WO2023106328A1 - タイヤ用ゴム組成物 - Google Patents
タイヤ用ゴム組成物 Download PDFInfo
- Publication number
- WO2023106328A1 WO2023106328A1 PCT/JP2022/045074 JP2022045074W WO2023106328A1 WO 2023106328 A1 WO2023106328 A1 WO 2023106328A1 JP 2022045074 W JP2022045074 W JP 2022045074W WO 2023106328 A1 WO2023106328 A1 WO 2023106328A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- rubber
- rubber composition
- tires
- parts
- Prior art date
Links
- 229920001971 elastomer Polymers 0.000 title claims abstract description 106
- 239000005060 rubber Substances 0.000 title claims abstract description 106
- 239000000203 mixture Substances 0.000 title claims abstract description 100
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 108
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 54
- 229920003048 styrene butadiene rubber Polymers 0.000 claims abstract description 48
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000009826 distribution Methods 0.000 claims abstract description 36
- 229920003244 diene elastomer Polymers 0.000 claims abstract description 31
- 125000005370 alkoxysilyl group Chemical group 0.000 claims abstract description 21
- 230000009477 glass transition Effects 0.000 claims abstract description 18
- 125000004432 carbon atom Chemical group C* 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 22
- 239000011347 resin Substances 0.000 claims description 22
- 150000003505 terpenes Chemical class 0.000 claims description 18
- 235000007586 terpenes Nutrition 0.000 claims description 18
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 16
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 239000003921 oil Substances 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 150000002430 hydrocarbons Chemical group 0.000 claims description 10
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 8
- 125000000962 organic group Chemical group 0.000 claims description 8
- 238000001179 sorption measurement Methods 0.000 claims description 8
- 239000004014 plasticizer Substances 0.000 claims description 7
- 229920005992 thermoplastic resin Polymers 0.000 claims description 5
- 125000000101 thioether group Chemical group 0.000 claims description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 4
- 229910018540 Si C Inorganic materials 0.000 claims description 3
- 230000014509 gene expression Effects 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 238000004587 chromatography analysis Methods 0.000 claims 1
- 238000005227 gel permeation chromatography Methods 0.000 abstract description 17
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 16
- 238000005299 abrasion Methods 0.000 description 16
- 238000002156 mixing Methods 0.000 description 16
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 235000019198 oils Nutrition 0.000 description 13
- 238000006116 polymerization reaction Methods 0.000 description 12
- 238000004073 vulcanization Methods 0.000 description 11
- 239000005062 Polybutadiene Substances 0.000 description 10
- 230000001133 acceleration Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- -1 methoxysilyl Chemical group 0.000 description 10
- 229920002857 polybutadiene Polymers 0.000 description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 239000011593 sulfur Substances 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 6
- 150000001993 dienes Chemical class 0.000 description 6
- 244000043261 Hevea brasiliensis Species 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 230000002902 bimodal effect Effects 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000013329 compounding Methods 0.000 description 5
- 229920003052 natural elastomer Polymers 0.000 description 5
- 229920001194 natural rubber Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004636 vulcanized rubber Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- 235000021355 Stearic acid Nutrition 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 4
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 239000008117 stearic acid Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 2
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 230000003712 anti-aging effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- QNRMTGGDHLBXQZ-UHFFFAOYSA-N buta-1,2-diene Chemical compound CC=C=C QNRMTGGDHLBXQZ-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920001083 polybutene Polymers 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VOLGAXAGEUPBDM-UHFFFAOYSA-N $l^{1}-oxidanylethane Chemical compound CC[O] VOLGAXAGEUPBDM-UHFFFAOYSA-N 0.000 description 1
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 description 1
- WTARULDDTDQWMU-IUCAKERBSA-N (-)-Nopinene Natural products C1[C@@H]2C(C)(C)[C@H]1CCC2=C WTARULDDTDQWMU-IUCAKERBSA-N 0.000 description 1
- DLNKOYKMWOXYQA-CBAPKCEASA-N (-)-norephedrine Chemical compound C[C@H](N)[C@H](O)C1=CC=CC=C1 DLNKOYKMWOXYQA-CBAPKCEASA-N 0.000 description 1
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 241001441571 Hiodontidae Species 0.000 description 1
- 239000013032 Hydrocarbon resin Substances 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- WTARULDDTDQWMU-UHFFFAOYSA-N Pseudopinene Natural products C1C2C(C)(C)C1CCC2=C WTARULDDTDQWMU-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 125000003302 alkenyloxy group Chemical group 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000010692 aromatic oil Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229930006722 beta-pinene Natural products 0.000 description 1
- VLLYOYVKQDKAHN-UHFFFAOYSA-N buta-1,3-diene;2-methylbuta-1,3-diene Chemical compound C=CC=C.CC(=C)C=C VLLYOYVKQDKAHN-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- LCWMKIHBLJLORW-UHFFFAOYSA-N gamma-carene Natural products C1CC(=C)CC2C(C)(C)C21 LCWMKIHBLJLORW-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229920006270 hydrocarbon resin Polymers 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- ZBKFYXZXZJPWNQ-UHFFFAOYSA-N isothiocyanate group Chemical group [N-]=C=S ZBKFYXZXZJPWNQ-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 239000010721 machine oil Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- MSRJTTSHWYDFIU-UHFFFAOYSA-N octyltriethoxysilane Chemical compound CCCCCCCC[Si](OCC)(OCC)OCC MSRJTTSHWYDFIU-UHFFFAOYSA-N 0.000 description 1
- 229960003493 octyltriethoxysilane Drugs 0.000 description 1
- 239000010690 paraffinic oil Substances 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- GRWFGVWFFZKLTI-UHFFFAOYSA-N rac-alpha-Pinene Natural products CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000001757 thermogravimetry curve Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/22—Incorporating nitrogen atoms into the molecule
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/25—Incorporating silicon atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/30—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
- C08C19/42—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
- C08C19/44—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
- C08K5/5419—Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/548—Silicon-containing compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L57/00—Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L93/00—Compositions of natural resins; Compositions of derivatives thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Definitions
- the present invention relates to a rubber composition for tires that achieves both wet performance and wear resistance.
- Summer tires are required to have excellent wet performance as well as good wear resistance.
- high-performance tires for motor sports may have dust and oil stains floating on the road surface when it starts to rain, and when the amount of water decreases, oil film derived from exhaust gas and automobile machine oil floats on the road surface.
- a large amount of silica is added to a rubber composition for tires in order to improve wet performance. Performance may not be obtained.
- Patent Document 1 describes a rubber composition for tires containing a special modified styrene-butadiene rubber and silica.
- silica if a large amount of silica is added to the modified styrene-butadiene rubber, the rubber hardness tends to increase and road noise such as acceleration passing noise tends to increase.
- road noise such as acceleration passing noise tends to increase.
- the glass transition temperature of the rubber composition is increased in order to improve wet performance without deteriorating road noise, there is a problem that wear resistance deteriorates.
- a rubber composition for tires that achieves both wet performance and wear resistance in a well-balanced manner has not yet been developed.
- An object of the present invention is to provide a rubber composition for tires that achieves both wet performance and wear resistance.
- the rubber composition for tires according to the present invention for achieving the above object is a tire rubber obtained by blending 30 parts by mass or more of silica with 100 parts by mass of a diene rubber containing 30 to 90% by mass of a modified styrene-butadiene rubber having an alkoxysilyl group.
- the tire rubber composition, wherein the modified styrene-butadiene rubber has a unimodal molecular weight distribution curve and a molecular weight distribution (PDI) of less than 1.7 when measured by gel permeation chromatography.
- the glass transition temperature of the composition is higher than -50°C.
- the modified styrene having an alkoxysilyl group having a unimodal molecular weight distribution curve and a molecular weight distribution (PDI) of less than 1.7 when measured by gel permeation chromatography Since it contains a diene rubber containing butadiene rubber and silica, and has a glass transition temperature higher than -50°C, it is possible to achieve both wet performance and wear resistance at high levels.
- the rubber composition for tires of the present invention can be suitably used for summer tires.
- this rubber composition for tires it is preferable to blend 30 to 180 parts by mass of silica with the diene rubber.
