WO2023101003A1 - Valve timing control device for internal combustion engine - Google Patents
Valve timing control device for internal combustion engine Download PDFInfo
- Publication number
- WO2023101003A1 WO2023101003A1 PCT/JP2022/044518 JP2022044518W WO2023101003A1 WO 2023101003 A1 WO2023101003 A1 WO 2023101003A1 JP 2022044518 W JP2022044518 W JP 2022044518W WO 2023101003 A1 WO2023101003 A1 WO 2023101003A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control device
- combustion engine
- timing control
- valve timing
- internal combustion
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 26
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 20
- 230000002093 peripheral effect Effects 0.000 claims description 103
- 125000006850 spacer group Chemical group 0.000 claims description 7
- 238000005096 rolling process Methods 0.000 claims description 6
- 230000002349 favourable effect Effects 0.000 abstract 1
- 239000010687 lubricating oil Substances 0.000 description 31
- 230000037431 insertion Effects 0.000 description 12
- 238000003780 insertion Methods 0.000 description 12
- 239000002184 metal Substances 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000004323 axial length Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L1/00—Valve-gear or valve arrangements, e.g. lift-valve gear
- F01L1/34—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
- F01L1/344—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
- F01L1/352—Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L9/00—Valve-gear or valve arrangements actuated non-mechanically
- F01L9/20—Valve-gear or valve arrangements actuated non-mechanically by electric means
- F01L9/22—Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by rotary motors
Definitions
- the present invention relates to a valve timing control device for an internal combustion engine.
- valve timing control device for an internal combustion engine
- This valve timing control device consists of a sprocket to which torque from the crankshaft is transmitted, and a driven member that is bolted to one end of the camshaft in the direction of its rotation axis and arranged relatively rotatably on the inner circumference of the sprocket. and a slide bearing formed between the camshaft side of the inner circumference of the sprocket and the outer circumference of the driven member.
- the camshaft rotates relative to the sprocket through the sliding bearings to provide an engine such as an intake valve.
- the opening and closing timing of the valve is changed.
- the present invention has been devised in view of the above-mentioned conventional technical problems.
- One object is to provide a control device.
- an opening opened in the direction of the camshaft is provided between the drive rotor and the driven rotor, and the driven rotor is connected to the cam on the outer circumference of the disk.
- the outer surface on the shaft side has an annular first recess facing the opening, and the outer peripheral portion of the first recess is open to the inner periphery of the bearing portion.
- FIG. 2 is an exploded perspective view showing main constituent members provided for this embodiment;
- FIG. 2 is an enlarged view of part A in FIG. 1;
- FIG. 2 is an enlarged perspective view of a portion A in FIG. 1;
- It is the perspective view which looked the sprocket and the reduction gear from the front plate side which is offered to this embodiment.
- It is the figure seen from the B direction of FIG.
- It is a perspective view of a sprocket provided for this embodiment.
- FIG. 8 is an enlarged view of a C portion in FIG. 7;
- It is a perspective view of a driven member provided for this embodiment.
- FIG. 6 is an enlarged view of a main part of a second embodiment of the invention;
- FIG. 11 is an enlarged view of part D in FIG. 10;
- FIG. 1 is a side view showing a longitudinal section of the speed reducer side of a valve timing control device according to a first embodiment of the present invention
- FIG. 2 is an exploded perspective view showing main constituent members provided for this embodiment
- FIG. 1 is an enlarged view of the A portion
- FIG. 4 is an enlarged perspective view of the A portion of FIG. 1, FIG.
- FIG. 5 is a perspective view of the sprocket and the reduction gear viewed from the front plate side provided for this embodiment
- FIG. 1 is a perspective view of the sprocket used in this embodiment
- FIG. 8 is an enlarged view of the C portion of FIG.
- valve timing control device is rotatably supported on a timing sprocket 1 (hereinafter referred to as sprocket 1), which is a drive rotor, and a cylinder head 01 via a bearing bracket 02. and a phase changing mechanism 3 arranged between the sprocket 1 and the camshaft 2 for changing the relative rotational phase between the sprocket 1 and the camshaft 2 according to the engine operating state.
- sprocket 1 hereinafter referred to as sprocket 1
- sprocket 1 which is a drive rotor
- cylinder head 01 via a bearing bracket 02.
- phase changing mechanism 3 arranged between the sprocket 1 and the camshaft 2 for changing the relative rotational phase between the sprocket 1 and the camshaft 2 according to the engine operating state.
- the sprocket 1 is integrally made of a sintered metal material obtained by sintering compacted metal powder, and has a substantially L-shaped cross section. and an annular sprocket body 1a as a main member, and an external toothed portion 1b as a gear portion integrally provided on the outer periphery of the sprocket body 1a.
- the sprocket main body 1a has six bosses 1c projecting from one end of the outer periphery on the side of the camshaft 2 at intervals of approximately 60° in the circumferential direction.
- Each boss portion 1c has an arcuate outer surface, and is formed therein with a female threaded hole 1d into which the male threaded portion of six bolts 7, which will be described later, are screwed.
- the sprocket body 1a has a large-diameter hole formed in the center, and a bearing portion is provided between the inner peripheral surface 1e of the large-diameter hole and the outer peripheral surface 9e of the driven member 9, which is a driven rotating body, which will be described later.
- a first ball bearing 10 is provided.
- the first ball bearing 10 supports the entire sprocket 1 with respect to the driven member 9 so as to be relatively rotatable. A specific configuration of the first ball bearing 10 will be described later.
- Each external tooth portion 1b is adapted to transmit torque from a timing chain (not shown) wound around a driven gear provided on a crankshaft of an internal combustion engine.
- the inner peripheral surface 1e is formed so that the axial width W is longer than the axial width of the first ball bearing 10 (outer ring 10b).
- a timing chain is used as a means for transmitting a rotational force to the external toothed portion 1b. It is good also as a structure which transmits a rotational force.
- the sprocket body 1a has an annular concave portion 6 formed in the front end face on one end side (front end side) in the rotation axis direction.
- the annular recess 6 is formed radially inward of the front end surface of the sprocket body 1a and has a flat bottom surface 6a and an annular inner peripheral surface 6b axially formed from the outer peripheral edge of the bottom surface 6a. ing.
- the depth of the bottom surface 6a is approximately half the depth of the external toothed portion 1b in the axial direction.
- the annular inner peripheral surface 6b is formed so that its diametrical length is slightly larger than the outer diameter of the sprocket body 1a.
- An internal gear forming member 5 forming part of a speed reducer 13, which will be described later, is spigot (fitted) into the annular recessed portion 6 with respect to the annular inner peripheral surface 6b from the rotation axis direction.
- the internal gear forming member 5 is connected to the sprocket main body 1a by bolts 7 while being fitted in the annular recess 6 from the axial direction. A specific configuration of the internal gear forming member 5 will be described later. It is also possible to integrally provide the sprocket main body 1a and the internal gear forming member 5 to form a drive rotor as a whole.
- the sprocket body 1a is integrally formed with a first annular restricting portion 8, which is an annular convex portion projecting radially inward, on the other end side (rear end side) opposite to the internal gear forming member 5 in the rotation axis direction. is provided in
- the first annular restricting portion 8 constitutes a part of the stopper mechanism, is integrally formed when the sprocket 1 is sintered, and is made of a sintered metal material and has an annular shape with a predetermined thickness. .
- the first annular restricting portion 8 is formed in an annular shape extending radially inward from the rear edge of the sprocket body 1a on the camshaft 2 side.
- the first annular restricting portion 8 has an outer diameter substantially equal to the outer diameter of the sprocket main body 1a, and has an annular inner surface on the side of the internal gear forming member 5, which serves as an outer ring 10b of a first ball bearing 10, which will be described later. It is arranged so as to cover one end surface on the side of the camshaft 2 .
- the first annular restricting portion 8 has two arcuate grooves 8b and 8c at predetermined positions on the inner peripheral surface 8a.
- the arcuate grooves 8b and 8c are provided at symmetrical positions of about 180° about the center of the first annular restricting portion 8, and arc lengths are formed in an angular range of about 120°.
- Two first stopper protrusions 8d and 8e are provided between the arc-shaped grooves 8b and 8c of the inner peripheral surface 8a, that is, at positions of about 180° in the circumferential direction.
- Each of the first stopper protrusions 8d and 8e is formed in a substantially circular arc shape with an arc angle of approximately 90°.
- each of the first stopper protrusions 8d and 8e has one (one) second stopper protrusion 19a of a second annular restricting portion 19 (described later) attached to each end edge facing each other in the circumferential direction.
- the relative rotational position of the driven member 9 is restricted by coming into contact with it from the circumferential direction.
- Each female screw hole 1d formed inside each boss portion 1c is formed through the camshaft 2 so as to function as a relief portion for the tip of the shaft portion 7a of the bolt 7 screwed therein. It's becoming Each bolt 7 is formed with a male threaded portion screwed into the female threaded hole 1d on the outer peripheral surface of the shaft portion 7a.
- the camshaft 2 has two drive cams per cylinder on its outer circumference that open intake valves (not shown). As shown in FIG. 1, the camshaft 2 is integrally provided with a flange portion 2b for positioning in the axial direction via a bearing bracket 02 at one end portion 2a in the rotation axis direction.
- the camshaft 2 has an insertion hole 2c formed along the inner axial direction from the tip surface of the one end portion 2a.
- a shaft portion 14b of a cam bolt 14, which will be described later, is inserted into the insertion hole 2c, and a female thread portion 2d to which a male thread portion 14c of the cam bolt 14 is fastened is formed on a part of the inner peripheral surface on the distal end side.
- a front plate 15 as a cover member is provided on the front end face of the internal gear component 5 .
- the front plate 15 is, for example, stamped from a ferrous metal plate into a disc shape by press molding.
- Six bolt insertion holes 15d are formed through the outer peripheral portion 15a at equally spaced positions in the circumferential direction.
- the central portion 15b is formed in the same plane as the outer peripheral portion 15a, and the inner surface on the side of the camshaft 2 faces one end surface of the outer ring 22b of the second ball bearing 22 described later with a small gap. It is arranged to face the tip surface of a cage portion 24b of the vessel 24, which will be described later, with a minute gap therebetween.
- the inner peripheral portion 15c is bent from the central portion 15b toward the side opposite to the camshaft 2 in a crank convex shape, and has a large-diameter through hole 15e formed in the center.
- An annular concave portion 26 is formed on the inner peripheral surface of the camshaft 2 at a position on the central portion 15b side of the outer peripheral portion 15a.
- the annular concave portion 26 is formed together with the front plate 15 during press forming, and is formed by extruding the camshaft 2 and the opposite side in the axial direction.
- the annular concave portion 26 has a width in the radial direction that is large enough to axially cover the distal end portion of the retainer 24, which will be described later, and has a substantially uniform width in the circumferential direction.
- each recessed groove 27 is formed on the outer peripheral edge of the annular recess 26 at approximately equal intervals (approximately 60°) in the circumferential direction of the front plate 15. formed.
- the six recessed grooves 27 are formed together with the annular recessed portion 26 when the front plate 15 is press-molded, and the external shape is formed in a mountain-shaped semicircular shape. That is, each recessed groove 27 is formed in a semicircular shape protruding radially outward (in the direction of the outer peripheral surface) of the front plate 15 .
- a plurality of (six in this embodiment) lubricating oil discharge holes 32 are formed through the bottom wall of the annular recess 26 .
- Each lubricating oil discharge hole 32 is formed at a position corresponding to the formation position of each concave groove 27, and has a uniform inner diameter.
- the six bolt insertion holes 15d provided in the outer peripheral portion 15a correspond to the shafts of the six bolts 7 that connect the front plate 15 to the internal gear constituting member 5 and the sprocket body 1a through the internal gear constituting member 5.
- the portion 7a is adapted to be inserted.
- Each bolt insertion hole 15d is formed between grooves 27 adjacent in the circumferential direction of the outer peripheral portion 15a.
- the internal gear component 5 is provided separately from the sprocket main body 1a, and is integrally annularly formed entirely from a relatively hard metal material such as steel. As shown in FIG. 1, the internal gear forming member 5 is fitted in the annular recess 6 so that its radial width L is larger than the radial width of the bottom surface 6a of the annular recess 6. In fact, the inner peripheral portion protrudes inward from the inner peripheral surface 4 of the sprocket main body 1a.
- the width L1 in the axial direction is formed to be greater than the depth to the bottom surface 6a of the annular recess 6, so that the end opposite to the camshaft 2 in the axial direction touches the annular inner circumference of the annular recess 6 when fitted. It protrudes axially forward from the surface 6b. Sufficient rigidity is ensured for the internal gear forming member 5 by the width L in the radial direction and the width L1 in the axial direction. Further, the outer diameter of the internal gear forming member 5 (outer diameter of a radial fitting surface 5c to be described later) is formed to be substantially the same as or slightly larger than the inner diameter d of the annular inner peripheral surface 6b of the annular concave portion 6. As shown in FIG.
- the internal gear forming member 5 has a plurality of internal teeth 5a formed along the axial direction of the inner peripheral surface, and one side surface on the side of the camshaft 2 in the axial direction, which axially contacts the bottom surface 6a of the annular recess 6. It has an axial abutment surface 5b that contacts with the axial direction abutment surface 5b, and a radial fitting surface 5c that axially fits into the annular inner peripheral surface 6b of the annular recess 6 radially outside the axial abutment surface 5b. ing.
- Each inner tooth 5a is formed in a corrugated shape on the entire inner peripheral surface, and rotatably engages and holds rollers 23, which are a plurality of engaging members to be described later, on each arc-shaped inner surface.
- General heat treatment such as induction hardening is applied to the internal teeth 5a after cutting the internal teeth 5a.
- the axial contact surface 5b is formed as a flat restricting surface, and when the internal gear component 5 is axially fitted into the annular recess 6, the axial contact surface 5b contacts the entire bottom surface 6a of the annular recess 6 in close contact. .
- the radial fitting surface 5c is formed in an annular shape whose entire outer peripheral surface is flat. It is fitted from the axial direction by an intermediate fit, which is a mechanical fit. However, the intermediate fitting may be press-fitting, which is similar to tight fitting. Further, the coaxiality between the sprocket 1 and the internal gear forming member 5 is ensured by fitting (including press-fitting) the radial fitting surface 5c to the inner peripheral surface 6b of the annular recessed portion 6 .
- the internal gear component 5 has six bolt insertion holes 5e through which the shaft portions 7a of the bolts 7 are inserted, at positions corresponding to the female screw holes 1d of the sprocket body 1a.
- FIG. 9 is a perspective view of a driven member used in this embodiment.
- the driven member 9 is formed separately from the retainer 24 of the speed reducer 13, as shown in FIGS.
- the driven member 9 is made of a sintered metal obtained by compressing metal powder and sintering to form a thick disc.
- the driven member 9 includes a disk-shaped main body 9a which is a disk portion, a cam bolt insertion hole 9b formed through the center of the disk-shaped main body 9a, and a rear end portion of the disk-shaped main body 9a on the camshaft 2 side. and a second annular restricting portion 19 which is provided at the first annular restricting portion 8 and constitutes a stopper mechanism together with the first annular restricting portion 8 .
- the disk-shaped main body 9a has a circular shape in which one end portion 2a of the camshaft 2 is axially fitted to the inner peripheral side of the second annular restricting portion 19, that is, the inner side surrounded by the second annular restricting portion 19.
- a fitting groove 9c is formed.
- a positioning pin hole 9d into which a positioning pin (not shown) provided on the camshaft 2 is inserted is formed through the disk-shaped main body 9a at a predetermined position on the bottom surface of the fitting groove 9c.
- the first ball bearing 10 described above is arranged between the outer peripheral surface 9e of the disk-shaped main body 9a and the inner peripheral surface 1e of the sprocket main body 1a.
- the shaft portion 14b (intermediate shaft portion 14g) of the cam bolt 14 can be inserted into the cam bolt insertion hole 9b with a slight gap.
- the second annular restricting portion 19 is formed in an annular shape smaller than the outer diameter of the disk-shaped main body 9a, and formed in a stepped shape with the disk-shaped main body 9a.
- a pair of second stopper protrusions 19a and 19b which are protrusions protruding radially outward from the rotation center P, are integrally provided at predetermined positions on the outer peripheral surface of the second annular restricting portion 19.
- the second stopper protrusions 19a and 19b are provided at 180° symmetrical positions about the rotation center P and are arranged in the arcuate grooves 8b and 8c of the first annular restricting portion 8.
- Each of the second stopper projections 19a and 19b has arc-shaped notch grooves that reduce stress concentration on both side edges of the respective base portions (root portions).
- the driven member 9 relatively rotates to the right, and one side edge of one of the second stopper projections 19a comes into contact with the opposing side edge of one of the first stopper projections 8d.
- the other second stopper projection 19b does not abut the opposing side edge of the other first stopper projection 8e with a predetermined gap.
- the other second stopper protrusion 19b is arranged so as not to abut against the opposing side edge of the one first stopper protrusion 8d with a predetermined gap.
- a pair of openings 11 are formed that are open to.
- the openings 11 are formed in arc concave shapes along the circumferential direction at two locations of the first annular restricting portion 8 excluding the positions where the first stopper projections 8d and 8e are formed.
- the first ball bearing 10 as shown in FIGS.
- An inner ring 10a press-fitted and fixed to the outer peripheral surface 9e of the main body 9a
- an outer ring 10b press-fitted and fixed to the inner peripheral surface 1e of the sprocket main body 1a
- a cage 10d provided between the inner and outer rings 10a and 10b so as to be able to roll.
- a plurality of balls 10c In the first ball bearing 10, the inner ring 10a, the balls 10c and the cage 10d face the opening 11 in the axial direction.
- the inner ring 10a is formed so that the length in the direction of the rotation axis is longer than the width length in the axial direction of the outer peripheral surface 9e of the disk-shaped main body 9a, and one end face on the side of the camshaft 2 in the direction of the rotation axis is convex to each of the second stoppers.
- One axial positioning is performed on each inner surface of the portions 19a and 19b.
- the other end face in the rotation axis direction is positioned in the other axial direction by a flat outer surface 24d on the camshaft 2 side of the outer peripheral portion of the retainer 24, which will be described later.
- One end face of the outer ring 10b on the side of the camshaft 2 in the rotation axis direction is positioned on one side in the axial direction by the inner side face 8f of the first annular restricting portion 8, and the other end face is positioned on the internal gear forming member 5 via the annular spacer 28.
- the other positioning in the axial direction is performed on one side surface of the camshaft 2 side.
- the annular spacer 28 has an outer peripheral surface that is fitted and held by the inner peripheral surface 1e of the sprocket body 1a, and also has one axial end surface of the internal gear component 5 and the first ball bearing 10. They are arranged in axial contact with one end surface of the outer ring 10b. As a result, the outer ring 10b is axially positioned by the internal gear forming member 5 and the inner side surface 8f of the first annular restricting portion 8 via the annular spacer 28. As shown in FIG.
