparse and non-equally spaced symbols, which can obtain high coding gain.
  • the terminal equipment only needs to receive one PDCCH to complete the demodulation of symbols in multiple time slots, which is beneficial to reduce the complexity of the terminal equipment. To improve the efficiency of data transmission.
  • the method may further include: receiving second indication information, where the second indication information is used to indicate whether the symbols included in the first time domain resource are used to receive data,
  • the data includes the first data.
  • the symbol-level resource indication can improve the flexibility of scheduling discontinuous time-domain resources, and improve the accuracy of determining the scheduling resources.
  • the second indication information may be carried in the first indication information, or may be sent separately. This application does not limit this.
  • the first indication information further includes a time slot offset, and the time slot offset is used to indicate the time slot of the first time slot in the first time period index.
  • the method further includes: receiving time domain position information, where the time domain position information is used to indicate the distance between any two adjacent symbols in the first time domain resource interval.
  • the time domain location information corresponding to the resources can indicate the distribution rules of the resources, which saves overhead and improves communication efficiency.
  • the time domain position information may be carried in the first indication information, or may be sent separately. This application does not limit this.
  • the method further includes: determining the second time domain resource according to the time slot for receiving the second indication information, the first time domain resource, and the scheduling information.
  • the size of the first data is determined according to the second time domain resource.
  • the size of the first data is determined according to a first parameter, and the first parameter includes at least one of the following:
  • the number of symbols included in the second time domain resource, the demodulation reference signal overhead included in the second time domain resource, the overhead configured by high layer signaling, and the number of physical resource blocks included in the second time domain resource are the number of symbols included in the second time domain resource, the demodulation reference signal overhead included in the second time domain resource, the overhead configured by high layer signaling, and the number of physical resource blocks included in the second time domain resource.
  • the first parameter satisfies the following relationship:
  • n PRB is the number of physical resource blocks included in the second time-domain resource.
  • the size of the above-mentioned first data may be a size of TB (TBS).
  • the calculation method of the transmission block size proposed in this application can prevent the actual code rate from being much higher than the code rate corresponding to the modulation and coding strategy, reduce the probability of decoding errors, and improve the reliability of data transmission.
  • a method for transmitting information may include: sending first indication information, where the first indication information is used to indicate a first time domain resource within a first time period, and the first time period includes two one or more time slots, the first time domain resource is located in at least M time slots of the first time period, and M is an integer greater than 1;
  • scheduling information is used to indicate a second time-domain resource for sending the first data
  • the second time-domain resource is a subset or all of the first time-domain resource
  • the second time-domain resource belongs to at least two time slot
  • the at least two time slots include a first time slot
  • the second time domain resource includes a first symbol and a second symbol on the first time slot
  • N symbols are separated between the first symbol and the second symbol
  • the first symbol and the second symbol are two adjacent symbols on the second time domain resource
  • N is an integer greater than or equal to 1
  • the at least two time slots include a first time slot and a second time slot, the symbols included in the first time slot by the second time domain resource are the same as the symbols included in the second time slot by the second time domain resource different,
  • the number of symbols included in at least one of the at least two time slots in the second time domain resource is 1;
  • the method further includes: sending second indication information, where the second indication information is used to indicate whether the symbols included in the first time domain resource are used to send data, the The data includes the first data.
  • the first indication information further includes a time slot offset, and the time slot offset is used to indicate the time slot of the first time slot in the first time period index.
  • the method further includes: sending time domain position information, where the time domain position information is used to indicate the distance between any two adjacent symbols in the first time domain resource interval.
  • the size of the first data is associated with the second time domain resource.
  • the size of the first data is associated with a first parameter
  • the first parameter includes at least one of the following:
  • the number of symbols included in the second time domain resource, the demodulation reference signal overhead included in the second time domain resource, the overhead configured by high layer signaling, and the number of physical resource blocks included in the second time domain resource are the number of symbols included in the second time domain resource, the demodulation reference signal overhead included in the second time domain resource, the overhead configured by high layer signaling, and the number of physical resource blocks included in the second time domain resource.
  • the first parameter satisfies the following relationship:
  • n PRB is the number of physical resource blocks included in the second time-domain resource.
  • the second aspect is a method corresponding to the first aspect, and the explanations, supplements and beneficial effects of the first aspect are applicable to the second aspect, and will not be repeated here.
  • a communication device including a processing unit and a transceiver unit, the transceiver unit is configured to receive first indication information, the first indication information is used to indicate a first time domain resource within a first time period, and the first indication information
  • a time period includes two or more time slots, the first time domain resource is located in at least M time slots of the first time period, and M is an integer greater than 1;
  • the transceiver unit is also used to receive scheduling information, the scheduling information is used to indicate the second time domain resource for receiving the first data, the second time domain resource is a subset or the whole set of the first time domain resource, and the second time domain resource is Domain resources belong to at least two slots,
  • the at least two time slots include a first time slot
  • the second time domain resource includes a first symbol and a second symbol on the first time slot
  • N symbols are separated between the first symbol and the second symbol
  • the first symbol and the second symbol are two adjacent symbols on the second time domain resource
  • N is an integer greater than or equal to 1
  • the at least two time slots include a first time slot and a second time slot, the symbols included in the first time slot by the second time domain resource are the same as the symbols included in the second time slot by the second time domain resource different,
  • the number of symbols included in at least one of the at least two time slots in the second time domain resource is 1;
  • the transceiving unit is also used for receiving the first data on the second time domain resource.
  • the transceiving unit is further configured to receive second indication information, where the second indication information is used to indicate whether the symbols included in the first time domain resource are used to receive data,
  • the data includes the first data.
  • the first indication information further includes a time slot offset, and the time slot offset is used to indicate the time slot of the first time slot in the first time period index.
  • the transceiver unit is further configured to receive time-domain position information, and the time-domain position information is used to indicate the distance between any two adjacent symbols in the first time-domain resource. interval.
  • the processing unit is configured to determine the second time domain resource according to the time slot for receiving the second indication information, the first time domain resource, and the scheduling information.
  • the size of the first data is determined according to the second time domain resource.
  • the size of the first data is determined according to a first parameter, and the first parameter includes at least one of the following:
  • the number of symbols included in the second time domain resource, the demodulation reference signal overhead included in the second time domain resource, the overhead configured by high layer signaling, and the number of physical resource blocks included in the second time domain resource are the number of symbols included in the second time domain resource, the demodulation reference signal overhead included in the second time domain resource, the overhead configured by high layer signaling, and the number of physical resource blocks included in the second time domain resource.
  • the first parameter satisfies the following relationship:
  • n PRB is the number of physical resource blocks included in the second time-domain resource.
  • a communication device including a processing unit and a transceiver unit, where the transceiver unit is configured to send first indication information, where the first indication information is used to indicate a first time-domain resource within a first time period, and the first A time period includes two or more time slots, the first time domain resource is located in at least M time slots of the first time period, and M is an integer greater than 1;
  • the transceiver unit is also used to send scheduling information, the scheduling information is used to indicate the second time domain resource for sending the first data, the second time domain resource is a subset or the whole set of the first time domain resource, and the second time domain resource is Domain resources belong to at least two slots,
  • the at least two time slots include a first time slot
  • the second time domain resource includes a first symbol and a second symbol on the first time slot
  • N symbols are separated between the first symbol and the second symbol
  • the first symbol and the second symbol are two adjacent symbols on the second time domain resource
  • N is an integer greater than or equal to 1
  • the at least two time slots include a first time slot and a second time slot, the symbols included in the first time slot by the second time domain resource are the same as the symbols included in the second time slot by the second time domain resource different,
  • the number of symbols included in at least one of the at least two time slots in the second time domain resource is 1;
  • the transceiving unit is also used for sending the first data on the second time domain resource.
  • the transceiver unit is further configured to send second indication information, where the second indication information is used to indicate whether the symbols included in the first time domain resource are used to send data,
  • the data includes the first data.
  • the first indication information further includes a time slot offset, and the time slot offset is used to indicate the time slot of the first time slot in the first time period index.
  • the transceiver unit is further configured to send time-domain position information, where the time-domain position information is used to indicate the distance between any two adjacent symbols in the first time-domain resource. interval.
  • the size of the first data is associated with the second time domain resource.
  • the size of the first data is associated with a first parameter, and the first parameter includes at least one of the following:
  • the number of symbols included in the second time domain resource, the demodulation reference signal overhead included in the second time domain resource, the overhead configured by high layer signaling, and the number of physical resource blocks included in the second time domain resource are the number of symbols included in the second time domain resource, the demodulation reference signal overhead included in the second time domain resource, the overhead configured by high layer signaling, and the number of physical resource blocks included in the second time domain resource.
  • the first parameter satisfies the following relationship:
  • n PRB is the number of physical resource blocks included in the second time-domain resource.
  • third and fourth aspects are implementations on the device side corresponding to the first and second aspects, and the beneficial effects of the first and second aspects are also applicable to the third and fourth aspects, which will not be repeated here.
  • a computer-readable storage medium stores program code for execution by a communication device, and the program code includes a program code for implementing the first aspect or the second aspect, the first aspect or the second aspect Any possible implementation of the aspect, or an instruction of the communication method in the method of all possible implementations of the first aspect or the second aspect.
  • a computer program product containing instructions, which, when running on a computer, causes the computer to execute the above first aspect or the second aspect, or any possible implementation of the first aspect or the second aspect , or, the methods of all possible implementations in the first aspect or the second aspect.
  • a communication system in a seventh aspect, includes a communication system that implements the first aspect or the second aspect, or any possible implementation of the first aspect or the second aspect, or, the first aspect or the second aspect All possible implementation methods and various possible implementation methods of functions in the two aspects.
  • a processor configured to be coupled with a memory, and configured to execute the above-mentioned first aspect or the second aspect, or any possible implementation manner in the first aspect or the second aspect, or, the first aspect Aspect or the method in all possible implementations of the second aspect.
  • a ninth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is used to communicate with external devices or internal devices, and the processor is used to implement the first or second aspect above, or, the first A method in any possible implementation manner of the first aspect or the second aspect, or, a method in all possible implementation manners of the first aspect or the second aspect.
  • the chip may further include a memory, the memory stores instructions, and the processor is used to execute the instructions stored in the memory or other instructions.
  • the processor is used to implement the method in the first aspect or the second aspect or any possible implementation manners thereof.
  • the chip can be integrated on terminal equipment and/or network equipment.
  • FIG. 1 is a schematic diagram of a communication system applicable to the embodiment of the present application.
  • Fig. 2 is a schematic block diagram of a communication device proposed by an embodiment of the present application.
  • Fig. 3 is a schematic block diagram of another communication device proposed by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a time-domain resource proposed by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another time-domain resource proposed by the embodiment of the present application.
  • Fig. 6 is a schematic diagram of another time-domain resource proposed by the embodiment of the present application.
  • FIG. 7a and FIG. 7b are schematic diagrams of another time-domain resource proposed by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another time-domain resource proposed by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of another time-domain resource proposed by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of another time-domain resource proposed by the embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system suitable for this application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as 5G (fifth generation (5th generation, 5G) or new radio (new radio, NR) system, long term evolution (long term evolution, LTE) system, LTE Frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, etc.
  • 5G farth generation
  • LTE long term evolution
  • LTE Frequency division duplex frequency division duplex, FDD
  • time division duplex time division duplex
  • the technical solution provided by this application can also be applied to device to device (device to device, D2D) communication, vehicle to everything (vehicle-to-everything, V2X) communication, machine to machine (machine to machine, M2M) communication, machine type communication (machine type communication, MTC), and the Internet of Things (internet of things, IoT) communication system or other communication systems).
  • D2D device to device
  • V2X vehicle-to-everything
  • M2M machine to machine
  • MTC machine type communication
  • IoT Internet of Things
  • user equipment may be referred to as terminal equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device , User Agent, or User Device.
  • a terminal device may be a device that provides voice/data to a user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminals are: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocol , SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, Wearable devices, terminal devices in a 5G network, or terminal devices in a future evolving public land mobile network (PLMN), etc., are not limited in this
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device can also be the terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize An intelligent network that interconnects and interconnects things.
  • Terminal equipment may also refer to a communication module, modem or chip used to be set in the aforementioned equipment or device.
  • a network device in the wireless communication system may be a device capable of communicating with a terminal device, and the network device may also be called an access network device or a wireless access network device, for example, the network device may be a base station.
  • the network device in this embodiment of the present application may refer to a radio access network (radio access network, RAN) node (or device) that connects a terminal device to a wireless network.
  • radio access network radio access network, RAN node (or device) that connects a terminal device to a wireless network.
  • the base station can broadly cover various names in the following, or replace with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), master station (master eNodeB, MeNB), secondary station (secondary eNodeB, SeNB), multi-standard wireless (multi standard radio, MSR) node, home base station, network controller, access node, wireless node, access point (access point, AP), transmission node, transceiver node, base band unit (base band unit, BBU), remote radio unit (remote radio unit, RRU), active antenna unit (active antenna unit, AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning nodes, etc.