- the rubber hardness at 20° C. is 55 or more.
- the rubber composition for tires preferably contains a silane coupling agent in an amount of 2 to 20% by mass based on the amount of silica, and the silane coupling agent is represented by the following average compositional formula (1) or general formula (2). good.
- A a (B) b (C) c (D) d (R1) e SiO (4-2a-bcde)/2
- A is a divalent organic group containing a sulfide group
- B is a monovalent hydrocarbon group having 5 to 10 carbon atoms
- C is a hydrolyzable group
- D is an organic group containing a mercapto group.
- R1 represents a monovalent hydrocarbon group having 1 to 4 carbon atoms, and a to e are 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, 0 ⁇ d ⁇ 1, It satisfies the relational expressions of 0 ⁇ e ⁇ 2 and 0 ⁇ 2a+b+c+d+e ⁇ 4.)
- C p H 2p+1 t (C p H 2p+1 O) 3-t -Si-C q H 2q -SC(O)-C r H 2r+1 (2)
- p is an integer of 1 to 3
- q is an integer of 1 to 3
- r is an integer of 1 to 15
- t is an integer of 0 to 2.
- the rubber composition for tires of the present invention can be suitably used for high performance tires or racing tires.
- the rubber composition for tires preferably contains 100 parts by mass of the diene rubber containing 30 to 65% by mass of the modified styrene-butadiene rubber and 150 parts by mass or more of silica.
- the CTAB adsorption specific surface area of the silica is preferably 150 to 250 m 2 /g.
- at least one plasticizer selected from oils, liquid polymers and thermoplastic resins may be blended in a total amount of 40 to 150 parts by mass with respect to 100 parts by mass of the diene rubber. At this time, 15 parts by mass or more of the aromatic modified terpene resin should be blended with 100 parts by mass of the diene rubber.
- the tire rubber composition described above can suitably constitute the tread portion of a tire.
- a tire having a tread portion made of the rubber composition for a tire of the present invention can achieve both wet performance and wear resistance.
- a rubber composition for tires contains a modified styrene-butadiene rubber having an alkoxysilyl group in a diene rubber.
- This modified styrene-butadiene rubber has an alkoxysilyl group, has a unimodal molecular weight distribution curve when measured by gel permeation chromatography, and has a molecular weight distribution (PDI) of less than 1.7. Characterized by By containing such a modified styrene-butadiene rubber, it is possible to improve the dispersibility of silica and achieve both wet performance and abrasion resistance at high levels.
- alkoxysilyl groups possessed by the modified styrene-butadiene rubber include alkoxysilyl groups containing alkoxy having 1 to 10 carbon atoms. It may have two or three alkoxy groups having different numbers of carbon atoms, or may have one or two alkyl groups.
- alkoxysilyl groups include methoxysilyl, ethoxysilyl, propoxysilyl, isopropoxysilyl, and butoxysilyl groups. Since the modified styrene-butadiene rubber has an alkoxysilyl group, the affinity with silica can be increased and the dispersibility thereof can be improved.
- the modified styrene-butadiene rubber has a unimodal molecular weight distribution curve when measured by gel permeation chromatography, and its molecular weight distribution (PDI) is less than 1.7.
- PDI molecular weight distribution
- the molecular weight distribution curve of the modified styrene-butadiene rubber is unimodal, the homogeneity of the molecules is high, and the rubber is homogeneously distributed and dispersed in the diene-based rubber, thereby enhancing the affinity with silica.
- the molecular weight distribution (PDI) is the ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography, and the molecular weight distribution (PDI) is less than 1.7. If there is, the homogeneity of the molecules is increased, as is the case with the unimodal molecular weight distribution curve, and they are uniformly distributed and dispersed in the diene-based rubber, and the affinity with silica can be increased.
- the molecular weight distribution (PDI) is more preferably 1.0 or more and less than 1.7, more preferably 1.1 to 1.6.
- Such modified styrene-butadiene rubbers are preferably obtainable by continuous polymerization.
- the modified styrene-butadiene rubber having an alkoxysilyl group is contained in an amount of 30 to 90% by mass, preferably 35 to 85% by mass, more preferably 40 to 80% by mass in 100% by mass of the diene rubber.
- 30% by mass or more of the modified styrene-butadiene rubber having an alkoxysilyl group the dispersibility of silica can be improved. Further, by containing 90% by mass or less, abrasion resistance can be ensured.
- the rubber composition for tires can contain other diene rubbers in addition to the modified styrene-butadiene rubber.
- Other diene rubbers include, for example, natural rubber, isoprene rubber, butadiene rubber, unmodified styrene-butadiene rubber, modified styrene-butadiene rubber other than the above-mentioned modified styrene-butadiene rubber, styrene-isoprene rubber, isoprene-butadiene rubber, ethylene-propylene- Examples include diene copolymer rubber, chloroprene rubber, acrylonitrile butadiene rubber, and the like.
- diene-based rubbers may be modified with one or more functional groups.
- functional groups are not particularly limited, for example, epoxy group, carboxy group, amino group, hydroxy group, alkoxy group, silyl group, alkoxysilyl group, amide group, oxysilyl group, silanol group, isocyanate group, isothiocyanate group, carbonyl group, aldehyde group, and the like.
- the other diene rubber should be contained in an amount of 10 to 70% by mass, preferably 15 to 65% by mass, more preferably 20 to 60% by mass based on 100% by mass of the diene rubber.
- Suitable diene-based rubbers include natural rubber, butadiene rubber and styrene-butadiene rubber.
- Natural rubber, butadiene rubber and styrene-butadiene rubber are not particularly limited as long as they are usually used in rubber compositions for tires.
- By blending natural rubber the wear resistance of the tire can be ensured.
- the abrasion resistance of the tire can be ensured by blending the butadiene rubber.
- styrene-butadiene rubber wet grip properties of the tire can be ensured.
- the rubber composition for tires contains 100 parts by mass of diene rubber and 30 parts by mass or more of silica.
- Wet performance can be improved by blending silica.
- silica include wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, etc. These may be used alone or in combination of two or more. Alternatively, surface-treated silica obtained by treating the surface of silica with a silane coupling agent may be used.
- the rubber composition for tires preferably contains a silane coupling agent together with silica, so that the dispersibility of silica can be improved.
- a silane coupling agent a type that is usually blended with silica can be used.
- the silane coupling agent is preferably blended in an amount of 5 to 15% by mass, more preferably 8 to 12% by mass of the amount of silica.
- the rubber composition for tires may optionally contain carbon black, calcium carbonate, magnesium carbonate, talc, clay, mica, alumina, aluminum hydroxide, titanium oxide, and calcium sulfate as inorganic fillers other than silica. can. These other inorganic fillers may be used alone or in combination of two or more.
- Carbon black can be compounded in an amount of preferably 5 to 100 parts by mass, more preferably 5 to 80 parts by mass, per 100 parts by mass of the diene rubber. Tire durability can be ensured by blending 5 parts by mass or more of carbon black. In addition, rigidity can be secured and rolling resistance can be reduced. Wet performance can be ensured by setting the amount of carbon black to 100 parts by mass or less. You may use carbon black in combination of 2 or more types.
- the rubber composition for tires has a glass transition temperature higher than -50°C. By making the glass transition temperature higher than -50°C, wet performance can be ensured.
- the glass transition temperature is preferably -47°C or higher and -15°C or lower, more preferably -45°C or higher and -17°C or lower.
- the glass transition temperature of the tire rubber composition can be determined as the temperature at the midpoint of the transition region by measuring a thermogram with a differential scanning calorimeter (DSC) under the condition of a temperature increase rate of 10°C/min.
- DSC differential scanning calorimeter
- Tire rubber compositions are generally used in tire rubber compositions such as vulcanizing or cross-linking agents, vulcanization accelerators, antioxidants, plasticizers, processing aids, liquid polymers, and thermosetting resins.
- Various additives can be blended within a range that does not impair the object of the present invention.
- such additives can be kneaded by a common method to form a rubber composition for tires and used for vulcanization or crosslinking.
- the blending amount of these additives can be a conventional general blending amount as long as it does not contradict the object of the present invention.
