[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021062792A1 - 一种唤醒信号的检测方法及装置 - Google Patents

一种唤醒信号的检测方法及装置 Download PDF

Info

Publication number
WO2021062792A1
WO2021062792A1 PCT/CN2019/109716 CN2019109716W WO2021062792A1 WO 2021062792 A1 WO2021062792 A1 WO 2021062792A1 CN 2019109716 W CN2019109716 W CN 2019109716W WO 2021062792 A1 WO2021062792 A1 WO 2021062792A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch detection
terminal device
wus
opportunities
pdcch
Prior art date
Application number
PCT/CN2019/109716
Other languages
English (en)
French (fr)
Inventor
周涵
薛祎凡
铁晓磊
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/109716 priority Critical patent/WO2021062792A1/zh
Priority to EP19947863.7A priority patent/EP4030831A4/en
Priority to JP2022519765A priority patent/JP7400092B2/ja
Priority to CN201980100402.XA priority patent/CN114424629B/zh
Publication of WO2021062792A1 publication Critical patent/WO2021062792A1/zh
Priority to US17/708,704 priority patent/US20220225470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a method and device for detecting a wake-up signal.
  • a wakeup signal (WUS) based on the physical downlink control channel (PDCCH) may be introduced,
  • the WUS signal can multiplex the existing PDCCH, and the terminal device can obtain the WUS signal sent by the network device by detecting the corresponding PDCCH.
  • the WUS signal can be combined with a discontinuous reception (DRX) mechanism in a radio resource control (radio resource control, RRC) connection state.
  • DRX discontinuous reception
  • RRC radio resource control
  • network devices can send WUS signals in the form of DRX for the terminal devices.
  • PDCCH-based WUS signals are sent in a pre-defined search space set (search space set).
  • the search space set has pre-configured bandwidth and transmission period on time-frequency resources.
  • the transmission period of the search space set can include 1 to 2560.
  • Time slots In the transmission period of a search space set, there can be one or multiple consecutive time slots for transmitting PDCCH. Within a time slot for transmitting PDCCH, the PDCCH can occupy 1 to 3 symbols in the time slot. These symbols It is called a PDCCH detection occasion (PDCCH monitoring occasion).
  • the network equipment can configure the time slots for sending the PDCCH in the transmission period of a search space set, and the specific symbol position of the PDCCH in each time slot for sending the PDCCH.
  • a period of time before the activation time DRX is ON can be designated as the receiving time window of the WUS signal, and the terminal device detects the WUS signal at the PDCCH detection timing in the receiving time window. If the WUS signal is detected within the receiving time window, the terminal device needs to wake up at the corresponding DRX ON. If the terminal device does not detect the WUS signal within the receiving time window, the terminal device can continue to sleep in the corresponding DRX ON.
  • the receiving time of a WUS signal may include transmission periods of multiple search space sets, which will further cause more PDCCH detection opportunities included in the receiving time window. If the terminal device detects the WUS signal at all PDCCH detection occasions within the receiving time window, it will cause greater power consumption and reduce the power saving gain.
  • the embodiments of the present application provide a method and device for detecting a wake-up signal, so as to reduce power consumption when a terminal device detects a WUS signal.
  • the embodiments of the present application provide a method for detecting a wake-up signal.
  • the method can be executed by a terminal device or a device (such as a processor and/or a chip) in the terminal device.
  • the method includes: a terminal device Determine the N physical downlink control channel PDCCH detection timings before the activation time DRX_ON, the terminal device detects the wake-up signal WUS at M PDCCH detection timings among the N PDCCH detection timings, M is less than N, and both N and M are greater than A positive integer of 1.
  • the terminal device can detect the WUS signal at some of the N PDCCH detection opportunities before the activation time DRX_ON, thereby effectively reducing the power consumption of the terminal device and increasing the power saving gain.
  • the M PDCCH detection timings are the M PDCCH detection timings closest to DRX_ON among the N PDCCH detection timings. In this way, the terminal device can be minimized when waking up. The time to wake up and detect the WUS signal before the time DRX_ON, so as to effectively power consumption of the terminal device and increase the power saving gain;
  • the M PDCCH detection timings are the M PDCCH detection timings that are the farthest from DRX ON among the N PDCCH detection timings. In this way, the possibility that the terminal device misses the WUS signal can be effectively reduced, and the risk of missing the WUS signal can be reduced.
  • the terminal device determines whether WUS is not detected at each PDCCH detection opportunity. If WUS is not detected at each PDCCH detection opportunity, the terminal device continues to detect WUS at the remaining NM PDCCH detection opportunities until WUS is detected or the remaining NM PDCCH detection opportunities are completed.
  • the terminal device may determine the M PDCCH detection occasions from the N PDCCH detection occasions according to a preset mapping rule, and the preset mapping rule is used for It is determined whether to detect WUS at each of the N PDCCH detection occasions. In this way, the flexibility of the terminal device to detect the WUS signal at the M PDCCH detection occasions can be effectively improved.
  • mapping rule satisfies the following relationship:
  • UE id is the identification of the terminal device or the terminal device group where the terminal device is located
  • index is the sequence number of the PDCCH detection occasion
  • mod represents the modulus
  • X is the detection interval
  • f is a real number.
  • the terminal equipment uses this mapping rule to determine the M PDCCH detection timings that need to be detected, which can make the M PDCCH detection timings corresponding to different terminal devices randomize between different time slots, avoiding the problem of a large number of terminal devices.
  • the WUS signal needs to occupy the same time slot for transmission, thereby making the occupancy of the downlink air interface resources of the network equipment more balanced.
  • the terminal device may receive first indication information from the network device, and the first indication information is used to instruct the terminal device to detect the M in the N PDCCH detection opportunities. WUS is detected at each PDCCH detection opportunity.
  • the N PDCCH detection occasions are N PDCCH detection occasions within the receiving time window of the WUS.
  • the terminal device can determine the receiving time window of WUS in the following way: the terminal device determines the receiving time window according to the offset between the end time of the receiving time window and the start time of DRX ON and the length of the receiving time window; or, The terminal device determines the reception time window according to the offset between the end time of the reception time window and the start time of DRX ON, and the offset between the start time of the reception time window and the start time of DRX ON.
  • the terminal device can determine the N PDCCH detection occasions included in the reception time window in the following manner: the terminal device can determine the configuration parameters of the PDCCH detection occasion according to the reception time window and the PDCCH detection occasion, Determine the N PDCCH detection timings included in the receiving time window, and the configuration parameters of the PDCCH detection timings are used to indicate the transmission period of the search space set search space set, and the transmission period of each search space set is used to transmit PDCCH detection The start time slot of the opportunity, the number of time slots in which PDCCH detection opportunities are continuously sent in each search space set transmission cycle, the start symbol of the PDCCH detection opportunities sent in each time slot for sending PDCCH detection opportunities, and the detection of each PDCCH sent One or more items of information in the number of symbols of the PDCCH detection timing are continuously transmitted in the time slot of the timing.
  • the embodiments of the present application provide a method for detecting a wake-up signal.
  • the method can be executed by a network device or a device (such as a processor and/or a chip) in the network device.
  • the method includes: a network device Determine the N physical downlink control channel PDCCH detection opportunities before the activation time DRX_ON, the network device sends first indication information to the terminal device, where the first indication information is used to instruct the terminal device to detect M of the N PDCCH detection opportunities At the PDCCH detection timing, the wake-up signal WUS is detected, M is less than N, and both N and M are positive integers greater than 1.
  • the network device configures the terminal device to detect the WUS signal at some of the N PDCCH detection opportunities before the activation time DRX_ON, so that the power consumption of the terminal device can be effectively reduced, and the power saving gain can be improved.
  • the M PDCCH detection timings are the M PDCCH detection timings closest to DRX_ON among the N PDCCH detection timings. In this way, the terminal device can be minimized when waking up. The time to wake up and detect the WUS signal before the time DRX_ON, so as to effectively power consumption of the terminal device and increase the power saving gain;
  • the M PDCCH detection timings are the M PDCCH detection timings that are the farthest from DRX ON among the N PDCCH detection timings. In this way, the possibility that the terminal device misses the WUS signal can be effectively reduced, and the risk of missing the WUS signal can be reduced.
  • the network device may determine the M PDCCH detection occasions from the N PDCCH detection occasions according to a preset mapping rule, and the preset mapping rule is used for It is determined whether a terminal device is required to detect WUS at each of the N PDCCH detection opportunities. In this way, the flexibility of the terminal equipment to detect the WUS signal at the M PDCCH detection opportunities can be effectively improved.
  • mapping rule satisfies the following relationship:
  • UE id is the identification of the terminal equipment or terminal equipment group
  • index is the sequence number of the PDCCH detection occasion
  • mod represents the modulus
  • X is the detection interval
  • f is a real number.
  • the network equipment uses this mapping rule to determine the M PDCCH detection timings that the terminal device needs to detect, which can make the M PDCCH detection timings corresponding to different terminal devices randomize between different time slots, avoiding a large number of terminals
  • the WUS signal of the device needs to squeeze the same time slot for transmission, so that the occupancy of the downlink air interface resources of the network device is more balanced.
  • the network device may send second indication information to the terminal device, where the second indication information is used to indicate the configuration parameters of the WUS receiving time window, and the receiving time window
  • the configuration parameters include the offset between the end time of the reception time window and the start time of DRX ON and the length of the reception time window, or the configuration parameters of the reception time window include the end time of the reception time window to the start time of DRX ON And the offset between the start time of the receiving time window and the start time of DRX ON.
  • the network device may send third indication information to the terminal device, the third indication information is used to indicate the configuration parameters of the PDCCH detection timing, and the configuration of the PDCCH detection timing
  • the parameters include one or more of the following information: the transmission period of the search space set search space set, the start time slot used to transmit the PDCCH detection timing in the transmission period of each search space set, and the transmission period of each search space set. The number of time slots for continuously transmitting PDCCH detection opportunities, the start symbol of PDCCH detection opportunities in each time slot where PDCCH detection opportunities are transmitted, and the number of symbols for continuously transmitting PDCCH detection opportunities in each time slot where PDCCH detection opportunities are transmitted.
  • an embodiment of the present application provides a communication device, which has the function of a terminal device in the first aspect or any one of the possible designs of the first aspect.
  • the device may be a terminal device, such as a handheld terminal device, a vehicle-mounted terminal device, a vehicle user equipment, a roadside unit, etc., a device included in the terminal device, such as a chip, or a device including a terminal device.
  • the functions of the above-mentioned terminal device may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device may also have the function of realizing the second aspect or the network device in any possible design of the second aspect.
  • the communication device may be a network device, such as a base station, or a device included in the network device, such as a chip.
  • the functions of the above-mentioned network device may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the device includes a processing module and a transceiver module, wherein the processing module is configured to support the device to perform the first aspect or the corresponding function of the terminal device in any of the first aspects of the design. .
  • the transceiver module is used to support the communication between the device and other communication devices. For example, when the device is a terminal device, it can receive a wake-up signal WUS from a network device.
  • the communication device may also include a storage module, which is coupled with the processing module, which stores program instructions and data necessary for the device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited in this application.
  • the structure of the device includes a processor and may also include a memory.
  • the processor is coupled with the memory, and may be used to execute computer program instructions stored in the memory, so that the device executes the foregoing first aspect or any one of the possible design methods of the first aspect.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the device is a chip included in the terminal device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, when the program or an instruction is executed by the processor , So that the chip system implements the method in any possible design of the first aspect or the first aspect, or implements the method in any possible design of the second aspect or the second aspect.
  • the chip system further includes an interface circuit for receiving and transmitting code instructions to the processor.
  • processors in the chip system, and the processors may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • an embodiment of the present application provides a readable storage medium having a computer program or instruction stored thereon, and when the computer program or instruction is executed, the computer executes the first aspect or any one of the first aspects.
  • the embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute the method in the first aspect or any one of the possible designs in the first aspect, Or implement the above-mentioned second aspect or any one of the possible design methods of the second aspect.
  • an embodiment of the present application provides a communication system.
  • the communication system includes a network device and at least one terminal device.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic flowchart of a method for detecting a wake-up signal according to an embodiment of the application
  • FIG. 3 is a schematic diagram of DRX cycle and activation time DRX ON in an embodiment of this application;
  • FIG. 4 is a schematic diagram of N PDCCH detection timings in an embodiment of the application.
  • FIG. 5 is a schematic diagram of a receiving time window of a WUS signal in an embodiment of this application.
  • 6a, 6b, and 6c are schematic diagrams of M PDCCH detection timings in an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is another schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of another structure of another communication device provided by an embodiment of this application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WIMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR new radio
  • the technical solutions of the embodiments of the present application can be applied to unmanned driving (unmanned driving), driver assistance (ADAS), intelligent driving (intelligent driving), connected driving, and intelligent network driving (Intelligent Network Driving). ), car sharing, smart/intelligent car, digital car, unmanned car/driverless car/pilotless car/automobile, Internet of vehicles (IoV) , Autonomous vehicles (self-driving car, autonomous car), cooperative vehicle infrastructure (CVIS), intelligent transportation (intelligent transport system, ITS), vehicle communication (vehicular communication) and other technical fields.
  • unmanned driving unmanned driving
  • ADAS driver assistance
  • intelligent driving intelligent driving
  • connected driving and intelligent network driving
  • Intelligent Network Driving Intelligent Network Driving
  • FIG. 1 is a schematic diagram of a network architecture of a communication system to which an embodiment of this application is applicable.