- annular spacer 28 is provided on the inner peripheral edge of the inner surface of the internal gear constituting member 5 on the driven member 9 side. It is also possible to integrally provide the projection of the .
- a first concave portion 29 is formed on one side surface of the outer peripheral portion of the disk-shaped main body 9a on the side of the first annular restricting portion 8 .
- the first concave portion 29 is formed on one side surface of the second annular restricting portion 19 on the radially outer side, and is formed in two portions excluding the second stopper convex portions 19a and 19b in the shape of circular arc grooves along the circumferential direction. formed.
- the first concave portion 29 faces the opening portion 11 described above and communicates with the opening portion 11
- the outer peripheral portion faces the outer peripheral surface of the inner ring 10 a of the first ball bearing 10 .
- the driven member 9 is axially tightened and fixed to the one end 2a of the camshaft 2 together with the retainer 24 by the cam bolt 14 while the one end 2a of the camshaft 2 is axially fitted into the fitting groove 9c. It is designed to be
- the first annular restricting portion 8 of the sprocket body 1a is formed on the inner edge of the inner peripheral surface 8a on the driven member 9 side.
- a second recess 30 is formed.
- the second concave portion 30 is formed by cutting an inner edge of the inner peripheral surface 8a along the circumferential direction in an annular shape, and has a substantially arcuate cross section.
- the second recess 30 faces the opening 11 together with the first recess 29, and is located between the inner ring 10a and the outer ring 10b of the first ball bearing 10, specifically between the outer ring 10b and the balls 10c.
- the opening is oriented to the space of
- the cam bolt 14 includes a substantially cylindrical head portion 14a, a shaft portion 14b integrally fixed to the head portion 14a, and an outer peripheral surface of the shaft portion 14b. and a male threaded portion 14c screwed onto the female threaded portion 2d of the camshaft 2 .
- a hexagonal tool hole 14d into which a tool such as a hexagonal wrench is inserted is formed at the tip of the head 14a.
- the head 14a is subjected to heat treatment such as induction hardening on the entire outer peripheral surface, and has a higher hardness than other parts.
- Each needle roller 25a of a needle bearing 25 is rotatably supported on the hard outer peripheral surface of the head 14a.
- the seating surface 14f is a facing surface outside the rim of the bolt hole 24c formed in the inner peripheral portion of the retainer 24 when the male threaded portion 14c of the cam bolt 14 is screwed into the female threaded portion 2d of the camshaft 2 for fastening. to sit on.
- the shaft portion 14b is integrally provided with a large-diameter intermediate shaft portion 14g at the base of the head portion 14a, that is, at the center of the bearing surface 14f in the axial direction of the head portion 14a.
- the phase changing mechanism 3 includes an electric motor 12 arranged on the front end side of the sprocket 1, and a cam by reducing the rotational speed transmitted from the electric motor 12 via an Oldham coupling. and a speed reducer 13 for transmission to the shaft 2 .
- the electric motor 12 is a so-called brushless DC motor, and includes a bottomed cylindrical motor housing 16 fixed to a chain case (not shown), and a motor housing 16 provided on the inner peripheral surface of the motor housing 16 and having a coil or the like inside. , a motor shaft 17 arranged on the inner circumference side of the coil, a permanent magnet (not shown) fixed to the outer circumference of the motor shaft 17, and a motor housing 16 opposite to the sprocket 1 and a control unit 18 provided at the front end of the side.
- the motor housing 16 is formed substantially in the shape of a cup, and a through hole into which the motor shaft 17 is inserted is formed substantially in the center of the front end (bottom wall).
- a radially outwardly protruding flange portion 16a is integrally provided on the outer periphery of the rear end portion.
- the flange portion 16a is integrally provided with three bracket pieces 16b at approximately 120° positions in the circumferential direction.
- the three bracket pieces 16b are formed with bolt insertion holes 16c through which bolts for coupling to a chain case (not shown) are inserted.
- each bolt 34 is adapted to couple the controller 18 to the motor housing 16 . It is also possible to further increase the number of bracket pieces 16b and bolt insertion holes 16c.
- the motor stator is integrally formed mainly by a resin part made of a synthetic resin material, and the coil is fixed inside by molding.
- the motor shaft 17 is formed of a metal material in a cylindrical shape, and has a width across flats portion (not shown) formed along the tangential direction on the outer surface of the tip portion 17a on the speed reducer 13 side.
- a pair of fitting grooves are formed on the tip edge side of the tip portion 17a by notching in a direction orthogonal to the width across flat portion.
- a stopper member (not shown) for restricting the movement of an intermediate member 31 (to be described later) toward the cam bolt 14 is radially fitted and fixed in both fitting grooves.
- the motor shaft 17 is arranged so that the tip portion 17a is close to the head portion 14a of the cam bolt 14 with a slight gap from the rotation axis direction. Further, the tip portion 17a as a whole, including the stopper member, can be axially inserted into the tool hole 14d.
- the stopper member is formed in the shape of a C-ring and is elastically deformable in the radially expanding direction and the radially contracting direction by its own elastic force.
- the control unit 18 has a box-shaped housing 18a made of a synthetic resin material. Inside the housing 18a, an energization circuit such as a busbar for supplying power to the electric motor 12, a rotation sensor for detecting the rotational position of the motor shaft 17, a circuit board for controlling the amount of energization, and the like are housed and arranged. In the control unit 18, a power supply connector 18b electrically connected to an energizing circuit and a signal connector (not shown) are provided integrally with the housing 18a.
- a power supply connector 18b electrically connected to an energizing circuit and a signal connector (not shown) are provided integrally with the housing 18a.
- the power supply connector 18b has an internally protruding terminal connected to a battery as a power source via a female terminal of a control unit (not shown).
- the signal connector has a built-in terminal connected to the control unit via a female terminal, and outputs a rotation angle signal detected by the rotation sensor to the control unit.
- An intermediate member 31 is provided at the tip portion 17a of the motor shaft 17.
- the intermediate member 31 constitutes a part of an Oldham coupling which is a joint connected to the speed reducer 13, and is fixed to the tip portion 17a of the motor shaft 17 as shown in FIGS. It has a cylindrical base 31a.
- the cylindrical base portion 31a has a pair of flat surfaces on both sides of the circular outer surface, that is, at 180° positions in the circumferential direction. ing.
- a through hole into which the tip portion 17a of the motor shaft 17 is inserted is formed at the central position of the cylindrical base portion 31a.
- the through hole has a circular inner peripheral surface on which a pair of opposing surfaces extending in the radial direction from the rotating shaft of the motor shaft 17 are formed.
- the outer shape of the cylindrical base portion 31a is similar to the shape of an elongated oval in the radial direction. Therefore, the intermediate member 31 is radially movable with respect to the tip portion 17a of the motor shaft 17 through the oval through hole.
- Two transmission keys 33a and 33b which are a pair of projecting portions, are integrally provided at approximately the central position in the longitudinal direction of the pair of flat portions.
- Each transmission key 33a, 33b is formed in a substantially rectangular plate shape and protrudes radially outward from two plane portions of the cylindrical base portion 31a.
- the speed reducer 13 is provided separately and independently from the electric motor 12 in the axial direction, and each constituent member is housed between the driven member 9 and the front plate 15 . That is, as shown in FIGS. 1 and 2, the speed reducer 13 includes a cylindrical eccentric shaft member 21 as an input shaft partly arranged inside the sprocket body 1a, and an outer circumference of the eccentric shaft member 21. a fixed second ball bearing 22; a plurality of rollers 23 provided on the outer periphery of the second ball bearing 22 and held rollably within the internal teeth 5a of the internal gear component 5; and a retainer 24 which is provided on the side of the disk-shaped groove portion 9g of , and which retains the plurality of rollers 23 in the rolling direction and permits movement in the radial direction.
- the eccentric shaft member 21 includes an eccentric cam shaft 21a arranged on the outer periphery of a needle bearing 25 provided on the outer periphery of the head portion 14a of the cam bolt 14, and a large connecting portion of the eccentric cam shaft 21a on the electric motor 12 side. and a cylindrical portion 21b having a diameter.
- the eccentric cam shaft 21a is formed in a cylindrical shape whose axial length is slightly longer than that of the needle bearing 25 in its axial direction. Also, the eccentric cam shaft 21a has a thickness t in the circumferential direction as a whole, and the axis X is slightly eccentric with respect to the axis Y of the motor shaft 17 of the electric motor 12 (see FIG. 1).
- the cylindrical portion 21b has a uniform thickness and is formed in a substantially circular shape, and is slightly thicker than the eccentric cam shaft 21a.
- the cylindrical portion 21b protrudes from the inside of the sprocket main body 1a toward the electric motor 12 through the through hole 15e of the front plate 15.
- the tubular portion 21b constitutes an Oldham coupling together with the intermediate member 31.
- the cylindrical portion 21b protrudes from the inside of the sprocket main body 1a toward the electric motor 12 through the through hole 15e of the front plate 15.
- the tubular portion 21b constitutes an Oldham coupling together with the intermediate member 31.
- the cylindrical portion 21b is formed with a fitting hole 21d having a width across flats into which the cylindrical base portion 31a of the intermediate member 31 can be fitted from the axial direction.
- a pair of crescent-shaped protrusions (not shown) forming a width across flats are provided at respective positions of approximately 180° in the circumferential direction of the inner peripheral surface of the fitting hole 21d.
- a pair of key grooves 21c and 21c into which the two transmission keys 33a and 33b of the cylindrical base 31a can be fitted from the rotation axis direction are formed. It is Each keyway 21c, 21c is formed in a rectangular shape similar to each transmission key 33a, 33b, and its depth is set to be approximately the same length as the width of each transmission key 33a, 33b.
- the needle bearing 25 is fixed to a plurality of needle rollers 25a rolling on the outer peripheral surface 14e of the head 14a of the cam bolt 14 and to a stepped surface formed on the inner peripheral surface of the eccentric cam shaft 21a. and a cylindrical shell 25b having a plurality of grooves for rollingly holding the roller 25a.
- the second ball bearing 22 is arranged in such a manner that the needle bearing 25 and the needle bearing 25 substantially overlap each other.
- the second ball bearing 22 is composed of an inner ring 22a, an outer ring 22b, a plurality of balls 22c arranged between the inner and outer rings 22a and 22b, and a cage 22d holding the balls 22c.
- the inner ring 22a is press-fitted and fixed to the outer peripheral surface of the eccentric camshaft 21a, while the outer ring 22b is in a free state without being fixed in the axial direction. That is, one end face of the outer ring 22b on the side of the electric motor 12 in the axial direction is in a non-contact state with the inner face of the inner peripheral portion 15c of the front plate 15 via the minute gap C1. Further, the other axial end surface of the outer ring 22b is also in a non-contact state with a small gap interposed between an inner surface 24e of the retainer 24, which faces the outer ring 22b and will be described later. As a result, the outer ring 22b has one axial end face restricted from moving in one axial direction by the inner peripheral portion 15c, and the other axial end face restricted from excessive movement in the other axial direction by the inner surface 24e. It has become.
- the outer ring 22b is in contact with the outer peripheral surface so that each roller 23 can roll.
- a crescent-shaped clearance (not shown) is formed in a portion between the outer peripheral surface of the outer ring 22b and the outer surface of each roller 23 of the retainer 24. As shown in FIG. Therefore, the entire second ball bearing 22 is eccentrically movable in the radial direction with the eccentric rotation of the eccentric camshaft 21a through the clearance.
- the retainer 24 is formed by press-molding a metal plate into a substantially disk shape, and is disposed in contact with the front end side of the driven member 9 on the side of the disk-shaped groove portion 9g. That is, the retainer 24 is provided integrally with a disk-shaped base portion 24a that axially abuts against the bottom surface of the disk-shaped groove portion 9g of the disk-shaped main body 9a of the driven member 9, and the outer periphery of the base portion 24a. and a cage portion 24b that holds a plurality of rollers 23 that are members.
- the retainer 24 is made higher in hardness than the driven member 9 by, for example, induction hardening after the entire press molding.
- the base portion 24a has a bolt hole 24c through which the shaft portion 14b of the cam bolt 14 is inserted.
- the outer surface 24d and the inner surface 24e are formed flat.
- the outer surface 24d of the outer peripheral portion contacts the other axial end surface of the inner ring 10a of the first ball bearing 10 to perform axial positioning.
- the inner surface 24e of the outer peripheral portion abuts against one axial end surface of the outer ring 22a of the second ball bearing 22 to perform axial positioning. Therefore, the outer surface 24d and the inner surface 24e function as axial positioning portions for the first and second ball bearings 10 and 22. As shown in FIG.
- the base portion 24a is formed with a pin insertion hole through which a positioning pin (not shown) for positioning the driven member 9 at a predetermined position is inserted.
- the cage portion 24b is formed in an annular shape extending from the outer peripheral edge of the outer peripheral portion of the base portion 24a toward the electric motor 12 side, and has a plurality of holding holes 24h for holding the rollers 23 at equal intervals in the circumferential direction. Penetration is formed along the radial direction.
- Each of the plurality of holding holes 24h is formed in an elongated rectangular hole extending from the base end edge of the cage portion 24b on the deformed portion 24d side toward the tip end edge, and is closed at the tip end side.
- the rollers 23 are rotatably held inside the holding holes 24h, and the total number of rollers 23 (the number of rollers 23) is smaller than the total number of teeth of the internal teeth 5a of the internal gear component 5. By this, a predetermined speed reduction ratio is obtained.
- Each roller 23 is formed of a ferrous metal, and is fitted (engaged) with each internal tooth 5a of the internal gear component 5 while moving in the radial direction as the second ball bearing 22 moves eccentrically.
- Each roller 23 is adapted to oscillate in the radial direction while being guided in the circumferential direction by both axial side edges of each holding hole 24h.
- Each roller 23 is arranged so as to be able to roll only on the internal teeth 5a of the internal gear constituting member 5 within the axial length range of the holding hole 24h. .
- the retainer 24 (cage portion 24b) is formed to have an outer diameter smaller than the outer diameter of the journal portion 41 of the driven member 9, as shown in FIG.
- the outer peripheral edge of the cage portion 24b on the driven member 9 side abuts the inner peripheral edge of the journal portion 41 in the axial direction.
- the control unit detects the current engine operating status based on information signals from various sensors (not shown) such as a crank angle sensor, air flow meter, water temperature sensor, and accelerator position sensor, and controls the engine based on this. Is going.
- the control unit controls the rotation of the motor shaft 17 by energizing the coil of the electric motor 12 based on the information signals and the rotational position detection mechanism, and controls the rotation of the camshaft 2 relative to the timing sprocket 1 by the speed reducer 13 . It is designed to control the rotation phase.
- a control current from the control unit is applied to the coil of the electric motor 12 to rotate the motor shaft 17 forward and backward.
- the rotational force of the motor shaft 17 is transmitted to the eccentric shaft member 21 via the Oldham's coupling, and reduced rotational force is transmitted to the camshaft 2 by the operation of the speed reducer 13 .
- the camshaft 2 rotates forward and backward relative to the timing sprocket 1 to convert the relative rotation phase. Therefore, the opening/closing timing of each intake valve is controlled to advance or retard.
- the lubricating oil O scattered outside as the engine is driven flows from the opening 11 between the sprocket 1 and the driven member 9 into the first recess 29 as indicated by the arrow in FIG. effectively captured by Since the first recessed portion 29 is recessed in the axial direction, the momentum of the scattering lubricating oil O is attenuated, and the lubricating oil O is collected more effectively. Also, the lubricating oil O that has entered the first recess 29 turns around in the direction of the first ball bearing 10 on the outer peripheral side due to the rotation centrifugal force of the sprocket 1 and the like, and efficiently lubricates the first ball bearing 10 . Also, the lubricating oil O that has entered the first recess 29 from the opening 11 flows into the second recess 30 due to rotational centrifugal force, and is then forcibly supplied to the inside of the first ball bearing 10 .
- the lubricating oil O that has flowed into the first recess 29 reaches the outer peripheral surface of the inner ring 10a. While flowing from the outer ring 10b toward the outer ring 10b to effectively lubricate them, it also flows into between the balls 10c and the cage 10d to effectively lubricate the first ball bearing 10 as a whole.
- the lubricating oil O that has lubricated the first ball bearing 10 passes between the retainer 24 on the outer peripheral side and each roller 23 and each inner tooth 5a, and sufficiently lubricates these spaces.
- the opening 11 is formed in a wide annular shape between the inner peripheral surface 8a of the first annular restricting portion 8 and the outer peripheral surface 19c of the second annular restricting portion 19, and has a large opening area.
- the collection efficiency into the first concave portion 29 is increased. Therefore, a large amount of lubricating oil O can be supplied from the first concave portion 29 toward the first ball bearing 10 . This improves the lubricating performance for the first ball bearing 10 and the retainer 24 .
- the lubricating oil that has flowed into the retainer 24 is also supplied to the inner ring 22a, the outer ring 22b, and the balls 22c of the second ball bearing 22 to lubricate them.
- the lubricating oil O lubricated between the first ball bearing 10, the second ball bearing 22, the inner tooth 5a and the roller 23, and the holding hole 24h is discharged through each lubricating oil discharge hole. 32 can be rapidly discharged to the outside. That is, after lubricating the first and second ball bearings 10 and 22 , the lubricating oil supplied from the opening 11 to the first recess 29 and the second recess 30 does not stay in the speed reducer 13 . The lubricating oil can be rapidly discharged to the outside from the lubricating oil discharge hole 32 .
- each lubricating oil discharge hole 32 is provided outside the outer ring 22a of the second ball bearing 22 in the radial direction. Therefore, the lubricating oil supplied to the speed reducer 13 lubricates the second ball bearing 22 and the like by the centrifugal force during driving and does not accumulate here, and moves outward as it is to reach each lubricating oil discharge hole. 32 to the outside. Therefore, the second ball bearing 22 is prevented from generating driving resistance due to the viscous resistance of the lubricating oil.
- the inner and outer surfaces 24d and 24e of the outer peripheral portion of the base portion 24a of the retainer 24 are flat, it is possible to control the dimensions, and the first and second ball bearings 10 and 22 Positioning in both axial directions can be performed with high accuracy.
- one end surface of the inner ring 10a in the axial direction faces the inner side surfaces of the second stopper projections 19a and 19b of the driven member 9 (the second annular restricting portion 19).
- the other end surface in the axial direction is arranged to face the outer surface 24 d of the outer peripheral portion of the base portion 24 a of the retainer 24 .
- one axial end surface of the outer ring 22a of the second ball bearing 22 is arranged to face the inner surface 24e of the outer peripheral portion of the base portion 24a, so that they are axially positioned. Since the ball bearings 10 and 22 are axially positioned by the base portion 24a of the retainer 24, there is no need to provide additional positioning means, which reduces manufacturing and assembly costs. can be achieved.
- the first ball bearing 10 is replaced with the bearing portion. It is possible to cope with the case of using a sliding bearing that is long in the axial direction in a second embodiment, which will be described later.