  • NodeB Node B
  • a base station may be a macro base station, a micro base station, a relay node, a donor node, or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used to be set in the aforementioned equipment or device.
  • the base station can also be a mobile switching center, a device that assumes the function of a base station in D2D, V2X, and M2M communications, a network-side device in a 6G network, and a device that assumes the function of a base station in a future communication system.
  • Base stations can support networks of the same or different access technologies. The embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move according to the location of the mobile base station.
  • a helicopter or drone may be configured to serve as a device in communication with another base station.
  • the network device in this embodiment of the present application may refer to a CU or a DU, or, the network device includes a CU and a DU.
  • a gNB may also include an Active Antenna Unit (AAU).
  • AAU Active Antenna Unit
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the scenarios where the network device and the terminal device are located are not limited.
  • Wireless communication between communication devices may include: wireless communication between a network device and a terminal, wireless communication between a network device and a network device, and wireless communication between a terminal device and a terminal device.
  • wireless communication may also be referred to as “communication” for short, and the term “communication” may also be described as "data transmission”, “information transmission” or “transmission”.
  • the "perceived target” in the embodiment of the present application refers to a radar-perceivable target, which may be the above-mentioned network device or terminal device, or may be a vehicle, a pedestrian, or a brick on the road.
  • the base station can send downlink data to the terminal device, and the terminal device can also send uplink data to the base station.
  • the base station can send sensing signals and receive the reflected echoes of the sensed targets for estimation of the speed, distance, trajectory, shape and size of the sensed targets.
  • the embodiment of the present application provides a communication device, as shown in FIG. 2 , and the embodiment of the present application also provides a device 200 .
  • the device may be a software module or a system on a chip.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 200 may include: a processing unit 210 and a communication unit 220 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit for performing steps of sending and receiving information and/or data, respectively.
  • the communication unit 220 may also be called a transceiver, a transceiver, a transceiver device, an interface circuit, and the like.
  • the processing unit 210 may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the communication unit 220 for realizing the receiving function can be regarded as a receiving unit
  • the device in the communication unit 220 for realizing the sending function can be regarded as a sending unit, that is, the communication unit 220 includes a receiving unit and a sending unit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • FIG. 3 shows an apparatus 300 provided in the embodiment of the present application.
  • the apparatus shown in FIG. 3 may be a hardware circuit implementation manner of the apparatus shown in FIG. 2 .
  • FIG. 3 only shows the main components of the communication device.
  • the communication device 300 includes a processor 310 and an interface circuit 320 .
  • the processor 310 and the interface circuit 320 are coupled to each other.
  • the interface circuit 320 may be a transceiver or an input/output interface.
  • the communication device 300 may further include a memory 330 for storing instructions executed by the processor 310 or storing input data required by the processor 310 to execute the instructions or storing data generated after the processor 310 executes the instructions.
  • the processor 310 may be used to realize the functions of the above-mentioned processing unit 210
  • the interface circuit 320 is used to realize the functions of the above-mentioned communication unit 220 .
  • Time domain resources the number of orthogonal frequency division modulation (OFDM) symbols occupied in the time domain.
  • the minimum granularity of the time-domain resource is one OFDM symbol, and may also be a mini-slot or a slot.
  • a mini-slot may include 2 or more OFDM symbols, and a slot may include 14 OFDM symbols.
  • Frequency domain resources frequency resources occupied in the frequency domain.
  • the minimum granularity of frequency domain resources is resource element (RE), which can also be physical resource block (physical resource block, PRB) or resource block group (resource block group, RBG).
  • a PRB includes 12 REs in the frequency domain, and an RBG may include 2, 4, 8 or 16 resource blocks (resource block, RB).
  • Transport block The transport block (TB) consists of a series of bits contained in the data transmitted in the medium access control layer.
  • the physical downlink shared channel (PDSCH) or the physical uplink shared channel (PUSCH) uses TB as the basic unit for data transmission.
  • Sensing signal also known as radar signal and detection signal, it is an electromagnetic wave signal used to detect the perceived target. It can be a pulse signal or a signal in a wireless communication system.
  • Echo signal After the electromagnetic wave reaches the perceived target, since the perceived target cannot completely absorb the electromagnetic wave, the signal formed after being reflected from the surface of the sensed target is the echo signal.
  • Perceptual resources resources used to send perceptual signals, including perceptual time domain resources and perceptual frequency domain resources.
  • communication data is mainly transmitted through PDSCH or PUSCH.
  • Communication data may include control information, and service data (such as voice, video services, etc.), where the control information may include RRC layer control information, MAC layer control information, etc., and the RRC layer control information may include system information, dedicated RRC information, etc. .
  • the time-domain resource allocation information of the PDSCH can be indicated through downlink control information (downlink control indicator, DCI) in the downlink control channel.
  • DCI downlink control indicator
  • the network device indicates the time domain resource of the PDSCH, it needs to indicate the starting symbol index of the PDSCH and the number of symbols occupied by the PDSCH. For different resource mapping types, there are certain restrictions on the start symbol index and the symbol length, as shown in Table 1.
  • S is the starting symbol index and L is the number of symbols. L represents consecutive L symbols counted from the start symbol index. Since the maximum number of OFDM symbols in one slot is 14, the sum of S and L is less than or equal to 14.
  • PDSCH mapping type A for the normal cyclic prefix case, the value of S is ⁇ 0, 1, 2, 3 ⁇ , the length is ⁇ 3, 4, ..., 14 ⁇ , and S+L is less than or equal to 14.
  • PDSCH mapping type B for the normal cyclic prefix case, the value of S is ⁇ 0, 1, ..., 12 ⁇ , the length is ⁇ 2, 3, ..., 13 ⁇ and S+L is less than or equal to 14.
  • the time domain resource indicated by the network device can be divided into the following two situations:
  • Case 1 A single-slot based TB indicates time-domain resources.
  • a network device may indicate a time domain resource through a time domain resource allocation (time domain resource allocation, TDRA) field in the DCI.
  • the DCI indicates the start symbol index and symbol number of PDSCH transmission through a certain row in the TDRA table.
  • Table 2 shows a predefined time-domain resource allocation table.
  • the first column in the table is the index number
  • the second column indicates the position of the demodulation reference signal (DMRS)
  • the third column indicates the mapping type of PDSCH
  • the fourth column indicates the transmission slot of PDSCH relative to the slot of DCI
  • the offset, the last two columns are the values of S and L.
  • the values of S and L may also be configured through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • RRC can configure the values of S and L through PDSCH-TimeDomainResourceAllocation-r16IE (information element).
  • RRC first configures the PDSCH-TimeDomainResourceAllocationList IE, which includes multiple PDSCH-TimeDomainResourceAllocation-r16 configurations, and the value of startSymbolAndLength-r16 (start and length indicator value, SLIV) is used to determine the values of S and L.
  • startSymbolAndLength-r16 start and length indicator value, SLIV
  • the values of S and L can be deduced inversely, and the value ranges of S and L also need to meet the limiting conditions in Table 1.
  • the mapping relationship between SLIV and S and L is shown in formula (1):
  • the TBS can be calculated according to the scheduled time-frequency resources and modulation and coding schemes.
  • Step 1 Calculate the number of REs in each PRB in the scheduled slot:
  • Step 2 Calculate the total number of REs of the scheduled resources, that is, the number of REs used for PDSCH transmission:
  • N RE min(156,N' RE ) ⁇ n PRB , formula (3)
  • n PRB is the number of PRBs allocated to the terminal.
  • Step 3 Calculate the number of information bits that can be transmitted:
  • N info N RE ⁇ R ⁇ Q m ⁇ , formula (5)
  • R is the code rate
  • Qm is the modulation mode
  • v is the number of layers or streams to be transmitted.
  • Step 4 Calculate TBS according to the number of information bits.
  • Case 2 A multi-slot based TB indicates time-domain resources.
  • the uplink transmission is taken as an example for description.
  • the RRC layer configures the number of slots N occupied by the PUSCH through the PUSCH-TimeDomainAllocationList, that is, 1 TB will be mapped to N slots.
  • a new column is added in the TDRA table to indicate the number of time slots N, as shown in Table 3.
  • N RE N ⁇ min(156,N' RE ) ⁇ n PRB , formula (6)
  • the number of symbols scheduled in different time slots may be different.
  • the above TBoMS time-domain resource indication method cannot indicate the number of OFDM symbols allocated to each time slot.
  • the actual code rate after rate matching may be higher or lower than the code rate used when calculating the TBS. For example, assuming that 1 TB is transmitted in two time slots, and the number of symbols allocated in the first time slot is 4, and the number of symbols allocated in the second time slot is 2, the number of effective REs calculated in the first time slot is 4000, the effective number of REs in the second time slot is 2000, and the actual number of REs in the two time slots is 6000.
  • the calculated number of REs is 2000 (4000*2).
  • the TBS calculated in this way is too large, causing the actual code rate to be much higher than the code rate corresponding to the modulation and code rate scheme (MCS), which will deteriorate the demodulation performance and increase the probability of decoding errors.
  • MCS modulation and code rate scheme
  • the cross-slot resource scheduling has a situation that there are fewer scheduling symbols in each time slot. If the scheduling is performed according to a single time slot, the TBS of each scheduling is small, and the coding gain is low, and the terminal equipment needs to demodulate the PDCCH frequently, resulting in high complexity.
  • the present application proposes a method for transmitting information.
  • the method configures sparse and non-equally spaced symbols for the terminal device through the network device for data transmission, which can improve communication efficiency.
  • the method may include the following step:
  • Step 401 The network device sends first indication information to the terminal device, and the terminal device receives the first indication information correspondingly.
  • the first indication information is used to indicate a first time domain resource
  • the first time domain resource may be a time domain resource configured by a network device and used for data transmission.
  • the first time domain resource may be a time domain resource within a first time period, the first time period includes two or more time slots, and the first time domain resource is located in at least M time slots of the first time period, M is an integer greater than 1.
  • the first time period is T
  • the first time period includes time slot 1 and time slot 2
  • the first time domain resources may be located in the two time slots of the first time period, for example, the first time domain
  • the resource may be symbol 0 in slot 1 and slot 2, or the first time domain resource may be symbol 0 in slot 1 and slot 3.
  • the first time domain resource may be located in the 4 time slots of the first time period, and the first time domain resource may be the symbol 0 in time slot 1, time slot 2, time slot 3, and time slot 4. It should be understood that the above numbers These are examples only and not limiting.
  • the first indication information may be information included in RRC signaling.
  • the first indication information includes the duration of the first time period.
  • the duration of the first time period can also be understood as a cycle for the network device to send data to the terminal device, that is, a cycle for the terminal device to receive data, such as T in FIG. 5 .
  • the duration of the first time period included in the first indication information may be the number of time slots included in the first time period, for example, the number of time slots included in the first time period is M; or, the first time slot included in the first indication information
  • the duration of a time period may be a length of time, for example, the duration of the first time period is 10 milliseconds; the duration of the first time period may also be other physical quantities that can represent the duration, for example, the number of symbols and so on. This application does not limit this. Both M and T above are non-negative integers.
  • the communication unit 220 in FIG. 2 may be used to execute the method in step 401 .
  • the communication unit 220 is configured to send first indication information; when the apparatus shown in FIG. 2 is a terminal device, the communication unit 220 is configured to receive the first indication information.
  • the interface circuit 320 in FIG. 3 is used to realize the functions of the above-mentioned communication unit 220 , which will not be repeated here.
  • Step 402 The network device sends scheduling information to the terminal device, and the terminal device receives the scheduling information accordingly.
  • the scheduling information is used to indicate the second time domain resource for receiving the first data.
  • the second time domain resource is a subset or the whole set of the first time domain resource, and the second time domain resource belongs to at least two time slots.
  • the scheduling information may include a starting symbol index S and a symbol number L for receiving the first data, and/or, the scheduling information includes a time slot number P for receiving the first data.
  • the at least two time slots include a first time slot
  • the second time domain resource includes a first symbol and a second symbol on the first time slot
  • the interval between the first symbol and the second symbol is N Symbols, where the first symbol and the second symbol are two adjacent symbols on the second time domain resource, and N is an integer greater than or equal to 1.
  • the first time domain resource includes time slot 1 (not shown in Figure 6), time slot 2, time slot 3 and time slot 4 (not shown in Figure 6)
  • the second time domain resource The resource is a subset of the first time domain resource
  • the second time domain resource includes time slot 2 (ie, the first time slot) and time slot 3 (ie, the second time slot).
  • the second time-domain resource includes symbol A and symbol B on slot 2, and the interval between symbol A and symbol B is two symbols.
  • symbol A and symbol B are two adjacent symbols of the second time domain resource on the time slot 2 . It should be understood that the above symbols and time slots are only examples rather than limitations.
  • the at least two time slots include a first time slot and a second time slot, and the symbols included in the second time domain resource on the first time slot are the same as the symbols included in the second time domain resource on the second time slot.
  • the symbols included are different. The above differences are as follows:
  • Case A the number of symbols included in the first time slot by the second time domain resource is different from the number of symbols included by the second time domain resource in the second time slot.
  • the second time domain resource includes two symbols on the first slot (slot 2) and one symbol on the second slot (slot 3).
  • Case B The index of the symbol included in the first time slot by the second time domain resource partly overlaps and partly differs from the index of the symbol included in the second time slot by the second time domain resource.
  • the symbols included in the first time slot (time slot 1) of the second time domain resource are symbol 0 and symbol 1
  • the symbols included in the second time slot (time slot 2) are symbol 1 and symbol 1.
  • a time slot includes 14 symbols as an example, and symbol indexes are 0-13 as an example to describe the solution, but the embodiments of the present application are not limited thereto.
  • Case C The index of the symbol included in the first time slot by the second time domain resource is completely different from the index of the symbol included in the second time slot by the second time domain resource.
  • the symbols included in the first time slot (slot 1) of the second time domain resource are symbols 0 and 2
  • the symbols included in the second time slot (slot 2) are symbols 1 and 2.
  • time slot 1 is used as an example of the first time slot
  • time slot 2 is used as an example of the second time slot to describe the solution, but the embodiments of the present application do not limit this, for example, the first time slot can also be is slot 2, the second slot can also be slot 1.
  • the number of symbols included in at least one of the at least two time slots in the second time domain resource is 1.
  • the second time domain resource includes symbol 2 in time slot 1 , symbol 1 in time slot 2 , and symbol 2 and symbol 4 in time slot 3 .
  • the number of symbols included in at least one of the at least two time slots in the second time domain resource is 1, and the number of symbols included in each time slot may be 1, or may be in a part of them
  • the number of symbols included in a time slot is 1, or the number of symbols included in only one of the time slots is 1. This application does not limit this.
  • the network device may send the second indication information to the terminal device, and the terminal device receives the second indication information correspondingly.
  • the second indication information is used to indicate whether the symbols included in the first time domain resource are used to receive data, where the data includes the first data.