- Rubber Composition for Summer Tires A rubber composition for tires (hereinafter sometimes referred to as "rubber composition for summer tires") suitable for solving the problems of the present invention and forming a tread portion of a summer tire is: Preferably, 30 to 180 parts by mass, more preferably 30 to 150 parts by mass, and even more preferably 40 to 140 parts by mass of silica are blended with 100 parts by mass of diene rubber containing modified styrene-butadiene rubber having an alkoxysilyl group. . Wet performance can be ensured by blending 30 parts by mass or more of silica. Further, by blending 180 parts by mass or less, deterioration of wear resistance can be suppressed.
- the rubber composition for summer tires preferably contains 0.1 to 20 parts by mass of alkyltriethoxysilane having an alkyl group of 7 to 20 carbon atoms with respect to the amount of silica. Addition of alkyltriethoxysilane can improve the dispersibility of silica.
- Alkyltriethoxysilane is preferably blended in an amount of 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass, based on the amount of silica. By blending 0.1 parts by mass or more of alkyltriethoxysilane, the dispersibility of silica can be improved. Moreover, by making it 20 mass parts or less, abrasion resistance becomes more favorable, and it is preferable.
- alkyl groups having 7 to 20 carbon atoms include heptyl group, octyl group, nonyl group, decyl group, undecyl group and dodecyl group. Of these, alkyl groups having 8 to 10 carbon atoms are more preferred, and octyl and nonyl groups are more preferred, from the viewpoint of compatibility with diene rubbers.
- the rubber composition for summer tires preferably contains a silane coupling agent represented by the following average composition formula (1) or general formula (2) below in an amount of preferably 2 to 20% by mass based on the amount of silica.
- a silane coupling agent represented by the following average composition formula (1) or general formula (2) below in an amount of preferably 2 to 20% by mass based on the amount of silica.
- A a divalent organic group containing a sulfide group
- B is a monovalent hydrocarbon group having 5 to 10 carbon atoms
- C is a hydrolyzable group
- D is an organic group containing a mercapto group.
- R1 represents a monovalent hydrocarbon group having 1 to 4 carbon atoms, and a to e are 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, 0 ⁇ d ⁇ 1, It satisfies the relational expressions of 0 ⁇ e ⁇ 2 and 0 ⁇ 2a+b+c+d+e ⁇ 4.)
- C p H 2p+1 t (C p H 2p+1 O) 3-t -Si-C q H 2q -SC(O)-C r H 2r+1 (2)
- p is an integer of 1 to 3
- q is an integer of 1 to 3
- r is an integer of 1 to 15
- t is an integer of 0 to 2.
- the dispersibility of silica can be improved.
- the silane coupling agent represented by the average compositional formula (1) or general formula (2) is preferably blended in an amount of 2 to 20% by mass, more preferably 3 to 17% by mass, based on the amount of silica.
- the dispersibility of silica can be further improved.
- the wear resistance becomes better, which is preferable.
- A represents a divalent organic group containing a sulfide group.
- a group represented by the following formula (3) is preferable.
- n represents an integer of 1-10, preferably an integer of 2-4.
- x represents an integer of 1-6, preferably an integer of 2-4.
- * indicates a binding position.
- Specific examples of the group represented by the above formula (3) include *-CH 2 -S 2 -CH 2 -*, *-C 2 H 4 -S 2 -C 2 H 4 -*, *- C3H6 - S2 - C3H6- *, * -C4H8 - S2 - C4H8- * , * -CH2 - S4 - CH2- * , * -C2H 4 -S 4 -C 2 H 4 -*, *-C 3 H 6 -S 4 -C 3 H 6 -*, *-C 4 H 8 -S 4 -C 4 H 8 -* and the like.
- B represents a monovalent hydrocarbon group having 5 to 10 carbon atoms, and specific examples thereof include alkyl groups such as hexyl group, octyl group, and decyl group.
- C represents a hydrolyzable group, and specific examples thereof include an alkoxy group, a phenoxy group, a carboxyl group, an alkenyloxy group, and the like. Among them, a group represented by the following formula (4) is preferable.
- *-OR 2 (4) In the above formula (4), R 2 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aralkyl group (arylalkyl group) having 6 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms. Among them, an alkyl group having 1 to 5 carbon atoms is preferable.
- alkyl groups having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, butyl group, hexyl group, octyl group, decyl group and octadecyl group.
- aryl group having 6 to 10 carbon atoms include a phenyl group and a tolyl group.
- aralkyl group having 6 to 10 carbon atoms include benzyl group and phenylethyl group.
- alkenyl group having 2 to 10 carbon atoms include vinyl group, propenyl group and pentenyl group. In the above formula (4), * indicates a bonding position.
- D represents an organic group containing a mercapto group.
- a group represented by the following formula (5) is preferable.
- *-( CH2 ) m -SH (5) In the above formula (5), m represents an integer of 1-10, preferably an integer of 1-5. In the above formula (5), * indicates a bonding position.
- Specific examples of the group represented by the formula (5) include *--CH 2 SH, *--C 2 H 4 SH, *--C 3 H 6 SH, *--C 4 H 8 SH and *--C. 5 H 10 SH, *--C 6 H 12 SH, *--C 7 H 14 SH, *--C 8 H 16 SH, *--C 9 H 18 SH and *--C 10 H 20 SH.
- R1 represents a monovalent hydrocarbon group having 1 to 4 carbon atoms.
- monovalent hydrocarbon groups having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and tert-butyl group.
- a to e are 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 3, 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 2, and 0 ⁇ 2a+b+c+d+e ⁇ 4 satisfy the relationship
- a is preferably 0 ⁇ a ⁇ 0.50 for the reason that the effects of the present invention are improved.
- b preferably satisfies 0 ⁇ b, more preferably 0.10 ⁇ b ⁇ 0.89.
- c is preferably 1.2 ⁇ c ⁇ 2.0 for the reason that the effects of the present invention are improved.
- d preferably satisfies 0.1 ⁇ d ⁇ 0.8 for the reason that the effect of the present invention is improved.
- a sulfur-containing silane coupling agent represented by the average composition formula (1) and a method for producing the same are disclosed, for example, in International Publication WO2014/002750 and are publicly known.
- p is preferably 2 to 3, more preferably 2, in terms of high affinity with silica and good dispersibility of silica in the rubber composition for tires. preferable.
- q is preferably 2 to 3, more preferably 3.
- r is preferably from 5 to 10, more preferably from 6 to 9, and even more preferably 7, from the viewpoint of improving the scorch time during kneading of the tire rubber composition.
- t represents an integer of 0 to 2, preferably 0 or 1, more preferably 0.
- Such a silane coupling agent can be produced by a known method, such as the method described in International Publication WO99/09036. Examples of commercially available products include NXT silane from Momentive Performance Material.
- the rubber composition for summer tires preferably has a rubber hardness of 55 or more, more preferably 57 to 80 at 20°C.
- the rubber hardness of a rubber composition refers to the hardness of rubber measured at a temperature of 20°C with a durometer type A according to JIS K6253.
- Rubber composition for high-performance tire or race tire A rubber composition for a tire suitable for solving the problems of the present invention and constituting the tread portion of a high-performance tire and a race tire (hereinafter referred to as "high-performance tire or race tire 100 parts by mass of the diene rubber containing 30 to 65% by mass of the modified styrene-butadiene rubber described above and 150 parts by mass or more of silica.
- the modified styrene-butadiene rubber should preferably be contained in 30 to 65% by mass, more preferably 40 to 55% by mass, based on 100% by mass of the diene rubber. Abrasion resistance can be improved when the modified styrene-butadiene rubber is 30% by mass or more. Further, when the modified styrene-butadiene rubber is 65% by mass or less, the wet performance can be maintained and improved.