- annular spacer 28 is arranged to face the other axial end surface of the outer ring 10b of the first ball bearing 10 via the internal gear component 5, it cooperates with the inner surface 8f of the first annular restricting portion 8. It is possible to position the first ball bearing 10 in the rotation axis direction.
- the lubricating oil in the speed reducer 13 is collected in the annular recess 26, and the annular recess 26 also functions as a temporary oil reservoir. Therefore, the lubricity between the inner tooth 5a and the roller 23 provided around the annular concave portion 26 is improved.
- a small amount of lubricating oil can be retained in the annular concave portion 26, so that lubrication to the rolling bearings and the like is improved when the engine is started.
- annular recessed portion 26 is located radially outside the space between the bottom surface of the internal tooth 5a and the roller 23, the metal generated from each member of the internal combustion engine and the speed reducer 13 is removed. Contaminants such as powder can be accumulated in the annular concave portion 26 by centrifugal force during driving.
- each of these grooves 27 functions as a pocket
- the amount of lubricating oil collected in the annular recess 26 increases.
- the lubricity of the second ball bearing 22 of the speed reducer 13 and the like is further improved.
- the slide bearing includes an annular bearing recess 40 formed on the inner peripheral surface of the sprocket body 1a, and a bearing recess 40 provided on the outer periphery of the driven member 9 and inside the bearing recess 40. and a journal portion 41 arranged.
- the bearing concave portion 40 has an annular bottom surface 40a, which is a bearing surface, corresponding to the inner peripheral surface 1e of the sprocket body 1a of the first embodiment, and the inner peripheral surface 1e is used as it is.
- the bearing concave portion 40 has one axial end portion on the camshaft 2 side covered by the first annular restricting portion 8 , and the other end portion on the internal gear forming member 5 side is open. This opening is closed by an axial abutment surface 5 b of the internal gear component 5 .
- the bearing recess 40 is formed over the entire inner peripheral surface of the sprocket body 1a from the annular inner side surface 8f of the first annular restricting portion 8 to the bottom surface 6a of the annular recess 6.
- the bearing recessed portion 40 is arranged so that a portion thereof overlaps the forming position of each external tooth portion 1b in the axial direction.
- the bearing recess 40 has an annular bottom surface 40a that serves as a slide bearing surface, and an annular inner side surface 8f of the first annular restricting portion 8 that is formed substantially perpendicular to the bottom surface 40a of the slide bearing surface in the radial direction.
- the journal portion 41 protrudes from the outer peripheral edge of the disk-shaped main body 9 a of the driven member 9 toward the front plate 15 and has a rectangular cross-sectional shape substantially similar to the cross-sectional shape of the bearing recess 40 . Since the bearing recessed portion 40 axially overlaps each external toothed portion 1b, the journal portion 41 is also partially overlapped axially with each external toothed portion 1b.
- a disk-shaped groove portion 9g surrounded by a journal portion 41 is formed on the inner end surface of the driven member 9 on the side opposite to the camshaft 2.
- the journal portion 41 has an annular outer peripheral surface slidable over the entire bottom surface 40 a of the bearing recess 40 .
- the journal portion 41 functions as a plain bearing that supports the entire sprocket 1 via the bearing recessed portion 40 .
- One end surface 41a of the journal portion 41 on the side of the front plate 15 in the axial direction faces the axial contact surface 5b of the internal gear component 5 with a minute gap C therebetween.
- the axial contact surface 5b of the journal portion 41 restricts the movement of the entire driven member 9 in the axial direction opposite to the camshaft 2.
- the axial contact surface 5b functions as a regulating surface for the driven member 9.
- journal portion 41 has the other end surface 41b in the axial direction slidable on the annular inner surface 8f of the first annular restricting portion 8. As shown in FIG. When the sprocket 1 tilts, the annular inner side surface 8f of the first annular restricting portion 8 abuts against the other end surface 41b to restrict the other thrust movement.
- An opening 11 is formed between the inner peripheral surface 8a of the first annular restricting portion 8 and the outer peripheral surface 19c of the second annular restricting portion 19, as in the first embodiment.
- a first concave portion 29 is formed on one side surface of the outer peripheral portion of the disk-shaped main body 9a on the side of the first annular restricting portion 8 .
- the first concave portion 29 is formed on one side surface of the disk-shaped main body 9a on the radially outer side of the second annular restricting portion 19, and extends along the circumferential direction at two portions excluding the second stopper convex portions 19a and 19b. It is formed in the shape of a wide arcuate groove.
- the first recess 29 communicates with the opening 11 and has an outer peripheral portion extending to the other end surface 41b of the journal portion 41, and an inclined surface 29a is formed near the other end surface 41b.
- the second recessed portion 30 is formed by cutting the inner edge of the inner peripheral surface 8a of the first annular restricting portion 8 along the circumferential direction in an annular shape. It is formed in a substantially arc shape.
- the second recessed portion 30 faces the opening 11 together with the first recessed portion 29, and is directed toward the inner peripheral side of the other end surface 41b of the journal portion 41, facing the inclined surface 29a of the first recessed portion 29. are placed.
- the manufacturing cost and the assembly work cost can be reduced compared to the case of the first ball bearing 10 of the first embodiment.
- the first recessed portion 29 is formed widely on the outer surface of the outer peripheral portion of the disk-shaped main body 9a on the side of the camshaft 2, as shown in FIG. can be held in the first concave portion 29 well.
- the lubricating oil O is sufficiently supplied between the bearing recessed portion 40 and the journal portion 41 by centrifugal force, thereby improving the lubricating performance of these slide bearings.
- the inclined surface 29a of the first recessed portion 29 and the second recessed portion 30 are arranged to face each other, the lubricating oil O held in the first recessed portion 29 is transferred to the inclined surface 29a and the second recessed portion 30 via centrifugal force. It is possible to positively supply between the inner surface 8f of the first annular restricting portion 8 and the other end surface 41b of the journal portion 41 while temporarily holding it between.
- the sprocket 1 used in the first embodiment can be used as it is, so the manufacturing cost can be reduced.
- the bearing portion may be a rolling bearing such as a needle bearing.
- a gear or the like can be used instead of the roller 23.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
Abstract
The present invention is provided with: a sprocket 1 having a sprocket body 1a and a first annular restriction part 8; a following member 9 affixed to an end section of a camshaft 2; and first ball bearings 10 provided between an outer circumferential surface 9e of a disk-shaped body 9a of the following member and an inner circumferential surface 1e of the sprocket body. An opening 11 which opens in a camshaft direction is provided between the first annular restriction part and a second annular restriction part 19 provided to the disk-shaped body. A first recess 29 which is annular and faces the opening is provided to an outside surface of an outer circumferential section of the disk-shaped body, and the first recess is formed such that an outer circumferential section thereof opens to an inner circumferential surface of an inner ring 10a. A second recess 30 facing the opening is provided in an inner circumferential edge of the first annular restriction part. As a result, favorable smoothness of the first ball bearings, etc., with respect to the inside of a gear reducer can be obtained.
Description
本発明は、内燃機関のバルブタイミング制御装置に関する。
The present invention relates to a valve timing control device for an internal combustion engine.
従来の内燃機関のバルブタイミング制御装置としては、以下の特許文献1に記載されたものが知られている。このバルブタイミング制御装置は、クランクシャフトからの回転力が伝達されるスプロケットと、カムシャフトの回転軸方向の一端部にボルト固体されて、前記スプロケットの内周に相対回転可能に配置された従動部材と、前記スプロケットの内周のカムシャフト側と前記従動部材の外周との間に形成された滑り軸受と、を備えている。
As a conventional valve timing control device for an internal combustion engine, the one described in Patent Document 1 below is known. This valve timing control device consists of a sprocket to which torque from the crankshaft is transmitted, and a driven member that is bolted to one end of the camshaft in the direction of its rotation axis and arranged relatively rotatably on the inner circumference of the sprocket. and a slide bearing formed between the camshaft side of the inner circumference of the sprocket and the outer circumference of the driven member.
そして、機関状態に応じて、電動モータの回転力を減速機介して前記カムシャフトに伝達することにより、このカムシャフトが前記滑り軸受を介してスプロケットに対して相対回転して吸気弁などの機関弁の開閉時期を変化させるようになっている。
By transmitting the rotational force of the electric motor to the camshaft through the speed reducer according to the state of the engine, the camshaft rotates relative to the sprocket through the sliding bearings to provide an engine such as an intake valve. The opening and closing timing of the valve is changed.
しかしながら、特許文献1に記載の従来のバルブタイミング制御装置にあっては、前記滑り軸受に対する潤滑性の向上の余地があった。つまり、前記従動部材のカムシャフト側の背面に有するアダプタや保持プレートの間に形成された環状の開口の断面積が小さくなっていることから、機関の駆動によって飛散した潤滑油は前記滑り軸受に対して十分に供給されなかった。
However, in the conventional valve timing control device described in Patent Document 1, there is room for improvement in the lubricity for the slide bearing. In other words, since the cross-sectional area of the annular opening formed between the adapter and the holding plate provided on the rear surface of the driven member on the camshaft side is small, lubricating oil splashed by the driving of the engine reaches the sliding bearing. was not adequately supplied.
本発明は、前記従来の技術的課題に鑑みて案出されたもので、駆動回転体と従動回転体との間を軸受する軸受部などに対する良好な潤滑性を確保し得る内燃機関のバルブタイミング制御装置を提供することを一つの目的としている。
SUMMARY OF THE INVENTION The present invention has been devised in view of the above-mentioned conventional technical problems. One object is to provide a control device.
好ましい態様の一つとしては、とりわけ、駆動回転体と従動回転体との間に、カムシャフト方向に開放された開口部が設けられ、前記従動回転体は、円板部の外周部の前記カムシャフト側の外側面が前記開口部に臨む環状の第1凹部を有し、前記第1凹部は、外周部が前記軸受部の内周に開口していることを特徴としている。
In one preferred embodiment, an opening opened in the direction of the camshaft is provided between the drive rotor and the driven rotor, and the driven rotor is connected to the cam on the outer circumference of the disk. The outer surface on the shaft side has an annular first recess facing the opening, and the outer peripheral portion of the first recess is open to the inner periphery of the bearing portion.
本発明の好ましい態様によれば、駆動回転体と従動回転体との間を軸受する軸受部などに対する良好な潤滑性が得られる。
According to a preferred aspect of the present invention, it is possible to obtain good lubricity for the bearing portion that bears between the drive rotor and the driven rotor.
以下、本発明に係る内燃機関のバルブタイミング制御装置の実施形態を図面に基づいて詳述する。なお、本実施形態では、バルブタイミング制御装置を吸気側に適用したものを示しているが、排気側に適用することも可能である。
〔第1実施形態〕
図1は本発明の第1実施形態におけるバルブタイミング制御装置の減速機側を縦断面して示す側面図、図2は本実施形態に供される主要な構成部材を示す分解斜視図、図3は図1のA部拡大図、図4は図1のA部の拡大斜視図、図5は本実施形態に供されるフロントプレート側からスプロケットと減速機を視た斜視図、図6は図1のB方向から視た図、図7は本実施形態に供されるスプロケットの斜視図、図8は図7のC部拡大図である。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a valve timing control device for an internal combustion engine according to the present invention will be described in detail below with reference to the drawings. In this embodiment, the valve timing control device is applied to the intake side, but it is also possible to apply it to the exhaust side.
[First embodiment]
FIG. 1 is a side view showing a longitudinal section of the speed reducer side of a valve timing control device according to a first embodiment of the present invention, FIG. 2 is an exploded perspective view showing main constituent members provided for this embodiment, and FIG. 1 is an enlarged view of the A portion, FIG. 4 is an enlarged perspective view of the A portion of FIG. 1, FIG. 5 is a perspective view of the sprocket and the reduction gear viewed from the front plate side provided for this embodiment, and FIG. 1, FIG. 7 is a perspective view of the sprocket used in this embodiment, and FIG. 8 is an enlarged view of the C portion of FIG.
〔第1実施形態〕
図1は本発明の第1実施形態におけるバルブタイミング制御装置の減速機側を縦断面して示す側面図、図2は本実施形態に供される主要な構成部材を示す分解斜視図、図3は図1のA部拡大図、図4は図1のA部の拡大斜視図、図5は本実施形態に供されるフロントプレート側からスプロケットと減速機を視た斜視図、図6は図1のB方向から視た図、図7は本実施形態に供されるスプロケットの斜視図、図8は図7のC部拡大図である。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a valve timing control device for an internal combustion engine according to the present invention will be described in detail below with reference to the drawings. In this embodiment, the valve timing control device is applied to the intake side, but it is also possible to apply it to the exhaust side.
[First embodiment]
FIG. 1 is a side view showing a longitudinal section of the speed reducer side of a valve timing control device according to a first embodiment of the present invention, FIG. 2 is an exploded perspective view showing main constituent members provided for this embodiment, and FIG. 1 is an enlarged view of the A portion, FIG. 4 is an enlarged perspective view of the A portion of FIG. 1, FIG. 5 is a perspective view of the sprocket and the reduction gear viewed from the front plate side provided for this embodiment, and FIG. 1, FIG. 7 is a perspective view of the sprocket used in this embodiment, and FIG. 8 is an enlarged view of the C portion of FIG.
バルブタイミング制御装置は、図1及び図2に示すように、駆動回転体であるタイミングスプロケット1(以下、スプロケット1という。)と、シリンダヘッド01上に軸受ブラケット02を介して回転自在に支持されたカムシャフト2と、スプロケット1とカムシャフト2との間に配置されて、機関運転状態に応じて両者1,2の相対回転位相を変更する位相変更機構3と、を備えている。
As shown in FIGS. 1 and 2, the valve timing control device is rotatably supported on a timing sprocket 1 (hereinafter referred to as sprocket 1), which is a drive rotor, and a cylinder head 01 via a bearing bracket 02. and a phase changing mechanism 3 arranged between the sprocket 1 and the camshaft 2 for changing the relative rotational phase between the sprocket 1 and the camshaft 2 according to the engine operating state.
スプロケット1は、図1、図2及び図7に示すように、全体が金属圧粉を焼結して得られる焼結金属材によって円環状一体に形成されており、断面ほぼL字形状に形成された主部材である円環状のスプロケット本体1aと、このスプロケット本体1aの外周に一体に設けられた歯車部である外歯部1bと、を備えている。
As shown in FIGS. 1, 2 and 7, the sprocket 1 is integrally made of a sintered metal material obtained by sintering compacted metal powder, and has a substantially L-shaped cross section. and an annular sprocket body 1a as a main member, and an external toothed portion 1b as a gear portion integrally provided on the outer periphery of the sprocket body 1a.
スプロケット本体1aは、外周のカムシャフト2側の一端部に円周方向のほぼ60°の間隔位置に6つのボス部1cが突出形成されている。この各ボス部1cは、外面が円弧状に形成されていると共に、内部には後述する6本のボルト7の雄ねじ部が螺着する雌ねじ孔1dがそれぞれ形成されている。なお、スプロケット本体1aは、外周に各ボス部1cを設けることによって全体の外径を大きくすることなく、各ボス部1cを除く全体の外径を小さくできるので、スプロケット本体1aの小型化と軽量化が図れる。
The sprocket main body 1a has six bosses 1c projecting from one end of the outer periphery on the side of the camshaft 2 at intervals of approximately 60° in the circumferential direction. Each boss portion 1c has an arcuate outer surface, and is formed therein with a female threaded hole 1d into which the male threaded portion of six bolts 7, which will be described later, are screwed. By providing the bosses 1c on the outer periphery of the sprocket body 1a, the outer diameter of the entire sprocket body 1a excluding the bosses 1c can be reduced without increasing the outer diameter of the entire sprocket body 1a. can be made.
また、スプロケット本体1aは、中央に形成された大径孔を有し、この大径孔の内周面1eと後述する従動回転体である従動部材9の外周面9eとの間に、軸受部である第1ボールベアリング10が設けられている。この第1ボールベアリング10は、従動部材9に対してスプロケット1全体を相対回転可能に軸受けしている。第1ボールベアリング10の具体的な構成については後述する。
The sprocket body 1a has a large-diameter hole formed in the center, and a bearing portion is provided between the inner peripheral surface 1e of the large-diameter hole and the outer peripheral surface 9e of the driven member 9, which is a driven rotating body, which will be described later. A first ball bearing 10 is provided. The first ball bearing 10 supports the entire sprocket 1 with respect to the driven member 9 so as to be relatively rotatable. A specific configuration of the first ball bearing 10 will be described later.
各外歯部1bは、内燃機関のクランクシャフトに有するドリブンギアに巻回された図外のタイミングチェーンから回転力が伝達されるようになっている。
Each external tooth portion 1b is adapted to transmit torque from a timing chain (not shown) wound around a driven gear provided on a crankshaft of an internal combustion engine.
内周面1eは、軸方向の幅長さWが第1ボールベアリング10(外輪10b)の軸方向の幅長さよりも長く形成されている。
The inner peripheral surface 1e is formed so that the axial width W is longer than the axial width of the first ball bearing 10 (outer ring 10b).
なお、本実施形態では、外歯部1bに回転力を伝達する手段として、タイミングチェーンを用いたが、クランクシャフトのドリブンギアを直接、ギア部に構造を変更した外歯部1bに噛み合わせて回転力を伝達させる構成としてもよい。
In this embodiment, a timing chain is used as a means for transmitting a rotational force to the external toothed portion 1b. It is good also as a structure which transmits a rotational force.
また、スプロケット本体1aは、図1、図2及び図7、図8にも示すように、回転軸方向の一端側(前端側)の前端面に環状凹部6が形成されている。
Also, as shown in FIGS. 1, 2, 7 and 8, the sprocket body 1a has an annular concave portion 6 formed in the front end face on one end side (front end side) in the rotation axis direction.
この環状凹部6は、スプロケット本体1aの前端面の径方向内側に形成され、平坦状の底面6aと、該底面6a外周縁から軸方向に形成された環状の内周面6bと、を有している。
The annular recess 6 is formed radially inward of the front end surface of the sprocket body 1a and has a flat bottom surface 6a and an annular inner peripheral surface 6b axially formed from the outer peripheral edge of the bottom surface 6a. ing.
底面6aは、その深さが外歯部1bの軸方向の約半分の深さになっている。環状内周面6bは、直径方向の長さがスプロケット本体1aの外径よりも僅かに大きく形成されている。
The depth of the bottom surface 6a is approximately half the depth of the external toothed portion 1b in the axial direction. The annular inner peripheral surface 6b is formed so that its diametrical length is slightly larger than the outer diameter of the sprocket body 1a.
環状凹部6は、環状内周面6bに対して、後述する減速機13の一部を構成する内歯車構成部材5が回転軸方向からインロー(嵌合)される。
An internal gear forming member 5 forming part of a speed reducer 13, which will be described later, is spigot (fitted) into the annular recessed portion 6 with respect to the annular inner peripheral surface 6b from the rotation axis direction.