  • the second indication information may be used to indicate symbols used to transmit data in the first time domain resource, and the second indication information may also be used to indicate symbols not used to transmit data in the first time domain resource.
  • the second indication information The symbols used for data transmission and the symbols not used for data transmission in the first time domain resource may also be indicated at the same time. This application does not limit this. Taking a bitmap (bitmap) as an example of the second indication information, and taking the second indication information to simultaneously indicate symbols used to transmit data and symbols not used to transmit data in the first time domain resource as an example, as shown in FIG.
  • a network device can send ⁇ 0,1,0,0,1,0,1,0,1,1,1,1,0,1,1,1,1,0,0,1,0,0, 0,0,0,0,0,0,1 ⁇ , a bit value of 1 indicates that the symbol can be used for data transmission, and a bit value of 0 indicates that the symbol is not used for data transmission.
  • bit values can be predefined. For example, a bit value of 0 may represent that the symbol can be used for data transmission, and a bit value of 1 may represent that the symbol is not used for data transmission.
  • the network device may indicate the time slot offset I to the terminal device in the first indication information or the time domain position information.
  • the time slot offset I is an integer greater than or equal to 0 and less than M.
  • the terminal device may determine the second time domain resource according to the time slot for receiving the second indication information, the first time domain resource, and the scheduling information.
  • the second indication information may be DCI.
  • the scheduling information includes a start symbol index S and a symbol number L for receiving the first data
  • the S is the absolute index of the time slot where the start symbol index is located.
  • the bitmap values of the OFDM symbols contained in the corresponding M time slots are respectively: the value of the bitmap of the first time slot ⁇ 0,0,0,0, 0,1,0,0,0,0,0,0,1,0 ⁇ , the value of the second time slot bitmap ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0 ⁇ , the value of the bitmap of the third time slot ⁇ 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0 ⁇ , the fourth Values of slot bitmap ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 ⁇ .
  • the terminal equipment receives the DCI in the second time slot of the M time slots, and the time slot offset K0 in the TDRA table is 0.
  • S 12 means that the index of the start symbol of the scheduled PDSCH is 12, that is, the start symbol is the 13th symbol in the time slot.
  • L is 4, indicating that the number of symbols with a bit value of 1 is 4.
  • the bitmp of the 2nd, 3rd, and 4th time slots it can be determined that the number of OFDM symbols to be scheduled is the symbol with a bit value of 1 on the 2nd time slot, the 3rd time slot, and the 4th time slot.
  • the starting symbol index is a relative index between scheduled symbols.
  • the bitmap values are: the value of the first time slot bitmap ⁇ 0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0 ⁇ , the second time slot bitmap The value of ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 ⁇ , the value of the third slot bitmap ⁇ 0,0,0,0,0,0 ,0 ,1,0,0,0,0,0,0,0,1,0 ⁇ , the value of bitmap in the fourth time slot ⁇ 0,0,0,0,0,0,0,0,0,0,0,0 ,0,1,0 ⁇ .
  • the terminal equipment receives the DCI in the second time slot of the M time slots, and the time slot offset K0 in the TDRA table is 0.
  • S it means that the start symbol of the scheduled PDSCH is the symbol whose first bit value is 1 in the first time slot, that is, although the start symbol in this time slot is the 13th symbol , but the symbol has an index of 0.
  • the start symbol in the scheduled symbols is the sixth symbol, the index is 0, and the second symbol in the scheduled symbols is the 13th symbol in the time slot , the symbol has index 1.
  • L is 4, indicating that the number of symbols with a bit value of 1 is 4, that is, the number of symbols to be scheduled is 4.
  • the number of OFDM symbols to be scheduled is the symbol with a bit value of 1 on the 2nd time slot, the 3rd time slot, and the 4th time slot.
  • the bitmap values of the OFDM symbols contained in the corresponding M time slots are respectively :
  • the value of the bitmap of the first time slot ⁇ 0,0,0,0,0,1,0,0,0,0,0,0,1,0 ⁇
  • the value of the bitmap of the second time slot ⁇ 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 ⁇
  • the value of bitmap in the third time slot ⁇ 0,0,0,0,0,1,0, 0,0,0,0,0,1,0 ⁇
  • the value of bitmap in the fourth time slot ⁇ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 0 ⁇ .
  • the terminal equipment receives the DCI in the second time slot of the M time slots, and the time slot offset K0 in the TDRA table is 0.
  • the terminal device can determine that the currently scheduled time slots are the 2nd and 3rd time slots among the M time slots, and the scheduled OFDM symbols are symbols with a bitmap value of 1, that is, a total of 3 symbols.
  • the terminal may determine that the currently scheduled time slots are the 2nd, 3rd and 4th time slots among the M time slots, and the number of OFDM symbols to be scheduled is 5.
  • the network device may send the time-domain location information to the terminal device, and the terminal device receives the time-domain location information accordingly.
  • the time domain position information may be used to indicate the interval between any two adjacent symbols in the first time domain resource.
  • the time domain location information may include the following:
  • the number of configured sets of time domain intervals the number of sets can be greater than or equal to 2, indicating that at least two sets of symbols with different time domain intervals are configured.
  • Configuration index indicates the index of the current configuration information. For example, the index is 0, indicating the first set of configuration, corresponding to the first set of time domain location information configuration; the index is 1, indicating the second set of configuration, corresponding to the second set of time domain location information configuration . It should be understood that the above index values are only examples rather than limitations.
  • Starting time slot index the number of the first time slot in the period (duration of the first time domain resource).
  • End slot index numbered relative to the first slot in the cycle (the duration of the first time domain resource) or using the absolute slot number in the radio frame. It can be understood that the symbols under each time domain interval When distributing the entire period, you do not need to configure this item.
  • Repeat interval Repeat every Y time slots, Y is a positive integer greater than 0 and less than M. It should be understood that the repetition interval refers to the number of time slots in which symbols of the same time domain interval repeatedly appear, which is different from the duration (period) of the first time domain.
  • Start symbol index index of the first symbol available for scheduling in 1 slot.
  • the first scheduled symbol may be determined according to timing. For example, in a time slot, the scheduled symbol with the earliest time sequence is the first symbol in the time slot.
  • the time-domain location information may include multiple sets of time-domain location information, and each set of time-domain location information corresponds to an interval rule.
  • the number of configuration sets of time domain intervals is greater than or equal to 2
  • the configuration index 0 corresponds to the first set of time domain intervals
  • the configuration index 1 corresponds to the second set of time domain intervals
  • the time domain position information of the first set of time domain intervals includes the first set of time domain intervals A start time slot index, a first end time slot index, a first repetition interval, a first interval symbol number, and a first start symbol index
  • the time domain position information of the second set of time domain intervals includes a second start time slot index, A second ending slot index, a second repetition interval, a second interval symbol number, a second starting symbol index, and so on.
  • the second to L sets of time domain position information configurations are similar to the first set of time slot interval configurations, but the specific values are different.
  • two kinds of regular time domain intervals are included, and the number of symbols scheduled is different in odd time slots and even time slots.
  • the time domain intervals between two adjacent scheduled symbols are 7 symbols and 0 symbols respectively.
  • the above time domain location information is shown in Table 4:
  • the first set of time domain location information The second set of time domain position information configuration index 0 1 number of spacers 7 0 start slot index 0 1 end slot index 78 79 start symbol index 4 12 repeat interval 2 (time slot) 2 (time slot)
  • M is the number of time slots included in the first time domain resource
  • I is a time slot offset
  • Table 4 takes two sets of time-domain location information as an example.
  • the third to G sets of time-domain location information are as shown in Table 4, except that The specific values are different.
  • G is a positive integer greater than 3.
  • the terminal device may determine the second time-frequency resource according to the foregoing time-domain location information and scheduling information.
  • the network device may send the time domain location information and the second indication information to the terminal device.
  • the time domain location information may include configuration index, end slot index, and repetition interval.
  • the time domain location information also includes a start time slot index, the numbering method of the start time slot index is similar to the numbering method of the above end time slot index, and may be relative to the first time slot index in the cycle (the duration of the first time domain resource).
  • a slot is numbered or an absolute slot number in a radio frame is used.
  • the second indication information is used to indicate the bitmap value of each OFDM symbol in the initial slot. When the bitmap value is 1, it is used to send data, and when the value is 0, it is not used to send data.
  • the symbols used for sending data in the non-starting time slots may be determined according to the bitmap of the starting time slot and time-domain position information.
  • the time-domain location information may also be a resource distribution pattern (pattern).
  • the pattern may only indicate the positions of symbols belonging to the first time domain resource, or may only indicate the positions of symbols not belonging to the first time domain resource, or may indicate both the positions of symbols belonging to the first time domain resource and those not belonging to the second time domain resource. The location of the symbol for the time domain resource.
  • the time domain location information may also be the location of time domain resources. Taking FIG. 10 as an example, the time domain position information may be: the 5th symbol of time slot 0, the 13th symbol of time slot 0, the 13th symbol of time slot 1, the 5th symbol of time slot 2, The 13th symbol of slot 5, the 13th symbol of slot 1. It should be understood that the above figures are only examples and not limitations.
  • the above-mentioned second indication information may be sent separately, or carried in the first indication information or time-domain position information and sent simultaneously. This application does not limit this.
  • the network device may first determine the second time domain resource (that is, the scheduled resource) and determine the size of the first data.
  • the size of the first data determined by the network device is associated with the first parameter, and the first parameter includes at least one of the following: the number of symbols included in the second time domain resource, the demodulation reference included in the second time domain resource Signal overhead, overhead configured by high-level signaling, and the number of physical resource blocks included in the second time domain resource.
  • the terminal device may determine the size of the first data.
  • the terminal device may determine the size of the first data according to the first parameter.
  • the first parameter can satisfy the following relationship:
  • N RE min(156,N' RE ) ⁇ n PRB , formula (7)
  • N RE N′ RE ⁇ n P , formula (8)
  • n PRB is the number of physical resource blocks included in the second time domain resource.
  • the size of the above first data is the size of TB (TBS), not the size of the channel-coded data.
  • the network device may also indicate in the TDRA table whether to use the above-mentioned scheduled time domain resources, or indicate the calculation method of the TBS. For example, as shown in Table 5, in the table, when the value of "TBoMS type" is 1 or not configured, the method of formula (6) can be used to calculate TBS; when the value is 2, formula (9) can be used method to calculate TBS.
  • Table 5 is an example rather than a limitation. In specific implementation, part of the content in Table 5 may be used as the implementation, the entire content of Table 5 may be used as the implementation, and Table 5 may be used as a part of the implementation, which is not limited in this application.
  • Table 5 may be preconfigured on the terminal device.
  • the terminal device can determine the type of TBoMS according to other information in tables such as S, L, and N. This indication method does not need to modify the size of the indication information.
  • the network device may indicate the TBoMS type to the terminal device through indication information. For example, a new field is added in the DCI, which is indicated by 1 bit. When this field does not exist or the bit value is 0, it indicates Type 1TBoMS, corresponding to the TBS calculation method of formula (6); when the bit value is 1, it indicates Type 2TBoMS, corresponding to the TBS calculation method of formula (9). It should be understood that the correspondence between bit values and TBoMS types is only an example rather than a limitation. TBoMS Type is indicated through a new field, which is more flexible.
  • the communication unit 220 and the processing unit 210 in FIG. 2 may be used to execute the method in step 402 .
  • the communication unit 220 may be used for sending and receiving information and/or data.
  • the communication unit 220 is configured to send second indication information, scheduling information or time domain location information; when the apparatus shown in FIG. 2 is a terminal device, the communication unit 220 uses for receiving second indication information, scheduling information or time-domain location information.
  • the processing unit is configured to determine the first time domain resource and the second time domain resource.
  • the processing unit is configured to determine the first time domain resource and the second time domain resource, and determine the size of the first data.
  • the interface circuit 320 in FIG. 3 can be used to realize the functions of the above-mentioned communication unit 220, and the processor 310 can be used to realize the functions of the above-mentioned communication unit 220, which will not be repeated here.
  • Step 403 The network device sends the first data, and correspondingly, the terminal device receives the first data.
  • the network device may send the first data on the second time domain resource, and the terminal device may receive the first data on the second time domain resource.
  • the first data may be carried by a physical downlink shared channel PDSCH.
  • the communication unit 220 in FIG. 2 may be used to execute the method in step 403 .
  • the communication unit 220 when the apparatus shown in FIG. 2 is a network device, the communication unit 220 is configured to send the first data; when the apparatus shown in FIG. 2 is a terminal device, the communication unit 220 is configured to receive the first data.
  • the interface circuit 320 in FIG. 3 can be used to realize the functions of the above-mentioned communication unit 220, which will not be repeated here.
  • This method transmits data through sparse and non-equally spaced symbols on TBoMS, which can obtain high coding gain.
  • Terminal equipment only needs to receive PDCCH once to complete the demodulation of symbols in multiple time slots, which is beneficial to reduce the cost of terminal equipment. complexity and improve data transmission efficiency.
  • a calculation method of TBS is proposed, which can prevent the actual code rate from being much higher than the corresponding code rate of MCS, reduce the probability of decoding errors, and improve the reliability of data transmission.
  • the network device may indicate time domain resources and frequency domain resources.
  • the network device may indicate through a frequency domain resource allocation (frequency domain resource allocation, FDRA) field in the DCI.
  • FDRA frequency domain resource allocation
  • the network device can detect the target by receiving the echo signal of the sent sensing signal, and estimate the detected target Speed, follow-up, trajectory, shape, size, etc. Considering that the perception signal is only used for perception will cause a lot of overhead waste, the data can be carried by the perception signal.
  • the symbols used to send the first data in the above embodiments can be perceptual symbols, that is, the symbols used to send the first data can also be used for perceptual detection, which can reduce the system overhead caused by sending perceptual signals
  • the length of the first time period in each of the above embodiments can also be understood as the period for the network device to send the sensing signal; the time domain position information in the above embodiments can be the time domain position information of the sensing symbol.
  • the network device or the terminal device may include a hardware structure and/or a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or physically exist separately, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as radio frequency modules or antennas), and the information is sent to the terminal device by the network device; or, the terminal device chip sends information to other modules in the terminal device (such as radio frequency modules or antenna) to send information, which is sent by the terminal device to the network device.
  • the network equipment chip implements the functions of the network equipment in the above method embodiments.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent to the network device by the terminal device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antenna) to send information, which is sent by the network device to the terminal device.
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the processor can be random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable In addition to programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art middle.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device. Certainly, the processor and the storage medium may also exist in the network device or the terminal device as discrete components.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种传输信息的方法、装置及系统。该方法可以包括:接收第一指示信息,该第一指示信息用于指示第一时间段内的第一时域资源,该第一时间段包括两个或多个时隙,该第一时域资源位于该第一时间段的至少M个时隙中,M为大于1的整数;接收调度信息,该调度信息用于指示接收第一数据的第二时域资源,该第二时域资源为该第一时域资源的子集或者全集,该第二时域资源属于至少两个时隙,第二时域资源为稀疏、非连续的时域资源,在该第二时域资源上接收该第一数据。该方法能够降低终端设备解调数据的复杂度,提高数据传输效率。