  • the communication system includes a network device 110, a terminal device 101, a terminal device 102, a terminal device 103, a terminal device 104, a terminal device 105, and a terminal device 106.
  • the network device may communicate with at least one terminal device (such as the terminal device 101) through uplink (UL) and downlink (DL).
  • UL uplink
  • DL downlink
  • the network device in FIG. 1 may be an access network device, such as a base station.
  • the access network device in different systems corresponding to different devices for example, in the fourth generation mobile communication technology (the 4 th generation, 4G) system, the eNB may correspond, a corresponding access network device 5G 5G in the system, For example, gNB.
  • the technical solutions provided by the embodiments of the present application can also be applied to future mobile communication systems, such as 6G or 7G communication systems. Therefore, the network equipment in FIG. 1 can also correspond to the access network equipment in the future mobile communication system.
  • each network device may provide services for multiple terminal devices.
  • the embodiment of the present application does not limit the number of network devices and terminal devices in the communication system.
  • the network device in FIG. 1 and each of the terminal devices or all of the terminal devices in the plurality of terminal devices can implement the technical solutions provided in the embodiments of the present application.
  • the terminal devices in FIG. 1 may be different types of terminal devices, for example, they may include massive machine type of communication (mMTC) terminal devices such as mobile phones, smart water meters in the Internet of Things, and electricity meters, as shown in FIG. 1.
  • mMTC massive machine type of communication
  • the various types of terminal devices shown are only some examples, and it should be understood that the terminal devices in the embodiments of the present application are not limited thereto.
  • Terminal equipment which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device may communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal device may be a handheld device with a wireless connection function, a vehicle-mounted device, a vehicle user device, and so on.
  • terminal devices are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device in the embodiments of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit that is built into a vehicle as one or more components or units, and the vehicle passes through the built-in vehicle-mounted module, vehicle-mounted Modules, on-board components, on-board chips, or on-board units can implement the method of the present application.
  • Network equipment is the equipment used to connect terminal equipment to the wireless network in the network.
  • the network device may be a node in a radio access network, may also be called a base station, or may be called a radio access network (radio access network, RAN) node (or device).
  • the network device can be used to convert received air frames and Internet Protocol (IP) packets into each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), such as
  • LTE long term evolution
  • LTE-A evolved LTE system
  • the traditional macro base station eNB and the micro base station eNB in the heterogeneous network scenario may also include the next generation node B (next generation) in the new radio (NR) system of the fifth generation mobile communication technology (5th generation, 5G).
  • NR new radio
  • node B node B, gNB
  • TRP transmission reception point
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • baseband unit BBU
  • baseband pool BBU pool or WiFi access point (access point, AP), etc.
  • CU centralized unit
  • CU distributed unit
  • CU cloud access network
  • CloudRAN cloud radio access network
  • DU distributed unit
  • a network device in a V2X technology is a roadside unit (RSU).
  • the RSU may be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • Downlink control channel such as PDCCH, or enhanced physical downlink control channel (EPDCCH), or may also include other downlink control channels. There are no specific restrictions.
  • the terms “system” and “network” in the embodiments of this application can be used interchangeably.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application.
  • “At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects. Moreover, the descriptions of “first” and “second” do not limit the objects to be different.
  • FIG. 2 is a schematic flowchart of a method for detecting a wake-up signal according to an embodiment of this application.
  • the method specifically includes the following steps S201 to S204:
  • Step S201 The network device determines N PDCCH detection opportunities before the activation time DRX_ON.
  • Step S202 The network device sends first indication information to the terminal device, where the first indication information is used to instruct the terminal device to detect the WUS signal at M PDCCH detection occasions among the N PDCCH detection occasions, where M is less than N , N and M are both positive integers greater than 1.
  • Step S203 The terminal device determines N PDCCH detection opportunities before the activation time DRX_ON.
  • Step S204 The terminal device detects the WUS signal at M PDCCH detection occasions among the N PDCCH detection occasions.
  • the terminal device is a terminal device in an RRC connected state.
  • the terminal device is a terminal device configured with a power saving function or activated with a power saving function.
  • the network device can configure the DRX processing flow for the terminal device.
  • time is divided into DRX cycles (DRX cycles), and the terminal device starts a duration timer (drx-on Duration Timer) at the beginning of each DRX cycle. ).
  • the terminal device continuously tries to detect the PDCCH. If the terminal device detects the PDCCH within the running time range of the duration timer, the terminal device will start an inactivity timer (drx-Inactivity Timer).
  • the terminal device will reset the inactive timer and restart counting. If the deactivation timer is running, even if the originally configured duration timer expires, the terminal device still continues to detect the PDCCH until the deactivation timer expires. As long as either the duration timer or the inactive timer is running, the terminal device is in the active time and needs to continuously detect the PDCCH.
  • the activation time can also be referred to as "DRX ON", “on duration”, “active time” or activation period, or can have other names, which are not limited by this application. For clarity of description, the activation time is collectively referred to as "DRX ON" in the following. When the terminal device is in the activation time, it can also be understood that the terminal device is in the activated state or in the wake-up state or entered the wake-up mode.
  • the terminal device If the terminal device does not detect the PDCCH within the operating time range of the duration timer, the terminal device will enter the sleep mode after the duration timer expires, that is, the terminal device is in sleep time during other times of the DRX cycle and can be turned off Communication devices such as radio frequency transceivers and baseband processors to reduce power consumption.
  • the sleep time may also be referred to as "DRX_OFF", sleep or sleep period, or may also have other names, which is not limited in the present application.
  • the terminal device being in the sleep time can also be understood as the terminal device being in the sleep state or in the DRX state or entering the sleep mode. If the terminal device detects the PDCCH within the running time range of the duration timer, the terminal device will enter the sleep mode after the inactive timer that has been turned on expires.
  • the network device can decide whether to send the WUS signal to the terminal device before the activation time DRX is ON according to the requirements of the scheduling data. If the terminal device does not detect the WUS signal before the activation time DRX ON, or the WUS signal detected by the terminal device indicates that the terminal device has no data scheduling within the corresponding activation time DRX ON, the terminal device can directly enter the dormant state, so there is no need The PDCCH was detected within the activation time DRX ON.
  • the terminal device If the terminal device detects the WUS signal before the activation time DRX ON, or the WUS signal detected by the terminal device is used to indicate that the terminal device has data scheduling within the corresponding activation time DRX ON, the terminal device needs to be DRX ON at the activation time Wake up before arrival, start the timer according to the aforementioned DRX mechanism, and detect PDCCH.
  • the WUS signal is carried on the PDCCH
  • the N PDCCH detection opportunities are the N PDCCH detection opportunities for detecting the WUS signal before the activation time DRX is ON. It should be understood that there may or may not be a WUS signal sent by a network device at a PDCCH detection occasion. Whether a network device sends a WUS signal on N PDCCH detection opportunities is determined by multiple factors such as whether there is data scheduling for the terminal device within the activation time DRX ON, and the power saving function configured by the terminal device.
  • the WUS signal may be a WUS signal sent to a terminal device, which is called a terminal device-specific PDCCH wake-up signal (UE-specific WUS).
  • the WUS signal may also be a WUS signal for a terminal device group, which is called a terminal device group PDCCH wake-up signal (Group-based PDCCH WUS). Since a terminal device group may include multiple terminal devices, at this time, the terminal device mentioned in the foregoing step S201 to step S204 in the embodiment of the present application may be any terminal device in the terminal device group.
  • the network device may determine N consecutive PDCCH detection opportunities before a certain time offset offset from the activation time DRX ON as the N PDCCH detection opportunities, as shown in FIG. 4.
  • the N PDCCH detection occasions can be understood as a PDCCH detection occasion sent by the WUS signal or a valid (valid) PDCCH detection occasion.
  • the network device may also send second indication information and/or third indication information to the terminal device to indicate the location of the N PDCCH detection opportunities.
  • the second indication information may be used to indicate the N value and the time offset offset
  • the third indication information may be used to indicate the configuration parameters of the PDCCH detection timing
  • the configuration parameters of the PDCCH detection timing may be Including the transmission cycle of the search space set search space set, the starting time slot used to transmit the PDCCH detection timing in each search space set transmission cycle, and the number of time slots that continuously transmit the PDCCH detection timing in each search space set transmission cycle One or more of the information of the starting symbol of the PDCCH detection opportunity sent in each time slot for sending the PDCCH detection opportunity, and the number of symbols for continuously sending the PDCCH detection opportunity in each time slot for sending the PDCCH detection opportunity.
  • the N PDCCH detection opportunities may be within the receiving time window of the WUS signal.
  • the receiving time window of the WUS signal is located before the activation time DRX, and the distance between the end time of the receiving time window and the start time of the activation time DRX ON is the time offset offset.
  • the receiving time window of the WUS signal may also be referred to as a search time window (WUS search window), a detection time window (WUS monitoring window), or a WUS time (WUS occasion), which is not limited in this application.
  • the network device may also send the second instruction information and/or the third instruction information to the terminal device.
  • the second indication information is used to indicate the configuration parameters of the receiving time window of the WUS signal, so that the terminal device can determine the position of the receiving time window of the WUS signal.
  • the configuration parameters of the receiving time window of the WUS signal may include the time offset between the end time of the receiving time window and the start time of the activation time DRX ON, and the time length of the receiving time window.
  • the configuration parameters of the reception time window of the WUS signal may include the time offset between the end time of the reception time window and the start time of the activation time DRX ON, and the start time of the reception time window to the start time of the activation time DRX ON The time offset between times.
  • the third indication information is used to indicate the configuration parameters of the PDCCH detection timing.
  • the configuration parameters of the PDCCH detection timing may include the transmission period of the search space set search space set, and the transmission period of each search space set used to transmit PDCCH detection.
  • the start time slot of the opportunity, the number of time slots in which PDCCH detection opportunities are continuously sent in each search space set transmission cycle, the start symbol of the PDCCH detection opportunities sent in each time slot for sending PDCCH detection opportunities, and the detection of each PDCCH sent One or more items of information in the number of symbols of the PDCCH detection timing are continuously transmitted in the time slot of the timing.
  • the second indication information and the third indication information in the embodiment of this application may be through high-level signaling (such as RRC signaling, MAC signaling, or physical layer signaling), downlink control information (DCI) ), system broadcast messages, etc., and the second instruction information and the third instruction information may be sent in the same or different manners, and this application is not limited. If the second indication information and the third indication information are sent in the same manner, the second indication information and the third indication information can be sent in the same message or in different messages, which is also not limited in this application.
  • the network device may send the second indication information and/or the third indication information before the terminal device enters the dormant state.
  • the network device may send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to detect the WUS signal at M PDCCH detection occasions among the N PDCCH detection occasions.
  • the first indication information can also be understood as instructing the terminal device to detect the WUS signal at a part of the PDCCH detection occasions among the N PDCCH detection occasions.
  • the first indication information can also be understood as instructing the terminal device to detect the WUS signal on at most M PDCCH detection occasions among the N PDCCH detection occasions, because once the terminal device detects the WUS signal at any of the M PDCCH detection occasions After the WUS signal is detected at the PDCCH detection timing, it can be confirmed that it is necessary to wake up and detect the PDCCH during the activation time DRX ON, without the need to continue to detect the WUS signal.
  • the network device may also indicate specific locations of the M PDCCH detection occasions or a preset rule for the terminal device to determine the M PDCCH detection occasions in the first indication information.
  • the first indication information can also be through high-level signaling (such as RRC signaling, MAC signaling, or physical layer signaling), downlink control information (DCI), system broadcast messages, etc. Send, this application is not limited.
  • high-level signaling such as RRC signaling, MAC signaling, or physical layer signaling
  • DCI downlink control information
  • system broadcast messages etc. Send, this application is not limited.
  • the network device may send the WUS signal on part or all of the N PDCCH detection occasions, or may detect part or all of the PDCCH detection occasions of the M PDCCH detection occasions.
  • the WUS signal is sent on the occasion.
  • the network device may send the WUS signal at each of the M PDCCH detection occasions, and inform the terminal device of the WUS signal transmission mode by means of indication information. In this way, it can effectively improve the detection of WUS by the terminal device.
  • the reliability of the signal reduces the power consumption of the terminal equipment.
  • the network device can send the WUS signal at any one or more of the M PDCCH detection opportunities, and inform the terminal device of the WUS signal transmission mode by way of indication information. In this way, it can effectively reduce
  • the network equipment sends the resource overhead of the WUS signal, but the terminal equipment is required to detect the M PDCCH detection opportunities one by one.
  • the terminal device may determine N PDCCH detection opportunities according to the second indication information and/or the third indication information received from the network device.
  • the third indication information in the embodiment of the present application is used to indicate the configuration parameters of the PDCCH detection timing, but the second indication information has a different implementation manner, therefore, in a possible design, as shown in FIG. 4, If the second indication information is used to indicate the N value and the time offset offset, the terminal device can directly determine the N PDCCH detection opportunities before the activation time DRX ON time offset offset as the N PDCCH detection opportunities .
  • the terminal device can determine the DRX ON according to the end time of the receiving time window in the second indication information.