- the amount of silica in the rubber composition for high-performance tires or racing tires is preferably 150 parts by mass or more, more preferably 160 to 180 parts by mass, per 100 parts by mass of the diene rubber. It is preferable to use silica in an amount of 150 parts by mass or more in order to improve wet performance. When a large amount of silica is blended, the viscosity of the rubber composition increases and the processability decreases. can be
- the CTAB adsorption specific surface area of silica is preferably 150 to 250 m 2 /g, more preferably 160 to 200 m 2 /g. Wet performance can be improved by setting the CTAB adsorption specific surface area to 150 m 2 /g or more. Moreover, by making it 250 m ⁇ 2> /g or less, while maintaining the favorable dispersibility of a silica, the increase in the viscosity of a rubber composition can be suppressed.
- the CTAB adsorption specific surface area of silica shall be measured according to JIS K6217-3.
- the rubber composition for high-performance tires or race tires should be blended with at least one plasticizer selected from oils, liquid polymers and thermoplastic resins to improve wet performance and processability.
- the total amount of these plasticizers is preferably 40 to 150 parts by mass, more preferably 50 to 120 parts by mass, per 100 parts by mass of the diene rubber.
- the total amount of plasticizers is 40 parts by mass or more, wet performance and workability can be improved.
- the total amount of the plasticizer to 150 parts by mass or less, abrasion resistance can be ensured.
- Oils include, for example, vegetable oils such as coconut oil; mineral oil-based hydrocarbons such as paraffinic oils, naphthenic oils, and aromatic oils; and hydrogenated products thereof. More specific examples include paraffin oil, polybutene oil, polyisoprene oil, polybutadiene oil, aroma oil, and the like.
- liquid polymers examples include liquid diene rubbers such as liquid polybutene, liquid polyisobutene, liquid polyisoprene, and liquid polybutadiene, liquid poly- ⁇ -olefins, and liquid ethylene- ⁇ - olefin copolymers.
- the thermoplastic resin may be one that is usually blended in a rubber composition for tires, for example, terpene phenol resin, terpene resin, aromatic modified terpene resin, hydrogenated petroleum resin with hydroxyl group bonded, rosin resin, rosin Ester-based resins and alkyl-modified products thereof, polyol-modified or alkylphenol-modified xylene resins, novolac-type phenol resins, coumarone resins, styrene resins, and the like can be mentioned.
- the thermoplastic resin hydrocarbon resins having a softening point of 120° C. or higher are preferably used, and aromatic modified terpene resins are particularly preferable.
- Aromatic modified terpene resin is obtained by polymerizing terpene and an aromatic compound.
- terpenes include ⁇ -pinene, ⁇ -pinene, dipentene, and limonene.
- aromatic compounds include styrene, ⁇ -methylstyrene, vinyltoluene, and indene.
- a styrene-modified terpene resin is preferable as the aromatic modified terpene resin.
- Such aromatic modified terpene resins have good compatibility with diene rubbers, so they can modify the dynamic viscoelasticity of the rubber composition and improve wet grip performance and heat build-up.
- the aromatic modified terpene resin is preferably blended in an amount of 15 parts by mass or more, more preferably 20 to 30 parts by mass, per 100 parts by mass of the diene rubber. By blending 15 parts by mass or more of the aromatic modified terpene resin, the wet performance can be further improved.
- the softening point of the aromatic modified terpene resin is preferably 60°C to 150°C, more preferably 80°C to 130°C.
- the softening point of the aromatic modified terpene resin is 60°C or higher, the wet performance is further improved.
- the softening point of the aromatic modified terpene resin is set to 150° C. or lower, the increase in rolling resistance is suppressed.
- the rubber composition for tires described above is preferably a rubber composition for tire treads, and can suitably constitute the tread portion of a tire.
- a tire having a tread portion made of the rubber composition for a tire of the present invention can achieve both wet performance and wear resistance.
- the tire may be either a pneumatic tire or a non-pneumatic tire.
- Rubber Compositions for Summer Tires Rubber compositions for tires (Examples 1 to 10, Standard Example 1, Comparative Examples 1 to 4) having the formulations shown in Tables 1 and 2, with the compounding agents shown in Table 3 as a common formulation,
- the ingredients, except sulfur and vulcanization accelerator, were kneaded in a 1.7 L internal Banbury mixer for 5 minutes, then discharged from the mixer and allowed to cool to room temperature.
- a rubber composition for tires was prepared by putting this into the above-mentioned 1.7 L internal Banbury mixer, adding sulfur and a vulcanization accelerator, and mixing.
- the compounding amounts of the compounding agents shown in Table 3 are shown in parts by mass with respect to 100 parts by mass of the diene rubber shown in Tables 1 and 2.
- Rubber hardness Using the obtained rubber composition for tires, vulcanization is performed in a mold of a predetermined shape at 160°C for 20 minutes to prepare a vulcanized rubber sheet, which is measured by a durometer type A according to JIS K6253. Measured at a temperature of 20°C.
- the obtained results are shown in the "Abrasion Resistance" column of Tables 1 and 2, indexed to the value of Standard Example 1 as 100. The larger the index, the better the wear resistance, and 96 or more is considered to be at the conventional level.
- Acceleration Passing Sound A pneumatic tire using the obtained rubber composition for tires in the tread was vulcanized and molded. Acceleration passing sound of tires was determined by measurement on an actual vehicle according to the acceleration noise measurement method stipulated in the safety standards. The obtained results are indexed with the value of Standard Example 1 as 100, and are shown in the column of "acceleration passing noise" in Tables 1 and 2. It means that the smaller the index, the better the acceleration sound.
- Modified SBR-1 Styrene-butadiene rubber having an alkoxysilyl group, NS560 manufactured by Nippon Zeon Co., Ltd., glass transition temperature of -32 ° C., molecular weight distribution curve when measured by GPC is bimodal, molecular weight distribution (PDI) is 1.5.
- Modified SBR-2 Styrene-butadiene rubber having an alkoxysilyl group, the rubber produced in Polymerization Example 1, the glass transition temperature of -31 ° C., the molecular weight distribution curve when measured by GPC is unimodal, and the molecular weight distribution ( PDI) is 1.3.
- Modified SBR-3 Styrene-butadiene rubber having an alkoxysilyl group, NS540 manufactured by Nippon Zeon Co., Ltd., glass transition temperature of -29 ° C., molecular weight distribution curve when measured by GPC is bimodal, molecular weight distribution (PDI) is 1.9.
- ⁇ NR natural rubber, TSR20, glass transition temperature of -65°C
- BR Butadiene rubber, Nipol BR1220 manufactured by Nippon Zeon Co., Ltd., glass transition temperature of -105 ° C.
- Silica-1 ZEOSIL 1165MP manufactured by Solvay ⁇ Carbon black-1: SEAST 7HM N234 manufactured by Tokai Carbon Co., Ltd.
- Coupling agent-1 Evonik Degussa Si69, bis (triethoxysilylpropyl) tetrasulfide
- Coupling agent-2 Silane coupling agent containing polysiloxane represented by the average composition formula of general formula (1) , manufactured by Shin-Etsu Chemical Co., Ltd. Average composition formula (-C 3 H 6 -S 4 -C 3 H 6 -) 0.071 (-C 8 H 17 ) 0.571 (-OC 2 H 5 ) 1.50 (-C 3 H 6 SH ) 0.286 SiO 0.75
- Polysiloxane coupling agent-3 Silane coupling agent represented by general formula (2), NXT silane manufactured by Momentive, represented by the following formula.
- ⁇ Antiaging agent 6PPD manufactured by Korea Kumho Petrochemical
- Sulfur Fine powdered sulfur with Kinkain oil manufactured by Tsurumi Chemical Industry Co., Ltd.
- Vulcanization accelerator-1 Noccellar CZ-G manufactured by Ouchi Shinko Kagaku Co., Ltd.
- Vulcanization accelerator-2 Soxinol DG manufactured by Sumitomo Chemical Co., Ltd.
- the first reaction solution was injected into the continuous reactor through the first continuous channel at an injection rate of 1.0 g/min using a mass flow meter.
- the second reaction solution was injected through the second continuous channel at an injection rate of 1.0 g/min.
- the temperature of the continuous reactor was maintained at ⁇ 10° C.
- the internal pressure was maintained at 3 bar using a back pressure regulator, and the residence time in the reactor was within 10 minutes. adjusted.
- the reaction was terminated to obtain a modified initiator.
- the polymer is transferred from the second reactor to the third reactor, and N-(3-(1H-1,2,4-triazol-1-yl)propyl)-3-(trimethoxysilyl) is used as a modifier.
- N-(3-(1H-1,2,4-triazol-1-yl)propyl)-3-(trimethoxysilyl) is used as a modifier.
- )-N-(3-(trimethoxysilyl)propyl)propan-1-amine solution solvent: n-hexane
- Li polymerization initiator
- IR1520 manufactured by BASF
- IR1520 manufactured by BASF
- IR1520 manufactured by BASF
- IR1520 dissolved at 30% by mass was injected as an antioxidant into the polymerization solution discharged from the third reactor at a rate of 170 g/h and stirred.
- the resulting polymer was put into steam-heated warm water and stirred to remove the solvent to produce a modified conjugated diene polymer [modified SBR-2].
- the tire rubber compositions of Examples 1 to 10 which are suitable for summer tires, are excellent in wear resistance and wet performance. It also excels in the acceleration passing sound required for summer tires.
- the modified styrene-butadiene rubber (modified SBR-3) has a bimodal molecular weight distribution curve and a molecular weight distribution (PDI) of greater than 1.7, and is inferior in wet performance. Also, the acceleration passage noise is loud.
- the tire rubber composition of Comparative Example 2 contains more than 90% by mass of the modified styrene-butadiene rubber (modified SBR-2), and is inferior in abrasion resistance.
- the tire rubber composition of Comparative Example 3 contains less than 30% by mass of the modified styrene-butadiene rubber (modified SBR-2), the acceleration passage noise is large.
- the tire rubber composition of Comparative Example 4 contains less than 30 parts by mass of silica, and therefore has poor wet performance.
- Rubber composition for high-performance tires or racing tires Rubber compositions for tires (Examples 11 to 20, standard example 2, comparative examples 5 to 8) was kneaded with a 1.7 L internal Banbury mixer for 5 minutes, after which the ingredients except sulfur and vulcanization accelerator were discharged from the mixer and cooled to room temperature.
- a rubber composition for tires was prepared by putting this into the above-mentioned 1.7 L internal Banbury mixer, adding sulfur and a vulcanization accelerator, and mixing.
- the compounding amounts of the compounding agents shown in Table 6 are shown in parts by mass with respect to 100 parts by mass of the diene rubber shown in Tables 4 and 5.
- a vulcanized rubber sheet was prepared by vulcanizing at 160 ° C. for 20 minutes in a mold of a predetermined shape, and viscoelastic spectroscopy was performed in accordance with JIS K6394: 2007.
- tan ⁇ (0°C) was measured under the conditions of an extension deformation strain rate of 10% ⁇ 2%, a frequency of 20 Hz, and a temperature of 0°C.
- the obtained results are indexed with the value of Standard Example 2 as 100, and are shown in the "Wet Performance" column of Tables 4 and 5. A larger index means better wet performance.
- Mooney viscosity The Mooney viscosity of the resulting rubber composition was measured in accordance with JIS K6300-1 using a Mooney viscometer using an L-type rotor (38.1 mm diameter, 5.5 mm thickness), preheating for 1 minute, and rotating the rotor. Measurement was performed under the conditions of 4 minutes, 100° C., and 2 rpm. The reciprocals of the obtained results were calculated and indexed with the value of Standard Example 1 as 100, which are shown in the column of "Workability" in Tables 4 and 5. A larger index means better workability.
- the types of raw materials used are as follows.
- - Modified SBR-2 styrene-butadiene rubber having an alkoxysilyl group, the same as modified SBR-2, the glass transition temperature is -31 ° C., the molecular weight distribution curve when measured by GPC is unimodal, and the molecular weight distribution ( PDI) is 1.3.
- Modified SBR-3 Styrene-butadiene rubber having an alkoxysilyl group, NS540 manufactured by Nippon Zeon Co., Ltd., glass transition temperature of -29 ° C., molecular weight distribution curve when measured by GPC is bimodal, molecular weight distribution (PDI) is 1.9.
- Modified SBR-4 Styrene-butadiene rubber having a hydroxy group, Tuffdene E581 manufactured by Asahi Kasei Corporation, a glass transition temperature of -31 ° C., a unimodal molecular weight distribution curve when measured by gel permeation chromatography (GPC), Its molecular weight distribution (PDI) is 2.3.
- - Modified SBR-5 A styrene-butadiene rubber having an alkoxysilyl group, a rubber produced in Polymerization Example 2 below, having a glass transition temperature of -53°C and a unimodal molecular weight distribution curve when measured by GPC. (PDI) is 1.5.
- ⁇ Silica-1 Solvay ZEOSIL 1165MP, CTAB adsorption specific surface area of 160 m 2 /g ⁇ Silica-2: Premium 200MP manufactured by Solvay, CTAB adsorption specific surface area of 200 m 2 /g ⁇ Silica-3: ZEOSIL 1085MP manufactured by Solvay, CTAB adsorption specific surface area is 80 m 2 /g ⁇ Carbon black-2: SEAST 9M N 2 SA manufactured by Tokai Carbon Co., Ltd.
- Coupling agent-1 Si69 manufactured by Evonik Degussa, bis (triethoxysilylpropyl) tetrasulfide Aromatic modified terpene resin: TO-85 manufactured by Yasuhara Chemical Co., Ltd.
- ⁇ Aroma oil Extract No. 4 S manufactured by Showa Shell Sekiyu K.K.
- ⁇ Stearic acid Bead stearic acid manufactured by NOF Corporation
- ⁇ Zinc oxide 3 types of zinc oxide manufactured by Seido Chemical Industry Co., Ltd.
- Antiaging agent Santoflex 6PPD manufactured by Flexis
- Sulfur Mucron OT-20 manufactured by Shikoku Kasei Co., Ltd.
- Vulcanization accelerator -1 Noxeler CZ-G manufactured by Ouchi Shinko Kagaku Co., Ltd.
- ⁇ Vulcanization accelerator-2 Perkacit DPG manufactured by Flexis
- the tire rubber compositions of Examples 11 to 20, which are suitable for high-performance tires or racing tires are excellent in wet performance and wear resistance.
- the processability required for high-performance tires and racing tires is also good.
- the tire rubber composition of Comparative Example 5 contained less than 30% by mass of the modified styrene-butadiene rubber (modified SBR-2), so the abrasion resistance could not be improved.
- the tire rubber composition of Comparative Example 6 contains more than 90% by mass of the modified styrene-butadiene rubber (modified SBR-2), and therefore has poor wet performance. Moreover, workability also deteriorates.
- the tire rubber composition of Comparative Example 7 is inferior in wet performance because the molecular weight distribution (PDI) of the modified styrene-butadiene rubber (modified SBR-5) is greater than 1.7.
- the modified styrene-butadiene rubber (modified SBR-3) has a bimodal molecular weight distribution curve and a molecular weight distribution (PDI) of greater than 1.7, and is inferior in abrasion resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Abstract
Description
(A)a(B)b(C)c(D)d(R1)eSiO(4-2a-b-c-d-e)/2 (1)
(式(1)中、Aはスルフィド基を含有する2価の有機基、Bは炭素数5~10の1価の炭化水素基、Cは加水分解性基、Dはメルカプト基を含有する有機基を表し、R1は炭素数1~4の1価の炭化水素基を表し、a~eは、0≦a<1、0<b<1、0<c<3、0<d<1、0≦e<2、0<2a+b+c+d+e<4の関係式を満たす。)
(CpH2p+1)t(CpH2p+1O)3-t-Si-CqH2q-S-C(O)-CrH2r+1 (2)
(式(2)中、pは1~3の整数、qは1~3の整数、rは1~15の整数、tは0~2の整数を表す。)
装置:ゲルパーミエーションクロマトグラフィー[GPC:東ソー社製HLC-8020]
カラム:東ソー社製GMH-HR-H(2本直列接続)
測定温度:40℃
キャリアガス:ヘリウム
流量:5mmol/L
試料:10mgを10mLのTHFに溶解
注入量:10μL
検出器:検出器:示差屈折率計(RI-8020)
本発明の課題を解決し、かつサマータイヤのトレッド部を構成するのに好適なタイヤ用ゴム組成物(以下、「サマータイヤ用ゴム組成物」ということがある。)は、アルコキシシリル基を有する変性スチレンブタジエンゴムを含むジエン系ゴム100質量部に、シリカを好ましくは30~180質量部、より好ましくは30~150質量部、さらに好ましくは40~140質量部配合するとよい。シリカを30質量部以上配合することにより、ウェット性能を確保することができる。また、180質量部以下配合することにより、耐摩耗性の低下を抑制することができる。
(A)a(B)b(C)c(D)d(R1)eSiO(4-2a-b-c-d-e)/2 (1)
(式(1)中、Aはスルフィド基を含有する2価の有機基、Bは炭素数5~10の1価の炭化水素基、Cは加水分解性基、Dはメルカプト基を含有する有機基を表し、R1は炭素数1~4の1価の炭化水素基を表し、a~eは、0≦a<1、0<b<1、0<c<3、0<d<1、0≦e<2、0<2a+b+c+d+e<4の関係式を満たす。)
(CpH2p+1)t(CpH2p+1O)3-t-Si-CqH2q-S-C(O)-CrH2r+1 (2)
(式(2)中、pは1~3の整数、qは1~3の整数、rは1~15の整数、tは0~2の整数を表す。)
*-(CH2)n-Sx-(CH2)n-* (3)
上記式(3)中、nは1~10の整数を表し、なかでも、2~4の整数であることが好ましい。xは1~6の整数を表し、なかでも、2~4の整数であることが好ましい。また、*は、結合位置を示す。
*-OR2 (4)
上記式(4)中、R2は炭素数1~20のアルキル基、炭素数6~10のアリール基、炭素数6~10のアラルキル基(アリールアルキル基)または炭素数2~10のアルケニル基を表し、なかでも、炭素数1~5のアルキル基であることが好ましい。炭素数1~20のアルキル基の具体例としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、オクタデシル基などが挙げられる。上記炭素数6~10のアリール基の具体例としては、例えば、フェニル基、トリル基などが挙げられる。上記炭素数6~10のアラルキル基の具体例としては、例えば、ベンジル基、フェニルエチル基などが挙げられる。上記炭素数2~10のアルケニル基の具体例としては、例えば、ビニル基、プロペニル基、ペンテニル基などが挙げられる。
上記式(4)中、*は、結合位置を示す。
*-(CH2)m-SH (5)
上記式(5)中、mは1~10の整数を表し、なかでも、1~5の整数であることが好ましい。上記式(5)中、*は、結合位置を示す。
上記平均組成式(1)中、aは、本発明の効果が向上するという理由から、0<a≦0.50であることが好ましい。bは、本発明の効果が向上するという理由から、0<bであることが好ましく、0.10≦b≦0.89であることがより好ましい。また、cは、本発明の効果が向上するという理由から、1.2≦c≦2.0であることが好ましい。さらに、dは、本発明の効果が向上するという理由から、0.1≦d≦0.8であることが好ましい。
本発明の課題を解決し、かつ高性能タイヤおよびレースタイヤのトレッド部を構成するのに好適なタイヤ用ゴム組成物(以下、「高性能タイヤまたはレースタイヤ用ゴム組成物」ということがある。)は、上述した変性スチレンブタジエンゴムを30~65質量%含むジエン系ゴム100質量部に、シリカを150質量部以上配合するとよい。
表3に示す配合剤を共通配合とし、表1,2に示す配合からなるタイヤ用ゴム組成物(実施例1~10、標準例1、比較例1~4)を、硫黄および加硫促進剤を除く成分を、1.7Lの密閉式バンバリーミキサーで5分間混練りした後、ミキサーから放出して室温冷却した。これを上述した1.7Lの密閉式バンバリーミキサーに投入し、硫黄および加硫促進剤を加えて混合することにより、タイヤ用ゴム組成物を調製した。また表3に記載した配合剤の配合量は、表1,2に記載したジエン系ゴム100質量部に対する質量部で示した。
得られたタイヤ用ゴム組成物を使用して、所定形状の金型中で、160℃、20分間加硫して加硫ゴムシートを作製し、JIS K6253に準拠しデュロメータのタイプAにより温度20℃で測定した。
上記で得られた加硫ゴムシートについて、ランボーン摩耗試験機(岩本製作所社製)を用いて、JIS K6264-2:2005に準拠し、付加力4.0kg/cm3(=39N)、スリップ率30%、摩耗試験時間4分、試験温度を室温の条件で摩耗試験を行い、摩耗質量を測定した。得られた結果は、標準例1の値を100とする指数とし、表1~2の「耐摩耗性」の欄に示した。この指数が大きいほど、耐摩耗性が優れることを意味し、96以上であれば従来レベルであるものとする。
上記で得られた加硫ゴムシートについて、JIS K6394に準拠し、粘弾性スペクトロメーター(東洋精機製作所製)を使用して、0℃における損失正接tanδ(tanδ(0℃))を求めた。得られた結果は、標準例1の値を100とする指数とし、表1~2の「ウェット性能」の欄に示した。この指数が大きいほど、ウェット性能が優れることを意味する。
得られたタイヤ用ゴム組成物をトレッドに使用した空気入りタイヤを加硫成形した。タイヤの加速通過音は、保安基準に定められる加速騒音測定法による実車での計測により判定した。得られた結果は、標準例1の値を100とする指数とし、表1~2の「加速通過音」の欄に示した。この指数が小さいほど、加速通過音が優れることを意味する。
・変性SBR-1:アルコキシシリル基を有するスチレンブタジエンゴム、日本ゼオン社製NS560、ガラス転移温度が-32℃、GPCで測定したときの分子量分布曲線が二峰形で、その分子量分布(PDI)が1.5。
・変性SBR-2:アルコキシシリル基を有するスチレンブタジエンゴム、重合例1で製造したゴム、ガラス転移温度が-31℃、GPCで測定したときの分子量分布曲線が単峰形で、その分子量分布(PDI)が1.3。
・変性SBR-3:アルコキシシリル基を有するスチレンブタジエンゴム、日本ゼオン社製NS540、ガラス転移温度が-29℃、GPCで測定したときの分子量分布曲線が二峰形で、その分子量分布(PDI)が1.9。
・NR:天然ゴム、TSR20、ガラス転移温度が-65℃
・BR:ブタジエンゴム、日本ゼオン社製Nipol BR1220、ガラス転移温度が-105℃
・シリカ-1:Solvay社製ZEOSIL 1165MP
・カーボンブラック-1:東海カーボン社製シースト7HM N234
・カップリング剤-1:Evonik Degussa社製Si69、ビス(トリエトキシシリルプロピル)テトラスルフィド
・カップリング剤-2:一般式(1)の平均組成式で表されるポリシロキサンを含むシランカップリング剤、信越化学工業社製、平均組成式(-C3H6-S4-C3H6-)0.071(-C8H17)0.571(-OC2H5)1.50(-C3H6SH)0.286SiO0.75で表されるポリシロキサン
・カップリング剤-3:一般式(2)で表されるシランカップリング剤、モメンティブ社製NXTシラン、次式により表される。
(CH3CH2O)3-Si-C3H6-S-C(O)-C6H12CH3
・アルキルシラン:オクチルトリエトキシシラン、信越化学工業製KBE‐3083
・アロマオイル:昭和シェル石油社製エキストラクト4号S
・ステアリン酸:日油社製ビーズステアリン酸
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・老化防止剤:Korea Kumho Petrochemical社製6PPD
・硫黄:鶴見化学工業社製金華印油入微粉硫黄
・加硫促進剤-1:大内新興化学社製ノクセラーCZ-G
・加硫促進剤-2:住友化学社製ソクシノールD-G
真空乾燥させた、4Lのステンレス鋼製の圧力容器を2つ準備した。第1の圧力容器に、シクロヘキサン6,922g、下記化学式(i)で表される化合物85g、およびテトラメチルエチレンジアミン60gを投入し、第1反応溶液を製造した。これと同時に、第2の圧力容器に、液状の2.0Mのn-ブチルリチウム180gおよびシクロヘキサン6,926gを投入し、第2反応溶液を製造した。この際、化学式(i)で表される化合物、n-ブチルリチウム、およびテトラメチルエチレンジアミンのモル比は1:1:1であった。各圧力容器の圧力を7barに維持させた状態で、質量流量計を用いて、連続式反応器内に、第1連続式チャンネルを介して第1反応溶液を1.0g/minの注入速度で、第2連続式チャンネルを介して第2反応溶液を1.0g/minの注入速度でそれぞれ注入した。この際、連続式反応器の温度は-10℃に維持し、内部圧力は背圧レギュレータ(backpressure regulator)を用いて3barに維持し、反応器内での滞留時間は10分以内となるように調節した。反応を終了し、変性開始剤を得た。
3器の反応器が直列で連結された連続反応器のうち第1反応器に、n‐ヘキサンにスチレンが60質量%で溶解されたスチレン溶液を6.5kg/h(スチレン換算で62.4mol/h)、n‐ヘキサンに1,3‐ブタジエンが60質量%で溶解された1,3‐ブタジエン溶液を7.7kg/h(1,3‐ブタジエン換算で85.4mol/h)、n‐ヘキサンを47.0kg/h、n‐ヘキサンに1,2‐ブタジエンが2.0質量%で溶解された1,2‐ブタジエン溶液を40g/h、極性添加剤として、n‐ヘキサンにN,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)が10質量%で溶解された溶液を50.0g/h、下記製造例1で製造された変性開始剤を400.0g/hの速度で注入した。この際、第1反応器の温度は55℃になるように維持し、重合転換率が41%となった時に、移送配管を介して、第1反応器から第2反応器へ重合物を移送した。
比較例1のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-3)の分子量分布曲線が二峰形で分子量分布(PDI)が1.7より大きいので、ウェット性能が劣る。また、加速通過音も大きい。
比較例2のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-2)が90質量%を超えるので、耐摩耗性が劣る。
比較例3のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-2)が30質量%未満なので、加速通過音が大きい。
比較例4のタイヤ用ゴム組成物は、シリカが30質量部未満なので、ウェット性能が劣る。
表6に示す配合剤を共通配合とし、表4,5に示す配合からなるタイヤ用ゴム組成物(実施例11~20、標準例2、比較例5~8)を、硫黄および加硫促進剤を除く成分を、1.7Lの密閉式バンバリーミキサーで5分間混練りした後、ミキサーから放出して室温冷却した。これを上述した1.7Lの密閉式バンバリーミキサーに投入し、硫黄および加硫促進剤を加えて混合することにより、タイヤ用ゴム組成物を調製した。また表6に記載した配合剤の配合量は、表4,5に記載したジエン系ゴム100質量部に対する質量部で示した。
得られたゴム組成物を使用して、所定形状の金型中で、160℃、20分間加硫して加硫ゴムシートを作製し、ランボーン摩耗試験機(岩本製作所社製)を用いて、JIS K6264-2:2005に準拠し、付加力4.0kg/cm3(=39N)、スリップ率30%、摩耗試験時間4分、試験温度を室温の条件で摩耗試験を行い、摩耗質量を測定した。得られた結果は、標準例2の値を100とする指数とし、表4~5の「耐摩耗性」の欄に示した。この指数が大きいほど、耐摩耗性が優れることを意味し、101以上であれば従来レベルであるものとする。
得られたゴム組成物を使用して、所定形状の金型中で、160℃、20分間加硫して加硫ゴムシートを作製し、JIS K6394:2007に準拠して、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度0℃の条件で、tanδ(0℃)を測定した。得られた結果は、標準例2の値を100とする指数とし、表4~5の「ウェット性能」の欄に示した。この指数が大きいほど、ウェット性能が優れることを意味する。
得られたゴム組成物のムーニー粘度をJIS K6300-1に準拠して、ムーニー粘度計にてL型ロータ(38.1mm径、5.5mm厚)を使用し、予熱時間1分、ロータの回転時間4分、100℃、2rpmの条件で測定した。得られた結果は、それぞれの逆数を算出し、標準例1の値を100とする指数とし、表4~5の「加工性」の欄に示した。この指数が大きいほど、加工性が優れることを意味する。
・変性SBR-2:アルコキシシリル基を有するスチレンブタジエンゴム、上記変性SBR-2に同じ、ガラス転移温度が-31℃、GPCで測定したときの分子量分布曲線が単峰形で、その分子量分布(PDI)が1.3。
・変性SBR-3:アルコキシシリル基を有するスチレンブタジエンゴム、日本ゼオン社製NS540、ガラス転移温度が-29℃、GPCで測定したときの分子量分布曲線が二峰形で、その分子量分布(PDI)が1.9。
・変性SBR-4:ヒドロキシ基を有するスチレンブタジエンゴム、旭化成社製タフデンE581、ガラス転移温度が-31℃、ゲルパーミエーションクロマトグラフィー(GPC)で測定したときの分子量分布曲線が単峰形で、その分子量分布(PDI)が2.3。
・変性SBR-5:アルコキシシリル基を有するスチレンブタジエンゴム、下記重合例2で製造したゴム、ガラス転移温度が-53℃、GPCで測定したときの分子量分布曲線が単峰形で、その分子量分布(PDI)が1.5。
・シリカ-1:Solvay社製ZEOSIL 1165MP、CTAB吸着比表面積が160m2/g
・シリカ-2:Solvay社製Premium 200MP、CTAB吸着比表面積が200m2/g
・シリカ-3:Solvay社製ZEOSIL 1085MP、CTAB吸着比表面積が80m2/g
・カーボンブラック-2:東海カーボン社製シースト9M N2SA=150m2/g
・カップリング剤-1:Evonik Degussa社製Si69、ビス(トリエトキシシリルプロピル)テトラスルフィド
・芳香族変性テルペン樹脂:ヤスハラケミカル社製TO-85
・アロマオイル:昭和シェル石油社製エキストラクト4号S
・ステアリン酸:日油社製ビーズステアリン酸
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・老化防止剤:フレキシス社製サントフレックス6PPD
・硫黄:四国化成工業社製ミュークロンOT-20
・加硫促進剤-1:大内新興化学社製ノクセラーCZ-G
・加硫促進剤-2:フレキシス製Perkacit DPG
上述した重合例1において、n‐ヘキサンにスチレンが60質量%で溶解されたスチレン溶液を4.6kg/h(スチレン換算で44.2mol/h)、n‐ヘキサンに1,3‐ブタジエンが60質量%で溶解された1,3‐ブタジエン溶液を11.5kg/h(1,3‐ブタジエン換算で127.6mol/h)、極性添加剤として、n‐ヘキサンにN,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)が10質量%で溶解された溶液を40.0g/hで、第1反応器に連続的に投入したことを除き、前記重合例1と同様に行って、変性共役ジエン系重合体(変性SBR-5)を製造した[カップリング剤:act.Li(重合開始剤)=1:1mol]。
比較例5のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-2)が30質量%未満なので、耐摩耗性を改良することができない。
比較例6のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-2)が90質量%を超えるので、ウェット性能が劣る。また、加工性も悪化する。
比較例7のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-5)の分子量分布(PDI)が1.7より大きいので、ウェット性能が劣る。
比較例8のタイヤ用ゴム組成物は、変性スチレンブタジエンゴム(変性SBR-3)の分子量分布曲線が二峰形で分子量分布(PDI)が1.7より大きいので、耐摩耗性が劣る。
Claims (9)
- アルコキシシリル基を有する変性スチレンブタジエンゴムを30~90質量%含むジエン系ゴム100質量部に、シリカを30質量部以上配合したタイヤ用ゴム組成物であって、前記変性スチレンブタジエンゴムをゲルパーミエーションクロマトグラフィーで測定したときの分子量分布曲線が単峰形を有し、かつその分子量分布(PDI)が1.7未満、前記タイヤ用ゴム組成物のガラス転移温度が-50℃より高いことを特徴とするタイヤ用ゴム組成物。
- 前記ジエン系ゴム100質量部に、シリカを30~180質量部配合したことを特徴とする請求項1に記載のタイヤ用ゴム組成物。
- 20℃におけるゴム硬度が55以上であることを特徴とする請求項2に記載のタイヤ用ゴム組成物。
- 炭素数7~20のアルキル基を有するアルキルトリエトキシシランを、前記シリカ量に対し0.1~20質量部配合したことを特徴とする請求項2または3に記載のタイヤ用ゴム組成物。
- シランカップリング剤を、前記シリカ量に対し2~20質量%配合し、前記シランカップリング剤が、下記平均組成式(1)または下記一般式(2)で表されることを特徴とする請求項2~4のいずれかに記載のタイヤ用ゴム組成物。
(A)a(B)b(C)c(D)d(R1)eSiO(4-2a-b-c-d-e)/2 (1)
(式(1)中、Aはスルフィド基を含有する2価の有機基、Bは炭素数5~10の1価の炭化水素基、Cは加水分解性基、Dはメルカプト基を含有する有機基を表し、R1は炭素数1~4の1価の炭化水素基を表し、a~eは、0≦a<1、0<b<1、0<c<3、0<d<1、0≦e<2、0<2a+b+c+d+e<4の関係式を満たす。)
(CpH2p+1)t(CpH2p+1O)3-t-Si-CqH2q-S-C(O)-CrH2r+1 (2)
(式(2)中、pは1~3の整数、qは1~3の整数、rは1~15の整数、tは0~2の整数を表す。) - 前記変性スチレンブタジエンゴムを30~65質量%含むジエン系ゴム100質量部に、シリカを150質量部以上配合したことを特徴とする請求項1に記載のタイヤ用ゴム組成物。
- 前記シリカのCTAB吸着比表面積が150~250m2/gであることを特徴とする請求項6に記載のタイヤ用ゴム組成物。
- オイル、液状ポリマーおよび熱可塑性樹脂から選ばれる少なくとも1つの可塑剤を、前記ジエン系ゴム100質量部に対し、合計で40~150質量部配合したことを特徴とする請求項6または7に記載のタイヤ用ゴム組成物。
- 芳香族変性テルペン樹脂を、前記ジエン系ゴム100質量部に対し、15質量部以上配合したことを特徴とする請求項8に記載のタイヤ用ゴム組成物。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280080179.9A CN118355070A (zh) | 2021-12-08 | 2022-12-07 | 轮胎用橡胶组合物 |
EP22904256.9A EP4446379A1 (en) | 2021-12-08 | 2022-12-07 | Rubber composition for tires |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021199170 | 2021-12-08 | ||
JP2021-199170 | 2021-12-08 | ||
JP2022-165395 | 2022-10-14 | ||
JP2022165395A JP7339580B2 (ja) | 2021-12-08 | 2022-10-14 | タイヤ用ゴム組成物 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023106328A1 true WO2023106328A1 (ja) | 2023-06-15 |
Family
ID=86730530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/045074 WO2023106328A1 (ja) | 2021-12-08 | 2022-12-07 | タイヤ用ゴム組成物 |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4446379A1 (ja) |
WO (1) | WO2023106328A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999009036A1 (en) | 1997-08-21 | 1999-02-25 | Osi Specialties, Inc. | Blocked mercaptosilane coupling agents for filled rubbers |
JP2009161778A (ja) | 2009-04-24 | 2009-07-23 | Sumitomo Rubber Ind Ltd | 変性ブタジエンゴム組成物 |
WO2014002750A1 (ja) | 2012-06-27 | 2014-01-03 | 横浜ゴム株式会社 | タイヤトレッド用ゴム組成物および空気入りタイヤ |
JP2018109152A (ja) * | 2017-01-04 | 2018-07-12 | 住友ゴム工業株式会社 | トレッド用ゴム組成物及び空気入りタイヤ |
JP2019199548A (ja) * | 2018-05-16 | 2019-11-21 | 横浜ゴム株式会社 | スタッドレスタイヤトレッド用ゴム組成物およびスタッドレスタイヤ |
JP2020530060A (ja) * | 2017-12-05 | 2020-10-15 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体およびそれを含むゴム組成物 |
WO2021241746A1 (ja) * | 2020-05-29 | 2021-12-02 | 横浜ゴム株式会社 | タイヤ用ゴム組成物及びタイヤ |
WO2021241755A1 (ja) * | 2020-05-29 | 2021-12-02 | 横浜ゴム株式会社 | タイヤ用ゴム組成物及びタイヤ |
-
2022
- 2022-12-07 EP EP22904256.9A patent/EP4446379A1/en active Pending
- 2022-12-07 WO PCT/JP2022/045074 patent/WO2023106328A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999009036A1 (en) | 1997-08-21 | 1999-02-25 | Osi Specialties, Inc. | Blocked mercaptosilane coupling agents for filled rubbers |
JP2009161778A (ja) | 2009-04-24 | 2009-07-23 | Sumitomo Rubber Ind Ltd | 変性ブタジエンゴム組成物 |
WO2014002750A1 (ja) | 2012-06-27 | 2014-01-03 | 横浜ゴム株式会社 | タイヤトレッド用ゴム組成物および空気入りタイヤ |
JP2018109152A (ja) * | 2017-01-04 | 2018-07-12 | 住友ゴム工業株式会社 | トレッド用ゴム組成物及び空気入りタイヤ |
JP2020530060A (ja) * | 2017-12-05 | 2020-10-15 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体およびそれを含むゴム組成物 |
JP2019199548A (ja) * | 2018-05-16 | 2019-11-21 | 横浜ゴム株式会社 | スタッドレスタイヤトレッド用ゴム組成物およびスタッドレスタイヤ |
WO2021241746A1 (ja) * | 2020-05-29 | 2021-12-02 | 横浜ゴム株式会社 | タイヤ用ゴム組成物及びタイヤ |
WO2021241755A1 (ja) * | 2020-05-29 | 2021-12-02 | 横浜ゴム株式会社 | タイヤ用ゴム組成物及びタイヤ |
Also Published As
Publication number | Publication date |
---|---|
EP4446379A1 (en) | 2024-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5644838B2 (ja) | タイヤトレッド用ゴム組成物 | |
JP5900036B2 (ja) | タイヤトレッド用ゴム組成物 | |
JP2014189698A (ja) | タイヤトレッド用ゴム組成物 | |
JP2015229701A (ja) | タイヤトレッド用ゴム組成物 | |
JP2013001795A (ja) | タイヤトレッド用ゴム組成物 | |
JP2001131230A (ja) | 重合体、その製造方法、及びそれを用いたゴム組成物 | |
JP2016003318A (ja) | ゴム組成物およびそれを用いた空気入りタイヤ | |
WO2020162304A1 (ja) | ゴム組成物及びタイヤ | |
JP2018177905A (ja) | ゴム組成物およびタイヤ | |
JP7103434B2 (ja) | 空気入りタイヤ | |
JP2019137281A (ja) | タイヤ用ゴム組成物 | |
WO2020158237A1 (ja) | タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ | |
JP7003570B2 (ja) | スタッドレスタイヤ用ゴム組成物 | |
JP7339580B2 (ja) | タイヤ用ゴム組成物 | |
JP7168029B1 (ja) | タイヤ用ゴム組成物 | |
WO2023106328A1 (ja) | タイヤ用ゴム組成物 | |
JP7457252B2 (ja) | タイヤ用ゴム組成物 | |
JP2018123298A (ja) | スタッドレスタイヤ用ゴム組成物およびスタッドレスタイヤ | |
JP7518454B2 (ja) | タイヤ用ゴム組成物 | |
WO2024038830A1 (ja) | タイヤ用ゴム組成物 | |
WO2024038812A1 (ja) | タイヤ用ゴム組成物 | |
JP7397362B2 (ja) | タイヤ用ゴム組成物 | |
JP7235086B1 (ja) | タイヤ用ゴム組成物およびタイヤ | |
CN118355070A (zh) | 轮胎用橡胶组合物 | |
JP6791278B2 (ja) | タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22904256 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280080179.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18717069 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022904256 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022904256 Country of ref document: EP Effective date: 20240708 |