Description

一种传输信息的方法、装置及系统
本申请要求于2022年01月06日提交中国专利局、申请号为202210009022.9、申请名称为“一种传输信息的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域。尤其涉及一种传输信息的方法、装置及系统。
背景技术
目前在数据传输过程中,跨时隙资源调度存在每个时隙的调度符号较少的情况。如果按照单个时隙进行调度,每次调度的传输块大小(transport block size,TBS)较小,编码增益较低,并且终端设备需要频繁地解调物理下行控制信道(physical downlink control channel,PDCCH),复杂度较高。因此,如何降低终端设备解调数据的复杂度,提高数据传输效率,是亟待解决的问题。
发明内容
本申请实施例提出一种传输信息的方法、装置及系统,能够降低终端设备解调复杂度,提高数据传输效率。
第一方面,提供一种传输信息的方法该方法可以包括:接收第一指示信息,该第一指示信息用于指示第一时间段内的第一时域资源,该第一时间段包括两个或多个时隙,该第一时域资源位于该第一时间段的至少M个时隙中,M为大于1的整数;接收调度信息,该调度信息用于指示接收第一数据的第二时域资源,该第二时域资源为该第一时域资源的子集或者全集,该第二时域资源属于至少两个时隙,该至少两个时隙包括第一时隙,该第二时域资源在该第一时隙上包括第一符号和第二符号,该第一符号与该第二符号之间间隔N个符号,该第一符号与该第二符号为该第二时域资源上相邻的两个符号,N为大于或等于1的整数,
或者,该至少两个时隙包括第一时隙和第二时隙,该第二时域资源在该第一时隙上包括的符号与该第二时域资源在该第二时隙上包括的符号不同,
或者,
该第二时域资源在该至少两个时隙中的至少一个时隙上包括的符号数量为1;
在该第二时域资源上接收该第一数据。
该方法通过稀疏、非等间隔的符号进行数据发送,可获得较高的编码增益,终端设备只需1次PDCCH接收就可完成多个时隙的符号的解调,有利于降低终端设备的复杂度,提高数据传输效率。
结合第一方面,在第一方面可能的实现方式中,该方法还可以包括:接收第二指示 信息,该第二指示信息用于指示该第一时域资源包括的符号是否用于接收数据,该数据包括该第一数据。
该实现方式中通过符号级的资源指示,能够提升调度非连续时域资源的灵活性,提高了确定调度资源的准确性。
该第二指示信息可以承载在第一指示信息中,也可以单独发送。本申请对此不做限定。
结合第一方面,在第一方面可能的实现方式中,该第一指示信息还包括时隙偏移量,该时隙偏移量用于指示该第一时段内第1个时隙的时隙索引。
结合第一方面,在第一方面可能的实现方式中,该方法还包括:接收时域位置信息,该时域位置信息用于指示该第一时域资源中任意相邻两个符号之间的间隔。
在该实现方式中,对于规律性分布的调度资源,可以通过该资源对应的时域位置信息指示该资源的分布规律,节省了开销,能够提高通信效率。
该时域位置信息可以承载在第一指示信息中,也可以单独发送。本申请对此不做限定。
结合第一方面,在第一方面可能的实现方式中,该方法还包括:根据接收该第二指示信息的时隙、该第一时域资源和该调度信息确定该第二时域资源。
结合第一方面,在第一方面可能的实现方式中,该第一数据的大小是根据该第二时域资源确定的。
结合第一方面,在第一方面可能的实现方式中,该第一数据的大小是根据第一参数确定的,该第一参数包括如下至少一项:
该第二时域资源包括的符号的数量、该第二时域资源包括的解调参考信号开销、高层信令配置的开销、该第二时域资源包括的物理资源块的数量。
结合第一方面,在第一方面可能的实现方式中,该第一参数满足下述关系:
N RE=min(156,N' RE)·n PRB,或者,N RE=N' RE·n PRB
其中,
Figure PCTCN2023070687-appb-000001
Figure PCTCN2023070687-appb-000002
为一个物理资源块在频域上包括的子载波数,
Figure PCTCN2023070687-appb-000003
为该第二时域资源包括的符号的数量,
Figure PCTCN2023070687-appb-000004
为该第二时域资源包括的解调参考信号开销,
Figure PCTCN2023070687-appb-000005
为高层信令配置的开销,n PRB为该第二时域资源包括的物理资源块的数量。
上述第一数据的大小可以是TB的大小(TBS)。
本申请提出的传输块大小的计算方法,能够避免实际码率远高于调制编码策略对应的码率,降低了译码错误的概率,提升了数据传输的可靠性。
第二方面,提供一种传输信息的方法,该方法可以包括:发送第一指示信息,该第一指示信息用于指示第一时间段内的第一时域资源,该第一时间段包括两个或多个时隙,该第一时域资源位于该第一时间段的至少M个时隙中,M为大于1的整数;
发送调度信息,该调度信息用于指示发送第一数据的第二时域资源,该第二时域资源为该第一时域资源的子集或者全集,该第二时域资源属于至少两个时隙,
该至少两个时隙包括第一时隙,该第二时域资源在该第一时隙上包括第一符号和第 二符号,该第一符号与该第二符号之间间隔N个符号,该第一符号与该第二符号为该第二时域资源上相邻的两个符号,N为大于或等于1的整数,
或者,
该至少两个时隙包括第一时隙和第二时隙,该第二时域资源在该第一时隙上包括的符号与该第二时域资源在该第二时隙上包括的符号不同,
或者,
该第二时域资源在该至少两个时隙中的至少一个时隙上包括的符号数量为1;
在该第二时域资源上发送该第一数据。
结合第二方面,在第二方面可能的实现方式中,该方法还包括:发送第二指示信息,该第二指示信息用于指示该第一时域资源包括的符号是否用于发送数据,该数据包括该第一数据。
结合第二方面,在第二方面可能的实现方式中,该第一指示信息还包括时隙偏移量,该时隙偏移量用于指示该第一时段内第1个时隙的时隙索引。
结合第二方面,在第二方面可能的实现方式中,该方法还包括:发送时域位置信息,该时域位置信息用于指示该第一时域资源中任意相邻两个符号之间的间隔。
结合第二方面,在第二方面可能的实现方式中,该第一数据的大小与该第二时域资源相关联。
结合第二方面,在第二方面可能的实现方式中,该第一数据的大小与第一参数相关联,该第一参数包括如下至少一项:
该第二时域资源包括的符号的数量、该第二时域资源包括的解调参考信号开销、高层信令配置的开销、该第二时域资源包括的物理资源块的数量。
结合第二方面,在第二方面可能的实现方式中,该第一参数满足下述关系:
N RE=min(156,N' RE)·n PRB,或者,N RE=N' RE·n PRB
其中,
Figure PCTCN2023070687-appb-000006
Figure PCTCN2023070687-appb-000007
为一个物理资源块在频域上包括的子载波数,
Figure PCTCN2023070687-appb-000008
为该第二时域资源包括的符号的数量,
Figure PCTCN2023070687-appb-000009
为该第二时域资源包括的解调参考信号开销,
Figure PCTCN2023070687-appb-000010
为高层信令配置的开销,n PRB为该第二时域资源包括的物理资源块的数量。
应理解,第二方面是与第一方面对应的方法,第一方面的解释、补充和有益效果适用于第二方面,此处不再赘述。
第三方面,提供一种通信装置,包括处理单元和收发单元,该收发单元用于接收第一指示信息,该第一指示信息用于指示第一时间段内的第一时域资源,该第一时间段包括两个或多个时隙,该第一时域资源位于该第一时间段的至少M个时隙中,M为大于1的整数;
该收发单元还用于接收调度信息,该调度信息用于指示接收第一数据的第二时域资源,该第二时域资源为该第一时域资源的子集或者全集,该第二时域资源属于至少两个时隙,
该至少两个时隙包括第一时隙,该第二时域资源在该第一时隙上包括第一符号和第 二符号,该第一符号与该第二符号之间间隔N个符号,该第一符号与该第二符号为该第二时域资源上相邻的两个符号,N为大于或等于1的整数,
或者,
该至少两个时隙包括第一时隙和第二时隙,该第二时域资源在该第一时隙上包括的符号与该第二时域资源在该第二时隙上包括的符号不同,
或者,
该第二时域资源在该至少两个时隙中的至少一个时隙上包括的符号数量为1;
该收发单元还用于在该第二时域资源上接收该第一数据。
结合第三方面,在第三方面可能的实现方式中,该收发单元还用于接收第二指示信息,该第二指示信息用于指示该第一时域资源包括的符号是否用于接收数据,该数据包括该第一数据。
结合第三方面,在第三方面可能的实现方式中,该第一指示信息还包括时隙偏移量,该时隙偏移量用于指示该第一时段内第1个时隙的时隙索引。
结合第三方面,在第三方面可能的实现方式中,该收发单元还用于接收时域位置信息,该时域位置信息用于指示该第一时域资源中任意相邻两个符号之间的间隔。
结合第三方面,在第三方面可能的实现方式中,该处理单元用于根据接收该第二指示信息的时隙、该第一时域资源和该调度信息确定该第二时域资源。
结合第三方面,在第三方面可能的实现方式中,该第一数据的大小是根据该第二时域资源确定的。
结合第三方面,在第三方面可能的实现方式中,该第一数据的大小是根据第一参数确定的,该第一参数包括如下至少一项:
该第二时域资源包括的符号的数量、该第二时域资源包括的解调参考信号开销、高层信令配置的开销、该第二时域资源包括的物理资源块的数量。
结合第三方面,在第三方面可能的实现方式中,该第一参数满足下述关系:
N RE=min(156,N' RE)·n PRB,或者,N RE=N' RE·n PRB
其中,
Figure PCTCN2023070687-appb-000011
Figure PCTCN2023070687-appb-000012
为一个物理资源块在频域上包括的子载波数,
Figure PCTCN2023070687-appb-000013
为该第二时域资源包括的符号的数量,
Figure PCTCN2023070687-appb-000014
为该第二时域资源包括的解调参考信号开销,
Figure PCTCN2023070687-appb-000015
为高层信令配置的开销,n PRB为该第二时域资源包括的物理资源块的数量。
第四方面,提供一种通信装置,包括处理单元和收发单元,该收发单元用于发送第一指示信息,该第一指示信息用于指示第一时间段内的第一时域资源,该第一时间段包括两个或多个时隙,该第一时域资源位于该第一时间段的至少M个时隙中,M为大于1的整数;
该收发单元还用于发送调度信息,该调度信息用于指示发送第一数据的第二时域资源,该第二时域资源为该第一时域资源的子集或者全集,该第二时域资源属于至少两个时隙,
该至少两个时隙包括第一时隙,该第二时域资源在该第一时隙上包括第一符号和第二符号,该第一符号与该第二符号之间间隔N个符号,该第一符号与该第二符号为该第 二时域资源上相邻的两个符号,N为大于或等于1的整数,
或者,
该至少两个时隙包括第一时隙和第二时隙,该第二时域资源在该第一时隙上包括的符号与该第二时域资源在该第二时隙上包括的符号不同,
或者,
该第二时域资源在该至少两个时隙中的至少一个时隙上包括的符号数量为1;
该收发单元还用于在该第二时域资源上发送该第一数据。
结合第四方面,在第四方面可能的实现方式中,该收发单元还用于发送第二指示信息,该第二指示信息用于指示该第一时域资源包括的符号是否用于发送数据,该数据包括该第一数据。
结合第四方面,在第四方面可能的实现方式中,该第一指示信息还包括时隙偏移量,该时隙偏移量用于指示该第一时段内第1个时隙的时隙索引。
结合第四方面,在第四方面可能的实现方式中,该收发单元还用于发送时域位置信息,该时域位置信息用于指示该第一时域资源中任意相邻两个符号之间的间隔。
结合第四方面,在第四方面可能的实现方式中,该第一数据的大小与该第二时域资源相关联。
结合第四方面,在第四方面可能的实现方式中,该第一数据的大小与第一参数相关联,该第一参数包括如下至少一项:
该第二时域资源包括的符号的数量、该第二时域资源包括的解调参考信号开销、高层信令配置的开销、该第二时域资源包括的物理资源块的数量。
结合第四方面,在第四方面可能的实现方式中,该第一参数满足下述关系:
N RE=min(156,N' RE)·n PRB,或者,N RE=N' RE·n PRB
其中,
Figure PCTCN2023070687-appb-000016
Figure PCTCN2023070687-appb-000017
为一个物理资源块在频域上包括的子载波数,
Figure PCTCN2023070687-appb-000018
为该第二时域资源包括的符号的数量,
Figure PCTCN2023070687-appb-000019
为该第二时域资源包括的解调参考信号开销,
Figure PCTCN2023070687-appb-000020
为高层信令配置的开销,n PRB为该第二时域资源包括的物理资源块的数量。
应理解,第三、四方面是与第一、二方面对应的装置侧实现方式,第一、二方面的有益效果同样适用于第三、四方面,不再赘述。
第五方面,提供一种计算机可读存储介质,该计算机可读存储介质存储用于通信装置执行的程序代码,该程序代码包括用于执行第一方面或第二方面,第一方面或第二方面中任一可能的实现方式,或,第一方面或第二方面中所有可能的实现方式的方法中的通信方法的指令。
第六方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面或第二方面,或,第一方面或第二方面中任一可能的实现方式,或,第一方面或第二方面中所有可能的实现方式的方法。
第七方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面或第二方面,或,第一方面或第二方面中任一可能的实现方式,或,第一方面或第二方面中所有 可能的实现方式的方法及各种可能的实现方式的功能的装置。
第八方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或第二方面,或,第一方面或第二方面中任一可能的实现方式,或,第一方面或第二方面中所有可能的实现方式中的方法。
第九方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第一方面或第二方面,或,第一方面或第二方面中任一可能的实现方式,或,第一方面或第二方面中所有可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第一方面或第二方面或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在终端设备和/或网络设备上。
附图说明
图1中是适用于本申请实施例的一种通信系统的示意图。
图2是本申请实施例提出的一种通信装置的示意性框图。
图3是本申请实施例提出的另一种通信装置的示意性框图。
图4是本申请实施例提出的一种时域资源的示意图。
图5是本申请实施例提出的又一种时域资源的示意图。
图6是本申请实施例提出的又一种时域资源的示意图。
图7a与图7b是本申请实施例提出的又一种时域资源的示意图。
图8是本申请实施例提出的又一种时域资源的示意图。
图9是本申请实施例提出的又一种时域资源的示意图。