内歯車構成部材5は、環状凹部6に軸方向から嵌合された状態でスプロケット本体1aに各ボルト7によって結合されている。この内歯車構成部材5の具体的な構成については後述する。なお、スプロケット本体1aと内歯車構成部材5を一体に設けて、全体を駆動回転体とすることも可能である。
The internal gear forming member 5 is connected to the sprocket main body 1a by bolts 7 while being fitted in the annular recess 6 from the axial direction. A specific configuration of the internal gear forming member 5 will be described later. It is also possible to integrally provide the sprocket main body 1a and the internal gear forming member 5 to form a drive rotor as a whole.
さらに、スプロケット本体1aは、内歯車構成部材5と回転軸方向で反対側の他端側(後端側)に、径方向内側に凸となる環状凸部である第1環状規制部8が一体に設けられている。
Further, the sprocket body 1a is integrally formed with a first annular restricting portion 8, which is an annular convex portion projecting radially inward, on the other end side (rear end side) opposite to the internal gear forming member 5 in the rotation axis direction. is provided in
第1環状規制部8は、ストッパ機構の一部を構成するもので、スプロケット1を焼結成形する際に一体に形成されて、焼結金属材によって所定肉厚の円環状に形成されている。この第1環状規制部8は、スプロケット本体1aのカムシャフト2側の後端縁から径方向内側に延びた円環状に形成されている。この第1環状規制部8は、外径がスプロケット本体1aの外径とほぼ同一に形成されていると共に、内歯車構成部材5側の環状内側面で後述する第1ボールベアリング10の外輪10bのカムシャフト2側の一端面を覆うように配置されている。
The first annular restricting portion 8 constitutes a part of the stopper mechanism, is integrally formed when the sprocket 1 is sintered, and is made of a sintered metal material and has an annular shape with a predetermined thickness. . The first annular restricting portion 8 is formed in an annular shape extending radially inward from the rear edge of the sprocket body 1a on the camshaft 2 side. The first annular restricting portion 8 has an outer diameter substantially equal to the outer diameter of the sprocket main body 1a, and has an annular inner surface on the side of the internal gear forming member 5, which serves as an outer ring 10b of a first ball bearing 10, which will be described later. It is arranged so as to cover one end surface on the side of the camshaft 2 .
第1環状規制部8は、図6及び図7にも示すように、内周面8aの所定位置に2つの円弧状溝部8b、8cを有している。この各円弧状溝部8b、8cは、第1環状規制部8の中心を軸とした約180°の対称位置に設けられ、それぞれの円弧長さがほぼ120°の角度範囲に形成されている。また、内周面8aの両円弧状溝部8b、8cの間には、つまり、円周方向の約180°位置には、2つの第1ストッパ凸部8d、8eが設けられている。この各第1ストッパ凸部8d、8eは、ほぼ円弧形状に形成されて、それぞれの円弧角度が約90°に形成されている。この各第1ストッパ凸部8d、8eは、後述するように、円周方向で対向する各端縁に後述する第2環状規制部19の一つ(一方)の第2ストッパ凸部19aが円周方向から当接して従動部材9の相対回転位置を規制するようになっている。
As shown in FIGS. 6 and 7, the first annular restricting portion 8 has two arcuate grooves 8b and 8c at predetermined positions on the inner peripheral surface 8a. The arcuate grooves 8b and 8c are provided at symmetrical positions of about 180° about the center of the first annular restricting portion 8, and arc lengths are formed in an angular range of about 120°. Two first stopper protrusions 8d and 8e are provided between the arc- shaped grooves 8b and 8c of the inner peripheral surface 8a, that is, at positions of about 180° in the circumferential direction. Each of the first stopper protrusions 8d and 8e is formed in a substantially circular arc shape with an arc angle of approximately 90°. As will be described later, each of the first stopper protrusions 8d and 8e has one (one) second stopper protrusion 19a of a second annular restricting portion 19 (described later) attached to each end edge facing each other in the circumferential direction. The relative rotational position of the driven member 9 is restricted by coming into contact with it from the circumferential direction.
また、前記各ボス部1cの内部に形成された各雌ねじ孔1dは、カムシャフト2側に貫通形成されて、内部にねじ込まれたボルト7の軸部7aの先端の逃げ部として機能するようになっている。なお、各ボルト7は、軸部7aの外周面に雌ねじ孔1dに螺着する雄ねじ部が形成されている。
Each female screw hole 1d formed inside each boss portion 1c is formed through the camshaft 2 so as to function as a relief portion for the tip of the shaft portion 7a of the bolt 7 screwed therein. It's becoming Each bolt 7 is formed with a male threaded portion screwed into the female threaded hole 1d on the outer peripheral surface of the shaft portion 7a.
カムシャフト2は、外周に図外の吸気弁を開作動させる一気筒当たり2つの駆動カムを有している。また、カムシャフト2は、図1に示すように、回転軸方向の一端部2aに軸受ブラケット02を介して軸方向の位置決めを行うフランジ部2bが一体に設けられている。
The camshaft 2 has two drive cams per cylinder on its outer circumference that open intake valves (not shown). As shown in FIG. 1, the camshaft 2 is integrally provided with a flange portion 2b for positioning in the axial direction via a bearing bracket 02 at one end portion 2a in the rotation axis direction.
カムシャフト2は、一端部2aの先端面から内部軸心方向に沿って形成された挿入孔2cを有している。この挿入孔2cは、後述するカムボルト14の軸部14bが挿入されると共に、先端側の内周面の一部にカムボルト14の雄ねじ部14cが締結される雌ねじ部2dが形成されている。
The camshaft 2 has an insertion hole 2c formed along the inner axial direction from the tip surface of the one end portion 2a. A shaft portion 14b of a cam bolt 14, which will be described later, is inserted into the insertion hole 2c, and a female thread portion 2d to which a male thread portion 14c of the cam bolt 14 is fastened is formed on a part of the inner peripheral surface on the distal end side.
内歯車構成部材5の前端面には、カバー部材であるフロントプレート15が設けられている。このフロントプレート15は、図1、図2及び図5に示すように、例えば鉄系金属板を円盤状にプレス成形で打ち抜き加工されたものであって、内歯車構成部材5の前端面にボルト固定される外周部位15aと、該外周部位15aよりも径方向内側であって、後述する保持器24と軸方向で重なる中央部位15bと、該中央部位15bよりも径方向内側であって、中央部位15bよりも軸方向へカムシャフト2と反対側へオフセット変形した内周部位15cと、を有している。
A front plate 15 as a cover member is provided on the front end face of the internal gear component 5 . As shown in FIGS. 1, 2 and 5, the front plate 15 is, for example, stamped from a ferrous metal plate into a disc shape by press molding. A fixed outer peripheral portion 15a, a central portion 15b which is radially inner than the outer peripheral portion 15a and axially overlaps with a retainer 24 described later, and a central portion 15b which is radially inner than the central portion 15b and is central and an inner peripheral portion 15c that is offset-deformed toward the side opposite to the camshaft 2 in the axial direction from the portion 15b.
外周部位15aは、円周方向の等間隔位置に6つのボルト挿入孔15dが貫通形成されている。
Six bolt insertion holes 15d are formed through the outer peripheral portion 15a at equally spaced positions in the circumferential direction.
中央部位15bは、外周部位15aと同一平面状に形成され、カムシャフト2側の内側面が後述する第2ボールベアリング22の外輪22bの一端面に微小隙間を持って対向していると共に、保持器24の後述するケージ部24bの先端面と微小隙間を介して対向配置されている。
The central portion 15b is formed in the same plane as the outer peripheral portion 15a, and the inner surface on the side of the camshaft 2 faces one end surface of the outer ring 22b of the second ball bearing 22 described later with a small gap. It is arranged to face the tip surface of a cage portion 24b of the vessel 24, which will be described later, with a minute gap therebetween.
内周部位15cは、中央部位15bからカムシャフト2と反対側へクランク凸状に折曲変形していると共に、中央に大径な貫通孔15eが形成されている。
The inner peripheral portion 15c is bent from the central portion 15b toward the side opposite to the camshaft 2 in a crank convex shape, and has a large-diameter through hole 15e formed in the center.
そして、外周部位15aの中央部位15b側の位置には、カムシャフト2側の内周面に円環状凹部26が形成されている。この円環状凹部26は、フロントプレート15をプレス成形する際に一緒に成形されたもので、カムシャフト2と軸方向の反対側へ押し出して成形したものである。円環状凹部26は、径方向の幅が後述する保持器24の先端部を軸方向から覆うような大きさに形成されて、円周方向でほぼ均一幅に形成されている。
An annular concave portion 26 is formed on the inner peripheral surface of the camshaft 2 at a position on the central portion 15b side of the outer peripheral portion 15a. The annular concave portion 26 is formed together with the front plate 15 during press forming, and is formed by extruding the camshaft 2 and the opposite side in the axial direction. The annular concave portion 26 has a width in the radial direction that is large enough to axially cover the distal end portion of the retainer 24, which will be described later, and has a substantially uniform width in the circumferential direction.
また、この円環状凹部26の外周縁には、図1、図2及び図5に示すように、6つの凹溝27がフロントプレート15の周方向のほぼ等間隔位置(ほぼ60°位置)に形成されている。この6つの凹溝27は、フロントプレート15をプレス成形する際に円環状凹部26とともに一緒に成形されたもので、外形が山形の半円弧状に形成されている。つまり、各凹溝27は、それぞれフロントプレート15の径方向の外方に(外周面方向)に向かって突出した半円弧状に形成されている。
As shown in FIGS. 1, 2 and 5, six grooves 27 are formed on the outer peripheral edge of the annular recess 26 at approximately equal intervals (approximately 60°) in the circumferential direction of the front plate 15. formed. The six recessed grooves 27 are formed together with the annular recessed portion 26 when the front plate 15 is press-molded, and the external shape is formed in a mountain-shaped semicircular shape. That is, each recessed groove 27 is formed in a semicircular shape protruding radially outward (in the direction of the outer peripheral surface) of the front plate 15 .
さらに、円環状凹部26の底壁には、複数の(本実施形態では6つの)潤滑油排出孔32が貫通形成されている。この各潤滑油排出孔32は、各凹溝27の形成位置と対応した位置に形成されていると共に、それぞれ内径が均一に設定されている。
Furthermore, a plurality of (six in this embodiment) lubricating oil discharge holes 32 are formed through the bottom wall of the annular recess 26 . Each lubricating oil discharge hole 32 is formed at a position corresponding to the formation position of each concave groove 27, and has a uniform inner diameter.
また、外周部位15aに設けられた6つのボルト挿入孔15dは、内歯車構成部材5を介してフロントプレート15を内歯車構成部材5とスプロケット本体1aに結合する6本のボルト7のそれぞれの軸部7aが挿入されるようになっている。また、この各ボルト挿入孔15dは、外周部位15aの周方向で隣接する凹溝27の間に形成されている。
Also, the six bolt insertion holes 15d provided in the outer peripheral portion 15a correspond to the shafts of the six bolts 7 that connect the front plate 15 to the internal gear constituting member 5 and the sprocket body 1a through the internal gear constituting member 5. The portion 7a is adapted to be inserted. Each bolt insertion hole 15d is formed between grooves 27 adjacent in the circumferential direction of the outer peripheral portion 15a.
内歯車構成部材5は、図1、図2に示すように、スプロケット本体1aとは別体に設けられて、全体が鋼材などの比較的硬度の高い金属材によって環状一体に形成されている。内歯車構成部材5は、図1に示すように、その径方向の幅長さLが環状凹部6の底面6aの径方向の幅長さよりも大きく形成されて、環状凹部6内に嵌合した際に内周部がスプロケット本体1aの内周面4より内側に突出している。軸方向の幅長さL1は、環状凹部6の底面6aまでの深さよりも大きく形成されて、嵌合した際に軸方向のカムシャフト2と反対側の端部が環状凹部6の環状内周面6bから軸方向前方に突出している。内歯車構成部材5は、これら径方向の幅長さLや軸方向の幅長さL1によって十分な剛性が確保されている。また、内歯車構成部材5の外径(後述する径方向嵌合面5cの外径)が、環状凹部6の環状内周面6bの内径dとほぼ同じか僅かに大きく形成されている。
As shown in FIGS. 1 and 2, the internal gear component 5 is provided separately from the sprocket main body 1a, and is integrally annularly formed entirely from a relatively hard metal material such as steel. As shown in FIG. 1, the internal gear forming member 5 is fitted in the annular recess 6 so that its radial width L is larger than the radial width of the bottom surface 6a of the annular recess 6. In fact, the inner peripheral portion protrudes inward from the inner peripheral surface 4 of the sprocket main body 1a. The width L1 in the axial direction is formed to be greater than the depth to the bottom surface 6a of the annular recess 6, so that the end opposite to the camshaft 2 in the axial direction touches the annular inner circumference of the annular recess 6 when fitted. It protrudes axially forward from the surface 6b. Sufficient rigidity is ensured for the internal gear forming member 5 by the width L in the radial direction and the width L1 in the axial direction. Further, the outer diameter of the internal gear forming member 5 (outer diameter of a radial fitting surface 5c to be described later) is formed to be substantially the same as or slightly larger than the inner diameter d of the annular inner peripheral surface 6b of the annular concave portion 6. As shown in FIG.
内歯車構成部材5は、内周面の軸方向沿って形成された複数の内歯5aと、軸方向のカムシャフト2側の一側面であって、環状凹部6の底面6aに軸方向から当接する軸方向当接面5bと、この軸方向当接面5bよりも径方向外側で環状凹部6の環状の内周面6bに軸方向から嵌合する径方向嵌合面5cと、を有している。
The internal gear forming member 5 has a plurality of internal teeth 5a formed along the axial direction of the inner peripheral surface, and one side surface on the side of the camshaft 2 in the axial direction, which axially contacts the bottom surface 6a of the annular recess 6. It has an axial abutment surface 5b that contacts with the axial direction abutment surface 5b, and a radial fitting surface 5c that axially fits into the annular inner peripheral surface 6b of the annular recess 6 radially outside the axial abutment surface 5b. ing.
各内歯5aは、内周面の全体に波形状に形成されて、それぞれの円弧状の内面で後述する複数の噛み合い部材であるローラ23を回転可能に噛み合い保持している。内歯5aには、例えば、この各内歯5aの切削加工後に高周波焼き入れなどの一般的な熱処理が施されている。
Each inner tooth 5a is formed in a corrugated shape on the entire inner peripheral surface, and rotatably engages and holds rollers 23, which are a plurality of engaging members to be described later, on each arc-shaped inner surface. General heat treatment such as induction hardening is applied to the internal teeth 5a after cutting the internal teeth 5a.
軸方向当接面5bは、平坦状の規制面として形成されて、内歯車構成部材5が環状凹部6に軸方向から嵌合した際に、環状凹部6の底面6a全体に密着状態に当接する。
The axial contact surface 5b is formed as a flat restricting surface, and when the internal gear component 5 is axially fitted into the annular recess 6, the axial contact surface 5b contacts the entire bottom surface 6a of the annular recess 6 in close contact. .
径方向嵌合面5cは、外周面全体が平坦な円環状に形成されて、内歯車構成部材5が環状凹部6に軸方向から嵌合した際に、環状凹部6の内周面6bに対して機械的な嵌め合いである中間嵌めによって軸方向から嵌合している。ただし、中間嵌めとしては、しまり嵌めに近い圧入嵌合であってもよい。また、この径方向嵌合面5cの環状凹部6の内周面6bへの嵌合(圧入嵌合も含む)によってスプロケット1と内歯車構成部材5との同軸性を確保している。
The radial fitting surface 5c is formed in an annular shape whose entire outer peripheral surface is flat. It is fitted from the axial direction by an intermediate fit, which is a mechanical fit. However, the intermediate fitting may be press-fitting, which is similar to tight fitting. Further, the coaxiality between the sprocket 1 and the internal gear forming member 5 is ensured by fitting (including press-fitting) the radial fitting surface 5c to the inner peripheral surface 6b of the annular recessed portion 6 .
内歯車構成部材5は、スプロケット本体1aの雌ねじ孔1dと対応した位置に、各ボルト7の軸部7aが挿入される6つのボルト挿入孔5eが軸方向に沿って貫通形成されている。
The internal gear component 5 has six bolt insertion holes 5e through which the shaft portions 7a of the bolts 7 are inserted, at positions corresponding to the female screw holes 1d of the sprocket body 1a.
図9は本実施形態に供される従動部材の斜視図である。
FIG. 9 is a perspective view of a driven member used in this embodiment.
従動部材9は、図1、図2及び図9に示すように、減速機13の保持器24とは別体に形成されている。従動部材9は、金属粉末を圧縮して焼結成形される焼結金属によって全体が肉厚な円盤状に形成されている。従動部材9は、円板部である円板状本体9aと、該円板状本体9aの中央に貫通形成されたカムボルト挿入孔9bと、円板状本体9aのカムシャフト2側の後端部に設けられ、第1環状規制部8と共にストッパ機構を構成する第2環状規制部19と、を有している。
The driven member 9 is formed separately from the retainer 24 of the speed reducer 13, as shown in FIGS. The driven member 9 is made of a sintered metal obtained by compressing metal powder and sintering to form a thick disc. The driven member 9 includes a disk-shaped main body 9a which is a disk portion, a cam bolt insertion hole 9b formed through the center of the disk-shaped main body 9a, and a rear end portion of the disk-shaped main body 9a on the camshaft 2 side. and a second annular restricting portion 19 which is provided at the first annular restricting portion 8 and constitutes a stopper mechanism together with the first annular restricting portion 8 .
円板状本体9aは、第2環状規制部19の内周側、つまり第2環状規制部19によって囲まれた内側に、カムシャフト2の一端部2aが軸方向から嵌合される円形状の嵌合溝9cが形成されている。また、円板状本体9aは、嵌合溝9cの底面所定位置にカムシャフト2に設けられた図外の位置決め用のピンが挿入される位置決め用のピン孔9dが貫通形成されている。また、円板状本体9aは、外周面9eとスプロケット本体1aの内周面1eとの間に、前述した第1ボールベアリング10が配置されている。
The disk-shaped main body 9a has a circular shape in which one end portion 2a of the camshaft 2 is axially fitted to the inner peripheral side of the second annular restricting portion 19, that is, the inner side surrounded by the second annular restricting portion 19. A fitting groove 9c is formed. A positioning pin hole 9d into which a positioning pin (not shown) provided on the camshaft 2 is inserted is formed through the disk-shaped main body 9a at a predetermined position on the bottom surface of the fitting groove 9c. The first ball bearing 10 described above is arranged between the outer peripheral surface 9e of the disk-shaped main body 9a and the inner peripheral surface 1e of the sprocket main body 1a.
カムボルト挿入孔9bは、カムボルト14の軸部14b(中間軸部14g)が僅かな隙間をもって挿入可能になっている。
The shaft portion 14b (intermediate shaft portion 14g) of the cam bolt 14 can be inserted into the cam bolt insertion hole 9b with a slight gap.