  • the time offset between the start time and the time length of the reception time window, or the time offset between the end time of the reception time window and the start time of the activation time DRX ON, and the start time of the reception time window to the activation The time offset between the start times of DRX ON to determine the specific position of the WUS signal receiving time window, and then combining the configuration parameters of the PDCCH detection timing indicated in the third indication information to determine the receiving time window of the WUS signal N PDCCH detection opportunities within.
  • the terminal device may detect the WUS signal at M PDCCH detection occasions among the N PDCCH detection occasions.
  • the M PDCCH detection timings may be M PDCCH detection timings that are closest to the activation time DRX among the N PDCCH detection timings.
  • the WUS signal reception time window includes 4 PDCCH detection opportunities. If M is set to 2, then the M PDCCH detection opportunities closest to the activation time DRX ON refer to the WUS signal reception time window The two PDCCH detection timings on the far right. It can be seen that the terminal device detects the WUS signal at the M PDCCH detection timings closest to the activation time DRX within the WUS signal reception time window, which can minimize the time for the terminal device to be awakened in the WUS signal reception time window. Thereby effectively reducing the power consumption of the terminal equipment.
  • the M PDCCH detection occasions may also be the M PDCCH detection occasions that are furthest from the activation time DRX ON among the N PDCCH detection occasions.
  • the WUS signal reception time window includes 4 PDCCH detection opportunities. If M is set to 2, then the M PDCCH detection opportunities farthest from the activation time DRX ON refer to the WUS signal reception time window The two PDCCH detection timings on the leftmost side of the box.
  • the terminal device can enter the micro-sleep state during the period between the detection of the WUS signal and the activation time DRX ON, thereby effectively reducing power consumption.
  • the activation time DRX ON comes, wake up again and detect PDCCH.
  • the terminal device can continue to detect the WUS signal at the remaining NM PDCCH detection opportunities until the WUS signal is detected or the remaining NM PDCCH detection opportunities are detected. .
  • the terminal device detects the WUS signal at the M PDCCH detection opportunities that are the furthest from the activation time DRX ON within the WUS signal reception time window, which can effectively reduce the possibility of missed detection of the WUS signal, and reduce the possibility of missing the WUS signal.
  • the scheduling delay caused by the detection of the WUS signal is the delay caused by the detection of the WUS signal.
  • the terminal device may also determine M PDCCH detection opportunities from the N PDCCH detection opportunities according to a preset mapping rule, and then detect the WUS signal at the determined M PDCCH detection opportunities.
  • the preset mapping rule is used to determine whether to detect the WUS signal at the PDCCH detection occasion for each PDCCH detection occasion among the N PDCCH detection occasions.
  • the function may also include one or more other parameter independent variables, which is not limited in this application.
  • the preset mapping rules can satisfy the following relationships:
  • UE id is the identification of the terminal device or the terminal device group where the terminal device is located
  • index is the sequence number of the PDCCH detection occasion
  • mod represents the modulus
  • X is the detection interval
  • f is a real number.
  • the terminal device will detect the WUS signal every other PDCCH detection occasion.
  • the preset mapping rules are used to determine which M PDCCH detection timings of the N PDCCH detection timings to detect the WUS signal, so that the M PDCCH detection timings corresponding to different terminal devices can be randomized between different time slots. , Avoiding that the WUS signals of a large number of terminal devices need to occupy the same time slot for transmission, so that the occupancy of the downlink air interface resources of the network equipment is more balanced.
  • the terminal device detecting the WUS signal at M PDCCH detection opportunities may be: detecting the WUS signal at each PDCCH detection occasion of the M PDCCH detection opportunities, and enters the microcomputer upon detecting the WUS signal. Sleep state to save power consumption.
  • the terminal device detecting the WUS signal at the M PDCCH detection occasions may also be detecting the WUS signal at any one or more of the M PDCCH detection occasions.
  • the terminal device can determine that the network device sends the WUS signal at all M PDCCH detection occasions, then the terminal device can detect the WUS signal at the M PDCCH detection occasions as follows: at any one or more of the M PDCCH detection occasions The WUS signal is detected at each PDCCH detection opportunity, so that the reliability of WUS signal detection can be effectively improved.
  • the location of the M PDCCH detection occasions in the N PDCCH detection occasions in the embodiment of the present application, and the preset mapping rule used by the terminal device to determine the M PDCCH detection occasions may be predefined or It may be indicated by the network device in the first indication information.
  • the “pre-defined” mentioned in the embodiments of the present application can be understood as definition, pre-defined, stored, pre-stored, pre-negotiation, pre-configured, cured, or pre-fired.
  • the present application does not specifically limit the execution sequence of the above steps S201 to S204, and the execution sequence of each step is defined according to its inherent logic.
  • the network device determines N PDCCH detection opportunities, which may be executed before the terminal device determines N PDCCH detection opportunities.
  • the network device sends the first indication information to the terminal device, which may be executed before the terminal device detects the WUS signal at M PDCCH detection opportunities among the N PDCCH detection opportunities.
  • the network device sending the first indication information to the terminal device may be executed before or after the terminal device determines the N PDCCH detection opportunities, which is not limited in this application.
  • FIG. 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device 700 includes a transceiver module 710 and a processing module 720.
  • the communication device can be used to implement the functions related to terminal equipment in any of the foregoing method embodiments.
  • the communication device may be a terminal device, such as a handheld terminal device or a vehicle-mounted terminal device; the communication device may also be a chip included in the terminal device, or a device including the terminal device, such as various types of vehicles.
  • the processing module 720 is used to determine the N physical downlink control channel PDCCH detection opportunities before the activation time DRX_ON; the transceiver module 710 is used to M of the N PDCCH detection occasions detect the wake-up signal WUS at the M PDCCH detection occasions, where M is less than N, and both N and M are positive integers greater than 1.
  • the M PDCCH detection timings are the M PDCCH detection timings closest to DRX ON among the N PDCCH detection timings; or, the M PDCCH detection timings are the N PDCCH detection timings. DRX ON M PDCCH detection timings that are farthest.
  • the transceiver module 710 is further configured to continue to detect WUS on the remaining NM PDCCH detection opportunities until WUS is detected or the remaining NM PDCCH detection opportunities are completed.
  • the processing module 720 is specifically configured to determine the M PDCCH detection opportunities from the N PDCCH detection opportunities according to a preset mapping rule, and the preset mapping rule is used to determine whether the N PDCCH Whether to detect WUS at each PDCCH detection timing in the detection timing.
  • mapping rule satisfies the following relationship:
  • UE id is the identification of the communication device or the terminal equipment group in which the communication device is located
  • index is the sequence number of the PDCCH detection occasion
  • mod represents the modulus
  • X is the detection interval
  • f is a real number, when the value of f is zero
  • the transceiver module 710 needs to detect WUS at the PDCCH detection occasion.
  • the value of f is a non-zero value, it means that the transceiver module 710 does not need to detect WUS at the PDCCH detection occasion.
  • the transceiver module 710 is further configured to receive first indication information from the network device, where the first indication information is used to indicate that WUS is detected at M PDCCH detection occasions among the N PDCCH detection occasions. .
  • the N PDCCH detection occasions are N PDCCH detection occasions within the receiving time window of the WUS.
  • the processing module 720 may determine the receiving time window of WUS in the following manner: determine the receiving time window according to the offset between the end time of the receiving time window and the start time of DRX ON and the length of the receiving time window; or, according to The offset between the end time of the reception time window and the start time of DRX ON, and the offset between the start time of the reception time window and the start time of DRX ON, determine the reception time window.
  • the processing module 720 may determine the N PDCCH detection opportunities included in the reception time window in the following manner: determine the N PDCCH detection opportunities included in the reception time window according to the configuration parameters of the reception time window and the PDCCH detection timing.
  • PDCCH detection timing, the configuration parameters of the PDCCH detection timing are used to indicate the transmission period of the search space set of the search space set, the starting time slot used to transmit the PDCCH detection timing in the transmission period of each search space set, and each search space
  • the number of time slots in which PDCCH detection opportunities are continuously transmitted in the transmission cycle of set, the start symbol of PDCCH detection opportunities in each time slot where PDCCH detection opportunities are transmitted, and the PDCCH detection opportunities are continuously transmitted in each time slot where PDCCH detection opportunities are transmitted One or more items of information in the number of symbols.
  • the processing module 720 involved in the communication device may be implemented by a processor or processor-related circuit components, and the transceiver module 710 may be implemented by a transceiver or transceiver-related circuit components.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 2, and is not repeated here for brevity.
  • FIG. 8 is a schematic diagram of another structure of a communication device provided in an embodiment of the application.
  • the communication device may specifically be a terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, and may also include a memory. Of course, it may also include a radio frequency circuit, an antenna, an input/output device, and the like.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 8 only one memory and processor are shown in FIG. 8. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiving unit 810 and a processing unit 820.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 810 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 810 can be regarded as the sending unit, that is, the transceiving unit 810 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 810 is configured to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 820 is configured to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 includes a transceiver module 910 and a processing module 920.
  • the communication device can be used to implement the functions related to the network equipment in any of the foregoing method embodiments.
  • the communication device may be a network device or a chip included in the network device.
  • the processing module 920 is used to determine the N physical downlink control channel PDCCH detection opportunities before the activation time DRX_ON; the transceiver module 910 is used to The terminal device sends first indication information, the first indication information is used to instruct the terminal device to detect the wake-up signal WUS at M PDCCH detection occasions among the N PDCCH detection occasions, M is less than N, and both N and M are greater than A positive integer of 1.
  • the M PDCCH detection timings are the M PDCCH detection timings closest to DRX_ON among the N PDCCH detection timings; or, the M PDCCH detection timings are the distance DRX among the N PDCCH detection timings. M PDCCH detection timings with the furthest ON.
  • the processing module 920 is further configured to determine the M PDCCH detection occasions from the N PDCCH detection occasions according to a preset mapping rule, and the preset mapping rule is used to determine whether to detect the N PDCCHs. At each PDCCH detection opportunity in the timing, whether the terminal device needs to detect WUS at the timing.
  • mapping rule satisfies the following relationship:
  • UE id is the identification of the terminal equipment or terminal equipment group
  • index is the sequence number of the PDCCH detection occasion
  • mod represents the modulus
  • X is the detection interval
  • f is a real number.
  • the transceiver module 910 is further configured to send second indication information to the terminal device.
  • the second indication information is used to indicate the configuration parameters of the receiving time window of the WUS.
  • the configuration parameters of the receiving time window include receiving The offset between the end time of the time window and the start time of DRX ON and the length of the reception time window, or the configuration parameters of the reception time window include the offset between the end time of the reception time window and the start time of DRX ON And the offset between the start time of the receiving time window and the start time of DRX ON.
  • the transceiver module 910 is further configured to send third indication information to the terminal device.
  • the third indication information is used to indicate the configuration parameters of the PDCCH detection timing.
  • the configuration parameters of the PDCCH detection timing include the following items Or multiple pieces of information: the transmission period of the search space set of the search space set, the start time slot used to transmit the PDCCH detection timing in the transmission period of each search space set, and the continuous transmission of the PDCCH detection timing in the transmission period of each search space set.
  • processing module 920 involved in the communication device may be implemented by a processor or a processor-related circuit component
  • transceiver module 910 may be implemented by a transceiver or a transceiver-related circuit component.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 2, and is not repeated here for brevity.
  • FIG. 10 is a schematic diagram of another structure of a communication device provided in an embodiment of the present application.
  • the communication device may be specifically a type of network equipment, such as a base station, which is used to implement the functions of the network equipment in any of the foregoing method embodiments.
  • the network equipment includes: one or more radio frequency units, such as remote radio unit (RRU) 1001 and one or more baseband units (BBU) (also called digital unit, digital unit, DU) ) 1002.
  • the RRU 1001 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 10011 and a radio frequency unit 10012.
  • the RRU 1001 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
  • the 1002 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 1001 and the BBU 1002 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1002 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 1002 may be used to control the base station to execute the operation flow of the network device in the foregoing method embodiment.
  • the BBU 1002 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access indication (such as an LTE network), or may support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1002 may further include a memory 10021 and a processor 10022, and the memory 10021 is used to store necessary instructions and data.
  • the processor 10022 is used to control the base station to perform necessary actions, for example, to control the base station to perform the sending operation in the foregoing method embodiment.
  • the memory 10021 and the processor 10022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • An embodiment of the present application further provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller).
  • the controller unit, MCU may also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • the embodiments of the present application also provide a computer-readable storage medium, which stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute any of the above-mentioned method embodiments In the method.
  • the embodiments of the present application also provide a computer program product, which when the computer reads and executes the computer program product, causes the computer to execute the method in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a communication system, which includes a network device and at least one terminal device described in each of the foregoing method embodiments.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits (central processing unit, CPU).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种唤醒信号的检测方法及装置,适用于V2X、车联网、智能网联车、辅助驾驶以及智能驾驶等领域,该方法包括:终端设备确定在激活时间DRX_ON之前的N个PDCCH检测时机,并在该N个PDCCH检测时机中的M个PDCCH检测时机上检测唤醒信号WUS,M小于N,且N、M均为大于1的正整数。采用该方法检测唤醒信号WUS,可有效降低终端设备的功耗,提高功率节省增益。

Description

一种唤醒信号的检测方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种唤醒信号的检测方法及装置。
背景技术
在第五代移动通信技术(5th generation,5G)新空口(new radio,NR)系统中可能会引入基于物理下行控制信道(physical downlink control channel,PDCCH)的唤醒信号(wake up signal,WUS),也就是说,WUS信号可以复用现有的PDCCH,终端设备通过检测相应的PDCCH来获取网络设备发送的WUS信号。此外,WUS信号可以与无线资源控制(radio resource control,RRC)连接态下的非连续接收(discontinuous reception,DRX)机制相结合。对于支持WUS信号的终端设备,网络设备可以为终端设备以DRX的形式发送WUS信号。
基于PDCCH的WUS信号在预先定义的搜索空间集合(search space set)中发送,搜索空间集合在时频资源上具有预先配置好的带宽和发送周期,该搜索空间集合的发送周期可包括1到2560个时隙。在一个搜索空间集合的发送周期中,可以有一个或连续的多个时隙用于发送PDCCH,在一个发送PDCCH的时隙内部,PDCCH可占用该时隙中的1到3个符号,这些符号称为一个PDCCH检测时机(PDCCH monitoring occasion)。网络设备可配置一个搜索空间集合的发送周期中发送PDCCH的时隙,以及每个发送PDCCH的时隙中PDCCH的具体符号位置。
针对处于DRX状态的终端设备,可指定激活时间DRX ON之前的一段时间为WUS信号的接收时间窗口,终端设备在该接收时间窗口中的PDCCH检测时机上检测WUS信号。若在该接收时间窗口内检测到WUS信号,终端设备需要在对应的DRX ON唤醒,若终端设备在该接收时间窗口内没有检测到WUS信号,终端设备在对应的DRX ON可继续休眠。
由于接收时间窗口的配置仅依赖于接收时间窗口本身的时间长度、以及该接收时间窗口相对于DRX ON的时间偏移量,与搜索空间集合的发送周期相独立,因此,一个WUS信号的接收时间窗口中可能包括多个搜索空间集合的发送周期,进一步会使得接收时间窗口中包括的PDCCH检测时机较多。若终端设备在接收时间窗口内的全部PDCCH检测时机上检测WUS信号,则会导致较大的功耗,减小功率节省增益。
发明内容
本申请实施例提供一种唤醒信号的检测方法及装置,用以降低终端设备检测WUS信号时的功耗。
第一方面,本申请实施例提供一种唤醒信号的检测方法,该方法可以由终端设备执行,也可以由终端设备中的装置(例如处理器和/或芯片)执行,该方法包括:终端设备确定在激活时间DRX_ON之前的N个物理下行控制信道PDCCH检测时机,终端设备在该N个PDCCH检测时机中的M个PDCCH检测时机上检测唤醒信号WUS,M小于N,且N、M均为大于1的正整数。
采用本申请提供的技术方案,终端设备可在激活时间DRX_ON之前的N个PDCCH检测时机中的部分PDCCH检测时机上检测WUS信号,从而有效降低终端设备的功耗,提高功率节省增益。
结合第一方面,在第一方面的一种可能的设计中,所述M个PDCCH检测时机为N个PDCCH检测时机中距离DRX_ON最近的M个PDCCH检测时机,如此,可最小化终端设备在唤醒时间DRX_ON之前唤醒检测WUS信号的时间,从而有效终端设备的功耗,提高功率节省增益;
或者,所述M个PDCCH检测时机为N个PDCCH检测时机中距离DRX ON最远的M个PDCCH检测时机,如此,可有效降低终端设备漏检WUS信号的可能性,降低因漏检WUS信号而带来的调度延时。
结合第一方面,在第一方面的一种可能的设计中,若所述M个PDCCH检测时机为N个PDCCH检测时机中距离DRX ON最远的M个PDCCH检测时机,且终端设备在该M个PDCCH检测时机上没有检测到WUS,则终端设备继续在剩余的N-M个PDCCH检测时机上检测WUS,直至检测到WUS或检测完剩余的N-M个PDCCH检测时机。
结合第一方面,在第一方面的一种可能的设计中,终端设备可根据预设的映射规则,从N个PDCCH检测时机中确定所述M个PDCCH检测时机,预设的映射规则用于确定在N个PDCCH检测时机中的每个PDCCH检测时机上是否检测WUS,如此,可有效提高终端设备在M个PDCCH检测时机上检测WUS信号的灵活性。
结合第一方面,在第一方面的一种可能的设计中,所述映射规则满足如下关系:
f=(UE id-index)mod(X)
其中,UE id为终端设备或终端设备所在的终端设备组的标识,index为PDCCH检测时机的序号,mod表示取模,X为检测间隔,f为实数,当f的取值为零值时,表示终端设备需要在该PDCCH检测时机上检测WUS,当f的取值为非零值时,表示终端设备不需要在该PDCCH检测时机上检测WUS。
可以看出,终端设备采用这种映射规则来确定需要检测的M个PDCCH检测时机,可使得不同终端设备对应的M个PDCCH检测时机在不同时隙间随机化,避免数量较多的终端设备的WUS信号需要挤占同一时隙发送,从而使得网络设备的下行空口资源的占用更加均衡。
结合第一方面,在第一方面的一种可能的设计中,终端设备可从网络设备接收第一指示信息,该第一指示信息用于指示终端设备在所述N个PDCCH检测时机中的M个PDCCH检测时机上检测WUS。
结合第一方面,在第一方面的一种可能的设计中,所述N个PDCCH检测时机为所述WUS的接收时间窗口内的N个PDCCH检测时机。终端设备可通过如下方式确定WUS的接收时间窗口:终端设备根据接收时间窗口的结束时间至DRX ON的开始时间之间的偏移量,以及接收时间窗口的长度,确定该接收时间窗口;或者,终端设备根据接收时间窗口的结束时间至DRX ON的开始时间之间的偏移量,以及接收时间窗口的开始时间至DRX ON的开始时间之间的偏移量,确定该接收时间窗口。
结合第一方面,在第一方面的一种可能的设计中,终端设备可通过如下方式确定接收时间窗口中包括的N个PDCCH检测时机:终端设备根据接收时间窗口和PDCCH检测时机的配置参数,确定接收时间窗口中包括的所述N个PDCCH检测时机,所述PDCCH检 测时机的配置参数用于指示搜索空间集合search space set的发送周期、每个search space set的发送周期中用于发送PDCCH检测时机的开始时隙、每个search space set的发送周期中连续发送PDCCH检测时机的时隙的数量、每个发送PDCCH检测时机的时隙中发送PDCCH检测时机的起始符号、每个发送PDCCH检测时机的时隙中连续发送PDCCH检测时机的符号的数量中的一项或多项信息。
第二方面,本申请实施例提供一种唤醒信号的检测方法,该方法可以由网络设备执行,也可以由网络设备中的装置(例如处理器和/或芯片)执行,该方法包括:网络设备确定在激活时间DRX_ON之前的N个物理下行控制信道PDCCH检测时机,网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示终端设备在该N个PDCCH检测时机中的M个PDCCH检测时机上检测唤醒信号WUS,M小于N,且N、M均为大于1的正整数。
采用本申请提供的技术方案,网络设备配置终端设备在激活时间DRX_ON之前的N个PDCCH检测时机中的部分PDCCH检测时机上检测WUS信号,如此,可有效降低终端设备的功耗,提高功率节省增益。
结合第二方面,在第二方面的一种可能的设计中,所述M个PDCCH检测时机为N个PDCCH检测时机中距离DRX_ON最近的M个PDCCH检测时机,如此,可最小化终端设备在唤醒时间DRX_ON之前唤醒检测WUS信号的时间,从而有效终端设备的功耗,提高功率节省增益;
或者,所述M个PDCCH检测时机为N个PDCCH检测时机中距离DRX ON最远的M个PDCCH检测时机,如此,可有效降低终端设备漏检WUS信号的可能性,降低因漏检WUS信号而带来的调度延时。
结合第二方面,在第二方面的一种可能的设计中,网络设备可根据预设的映射规则,从N个PDCCH检测时机中确定所述M个PDCCH检测时机,预设的映射规则用于确定在N个PDCCH检测时机中的每个PDCCH检测时机上是否需要终端设备检测WUS。如此,可有效提高终端设备在M个PDCCH检测时机上检测WUS信号的灵活性。
结合第二方面,在第二方面的一种可能的设计中,所述映射规则满足如下关系:
f=(UE id-index)mod(X)
其中,UE id为终端设备或终端设备组的标识,index为PDCCH检测时机的序号,mod表示取模,X为检测间隔,f为实数,当f的取值为零值时,表示终端设备需要在该PDCCH检测时机上检测WUS,当f的取值为非零值时,表示终端设备不需要在该PDCCH检测时机上检测WUS。
可以看出,网络设备采用这种映射规则来确定终端设备需要检测的M个PDCCH检测时机,可使得不同终端设备对应的M个PDCCH检测时机在不同时隙间随机化,避免数量较多的终端设备的WUS信号需要挤占同一时隙发送,从而使得网络设备的下行空口资源的占用更加均衡。
结合第二方面,在第二方面的一种可能的设计中,网络设备可向终端设备发送第二指示信息,该第二指示信息用于指示WUS的接收时间窗口的配置参数,该接收时间窗口的配置参数包括接收时间窗口的结束时间至DRX ON的开始时间之间的偏移量和接收时间窗口的长度,或者该接收时间窗口的配置参数包括接收时间窗口的结束时间至DRX ON的开始时间之间的偏移量,和接收时间窗口的开始时间至DRX ON的开始时间之间的偏移量。
结合第二方面,在第二方面的一种可能的设计中,网络设备可向终端设备发送第三指示信息,该第三指示信息用于指示PDCCH检测时机的配置参数,该PDCCH检测时机的配置参数包括如下的一项或多项信息:搜索空间集合search space set的发送周期、每个search space set的发送周期中用于发送PDCCH检测时机的开始时隙、每个search space set的发送周期中连续发送PDCCH检测时机的时隙的数量、每个发送PDCCH检测时机的时隙中发送PDCCH检测时机的起始符号、每个发送PDCCH检测时机的时隙中连续发送PDCCH检测时机的符号的数量。
第三方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面或第一方面的任一种可能的设计中终端设备的功能。该装置可以为终端设备,例如手持终端设备、车载终端设备、车辆用户设备、路侧单元等,也可以为终端设备中包含的装置,例如芯片,也可以为包含终端设备的装置。上述终端设备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
该通信装置也可以具有实现上述第二方面或第二方面的任一种可能的设计中网络设备的功能。该通信装置可以为网络设备,例如基站,也可以为网络设备中包含的装置,例如芯片。上述网络设备的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该装置执行上述第一方面或第一方面的任一种设计中终端设备相应的功能。收发模块用于支持该装置与其他通信设备之间的通信,例如该装置为终端设备时,可从网络设备接收唤醒信号WUS。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置,本申请并不限定。
在另一种可能的设计中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述第一方面、或第一方面的任一种可能的设计中的方法。可选地,该装置还包括通信接口,处理器与通信接口耦合。当装置为终端设备时,该通信接口可以是收发器或输入/输出接口;当该装置为终端设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第四方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面或第一方面的任一种可能的设计中的方法、或实现上述第二方面或第二方面的任一种可能的设计中的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于接收代码指令并传输至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处 理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第五方面,本申请实施例提供一种可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法、或执行上述第二方面或第二方面的任一种可能的设计中的方法。
第六方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法、或执行上述第二方面或第二方面的任一种可能的设计中的方法。
第七方面,本申请实施例提供一种通信系统,该通信系统包括网络设备和至少一个终端设备。
附图说明
图1为本申请实施例适用的一种通信系统的网络架构示意图;
图2为本申请实施例提供的一种唤醒信号的检测方法的流程示意图;
图3为本申请实施例中DRX周期和激活时间DRX ON的示意图;
图4为本申请实施例中的N个PDCCH检测时机的示意图;
图5为本申请实施例中WUS信号的接收时间窗口的示意图;
图6a、图6b和图6c为本申请实施例中M个PDCCH检测时机的示意图;
图7为本申请实施例提供的一种通信装置的结构示意图;
图8为本申请实施例提供的一种通信装置的另一结构示意图;
图9为本申请实施例提供的另一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的另一结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WIMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),或者应用于未来的通信系统或其它类似的通信系统等。
本申请实施例的技术方案可以应用于无人驾驶(unmanned driving)、辅助驾驶(driver assistance,ADAS)、智能驾驶(intelligent driving)、网联驾驶(connected driving)、智能网联驾驶(Intelligent network driving)、汽车共享(car sharing)、智能汽车(smart/intelligent car)、数字汽车(digital car)、无人汽车(unmanned car/driverless car/pilotless car/automobile)、 车联网(Internet of vehicles,IoV)、自动汽车(self-driving car、autonomous car)、车路协同(cooperative vehicle infrastructure,CVIS)、智能交通(intelligent transport system,ITS)、车载通信(vehicular communication)等技术领域。
请参考图1,为本申请实施例适用的一种通信系统的网络架构示意图。该通信系统包括网络设备110、终端设备101、终端设备102、终端设备103、终端设备104、终端设备105和终端设备106。网络设备可通过上行链路(uplink,UL)和下行链路(downlink,DL)与至少一个终端设备(如终端设备101)进行通信。
图1中的网络设备可以为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4 thgeneration,4G)系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。本申请实施例所提供的技术方案也可以应用于未来的移动通信系统中,如6G或7G通信系统,因此,图1中的网络设备也可以对应未来的移动通信系统中的接入网设备。
应理解,该通信系统中也可以存在多个网络设备,每个网络设备可以为多个终端设备提供服务,本申请实施例对通信系统中网络设备和终端设备的数量均不作限定。图1中的网络设备,以及多个终端设备中的部分终端设备或全部终端设备中的每个终端设备都可以实施本申请实施例提供的技术方案。另外,图1中的终端设备可以是不同类型的终端设备,例如可包括手机、物联网中的智能水表、电表等海量机器类通信(massive machine type of communication,mMTC)类终端设备,图1中所示出的终端设备的各种类型也仅是其中的部分示例,也应理解,本申请实施例中的终端设备不限于此。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,又可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。所述终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。例如,终端设备可以是具有无线连接功能的手持式设备、车载设备、车辆用户设备等。目前,一些终端设备的示例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
本申请实施例中的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的 车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
2)网络设备,是网络中用于将终端设备接入到无线网络的设备。所述网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),如传统的宏基站eNB和异构网络场景下的微基站eNB,或者也可以包括第五代移动通信技术(5th generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),或者还可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基带池BBU pool,或WiFi接入点(access point,AP)等,再或者还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。再例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU),RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其它实体交换消息。
3)下行控制信道,例如PDCCH,或者增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH),或者也可能包括其他的下行控制信道。具体的不做限制。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
请参考图2,为本申请实施例提供的一种唤醒信号的检测方法的流程示意图,该方法具体包括如下的步骤S201至步骤S204:
步骤S201、网络设备确定在激活时间DRX_ON之前的N个PDCCH检测时机。
步骤S202、网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在该N个PDCCH检测时机中的M个PDCCH检测时机上检测WUS信号,其中M小于N,N、M均为大于1的正整数。
步骤S203、终端设备确定在激活时间DRX_ON之前的N个PDCCH检测时机。
步骤S204、终端设备在N个PDCCH检测时机中的M个PDCCH检测时机上检测WUS信号。
本申请实施例中,终端设备为处于RRC连接态的终端设备,可选的,该终端设备为配置有功率节省功能或激活了功率节省功能的终端设备。网络设备可以为该终端设备配置DRX的处理流程。如图3所示,在DRX机制下,时间被划分为一个个的DRX周期(DRX cycle),终端设备在每个DRX周期的时间起始位置会开启一个持续时间定时器(drx-on Duration Timer)。在该持续时间定时器的运行时间范围内,终端设备不断尝试检测PDCCH。如果终端设备在持续时间定时器的运行时间范围内检测到PDCCH,终端设备会开启一个非激活定时器(drx-Inactivity Timer)。如果终端设备在该非激活定时器的运行时间范围内继续检测到PDCCH,终端设备会重置该非激活定时器,重新开始计数。如果非激活定时器正在运行,那么即使原来配置的持续时间定时器超时,终端设备仍然要继续检测PDCCH,直至非激活定时器超时。只要持续时间定时器或非激活定时器中的任一个定时器正在运行,终端设备就处于激活时间,并需要不断检测PDCCH。激活时间也可以称为“DRX ON”、“on duration”、“active time”或激活期,或者也可以具有其他名称,本申请并不限定。为了描述清楚,下文中将激活时间统一称作“DRX ON”。终端设备处于激活时间,也可以理解为终端设备处于激活状态或者处于唤醒状态或者进入了唤醒模式。
如果终端设备在持续时间定时器的运行时间范围内没有检测到PDCCH,那么在持续时间定时器超时后,终端设备将进入休眠模式,即终端设备在该DRX周期的其他时间处于休眠时间,可以关闭射频收发器和基带处理器等通信器件,从而降低功耗。本申请实施例中,所述休眠时间也可以称为“DRX_OFF”、sleep或休眠期,或者也可以具有其他名称,本申请并不限定。终端设备处于休眠时间,也可以理解为终端设备处于休眠状态或者处于DRX状态或者进入了休眠模式。如果终端设备在持续时间定时器的运行时间范围内检测到PDCCH,那么终端设备将在开启的非激活定时器超时后,进入休眠模式。
考虑到数据传输在时间上往往具有突发性和稀疏性,如果网络设备在激活时间DRX ON中对终端设备没有任何数据调度的话,对终端设备来说就产生了不必要的能量消耗。为了降低功耗,网络设备可根据调度数据的需求,决定是否在激活时间DRX ON之前为终端设备发送WUS信号。如果终端设备在激活时间DRX ON之前没有检测到WUS信号,或者终端设备检测到的WUS信号指示该终端设备在对应的激活时间DRX ON内没有数据调度时,终端设备可直接进入休眠状态,就不用在激活时间DRX ON内检测PDCCH了。如果终端设备在激活时间DRX ON之前检测到WUS信号,或者终端设备检测到的WUS信号用于指示该终端设备在对应的激活时间DRX ON内有数据调度时,终端设备就需要在激活时间DRX ON到来前唤醒,按照前面所述的DRX机制启动定时器,检测PDCCH。
本申请实施例中,WUS信号承载于PDCCH之上,所述N个PDCCH检测时机即为位于激活时间DRX ON之前的N个用于检测WUS信号的PDCCH检测时机。应理解,一个PDCCH检测时机上可能存在网络设备发送的WUS信号,也可能不存在网络设备发送的WUS信号。网络设备是否在N个PDCCH检测时机上发送WUS信号,是由激活时间DRX ON内是否存在该终端设备的数据调度,以及终端设备配置的功率节省功能等多种因素决定的。
需要说明的是,所述WUS信号可以是发送给一个终端设备的WUS信号,称为终端设备专用的PDCCH唤醒信号(UE-specific WUS)。该WUS信号也可以是针对一个终端设备 组的WUS信号,称为终端设备组PDCCH唤醒信号(Group-based PDCCH WUS)。由于一个终端设备组中可包括多个终端设备,此时,本申请实施例中的上述步骤S201至步骤S204中提及的终端设备可以为该终端设备组中的任一终端设备。
在步骤S201中,网络设备可将距离激活时间DRX ON一定时间偏移量offset之前的N个连续的PDCCH检测时机,确定为所述N个PDCCH检测时机,如图4所示。所述N个PDCCH检测时机可以理解为,可能存在WUS信号发送的PDCCH检测时机或是有效的(valid)PDCCH检测时机。相应地,网络设备还可向终端设备发送第二指示信息和/或第三指示信息,用以指示该N个PDCCH检测时机的位置。
在一种可能的设计中,第二指示信息可用于指示所述N值和所述时间偏移量offset,第三指示信息可用于指示PDCCH检测时机的配置参数,该PDCCH检测时机的配置参数可包括搜索空间集合search space set的发送周期、每个search space set的发送周期中用于发送PDCCH检测时机的开始时隙、每个search space set的发送周期中连续发送PDCCH检测时机的时隙的数量、每个发送PDCCH检测时机的时隙中发送PDCCH检测时机的起始符号、每个发送PDCCH检测时机的时隙中连续发送PDCCH检测时机的符号的数量中的一项或多项信息。
在另一种可能的设计中,所述N个PDCCH检测时机可以位于WUS信号的接收时间窗口内。如图5所示,该WUS信号的接收时间窗口位于激活时间DRX之前,且接收时间窗口的结束时间与激活时间DRX ON的开始时间之间的距离为时间偏移量offset。本申请实施例中,WUS信号的接收时间窗口还可以称为搜索时间窗口(WUS search window)、检测时间窗口(WUS monitoring window)或WUS时刻(WUS occasion),本申请并不限定。
在这一情形下,网络设备也可以向终端设备发送第二指示信息和/或第三指示信息。此时,第二指示信息用于指示WUS信号的接收时间窗口的配置参数,以便终端设备确定该WUS信号的接收时间窗口的位置。该WUS信号的接收时间窗口的配置参数可包括接收时间窗口的结束时间至激活时间DRX ON的开始时间之间的时间偏移量、以及接收时间窗口的时间长度。或者,该WUS信号的接收时间窗口的配置参数可包括接收时间窗口的结束时间至激活时间DRX ON的开始时间之间的时间偏移量、以及接收时间窗口的开始时间至激活时间DRX ON的开始时间之间的时间偏移量。
类似地,第三指示信息用于指示PDCCH检测时机的配置参数,该PDCCH检测时机的配置参数可包括搜索空间集合search space set的发送周期、每个search space set的发送周期中用于发送PDCCH检测时机的开始时隙、每个search space set的发送周期中连续发送PDCCH检测时机的时隙的数量、每个发送PDCCH检测时机的时隙中发送PDCCH检测时机的起始符号、每个发送PDCCH检测时机的时隙中连续发送PDCCH检测时机的符号的数量中的一项或多项信息。
需要说明的是,本申请实施例中的第二指示信息和第三指示信息可通过高层信令(例如RRC信令、MAC信令或物理层信令)、下行控制信息(downlink control information,DCI)、系统广播消息等多种方式发送,而且第二指示信息与第三指示信息的发送方式可以相同,也可以不相同,本申请并不限定。若第二指示信息与第三指示信息的发送方式相同,那么第二指示信息与第三指示信息可以在同一条消息中发送,也可以在不同的消息中发送,本申请同样不作限定。可选的,网络设备可在终端设备进入休眠状态之前发送该第二指示信息和/或第三指示信息。
在步骤S202中,网络设备可向终端设备发送第一指示信息,该第一指示信息用于指示终端设备在N个PDCCH检测时机中的M个PDCCH检测时机上检测WUS信号。本申请实施例中,M、N均为大于1的正整数,且M小于等于N。因此,第一指示信息也可以理解为,用于指示终端设备在N个PDCCH检测时机中的部分PDCCH检测时机上检测WUS信号。进一步地,第一指示信息也可以理解为,用于指示终端设备最多在N个PDCCH检测时机中的M个PDCCH检测时机上检测WUS信号,因为终端设备一旦在M个PDCCH检测时机中的任一PDCCH检测时机上检测到WUS信号后,便可确认需要在激活时间DRX ON中唤醒并检测PDCCH,而不需要再继续检测WUS信号。
可选的,网络设备还可在第一指示信息中指示所述M个PDCCH检测时机的具体位置或者终端设备确定所述M个PDCCH检测时机的预设规则。
本申请实施例中,第一指示信息同样可通过高层信令(例如RRC信令、MAC信令或物理层信令)、下行控制信息(downlink control information,DCI)、系统广播消息等多种方式发送,本申请并不限定。
可以理解,本申请实施例中,网络设备可以在所述N个PDCCH检测时机中的部分或全部PDCCH检测时机上发送WUS信号,也可以在所述M个PDCCH检测时机中的部分或全部PDCCH检测时机上发送WUS信号。例如,网络设备可在所述M个PDCCH检测时机上的每个PDCCH检测时机上均发送WUS信号,并通过指示信息的方式告知终端设备WUS信号的发送方式,如此,可有效提高终端设备检测WUS信号的可靠性,降低终端设备的功耗。再例如,网络设备可在所述M个PDCCH检测时机中的任一个或多个PDCCH检测时机上发送WUS信号,并通过指示信息的方式告知终端设备WUS信号的发送方式,如此,可有效减小网络设备发送WUS信号的资源开销,但要求终端设备对M个PDCCH检测时机进行逐一检测。
在步骤S203中,终端设备可根据从网络设备接收到的第二指示信息和/或第三指示信息,确定N个PDCCH检测时机。考虑到本申请实施例中的第三指示信息均用来指示PDCCH检测时机的配置参数,但第二指示信息具有不同的实现方式,因此,在一种可能的设计中,如图4所示,若第二指示信息用于指示N值和时间偏移量offset,那么终端设备可直接将距离激活时间DRX ON时间偏移量offset之前的N个PDCCH检测时机,确定为所述N个PDCCH检测时机。
在另一种可能的设计中,若第二指示信息用于指示WUS信号的接收时间窗口的配置参数,那么终端设备可根据第二指示信息中的接收时间窗口的结束时间至激活时间DRX ON的开始时间之间的时间偏移量、以及接收时间窗口的时间长度,或者接收时间窗口的结束时间至激活时间DRX ON的开始时间之间的时间偏移量、以及接收时间窗口的开始时间至激活时间DRX ON的开始时间之间的时间偏移量,确定该WUS信号的接收时间窗口的具体位置,进而结合第三指示信息中指示的PDCCH检测时机的配置参数,确定该WUS信号的接收时间窗口内的N个PDCCH检测时机。
在步骤S204中,终端设备可在N个PDCCH检测时机中的M个PDCCH检测时机上检测WUS信号。
在一种可能的设计中,所述M个PDCCH检测时机可以为N个PDCCH检测时机中距离激活时间DRX ON最近的M个PDCCH检测时机。例如,在图6a中,WUS信号的接收时间窗口中包括4个PDCCH检测时机,如果M取值为2,那么距离激活时间DRX ON最 近的M个PDCCH检测时机是指WUS信号的接收时间窗口内最右边的2个PDCCH检测时机。可以看出,终端设备在WUS信号的接收时间窗口内的距离激活时间DRX ON最近的M个PDCCH检测时机上检测WUS信号,可最小化终端设备在WUS信号的接收时间窗口内被唤醒的时间,从而有效降低终端设备的功耗。
在一种可能的设计中,所述M个PDCCH检测时机也可以为N个PDCCH检测时机中距离激活时间DRX ON最远的M个PDCCH检测时机。例如,在图6b中,WUS信号的接收时间窗口中包括4个PDCCH检测时机,如果M取值为2,那么距离激活时间DRX ON最远的M个PDCCH检测时机是指WUS信号的接收时间窗口内最左边的2个PDCCH检测时机。
如果终端设备在该M个PDCCH检测时机中检测到了WUS信号,终端设备可在检测到WUS信号之后,至激活时间DRX ON之间的这段时间内进入微睡眠状态,从而有效降低功耗,等到激活时间DRX ON到来时再唤醒,检测PDCCH。如果终端设备在该M个PDCCH检测时机中没有检测到WUS信号,那么终端设备可继续在剩余的N-M个PDCCH检测时机上检测WUS信号,直至检测到WUS信号或检测完剩余的N-M个PDCCH检测时机。可以看出,终端设备在WUS信号的接收时间窗口内的距离激活时间DRX ON最远的M个PDCCH检测时机上检测WUS信号,可以有效降低WUS信号被漏检的可能性,降低因终端设备没有检测到WUS信号而带来的调度延时。
在又一种可能的设计中,终端设备也可以根据预设的映射规则,从N个PDCCH检测时机中确定出M个PDCCH检测时机,进而再在确定的M个PDCCH检测时机上检测WUS信号。
所述预设的映射规则用于针对N个PDCCH检测时机中的每个PDCCH检测时机,判断是否在该PDCCH检测时机上检测WUS信号。该预设的映射规则可以与终端设备的标识、以及PDCCH检测时机的序号相关,可以为以终端设备的标识和PDCCH检测时机的序号或者为自变量的函数,即f(UE id,index)。如果f(UE id,index)=true,则表示在该PDCCH检测时机上检测WUS信号,如果f(UE id,index)=false,则表示不在该PDCCH检测时机上检测WUS信号。可以理解,该函数中还可以包括一个或多个其它参数的自变量,本申请并不限定。
例如,预设的映射规则可以满足如下关系:
f=(UE id-index)mod(X)   公式一
其中,UE id为终端设备或终端设备所在的终端设备组的标识,index为PDCCH检测时机的序号,mod表示取模,X为检测间隔,f为实数,当f的取值为零值时,表示终端设备需要在该PDCCH检测时机上检测WUS信号,当f的取值为非零值时,表示终端设备不需要在该PDCCH检测时机上检测WUS信号。
如图6c所示,若检测间隔X取值为2,那么终端设备将每隔一个PDCCH检测时机检测一次WUS信号。由此可知,采用预设的映射规则来判断在N个PDCCH检测时机中的哪M个PDCCH检测时机上检测WUS信号,可使得不同终端设备对应的M个PDCCH检测时机在不同时隙间随机化,避免数量较多的终端设备的WUS信号需要挤占同一时隙发送,从而使得网络设备的下行空口资源的占用更加均衡。
应理解,本申请实施例中,终端设备在M个PDCCH检测时机上检测WUS信号可以为,在M个PDCCH检测时机中的每个PDCCH检测时机上检测WUS信号,一旦检测到 WUS信号便进入微睡眠状态,以节省功耗。或者,终端设备在M个PDCCH检测时机上检测WUS信号也可以为,在M个PDCCH检测时机中的任一个或多个PDCCH检测时机上检测WUS信号。例如,若终端设备可确定网络设备在M个PDCCH检测时机上均发送WUS信号,那么终端设备在M个PDCCH检测时机上检测WUS信号可以为,在该M个PDCCH检测时机中的任一个或多个PDCCH检测时机上检测WUS信号,如此,可有效提高WUS信号检测的可靠性。
需要说明的是,本申请实施例中的M个PDCCH检测时机在N个PDCCH检测时机中的位置、以及终端设备采用的确定M个PDCCH检测时机的预设的映射规则可以是预定义的,也可以是网络设备在第一指示信息中指示的。本申请实施例中所提及的“预定义”可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化或预烧制。
本申请对上述步骤S201至步骤S204的执行顺序不作具体限定,各个步骤之间执行的先后关系依照其内在的逻辑限定。例如,网络设备确定N个PDCCH检测时机,可在终端设备确定N个PDCCH检测时机之前执行。网络设备向终端设备发送第一指示信息,可在终端设备在N个PDCCH检测时机中的M个PDCCH检测时机上检测WUS信号之前执行。但是,网络设备向终端设备发送第一指示信息,既可以在终端设备确定N个PDCCH检测时机之前执行,也可以在其之后执行,本申请并不限定。
本申请实施例还提供一种通信装置,请参阅图7,为本申请实施例提供的另一种通信装置的结构示意图,该通信装置700包括:收发模块710和处理模块720。该通信装置可用于实现上述任一方法实施例中涉及终端设备的功能。例如,该通信装置可以是终端设备,例如手持终端设备或车载终端设备;该通信装置还可以是终端设备中包括的芯片,或者包括终端设备的装置,如各种类型的车辆等。
当该通信装置作为终端设备,执行图2中所示的方法实施例时,处理模块720,用于确定在激活时间DRX_ON之前的N个物理下行控制信道PDCCH检测时机;收发模块710,用于在该N个PDCCH检测时机中的M个PDCCH检测时机上检测唤醒信号WUS,M小于N,且N、M均为大于1的正整数。
在一种可能的设计中,所述M个PDCCH检测时机为N个PDCCH检测时机中距离DRX ON最近的M个PDCCH检测时机;或者,所述M个PDCCH检测时机为N个PDCCH检测时机中距离DRX ON最远的M个PDCCH检测时机。
在一种可能的设计中,若所述M个PDCCH检测时机为N个PDCCH检测时机中距离DRX ON最远的M个PDCCH检测时机,且收发模块710在该M个PDCCH检测时机上没有检测到WUS,则收发模块710还用于,继续在剩余的N-M个PDCCH检测时机上检测WUS,直至检测到WUS或检测完剩余的N-M个PDCCH检测时机。
在一种可能的设计中,处理模块720,具体用于根据预设的映射规则,从N个PDCCH检测时机中确定所述M个PDCCH检测时机,预设的映射规则用于确定在N个PDCCH检测时机中的每个PDCCH检测时机上是否检测WUS。
在一种可能的设计中,所述映射规则满足如下关系:
f=(UE id-index)mod(X)
其中,UE id为该通信装置或该通信装置所在的终端设备组的标识,index为PDCCH检测时机的序号,mod表示取模,X为检测间隔,f为实数,当f的取值为零值时,表示收发 模块710需要在该PDCCH检测时机上检测WUS,当f的取值为非零值时,表示收发模块710不需要在该PDCCH检测时机上检测WUS。
在一种可能的设计中,收发模块710还用于,从网络设备接收第一指示信息,该第一指示信息用于指示在所述N个PDCCH检测时机中的M个PDCCH检测时机上检测WUS。
在一种可能的设计中,所述N个PDCCH检测时机为所述WUS的接收时间窗口内的N个PDCCH检测时机。处理模块720可通过如下方式确定WUS的接收时间窗口:根据接收时间窗口的结束时间至DRX ON的开始时间之间的偏移量,以及接收时间窗口的长度,确定该接收时间窗口;或者,根据接收时间窗口的结束时间至DRX ON的开始时间之间的偏移量,以及接收时间窗口的开始时间至DRX ON的开始时间之间的偏移量,确定该接收时间窗口。
在一种可能的设计中,处理模块720可通过如下方式确定接收时间窗口中包括的N个PDCCH检测时机:根据接收时间窗口和PDCCH检测时机的配置参数,确定接收时间窗口中包括的所述N个PDCCH检测时机,所述PDCCH检测时机的配置参数用于指示搜索空间集合search space set的发送周期、每个search space set的发送周期中用于发送PDCCH检测时机的开始时隙、每个search space set的发送周期中连续发送PDCCH检测时机的时隙的数量、每个发送PDCCH检测时机的时隙中发送PDCCH检测时机的起始符号、每个发送PDCCH检测时机的时隙中连续发送PDCCH检测时机的符号的数量中的一项或多项信息。
该通信装置中涉及的处理模块720可以由处理器或处理器相关电路组件实现,收发模块710可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图2中所示方法的相应流程,为了简洁,在此不再赘述。
请参阅图8,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置具体可为一种终端设备。便于理解和图示方便,在图8中,终端设备以手机作为例子。如图8所示,终端设备包括处理器,还可以包括存储器,当然,也还可以包括射频电路、天线以及输入输出装置等。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图8中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图8所示,终端设备包括收发单元 810和处理单元820。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元810中用于实现接收功能的器件视为接收单元,将收发单元810中用于实现发送功能的器件视为发送单元,即收发单元810包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。应理解,收发单元810用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元820用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
本申请实施例提供另一种通信装置,请参阅图9,为本申请实施例提供的一种通信装置的结构示意图,该通信装置900包括:收发模块910和处理模块920。该通信装置可用于实现上述任一方法实施例中涉及网络设备的功能。例如,该通信装置可以是网络设备或网络设备中包括的芯片。
当该通信装置作为网络设备,执行图2中所示的方法实施例时,处理模块920,用于确定在激活时间DRX_ON之前的N个物理下行控制信道PDCCH检测时机;收发模块910,用于向终端设备发送第一指示信息,所述第一指示信息用于指示终端设备在该N个PDCCH检测时机中的M个PDCCH检测时机上检测唤醒信号WUS,M小于N,且N、M均为大于1的正整数。
在一种可能的设计中,所述M个PDCCH检测时机为N个PDCCH检测时机中距离DRX_ON最近的M个PDCCH检测时机;或者,所述M个PDCCH检测时机为N个PDCCH检测时机中距离DRX ON最远的M个PDCCH检测时机。
在一种可能的设计中,处理模块920还用于根据预设的映射规则,从N个PDCCH检测时机中确定所述M个PDCCH检测时机,预设的映射规则用于确定在N个PDCCH检测时机中的每个PDCCH检测时机上是否需要终端设备检测WUS。
在一种可能的设计中,所述映射规则满足如下关系:
f=(UE id-index)mod(X)
其中,UE id为终端设备或终端设备组的标识,index为PDCCH检测时机的序号,mod表示取模,X为检测间隔,f为实数,当f的取值为零值时,表示终端设备需要在该PDCCH检测时机上检测WUS,当f的取值为非零值时,表示终端设备不需要在该PDCCH检测时机上检测WUS。
在一种可能的设计中,收发模块910还用于可向终端设备发送第二指示信息,该第二指示信息用于指示WUS的接收时间窗口的配置参数,该接收时间窗口的配置参数包括接收时间窗口的结束时间至DRX ON的开始时间之间的偏移量和接收时间窗口的长度,或者该接收时间窗口的配置参数包括接收时间窗口的结束时间至DRX ON的开始时间之间的偏移量,和接收时间窗口的开始时间至DRX ON的开始时间之间的偏移量。
在一种可能的设计中,收发模块910还用于向终端设备发送第三指示信息,该第三指示信息用于指示PDCCH检测时机的配置参数,该PDCCH检测时机的配置参数包括如下的一项或多项信息:搜索空间集合search space set的发送周期、每个search space set的发送周期中用于发送PDCCH检测时机的开始时隙、每个search space set的发送周期中连续发送PDCCH检测时机的时隙的数量、每个发送PDCCH检测时机的时隙中发送PDCCH检测时机的起始符号、每个发送PDCCH检测时机的时隙中连续发送PDCCH检测时机的 符号的数量。
应理解,该通信装置中涉及的处理模块920可以由处理器或处理器相关电路组件实现,收发模块910可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现图2中所示方法的相应流程,为了简洁,在此不再赘述。
请参阅图10,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置可具体为一种网络设备,例如基站,用于实现上述任一方法实施例中涉及网络设备的功能。
该网络设备包括:一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1001和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1002。所述RRU 1001可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线10011和射频单元10012。所述RRU 1001部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU 1002部分主要用于进行基带处理,对基站进行控制等。所述RRU 1001与BBU 1002可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1002为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)1002可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 1002可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1002还可以包括存储器10021和处理器10022,所述存储器10021用于存储必要的指令和数据。所述处理器10022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中发送操作。所述存储器10021和处理器10022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软 件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括网络设备和至少一个上述各方法实施例中所述的终端设备。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (23)

  1. 一种唤醒信号的检测方法,其特征在于,所述方法包括:
    终端设备确定在激活时间DRX_ON之前的N个物理下行控制信道PDCCH检测时机;
    所述终端设备在所述N个PDCCH检测时机中的M个PDCCH检测时机上检测唤醒信号WUS,所述M小于N,所述N、M均为大于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述M个PDCCH检测时机为所述N个PDCCH检测时机中距离所述DRX ON最近的M个PDCCH检测时机;或者,
    所述M个PDCCH检测时机为所述N个PDCCH检测时机中距离所述DRX ON最远的M个PDCCH检测时机。
  3. 根据权利要求2所述的方法,其特征在于,若所述M个PDCCH检测时机为所述N个PDCCH检测时机中距离DRX ON最远的M个PDCCH检测时机,所述方法还包括:
    若在所述M个PDCCH检测时机上没有检测到所述WUS,所述终端设备继续在剩余的N-M个PDCCH检测时机上检测所述WUS,直至检测到所述WUS或检测完所述剩余的N-M个PDCCH检测时机。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据预设的映射规则,从所述N个PDCCH检测时机中确定所述M个PDCCH检测时机,所述预设的映射规则用于确定在所述N个PDCCH检测时机中的每个PDCCH检测时机上是否检测所述WUS。
  5. 根据权利要求4所述的方法,其特征在于,所述映射规则满足如下关系:
    f=(UE id-index)mod(X)
    其中,UE id为所述终端设备或所述终端设备所在的终端设备组的标识,index为所述PDCCH检测时机的序号,mod表示取模,X为检测间隔,f为实数,当f的取值为零值时,表示所述终端设备需要在所述PDCCH检测时机上检测所述WUS,当f的取值为非零值时,表示所述终端设备不需要在所述PDCCH检测时机上检测所述WUS。
  6. 根据权利要求1至5中的任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备从网络设备接收第一指示信息,所述第一指示信息用于指示所述终端设备在所述N个PDCCH检测时机中的M个PDCCH检测时机上检测所述WUS。
  7. 一种唤醒信号的检测方法,其特征在于,所述方法包括:
    网络设备确定在激活时间DRX_ON之前的N个物理下行控制信道PDCCH检测时机;
    所述网络设备向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在所述N个PDCCH检测时机中的M个PDCCH检测时机上检测唤醒信号WUS,所述M小于N,所述N、M均为大于1的正整数。
  8. 根据权利要求7所述的方法,其特征在于,所述M个PDCCH检测时机为距离所述DRX_ON最近的M个PDCCH检测时机;或者,
    所述M个PDCCH检测时机为距离所述DRX ON最远的M个PDCCH检测时机。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据预设的映射规则,从所述N个PDCCH检测时机中确定所述M个PDCCH检测时机,所述预设的映射规则用于确定所述N个PDCCH检测时机中的每个PDCCH检测时机上是否需要所述终端设备检测所述WUS。
  10. 根据权利要求9所述的方法,其特征在于,所述映射规则满足如下关系:
    f=(UE id-index)mod(X)
    其中,UE id为所述终端设备或所述终端设备所在的终端设备组的标识,index为所述PDCCH检测时机的序号,mod表示取模,X为检测间隔,f为实数,当f的取值为零值时,表示所述终端设备需要在所述PDCCH检测时机上检测所述WUS,当f的取值为非零值时,表示所述终端设备不需要在所述PDCCH检测时机上检测所述WUS。
  11. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于确定在激活时间DRX_ON之前的N个物理下行控制信道PDCCH检测时机;
    收发模块,用于在所述N个PDCCH检测时机中的M个PDCCH检测时机上检测唤醒信号WUS,所述M小于N,所述N、M均为大于1的正整数。
  12. 根据权利要求11所述的装置,其特征在于,所述M个PDCCH检测时机为所述N个PDCCH检测时机中距离所述DRX ON最近的M个PDCCH检测时机;或者,
    所述M个PDCCH检测时机为所述N个PDCCH检测时机中距离所述DRX ON最远的M个PDCCH检测时机。
  13. 根据权利要求12所述的装置,其特征在于,若所述M个PDCCH检测时机为所述N个PDCCH检测时机中距离所述DRX ON最远的M个PDCCH检测时机,所述收发模块还用于:
    若在所述M个PDCCH检测时机上没有检测到所述WUS,则继续在剩余的N-M个PDCCH检测时机上检测所述WUS,直至检测到所述WUS或检测完所述剩余的N-M个PDCCH检测时机。
  14. 根据权利要求11所述的装置,其特征在于,所述处理模块还用于:
    根据预设的映射规则,从所述N个PDCCH检测时机中确定所述M个PDCCH检测时机,所述预设的映射规则用于确定在所述N个PDCCH检测时机中的每个PDCCH检测时机上是否检测所述WUS。
  15. 根据权利要求14所述的装置,其特征在于,所述映射规则满足如下关系:
    f=(UE id-index)mod(X)
    其中,UE id为所述装置或所述装置所在的终端设备组的标识,index为所述PDCCH检测时机的序号,mod表示取模,X为检测间隔,f为实数,当f的取值为零值时,表示需要在所述PDCCH检测时机上检测所述WUS,当f的取值为非零值时,表示不需要在所述PDCCH检测时机上检测所述WUS。
  16. 根据权利要求11至15中的任一项所述的装置,其特征在于,所述收发模块还用于:
    从网络设备接收第一指示信息,所述第一指示信息用于指示所述装置在所述N个PDCCH检测时机中的M个PDCCH检测时机上检测所述WUS。
  17. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于确定在激活时间DRX_ON之前的N个物理下行控制信道PDCCH检测时机;
    收发模块,用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备在所述N个PDCCH检测时机中的M个PDCCH检测时机上检测唤醒信号WUS,所 述M小于N,所述N、M均为大于1的正整数。
  18. 根据权利要求17所述的装置,其特征在于,所述M个PDCCH检测时机为所述N个PDCCH检测时机中距离所述DRX_ON最近的M个PDCCH检测时机;或者,
    所述M个PDCCH检测时机为所述N个PDCCH检测时机中距离所述DRX ON最远的M个PDCCH检测时机。
  19. 根据权利要求17所述的装置,其特征在于,所述处理模块还用于:
    根据预设的映射规则,从所述N个PDCCH检测时机中确定所述M个PDCCH检测时机,所述预设的映射规则用于确定在所述N个PDCCH检测时机中的每个PDCCH检测时机上是否需要所述终端设备检测所述WUS。
  20. 根据权利要求19所述的装置,其特征在于,所述映射规则满足如下关系:
    f=(UE id-index)mod(X)
    其中,UE id为所述终端设备或所述终端设备所在的终端设备组的标识,index为所述PDCCH检测时机的序号,mod表示取模,X为检测间隔,f为实数,当f的取值为零值时,表示所述终端设备需要在所述PDCCH检测时机上检测所述WUS,当f的取值为非零值时,表示所述终端设备不需要在所述PDCCH检测时机上检测所述WUS。
  21. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至6中任一项所述的方法,或者使得所述装置执行如权利要求7至10中任一项所述的方法。
  22. 一种可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使如权利要求1至6中任一项所述的方法被实现,或者使如权利要求7至10中任一项所述的方法被实现。
  23. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1至6中任一项所述的方法,或者所述处理器用于运行所述代码指令以执行如权利要求7至10中任一项所述的方法。
PCT/CN2019/109716 2019-09-30 2019-09-30 一种唤醒信号的检测方法及装置 WO2021062792A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2019/109716 WO2021062792A1 (zh) 2019-09-30 2019-09-30 一种唤醒信号的检测方法及装置
EP19947863.7A EP4030831A4 (en) 2019-09-30 2019-09-30 METHOD AND DEVICE FOR WAKE-UP SIGNAL MONITORING
JP2022519765A JP7400092B2 (ja) 2019-09-30 2019-09-30 ウェイクアップ信号検出方法および装置
CN201980100402.XA CN114424629B (zh) 2019-09-30 2019-09-30 一种唤醒信号的检测方法及装置
US17/708,704 US20220225470A1 (en) 2019-09-30 2022-03-30 Wake-up signal detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109716 WO2021062792A1 (zh) 2019-09-30 2019-09-30 一种唤醒信号的检测方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/708,704 Continuation US20220225470A1 (en) 2019-09-30 2022-03-30 Wake-up signal detection method and apparatus

Publications (1)

Publication Number Publication Date
WO2021062792A1 true WO2021062792A1 (zh) 2021-04-08

Family

ID=75336759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109716 WO2021062792A1 (zh) 2019-09-30 2019-09-30 一种唤醒信号的检测方法及装置

Country Status (5)

Country Link
US (1) US20220225470A1 (zh)
EP (1) EP4030831A4 (zh)
JP (1) JP7400092B2 (zh)
CN (1) CN114424629B (zh)
WO (1) WO2021062792A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808389A (zh) * 2021-08-11 2021-12-17 深圳市金溢科技股份有限公司 车路协同系统、边缘计算单元、中心云平台及信息处理方法
WO2023061189A1 (zh) * 2021-10-13 2023-04-20 华为技术有限公司 一种pdcch监听方法及装置
WO2023193508A1 (zh) * 2022-04-08 2023-10-12 中兴通讯股份有限公司 唤醒信号wus的接收方法和发送方法
WO2023207990A1 (zh) * 2022-04-27 2023-11-02 华为技术有限公司 信号传输的方法和通信装置
WO2023240415A1 (zh) * 2022-06-13 2023-12-21 北京小米移动软件有限公司 一种传输指示信息的方法、装置、设备以及可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114503687B (zh) * 2019-10-03 2024-05-28 瑞典爱立信有限公司 组唤醒信号的轮换
WO2024098224A1 (en) * 2022-11-07 2024-05-16 Nokia Shanghai Bell Co., Ltd. Lower power wake-up signal operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180145800A1 (en) * 2016-11-24 2018-05-24 Samsung Electronics Co., Ltd. Method of reducing power consumption in user equipment
CN109413721A (zh) * 2017-08-18 2019-03-01 中国移动通信有限公司研究院 唤醒信号检测时间的配置、检测方法、网络设备及终端
US20190159280A1 (en) * 2017-11-21 2019-05-23 Qualcomm Incorporated Dual band discontinuous reception
CN109923914A (zh) * 2017-03-24 2019-06-21 Lg 电子株式会社 用于接收寻呼消息的方法和无线设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180121350A (ko) * 2017-04-28 2018-11-07 엘지전자 주식회사 페이징 메시지를 수신하는 방법 및 무선 기기
CN109561038B (zh) * 2017-09-26 2022-03-29 珠海市魅族科技有限公司 用于基站或终端的采用唤醒信号的无线通信方法及装置
US11751132B2 (en) 2018-02-15 2023-09-05 Sony Corporation Wake-up signal candidate indicator
CN108702707B (zh) * 2018-05-21 2020-09-08 北京小米移动软件有限公司 唤醒信号的发送方法及装置、寻呼解调方法及装置
EP4250827A3 (en) * 2018-12-21 2023-11-22 Telefonaktiebolaget LM Ericsson (publ) Conditional wake-up signal configuration for new radio
FI3937441T3 (fi) * 2019-09-29 2023-08-29 Guangdong Oppo Mobile Telecommunications Corp Ltd Menetelmä herätyssignaalin valvomiseksi, ja elektroninen laite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180145800A1 (en) * 2016-11-24 2018-05-24 Samsung Electronics Co., Ltd. Method of reducing power consumption in user equipment
CN109923914A (zh) * 2017-03-24 2019-06-21 Lg 电子株式会社 用于接收寻呼消息的方法和无线设备
CN109413721A (zh) * 2017-08-18 2019-03-01 中国移动通信有限公司研究院 唤醒信号检测时间的配置、检测方法、网络设备及终端
US20190159280A1 (en) * 2017-11-21 2019-05-23 Qualcomm Incorporated Dual band discontinuous reception

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "PDCCH-based power saving signal/channel", 3GPP DRAFT; R1-1906005, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051727462 *
See also references of EP4030831A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808389A (zh) * 2021-08-11 2021-12-17 深圳市金溢科技股份有限公司 车路协同系统、边缘计算单元、中心云平台及信息处理方法
WO2023061189A1 (zh) * 2021-10-13 2023-04-20 华为技术有限公司 一种pdcch监听方法及装置
WO2023193508A1 (zh) * 2022-04-08 2023-10-12 中兴通讯股份有限公司 唤醒信号wus的接收方法和发送方法
WO2023207990A1 (zh) * 2022-04-27 2023-11-02 华为技术有限公司 信号传输的方法和通信装置
WO2023240415A1 (zh) * 2022-06-13 2023-12-21 北京小米移动软件有限公司 一种传输指示信息的方法、装置、设备以及可读存储介质

Also Published As

Publication number Publication date
CN114424629A (zh) 2022-04-29
CN114424629B (zh) 2024-05-03
JP2022550159A (ja) 2022-11-30
US20220225470A1 (en) 2022-07-14
EP4030831A1 (en) 2022-07-20
JP7400092B2 (ja) 2023-12-18
EP4030831A4 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
WO2021062792A1 (zh) 一种唤醒信号的检测方法及装置
WO2020224351A1 (zh) 随机接入的方法和装置
US20220361284A1 (en) Communication method and apparatus
CN111934830B (zh) 一种通信方法及设备
EP3771268A1 (en) Signal transmission method and device
WO2021219139A1 (zh) 通信方法及装置
US20240121717A1 (en) Communication method and related apparatus
WO2021239064A1 (zh) 通信方法及装置
WO2023051086A1 (zh) 数据传输的方法、终端装置及系统
CN111436095B (zh) 一种通信方法及通信装置
WO2022017492A1 (zh) 定位处理方法、装置及设备
WO2021239113A1 (zh) 数据传输方法及装置
WO2021031026A1 (zh) 一种下行控制信息dci的传输方法及装置
WO2021138854A1 (zh) 一种信号发送、接收方法、装置及设备
WO2023131235A1 (zh) 一种传输信息的方法、装置及系统
CN114731580A (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2018233646A1 (zh) 唤醒方法、接入点和站点
WO2021031632A1 (zh) 一种下行控制信息dci的发送方法及装置
WO2020164487A1 (zh) 一种无线通信的方法和装置
WO2020237686A1 (zh) 传输节能信息的方法、终端设备和网络设备
WO2023124826A1 (zh) 信息发送的方法和装置
CN114208363A (zh) 一种冲突解决方法及装置
WO2024171414A1 (ja) 基地局及び通信方法
WO2023236214A1 (zh) 无线通信的方法、终端设备及网络设备
WO2023207990A1 (zh) 信号传输的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019947863

Country of ref document: EP

Effective date: 20220413