图10是本申请实施例提出的又一种时域资源的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是适用于本申请的一种通信系统的示意图。本申请实施例的技术方案可以应用于各种通信系统,比如5G(第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统)。
本申请实施例中(user equipment,UE)可以称为终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连、物物互连的智能化网络。终端设备还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。
应理解,该无线通信系统中的网络设备可以是能和终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站(master eNodeB,MeNB)、辅站(secondary eNodeB,SeNB)、多制式无线(multi standard radio,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接 入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其它示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括有源天线单元(AAU)。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线通信可以包括:网络设备和终端间的无线通信、网络设备和网络设备间的无线通信以及终端设备和终端设备间的无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
本申请实施例中的“被感知目标”即雷达可感知的目标,可以是上述网络设备或者终端设备,也可以是车、行人,道路上的砖头等。基站可以发送下行数据给终端设备,终端设备也可以发送上行数据给基站。同时基站可以发送感知信号,并接收被感知目标的反射回波用于被感知目标的速度、距离、运动轨迹、形状和大小等的估计。
本申请实施例提出一种通信装置,如图2所示,本申请实施例还提供一种装置200。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置200可以包括:处理单元210和通信单元220。
本申请各实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行信息和/或数据的发送和接收的步骤。
通信单元220也可以称为收发器、收发机、收发装置、接口电路等。处理单元210也可以称为处理器、处理单板,处理模块、处理装置等。可选的,可以将通信单元220中用于实现接收功能的器件视为接收单元,将通信单元220中用于实现发送功能的器件视为发送单元,即通信单元220包括接收单元和发送单元。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
如图3所示为本申请实施例提供的装置300,图3所示的装置可以为图2所示的装置的一种硬件电路的实现方式。为了便于说明,图3仅示出了该通信装置的主要部件。
如图3所示,通信装置300包括处理器310和接口电路320。处理器310和接口电路320之间相互耦合。可以理解的是,接口电路320可以为收发器或输入输出接口。可选的,通信装置300还可以包括存储器330,用于存储处理器310执行的指令或存储处理器310运行指令所需要的输入数据或存储处理器310运行指令后产生的数据。处理器310可以用于实现上述处理单元210的功能,接口电路320用于实现上述通信单元220的功能。
为了便于理解本申请的技术方案,提前对相关技术概念做一解释。
1.时域资源:在时域上所占用的正交频分调制(orthogonal frequency division modulation,OFDM)符号数。时域资源的最小粒度为1个OFDM符号,也可以是微时隙(mini-slot)或者时隙(slot)等。1个微时隙可以包括2个或多个OFDM符号,1个时隙可以包括14个OFDM符号。
2.频域资源:在频域上所占用的频率资源。频域资源的最小粒度为资源单元(resource element,RE),也可以是物理资源块(physical resource block,PRB)或者资源块组(resource block group,RBG)等。一个PRB在频域上包括12个RE,RBG可以包括2、4、8或16个资源块(resource block,RB)。
3.传输块:传输块(transport block,TB)由媒质接入控制层中所传输数据包含的一连串比特组成。物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)以TB为基本单位进行数据传输。
4.感知信号:也称雷达信号、探测信号,是一种电磁波信号,用于探测被感知目标。可以是脉冲信号,也可以是无线通信系统中的信号。
5.回波信号:电磁波到达被感知目标后,由于被感知目标不能完全吸收电磁波,经被感知目标表面反射后形成的信号即为回波信号。
6.感知资源:用于发送感知信号的资源,包括感知时域资源和感知频域资源。
在4G LTE、5G NR系统中,通信数据主要通过PDSCH或PUSCH传输。通信数据可以包括控制信息,和业务数据(如语音、视频业务等)等,其中,控制信息可以包括RRC层控制信息、MAC层控制信息等,RRC层控制信息可以包括系统信息、专用RRC信息等。以下行为例,PDSCH的时域资源分配信息可以通过下行控制信道中的下行控制信息(downlink control indicator,DCI)进行指示。在网络设备指示PDSCH的时域资源时,需要指示PDSCH的起始符号索引以及PDSCH所占用的符号数。针对不同的资源映射类型,起始符号索引和符号长度均存在一定限制,如表1所示。
表1起始符号索引和符号长度的取值
Figure PCTCN2023070687-appb-000021
其中S为起始符号索引,L为符号数。L代表从起始符号索引开始算起的连续L个符号。由于一个时隙的OFDM符号数最大为14,因此S与L的和小于或等于14。在PDSCH mapping type A中,对于常规循环前缀情况,S的取值为{0,1,2,3},长度为{3,4,…,14},且S+L小于或等于14。在PDSCH mapping type B中,对于常规循环前缀情况,S的取值为{0,1,…,12},长度为{2,3,…,13}且S+L小于或等于14。
网络设备指示时域资源可以分为以下两种情况:
情况1:基于单时隙的TB指示时域资源。
网络设备可以通过DCI中的时域资源分配(time domain resource allocation,TDRA)字段指示时域资源。DCI通过TDRA表中的某一行来指示PDSCH传输的起始符号索引和符号数。表2给出了一种预定义的时域资源分配表。
表2时域资源分配表
Figure PCTCN2023070687-appb-000022
表中第1列为索引号,第2列指示解调参考信号(demodulation reference signal,DMRS)的位置,第3列指示PDSCH的mapping type,第4列指示PDSCH的发送时隙相对DCI所在时隙的偏移量,最后两列即为S和L的取值。
除了采用默认的分配表外,还可以通过无线资源控制(radio resource control,RRC)信令来配置S和L的取值。比如,RRC可通过PDSCH-TimeDomainResourceAllocation-r16IE(information element)来配置S和L的取值。RRC首先配置PDSCH-TimeDomainResourceAllocationList IE,其中包括多个PDSCH-TimeDomainResourceAllocation-r16配置,startSymbolAndLength-r16的取值(start and length indicator value,SLIV)用于确定S和L的值。根据一个给定的SLIV值,可以反推出S和L的取值,其中S和L的取值范围还需要满足表1的限定条件。SLIV与S、L的映射关系如式(1)所示:
Figure PCTCN2023070687-appb-000023
确定了调度的时频资源之后,可以根据调度的时频资源和调制编码方式来计算TBS。
步骤1:计算被调度时隙中每个PRB中的RE的数量:
Figure PCTCN2023070687-appb-000024
其中,
Figure PCTCN2023070687-appb-000025
表示一个PRB在频域上包括的子载波数为12,
Figure PCTCN2023070687-appb-000026
表示在1个时隙内PDSCH所分配的OFDM符号数量,
Figure PCTCN2023070687-appb-000027
为没有传数据的DMRS码分复用组(code division multiplexing,CDM)包括的RE数量,
Figure PCTCN2023070687-appb-000028
为高层信令配置的开销,其取值为6,12,或12,如果不配置,则
Figure PCTCN2023070687-appb-000029
的取值为0。
步骤2:计算所调度资源的总共RE数量,即用于PDSCH传输的RE数量:
N RE=min(156,N' RE)·n PRB,         式(3)
其中,n PRB为分配给终端的PRB数量。
步骤3:计算所能传输的信息比特数:
N info=N RE·R·Q m·υ,        式(5)
其中,R为码率,Qm为调制方式,v为传输的层数或流数。
步骤4:根据信息比特数计算TBS。
情况2:基于多时隙的TB指示时域资源。
下面以上行传输为例进行说明。在单个TB跨多时隙(TB over multiple slots,TBoMS)传输中,RRC层通过PUSCH-TimeDomainAllocationList配置PUSCH所占用的时隙数N,即1个TB将会映射到N个时隙中。在TDRA表中新增一列来指示时隙数N,如表3所示。
表3 TBoMS时域资源分配表
Figure PCTCN2023070687-appb-000030
计算所能传输数据的RE数为:
N RE=N·min(156,N' RE)·n PRB,      式(6)
在TBoMS中,假定了传输的N个时隙中,每个时隙传输PUSCH的符号数相同。
目前,在多时隙调度资源过程中,不同时隙中调度的符号数可能不一样,在这种情况下,上述TBoMS时域资源指示方法无法指示每个时隙分配的OFDM符号数。并且,如果仍采用式(6)中的计算方法,则可能导致经过速率匹配后的实际码率高于或低于计算TBS时所采用的码率。例如,假定1个TB在两个时隙中传输,且第1个时隙分配的符号数为4,第2个时隙分配的符号数为2,第1个时隙计算的有效RE数为4000,第2个时隙的有效RE数为2000,两个时隙实际的RE数为6000。但如果按照式(6)计算,则计算出来的RE数为2000(4000*2)。这样算出来的TBS偏大,导致实际的码率远高于调制编码策略(modulation and code rate scheme,MCS)对应的码率,这会恶化解调性能,导致译码错误的概率增大。另外,跨时隙资源调度存在每个时隙的调度符号较少的情况。如果按照单个时隙进行调度,每次调度的TBS较小,编码增益较低,并且终端设备需要频繁地解调PDCCH,复杂度较高。
针对上述问题,本申请提出一种传输信息的方法,该方法通过网络设备为终端设备配 置稀疏、非等间隔的符号进行数据发送,能够提升通信效率,如图4所示,该方法可以包括以下步骤:
步骤401:网络设备向终端设备发送第一指示信息,对应地,终端设备接收该第一指示信息。
该第一指示信息用于指示第一时域资源,第一时域资源可以是网络设备配置的可以用于传输数据的时域资源。该第一时域资源可以是第一时间段内的时域资源,该第一时间段包括两个或多个时隙,第一时域资源位于第一时间段的至少M个时隙中,M为大于1的整数。如图5所示,第一时间段为T,第一时间段包括时隙1、时隙2,第一时域资源可以位于第一时间段的2个时隙中,比如,第一时域资源可以是时隙1和时隙2中的符号O,或者,第一时域资源可以是时隙1和时隙3中的符号O。第一时域资源可以位于第一时间段的4个时隙中,第一时域资源可以是时隙1、时隙2、时隙3、时隙4中的符号O,应理解,上述数字仅为示例而非限定。
其中,第一指示信息可以是包含在RRC信令中的信息。
可选地,该第一指示信息包括第一时间段的时长。其中,第一时间段的时长,也可以理解为网络设备向终端设备发送数据的周期,也就是终端设备接收数据的周期,比如图5中的T。第一指示信息包括的第一时间段的时长,可以是第一时间段的包括的时隙数,比如,第一时间段包括的时隙的数量为M;或者,第一指示信息包括的第一时间段的时长可以是时间长度,比如,第一时间段的时长为10毫秒;第一时间段的时长也可以是其他可以表示时长的物理量,比如,符号数等等。本申请对此不做限定。上述M和T均为非负整数。
图2中的通信单元220可以用于执行步骤401的方法。示例地,当图2所示的装置为网络设备时,通信单元220用于发送第一指示信息;当图2所示的装置为终端设备时,通信单元220用于接收第一指示信息。图3中的接口电路320用于实现上述通信单元220的功能,不再赘述。
步骤402:网络设备向终端设备发送调度信息,对应地,终端设备接收调度信息。
该调度信息用于指示接收第一数据的第二时域资源。第二时域资源为第一时域资源的子集或者全集,第二时域资源属于至少两个时隙。
调度信息可以包括用于接收第一数据的起始符号索引S和符号数L,和/或,调度信息包括用于接收第一数据的时隙数P。
一种可能的方式,该至少两个时隙包括第一时隙,第二时域资源在第一时隙上包括第一符号和第二符号,第一符号与第二符号之间间隔N个符号,第一符号与第二符号为第二时域资源上相邻的两个符号,N为大于或等于1的整数。比如,如图6所示,第一时域资源包括时隙1(图6中未示出)、时隙2、时隙3和时隙4(图6中未示出),第二时域资源为第一时域资源的子集,第二时域资源包括时隙2(即第一时隙)和时隙3(即第二时隙)。第二时域资源在时隙2上包括符号A和符号B,符号A与符号B之间间隔两个符号。其中,符号A和符号B即为第二时域资源在时隙2上相邻的两个符号。应理解,上述符号与时隙仅为示例而非限定。
上述S、L、P和N均为非负整数。
又一种可能的方式,该至少两个时隙包括第一时隙和第二时隙,第二时域资源在第一 时隙上包括的符号与第二时域资源在第二时隙上包括的符号不同。上述不同有以下几种情况:
情况A:第二时域资源在第一时隙上包括的符号的数量与第二时域资源在第二时隙上包括的符号的数量不同。如图6所示,第二时域资源在第一时隙(时隙2)上包括两个符号,在第二时隙(时隙3)上包括一个符号。
情况B:第二时域资源在第一时隙上包括的符号的索引与第二时域资源在第二时隙上包括的符号的索引部分重叠,部分不同。如图7a所示,第二时域资源在第一时隙(时隙1)上包括的符号为符号0和符号1,在第二时隙(时隙2)上包括的符号为符号1和符号3。
应理解,本申请各实施例以一个时隙包括14个符号为例,符号索引以0~13为例进行方案陈述,但本申请实施例不限于此。
情况C:第二时域资源在第一时隙上包括的符号的索引与第二时域资源在第二时隙上包括的符号的索引完全不同。如图7b所示,第二时域资源在第一时隙(时隙1)上包括的符号为符号0和符号2,在第二时隙(时隙2)上包括的符号为符号1和符号3。