第2環状規制部19は、図2及び図9に示すように、円板状本体9aの外径よりも小さな円環状に形成されて、円板状本体9aと段差径状に形成されている。また、第2環状規制部19は、外周面の所定位置に回転中心Pから径方向外側に向かって突出した突起部である一対の第2ストッパ凸部19a、19bが一体に設けられている。この各第2ストッパ凸部19a、19bは、回転中心Pを軸とした180°の対称位置に設けられて、第1環状規制部8の各円弧状溝部8b、8c内に配置されている。各第2ストッパ凸部19a、19bは、それぞれの基部(根元部)の両側縁に応力集中を低減させる円弧状の切欠溝が形成されている。
As shown in FIGS. 2 and 9, the second annular restricting portion 19 is formed in an annular shape smaller than the outer diameter of the disk-shaped main body 9a, and formed in a stepped shape with the disk-shaped main body 9a. . A pair of second stopper protrusions 19a and 19b, which are protrusions protruding radially outward from the rotation center P, are integrally provided at predetermined positions on the outer peripheral surface of the second annular restricting portion 19. As shown in FIG. The second stopper protrusions 19a and 19b are provided at 180° symmetrical positions about the rotation center P and are arranged in the arcuate grooves 8b and 8c of the first annular restricting portion 8. As shown in FIG. Each of the second stopper projections 19a and 19b has arc-shaped notch grooves that reduce stress concentration on both side edges of the respective base portions (root portions).
そして、従動部材9が、スプロケット1に対して図6中、右回転方向へ最大に相対回転した際に、一方の第2ストッパ凸部19aの周方向の一側縁が、一方の第1ストッパ凸部8dの対向側縁に当接してそれ以上の相対回転を機械的に規制する。また、従動部材9が図6中、左方向へ最大に相対回転した際に、一方の第2ストッパ凸部19aの周方向の他側縁が、他方の第1ストッパ凸部8eの対向側縁に当接してそれ以上の相対回転を機械的に規制するようになっている。
Then, when the driven member 9 rotates to the maximum relative to the sprocket 1 in the right rotation direction in FIG. It abuts against the opposing side edge of the projection 8d to mechanically restrict further relative rotation. Further, when the driven member 9 is relatively rotated to the left in FIG. to mechanically restrict further relative rotation.
なお、従動部材9が、図6に示すように、右方向へ相対回転して一方の第2ストッパ凸部19aの一側縁が一方の第1ストッパ凸部8dの対向側縁に当接した際には、他方の第2ストッパ凸部19bは所定の隙間をもって他方の第1ストッパ凸部8eの対向側縁に当接しない。また、従動部材9が、図6中、左方向へ相対回転して一方の第2ストッパ凸部19aの他側縁が他方の第1ストッパ凸部8eの対向側縁に当接した際には、他方の第2ストッパ凸部19bは所定の隙間をもって一方の第1ストッパ凸部8dの対向側縁には当接しないようになっている。
In addition, as shown in FIG. 6, the driven member 9 relatively rotates to the right, and one side edge of one of the second stopper projections 19a comes into contact with the opposing side edge of one of the first stopper projections 8d. In practice, the other second stopper projection 19b does not abut the opposing side edge of the other first stopper projection 8e with a predetermined gap. Further, when the driven member 9 relatively rotates to the left in FIG. The other second stopper protrusion 19b is arranged so as not to abut against the opposing side edge of the one first stopper protrusion 8d with a predetermined gap.
また、第2環状規制部19の外周面19cとスプロケット1の第1環状規制部8の内周面8aとの間には、図1、図3及び図6に示すように、カムシャフト2側に開放された一対の開口部11が形成されている。この開口部11は、第1環状規制部8の各第1ストッパ凸部8d、8eの形成位置を除いた2箇所に周方向に沿った円弧凹状に形成されている。
Between the outer peripheral surface 19c of the second annular restricting portion 19 and the inner peripheral surface 8a of the first annular restricting portion 8 of the sprocket 1, as shown in FIGS. A pair of openings 11 are formed that are open to. The openings 11 are formed in arc concave shapes along the circumferential direction at two locations of the first annular restricting portion 8 excluding the positions where the first stopper projections 8d and 8e are formed.
第1ボールベアリング10は、図1~図3及び図6に示すように、円板状本体9aの外周面9eとスプロケット本体1aの内周面1eとの間に配置されており、円板状本体9aの外周面9eに圧入固定された内輪10aと、スプロケット本体1aの内周面1eに圧入固定された外輪10bと、内外輪10a、10bの間にケージ10dを介して転動可能に設けられた複数のボール10cと、を有している。第1ボールベアリング10は、内輪10aとボール10c及びケージ10dが前記開口部11に軸方向から臨んでいる。
The first ball bearing 10, as shown in FIGS. An inner ring 10a press-fitted and fixed to the outer peripheral surface 9e of the main body 9a, an outer ring 10b press-fitted and fixed to the inner peripheral surface 1e of the sprocket main body 1a, and a cage 10d provided between the inner and outer rings 10a and 10b so as to be able to roll. and a plurality of balls 10c. In the first ball bearing 10, the inner ring 10a, the balls 10c and the cage 10d face the opening 11 in the axial direction.
内輪10aは、回転軸方向の長さが円板状本体9aの外周面9eの軸方向の幅長さよりも長く形成されて、回転軸方向のカムシャフト2側の一端面が各第2ストッパ凸部19a、19bの各内側面で軸方向の一方の位置決めがなされている。また、回転軸方向の他端面は、後述する保持器24の外周部のカムシャフト2側の平坦な外面24dで軸方向の他方の位置決めがなされている。
The inner ring 10a is formed so that the length in the direction of the rotation axis is longer than the width length in the axial direction of the outer peripheral surface 9e of the disk-shaped main body 9a, and one end face on the side of the camshaft 2 in the direction of the rotation axis is convex to each of the second stoppers. One axial positioning is performed on each inner surface of the portions 19a and 19b. The other end face in the rotation axis direction is positioned in the other axial direction by a flat outer surface 24d on the camshaft 2 side of the outer peripheral portion of the retainer 24, which will be described later.
外輪10bは、回転軸方向のカムシャフト2側の一端面が第1環状規制部8の内側面8fで軸方向の一方の位置決めがなされ、他端面が環状スペーサ28を介して内歯車構成部材5のカムシャフト2側の一側面で軸方向の他方の位置決めがなされている。
One end face of the outer ring 10b on the side of the camshaft 2 in the rotation axis direction is positioned on one side in the axial direction by the inner side face 8f of the first annular restricting portion 8, and the other end face is positioned on the internal gear forming member 5 via the annular spacer 28. The other positioning in the axial direction is performed on one side surface of the camshaft 2 side.
環状スペーサ28は、図1に示すように、外周面がスプロケット本体1aの内周面1eに嵌合保持されていると共に、内歯車構成部材5の軸方向の一端面と第1ボールベアリング10の外輪10bの一端面との間にそれぞれ軸方向から当接配置されている。これによって、外輪10bは、環状スペーサ28を介して内歯車構成部材5と第1環状規制部8の内側面8fによって軸方向から位置決めされている。
As shown in FIG. 1, the annular spacer 28 has an outer peripheral surface that is fitted and held by the inner peripheral surface 1e of the sprocket body 1a, and also has one axial end surface of the internal gear component 5 and the first ball bearing 10. They are arranged in axial contact with one end surface of the outer ring 10b. As a result, the outer ring 10b is axially positioned by the internal gear forming member 5 and the inner side surface 8f of the first annular restricting portion 8 via the annular spacer 28. As shown in FIG.
なお、この環状スペーサ28は、これに代えて、内歯車構成部材5の従動部材9側の内側面の内周縁に、環状スペーサ28と軸方向長さと同じ長さでかつ同じ内外径の円環状の突起を一体に設けることも可能である。
Instead of this, the annular spacer 28 is provided on the inner peripheral edge of the inner surface of the internal gear constituting member 5 on the driven member 9 side. It is also possible to integrally provide the projection of the .
また、円板状本体9aの外周部の第1環状規制部8側の一側面に、第1凹部29が形成されている。この第1凹部29は、第2環状規制部19の径方向外側の一側面であって、前記各第2ストッパ凸部19a、19bを除いた2つの部位に周方向に沿った円弧溝状に形成されている。この第1凹部29は、前述した開口部11に面しており、この開口部11に連通状態に臨んでいると共に、外周部が第1ボールベアリング10の内輪10aの外周面に臨んでいる。
A first concave portion 29 is formed on one side surface of the outer peripheral portion of the disk-shaped main body 9a on the side of the first annular restricting portion 8 . The first concave portion 29 is formed on one side surface of the second annular restricting portion 19 on the radially outer side, and is formed in two portions excluding the second stopper convex portions 19a and 19b in the shape of circular arc grooves along the circumferential direction. formed. The first concave portion 29 faces the opening portion 11 described above and communicates with the opening portion 11 , and the outer peripheral portion faces the outer peripheral surface of the inner ring 10 a of the first ball bearing 10 .
従動部材9は、嵌合溝9cにカムシャフト2の一端部2aが軸方向から嵌合配置した状態で、カムボルト14によって保持器24と一緒にカムシャフト2の一端部2aに軸方向から締め付け固定されるようになっている。
The driven member 9 is axially tightened and fixed to the one end 2a of the camshaft 2 together with the retainer 24 by the cam bolt 14 while the one end 2a of the camshaft 2 is axially fitted into the fitting groove 9c. It is designed to be
前に戻って、スプロケット本体1aの第1環状規制部8は、図1、図3、図4及び図7、図8に示すように、内周面8aの従動部材9側の内端縁に第2凹部30が形成されている。この第2凹部30は、内周面8aの内端縁を周方向に沿って円環状に切欠形成されたもので、横断面ほぼ円弧状に形成されている。また、第2凹部30は、第1凹部29とともに開口部11に臨んでいると共に、第1ボールベアリング10の内輪10aと外輪10bとの間、具体的には外輪10bと各ボール10cとの間の空間部に開口指向している。
1, 3, 4, 7 and 8, the first annular restricting portion 8 of the sprocket body 1a is formed on the inner edge of the inner peripheral surface 8a on the driven member 9 side. A second recess 30 is formed. The second concave portion 30 is formed by cutting an inner edge of the inner peripheral surface 8a along the circumferential direction in an annular shape, and has a substantially arcuate cross section. The second recess 30 faces the opening 11 together with the first recess 29, and is located between the inner ring 10a and the outer ring 10b of the first ball bearing 10, specifically between the outer ring 10b and the balls 10c. The opening is oriented to the space of
カムボルト14は、図1及び図2に示すように、ほぼ円柱状の頭部14aと、この頭部14aに一体に固定された軸部14bと、この軸部14bの外周面に形成されて、カムシャフト2の雌ねじ部2dに螺着する雄ねじ部14cと、を有している。
As shown in FIGS. 1 and 2, the cam bolt 14 includes a substantially cylindrical head portion 14a, a shaft portion 14b integrally fixed to the head portion 14a, and an outer peripheral surface of the shaft portion 14b. and a male threaded portion 14c screwed onto the female threaded portion 2d of the camshaft 2 .
頭部14aは、先端部に六角レンチなどの工具が挿入される六角形の工具穴14dが形成されている。また、頭部14aは、外周面全体に高周波焼き入れなどの熱処理が施されて、硬度が他の部位よりも高くなっている。
A hexagonal tool hole 14d into which a tool such as a hexagonal wrench is inserted is formed at the tip of the head 14a. In addition, the head 14a is subjected to heat treatment such as induction hardening on the entire outer peripheral surface, and has a higher hardness than other parts.
また、頭部14aの高硬度の外周面には、ニードルベアリング25の各ニードルローラ25aが転動可能に支持されている。座面14fは、カムボルト14の雄ねじ部14cをカムシャフト2の雌ねじ部2dにねじ込んで締結した際に、保持器24の内周部に形成されたボルト孔24cの孔縁よりも外側の対向面に着座するようになっている。
Each needle roller 25a of a needle bearing 25 is rotatably supported on the hard outer peripheral surface of the head 14a. The seating surface 14f is a facing surface outside the rim of the bolt hole 24c formed in the inner peripheral portion of the retainer 24 when the male threaded portion 14c of the cam bolt 14 is screwed into the female threaded portion 2d of the camshaft 2 for fastening. to sit on.
軸部14bは、頭部14aとの付け根部、つまり、頭部14aの軸方向の座面14f中央に、大径な中間軸部14gが一体に設けられている。
The shaft portion 14b is integrally provided with a large-diameter intermediate shaft portion 14g at the base of the head portion 14a, that is, at the center of the bearing surface 14f in the axial direction of the head portion 14a.
位相変更機構3は、図1及び図2に示すように、スプロケット1の前端側に配置された電動モータ12と、この電動モータ12からオルダム継手を介して伝達された回転速度を減速してカムシャフト2に伝達する減速機13と、から主として構成されている。
As shown in FIGS. 1 and 2, the phase changing mechanism 3 includes an electric motor 12 arranged on the front end side of the sprocket 1, and a cam by reducing the rotational speed transmitted from the electric motor 12 via an Oldham coupling. and a speed reducer 13 for transmission to the shaft 2 .
電動モータ12は、いわゆるブラシレスのDCモータであって、図外のチェーンケースに固定される有底円筒状のモータハウジング16と、このモータハウジング16の内周面に設けられて、内部にコイルなどが収容された図外のモータステータと、コイルの内周側に配置されたモータ軸17と、該モータ軸17の外周に固定された図外の永久磁石と、モータハウジング16のスプロケット1と反対側の前端部に設けられた制御部18と、を有している。
The electric motor 12 is a so-called brushless DC motor, and includes a bottomed cylindrical motor housing 16 fixed to a chain case (not shown), and a motor housing 16 provided on the inner peripheral surface of the motor housing 16 and having a coil or the like inside. , a motor shaft 17 arranged on the inner circumference side of the coil, a permanent magnet (not shown) fixed to the outer circumference of the motor shaft 17, and a motor housing 16 opposite to the sprocket 1 and a control unit 18 provided at the front end of the side.
モータハウジング16は、ほぼカップ状に形成されて、前端部(底壁)のほぼ中央にモータ軸17が挿入される貫通孔が形成されている。一方、後端部の外周には、径方向外側に突出したフランジ部16aが一体に設けられている。このフランジ部16aは、円周方向の約120°位置に3つのブラケット片16bが一体に設けられている。また、この3つのブラケット片16bには、図外のチェーンケースに結合するためのボルトが挿通されるボルト挿通孔16cがそれぞれ貫通形成されている。
The motor housing 16 is formed substantially in the shape of a cup, and a through hole into which the motor shaft 17 is inserted is formed substantially in the center of the front end (bottom wall). On the other hand, a radially outwardly protruding flange portion 16a is integrally provided on the outer periphery of the rear end portion. The flange portion 16a is integrally provided with three bracket pieces 16b at approximately 120° positions in the circumferential direction. The three bracket pieces 16b are formed with bolt insertion holes 16c through which bolts for coupling to a chain case (not shown) are inserted.
さらに、フランジ部16aの円周方向の各ブラケット片16bの間には、3つのボルト34が挿通する別異の3つのボルト挿通孔が形成されている。各ボルト34は、モータハウジング16に制御部18を結合するようになっている。なお、ブラケット片16bやボルト挿通孔16cなどはさらに増加することも可能である。
Further, three different bolt insertion holes through which three bolts 34 are inserted are formed between the bracket pieces 16b in the circumferential direction of the flange portion 16a. Each bolt 34 is adapted to couple the controller 18 to the motor housing 16 . It is also possible to further increase the number of bracket pieces 16b and bolt insertion holes 16c.
モータステータは、主として合成樹脂材の樹脂部によって一体に形成されて、内部にコイルがモールドにより固定されている。
The motor stator is integrally formed mainly by a resin part made of a synthetic resin material, and the coil is fixed inside by molding.
モータ軸17は、金属材によって円柱状に形成されて、減速機13側の先端部17aの外面には接線方向に沿って形成された図外の二面幅部を有している。また、先端部17aの先端縁側には、二面幅部に対して直交する方向から切り欠かれた一対の嵌着溝が形成されている。この両嵌着溝には、後述する中間部材31のカムボルト14側への移動を規制する図外のストッパ部材が径方向から嵌着固定されている。
The motor shaft 17 is formed of a metal material in a cylindrical shape, and has a width across flats portion (not shown) formed along the tangential direction on the outer surface of the tip portion 17a on the speed reducer 13 side. A pair of fitting grooves are formed on the tip edge side of the tip portion 17a by notching in a direction orthogonal to the width across flat portion. A stopper member (not shown) for restricting the movement of an intermediate member 31 (to be described later) toward the cam bolt 14 is radially fitted and fixed in both fitting grooves.
また、モータ軸17は、先端部17aがカムボルト14の頭部14aに回転軸方向から僅かな隙間をもって近接配置されている。また、先端部17aは、ストッパ部材を含めた全体が工具穴14dの内部に軸方向から挿入可能になっている。
In addition, the motor shaft 17 is arranged so that the tip portion 17a is close to the head portion 14a of the cam bolt 14 with a slight gap from the rotation axis direction. Further, the tip portion 17a as a whole, including the stopper member, can be axially inserted into the tool hole 14d.
ストッパ部材は、Cリング状に形成されて、自身の弾性力によって拡径方向及び縮径方向へ弾性変形可能になっている。
The stopper member is formed in the shape of a C-ring and is elastically deformable in the radially expanding direction and the radially contracting direction by its own elastic force.
制御部18は、合成樹脂材によってボックス状に形成されたハウジング18aを有している。このハウジング18aの内部には、電動モータ12へ給電するバスバーなどの通電回路や、モータ軸17の回転位置を検出する回転センサや、通電量を制御する回路基板などが収容配置されている。また、制御部18は、ハウジング18aに通電回路に電気的に接続される給電用コネクタ18bと図外の信号用コネクタが一体に設けられている。
The control unit 18 has a box-shaped housing 18a made of a synthetic resin material. Inside the housing 18a, an energization circuit such as a busbar for supplying power to the electric motor 12, a rotation sensor for detecting the rotational position of the motor shaft 17, a circuit board for controlling the amount of energization, and the like are housed and arranged. In the control unit 18, a power supply connector 18b electrically connected to an energizing circuit and a signal connector (not shown) are provided integrally with the housing 18a.
給電用コネクタ18bは、内部に突出された端子が図外のコントロールユニットに雌端子を介して電源であるバッテリーに接続されている。一方、信号用コネクタは、内蔵された端子がコントロールユニットに雌端子を介して接続され、回転センサで検出された回転角信号をコントロールユニットに出力するようになっている。
The power supply connector 18b has an internally protruding terminal connected to a battery as a power source via a female terminal of a control unit (not shown). On the other hand, the signal connector has a built-in terminal connected to the control unit via a female terminal, and outputs a rotation angle signal detected by the rotation sensor to the control unit.
また、モータ軸17の先端部17aには、中間部材31が設けられている。この中間部材31は、減速機13に接続される継手であるオルダム継手の一部を構成するものであって、図1及び図2に示すように、モータ軸17の先端部17aに固定される筒状基部31aを有している。この筒状基部31aは、円形状の外面の両側、つまり円周方向の180°位置に二面幅状の一対の平面部を有しており、これによって、外形がほぼ長円状に形成されている。
An intermediate member 31 is provided at the tip portion 17a of the motor shaft 17. The intermediate member 31 constitutes a part of an Oldham coupling which is a joint connected to the speed reducer 13, and is fixed to the tip portion 17a of the motor shaft 17 as shown in FIGS. It has a cylindrical base 31a. The cylindrical base portion 31a has a pair of flat surfaces on both sides of the circular outer surface, that is, at 180° positions in the circumferential direction. ing.
また筒状基部31aの中央位置には、モータ軸17の先端部17aが挿入される貫通孔が形成されている。
A through hole into which the tip portion 17a of the motor shaft 17 is inserted is formed at the central position of the cylindrical base portion 31a.
この貫通孔は、円形状の内周面にモータ軸17の回転軸から径方向に沿った二面幅状の一対の対向面が形成されている。これによって、筒状基部31aの外形と相似形の径方向に長い長円形状に形成されている。したがって、中間部材31は、長円状の貫通孔を介してモータ軸17の先端部17aに対して径方向へ移動可能になっている。
The through hole has a circular inner peripheral surface on which a pair of opposing surfaces extending in the radial direction from the rotating shaft of the motor shaft 17 are formed. As a result, the outer shape of the cylindrical base portion 31a is similar to the shape of an elongated oval in the radial direction. Therefore, the intermediate member 31 is radially movable with respect to the tip portion 17a of the motor shaft 17 through the oval through hole.
一対の平面部の長手方向のほぼ中央位置には、一対の突出部である2つの伝達キー33a、33bが一体に設けられている。各伝達キー33a、33bは、ほぼ矩形板状に形成されて、筒状基部31aの2つの平面部から径方向外側に向かって突出している。
Two transmission keys 33a and 33b, which are a pair of projecting portions, are integrally provided at approximately the central position in the longitudinal direction of the pair of flat portions. Each transmission key 33a, 33b is formed in a substantially rectangular plate shape and protrudes radially outward from two plane portions of the cylindrical base portion 31a.
減速機13は、電動モータ12とは軸方向から分離独立して設けられ、各構成部材が従動部材9とフロントプレート15との間に収容配置されている。すなわち、減速機13は、図1及び図2に示すように、スプロケット本体1aの内部に一部が配置された入力軸である円筒状の偏心軸部材21と、該偏心軸部材21の外周に固定された第2ボールベアリング22と、該第2ボールベアリング22の外周に設けられ、内歯車構成部材5の各内歯5a内に転動自在に保持された複数のローラ23と、従動部材9の円盤状溝部9g側に設けられ、複数のローラ23を転動方向に保持しつつ径方向の移動を許容する保持器24と、から主として構成されている。
The speed reducer 13 is provided separately and independently from the electric motor 12 in the axial direction, and each constituent member is housed between the driven member 9 and the front plate 15 . That is, as shown in FIGS. 1 and 2, the speed reducer 13 includes a cylindrical eccentric shaft member 21 as an input shaft partly arranged inside the sprocket body 1a, and an outer circumference of the eccentric shaft member 21. a fixed second ball bearing 22; a plurality of rollers 23 provided on the outer periphery of the second ball bearing 22 and held rollably within the internal teeth 5a of the internal gear component 5; and a retainer 24 which is provided on the side of the disk-shaped groove portion 9g of , and which retains the plurality of rollers 23 in the rolling direction and permits movement in the radial direction.
偏心軸部材21は、カムボルト14の頭部14aの外周に設けられたニードルベアリング25の外周に配置された偏心カム軸21aと、該偏心カム軸21aの電動モータ12側に有する連結部である大径な筒状部21bと、を有している。
The eccentric shaft member 21 includes an eccentric cam shaft 21a arranged on the outer periphery of a needle bearing 25 provided on the outer periphery of the head portion 14a of the cam bolt 14, and a large connecting portion of the eccentric cam shaft 21a on the electric motor 12 side. and a cylindrical portion 21b having a diameter.
偏心カム軸21aは、軸方向の長さがニードルベアリング25の軸方向の長さよりも僅かに長い円筒状に形成されている。また、偏心カム軸21aは、周方向全体の肉厚tが厚薄変化して軸心Xが電動モータ12のモータ軸17の軸心Yに対して僅かに偏心している(図1参照)。
The eccentric cam shaft 21a is formed in a cylindrical shape whose axial length is slightly longer than that of the needle bearing 25 in its axial direction. Also, the eccentric cam shaft 21a has a thickness t in the circumferential direction as a whole, and the axis X is slightly eccentric with respect to the axis Y of the motor shaft 17 of the electric motor 12 (see FIG. 1).
筒状部21bは、均一な肉厚でほぼ真円状に形成されていると共に、偏心カム軸21aよりも僅かに肉厚に形成されている。この筒状部21bは、スプロケット本体1aの内部からフロントプレート15の貫通孔15eを介して電動モータ12方向へ突出している。この筒状部21bは、中間部材31と共にオルダム継手を構成している。
The cylindrical portion 21b has a uniform thickness and is formed in a substantially circular shape, and is slightly thicker than the eccentric cam shaft 21a. The cylindrical portion 21b protrudes from the inside of the sprocket main body 1a toward the electric motor 12 through the through hole 15e of the front plate 15. As shown in FIG. The tubular portion 21b constitutes an Oldham coupling together with the intermediate member 31. As shown in FIG.
つまり、筒状部21bは、内部に中間部材31の筒状基部31aが軸方向から嵌合可能な二面幅状の嵌合孔21dが形成されている。嵌合孔21dの内周面の円周方向のほぼ180°のそれぞれの位置には、二面幅を構成する三日月状の一対の図外の凸部が設けられている。また、この一対の凸部の図1中の上下のほぼ中央位置には、筒状基部31aの2つの伝達キー33a、33bが回転軸方向から嵌合可能な一対のキー溝21c、21cが形成されている。この各キー溝21c、21cは、各伝達キー33a、33bと相似形の矩形状に形成されて、その深さが各伝達キー33a、33bの幅とほぼ同じ長さに設定されている。
That is, the cylindrical portion 21b is formed with a fitting hole 21d having a width across flats into which the cylindrical base portion 31a of the intermediate member 31 can be fitted from the axial direction. A pair of crescent-shaped protrusions (not shown) forming a width across flats are provided at respective positions of approximately 180° in the circumferential direction of the inner peripheral surface of the fitting hole 21d. 1, a pair of key grooves 21c and 21c into which the two transmission keys 33a and 33b of the cylindrical base 31a can be fitted from the rotation axis direction are formed. It is Each keyway 21c, 21c is formed in a rectangular shape similar to each transmission key 33a, 33b, and its depth is set to be approximately the same length as the width of each transmission key 33a, 33b.
ニードルベアリング25は、カムボルト14の頭部14aの外周面14eを転動する複数のニードルローラ25aと、偏心カム軸21aの内周面に形成された段差面に固定されて、内周面にニードルローラ25aを転動可能に保持する複数の溝部を有する円筒状のシェル25bと、を有している。
The needle bearing 25 is fixed to a plurality of needle rollers 25a rolling on the outer peripheral surface 14e of the head 14a of the cam bolt 14 and to a stepped surface formed on the inner peripheral surface of the eccentric cam shaft 21a. and a cylindrical shell 25b having a plurality of grooves for rollingly holding the roller 25a.
第2ボールベアリング22は、図1及び図2に示すように、ニードルベアリング25の径方向位置で全体がほぼオーバーラップする状態に配置されている。また、第2ボールベアリング22は、内輪22aと、外輪22b、該内外輪22a、22bとの間に配置された複数のボール22cと、該各ボール22cを保持するケージ22dと、から構成されている。
As shown in FIGS. 1 and 2, the second ball bearing 22 is arranged in such a manner that the needle bearing 25 and the needle bearing 25 substantially overlap each other. The second ball bearing 22 is composed of an inner ring 22a, an outer ring 22b, a plurality of balls 22c arranged between the inner and outer rings 22a and 22b, and a cage 22d holding the balls 22c. there is
内輪22aは、偏心カム軸21aの外周面に圧入固定されているのに対して、外輪22bは、軸方向で固定されることなくフリーな状態になっている。つまり、この外輪22bは、軸方向の電動モータ12側の一端面がフロントプレート15の内周部位15cの内側面に微小隙間C1を介して非接触状態になっている。また、外輪22bの軸方向の他端面も、これに対向する保持器24の後述する内面24eに微小隙間を介して非接触状態になっている。これによって、外輪22bは、軸方向の一端面が内周部位15cによって一方の軸方向の移動が規制され、軸方向の他端面が内面24eによって他方の軸方向の過度な移動が規制されるようになっている。
The inner ring 22a is press-fitted and fixed to the outer peripheral surface of the eccentric camshaft 21a, while the outer ring 22b is in a free state without being fixed in the axial direction. That is, one end face of the outer ring 22b on the side of the electric motor 12 in the axial direction is in a non-contact state with the inner face of the inner peripheral portion 15c of the front plate 15 via the minute gap C1. Further, the other axial end surface of the outer ring 22b is also in a non-contact state with a small gap interposed between an inner surface 24e of the retainer 24, which faces the outer ring 22b and will be described later. As a result, the outer ring 22b has one axial end face restricted from moving in one axial direction by the inner peripheral portion 15c, and the other axial end face restricted from excessive movement in the other axial direction by the inner surface 24e. It has become.
外輪22bは、外周面に各ローラ23が転動可能に当接している。また、外輪22bの外周面と保持器24の各ローラ23の外面との間の一部に、図外の三日月状のクリアランスが形成されている。したがって、第2ボールベアリング22は、クリアランスを介して全体が偏心カム軸21aの偏心回転に伴って径方向へ偏心動可能になっている。
The outer ring 22b is in contact with the outer peripheral surface so that each roller 23 can roll. A crescent-shaped clearance (not shown) is formed in a portion between the outer peripheral surface of the outer ring 22b and the outer surface of each roller 23 of the retainer 24. As shown in FIG. Therefore, the entire second ball bearing 22 is eccentrically movable in the radial direction with the eccentric rotation of the eccentric camshaft 21a through the clearance.
保持器24は、金属板をプレス成形によってほぼ円盤状に形成されて、従動部材9の円盤状溝部9g側の前端側に当接配置されている。つまり、この保持器24は、従動部材9の円板状本体9aの円盤状溝部9gの底面に軸方向から当接する円盤状の基部24aと、該基部24aの外周に一体に設けられて、噛み合い部材である複数のローラ23を保持するケージ部24bと、を有している。保持器24は、全体のプレス成形後に例えば高周波焼き入れなどを行って従動部材9の硬度よりも高くなっている。
The retainer 24 is formed by press-molding a metal plate into a substantially disk shape, and is disposed in contact with the front end side of the driven member 9 on the side of the disk-shaped groove portion 9g. That is, the retainer 24 is provided integrally with a disk-shaped base portion 24a that axially abuts against the bottom surface of the disk-shaped groove portion 9g of the disk-shaped main body 9a of the driven member 9, and the outer periphery of the base portion 24a. and a cage portion 24b that holds a plurality of rollers 23 that are members. The retainer 24 is made higher in hardness than the driven member 9 by, for example, induction hardening after the entire press molding.
基部24aは、中央にカムボルト14の軸部14bが挿通されるボルト孔24cが貫通形成されていると共に、外周部がほぼクランク状に折り曲げられて、この外周部の互いに径方向へ僅かにオフセット配置された外面24dと内面24eが平坦状に形成されている。
The base portion 24a has a bolt hole 24c through which the shaft portion 14b of the cam bolt 14 is inserted. The outer surface 24d and the inner surface 24e are formed flat.
そして、図3に示すように、外周部の外面24dは、第1ボールベアリング10の内輪10aの軸方向の他端面に当接して軸方向の位置決めを行っている。一方、外周部の内面24eは、第2ボールベアリング22の外輪22aの軸方向の一端面に当接して軸方向の位置決めを行っている。したがって、外面24dと内面24eが、第1、第2ボールベアリング10,22の軸方向の位置決め部として機能している。
As shown in FIG. 3, the outer surface 24d of the outer peripheral portion contacts the other axial end surface of the inner ring 10a of the first ball bearing 10 to perform axial positioning. On the other hand, the inner surface 24e of the outer peripheral portion abuts against one axial end surface of the outer ring 22a of the second ball bearing 22 to perform axial positioning. Therefore, the outer surface 24d and the inner surface 24e function as axial positioning portions for the first and second ball bearings 10 and 22. As shown in FIG.
また、基部24aは、所定位置に従動部材9と位置決めする図外の位置決め用ピンが挿通されるピン挿通孔が貫通形成されている。
Further, the base portion 24a is formed with a pin insertion hole through which a positioning pin (not shown) for positioning the driven member 9 at a predetermined position is inserted.
ケージ部24bは、基部24aの外周部の外周縁から電動モータ12側へ延出した円環状に形成されて、円周方向の等間隔位置に、各ローラ23を保持する複数の保持孔24hが径方向に沿って貫通形成されている。
The cage portion 24b is formed in an annular shape extending from the outer peripheral edge of the outer peripheral portion of the base portion 24a toward the electric motor 12 side, and has a plurality of holding holes 24h for holding the rollers 23 at equal intervals in the circumferential direction. Penetration is formed along the radial direction.
この複数の保持孔24hは、それぞれがケージ部24bの変形部24d側の基端縁から先端縁に向かって細長い長方形状孔に形成されて先端側が閉塞されている。保持孔24hの内部には、前記各ローラ23を転動可能に保持しており、その全体の数(ローラ23の数)が内歯車構成部材5の内歯5aの全体の歯数よりも少なくなっており、これによって、所定の減速比を得るようになっている。
Each of the plurality of holding holes 24h is formed in an elongated rectangular hole extending from the base end edge of the cage portion 24b on the deformed portion 24d side toward the tip end edge, and is closed at the tip end side. The rollers 23 are rotatably held inside the holding holes 24h, and the total number of rollers 23 (the number of rollers 23) is smaller than the total number of teeth of the internal teeth 5a of the internal gear component 5. By this, a predetermined speed reduction ratio is obtained.
各ローラ23は、鉄系金属によって形成され、第2ボールベアリング22の偏心動に伴って径方向へ移動しつつ内歯車構成部材5の各内歯5aに嵌入(噛み合い)している。各ローラ23は、各保持孔24hの軸方向の両側縁によって周方向にガイドされつつ径方向へ揺動運動するようになっている。
Each roller 23 is formed of a ferrous metal, and is fitted (engaged) with each internal tooth 5a of the internal gear component 5 while moving in the radial direction as the second ball bearing 22 moves eccentrically. Each roller 23 is adapted to oscillate in the radial direction while being guided in the circumferential direction by both axial side edges of each holding hole 24h.
また、各ローラ23は、内歯車構成部材5の各内歯5aのうち、保持孔24hの軸方向長さの範囲で内歯車構成部材5の内歯5aのみに転動可能に配置されている。
Each roller 23 is arranged so as to be able to roll only on the internal teeth 5a of the internal gear constituting member 5 within the axial length range of the holding hole 24h. .
また、保持器24(ケージ部24b)は、図1に示すように、外径が従動部材9のジャーナル部41の外径よりも小さく形成されている。保持器24を従動部材9に軸方向から組み付けた際に、ケージ部24bは、従動部材9側の外周縁がジャーナル部41の内周縁に軸方向から当接するようになっている。
Further, the retainer 24 (cage portion 24b) is formed to have an outer diameter smaller than the outer diameter of the journal portion 41 of the driven member 9, as shown in FIG. When the retainer 24 is assembled to the driven member 9 in the axial direction, the outer peripheral edge of the cage portion 24b on the driven member 9 side abuts the inner peripheral edge of the journal portion 41 in the axial direction.
コントロールユニットは、図外のクランク角センサやエアーフローメータ、水温センサ、アクセル開度センサなど各種のセンサ類からの情報信号に基づいて現在の機関運転状態を検出し、これに基づいて機関制御を行っている。また、コントロールユニットは、前記各情報信号や回転位置検出機構に基づいて、電動モータ12のコイルに通電してモータ軸17の回転制御を行い、減速機13によってカムシャフト2のタイミングスプロケット1に対する相対回転位相を制御するようになっている。
〔本実施形態の作用効果〕
以下、本実施形態におけるバルブタイミング制御装置の作用について簡単に説明する。まず、機関のクランクシャフトの回転駆動に伴ってタイミングチェーンを介してスプロケット1が回転すると、この回転力が内歯車構成部材5に伝達される。この内歯車構成部材5の回転力が、各ローラ23から保持器24及び従動部材9を経由してカムシャフト2に伝達される。これによって、カムシャフト2の駆動カムが各吸気弁を開閉作動させる。 The control unit detects the current engine operating status based on information signals from various sensors (not shown) such as a crank angle sensor, air flow meter, water temperature sensor, and accelerator position sensor, and controls the engine based on this. Is going. The control unit controls the rotation of themotor shaft 17 by energizing the coil of the electric motor 12 based on the information signals and the rotational position detection mechanism, and controls the rotation of the camshaft 2 relative to the timing sprocket 1 by the speed reducer 13 . It is designed to control the rotation phase.
[Action and effect of the present embodiment]
The operation of the valve timing control device according to this embodiment will be briefly described below. First, when thesprocket 1 rotates through the timing chain as the crankshaft of the engine rotates, this rotational force is transmitted to the internal gear component 5 . The rotational force of the internal gear forming member 5 is transmitted from each roller 23 to the camshaft 2 via the retainer 24 and the driven member 9 . As a result, the drive cams of the camshaft 2 open and close the intake valves.
〔本実施形態の作用効果〕
以下、本実施形態におけるバルブタイミング制御装置の作用について簡単に説明する。まず、機関のクランクシャフトの回転駆動に伴ってタイミングチェーンを介してスプロケット1が回転すると、この回転力が内歯車構成部材5に伝達される。この内歯車構成部材5の回転力が、各ローラ23から保持器24及び従動部材9を経由してカムシャフト2に伝達される。これによって、カムシャフト2の駆動カムが各吸気弁を開閉作動させる。 The control unit detects the current engine operating status based on information signals from various sensors (not shown) such as a crank angle sensor, air flow meter, water temperature sensor, and accelerator position sensor, and controls the engine based on this. Is going. The control unit controls the rotation of the
[Action and effect of the present embodiment]
The operation of the valve timing control device according to this embodiment will be briefly described below. First, when the
機関始動後の所定の機関運転時には、コントロールユニットからの制御電流が電動モータ12のコイルに通電されてモータ軸17が正逆回転駆動される。このモータ軸17の回転力が、オルダム継手を介して偏心軸部材21に伝達されて減速機13の作動によりカムシャフト2に対し減速された回転力が伝達される。
During a predetermined engine operation after the engine is started, a control current from the control unit is applied to the coil of the electric motor 12 to rotate the motor shaft 17 forward and backward. The rotational force of the motor shaft 17 is transmitted to the eccentric shaft member 21 via the Oldham's coupling, and reduced rotational force is transmitted to the camshaft 2 by the operation of the speed reducer 13 .