应理解,上述数字和符号的索引仅为示例而非限定。上述以时隙1作为第一时隙的一个示例,以时隙2作为第二时隙的一个示例进行方案陈述,但本申请各实施例对此不做限定,比如,第一时隙也可以是时隙2,第二时隙也可以是时隙1。
再一种可能的方式,第二时域资源在至少两个时隙中的至少一个时隙上包括的符号数量为1。如图8所示,第二时域资源在时隙1上包括的符号为符号2,在时隙2上包括的符号为符号1,在时隙3上包括的符号为符号2和符号4。应理解,第二时域资源在至少两个时隙中的至少一个时隙上包括的符号数量为1,可以是在每个时隙上包括的符号数量都为1,也可以是在其中一部分时隙上包括的符号数量为1,也可以是只在其中一个时隙上包括的符号数量为1。本申请对此不做限定。
可选地,网络设备可以向终端设备发送第二指示信息,对应地,终端设备接收第二指示信息。
第二指示信息用于指示第一时域资源包括的符号是否用于接收数据,该数据包括第一数据。
示例地,第二指示信息可以用于指示第一时域资源中用于传输数据的符号,第二指示信息也可以用于指示第一时域资源中不用于传输数据的符号,第二指示信息也可以同时指示第一时域资源中用于传输数据的符号和不用于传输数据的符号。本申请对此不做限定。以比特图(bitmap)为第二指示信息的一个示例,以第二指示信息同时指示第一时域资源中用于传输数据的符号和不用于传输数据的符号为例,如图9所示,网络设备可以向终端设备发送{0,1,0,0,1,0,1,0,1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1},比特取值为1代表该符号可以用于数据的传输,比特取值为0代表该符号不用于数据的传输。
应理解,比特取值与该符号是否用于数据传输的对应关系可以预定义。比如,也可以比特取值为0代表该符号可以用于数据的传输,比特取值为1代表该符号不用于数据的传输。
可选地,网络设备可以在第一指示信息或者时域位置信息中,向终端设备指示时隙偏移量I。其中,时隙偏移量I为大于或等于0,且小于M的整数。时隙偏移量用于确定一 个周期(第一时间段)内第1个时隙在无线帧(帧长10ms)中的时隙索引。例如,当子载波间隔为30kHz时,1个无线帧中包括X=20个时隙,其索引为{0,1,2,…,19}。1个周期内第1个时隙的索引为mod(mod(I,M)),X),其中mod(a,b)表示求余运算符。当M=80,I=2时,即表示该周期的起始时隙索引为2。
终端设备接收第二指示信息后,可以根据接收第二指示信息的时隙、第一时域资源和调度信息确定第二时域资源。其中,第二指示信息可以是DCI。
示例地,当调度信息包括用于接收第一数据的起始符号索引S和符号数L时,一种可能的方式,该S为起始符号索引为起始符号所在时隙中的绝对索引。比如,假定M=4,时隙偏移量I=0,对应的M个时隙所包含的OFDM符号的bitmap值分别为:第1个时隙bitmap的值{0,0,0,0,0,1,0,0,0,0,0,0,1,0},第2个时隙bitmap的值{0,0,0,0,0,0,0,0,0,0,0,0,1,0},第3个时隙bitmap的值{0,0,0,0,0,1,0,0,0,0,0,0,1,0},第4个时隙bitmap的值{0,0,0,0,0,0,0,0,0,0,0,0,1,0}。同时假定终端设备在M个时隙的第2个时隙上接收DCI,TDRA表中的时隙偏移量K0为0。假设S为12,则表示调度的PDSCH的起始符号索引为12,也就是说,该起始符号为该时隙中第13个符号。L为4,表示比特值为1的符号数为4。根据第2、3、4时隙的bitmp,可以确定被调度的OFDM符号数为第2个时隙上、第3个时隙上、第4个时隙上比特值为1的符号。
另一种可能的方式,起始符号索引为被调度的符号之间的相对索引。示例地,当调度信息包括用于接收第一数据的起始符号索引S和符号数L时,假定M=4,时隙偏移量I=0,对应的M个时隙所包含的OFDM符号的bitmap值分别为:第1个时隙bitmap的值{0,0,0,0,0,1,0,0,0,0,0,0,1,0},第2个时隙bitmap的值{0,0,0,0,0,0,0,0,0,0,0,0,1,0},第3个时隙bitmap的值{0,0,0,0,0,1,0,0,0,0,0,0,1,0},第4个时隙bitmap的值{0,0,0,0,0,0,0,0,0,0,0,0,1,0}。同时假定终端设备在M个时隙的第2个时隙上接收DCI,TDRA表中的时隙偏移量K0为0。假设S为0,表示调度的PDSCH的起始符号为所在第1个时隙中第1个比特值为1的符号,也就是说,在该时隙中该起始符号尽管为第13个符号,但该符号的索引为0。再比如,在第一个时隙中,被调度的符号中的起始符号为第六个符号,索引为0,被调度的符号中的第二个符号为该时隙中的第13个符号,该符号的索引为1。L为4,表示比特值为1的符号数为4,也就是被调度的符号数为4。根据第2、3、4时隙的bitmp,可以确定被调度的OFDM符号数为第2个时隙上、第3个时隙上、第4个时隙上比特值为1的符号。
示例地,当调度信息包括用于接收第一数据的时隙数P时,假定M=4,时隙偏移量I=0,对应的M个时隙所包含的OFDM符号的bitmap值分别为:第1个时隙bitmap的值{0,0,0,0,0,1,0,0,0,0,0,0,1,0},第2个时隙bitmap的值{0,0,0,0,0,0,0,0,0,0,0,0,1,0},第3个时隙bitmap的值{0,0,0,0,0,1,0,0,0,0,0,0,1,0},第4个时隙bitmap的值{0,0,0,0,0,0,0,0,0,0,0,0,1,0}。同时假定终端设备在M个时隙的第2个时隙上接收DCI,TDRA表中的时隙偏移量K0为0。当P=2时,终端设备可确定当前调度的时隙为M个时隙中的第2和第3个时隙,被调度的OFDM符号为bitmap值为1的符号,即总共3个符号。当P=3时,终端可确定当前调度的时隙为M个时隙中的第2、第3和第4个时隙,被调度的OFDM符号数为5。
可选地,网络设备可以向终端设备发送时域位置信息,对应地,终端设备接收时域位置信息。
时域位置信息可以用于指示第一时域资源中任意相邻两个符号之间的间隔。
该时域位置信息可以包括以下内容:
时域间隔的配置套数:该套数可以大于或者等于2,表示配置至少两套不同时域间隔的符号。
配置索引:指示当前配置信息的索引,例如索引为0,表示第一套配置,对应第一套时域位置信息配置;索引为1,表示第二套配置,对应第二套时域位置信息配置。应理解,上述索引取值仅为示例而非限定。
起始时隙索引:周期(第一时域资源的时长)中的第一个时隙的编号。
结束时隙索引:相对于周期(第一时域资源的时长)中的第一个时隙进行编号或采用无线帧中的绝对时隙编号,可以理解的是,每个时域间隔下的符号分布整个周期内时,可以不用配置该项。
重复间隔:每Y个时隙重复出现,Y为大于0且小于M的正整数。应理解,重复间隔是指相同时域间隔的符号重复出现的时隙数,与上述第一时域的时长(周期)不同。
间隔符号数:定义间隔符号数J表示可用于调度的相邻的符号之间间隔J个OFDM符号,J为大于或等于0,且小于14的整数。当J=0时,表示1个时隙内仅存在1个感知符号。应理解,相邻符号之间的间隔也可以通过其他参数表示,比如,可以是时长。示例地,相邻符号的间隔为1毫秒。上述数字仅为示例而非限定。
起始符号索引:在1个时隙中的第一个可用于调度的符号的索引。该第一个调度的符号可以根据时序确定。比如,在一个时隙中,时序最先的调度的符号即为该时隙内第一个符号。
可以理解的是,时域位置信息可以包括多套时域位置信息,每一套时域位置信息对应一种间隔规律。示例地,时域间隔的配置套数大于等于2,配置索引0对应第一套时域间隔,配置索引1对应第二套时域间隔,其中,第一套时域间隔的时域位置信息包括第一起始时隙索引、第一结束时隙索引、第一重复间隔、第一间隔符号数和第一起始符号索引,第二套时域间隔的时域位置信息包括第二起始时隙索引、第二结束时隙索引、第二重复间隔、第二间隔符号数和第二起始符号索引,以此类推。也就是说,第二~第L套时域位置信息配置,同第一套时隙间隔配置类似,具体取值不同。如图10所示,包括两种规律的时域间隔,在奇时隙和偶时隙中,调度的符号数量不同。在图10中,在奇时隙和偶时隙中,相邻两个调度的符号的时域间隔分别为7个符号和0个符号。上述时域位置信息如表4所示:
表4时域位置信息(以M=80,I=0为例)
  第一套时域位置信息 第二套时域位置信息
配置索引 0 1
间隔符号数 7 0
起始时隙索引 0 1
结束时隙索引 78 79
起始符号索引 4 12
重复间隔 2(时隙) 2(时隙)
其中,M为第一时域资源包括的时隙数,I为时隙偏移量。
可以理解的是,表4是以两套时域位置信息为例,当第一时域资源包括多套时域位置信息时,第3~第G套时域位置信息如表4所示,只是具体取值不同。其中G为大于3的正整数。
终端设备可以根据上述时域位置信息和调度信息确定第二时频资源。
可选地,网络设备可以将时域位置信息和第二指示信息发送给终端设备。示例地,时域位置信息可以包括配置索引、结束时隙索引、重复间隔。时域位置信息还包括起始时隙索引,该起始时隙的索引的编号方式与上述结束时隙索引的编号方式类似,可以是相对于周期(第一时域资源的时长)中的第一个时隙进行编号或采用无线帧中的绝对时隙编号。第二指示信息用于指示起始时隙中每个OFDM符号的bitmap值。其bitmap值为1时表示用于发送数据,值为0时表示不用于发送数据。非起始时隙中的用于发送数据的符号可以根据起始时隙的bitmap以及时域位置信息确定。
应理解,时域位置信息也可以是资源分布图案(pattern)。示例地,该图案可以只指示属于第一时域资源的符号的位置,也可以只指示不属于第一时域资源的符号的位置,也可以同时指示属于第一时域资源和不属于第二时域资源的符号的位置。
或者,时域位置信息也可以是时域资源的位置。以图10为例,该时域位置信息可以是:时隙0的第5个符号、时隙0的第13个符号、时隙1的第13个符号、时隙2的第5个符号、时隙5的第13个符号、时隙1的第13个符号。应理解,上述数字仅为示例而非限定。
上述第二指示信息可以单独发送,也可以承载在第一指示信息或者时域位置信息中同时发送。本申请对此不做限定。
可以理解的是,网络设备在向终端设备发送第一指示信息和调度信息前,可以先确定要第二时域资源(即调度的资源),以及确定第一数据的大小。
示例性的,网络设备确定的第一数据的大小与第一参数相关联,第一参数包括如下至少一项:第二时域资源包括的符号的数量、第二时域资源包括的解调参考信号开销、高层信令配置的开销、第二时域资源包括的物理资源块的数量。
相应的,终端设备在确定第二时域资源后,可以确定第一数据的大小。
示例地,终端设备可以根据第一参数确定第一数据的大小。
第一参数可以满足下述关系:
N RE=min(156,N' RE)·n PRB,      式(7)
或者,N RE=N′ RE·n P,          式(8)
其中,
Figure PCTCN2023070687-appb-000031
Figure PCTCN2023070687-appb-000032
为一个物理资源块在频域上包括的子载波数,
Figure PCTCN2023070687-appb-000033
为第二时域资源包括的符号的数量,
Figure PCTCN2023070687-appb-000034
为第二时域资源包括的解调参考信号开销,
Figure PCTCN2023070687-appb-000035
为高层信令配置的开销,n PRB为所述第二时域资源包括的物理资源块的数量。
应理解,上述第一数据的大小是TB的大小(TBS),不是进行信道编码后的数据的 大小。
网络设备也可以在TDRA表中指示是否采用上述调度的时域资源,或者,指示TBS的计算方式。例如,如表5所示,在表中,“TBoMS type”取值为1或者不配置时,则可以采用式(6)的方法计算TBS;当取值为2时,则采用式(9)的方法计算TBS。
表5 TBoMS时域资源分配表
Figure PCTCN2023070687-appb-000036
应理解,表5作为一种示例而非限定。在具体实施中,可能以表5中的部分内容作为实施,可能以表5的全部内容作为实施,表5可能作为实施的其中一部分,本申请对此不做限定。
示例地,表5可以预配置在终端设备上。示例地,终端设备可以根据S、L、N等表中的其他信息确定TBoMS的类型。这种指示方式无需修改指示信息的大小。
又或者,网络设备可以通过指示信息向终端设备指示TBoMS type。例如,在DCI中新增字段,用1比特指示。当该字段不存在或比特值为0时,则指示为Type 1TBoMS,对应式(6)的TBS计算方式;当比特值为1时,则指示Type 2TBoMS,对应式(9)的TBS计算方式。应理解,比特值与TBoMS类型之间的对应关系仅为示例而非限定。通过新增字段指示TBoMS Type,灵活性更高。
图2中的通信单元220和处理单元210可以用于执行步骤402的方法。比如,通信单元220可以用于信息和/或数据的收发。示例地,当图2所示的装置为网络设备时,通信单元220用于发送第二指示信息、调度信息或时域位置信息;当图2所示的装置为终端设备时,通信单元220用于接收第二指示信息、调度信息或时域位置信息。当图2所示的装置为网络设备时,处理单元用于确定第一时域资源和第二时域资源。当图2所示的装置为终端设备时,处理单元用于确定第一时域资源和第二时域资源,确定第一数据的大小。图3中的接口电路320可以用于实现上述通信单元220的功能,处理器310可以用于实现上述通信单元220的功能,不再赘述。
步骤403:网络设备发送第一数据,对应地,终端设备接收第一数据。
网络设备可以在第二时域资源上发送该第一数据,终端设备可以在第二时域资源上接收该第一数据。
该第一数据可以通过物理下行共享信道PDSCH承载。
图2中的通信单元220可以用于执行步骤403的方法。示例地,当图2所示的装置为网络设备时,通信单元220用于发送第一数据;当图2所示的装置为终端设备时,通信单 元220用于接收第一数据。图3中的接口电路320可以用于实现上述通信单元220的功能不再赘述。
该方法通过TBoMS上稀疏、非等间隔的符号进行数据发送,可获得较高的编码增益,终端设备只需1次PDCCH接收就可完成多个时隙的符号的解调,有利于降低终端设备的复杂度,提高数据传输效率。另外,提出了TBS的计算方法,能够避免实际码率远高于MCS对应的码率,降低了译码错误的概率,提升了数据传输的可靠性。
应理解,上述实施例以时域资源为例进行陈述,但不限于此。本申请实施例中,网络设备可以指示时域资源与频域资源。网络设备可以通过DCI中的频域资源分配(frequency domain resource allocation,FDRA)字段进行指示。
应理解,本申请实施例可以应用于在通信、雷达一体化或者通信、感知一体化的系统中,网络设备可通过接收所发送感知信号的回波信号来检测目标,并估计出被检测目标的速度,跟离,运动轨迹,形状、大小等,考虑到感知信号仅仅用于感知会造成大量的开销浪费,可以通过感知信号承载数据。比如,上述各实施例中用于发送第一数据的符号可以是感知符号,也就是说,用于发送第一数据的符号也可以用于感知探测,能够降低发送感知信号所带来的系统开销;上述各实施例中第一时间段的时长,也可以理解为网络设备发送感知信号的周期;上述各实施例中的时域位置信息可以是感知符号的时域位置信息。
值得注意的是,上述应用场景仅为示例而非限定。本申请实施例以下行数据传输为例进行陈述,可以理解的是,上行数据传输也可以适用本申请的方案。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。应理解,上述实施例的步骤只是为了清楚描述实施例的技术方案,不对步骤执行的先后顺序做限定。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing  Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中处理器可以是随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、通信装置、系统、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种传输信息的方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示第一时间段内的第一时域资源,所述第一时间段包括两个或多个时隙,所述第一时域资源位于所述第一时间段的至少M个时隙中,M为大于1的整数;
    接收调度信息,所述调度信息用于指示接收第一数据的第二时域资源,所述第二时域资源为所述第一时域资源的子集或者全集,所述第二时域资源属于至少两个时隙,
    所述至少两个时隙包括第一时隙,所述第二时域资源在所述第一时隙上包括第一符号和第二符号,所述第一符号与所述第二符号之间间隔N个符号,所述第一符号与所述第二符号为所述第二时域资源上相邻的两个符号,N为大于或等于1的整数,
    或者,
    所述至少两个时隙包括第一时隙和第二时隙,所述第二时域资源在所述第一时隙上包括的符号与所述第二时域资源在所述第二时隙上包括的符号不同,
    或者,
    所述第二时域资源在所述至少两个时隙中的至少一个时隙上包括的符号数量为1;
    在所述第二时域资源上接收所述第一数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述第一时域资源包括的符号是否用于接收数据,所述数据包括所述第一数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息还包括时隙偏移量,所述时隙偏移量用于指示所述第一时段内第1个时隙的时隙索引。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    接收时域位置信息,所述时域位置信息用于指示所述第一时域资源中任意相邻两个符号之间的间隔。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    根据接收所述第二指示信息的时隙、所述第一时域资源和所述调度信息确定所述第二时域资源。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一数据的大小是根据所述第二时域资源确定的。
  7. 根据权利要求6所述的方法,其特征在于,所述第一数据的大小是根据所述第二时域资源确定的,包括所述第一数据的大小是根据第一参数确定的,所述第一参数包括如下至少一项:
    所述第二时域资源包括的符号的数量
    Figure PCTCN2023070687-appb-100001
    所述第二时域资源包括的解调参考信号开销
    Figure PCTCN2023070687-appb-100002
    高层信令配置的开销
    Figure PCTCN2023070687-appb-100003
    所述第二时域资源包括的物理资源块的数量n PRB
  8. 根据权利要求7所述的方法,其特征在于,所述第一参数满足下述关系:
    N RE=min(156,N' RE)·n PRB,或者,N RE=N' RE·n PRB
    其中,
    Figure PCTCN2023070687-appb-100004
    为一个物理资源块在频域上包括的子载波数。
  9. 一种传输信息的方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于指示第一时间段内的第一时域资源,所述第一时间段包括两个或多个时隙,所述第一时域资源位于所述第一时间段的至少M个时隙中,M为大于1的整数;
    发送调度信息,所述调度信息用于指示发送第一数据的第二时域资源,所述第二时域资源为所述第一时域资源的子集或者全集,所述第二时域资源属于至少两个时隙,
    所述至少两个时隙包括第一时隙,所述第二时域资源在所述第一时隙上包括第一符号和第二符号,所述第一符号与所述第二符号之间间隔N个符号,所述第一符号与所述第二符号为所述第二时域资源上相邻的两个符号,N为大于或等于1的整数,
    或者,
    所述至少两个时隙包括第一时隙和第二时隙,所述第二时域资源在所述第一时隙上包括的符号与所述第二时域资源在所述第二时隙上包括的符号不同,
    或者,
    所述第二时域资源在所述至少两个时隙中的至少一个时隙上包括的符号数量为1;
    在所述第二时域资源上发送所述第一数据。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示所述第一时域资源包括的符号是否用于发送数据,所述数据包括所述第一数据。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一指示信息还包括时隙偏移量,所述时隙偏移量用于指示所述第一时段内第1个时隙的时隙索引。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述方法还包括:
    发送时域位置信息,所述时域位置信息用于指示所述第一时域资源中任意相邻两个符号之间的间隔。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述第一数据的大小与所述第二时域资源相关联。
  14. 根据权利要求13所述的方法,其特征在于,所述第一数据的大小与所述第二时域资源相关联,包括所述第一数据的大小与第一参数相关联,所述第一参数包括如下至少一项:
    所述第二时域资源包括的符号的数量
    Figure PCTCN2023070687-appb-100005
    所述第二时域资源包括的解调参考信号开销
    Figure PCTCN2023070687-appb-100006
    高层信令配置的开销
    Figure PCTCN2023070687-appb-100007
    所述第二时域资源包括的物理资源块的数量n PRB
  15. 根据权利要求14所述的方法,其特征在于,所述第一参数满足下述关系:
    N RE=min(156,N' RE)·n PRB,或者,N RE=N' RE·n PRB
    其中,
    Figure PCTCN2023070687-appb-100008
    为一个物理资源块在频域上包括的子载波数。
  16. 一种通信装置,其特征在于,包括处理单元和收发单元,所述收发单元用于接收第一指示信息,所述第一指示信息用于指示第一时间段内的第一时域资源,所述第一时间段包括两个或多个时隙,所述第一时域资源位于所述第一时间段的至少M个时隙中,M为大于1的整数;
    所述收发单元还用于接收调度信息,所述调度信息用于指示接收第一数据的第二时域资源,所述第二时域资源为所述第一时域资源的子集或者全集,所述第二时域资源属于至少两个时隙,
    所述至少两个时隙包括第一时隙,所述第二时域资源在所述第一时隙上包括第一符号和第二符号,所述第一符号与所述第二符号之间间隔N个符号,所述第一符号与所述第二符号为所述第二时域资源上相邻的两个符号,N为大于或等于1的整数,
    或者,
    所述至少两个时隙包括第一时隙和第二时隙,所述第二时域资源在所述第一时隙上包括的符号与所述第二时域资源在所述第二时隙上包括的符号不同,
    或者,
    所述第二时域资源在所述至少两个时隙中的至少一个时隙上包括的符号数量为1;
    所述收发单元还用于在所述第二时域资源上接收所述第一数据。
  17. 根据权利要求16所述的通信装置,其特征在于,所述收发单元还用于接收第二指示信息,所述第二指示信息用于指示所述第一时域资源包括的符号是否用于接收数据,所述数据包括所述第一数据。
  18. 根据权利要求16或17所述的通信装置,其特征在于,所述第一指示信息还包括时隙偏移量,所述时隙偏移量用于指示所述第一时段内第1个时隙的时隙索引。
  19. 根据权利要求16至18中任一项所述的通信装置,其特征在于,所述收发单元还用于接收时域位置信息,所述时域位置信息用于指示所述第一时域资源中任意相邻两个符号之间的间隔。
  20. 根据权利要求16至19中任一项所述的通信装置,其特征在于,所述处理单元用于根据接收所述第二指示信息的时隙、所述第一时域资源和所述调度信息确定所述第二时域资源。
  21. 根据权利要求16至20中任一项所述的通信装置,其特征在于,所述第一数据的大小是根据所述第二时域资源确定的。
  22. 根据权利要求21所述的通信装置,其特征在于,所述第一数据的大小是根据第一参数确定的,所述第一参数包括如下至少一项:
    所述第二时域资源包括的符号的数量
    Figure PCTCN2023070687-appb-100009
    所述第二时域资源包括的解调参考信号开销
    Figure PCTCN2023070687-appb-100010
    高层信令配置的开销
    Figure PCTCN2023070687-appb-100011
    所述第二时域资源包括的物理资源块的数量n PRB
  23. 根据权利要求22所述的通信装置,其特征在于,所述第一参数满足下述关系:
    N RE=min(156,N' RE)·n PRB,或者,N RE=N' RE·n PRB
    其中,
    Figure PCTCN2023070687-appb-100012
    为一个物理资源块在频域上包括的子载波 数。
  24. 一种通信装置,其特征在于,包括处理单元和收发单元,所述收发单元用于发送第一指示信息,所述第一指示信息用于指示第一时间段内的第一时域资源,所述第一时间段包括两个或多个时隙,所述第一时域资源位于所述第一时间段的至少M个时隙中,M为大于1的整数;
    所述收发单元还用于发送调度信息,所述调度信息用于指示发送第一数据的第二时域资源,所述第二时域资源为所述第一时域资源的子集或者全集,所述第二时域资源属于至少两个时隙,
    所述至少两个时隙包括第一时隙,所述第二时域资源在所述第一时隙上包括第一符号和第二符号,所述第一符号与所述第二符号之间间隔N个符号,所述第一符号与所述第二符号为所述第二时域资源上相邻的两个符号,N为大于或等于1的整数,
    或者,
    所述至少两个时隙包括第一时隙和第二时隙,所述第二时域资源在所述第一时隙上包括的符号与所述第二时域资源在所述第二时隙上包括的符号不同,
    或者,
    所述第二时域资源在所述至少两个时隙中的至少一个时隙上包括的符号数量为1;
    所述收发单元还用于在所述第二时域资源上发送所述第一数据。
  25. 根据权利要求24所述的通信装置,其特征在于,所述收发单元还用于发送第二指示信息,所述第二指示信息用于指示所述第一时域资源包括的符号是否用于发送数据,所述数据包括所述第一数据。
  26. 根据权利要求24或25所述的通信装置,其特征在于,所述第一指示信息还包括时隙偏移量,所述时隙偏移量用于指示所述第一时段内第1个时隙的时隙索引。
  27. 根据权利要求24至26中任一项所述的通信装置,其特征在于,所述收发单元还用于发送时域位置信息,所述时域位置信息用于指示所述第一时域资源中任意相邻两个符号之间的间隔。
  28. 根据权利要求24至27中任一项所述的通信装置,其特征在于,所述第一数据的大小与所述第二时域资源相关联。
  29. 根据权利要求28所述的通信装置,其特征在于,所述第一数据的大小与所述第二时域资源相关联,包括所述第一数据的大小与第一参数相关联,所述第一参数包括如下至少一项:
    所述第二时域资源包括的符号的数量
    Figure PCTCN2023070687-appb-100013
    所述第二时域资源包括的解调参考信号开销
    Figure PCTCN2023070687-appb-100014
    高层信令配置的开销
    Figure PCTCN2023070687-appb-100015
    所述第二时域资源包括的物理资源块的数量n PRB
  30. 根据权利要求29所述的通信装置,其特征在于,所述第一参数满足下述关系:
    N RE=min(156,N' RE)·n PRB,或者,N RE=N' RE·n PRB
    其中,
    Figure PCTCN2023070687-appb-100016
    为一个物理资源块在频域上包括的子载波数。
  31. 一种通信设备,其特征在于,包括处理器,所述处理器用于执行计算机程序或指令,使得所述通信设备执行如权利要求1-30中任一项所述的方法。
  32. 一种通信系统,其特征在于,所述通信系统包括如权利要求16至23中任一项所述的通信装置,和/或,如权利要求24至30中任一项所述的通信装置。
  33. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得所述计算机执行如权利要求1-30中任意一项所述的方法。
  34. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-30中任意一项所述的方法。
PCT/CN2023/070687 2022-01-06 2023-01-05 一种传输信息的方法、装置及系统 WO2023131235A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23737097.8A EP4447587A1 (en) 2022-01-06 2023-01-05 Information transmission method, apparatus and system
US18/765,033 US20240365298A1 (en) 2022-01-06 2024-07-05 Information transmission method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210009022.9A CN116471683A (zh) 2022-01-06 2022-01-06 一种传输信息的方法、装置及系统
CN202210009022.9 2022-01-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/765,033 Continuation US20240365298A1 (en) 2022-01-06 2024-07-05 Information transmission method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2023131235A1 true WO2023131235A1 (zh) 2023-07-13

Family

ID=87073201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070687 WO2023131235A1 (zh) 2022-01-06 2023-01-05 一种传输信息的方法、装置及系统

Country Status (4)

Country Link
US (1) US20240365298A1 (zh)
EP (1) EP4447587A1 (zh)
CN (1) CN116471683A (zh)
WO (1) WO2023131235A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118075899A (zh) * 2022-11-24 2024-05-24 维沃移动通信有限公司 信号传输方法、装置及通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035529A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种资源配置的方法和通信装置
US20190349942A1 (en) * 2017-01-03 2019-11-14 Samsung Electronics Co., Ltd Method and device for allocating uplink control channels
CN113273286A (zh) * 2021-04-07 2021-08-17 北京小米移动软件有限公司 一种时域资源分配的方法及装置
CN113439400A (zh) * 2019-02-15 2021-09-24 中兴通讯股份有限公司 用于重复传输的资源指示方案

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349942A1 (en) * 2017-01-03 2019-11-14 Samsung Electronics Co., Ltd Method and device for allocating uplink control channels
CN110035529A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种资源配置的方法和通信装置
CN113439400A (zh) * 2019-02-15 2021-09-24 中兴通讯股份有限公司 用于重复传输的资源指示方案
CN113273286A (zh) * 2021-04-07 2021-08-17 北京小米移动软件有限公司 一种时域资源分配的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "TB processing over multi-slot PUSCH", 3GPP TSG RAN WG1 #104B-E, R1-2103008, 7 April 2021 (2021-04-07), XP052177818 *

Also Published As

Publication number Publication date
CN116471683A (zh) 2023-07-21
EP4447587A1 (en) 2024-10-16
US20240365298A1 (en) 2024-10-31

Similar Documents

Publication Publication Date Title
US12137398B2 (en) Feedback channel sending method and apparatus, and feedback channel receiving method and apparatus
CN108347778B (zh) 通信方法及装置
CN106559872B (zh) 一种资源分配方法、装置及无线接入系统
US11700101B2 (en) Information transmission method, terminal device, and network device
US10623159B2 (en) Data communication method, terminal, and base station
WO2021204293A1 (zh) 定位信号处理方法及装置
WO2021062792A1 (zh) 一种唤醒信号的检测方法及装置
CN111867095A (zh) 一种通信方法与终端装置
WO2020091683A1 (en) Feedback signaling for sidelink
US20210144731A1 (en) Data transmission method, network device, communications device, and storage medium
WO2020221321A1 (zh) 通信方法以及通信装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
US20240365298A1 (en) Information transmission method, apparatus, and system
US20220346012A1 (en) Signal sending and receiving method, apparatus, and device
CN115136523A (zh) 反馈资源的确定方法和装置
CN114451044A (zh) 一种通信方法及装置
CN111684750A (zh) 一种harq信息的传输方法及装置、计算机存储介质
EP4383900A1 (en) Resource indication method and communication apparatus
WO2022155824A1 (zh) 参考信号的传输方法和通信装置
WO2021204275A1 (zh) 一种反馈信息的发送方法及装置
CN112399580B (zh) 一种通信方法及装置
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
WO2021031632A1 (zh) 一种下行控制信息dci的发送方法及装置
WO2021134702A1 (zh) 一种通信方法及装置
WO2023207470A1 (zh) 一种直通链路的资源配置方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737097

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023737097

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023737097

Country of ref document: EP

Effective date: 20240710

NENP Non-entry into the national phase

Ref country code: DE