これによって、カムシャフト2が、タイミングスプロケット1に対して正逆相対回転して相対回転位相が変換される。したがって、各吸気弁は、開閉タイミングを進角側あるいは遅角側に変換制御されるのである。
As a result, the camshaft 2 rotates forward and backward relative to the timing sprocket 1 to convert the relative rotation phase. Therefore, the opening/closing timing of each intake valve is controlled to advance or retard.
このように、吸気弁の開閉タイミングが進角側あるいは遅角側へ連続的に変換されることによって、機関の燃費や出力などの機関性能の向上が図れる。
In this way, by continuously converting the opening/closing timing of the intake valve to the advance side or the retard side, it is possible to improve engine performance such as fuel consumption and output.
そして、本実施形態では、機関の駆動に伴って外部に飛散した潤滑油Oは、図3の矢印で示すように、スプロケット1と従動部材9との間の開口部11から第1凹部29内に効果的に捕集される。第1凹部29は、軸方向い凹む形状になっていることから、飛散している潤滑油Oの勢いを減衰し、より効果的に捕集する。また、第1凹部29に入り込んだ潤滑油Oは、スプロケット1などの回転遠心力によって外周側の第1ボールベアリング10方向に回り込んで、該第1ボールベアリング10を効率良く潤滑する。また、開口部11から第1凹部29内に入り込んだ潤滑油Oは、回転遠心力に起因して第2凹部30内に流れ込み、さらに第1ボールベアリング10の内部に強制的に供給される。
In the present embodiment, the lubricating oil O scattered outside as the engine is driven flows from the opening 11 between the sprocket 1 and the driven member 9 into the first recess 29 as indicated by the arrow in FIG. effectively captured by Since the first recessed portion 29 is recessed in the axial direction, the momentum of the scattering lubricating oil O is attenuated, and the lubricating oil O is collected more effectively. Also, the lubricating oil O that has entered the first recess 29 turns around in the direction of the first ball bearing 10 on the outer peripheral side due to the rotation centrifugal force of the sprocket 1 and the like, and efficiently lubricates the first ball bearing 10 . Also, the lubricating oil O that has entered the first recess 29 from the opening 11 flows into the second recess 30 due to rotational centrifugal force, and is then forcibly supplied to the inside of the first ball bearing 10 .
特に、第1凹部29の径方向外側の開口端が、第1ボールベアリング10の内輪10aの内周面であることから、第1凹部29の内部に流入した潤滑油Oは内輪10aの外周面から外輪10bの方向へ流動しつつこれらを効果的に潤滑すると共に、各ボール10cやケージ10d間にも流入して第1ボールベアリング10全体を効果的に潤滑する。
In particular, since the radially outer open end of the first recess 29 is the inner peripheral surface of the inner ring 10a of the first ball bearing 10, the lubricating oil O that has flowed into the first recess 29 reaches the outer peripheral surface of the inner ring 10a. While flowing from the outer ring 10b toward the outer ring 10b to effectively lubricate them, it also flows into between the balls 10c and the cage 10d to effectively lubricate the first ball bearing 10 as a whole.
また、第1ボールベアリング10を潤滑した潤滑油Oは、外周側の保持器24と各ローラ23及び各内歯5aとの間などを通ってこれらの間を十分に潤滑する。
In addition, the lubricating oil O that has lubricated the first ball bearing 10 passes between the retainer 24 on the outer peripheral side and each roller 23 and each inner tooth 5a, and sufficiently lubricates these spaces.
前記開口部11は、第1環状規制部8の内周面8aと第2環状規制部19の外周面19cとの間で幅広円環状に形成されて開口面積が大きく取られていることから、第1凹部29内への捕集効率が高くなる。このため、第1凹部29から多くの潤滑油Oを第1ボールベアリング10方向へ供給することができる。これによって、第1ボールベアリング10や保持器24に対する潤滑性能が向上する。
The opening 11 is formed in a wide annular shape between the inner peripheral surface 8a of the first annular restricting portion 8 and the outer peripheral surface 19c of the second annular restricting portion 19, and has a large opening area. The collection efficiency into the first concave portion 29 is increased. Therefore, a large amount of lubricating oil O can be supplied from the first concave portion 29 toward the first ball bearing 10 . This improves the lubricating performance for the first ball bearing 10 and the retainer 24 .
保持器24内に流入した潤滑油は、第2ボールベアリング22の内輪22aや外輪22b及び各ボール22cにも供給されて、これらの潤滑にも供されることになる。
The lubricating oil that has flowed into the retainer 24 is also supplied to the inner ring 22a, the outer ring 22b, and the balls 22c of the second ball bearing 22 to lubricate them.
また、本実施形態では、前述のように、第1ボールベアリング10や第2ボールベアリング22、内歯5aとローラ23及び保持孔24hの間などを潤滑した潤滑油Oは、各潤滑油排出孔32から外部へ速やかに排出させることができる。つまり、開口部11から第1凹部29や第2凹部30に供給された潤滑油は、第1、第2ボールベアリング10、22などを潤滑した後は、減速機13内に滞留することなく各潤滑油排出孔32から外部に速やかに排出させることができる。
Further, in the present embodiment, as described above, the lubricating oil O lubricated between the first ball bearing 10, the second ball bearing 22, the inner tooth 5a and the roller 23, and the holding hole 24h is discharged through each lubricating oil discharge hole. 32 can be rapidly discharged to the outside. That is, after lubricating the first and second ball bearings 10 and 22 , the lubricating oil supplied from the opening 11 to the first recess 29 and the second recess 30 does not stay in the speed reducer 13 . The lubricating oil can be rapidly discharged to the outside from the lubricating oil discharge hole 32 .
したがって、例えば、内燃機関の始動時において、潤滑油の粘性抵抗によってバルブタイミング制御装置の機械的な駆動速度が低下するといった技術的課題の発生を抑制することができる。
Therefore, for example, when starting the internal combustion engine, it is possible to suppress the occurrence of a technical problem that the mechanical drive speed of the valve timing control device decreases due to the viscous resistance of the lubricating oil.
特に、各潤滑油排出孔32は、第2ボールベアリング22の外輪22aよりも径方向の外側に設けられている。このため、減速機13内に供給された潤滑油は、駆動中の遠心力によって第2ボールベアリング22などを潤滑しつつここに貯留されることなく、そのまま外側へ移動して各潤滑油排出孔32から外部に排出される。したがって、第2ボールベアリング22は、潤滑油の粘性抵抗による駆動抵抗の発生を抑制される。
In particular, each lubricating oil discharge hole 32 is provided outside the outer ring 22a of the second ball bearing 22 in the radial direction. Therefore, the lubricating oil supplied to the speed reducer 13 lubricates the second ball bearing 22 and the like by the centrifugal force during driving and does not accumulate here, and moves outward as it is to reach each lubricating oil discharge hole. 32 to the outside. Therefore, the second ball bearing 22 is prevented from generating driving resistance due to the viscous resistance of the lubricating oil.
さらに、本実施形態では、保持器24の基部24aの外周部の内外面24d、24eが平坦状になっていることから、寸法管理が可能であり、第1、第2ボールベアリング10、22の両方の軸方向の位置決めを精度良く行うことができる。
Furthermore, in this embodiment, since the inner and outer surfaces 24d and 24e of the outer peripheral portion of the base portion 24a of the retainer 24 are flat, it is possible to control the dimensions, and the first and second ball bearings 10 and 22 Positioning in both axial directions can be performed with high accuracy.
第1ボールベアリング10は、内輪10aの軸方向の一端面が従動部材9(第2環状規制部19)の第2ストッパ凸部19a、19bの内側面に対向配置されている一方、内輪10aの軸方向の他端面が、保持器24の基部24aの外周部の外面24dに対向配置されている。さらに第2ボールベアリング22の外輪22aの軸方向の一端面が基部24aの外周部の内面24eに対向配置されて、それぞれが軸方向の位置決めがなされている。このように、各ボールベアリング10,22は、一つの保持器24の基部24aによって軸方向の位置決めが行われることから、他に位置決め手段を設けることがないので、製造コストや組付コストの低下が図れる。
In the first ball bearing 10, one end surface of the inner ring 10a in the axial direction faces the inner side surfaces of the second stopper projections 19a and 19b of the driven member 9 (the second annular restricting portion 19). The other end surface in the axial direction is arranged to face the outer surface 24 d of the outer peripheral portion of the base portion 24 a of the retainer 24 . Further, one axial end surface of the outer ring 22a of the second ball bearing 22 is arranged to face the inner surface 24e of the outer peripheral portion of the base portion 24a, so that they are axially positioned. Since the ball bearings 10 and 22 are axially positioned by the base portion 24a of the retainer 24, there is no need to provide additional positioning means, which reduces manufacturing and assembly costs. can be achieved.
また、スプロケット本体1aの内周面1eの軸方向の幅長さを、第1ボールベアリング10の外輪10bの軸方向長さよりも大きく形成したことによって、軸受部を第1ボールベアリング10に代えて後述する第2実施形態における軸方向に長い滑り軸受を用いた場合にも対応することが可能になる。
In addition, since the axial width of the inner peripheral surface 1e of the sprocket body 1a is made larger than the axial length of the outer ring 10b of the first ball bearing 10, the first ball bearing 10 is replaced with the bearing portion. It is possible to cope with the case of using a sliding bearing that is long in the axial direction in a second embodiment, which will be described later.
さらに、環状スペーサ28は、内歯車構成部材5を介して第1ボールベアリング10の外輪10bの軸方向の他端面に対向配置されていることから、第1環状規制部8の内側面8fと協働して第1ボールベアリング10の回転軸方向の位置決めを行うことができる。
Furthermore, since the annular spacer 28 is arranged to face the other axial end surface of the outer ring 10b of the first ball bearing 10 via the internal gear component 5, it cooperates with the inner surface 8f of the first annular restricting portion 8. It is possible to position the first ball bearing 10 in the rotation axis direction.
しかも、機関駆動時には、減速機13内の潤滑油は、円環状凹部26内に捕集されてこの円環状凹部26が一時的な油溜り部としても機能する。このため、この円環状凹部26の周辺に有する内歯5aとローラ23との間などの潤滑性が良好になる。また、機関停止時には、円環状凹部26に僅かながらも潤滑油を保持できることから、機関始動時に転がり軸受などへの潤滑性も良好になる。
Moreover, when the engine is driven, the lubricating oil in the speed reducer 13 is collected in the annular recess 26, and the annular recess 26 also functions as a temporary oil reservoir. Therefore, the lubricity between the inner tooth 5a and the roller 23 provided around the annular concave portion 26 is improved. In addition, when the engine is stopped, a small amount of lubricating oil can be retained in the annular concave portion 26, so that lubrication to the rolling bearings and the like is improved when the engine is started.
さらに、円環状凹部26の一部が、内歯5aの歯底面とローラ23との間よりも径方向の外側に位置していることから、内燃機関や減速機13の各部材から発生した金属粉などのコンタミを駆動時の遠心力によって円環状凹部26内に溜めることができる。
Furthermore, since a part of the annular recessed portion 26 is located radially outside the space between the bottom surface of the internal tooth 5a and the roller 23, the metal generated from each member of the internal combustion engine and the speed reducer 13 is removed. Contaminants such as powder can be accumulated in the annular concave portion 26 by centrifugal force during driving.
さらに、円環状凹部26の外周部に6つの凹溝27が設けられ、この各凹溝27がポケットとして機能することから、円環状凹部26で捕集された潤滑油の貯留量が多くなる。潤滑油の貯留量の増加に伴って、減速機13の第2ボールベアリング22などの潤滑性がさらに向上する。また、ポケットとして機能する各凹溝27内にコンタミを効果的に貯めることが可能になる。
Furthermore, since six grooves 27 are provided on the outer peripheral portion of the annular recess 26 and each of these grooves 27 functions as a pocket, the amount of lubricating oil collected in the annular recess 26 increases. As the amount of lubricating oil stored increases, the lubricity of the second ball bearing 22 of the speed reducer 13 and the like is further improved. In addition, it is possible to effectively store contaminants in each concave groove 27 functioning as a pocket.
また、駆動中の潤滑油には遠心力が働くことから、この潤滑油が各潤滑油排出孔32よりも外周側に移動して、各内歯5aの歯底面に供給される。したがって、各内歯5aの歯底面とローラ23との間の潤滑性が良好になる。
〔第2実施形態〕
図10及び図11は本発明の第2実施形態を示し、第1実施形態における転がり軸受である第1ボールベアリング10を滑り軸受に変更したものである。 Further, since centrifugal force acts on the lubricating oil during driving, the lubricating oil moves to the outer peripheral side of each lubricatingoil discharge hole 32 and is supplied to the bottom surface of each inner tooth 5a. Therefore, the lubricity between the bottom surface of each internal tooth 5a and the roller 23 is improved.
[Second embodiment]
10 and 11 show a second embodiment of the present invention, in which thefirst ball bearing 10, which is a rolling bearing in the first embodiment, is changed to a sliding bearing.
〔第2実施形態〕
図10及び図11は本発明の第2実施形態を示し、第1実施形態における転がり軸受である第1ボールベアリング10を滑り軸受に変更したものである。 Further, since centrifugal force acts on the lubricating oil during driving, the lubricating oil moves to the outer peripheral side of each lubricating
[Second embodiment]
10 and 11 show a second embodiment of the present invention, in which the
すなわち、滑り軸受は、図10及び図11に示すように、スプロケット本体1aの内周面に形成された円環状の軸受凹部40と、従動部材9の外周に設けられ、軸受凹部40の内部に配置されたジャーナル部41と、から構成されている。
That is, as shown in FIGS. 10 and 11, the slide bearing includes an annular bearing recess 40 formed on the inner peripheral surface of the sprocket body 1a, and a bearing recess 40 provided on the outer periphery of the driven member 9 and inside the bearing recess 40. and a journal portion 41 arranged.
軸受凹部40は、軸受け面である円環状の底面40aが第1実施形態のスプロケット本体1aの内周面1eに相当する部位であって、この内周面1eをそのまま利用している。軸受凹部40は、カムシャフト2側の軸方向一端部が第1環状規制部8によって覆われて、内歯車構成部材5側の他端部が開口している。この開口部は、内歯車構成部材5の軸方向当接面5bによって閉じられている。これにより、軸受凹部40は、第1環状規制部8の環状内側面8fから環状凹部6の底面6aまでスプロケット本体1aの内周面全体に形成されている。また、軸受凹部40は、図1に示すように、その一部が各外歯部1bの形成位置と軸方向でオーバーラップするように配置されている。
The bearing concave portion 40 has an annular bottom surface 40a, which is a bearing surface, corresponding to the inner peripheral surface 1e of the sprocket body 1a of the first embodiment, and the inner peripheral surface 1e is used as it is. The bearing concave portion 40 has one axial end portion on the camshaft 2 side covered by the first annular restricting portion 8 , and the other end portion on the internal gear forming member 5 side is open. This opening is closed by an axial abutment surface 5 b of the internal gear component 5 . Thus, the bearing recess 40 is formed over the entire inner peripheral surface of the sprocket body 1a from the annular inner side surface 8f of the first annular restricting portion 8 to the bottom surface 6a of the annular recess 6. As shown in FIG. Further, as shown in FIG. 1, the bearing recessed portion 40 is arranged so that a portion thereof overlaps the forming position of each external tooth portion 1b in the axial direction.
また、軸受凹部40は、円環状の底面40aが滑り軸受面になっていると共に、第1環状規制部8の環状内側面8fが滑り軸受面の底面40aから径方向へほぼ直角に形成されている。
The bearing recess 40 has an annular bottom surface 40a that serves as a slide bearing surface, and an annular inner side surface 8f of the first annular restricting portion 8 that is formed substantially perpendicular to the bottom surface 40a of the slide bearing surface in the radial direction. there is
ジャーナル部41は、従動部材9の円板状本体9aの外周縁からフロントプレート15側へ突出して、断面形状が軸受凹部40の断面形状とほぼ相似形の矩形状に形成されている。このジャーナル部41は、軸受凹部40が各外歯部1bと軸方向でオーバーラップしていることから、同じく一部が各外歯部1bと軸方向でオーバーラップ配置されている。
The journal portion 41 protrudes from the outer peripheral edge of the disk-shaped main body 9 a of the driven member 9 toward the front plate 15 and has a rectangular cross-sectional shape substantially similar to the cross-sectional shape of the bearing recess 40 . Since the bearing recessed portion 40 axially overlaps each external toothed portion 1b, the journal portion 41 is also partially overlapped axially with each external toothed portion 1b.
従動部材9のカムシャフト2と反対側の内端面には、ジャーナル部41で囲まれた円盤状溝部9gが形成されている。ジャーナル部41は、環状の外周面が軸受凹部40の底面40a全体に摺動可能になっている。これによって、ジャーナル部41が、軸受凹部40を介してスプロケット1全体を軸受するプレーン軸受として機能している。
A disk-shaped groove portion 9g surrounded by a journal portion 41 is formed on the inner end surface of the driven member 9 on the side opposite to the camshaft 2. As shown in FIG. The journal portion 41 has an annular outer peripheral surface slidable over the entire bottom surface 40 a of the bearing recess 40 . As a result, the journal portion 41 functions as a plain bearing that supports the entire sprocket 1 via the bearing recessed portion 40 .
ジャーナル部41は、軸方向のフロントプレート15側の一端面41aが内歯車構成部材5の軸方向当接面5bに微小隙間Cをもって対向配置されている。ジャーナル部41は、軸方向当接面5bによって、従動部材9全体がカムシャフト2と反対方向の軸方向への移動が規制されるようになっている。換言すれば、軸方向当接面5bが従動部材9の規制面として機能するようになっている。
One end surface 41a of the journal portion 41 on the side of the front plate 15 in the axial direction faces the axial contact surface 5b of the internal gear component 5 with a minute gap C therebetween. The axial contact surface 5b of the journal portion 41 restricts the movement of the entire driven member 9 in the axial direction opposite to the camshaft 2. As shown in FIG. In other words, the axial contact surface 5b functions as a regulating surface for the driven member 9. As shown in FIG.
また、ジャーナル部41は、軸方向の他端面41bが第1環状規制部8の環状内側面8fに摺動可能になっている。この第1環状規制部8の環状内側面8fは、スプロケット1の傾動時において他端部である他端面41bに当接して他方のスラスト移動を規制するようになっている。
In addition, the journal portion 41 has the other end surface 41b in the axial direction slidable on the annular inner surface 8f of the first annular restricting portion 8. As shown in FIG. When the sprocket 1 tilts, the annular inner side surface 8f of the first annular restricting portion 8 abuts against the other end surface 41b to restrict the other thrust movement.
そして、第1実施形態と同じく第1環状規制部8の内周面8aと第2環状規制部19の外周面19cとの間に開口部11が形成されている。
An opening 11 is formed between the inner peripheral surface 8a of the first annular restricting portion 8 and the outer peripheral surface 19c of the second annular restricting portion 19, as in the first embodiment.
また、円板状本体9aの外周部の第1環状規制部8側の一側面には、第1凹部29が形成されている。この第1凹部29は、円板状本体9aの第2環状規制部19の径方向外側の一側面であって、各第2ストッパ凸部19a、19bを除いた2つの部位に周方向に沿った幅広の円弧溝状に形成されている。この第1凹部29は、開口部11に連通状態に臨んでいると共に、外周部がジャーナル部41の他端面41b側まで延び、該他端面41b付近では傾斜面29aが形成されている。
In addition, a first concave portion 29 is formed on one side surface of the outer peripheral portion of the disk-shaped main body 9a on the side of the first annular restricting portion 8 . The first concave portion 29 is formed on one side surface of the disk-shaped main body 9a on the radially outer side of the second annular restricting portion 19, and extends along the circumferential direction at two portions excluding the second stopper convex portions 19a and 19b. It is formed in the shape of a wide arcuate groove. The first recess 29 communicates with the opening 11 and has an outer peripheral portion extending to the other end surface 41b of the journal portion 41, and an inclined surface 29a is formed near the other end surface 41b.
また、第2凹部30は、第1実施形態のものと同じく、第1環状規制部8の内周面8aの内端縁を周方向に沿って円環状に切欠形成されたもので、横断面ほぼ円弧状に形成されている。また、第2凹部30は、第1凹部29とともに開口部11に臨んでいると共に、ジャーナル部41の他端面41bの内周側に開口指向しており、第1凹部29の傾斜面29aに対向配置されている。
As in the first embodiment, the second recessed portion 30 is formed by cutting the inner edge of the inner peripheral surface 8a of the first annular restricting portion 8 along the circumferential direction in an annular shape. It is formed in a substantially arc shape. The second recessed portion 30 faces the opening 11 together with the first recessed portion 29, and is directed toward the inner peripheral side of the other end surface 41b of the journal portion 41, facing the inclined surface 29a of the first recessed portion 29. are placed.
したがって、この第2実施形態によれば、軸受部を滑り軸受とすることによって、第1実施形態の第1ボールベアリング10の場合に比較して製造コストや組立作業コストの低減化が図れる。
Therefore, according to the second embodiment, by using a slide bearing for the bearing portion, the manufacturing cost and the assembly work cost can be reduced compared to the case of the first ball bearing 10 of the first embodiment.
また、第1凹部29は、円板状本体9aの外周部のカムシャフト2側の外側面に幅広く形成されているので、図11に示すように、開口部11で捕集された潤滑油Oが第1凹部29内での保持性が良好になる。この結果、潤滑油Oは、遠心力によって軸受凹部40とジャーナル部41との間に十分に供給されることから、これら滑り軸受の潤滑性能が向上する。
In addition, since the first recessed portion 29 is formed widely on the outer surface of the outer peripheral portion of the disk-shaped main body 9a on the side of the camshaft 2, as shown in FIG. can be held in the first concave portion 29 well. As a result, the lubricating oil O is sufficiently supplied between the bearing recessed portion 40 and the journal portion 41 by centrifugal force, thereby improving the lubricating performance of these slide bearings.
また、第1凹部29の傾斜面29aと第2凹部30が対向配置されていることから、第1凹部29に保持された潤滑油Oを、遠心力を介して傾斜面29aと第2凹部30の間に一旦保持しつつ第1環状規制部8の内側面8fとジャーナル部41の他端面41bとの間に積極的に供給することが可能になる。
In addition, since the inclined surface 29a of the first recessed portion 29 and the second recessed portion 30 are arranged to face each other, the lubricating oil O held in the first recessed portion 29 is transferred to the inclined surface 29a and the second recessed portion 30 via centrifugal force. It is possible to positively supply between the inner surface 8f of the first annular restricting portion 8 and the other end surface 41b of the journal portion 41 while temporarily holding it between.
また、本実施形態では、第1実施形態に供されたスプロケット1をそのまま利用できるので、製造コストの低下が図れる。
Also, in this embodiment, the sprocket 1 used in the first embodiment can be used as it is, so the manufacturing cost can be reduced.
本発明は、前記実施形態の構成に限定されるものではなく、軸受部としては、転がり軸受として例えばニードルベアリングなどであってもよい。また、減速機13としては、前記ローラ23以外に歯車などとすることも可能である。つまり、減速機としてローラ減速機以外の例えば、特開2019-85910号に記載された遊星歯車減速機などに適用することも可能である。
The present invention is not limited to the configuration of the above embodiment, and the bearing portion may be a rolling bearing such as a needle bearing. Further, as the speed reducer 13, a gear or the like can be used instead of the roller 23. FIG. That is, it is also possible to apply the reduction gear other than the roller reduction gear, for example, to a planetary gear reduction gear described in JP-A-2019-85910.
1…タイミングスプロケット(駆動回転体)、1a…スプロケット本体(主部材)、1b…外歯部、1c…ボス部、1d…雌ねじ孔、1e…内周面(固定面)、2…カムシャフト、2a…一端部、3…位相変更機構、4…油供給通路、4a…軸方向通路部、4b…径方向通路部、5…内歯車構成部材、5a…内歯、7…ボルト、7a…軸部、7b…雄ねじ部、8…第1環状規制部(環状凸部)、8a…内周面、8b・8c…円弧状溝部、8d・8e…第1ストッパ凸部、9…従動部材(従動回転体)、10…第1ボールベアリング(軸受部)、10a…内輪、10b…外輪、11…開口部、12…電動モータ、13…減速機、19…第2環状規制部、19a・19b…第2ストッパ凸部(突起部)、21…偏心軸部材、22…第2ボールベアリング、22a…外輪、22b…内輪、24…保持器、24a…基部、24d…外面、24e…内面、28…環状スペーサ、29…第1凹部、30…第2凹部、40…軸受凹部、40a…底面(軸受け面)、41…ジャーナル部、41a…一端面、41b…他端面。
DESCRIPTION OF SYMBOLS 1... Timing sprocket (drive rotary body) 1a... Sprocket main body (main member) 1b... External tooth part 1c... Boss part 1d... Female screw hole 1e... Inner peripheral surface (fixing surface) 2... Camshaft, 2a... One end 3... Phase change mechanism 4... Oil supply passage 4a... Axial passage 4b... Radial passage 5... Internal gear constituent member 5a... Internal tooth 7... Bolt 7a... Shaft Part 7b... Male screw part 8... First annular restricting part (annular convex part) 8a... Inner peripheral surface 8b/8c... Circular groove part 8d/8e... First stopper convex part 9... Driven member (driven Rotating body) 10 First ball bearing (bearing portion) 10a Inner ring 10b Outer ring 11 Opening 12 Electric motor 13 Reducer 19 Second annular restricting portion 19a and 19b Second stopper projection (protrusion) 21 Eccentric shaft member 22 Second ball bearing 22a Outer ring 22b Inner ring 24 Cage 24a Base 24d Outer surface 24e Inner surface 28 Annular spacer 29 First concave portion 30 Second concave portion 40 Bearing concave portion 40a Bottom surface (bearing surface) 41 Journal portion 41a One end surface 41b Other end surface.
Claims (10)
- クランクシャフトからの回転力が伝達される駆動回転体と、
カムシャフトに結合されて、前記駆動回転体と相対回転可能な従動回転体であって、前記カムシャフトの端部が固定される固定部と、前記固定部の径方向外側に設けられた円板部と、を有する従動回転体と、
前記円板部と前記駆動回転体との間に設けられた軸受部と、
前記従動回転体を前記駆動回転体に対して相対回転させる電動モータと、
前記駆動回転体と従動回転体との間に設けられ、前記カムシャフト方向に開放された開口部と、
前記従動回転体の前記軸受部より内周に開口した環状の第1凹部であって、前記円板部の前記カムシャフト側の径方向外側面が前記開口部に臨む環状の第1凹部と、
を有することを特徴とする内燃機関のバルブタイミング制御装置。 a drive rotor to which the rotational force from the crankshaft is transmitted;
A driven rotor that is coupled to the camshaft and rotatable relative to the drive rotor, the fixed portion to which the end of the camshaft is fixed, and a disc provided radially outside the fixed portion. a driven rotating body having a portion;
a bearing portion provided between the disk portion and the drive rotor;
an electric motor that rotates the driven rotating body relative to the driving rotating body;
an opening provided between the drive rotor and the driven rotor and open in the direction of the camshaft;
an annular first recess opening to the inner periphery from the bearing portion of the driven rotor, wherein the radial outer surface of the disk portion facing the camshaft faces the opening;
A valve timing control device for an internal combustion engine, comprising: - 請求項1に記載の内燃機関のバルブタイミング制御装置であって、
前記駆動回転体は、回転軸方向の前記カムシャフト側の端部であって、前記軸受部の外周部と対向する部位に、径方向内側に凸となる環状凸部を有し、
前記環状凸部の前記回転軸方向の前記軸受部側に前記開口部に臨む第2凹部を有することを特徴とする内燃機関のバルブタイミング制御装置。 A valve timing control device for an internal combustion engine according to claim 1,
The drive rotor has an annular protrusion projecting radially inward at a portion facing the outer peripheral portion of the bearing portion at an end portion on the camshaft side in the rotation axis direction,
A valve timing control device for an internal combustion engine, wherein a second concave portion facing the opening is provided on the bearing portion side of the annular convex portion in the rotating shaft direction. - 請求項2に記載の内燃機関のバルブタイミング制御装置であって、
前記軸受部は、前記円板部と前記駆動回転体の間に配置された第1ボールベアリングであって、
前記第1ボールベアリングは、回転軸方向の幅長さが前記円板部の幅長さよりも長く形成されて、回転軸方向の両端部が前記円板部の両側面から回転軸方向に突出しており、
前記第1凹部は、径方向外側の開口端が前記第1ボールベアリングの前記回転軸方向に突出した内輪の外周面に臨んでいることを特徴とする内燃機関のバルブタイミング制御装置。 A valve timing control device for an internal combustion engine according to claim 2,
The bearing portion is a first ball bearing arranged between the disc portion and the drive rotor,
The first ball bearing has a width length in the direction of the rotation axis longer than the width length of the disk portion, and both end portions in the direction of the rotation axis protrude from both side surfaces of the disk portion in the direction of the rotation axis. cage,
A valve timing control device for an internal combustion engine, wherein a radially outer open end of the first recess faces an outer peripheral surface of an inner ring of the first ball bearing that protrudes in the rotation axis direction. - 請求項3に記載の内燃機関のバルブタイミング制御装置であって、
前記駆動回転体と前記従動回転体の間に配置された減速機であって、前記駆動回転体の内周に設けられた内歯車と、前記電動モータの回転によって回転する偏心軸部材と、前記偏心軸部材の外周に配置された第2ボールベアリングと、前記第2ボールベアリングの外周面と前記内歯車の間に配置された複数のローラと、前記従動回転体に固定され、前記複数のローラをそれぞれ保持する複数の保持孔を有する保持器と、を有し、
前記保持器は、前記従動回転体に固定される基部と、前記複数の転動体を保持する複数の保持孔を有する環状のケージ部と、を有し、
前記基部は、前記第1ボールベアリングと前記第2ボールベアリングの軸方向の位置決めをする位置決め部を有することを特徴とする内燃機関のバルブタイミング制御装置。 A valve timing control device for an internal combustion engine according to claim 3,
A speed reducer disposed between the drive rotor and the driven rotor, comprising: an internal gear provided on the inner periphery of the drive rotor; an eccentric shaft member rotated by rotation of the electric motor; a second ball bearing arranged on the outer periphery of the eccentric shaft member; a plurality of rollers arranged between the outer peripheral surface of the second ball bearing and the internal gear; and a retainer having a plurality of retaining holes for respectively retaining the
The retainer has a base portion fixed to the driven rotating body, and an annular cage portion having a plurality of holding holes for holding the plurality of rolling elements,
A valve timing control device for an internal combustion engine, wherein the base portion has a positioning portion for axially positioning the first ball bearing and the second ball bearing. - 請求項4に記載の内燃機関のバルブタイミング制御装置であって、
前記位置決め部は、前記第1ボールベアリングと前記第2ボールベアリングが挟持状態に当接する両側面のうち、少なくとも一方の側面が平坦状になっていることを特徴とする内燃機関のバルブタイミング制御装置。 A valve timing control device for an internal combustion engine according to claim 4,
A valve timing control device for an internal combustion engine, wherein at least one side surface of the positioning portion is flat among both side surfaces on which the first ball bearing and the second ball bearing are held in contact with each other. . - 請求項5に記載の内燃機関のバルブタイミング制御装置であって、
前記従動回転体は、外周に前記第1ボールベアリングの内輪の軸方向の一端面に軸方向から対向して位置決めする突起部を有することを特徴とする内燃機関のバルブタイミング制御装置。 A valve timing control device for an internal combustion engine according to claim 5,
A valve timing control device for an internal combustion engine, wherein the driven rotating body has a protrusion on its outer periphery which is axially opposed to and positioned against one axial end surface of the inner ring of the first ball bearing. - 請求項4に記載の内燃機関のバルブタイミング制御装置であって、
前記駆動回転体は、前記第1ボールベアリングの外輪が固定される固定面を有し、前記固定面の軸方向の幅長さが、前記第1ボールベアリングの外輪の軸方向の幅長さよりも大きく形成されていることを特徴とする内燃機関のバルブタイミング制御装置。 A valve timing control device for an internal combustion engine according to claim 4,
The drive rotor has a fixing surface to which the outer ring of the first ball bearing is fixed, and the axial width of the fixing surface is greater than the axial width of the outer ring of the first ball bearing. A valve timing control device for an internal combustion engine, characterized in that it is formed large. - 請求項7に記載の内燃機関のバルブタイミング制御装置であって、
前記駆動回転体は、前記固定面が形成される主部材と前記内歯車が形成される内歯車構成部材とが別体に形成され、
前記内歯車構成部材の内周部の外面に一体に設けられ、または前記内歯車構成部材と前記第1ボールベアリングの外輪の軸方向他端面との間に設けられたスペーサによって、前記第1ボールベアリングの回転軸方向の移動を規制することを特徴とする内燃機関のバルブタイミング制御装置。 A valve timing control device for an internal combustion engine according to claim 7,
The drive rotor is formed by separately forming a main member on which the fixed surface is formed and an internal gear component member on which the internal gear is formed,
A spacer provided integrally with the outer surface of the inner peripheral portion of the internal gear forming member or provided between the internal gear forming member and the other axial end surface of the outer ring of the first ball bearing allows the first ball to A valve timing control device for an internal combustion engine, characterized by restricting the movement of a bearing in the direction of the rotational axis. - 請求項2に記載の内燃機関のバルブタイミング制御装置であって、
前記軸受部は、前記円板部の外周に設けられたジャーナル部と、前記駆動回転体の内周面に形成されて、前記ジャーナル部と摺動する軸受け面とを有する滑り軸受であって、
前記第1凹部は、前記円板部の外周部の前記カムシャフト側の外面に形成されて、前記開口部に開口していることを特徴とする内燃機関のバルブタイミング制御装置。 A valve timing control device for an internal combustion engine according to claim 2,
The bearing portion is a slide bearing having a journal portion provided on the outer periphery of the disk portion and a bearing surface formed on the inner peripheral surface of the drive rotor and sliding on the journal portion,
A valve timing control device for an internal combustion engine, wherein the first concave portion is formed on an outer surface of the outer peripheral portion of the disk portion on the side of the camshaft, and opens to the opening portion. - 請求項9に記載の内燃機関のバルブタイミング制御装置であって、
前記第1凹部の径方向外側の面は、前記カムシャフト側に向かって広がっていると共に、前記第2凹部に直接連通していることを特徴とする内燃機関のバルブタイミング制御装置。 A valve timing control device for an internal combustion engine according to claim 9,
A valve timing control device for an internal combustion engine, wherein a radially outer surface of the first recess extends toward the camshaft and communicates directly with the second recess.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021196588 | 2021-12-03 | ||
JP2021-196588 | 2021-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023101003A1 true WO2023101003A1 (en) | 2023-06-08 |
Family
ID=86612369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/044518 WO2023101003A1 (en) | 2021-12-03 | 2022-12-02 | Valve timing control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023101003A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9840947B2 (en) * | 2013-10-08 | 2017-12-12 | Schaeffler Technologies AG & Co. KG | Camshaft adjusting device |
WO2021085358A1 (en) * | 2019-10-29 | 2021-05-06 | 日立Astemo株式会社 | Valve timing control device for internal combustion engine |
-
2022
- 2022-12-02 WO PCT/JP2022/044518 patent/WO2023101003A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9840947B2 (en) * | 2013-10-08 | 2017-12-12 | Schaeffler Technologies AG & Co. KG | Camshaft adjusting device |
WO2021085358A1 (en) * | 2019-10-29 | 2021-05-06 | 日立Astemo株式会社 | Valve timing control device for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101896672B1 (en) | Valve timing adjustment device | |
JP4987031B2 (en) | Valve timing control device for internal combustion engine | |
JP5675440B2 (en) | Valve timing control device for internal combustion engine | |
US20050199201A1 (en) | Electrically driven camshaft adjuster | |
CN110023596B (en) | Valve timing control device | |
JP5197471B2 (en) | Valve timing control device for internal combustion engine | |
JP2019007409A (en) | Valve opening/closing timing control device | |
US10619578B2 (en) | Link mechanism actuator for internal combustion engine | |
JP2010138736A (en) | Valve timing control device for internal combustion engine | |
US10900551B2 (en) | Harmonic drive | |
JP5411066B2 (en) | Variable valve operating device for internal combustion engine | |
JP2010138735A (en) | Valve timing control device for internal combustion engine | |
JP7256691B2 (en) | Valve timing control device for internal combustion engine | |
WO2023101003A1 (en) | Valve timing control device for internal combustion engine | |
WO2023013321A1 (en) | Valve timing control device for internal combustion engine | |
WO2022190569A1 (en) | Valve timing control device for internal combustion engine | |
WO2021085358A1 (en) | Valve timing control device for internal combustion engine | |
WO2022181017A1 (en) | Internal combustion engine valve timing control device | |
JP6347764B2 (en) | Valve timing control device for internal combustion engine and method for assembling the device | |
JP2021165547A (en) | Valve timing control device for internal combustion engine and speed reducer | |
CN113167140B (en) | Valve timing adjusting device | |
WO2020162016A1 (en) | Valve timing control device for internal combustion engine | |
JP2020056357A (en) | Valve timing control device for internal combustion engine | |
JP2020033961A (en) | Valve timing control device of internal combustion engine | |
CN112840106B (en) | Valve timing control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22901433 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |