WO2023197132A1 - 电化学装置管理方法、装置、充电装置、电池系统及介质 - Google Patents
电化学装置管理方法、装置、充电装置、电池系统及介质 Download PDFInfo
- Publication number
- WO2023197132A1 WO2023197132A1 PCT/CN2022/086239 CN2022086239W WO2023197132A1 WO 2023197132 A1 WO2023197132 A1 WO 2023197132A1 CN 2022086239 W CN2022086239 W CN 2022086239W WO 2023197132 A1 WO2023197132 A1 WO 2023197132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrochemical device
- lithium
- soc
- cos
- threshold
- Prior art date
Links
- 238000007600 charging Methods 0.000 title claims abstract description 171
- 238000007726 management method Methods 0.000 title claims abstract description 89
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 249
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 248
- 238000001514 detection method Methods 0.000 claims abstract description 82
- 238000000034 method Methods 0.000 claims abstract description 74
- 230000004044 response Effects 0.000 claims abstract description 32
- 230000008859 change Effects 0.000 claims description 74
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 50
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims description 46
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims description 46
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 claims description 35
- 238000007599 discharging Methods 0.000 claims description 26
- 230000003862 health status Effects 0.000 claims description 15
- 230000004069 differentiation Effects 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 10
- 238000013507 mapping Methods 0.000 claims description 9
- 230000002829 reductive effect Effects 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 6
- 230000000670 limiting effect Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 12
- 230000036541 health Effects 0.000 abstract description 2
- 238000007747 plating Methods 0.000 abstract 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 67
- 229910001416 lithium ion Inorganic materials 0.000 description 67
- 238000001556 precipitation Methods 0.000 description 34
- 230000000052 comparative effect Effects 0.000 description 33
- 238000002360 preparation method Methods 0.000 description 27
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 230000008021 deposition Effects 0.000 description 10
- 239000007774 positive electrode material Substances 0.000 description 9
- OVAQODDUFGFVPR-UHFFFAOYSA-N lithium cobalt(2+) dioxido(dioxo)manganese Chemical compound [Li+].[Mn](=O)(=O)([O-])[O-].[Co+2] OVAQODDUFGFVPR-UHFFFAOYSA-N 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000006182 cathode active material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005518 electrochemistry Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 206010016766 flatulence Diseases 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000011356 non-aqueous organic solvent Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- Embodiments of the present disclosure relate to the field of electrochemistry technology, and in particular, to an electrochemical device management method, device, charging device, battery system and medium.
- Lithium-ion batteries have many advantages such as high specific energy density, long cycle life, high nominal voltage, low self-discharge rate, small size, and light weight, and are widely used in the field of new energy.
- lithium-ion batteries have become more and more important, and the market demand for lithium-ion batteries is also increasing.
- lithium precipitation and other phenomena often occur due to side reactions, impacts, etc., which can easily lead to battery short circuits and safety risks, affecting the safety of the battery.
- embodiments of the present disclosure provide an electrochemical device management method, device, charging device, battery system and medium, which can reduce the impact of lithium precipitation on the safety and life of lithium-ion batteries, so as to improve the performance of lithium batteries.
- an electrochemical device management method including:
- the lithium evolution SOC In response to the lithium evolution SOC being within the preset lithium evolution SOC range, obtain the first state data during use of the electrochemical device, and perform a safety state of the electrochemical device based on the first state data and the lithium evolution SOC. Detection, wherein the first status data is used to indicate the health status of the electrochemical device, and the safety status detection is used to determine whether the use of the electrochemical device is in a safe status;
- a usage strategy of the electrochemical device is determined.
- the electrochemical device management method in the embodiment of the present disclosure can determine the lithium evolution SOC of the electrochemical device, respond to the lithium evolution SOC being within the preset lithium evolution SOC range, and can obtain the first state during use of the electrochemical device.
- the data is used to detect the safety status of the electrochemical device based on the first status data and the lithium evolution SOC, where the first status data is used to indicate the health status of the electrochemical device, and the safety status detection is used to determine whether the use of the electrochemical device is safe. status, and finally the usage strategy of the electrochemical device can be determined based on the results of the safety status detection, so that the use of the electrochemical device can be reasonably managed when lithium is deposited in the electrochemical device to ensure the use of the electrochemical device when lithium is deposited. It is safe, and different usage strategies are determined for different safety states of the electrochemical device to reduce the impact of lithium precipitation and maximize the service life of the electrochemical device.
- determining the usage strategy of the electrochemical device based on the result of the safe state detection includes: in response to the use of the electrochemical device not being in a safe state, performing an operation on the electrochemical device.
- the use of chemical devices is restricted. Based on this, in the embodiments of the present disclosure, this method is used to better ensure the safety of the electrochemical device in use, thereby ensuring the safety of users when using the electrochemical device.
- the first status data includes the SOH of the electrochemical device
- performing safety status detection on the electrochemical device based on the first status data and the lithium evolution SOC includes: based on the The change of the lithium evolution SOC of the electrochemical device relative to the SOH of the electrochemical device determines whether the use of the electrochemical device is in a safe state. Based on this, in the embodiments of the present disclosure, by combining the changes in the lithium-eliminating SOC of the electrochemical device with respect to the SOH of the electrochemical device, the two are reasonably considered during analysis, so that the results of the safety detection are more accurate and more reasonable. and accurately determine whether the electrochemical device is in a safe state, so as to facilitate subsequent management of the electrochemical device based on the result of whether the electrochemical device is in a safe state.
- determining whether the use of the electrochemical device is in a safe state based on changes in the lithium evolution SOC of the electrochemical device relative to the SOH of the electrochemical device includes: according to the The safety state parameter COS of the electrochemical device is calculated from the lithium evolution SOC of the electrochemical device and the SOH of the electrochemical device, where the COS is the ratio of the lithium evolution SOC of the electrochemical device to the electrochemical device.
- the differential value of the SOH of the device based on the COS, it is determined whether the use of the electrochemical device is in a safe state.
- determining whether the use of the electrochemical device is in a safe state in this way can make the results of the safety detection more accurate, and determine whether the electrochemical device is in a safe state more reasonably and accurately, so as to facilitate subsequent
- the electrochemical device is managed based on whether the electrochemical device is in a safe state.
- determining whether the use of the electrochemical device is in a safe state based on the COS includes: determining a first change curve based on the COS and the SOH of the electrochemical device, Wherein, the first change curve represents the change of the COS with the SOH of the electrochemical device; based on the first change curve, it is determined whether the use of the electrochemical device is in a safe state. Based on this, in the embodiments of the present disclosure, in this way, it is convenient to accurately determine whether the use of the electrochemical device is in a safe state.
- determining whether the use of the electrochemical device is in a safe state based on the first change curve includes: performing differential processing on the first change curve to obtain a second change curve ; Based on the absolute value of the ordinate of the second change curve, determine whether the use of the electrochemical device is in a safe state. Based on this, in the embodiments of the present disclosure, in this way, the results of the safety status detection of the electrochemical device can be made more reasonable, so as to facilitate subsequent management of the electrochemical device based on the results.
- determining whether the use of the electrochemical device is in a safe state based on the absolute value of the ordinate of the second change curve includes: if the absolute value is less than the first absolute value If the absolute value is not less than the first absolute value threshold, it is determined that the use of the electrochemical device is not in a safe state. Based on this, in the embodiments of the present disclosure, through this judgment method, it can be reasonably determined whether the use of the electrochemical device is in a safe state when lithium precipitation occurs in the electrochemical device, so as to better manage the electrochemical device to ensure that The electrochemical device is safe to use when lithium evolution occurs.
- limiting the use of the electrochemical device includes: in response to the absolute value being not less than the first The absolute value threshold is not greater than the second absolute value threshold, reducing at least one of the charging voltage, discharge voltage, charging current, and discharge current of the electrochemical device, wherein the second absolute value threshold is greater than the first absolute value threshold. a value threshold; and, in response to the absolute value being greater than the second absolute value threshold, ceasing use of the electrochemical device.
- the electrochemical device can be managed more rationally in this way, and the service life of the electrochemical device can be extended to ensure the safety of the electrochemical device.
- the value range of the first absolute threshold is [2500, 9000]; if the electrochemical device is a nickel For a lithium cobalt manganate system electrochemical device, the value range of the first absolute value threshold is [2000, 9000]; if the electrochemical device is a lithium cobalt oxide system electrochemical device, the value range of the first absolute value threshold is [2000, 9500].
- different first absolute value threshold value ranges are set for different systems or types of electrochemical devices to adapt to the safety detection requirements of different electrochemical devices, thereby facilitating targeted testing of different electrochemical devices. Systems or types of electrochemical devices are managed to achieve better management results.
- the value range of the second absolute threshold is [7000, 20000]; if the electrochemical device is a nickel For a lithium cobalt manganate system electrochemical device, the value range of the second absolute value threshold is [5000, 20000]; if the electrochemical device is a lithium cobalt oxide system electrochemical device, the second absolute value threshold is The value range is [5500, 20000]. Based on this, in the embodiments of the present disclosure, different value ranges of the second absolute value threshold are set for different systems or types of electrochemical devices to adapt to the safety management needs of different electrochemical devices, thereby facilitating targeted management of different electrochemical devices. Systems or types of electrochemical devices are managed to achieve better management results.
- determining whether the use of the electrochemical device is in a safe state based on the COS includes: if the COS is less than a first COS threshold, determining whether the use of the electrochemical device is in a safe state. is in a safe state; and, if the COS is not less than the first COS threshold, it is determined that the use of the electrochemical device is not in a safe state. Based on this, in the embodiments of the present disclosure, in this way, it can be accurately determined whether the electrochemical device is used in a safe state.
- limiting the use of the electrochemical device includes: in response to the COS being not less than the first COS threshold and not greater than a second COS threshold, reducing at least one of the charging voltage, discharge voltage, charging current, and discharge current of the electrochemical device, wherein the second COS threshold is greater than the first COS threshold; and, In response to the COS being greater than the second COS threshold, use of the electrochemical device is discontinued. Based on this, in the embodiments of the present disclosure, the electrochemical device can be managed more rationally in this way, and the service life of the electrochemical device can be extended to ensure the safety of the electrochemical device.
- the value range of the first COS threshold is [20, 80]; if the electrochemical device is a nickel cobalt For a lithium manganate system electrochemical device, the value range of the first COS threshold is [10, 70]; if the electrochemical device is a lithium cobalt oxide system electrochemical device, the value range of the first COS threshold is [15, 85].
- different first COS threshold value ranges are set for different systems or types of electrochemical devices to adapt to the safety detection requirements of different electrochemical devices, thereby facilitating targeted testing of different systems. Or type of electrochemical device for management to achieve better management results.
- the value range of the second COS threshold is [60, 100]; if the electrochemical device is a nickel cobalt For a lithium manganate system electrochemical device, the value range of the second COS threshold is [50, 100]; if the electrochemical device is a lithium cobalt oxide system electrochemical device, the value range of the second COS threshold is [50, 100]. Based on this, in the embodiments of the present disclosure, different value ranges of the second COS threshold are set for different systems or types of electrochemical devices to adapt to the safety management needs of different electrochemical devices, thereby facilitating targeted management of different systems. Or type of electrochemical device for management to achieve better management results.
- determining the lithium evolution SOC of the electrochemical device includes: performing an intermittent charging operation on the electrochemical device, and obtaining data related to the electrochemical device during the intermittent charging operation. , determining the lithium evolution SOC of the electrochemical device based on the data related to the electrochemical device. Based on this, in the embodiments of the present disclosure, in this way, the lithium evolution SOC of the electrochemical device can be determined more accurately.
- the data related to the electrochemical device includes the SOC of the electrochemical device and the internal resistance of the electrochemical device
- the intermittent charging operation includes multiple charging periods and multiple intermittent periods
- the Obtaining data related to the electrochemical device during the intermittent charging operation, and determining the lithium evolution SOC of the electrochemical device based on the data related to the electrochemical device includes: during the intermittent charging operation, for the multiple During each of the intermittent periods, the SOC of the electrochemical device and the internal resistance of the electrochemical device are obtained during the intermittent period; based on the obtained multiple SOCs of the electrochemical device and the electrochemical parameters corresponding to the multiple SOCs Multiple internal resistances of the device are used to obtain a first curve, which represents a mapping curve corresponding to the SOC of the electrochemical device and the internal resistance; based on the first curve, the lithium evolution SOC of the electrochemical device is determined . Based on this, in the embodiments of the present disclosure, in this way, the lithium evolution SOC of the electrochemical device can be determined more accurately.
- the step of determining the lithium evolution SOC of the electrochemical device based on the first curve includes at least one of Method 1 or Method 2, wherein: Method 1 includes: Perform first-order differentiation on the first curve to obtain a second curve; and determine the SOC corresponding to the point where the slope of the second curve is negative for the first time is the lithium evolution SOC; Method 2 includes: performing a step on the first curve. First-order differentiation is performed to obtain a second curve; first-order differentiation is performed on the second curve to obtain a third curve; and the SOC corresponding to the point where the ordinate of the third curve is less than zero for the first time is determined to be the lithium evolution SOC. Based on this, in the embodiments of the present disclosure, these methods can be used to easily and accurately determine the lithium evolution SOC of the electrochemical device.
- the intermittent charging operation includes a plurality of charging cycles, each charging cycle includes a charging period and an intermittent period, and in each of the charging periods, the SOC of the electrochemical device increases by units amplitude. Based on this, in the embodiments of the present disclosure, through such intermittent charging operation, the lithium evolution SOC of the electrochemical device can be determined more accurately.
- the electrochemical device is a lithium iron phosphate system electrochemical device
- the unit amplitude ranges from 0.5% to 10%, and the duration of the intermittent period ranges from 1 second to 15 seconds.
- the electrochemical device is a lithium nickel cobalt manganate system electrochemical device
- the range of the unit amplitude is 0.5% to 10%, and the duration of the intermittent period ranges from 1 second to 30 seconds
- the electrochemical device The device is a lithium cobalt oxide system electrochemical device, the unit amplitude ranges from 0.5% to 10%, and the duration of the intermittent period ranges from 1 second to 30 seconds.
- the embodiments of the present disclosure set different unit amplitudes and intermittent period durations for electrochemical devices of different systems, and perform intermittent charging operations on electrochemical devices of different systems in a more targeted manner, which can more accurately obtain different results.
- Lithium evolution SOC of the electrochemical device of the system Lithium evolution SOC of the electrochemical device of the system.
- the electrochemical device management method satisfies at least one of conditions a) to f):
- the electrochemical device is a lithium iron phosphate system electrochemical device, the electrochemical device is at an ambient temperature of -10°C to 10°C, the unit amplitude ranges from 0.5% to 10%, and the intermittent period The duration range is from 5 seconds to 15 seconds;
- the electrochemical device is a lithium iron phosphate system electrochemical device, the electrochemical device is at an ambient temperature of 10°C to 45°C, the unit amplitude ranges from 0.5% to 10%, and the The duration range is 1 second to 10 seconds;
- the electrochemical device is a lithium nickel cobalt manganate system electrochemical device, the electrochemical device is at an ambient temperature of -10°C to 10°C, and the range of the unit amplitude is 0.5% to 10%, and the The duration of the hiatus period ranges from 10 seconds to 30 seconds;
- the electrochemical device is a lithium nickel cobalt manganate system electrochemical device, the electrochemical device is at an ambient temperature of 10°C to 45°C, the range of the unit amplitude is 0.5% to 10%, and the discontinuity The duration of the period ranges from 1 second to 10 seconds;
- the electrochemical device is a lithium cobalt oxide system electrochemical device, the electrochemical device is at an ambient temperature of -10°C to 10°C, the unit amplitude ranges from 0.5% to 10%, and the intermittent period The duration range is from 15 seconds to 30 seconds;
- the electrochemical device is a lithium cobalt oxide system electrochemical device, the electrochemical device is at an ambient temperature of 10°C to 45°C, the unit amplitude ranges from 0.5% to 10%, and the Duration range is 1 second to 10 seconds.
- the embodiments of the present disclosure can more specifically perform intermittent charging operations on electrochemical devices in different temperature environments. More accurately obtain the lithium evolution SOC of electrochemical devices of different systems.
- the electrochemical device is a lithium iron phosphate system electrochemical device
- the value range of the upper limit of the preset lithium evolution SOC range is [30%, 95%]
- the electrochemical device is a lithium nickel cobalt manganate system electrochemical device, and the value range of the upper limit of the preset lithium evolution SOC range is [40%, 85%]
- the electrochemical device is cobalt acid Lithium system electrochemical device, the value range of the upper limit of the preset lithium evolution SOC range is [45%, 90%].
- the electrochemical device management method in the embodiments of the present disclosure can adapt to different lithium evolution situations of electrochemical devices with different systems and meet the safety management needs of different electrochemical devices, thereby facilitating subsequent targeted management of different systems or types. Manage electrochemical devices to achieve better management results.
- a computer-readable storage medium wherein a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, any one of the foregoing items is implemented.
- a charging device which includes a processor and a machine-readable storage medium, where the machine-readable storage medium stores machine-executable instructions that can be executed by the processor, When the processor executes the machine executable instructions, the aforementioned electrochemical device management method is implemented.
- a battery system which includes a processor and a machine-readable storage medium, where the machine-readable storage medium stores machine-executable instructions that can be executed by the processor, When the processor executes the machine executable instructions, the aforementioned electrochemical device management method is implemented.
- an electronic device including the aforementioned battery system.
- an electrochemical device management device including: a first determining device, a detecting device, and a second determining device; the first determining device is used to determine the analysis of the electrochemical device.
- Lithium SOC the detection device is used to obtain the first state data during use of the electrochemical device in response to the lithium evolution SOC being within the preset lithium evolution SOC range, and based on the first state data and the lithium evolution
- the SOC performs safety status detection on the electrochemical device, wherein the first status data is used to indicate the health status of the electrochemical device, and the safety status detection is used to determine whether the electrochemical device is safe to use. status; the second determining device is configured to determine the usage strategy of the electrochemical device based on the result of the safety status detection.
- the electrochemical device management solution in the embodiment of the present disclosure can determine the lithium evolution SOC of the electrochemical device, respond to the lithium evolution SOC being within the preset lithium evolution SOC range, and can obtain the electrochemical device usage process
- the first status data in the electrochemical device is used to detect the safety status of the electrochemical device based on the first status data and the lithium evolution SOC.
- the first status data is used to indicate the health status of the electrochemical device, and the safety status detection is used to determine the electrochemical device.
- the use strategy of the electrochemical device can be determined based on the results of the safety status detection, so that the use of the electrochemical device can be reasonably managed when lithium deposition occurs in the electrochemical device to ensure that the electrochemical device appears It is safe to use during lithium precipitation, and different usage strategies are determined for different safety states of the electrochemical device to reduce the impact of lithium precipitation and maximize the service life of the electrochemical device.
- Figure 1 is an optional step flow chart of an electrochemical device management method according to an embodiment of the present disclosure.
- FIG. 2 is a graph of a first curve according to an example of an embodiment of the present disclosure.
- FIG 3 is a graph of a second curve according to an example of an embodiment of the present disclosure.
- Figure 4 is an optional sub-step flow chart of "determining whether the use of the electrochemical device is in a safe state based on the change of the lithium evolution SOC of the electrochemical device relative to the SOH of the electrochemical device" according to an embodiment of the present disclosure.
- FIG. 5 is a structural block diagram of an electrochemical device management device according to an embodiment of the present disclosure.
- FIG. 6 is a structural diagram of a charging device according to an embodiment of the present disclosure.
- Figure 7 is a structural diagram of a battery system according to an embodiment of the present disclosure.
- Figure 8 is an experimental flowchart of Experimental Example 1 according to the embodiment of the present disclosure.
- Figure 9 is an experimental flowchart of Experimental Example 2 according to the embodiment of the present disclosure.
- Figure 10 is an experimental flowchart of Experimental Example 3 according to the embodiment of the present disclosure.
- the electrochemical device management method, electronic equipment, charging device and storage medium in the embodiment of the present disclosure are first described in detail, and then some related experiments of the electrochemical device management method in the embodiment of the present disclosure are given. Examples and comparative examples are used to illustrate the significant advantages of the electrochemical device management method, electronic equipment, charging device and storage medium provided in the embodiments of the present disclosure over the existing technology.
- the electrochemical device may include at least one lithium ion battery.
- the lithium ion batteries may be present in the electrochemical device in series and/or in parallel.
- the electrochemical device of the present disclosure is not limited to lithium ion batteries, and may also be a sodium ion battery, for example.
- the embodiments of the present disclosure provide an electrochemical device management method, as shown in the flow chart of Figure 1 .
- the electrochemical device management method includes the following steps S101, S102 and S103:
- the electrochemical device management device 1000 may be an electrochemical device management device capable of performing data processing.
- Electronic equipment for example, it may include a battery management system (Battery Management System, BMS) of an electrochemical device or it may be part of the BMS.
- BMS Battery Management System
- This step S101 that is, determining the lithium evolution SOC of the electrochemical device, can be completed by the first determining device 101 of the electrochemical device management device 1000.
- SOC State of Charge, state of charge
- the lithium evolution SOC in the embodiment of the present disclosure can be the same as the lithium evolution state of the electrochemical device. associated charge state.
- step S101 may include: performing an intermittent charging operation on the electrochemical device. During the intermittent charging operation Obtain data related to the electrochemical device, and determine the lithium evolution SOC of the electrochemical device based on the data related to the electrochemical device.
- the intermittent charging operation may refer to a process of intermittent charging of the electrochemical device.
- the embodiments of the present disclosure have no special restrictions on the charging method in the intermittent charging operation, as long as the purpose of the embodiments of the present disclosure can be achieved. It can be constant voltage charging, constant current charging, or constant current and constant voltage. Charging, or segmented constant current charging, etc.
- the data related to the electrochemical device may refer to data that can reflect the status of the electrochemical device, including but not limited to the charging voltage, charging current, internal resistance, SOC and other data of the electrochemical device.
- the intermittent charging operation may be a process in which the electrochemical device is charged during the first charging period, then the charging is stopped, and after the first intermittent period, the electrochemical device is continued to be charged during the second charging period. Charging is performed and this is repeated until the SOC of the electrochemical device reaches a first critical value. It can be understood that as intermittent charging proceeds, the SOC of the electrochemical device increases. Embodiments of the present disclosure can stop intermittent charging when the SOC of the electrochemical device reaches the first critical value to complete the intermittent charging operation. .
- the embodiments of the present disclosure have no special limitation on the first critical value, as long as the purpose of the present disclosure can be achieved.
- the first critical value may be 60%, 70%, 80%, 90% or 100%.
- the intermittent charging operation may be: for any one of the plurality of charging cycles, the electrochemical device is charged at the first moment until the SOC of the electrochemical device increases by a unit amplitude. Charging is stopped until the third moment, the moment when charging is stopped is the second moment, and the time interval between the third moment and the second moment is the duration of the interruption period. During the intermittent period, the electrochemical device may be in a state of neither charging nor discharging, that is, a static state.
- the intermittent charging operation of the embodiment of the present disclosure includes multiple charging cycles, and each charging cycle includes a charging period and an intermittent period.
- the first charging period and the first intermittent period form a first charging period
- the second charging period and the second intermittent period form a second charging period
- the third charging period and the third intermittent period form a third charging period, so as to And so on. It can be understood that a charging cycle is a continuous period of time.
- the data related to the electrochemical device includes the SOC of the electrochemical device and the internal resistance of the electrochemical device
- the intermittent charging operation of the embodiment of the present disclosure includes multiple charging periods and multiple intermittent periods.
- the step of "obtaining data related to the electrochemical device during the intermittent charging operation and determining the lithium evolution SOC of the electrochemical device based on the data related to the electrochemical device" includes steps S1011, S1012 and S1013, specifically :
- the internal resistance of the electrochemical device can be determined based on the detected charging voltage and charging current (for example, calculated using Ohm's law); optionally, a voltage-SOC relationship can be pre-stored in the BMS Table, the voltage-SOC relationship table records the SOC of the electrochemical device corresponding to different charging voltages, for example, 4.2V corresponds to 85% SOC, and 4.3V corresponds to 90% SOC. It can be seen that the SOC of the electrochemical device can be determined based on the charging voltage and the voltage-SOC relationship table.
- S1012 Obtain a first curve based on the acquired multiple SOCs of the electrochemical device and multiple internal resistances of the electrochemical device corresponding to the multiple SOCs.
- the first curve represents a mapping curve corresponding to the SOC and internal resistance of the electrochemical device. .
- the SOC of the electrochemical device can be used as the abscissa, Taking the internal resistance of the electrochemical device as the ordinate, fill the points represented by these data pairs in the coordinate system, and obtain the first curve after fitting.
- the first curve represents the mapping curve corresponding to the SOC and internal resistance of the electrochemical device. .
- the first curve can be obtained in the following manner, which specifically includes the following steps a, b, c, and d.
- Step a Obtain the first voltage, first current and first SOC of the electrochemical device at the second moment, and obtain the second voltage and second current of the electrochemical device at the third moment.
- the second moment is the moment when charging is stopped.
- the voltage, current and SOC of the electrochemical device at the second moment can be obtained, that is, the first voltage, the first current and the first SOC, which are recorded as V1, I1 and SOC1 respectively.
- the voltage and current of the electrochemical device at the third moment can be obtained, that is, the second voltage and the second current, which are recorded as V2 and I2 respectively.
- Step b Calculate the voltage change value and current change value of the electrochemical device during the interruption period.
- the duration of the intermittent period is the time interval between the third moment and the second moment.
- Step c Calculate the first internal resistance of the electrochemical device during the interruption period based on the voltage change value and the current change value, and use the first internal resistance and the first SOC as one of the data pairs of the first curve, where the data pair is the internal resistance Correspondence with SOC;
- Step d Generate a first curve based on the calculated multiple data pairs.
- the lithium evolution SOC of the electrochemical device can be determined through the first curve, thereby determining the SOC of the electrochemical device that tends to produce lithium evolution, which facilitates subsequent management of the electrochemical device and improves electrochemistry. Safety of use of the device.
- the first curve is a curve representing the mapping relationship between the SOC of the electrochemical device and the internal resistance.
- the lithium evolution SOC of the electrochemical device can be determined based on the first curve.
- the above lithium deposition SOC may not be measured in real time, but may be obtained based on the charging voltage obtained during the intermittent charging operation and the voltage-SOC relationship table.
- the voltage-SOC relationship table may be preset, for example, stored in the battery. in the storage medium of the chemical device management device.
- the above process of "determining the lithium evolution SOC of the electrochemical device based on the first curve" can be method 1, and method 1 includes step i and step ii.
- Step i Perform first-order differentiation on the first curve to obtain the second curve.
- a second curve is obtained after first-order differentiation of the first curve.
- This second curve represents the rate of change of the internal resistance of the electrochemical device with SOC.
- Step ii Determine the SOC corresponding to the point where the second curve has a negative slope for the first time as the lithium evolution SOC.
- the second curve represents the change rate of internal resistance with SOC.
- the change rate does not decrease abnormally in the flat area of the curve, it means that no active lithium is precipitated.
- the change rate decreases abnormally in the flat area of the curve it is because active lithium is precipitated on the surface of the negative electrode.
- it is equivalent to connecting a lithium metal device in parallel with the graphite part of the negative electrode, which reduces the impedance of the entire negative electrode part, so that the impedance of the electrochemical device decreases abnormally when active lithium is precipitated.
- the flat area of the second curve appears Abnormally low.
- point B is the first point in the second curve where the slope is negative, that is, the flat area of the second curve at point B shows an abnormal decrease for the first time, indicating that the electrochemical device has a tendency to precipitate lithium at point B or has already precipitated lithium.
- Lithium, the SOC corresponding to point B can be determined as the lithium evolution SOC, so that based on the relationship between the lithium evolution SOC and the SOC threshold, the electrochemical device can be protected in a timely manner and the safety of the electrochemical device can be improved.
- the above process of "determining the lithium evolution SOC of the electrochemical device based on the first curve" can be method 2, and method 2 includes step i, step ii' and step iii':
- Step i’ Perform first-order differentiation on the first curve to obtain the second curve.
- This step is the same as step i of method 1 and will not be described again.
- Step ii’ Perform first-order differentiation on the second curve to obtain the third curve.
- Step iii’ Determine the SOC corresponding to the point where the ordinate is less than zero for the first time in the third curve as the lithium evolution SOC.
- the SOC corresponding to the point where the ordinate of the third curve is less than zero for the first time is determined as the lithium evolution SOC.
- the lithium evolution SOC of the electrochemical device can be determined more accurately.
- the intermittent charging operation may include multiple charging cycles, each charging cycle includes a charging period and an intermittent period, and in each charging period, the SOC of the electrochemical device increases by a unit amplitude. That is, the SOC of the electrochemical device is increased to a certain extent during each charging period, for example, 0.5% SOC, 1% SOC, 5% SOC or 10% SOC is increased during each charging period.
- the electrochemical device is charged at time T1 until the SOC of the electrochemical device increases by unit amplitude, then charging is stopped, then the time to stop charging is time T2; starting from time T2, the electrochemical device is left standing, then The end time of resting is time T3.
- the electrochemical device in the embodiment of the present disclosure may be an electrochemical device of any type or system.
- the electrochemical device in the embodiment of the present disclosure may include a lithium iron phosphate system electrochemical device, a lithium nickel cobalt manganate system electrochemical device, or At least one of the lithium cobalt oxide system electrochemical devices.
- electrochemical devices of different systems will correspond to different unit amplitudes and different intermittent period durations.
- electrochemical devices of different systems will correspond to different unit amplitudes and different intermittent period durations.
- the electrochemical device is a lithium iron phosphate system electrochemical device
- the unit amplitude ranges from 0.5% to 10%
- the duration of the intermittent period ranges from 1 second to 15 seconds;
- the electrochemical device is a lithium nickel cobalt manganate system electrochemical device
- the unit amplitude ranges from 0.5% to 10%
- the duration of the pause period ranges from 1 second to 30 seconds.
- the electrochemical device is a lithium cobalt oxide system electrochemical device
- the unit amplitude ranges from 0.5% to 10%
- the duration of the pause period ranges from 1 second to 30 seconds.
- the electrochemical device is a lithium iron phosphate system electrochemical device, the electrochemical device is at an ambient temperature of -10°C to 10°C, the unit amplitude ranges from 0.5% to 10%, and the duration of the intermittent period ranges is 5 seconds to 15 seconds. In one embodiment, the electrochemical device is a lithium iron phosphate system electrochemical device, the electrochemical device is at an ambient temperature of 10°C to 45°C, the unit amplitude ranges from 0.5% to 10%, and the duration of the intermittent period ranges from 1 second to 10 seconds.
- the cathode of the lithium iron phosphate system electrochemical device may also include other cathode active materials, but lithium iron phosphate is the main material.
- lithium iron phosphate accounts for 51%, 60%, and 60% of the total mass of the cathode active material. Any value from 70%, 80%, 90%, 98%.
- the electrochemical device is a lithium nickel cobalt manganate system electrochemical device, the electrochemical device is at an ambient temperature of -10°C to 10°C, the unit amplitude ranges from 0.5% to 10%, and the Duration range is 10 seconds to 30 seconds. In one embodiment, the electrochemical device is a lithium nickel cobalt manganate system electrochemical device, the electrochemical device is at an ambient temperature of 10°C to 45°C, the unit amplitude ranges from 0.5% to 10%, and the duration of the intermittent period The range is 1 second to 10 seconds.
- the cathode of the lithium nickel cobalt manganate system electrochemical device may also include other cathode active materials, but lithium nickel cobalt manganate is the main material.
- lithium nickel cobalt manganate accounts for 50% of the total mass of the cathode active material. Any value among 51%, 60%, 70%, 80%, 90%, 98%.
- the electrochemical device is a lithium cobalt oxide system electrochemical device, the electrochemical device is at an ambient temperature of -10°C to 10°C, the unit amplitude ranges from 0.5% to 10%, and the duration of the intermittent period ranges is 15 seconds to 30 seconds. In one embodiment, the electrochemical device is a lithium cobalt oxide system electrochemical device, the electrochemical device is at an ambient temperature of 10°C to 45°C, the unit amplitude ranges from 0.5% to 10%, and the duration of the intermittent period ranges from 1 second to 10 seconds.
- the cathode of the lithium cobalt oxide system electrochemical device may also include other cathode active materials, but lithium cobalt oxide is the main material.
- lithium cobalt oxide accounts for 51%, 60%, and 60% of the total mass of the cathode active material. Any value from 70%, 80%, 90%, 98%.
- the embodiments of the present disclosure can more specifically perform intermittent charging operations on electrochemical devices in different temperature environments, and can more accurately charge the electrochemical devices in different temperature environments.
- the lithium evolution SOC of electrochemical devices of different systems was obtained.
- the lithium evolution SOC of the electrochemical device can also be determined by other methods, as long as the requirements can be met, and there is no special limitation here.
- the first status data is used to indicate the health status of the electrochemical device
- the safety status detection is used to determine whether the use of the electrochemical device is in a safe status.
- step S102 may be completed by the detection device 102 of the electrochemical device management device 1000 in the embodiment of the present disclosure.
- the determined lithium evolution SOC of the electrochemical device when the determined lithium evolution SOC of the electrochemical device is within the preset lithium evolution SOC range, it may mean that a certain degree of lithium evolution has occurred in the electrochemical device at this time. That is to say, the present invention
- the safety state of the electrochemical device is detected based on the first state data and the lithium evolution SOC at this time. For an electrochemical device that has experienced a certain degree of lithium evolution, it can be reasonably determined whether the use of the electrochemical device is in a safe state. This facilitates the rational determination of the use strategy for the electrochemical device in subsequent S103, and facilitates more reasonable management of the electrochemical device to ensure the safety of the electrochemical device.
- the preset lithium evolution SOC range in the embodiment of the disclosure can be set as needed, and is not limited in the embodiment of the disclosure. Due to the different systems and types of electrochemical devices, the corresponding lithium evolution SOC may be different when lithium is evolved.
- the electrochemical device in the embodiment of the present disclosure may include a lithium iron phosphate system electrochemical device, lithium nickel cobalt manganate system electrochemical devices, lithium cobalt oxide system electrochemical devices, etc. Therefore, in the embodiments of the present disclosure, different preset lithium evolution SOC ranges are set for different systems and types of electrochemical devices. In some optional embodiments, specifically land:
- the electrochemical device is a lithium iron phosphate system electrochemical device
- the preset upper limit of the lithium evolution SOC range is [30%, 95%] (for example, it can be from [30%, 95%] according to the actual situation The values are 30%, 50%, 70%, 80%, 90%, 95%, etc., there are no restrictions here));
- the electrochemical device is a lithium nickel cobalt manganate system electrochemical device
- the preset upper limit of the lithium evolution SOC range is [40%, 85%] (for example, it can be from [40%, 85%] based on the actual situation. %], the values are 40%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, etc., there are no restrictions here);
- the electrochemical device is a lithium cobalt oxide system electrochemical device
- the preset upper limit of the lithium evolution SOC range is [45%, 90%] (for example, it can be from [45%, 90%] according to the actual situation
- the values are 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, etc., which are not limited here).
- the embodiment of the present disclosure provides a value range for the upper limit of the preset lithium evolution SOC range.
- the lower limit of the preset lithium evolution SOC range may be a value smaller than the upper limit, for example, it may be 0%, 1%, 5%, 10%, etc., which is not limited by the present disclosure.
- the lower limit value is 0%
- the upper limit value of the preset lithium evolution SOC range is 30%
- the preset lithium evolution SOC range is [0%, 30% ]
- the first state during use of the electrochemical device can be obtained in response to the lithium evolution SOC being within the preset lithium evolution SOC range.
- the first status data may be any one or more status parameters during battery use that can indicate the health status of the electrochemical device.
- it may include: SOH of the electrochemical device, SOH of the electrochemical device. At least one of the remaining power, the number of cycles of the electrochemical device, the working time of the electrochemical device, and other state parameters.
- the first status data includes the SOH of the electrochemical device
- "detecting the safety status of the electrochemical device based on the first status data and lithium evolution SOC" in step S102 includes: based on the electrochemical The change of the lithium evolution SOC of the device relative to the SOH of the electrochemical device determines whether the use of the electrochemical device is in a safe state.
- SOH State of health
- SOH can measure the health status of the electrochemical device. It can be calculated by any reasonable method in the relevant technology. In the embodiment of the present disclosure, it is There are no restrictions as long as the needs can be met. As one example, SOH can be the percentage of the current cycle discharge capacity of the electrochemical device to the initial capacity.
- the two are reasonably considered during analysis, so that the results of the safety detection are more accurate and can be more reasonably and accurately Determine whether the electrochemical device is in a safe state, so as to facilitate subsequent management of the electrochemical device based on the result of whether the electrochemical device is in a safe state.
- the embodiments of this disclosure do not specifically limit the specific way to determine whether the use of the electrochemical device is in a safe state based on the change of the lithium evolution SOC relative to the SOH.
- “the lithium evolution SOC based on the electrochemical device is relatively "Determining whether the use of the electrochemical device is in a safe state based on changes in the SOH of the electrochemical device” may include the following steps S1021 and step S1022:
- S1021 Calculate the safety state parameter COS of the electrochemical device based on the lithium evolution SOC of the electrochemical device and the SOH of the electrochemical device, where COS is the differential value of the lithium evolution SOC of the electrochemical device to the SOH of the electrochemical device.
- S1022 Based on COS, determine whether the use of the electrochemical device is in a safe state.
- the safety state parameter COS can accurately reflect the change of the lithium evolution SOC of the electrochemical device relative to the SOH of the electrochemical device. Therefore, in the embodiment of the present disclosure, it is possible to determine whether the use of the electrochemical device is in a safe state based on COS. The result of the safety detection is made more accurate, and whether the electrochemical device is in a safe state can be determined more reasonably and accurately, so as to facilitate subsequent management of the electrochemical device based on the result of whether the electrochemical device is in a safe state.
- step S1022 is not limited in the embodiment of the present disclosure, as long as it can meet the requirements.
- two different optional implementations are provided to determine whether the use of the electrochemical device is in a safe state based on COS. These two optional implementations are described in detail below.
- step S1022 includes the following sub-steps S21 and S22:
- the first change curve takes the SOH of the electrochemical device as the abscissa and the safety state parameter COS as the ordinate, which can accurately reflect the change of the safety state parameter with SOH.
- the first change curve can be obtained after fitting. It can be understood that the denser the data collection of the safety state parameters COS and SOH of the electrochemical device, the more data pairs are obtained, and a more detailed first change curve can be obtained.
- the process of using data to perform curve fitting is well known to those skilled in the art, and the embodiments of the present disclosure do not specifically limit this.
- noise reduction, smoothing, etc. may also be performed on the first change curve.
- the first change curve represents the change of COS with the SOH of the electrochemical device, and COS is the differential value of the lithium-eliminating SOC to the SOH of the electrochemical device
- the first change curve is combined with the first change curve in the embodiment of the present disclosure to facilitate accurate determination of the electrochemical device. Whether chemical equipment is used in a safe condition.
- S22 in the embodiment of the present disclosure may include the following sub-steps S221 and S222.
- S221 Perform differential processing on the first change curve to obtain the second change curve.
- the second change curve obtained by differential processing of the first change curve represents the change rate of COS with SOH, and its ordinate is also dCOS/dSOH.
- the embodiment of the present disclosure determines that the use of the electrochemical device is in a safe state based on the absolute value of the ordinate of the second change curve in a reasonable manner combined with the actual situation, which can make the results of the safe state detection of the electrochemical device more reasonable, so as to facilitate Subsequent management of the electrochemical device is based on the results.
- a threshold value judgment may be performed on the absolute value of the ordinate of the second change curve (ie, the absolute value of dCOS/dSOH), based on the absolute value of the ordinate of the second change curve. value to determine whether the use of the electrochemical device is in a safe state, thereby completing the safety status detection of the electrochemical device.
- step S222 may include: if the absolute value is less than the first absolute value threshold, determining that the use of the electrochemical device is in a safe state; and, if the absolute value is not less than the first absolute value threshold, determining that the use of the electrochemical device is not safe. in a safe state.
- the safety status detection can be determined to be that the use of the electrochemical device is not in a safe state; and when the absolute value of the ordinate of the second change curve is less than the first absolute value threshold, at this time the electrochemical device Although a certain degree of lithium precipitation occurs in the chemical device, the lithium precipitation will not have a major impact on the normal and safe use of the electrochemical device. It can continue to be used with continued monitoring. Therefore, the safety status detection can be The results determined that the electrochemical device is still safe to use.
- the first absolute value threshold can be set as needed, and is not limited here.
- the value range of the first absolute value threshold can be [1000, 9000], [2000, 9000], [ 2500, 9000], [3000, 10000], etc.
- the first absolute value threshold can be 1000, 2000, 2500, 3000, 4000, 6000, 9000, 10000, etc.
- different value ranges of the first absolute value threshold can be set to adapt to the safety detection requirements of different electrochemical devices, thereby facilitating targeted detection. Manage different systems or types of electrochemical devices to achieve better management results.
- the electrochemical devices in the embodiments of the present disclosure may include lithium iron phosphate system electrochemical devices, lithium nickel cobalt manganate system electrochemical devices, and lithium cobalt oxide system electrochemical devices.
- the value range of their corresponding first absolute value thresholds can be:
- the value range of the first absolute value threshold is [2500, 9000];
- the value range of the first absolute threshold is [2000, 9000];
- the value range of the first absolute value threshold is [2000, 9500].
- the first absolute value threshold when the first absolute value threshold is within the corresponding value range of the corresponding electrochemical device system, it can meet the safety detection requirements of the corresponding electrochemical device. It facilitates targeted management of different systems or types of electrochemical devices. Obviously, for different electrochemical devices, appropriate specific values can also be selected from the corresponding first absolute threshold value range according to needs, which are not limited in the embodiments of the present disclosure.
- the value range of the first absolute threshold is [2500, 9000], and 3500 can be selected as the first absolute threshold; if the electrochemical device If the electrochemical device is a lithium cobalt manganate system electrochemical device, the value range of the first absolute value threshold is [2000, 9000], and 3000 can be selected as the first absolute value threshold; if the electrochemical device is a lithium cobalt oxide system electrochemical device , the value range of the first absolute value threshold is [2000, 9500], and 3500 can be selected as the first absolute value threshold.
- step S1022 includes: if COS is less than the first COS threshold, determining that the use of the electrochemical device is in a safe state; and, if If the COS is not less than the first COS threshold, it is determined that the use of the electrochemical device is not in a safe state.
- the safety state detection can be directly based on the safety state parameter COS. This method can also accurately determine whether the use of the electrochemical device is in a safe state. Therefore, implementation mode 1 or implementation can be adopted as needed.
- Method 2 performs safety status detection on the electrochemical device, which is not particularly limited in the embodiments of the present disclosure. However, it should be pointed out that in actual situations, the safety status detection method in implementation mode 1 is more sensitive than the safety status detection method in implementation mode 2.
- the safety state parameter COS of the electrochemical device when the safety state parameter COS of the electrochemical device is greater than or equal to the first COS threshold, at this time, on the basis of the occurrence of lithium precipitation in the electrochemical device, the lithium precipitation situation has already had a greater impact on the normal safe use of the electrochemical device. Therefore, the result of the safety state detection can be determined to be that the use of the electrochemical device is not in a safe state; and when the safety state parameter COS is less than the first COS threshold, although a certain degree of lithium precipitation occurs in the electrochemical device at this time, The lithium precipitation will not have a major impact on the normal and safe use of the electrochemical device, and it can continue to be used with continued monitoring. Therefore, the result of the safety status detection can be determined to be that the use of the electrochemical device is still safe. state.
- the first COS threshold can be set as needed, and is not limited here.
- the value range of the first COS threshold can be [20, 80], [10, 70], [30, 90], [40, 90], etc.
- the first COS threshold can be 20, 30, 50, 60, 70, 80, 90, etc.
- different value ranges of the first COS threshold can be set to adapt to the safety detection requirements of different electrochemical devices, thereby facilitating targeted detection. Different systems or types of electrochemical devices are managed to achieve better management results.
- the electrochemical device in the embodiment of the present disclosure may include a lithium iron phosphate system electrochemical device, a lithium nickel cobalt manganate system electrochemical device, a lithium cobalt oxide system electrochemical device, etc., in some optional implementations
- the value range of their corresponding first COS thresholds can be:
- the value range of the first COS threshold is [20, 80];
- the value range of the first COS threshold is [10, 70];
- the value range of the first COS threshold is [15, 85].
- the first COS threshold value when the first COS threshold value is within the corresponding value range of the corresponding electrochemical device system, it can meet the safety detection requirements of the corresponding electrochemical device and facilitate Targeted management of different systems or types of electrochemical devices. Obviously, for different electrochemical devices, they can also select appropriate specific values from the corresponding first COS threshold value range according to needs, which are not limited in the embodiments of the present disclosure.
- the value range of the first COS threshold is [20, 80], and 30 can be selected as the first COS threshold; if the electrochemical device is a nickel For a lithium cobalt manganate system electrochemical device, the value range of the first COS threshold is [10, 70], and 20 can be selected as the first COS threshold; if the electrochemical device is a lithium cobalt oxide system electrochemical device, the first COS The value range of the threshold is [15, 85], and 25 can be selected as the first COS threshold.
- this step S103 can be completed by the determination device 103 of the electrochemical device 1000, and the electrochemical device is managed using the usage strategy determined based on the results of the safety status detection obtained in the aforementioned S101 and S102 to ensure that the electrochemical device The rationality of management of the use of chemical equipment.
- the electrochemical device management method in the embodiment of the present disclosure can determine the lithium evolution SOC of the electrochemical device, respond to the lithium evolution SOC being within the preset lithium evolution SOC range, and can obtain the first state during use of the electrochemical device.
- the data is used to detect the safety status of the electrochemical device based on the first status data and the lithium evolution SOC, where the first status data is used to indicate the health status of the electrochemical device, and the safety status detection is used to determine whether the use of the electrochemical device is safe. status, and finally the usage strategy of the electrochemical device can be determined based on the results of the safety status detection, so that the use of the electrochemical device can be reasonably managed when lithium is deposited in the electrochemical device to ensure the use of the electrochemical device when lithium is deposited. It is safe, and different usage strategies are determined for different safety states of the electrochemical device to reduce the impact of lithium precipitation and maximize the service life of the electrochemical device.
- the usage strategy determined in step S103 there is no special restriction on the usage strategy determined in step S103, as long as it can meet the needs. For example, it can be to increase or decrease the charge and discharge voltage, charge and discharge current, etc., which will not be detailed in the embodiment of the present disclosure. limit.
- step S103 includes: in response to the fact that the use of the electrochemical device is not in a safe state, restricting the use of the electrochemical device.
- the electrochemical device management method adopts a usage strategy that restricts the use of the electrochemical device at this time, so as to better ensure the safety of the electrochemical device in use and thereby ensure the user's safety when using the electrochemical device. Safety.
- restricting the use of the electrochemical device may include reducing at least one of the charging voltage, charging current, discharge voltage, and discharge current of the electrochemical device, or may also include other restrictive measures. By reducing these electrochemical devices, The usage status parameters of the device effectively limit the use of the electrochemical device.
- step S1022 based on COS, determine whether the use of the electrochemical device is in a safe state
- implementation 1 two different optional implementations of step S1022 (i.e., "based on COS, determine whether the use of the electrochemical device is in a safe state")
- implementation 2 two different optional implementations of step S1022
- "responsing to the use of the electrochemical device not being in a safe state, restricting the use of the electrochemical device” may include: in response to the absolute value being not less than the first absolute value threshold and Not greater than a second absolute value threshold, reducing at least one of the charging voltage, discharge voltage, charging current, and discharge current of the electrochemical device, wherein the second absolute value threshold is greater than the first absolute value threshold; and, in response to the absolute value being greater than Second absolute value threshold, discontinuing use of the electrochemical device.
- the absolute value of the ordinate of the second change curve is not less than the first absolute value threshold and not greater than the second absolute value threshold, it is understandable that on the basis of lithium evolution occurring in the electrochemical device at this time, Although the lithium deposition has had a great impact on its normal and safe use, it can still maintain certain functions.
- the charging voltage, discharge voltage, charging current and discharge current can be At least one is limited and reduced, thereby ensuring the safety of the electrochemical device and extending the service life of the electrochemical device; and when the absolute value of the ordinate of the second change curve is greater than the second absolute value threshold, the electrochemical device
- the lithium precipitation has had a serious impact on the normal and safe use of the electrochemical device. It is difficult to maintain the function of the electrochemical device. Continued use will cause serious damage to the electrochemical device in a short period of time. Lithium precipitation may lead to the risk of serious consequences such as fire or flatulence. Therefore, in the embodiment of the present disclosure, a strategy is adopted to stop the use of the electrochemical device to ensure the safety of the electrochemical device.
- stopping the use of the electrochemical device in the embodiment of the present disclosure may refer to stopping the charge and discharge cycle operation of the electrochemical device when the absolute value is greater than the second absolute value threshold, or it may also mean turning off the electrochemical device. device rendering it unusable, thereby ceasing use of the electrochemical device.
- the electrochemical device can be managed more reasonably, the service life of the electrochemical device can be extended, and the safety of the electrochemical device can be ensured.
- the second absolute value threshold can also be set according to needs, and is not limited here.
- the value range of the first absolute value threshold can be [7000, 20000], [5000, 20000], [6000, 20000], [6000, 19000], etc.
- the second absolute value threshold It can be 5000, 6000, 7000, 10000, 15000, 19000, 20000, etc.
- different value ranges of the second absolute value threshold can be set to adapt to the safety management needs of different electrochemical devices, thereby facilitating targeted Manage different systems or types of electrochemical devices to achieve better management results.
- the electrochemical device in the embodiment of the present disclosure may include a lithium iron phosphate system electrochemical device, a lithium nickel cobalt manganate system electrochemical device, a lithium cobalt oxide system electrochemical device, etc., in some optional implementations
- the value range of their corresponding second absolute value thresholds can be:
- the value range of the second absolute value threshold is [7000, 20000];
- the value range of the second absolute value threshold is [5000, 20000];
- the value range of the second absolute value threshold is [5500, 20000].
- the second absolute value threshold when the second absolute value threshold is within the corresponding value range of its corresponding electrochemical device system, it can meet the safety management needs of the corresponding electrochemical device. It facilitates targeted management of different systems or types of electrochemical devices. Obviously, for different electrochemical devices, they can also select appropriate specific values from the corresponding second absolute value threshold value range according to needs, which are not limited in the embodiments of the present disclosure. For example, in some examples, if the electrochemical device is a lithium iron phosphate system electrochemical device, the value range of the second absolute threshold is [7000, 20000], and 11000 can be selected as the second absolute threshold; if the electrochemical device It is a lithium cobalt manganate system electrochemical device.
- the value range of the second absolute value threshold is [5000, 20000], and 10000 can be selected as the second absolute value threshold; if the electrochemical device is a lithium cobalt oxide system electrochemical device , the value range of the second absolute value threshold is [5500, 20000], and 11000 can be selected as the second absolute value threshold.
- "responsing to the use of the electrochemical device not being in a safe state, restricting the use of the electrochemical device” may include: in response to the COS being not less than the first COS threshold and not greater than a second COS threshold, reducing at least one of the charging voltage, the discharge voltage, the charging current, and the discharge current of the electrochemical device, wherein the second COS threshold is greater than the first COS threshold; and, in response to the COS being greater than the second COS threshold, stopping Use of electrochemical devices.
- the safety state parameter COS of the electrochemical device when the safety state parameter COS of the electrochemical device is not less than the first COS threshold and not greater than the second COS threshold, at this time, based on the occurrence of lithium evolution in the electrochemical device, it can be understood that the lithium evolution situation is Although it has had a great impact on its normal and safe use, it can still maintain certain functions.
- stopping the use of the electrochemical device in the embodiment of the present disclosure may refer to stopping the charge and discharge cycle operation of the electrochemical device when the absolute value is greater than the second COS threshold, or it may also mean shutting down the electrochemical device. rendering it unusable, thereby ceasing use of the electrochemical device.
- the electrochemical device can be managed more reasonably, the service life of the electrochemical device can be extended, and the safety of the electrochemical device can be ensured.
- the second COS threshold can be set as needed, and is not limited here.
- the value range of the second COS threshold can be [60, 100], [50, 100], [55, 90], [65, 90], etc.
- the second COS threshold can be 50, 55, 60, 65, 80, 90, 95, 100, etc.
- different value ranges of the second COS threshold can be set to adapt to the safety management needs of different electrochemical devices, thereby facilitating targeted management. Different systems or types of electrochemical devices are managed to achieve better management results.
- the electrochemical device in the embodiment of the present disclosure may include a lithium iron phosphate system electrochemical device, a lithium nickel cobalt manganate system electrochemical device, a lithium cobalt oxide system electrochemical device, etc., in some optional implementations
- the value range of their corresponding second COS thresholds can be:
- the value range of the second COS threshold is [60, 100];
- the value range of the second COS threshold is [50, 100];
- the value range of the second COS threshold is [50, 100].
- the second COS threshold value when the second COS threshold value is within the corresponding value range of its corresponding electrochemical device system, it can meet the safety management needs of the corresponding electrochemical device and facilitate Targeted management of different systems or types of electrochemical devices. Obviously, for different electrochemical devices, they can also select appropriate specific values from the corresponding second COS threshold value range according to needs, which are not limited in the embodiments of the present disclosure.
- the value range of the second COS threshold is [60, 100], and 70 can be selected as the second COS threshold; if the electrochemical device is a nickel For a lithium cobalt manganate system electrochemical device, the value range of the second COS threshold is [50, 100], and 80 can be selected as the second COS threshold; if the electrochemical device is a lithium cobalt oxide system electrochemical device, the second COS The value range of the threshold is [50, 100], and 75 can be selected as the second COS threshold.
- the result of the safe state detection is: when the use of the electrochemical device is in a safe state (corresponding to embodiment 1, that is, the absolute value of the ordinate of the second change curve is less than the first absolute value threshold; and corresponding to In implementation mode 2, that is, COS is less than the first COS threshold), although the electrochemical device may undergo lithium evolution to a certain extent, the lithium evolution will not have a major impact on the normal and safe use of the electrochemical device.
- the method can continue to be used while continuing to monitor. Therefore, the electrochemical device management method may not adopt a restriction strategy on the use of the electrochemical device at this time and can continue to monitor the usage status of the electrochemical device.
- the electrochemical device management method in the embodiment of the present disclosure can determine the lithium evolution SOC of the electrochemical device, respond to the lithium evolution SOC being within the preset lithium evolution SOC range, and can obtain the lithium evolution SOC during use of the electrochemical device.
- the first status data is used to detect the safety status of the electrochemical device based on the first status data and the lithium evolution SOC.
- the first status data is used to indicate the health status of the electrochemical device, and the safety status detection is used to determine the health status of the electrochemical device.
- the use strategy of the electrochemical device can be determined based on the results of the safety state detection, so that the use of the electrochemical device can be reasonably managed when lithium deposition occurs in the electrochemical device to ensure that the electrochemical device is prone to lithium deposition.
- the use of lithium is safe, and different usage strategies are determined for different safety states of electrochemical devices to reduce the impact of lithium precipitation and maximize the service life of electrochemical devices.
- the embodiment of the present disclosure provides an electrochemical device management device 1000, which includes: a first determination device 101, a detection device 102 and a second determination device. 103;
- the first determining device 101 is used to determine the lithium evolution SOC of the electrochemical device
- the detection device 102 is configured to obtain the first state data during use of the electrochemical device in response to the lithium evolution SOC being within the preset lithium evolution SOC range, and to determine the lithium evolution SOC based on the first state data and the lithium evolution SOC.
- the electrochemical device performs safety status detection, wherein the first status data is used to indicate the health status of the electrochemical device, and the safety status detection is used to determine whether the use of the electrochemical device is in a safe status;
- the second determining device 103 is configured to determine the usage strategy of the electrochemical device based on the result of the safety status detection.
- the second determining device 103 is specifically configured to limit the use of the electrochemical device in response to the fact that the use of the electrochemical device is not in a safe state.
- the first state data includes the SOH of the electrochemical device
- the detection device 102 is specifically configured to: based on the lithium evolution SOC of the electrochemical device relative to the SOH of the electrochemical device changes to determine whether the use of the electrochemical device is in a safe state.
- the detection device 102 is specifically configured to: calculate the safety state parameter COS of the electrochemical device based on the lithium evolution SOC of the electrochemical device and the SOH of the electrochemical device, Wherein, the COS is the differential value of the lithium-eliminating SOC of the electrochemical device to the SOH of the electrochemical device; based on the COS, it is determined whether the use of the electrochemical device is in a safe state.
- the detection device 102 is specifically configured to: determine a first change curve based on the COS and the SOH of the electrochemical device, wherein the first change curve represents that the COS changes with time. Changes in SOH of the electrochemical device; based on the first change curve, determine whether the use of the electrochemical device is in a safe state.
- the detection device 102 is specifically configured to: perform differential processing on the first change curve to obtain a second change curve; and determine based on the absolute value of the ordinate of the second change curve. Whether the electrochemical device is used in a safe condition.
- the detection device 102 is specifically configured to: if the absolute value is less than a first absolute value threshold, determine that the use of the electrochemical device is in a safe state; and, if the absolute value If the value is not less than the first absolute value threshold, it is determined that the use of the electrochemical device is not in a safe state.
- the second determining device 103 is specifically configured to limit the use of the electrochemical device in response to the fact that the use of the electrochemical device is not in a safe state, including: responding to When the absolute value is not less than the first absolute value threshold and not greater than the second absolute value threshold, at least one of the charging voltage, the discharging voltage, the charging current and the discharging current of the electrochemical device is reduced, wherein, the A second absolute value threshold is greater than the first absolute value threshold; and, in response to the absolute value being greater than the second absolute value threshold, ceasing use of the electrochemical device.
- the value range of the first absolute threshold is [2500, 9000]; if the electrochemical device is a nickel For a lithium cobalt manganate system electrochemical device, the value range of the first absolute value threshold is [2000, 9000]; if the electrochemical device is a lithium cobalt oxide system electrochemical device, the first absolute value threshold is The value range is [2000, 9500].
- the value range of the second absolute threshold is [7000, 20000]; if the electrochemical device is a nickel For a lithium cobalt manganate system electrochemical device, the value range of the second absolute value threshold is [5000, 20000]; if the electrochemical device is a lithium cobalt oxide system electrochemical device, the second absolute value threshold is The value range is [5500, 20000].
- the detection device 102 is specifically configured to: if the COS is less than a first COS threshold, determine that the use of the electrochemical device is in a safe state; and, if the COS is not less than a first COS threshold.
- a COS threshold value indicates that the use of the electrochemical device is not in a safe state.
- the second determining device 103 is specifically configured to: reduce the charging voltage of the electrochemical device in response to the COS being not less than the first COS threshold and not greater than the second COS threshold. , at least one of discharge voltage, charging current, and discharge current, wherein the second COS threshold is greater than the first COS threshold; and, in response to the COS being greater than the second COS threshold, stopping charging the battery Use of chemical equipment.
- the value range of the first COS threshold is [20, 80]; if the electrochemical device is a nickel cobalt For a lithium manganate system electrochemical device, the value range of the first COS threshold is [10, 70]; if the electrochemical device is a lithium cobalt oxide system electrochemical device, the value range of the first COS threshold is [15,85].
- the value range of the second COS threshold is [60, 100]; if the electrochemical device is a nickel cobalt For a lithium manganate system electrochemical device, the value range of the second COS threshold is [50, 100]; if the electrochemical device is a lithium cobalt oxide system electrochemical device, the value range of the second COS threshold is [50, 100].
- the first determining device 101 is specifically configured to: perform an intermittent charging operation on the electrochemical device, and obtain data related to the electrochemical device during the intermittent charging operation, based on The data related to the electrochemical device determines the lithium evolution SOC of the electrochemical device.
- the data related to the electrochemical device includes the SOC of the electrochemical device and the internal resistance of the electrochemical device
- the intermittent charging operation includes multiple charging periods and multiple intermittent periods
- the first A determining device 101 is specifically configured to: during the intermittent charging operation, for each of the plurality of intermittent periods, obtain the SOC of the electrochemical device and the internal resistance of the electrochemical device during the intermittent period; based on the A first curve is obtained by obtaining multiple SOCs of the electrochemical device and multiple internal resistances of the electrochemical device corresponding to the multiple SOCs.
- the first curve represents the SOC of the electrochemical device and the internal resistance corresponding to the multiple SOCs. Mapping curve; based on the first curve, determine the lithium evolution SOC of the electrochemical device.
- the first determining device 101 is specifically configured to: perform first-order differentiation on the first curve to obtain a second curve; and determine the point where the second curve first appears with a negative slope.
- the corresponding SOC is the lithium evolution SOC; or, perform first-order differentiation on the first curve to obtain a second curve; perform first-order differentiation on the second curve to obtain a third curve; and determine the third
- the SOC corresponding to the point where the ordinate of the curve is less than zero for the first time is the lithium evolution SOC.
- the intermittent charging operation includes a plurality of charging cycles, each charging cycle includes a charging period and an intermittent period, and in each of the charging periods, the SOC of the electrochemical device increases by units amplitude.
- the electrochemical device is a lithium iron phosphate system electrochemical device
- the unit amplitude ranges from 0.5% to 10%, and the duration of the intermittent period ranges from 1 second to 15 seconds
- the electrochemical device is a lithium nickel cobalt manganate system electrochemical device
- the unit amplitude ranges from 0.5% to 10%, and the duration of the intermittent period ranges from 1 second to 30 seconds
- the electrochemical device is For a lithium cobalt oxide system electrochemical device, the unit amplitude ranges from 0.5% to 10%, and the duration of the intermittent period ranges from 1 second to 30 seconds.
- At least one of conditions a) to f) is met:
- the electrochemical device is a lithium iron phosphate system electrochemical device, the electrochemical device is at an ambient temperature of -10°C to 10°C, the unit amplitude ranges from 0.5% to 10%, and the intermittent period The duration range is from 5 seconds to 15 seconds;
- the electrochemical device is a lithium iron phosphate system electrochemical device, the electrochemical device is at an ambient temperature of 10°C to 45°C, the unit amplitude ranges from 0.5% to 10%, and the The duration range is 1 second to 10 seconds;
- the electrochemical device is a lithium nickel cobalt manganate system electrochemical device, the electrochemical device is at an ambient temperature of -10°C to 10°C, and the range of the unit amplitude is 0.5% to 10%, and the The duration of the hiatus period ranges from 10 seconds to 30 seconds;
- the electrochemical device is a lithium nickel cobalt manganate system electrochemical device, the electrochemical device is at an ambient temperature of 10°C to 45°C, the range of the unit amplitude is 0.5% to 10%, and the discontinuity The duration of the period ranges from 1 second to 10 seconds;
- the electrochemical device is a lithium cobalt oxide system electrochemical device, the electrochemical device is at an ambient temperature of -10°C to 10°C, the unit amplitude ranges from 0.5% to 10%, and the intermittent period The duration range is from 15 seconds to 30 seconds;
- the electrochemical device is a lithium cobalt oxide system electrochemical device, the electrochemical device is at an ambient temperature of 10°C to 45°C, the unit amplitude ranges from 0.5% to 10%, and the Duration range is 1 second to 10 seconds.
- the electrochemical device is a lithium iron phosphate system electrochemical device
- the value range of the upper limit of the preset lithium evolution SOC range is [30%, 95%]
- the electrochemical device is a lithium nickel cobalt manganate system electrochemical device, and the value range of the upper limit of the preset lithium evolution SOC range is [40%, 85%]
- the electrochemical device is cobalt acid Lithium system electrochemical device, the value range of the upper limit of the preset lithium evolution SOC range is [45%, 90%].
- the electrochemical device management device 1000 can be used to implement the corresponding electrochemical device management methods in the foregoing multiple method embodiments, and has the beneficial effects of the corresponding method embodiments, which will not be described again here.
- the functional implementation of each device in the electrochemical device management device 1000 in the embodiment of the present disclosure reference can be made to the description of the corresponding part in the foregoing method embodiment, and the details will not be described again here.
- the embodiments of the present disclosure provide a computer-readable storage medium.
- a computer program is stored in the computer-readable storage medium.
- the computer program is executed by a processor, any of the foregoing aspects are implemented.
- An electrochemical device management method is implemented.
- the embodiment of the present disclosure provides a charging device.
- the charging device 200 includes a processor 201 and a machine-readable storage medium 202.
- the charging device 200 can also It includes a charging circuit module 203, an interface 204, a power interface 205, and a rectifier circuit 206.
- the charging circuit module 203 is used to receive instructions from the processor 201 to charge the lithium-ion battery 2000 (ie, the electrochemical device); the charging circuit module 203 can also obtain relevant parameters of the lithium-ion battery 2000 and send them to Processor 201; the interface 204 is used to electrically connect with the lithium ion battery 2000 to connect the lithium ion battery 2000 to the charging device 200; the power interface 205 is used to connect to an external power supply; the rectifier circuit 206 is used to rectify the input current;
- the machine-readable storage medium 202 stores machine-executable instructions that can be executed by the processor. When the processor 201 executes the machine-executable instructions, the electrochemical device management method steps described in any of the above embodiments are implemented.
- the embodiments of the present disclosure also provide a battery system.
- the battery system 300 includes a second processor 301 and a second machine-readable storage medium 302.
- the battery system 300 may also include a charging circuit module 303, a lithium-ion battery 304 (ie, an electrochemical device), and a second interface 305.
- the charging circuit module 303 is used to receive instructions from the second processor 301 to charge the electrochemical device; the charging circuit module 303 can also obtain relevant parameters of the lithium-ion battery 304 (ie, the electrochemical device) and send them to the second processor 301.
- the second interface 305 is used to interface with the external charger 400; the external charger 400 is used to provide power; the second machine-readable storage medium 302 stores machine-executable instructions that can be executed by the processor, the second processor 301 When the machine-executable instructions are executed, the electrochemical device management method steps described in any of the above embodiments are implemented.
- the external charger 400 may include a first processor 401, a first machine-readable storage medium 402, a first interface 403 and a corresponding rectifier circuit.
- the external charger may be a commercially available charger, and the structure of the embodiment of the present disclosure is not limited. Make specific limitations.
- the embodiments of the present disclosure further provide an electronic device, which includes the above-mentioned battery system.
- the machine-readable storage medium may include random access memory (RAM) or non-volatile memory (non-volatile memory), such as at least one disk memory.
- RAM random access memory
- non-volatile memory non-volatile memory
- the memory may also be at least one storage device located far away from the aforementioned processor.
- the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (Digital Signal Processing, referred to as DSP) , Application Specific Integrated Circuit (ASIC for short), Field-Programmable Gate Array (FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
- CPU Central Processing Unit
- NP Network Processor
- DSP Digital Signal Processing
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
- electrochemical device management device/electronic equipment/charging device/storage medium/battery system embodiment since it is basically similar to the above electrochemical device management method embodiment, the description is relatively simple. For relevant details, please refer to the above electrochemical device A partial description of the device management method embodiment is sufficient and will not be described again here.
- Preparation of the positive electrode plate Mix the positive active materials lithium nickel cobalt manganate, acetylene black, and polyvinylidene fluoride (PVDF) in a mass ratio of 94:3:3, then add N-methylpyrrolidone (NMP) as the solvent, and prepare Form a slurry with a solid content of 75% and stir evenly.
- NMP N-methylpyrrolidone
- the slurry is evenly coated on one surface of an aluminum foil with a thickness of 12 ⁇ m, dried at 90°C, and cold pressed to obtain a positive electrode sheet with a positive active material layer thickness of 100 ⁇ m, and then on the other surface of the positive electrode sheet Repeat the above steps to obtain a positive electrode sheet coated with a positive electrode active material layer on both sides. Cut the positive electrode piece into specifications (74mm ⁇ 867mm) and weld the tabs for later use.
- Preparation of the negative electrode sheet Mix the negative active materials artificial graphite, acetylene black, styrene-butadiene rubber and sodium carboxymethyl cellulose in a mass ratio of 96:1:1.5:1.5, then add deionized water as the solvent and prepare the solid content Make a 70% slurry and stir well.
- the slurry is evenly coated on one surface of a copper foil with a thickness of 8 ⁇ m, dried at 110°C, and cold pressed to obtain a negative electrode sheet with a negative active material layer thickness of 150 ⁇ m coated on one side of the negative active material layer.
- the above coating steps are repeated on the other surface of the negative electrode piece to obtain a negative electrode piece coated with a negative electrode active material layer on both sides. Cut the negative electrode piece into (74mm ⁇ 867mm) specifications and weld the tabs for later use.
- isolation membrane A polyethylene (PE) porous polymer film with a thickness of 15m was used as the isolation membrane.
- Preparation of electrolyte In an environment with a water content of less than 10 ppm, mix the non-aqueous organic solvents ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate (DEC) in a mass ratio of 1:1:1 , then add lithium hexafluorophosphate (LiPF6) to the non-aqueous organic solvent to dissolve and mix evenly to obtain an electrolyte solution, in which the concentration of LiPF6 is 1.15 mol/L.
- EC ethylene carbonate
- PC propylene carbonate
- DEC diethyl carbonate
- Preparation of lithium-ion battery Stack the positive electrode sheet, isolation film, and negative electrode sheet prepared above in order, so that the isolation film is between the positive electrode sheet and the negative electrode sheet to play an isolation role, and wind it to obtain an electrode assembly. Put the electrode assembly into an aluminum-plastic film packaging bag, remove the moisture at 80°C, inject the prepared electrolyte, and go through processes such as vacuum packaging, standing, formation, and shaping to obtain a lithium-ion battery. The rated value of the lithium-ion battery The capacity is 5Ah.
- Preparation of the positive electrode sheet Mix the positive active materials lithium iron phosphate, acetylene black, and polyvinylidene fluoride (PVDF) in a mass ratio of 94:3:3, then add N-methylpyrrolidone (NMP) as a solvent to prepare a solid 75% slurry and stir evenly.
- NMP N-methylpyrrolidone
- the slurry is evenly coated on one surface of an aluminum foil with a thickness of 12 ⁇ m, dried at 90°C, and cold pressed to obtain a positive electrode sheet with a positive active material layer thickness of 100 ⁇ m, and then on the other surface of the positive electrode sheet Repeat the above steps to obtain a positive electrode sheet coated with a positive electrode active material layer on both sides. Cut the positive electrode piece into specifications (74mm ⁇ 867mm) and weld the tabs for later use.
- Lithium-ion batteries have a rated capacity of 4Ah.
- Preparation of the positive electrode sheet Mix the positive active materials lithium cobalt oxide and lithium iron phosphate, acetylene black, and polyvinylidene fluoride (PVDF) in a mass ratio of 94:3:3 (the mass ratio of lithium cobalt oxide to lithium iron phosphate is 1:1), then add N-methylpyrrolidone (NMP) as a solvent, prepare a slurry with a solid content of 75%, and stir evenly.
- NMP N-methylpyrrolidone
- the slurry is evenly coated on one surface of an aluminum foil with a thickness of 12 ⁇ m, dried at 90°C, and cold pressed to obtain a positive electrode sheet with a positive active material layer thickness of 100 ⁇ m, and then on the other surface of the positive electrode sheet Repeat the above steps to obtain a positive electrode sheet coated with a positive electrode active material layer on both sides. Cut the positive electrode piece into specifications (74mm ⁇ 867mm) and weld the tabs for later use.
- the preparation methods of the negative electrode piece, the separator, the electrolyte, and the electrochemical device are the same as those in Preparation Example 1.
- the lithium-ion battery has a rated capacity of 4.5Ah.
- Experimental Examples 1-6 are based on the implementation 2 in the aforementioned method experimental example
- Experimental Example 7 is based on the implementation 1 in the aforementioned method experimental example.
- the aforementioned first COS threshold is denoted as a
- the second COS threshold is marked as b.
- Nickel cobalt lithium manganese oxide system lithium ion battery test
- the battery i.e., the electrochemical device stops charging and discharging cycle operations, where b is 70; if COS ⁇ b, the battery continues charging and discharging cycle operations until COS > b, the battery stops Charge and discharge cycle operation. Record the number of charge and discharge cycle operations and the final lithium evolution SOC and COS values of the lithium-ion battery.
- the battery continues to perform charge and discharge cycle operations, until COS>b, the battery stops performing charge and discharge cycle operations, where the first COS threshold a is 30;
- the voltage difference threshold is 0.1V.
- Experimental Example 2 can be understood as shown in the flow chart of Figure 9, in which 0.025V is only used as an optional example in the implementation process.
- COS>a the battery continues to perform charge and discharge cycle operations, until COS>b, the battery stops performing charge and discharge cycle operations, where the first COS threshold a is 30;
- the current difference threshold is: ⁇ battery rated capacity.
- ⁇ is 0.25.
- Experimental Example 3 can be understood as shown in the flow chart of Figure 10, in which 0.5A is only used as an optional example in the implementation process.
- the points represented by these data pairs are filled in the coordinate system. After fitting, the corresponding lithium evolution SOC and SOH are obtained. Mapping curve. Perform a first-order differential on the curve to obtain the safety state parameter COS value; with the COS value as the ordinate and the current SOH data of the electrochemical device as the abscissa, fill in the coordinate system with the points represented by these data pairs. After fitting, the mapping curve corresponding to the COS value and SOH (i.e., the first change curve) is obtained. The first-order differential is performed on the curve to obtain the dCOS/dSOH value.
- the battery stops charging and discharging cycle operations, where the first SOC threshold is 20%;
- the battery will continue to perform charge and discharge cycles, and lithium evolution detection will be performed every time it is charged. Until the lithium evolution SOC ⁇ the first SOC threshold, the battery will stop charging and discharging cycle operations. Record the number of charge and discharge cycle operations and the final lithium evolution SOC of the lithium-ion battery.
- the battery stops charging and discharging cycle operations, where the first SOC threshold is 20%;
- the battery will continue to perform charge and discharge cycle operations, and lithium evolution detection will be performed during each charge. Until the lithium evolution SOC ⁇ the first SOC threshold, the battery will stop charging and discharging cycle operations, in which the second SOC The threshold is 30%;
- the current charging voltage will be reduced by 0.025V, and the first SOC threshold and the second SOC threshold will be reduced by 2.5% respectively the next time the lithium evolution is detected.
- the voltage difference threshold is 0.1V.
- the battery stops charging and discharging cycle operations, where the first SOC threshold is 20%;
- the battery will continue to perform charge and discharge cycle operations, and lithium evolution detection will be performed during each charge. Until the lithium evolution SOC ⁇ the first SOC threshold, the battery will stop charging and discharging cycle operations, in which the second SOC The threshold is 30%;
- the current charging flow voltage will be reduced by 0.5A, and the next time the lithium evolution detection is performed, the lithium evolution SOC will be judged again against the first SOC threshold and the second SOC The size relationship between thresholds, and so on.
- the current difference threshold is: ⁇ battery rated capacity.
- ⁇ is 0.25.
- the battery is the same as Comparative Example 2 except that ⁇ the lithium ion battery is charged and discharged>.
- Comparative example 2 799 9.9% ⁇ Comparative example 3 987 19.9% ⁇ Comparative example 4 4491 14.9% ⁇ Comparative example 5 3439 18.7% ⁇ Comparative example 6 423 26.7% ⁇
- Result B From Experimental Example 2-3 and Comparative Example 2-3, it can be seen that the lithium-eliminating SOC that is basically the same as Comparative Example 2 was detected.
- the safety risk is identified in advance through the COS value, and the sensitivity is higher.
- the risk reduction method is adopted. voltage, the service life of the electrochemical device is effectively extended.
- the electrochemical device management solution in the embodiment of the present disclosure can determine the lithium evolution SOC of the electrochemical device, respond to the lithium evolution SOC being within the preset lithium evolution SOC range, and can obtain the lithium evolution SOC during use of the electrochemical device.
- the first status data is used to detect the safety status of the electrochemical device based on the first status data and the lithium evolution SOC.
- the first status data is used to indicate the health status of the electrochemical device, and the safety status detection is used to determine the health status of the electrochemical device.
- the use strategy of the electrochemical device can be determined based on the results of the safety state detection, so that the use of the electrochemical device can be reasonably managed when lithium deposition occurs in the electrochemical device to ensure that the electrochemical device is prone to lithium deposition.
- the use of lithium is safe, and different usage strategies are determined for different safety states of electrochemical devices to reduce the impact of lithium precipitation and maximize the service life of electrochemical devices.
- the term “include” and its variations are open-ended, ie, “including but not limited to.”
- the term “based on” means “based at least in part on.”
- the term “one embodiment” means “at least one embodiment”; the term “another embodiment” means “at least one additional embodiment”; and the term “some embodiments” means “at least some embodiments”.
- Relevant definitions of other terms will be given in the description below. It should be noted that concepts such as “first” and “second” mentioned in this disclosure are only used to distinguish different devices, modules or units, and are not used to limit the order of functions performed by these devices, modules or units. Or interdependence.
- the example embodiments described here can be implemented by software, or can be implemented by software combined with necessary hardware. Therefore, the technical solution according to the embodiment of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to cause a computing device (which may be a personal computer, a server, a mobile terminal, a network device, etc.) to execute a method according to an embodiment of the present disclosure.
- a computing device which may be a personal computer, a server, a mobile terminal, a network device, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本公开实施例提供了一种电化学装置管理方法、装置、充电装置、电池系统及介质,该电化学装置管理方法包括:确定电化学装置的析锂SOC;响应于析锂SOC处于预设析锂SOC范围内,获取电化学装置使用过程中的第一状态数据,并基于第一状态数据和析锂SOC对电化学装置进行安全状态检测,其中,第一状态数据用于指示电化学装置的健康状态,安全状态检测用于确定电化学装置的使用是否处于安全状态;基于安全状态检测的结果,确定电化学装置的使用策略。本公开实施例能合理地对电化学装置进行管理。
Description
本公开实施例涉及电化学技术领域,尤其涉及一种电化学装置管理方法、装置、充电装置、电池系统及介质。
锂离子电池具有比能量密度大、循环寿命长、标称电压高、自放电率低、体积小、重量轻等许多优点,在新能源领域具有广泛的应用。
近年随着平板电脑、手机、电动交通工具、储能设备的高速发展,并且由于新能源行业的不断发展,锂离子电池变得越来越重要,市场对锂离子电池的需求也越来越多。但锂离子电池在使用过程中由于副反应、撞击等原因,经常发生析锂等现象,容易造成电池短路产生安全风险,对电池的安全性造成影响。
因此,如何更好地对锂离子电池进行合理地管理,以保证用户的使用锂离子电池的安全,就成了一个亟待解决的问题。
发明内容
有鉴于此,本公开实施例提供一种电化学装置管理方法、装置、充电装置、电池系统及介质,其能够降低析锂对锂离子电池的安全和寿命的影响,以提高锂电池的效能。
根据本公开实施例的一方面,提供了一种电化学装置管理方法,包括:
确定电化学装置的析锂SOC;
响应于所述析锂SOC处于预设析锂SOC范围内,获取电化学装置使用过程中的第一状态数据,并基于所述第一状态数据和析锂SOC对所述电化学装置进行安全状态检测,其中,所述第一状态数据用于指示所述电化学装置的健康状态,所述安全状态检测用于确定所述电化学装置的使用是否处于安全状态;
基于所述安全状态检测的结果,确定所述电化学装置的使用策略。
本公开实施例中的电化学装置管理方法,由于能够确定电化学装置的析锂SOC,响应于析锂SOC处于预设析锂SOC范围内,并能够获取电化学装置使用过程中的第一状态数据,基于第一状态数据和析锂SOC对电化学装置进行安全状态检测,其中,第一状态数据用于指示电化学装置的健康状态,安全状态检测用于确定电化学装置的使用是否处于安全状态,最后能够基于安全状态检测的结果确定电化学装置的使用策略,从而能够合理地在电化学装置出现析锂时对电化学装置的使用进行管理,以保证电化学装置出现析锂时的使用安全,并且对于电化学装置的不同的安全状态确定不同的使用策略,降低析锂的影响,能够最大限度的提高电化学装置的使用寿命。
在一些可选的实施例中,所述基于所述安全状态检测的结果,确定所述电化学装置的使用策略,包括:响应于所述电化学装置的使用不处于安全状态,对所述电化学装置的使用进行限制。基于此,本公开实施例中通过这种方式,便于更好地保证电化学装置在使用状态下的安全,进而保证用户在使用电化学装置时的安全。
在一些可选的实施例中,所述第一状态数据包括电化学装置的SOH,所述基于所述第一状态数据和析锂SOC对所述电化学装置进行安全状态检测,包括:基于所述电化学装置的析锂SOC相对于所述电化学装置的SOH的变化,确定所述电化学装置的使用是否处于安全状态。基于此,本公开实施例中通过结合电化学装置的析锂SOC相对于电化学装置的SOH的变化,在分析时将两者进行了合理的考量,使得安全检测的结果更准确,能够更合理和准确地确定电化学装置是否处于安全状态,以便于后续基于该电化学装置是否处于安全状态的结果对电化学装置进行管理。
在一些可选的实施例中,所述基于所述电化学装置的析锂SOC相对于所述电化学装置的SOH的变化,确定所述电化学装置的使用是否处于安全状态,包括:根据所述电化学装置的析锂SOC和所述电化学装置的SOH计算所述所述电化学装置的安全状态参数COS,其中,所述COS为所述电化学装置的析锂SOC对所述电化学装置的SOH的微分值;基于所述COS,确定所述电化学装置的使用是否处于安全状态。基于此,本公开实施例中通过这种方式来确定电化学装置的使用是否处于安全状态能够使得安全检测的结果更准确,能够更合理和准确地确定电化学装置是否处于安全状态,以便于后续基于该电化学装置是否处于安全状态的结果对电化学装置进行管理。
在一些可选的实施例中,所述基于所述COS,确定所述电化学装置的使用是否处于安全状态,包括:基于所 述COS和所述电化学装置的SOH,确定第一变化曲线,其中,所述第一变化曲线表示所述COS随所述电化学装置的SOH的变化;基于所述第一变化曲线,确定所述电化学装置的使用是否处于安全状态。基于此,本公开实施例中通过这种方式便于准确地确定电化学装置的使用是否处于安全状态。
在一些可选的实施例中,所述基于所述第一变化曲线,确定所述电化学装置的使用是否处于安全状态,包括:对所述第一变化曲线进行微分处理,得到第二变化曲线;基于所述第二变化曲线的纵坐标的绝对值,确定所述电化学装置的使用是否处于安全状态。基于此,本公开实施例中通过这种方式能够使得对电化学装置进行安全状态检测的结果更加合理,以便于后续基于结果对电化学装置进行管理。
在一些可选的实施例中,所述基于所述第二变化曲线的纵坐标的绝对值,确定所述电化学装置的使用是否处于安全状态,包括:若所述绝对值小于第一绝对值阈值,则确定所述电化学装置的使用处于安全状态;以及,若所述绝对值不小于第一绝对值阈值,则确定所述电化学装置的使用不处于安全状态。基于此,本公开实施例中通过这种判断方式,能够合理地在电化学装置出现析锂时确定电化学装置的使用是否处于安全状态,以便于更好地对电化学装置进行管理,以保证电化学装置在出现析锂时的使用安全。
在一些可选的实施例中,所述响应于所述电化学装置的使用不处于安全状态,对所述电化学装置的使用进行限制,包括:响应于所述绝对值不小于所述第一绝对值阈值且不大于第二绝对值阈值,降低所述电化学装置的充电电压、放电电压、充电电流、放电电流中的至少一个,其中,所述第二绝对值阈值大于所述第一绝对值阈值;以及,响应于所述绝对值大于所述第二绝对值阈值,停止对所述电化学装置的使用。基于此,本公开实施例中通过这样的方式能够更合理地对电化学装置进行管理,延长电化学装置的使用寿命,以保证电化学装置的使用安全。
在一些可选的实施例中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第一绝对值阈值的取值范围为[2500,9000];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第一绝对值阈值的取值范围为[2000,9000];若电化学装置为钴酸锂体系电化学装置,第一绝对值阈值的取值范围为[2000,9500]。基于此,本公开实施例中对于不同体系或类型的电化学装置设值不同的第一绝对值阈值的取值范围,以适应不同的电化学装置的安全检测需求,从而便于针对性地对不同体系或类型的电化学装置进行管理,以达到更佳的管理效果。
在一些可选的实施例中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第二绝对值阈值的取值范围为[7000,20000];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第二绝对值阈值的取值范围为[5000,20000];若所述电化学装置为钴酸锂体系电化学装置,所述第二绝对值阈值的取值范围为[5500,20000]。基于此,本公开实施例中对于不同体系或类型的电化学装置设值不同的第二绝对值阈值的取值范围,以适应不同的电化学装置的安全管理需求,从而便于针对性地对不同体系或类型的电化学装置进行管理,以达到更佳的管理效果。
在一些可选的实施例中,所述基于所述COS,确定所述电化学装置的使用是否处于安全状态,包括:若所述COS小于第一COS阈值,则确定所述电化学装置的使用处于安全状态;以及,若所述COS不小于第一COS阈值,则确定所述电化学装置的使用不处于安全状态。基于此,本公开实施例中通过这种方式可以准确地确定电化学装置的使用是否处于安全状态。
在一些可选的实施例中,所述响应于所述电化学装置的使用不处于安全状态,对所述电化学装置的使用进行限制,包括:响应于所述COS不小于所述第一COS阈值且不大于第二COS阈值,降低所述电化学装置的充电电压、放电电压、充电电流、放电电流中的至少一个,其中,所述第二COS阈值大于所述第一COS阈值;以及,响应于所述COS大于所述第二COS阈值,停止对所述电化学装置的使用。基于此,本公开实施例中通过这样的方式能够更合理地对电化学装置进行管理,延长电化学装置的使用寿命,以保证电化学装置的使用安全。
在一些可选的实施例中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第一COS阈值的取值范围为[20,80];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第一COS阈值的取值范围为[10,70];若电化学装置为钴酸锂体系电化学装置,第一COS阈值的取值范围为[15,85]。基于此,本公开实施例中对于不同体系或类型的电化学装置设值不同的第一COS阈值的取值范围,以适应不同的电化学装置的安全检测需求,从而便于针对性地对不同体系或类型的电化学装置进行管理,以达到更佳的管理效果。
在一些可选的实施例中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第二COS阈值的取值范围为[60,100];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第二COS阈值的取值范围为[50,100];若电化学装置为钴酸锂体系电化学装置,第二COS阈值的取值范围为[50,100]。基于此,本公开实施例中对于不同体系或类型的电化学装置设值不同的第二COS阈值的取值范围,以适应不同的电化学装置的安全管理需求,从而便于针对性地对不同体系或类型的电化学装置进行管理,以达到更佳的管理效果。
在一些可选的实施例中,所述确定电化学装置的析锂SOC,包括:对所述电化学装置进行间歇式充电操作,在所述间歇式充电操作中获取与电化学装置相关的数据,基于所述与电化学装置相关的数据确定电化学装置的析锂SOC。基于此,本公开实施例中通过这样的方式,能够更加准确地确定电化学装置的析锂SOC。
在一些可选的实施例中,与电化学装置相关的数据包括电化学装置的SOC和电化学装置的内阻,所述间歇式充电操作包括多个充电期间和多个间断期间,所述在所述间歇式充电操作中获取与电化学装置相关的数据,基于所述与电化学装置相关的数据确定电化学装置的析锂SOC的步骤包括:在间歇式充电操作过程中,对于所述多个间断期间中的每个间断期间,获取该间断期间的电化学装置的SOC和电化学装置的内阻;基于所获取的电化学装 置的多个SOC和与所述多个SOC对应的电化学装置的多个内阻,得到第一曲线,所述第一曲线表示所述电化学装置的SOC和内阻对应的映射曲线;基于所述第一曲线,确定所述电化学装置的析锂SOC。基于此,本公开实施例中通过这样的方式,能够更加准确地确定电化学装置的析锂SOC。
在一些可选的实施例中,所述基于所述第一曲线,确定所述电化学装置的析锂SOC的步骤包括方法1或方法2中的至少一种,其中:方法1包括:对所述第一曲线进行一阶微分,得到第二曲线;和确定所述第二曲线首次出现斜率为负的点对应的SOC为所述析锂SOC;方法2包括:对所述第一曲线进行一阶微分,得到第二曲线;对所述第二曲线进行一阶微分,得到第三曲线;和确定所述第三曲线首次出现纵坐标小于零的点对应的SOC为所述析锂SOC。基于此,本公开实施例中通过这些方法,能够便于准确地确定电化学装置的析锂SOC。
在一些可选的实施例中,所述间歇式充电操作包括多个充电周期,每个充电周期包括充电期间和间断期间,在每个所述充电期间中,所述电化学装置的SOC增加单位幅度。基于此,本公开实施例中通过这样的间歇式充电操作,能够便于更加准确地确定电化学装置的析锂SOC。
在一些可选的实施例中,若所述电化学装置为磷酸铁锂体系电化学装置,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至15秒;若所述电化学装置为镍钴锰酸锂体系电化学装置,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至30秒;若所述电化学装置为钴酸锂体系电化学装置,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至30秒。基于此,本公开实施例通过对不同体系的电化学装置设置不同的单位幅度和间断期间的时长,更有针对性地对不同体系的电化学装置进行间歇式充电操作,能够更准确地得到不同体系的电化学装置的析锂SOC。
在一些可选的实施例中,所述电化学装置管理方法满足条件a)至f)中的至少一个:
a)所述电化学装置为磷酸铁锂体系电化学装置,所述电化学装置处于-10℃至10℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为5秒至15秒;
b)所述电化学装置为磷酸铁锂体系电化学装置,所述电化学装置处于10℃至45℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至10秒;
c)所述电化学装置为镍钴锰酸锂体系电化学装置,所述电化学装置处于-10℃至10℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为10秒至30秒;
d)所述电化学装置为镍钴锰酸锂体系电化学装置,所述电化学装置处于10℃至45℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至10秒;
e)所述电化学装置为钴酸锂体系电化学装置,所述电化学装置处于-10℃至10℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为15秒至30秒;
f)所述电化学装置为钴酸锂体系电化学装置,所述电化学装置处于10℃至45℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至10秒。
基于此,本公开实施例通过对同一体系、不同温度下的电化学装置设置不同的单位幅度和间断期间时长,更有针对性地对不同温度环境中的电化学装置进行间歇式充电操作,能够更准确地得到不同体系的电化学装置的析锂SOC。
在一些可选的实施例中,若所述电化学装置为磷酸铁锂体系电化学装置,所述预设析锂SOC范围的上限值的取值范围为[30%,95%];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述预设析锂SOC范围的上限值的取值范围为[40%,85%];若所述电化学装置为钴酸锂体系电化学装置,所述预设析锂SOC范围的上限值的取值范围为[45%,90%]。基于此,本公开实施例中的电化学装置管理方法可以适应不用体系的电化学装置的不同析锂情况,满足不同的电化学装置的安全管理需求,从而便于后续针对性地对不同体系或类型的电化学装置进行管理,以达到更佳的管理效果。
根据本公开实施例的再一方面,提供了一种计算机可读存储介质,其中,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现前述任一项所述的电化学装置管理方法。
根据本公开实施例的再一方面,提供了一种充电装置,其包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现前述的电化学装置管理方法。
根据本公开实施例的再一方面,提供了一种电池系统,其包括处理器、机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现前述的电化学装置管理方法。
根据本公开实施例的再一方面,提供了一种电子设备,所述电子设备包括如前述的电池系统。
根据本公开实施例的再一方面,提供了一种电化学装置管理装置,包括:第一确定装置、检测装置和第二确定装置;所述第一确定装置,用于确定电化学装置的析锂SOC;所述检测装置,用于响应于所述析锂SOC处于预设析锂SOC范围内,获取电化学装置使用过程中的第一状态数据,并基于所述第一状态数据和析锂SOC对所述电化学装置进行安全状态检测,其中,所述第一状态数据用于指示所述电化学装置的健康状态,所述安全状态检测用于确定所述电化学装置的使用是否处于安全状态;所述第二确定装置,用于基于所述安全状态检测的结果, 确定所述电化学装置的使用策略。
综合以上内容可知,本公开实施例中的电化学装置管理方案,由于能够确定电化学装置的析锂SOC,响应于析锂SOC处于预设析锂SOC范围内,并能够获取电化学装置使用过程中的第一状态数据,基于第一状态数据和析锂SOC对电化学装置进行安全状态检测,其中,第一状态数据用于指示电化学装置的健康状态,安全状态检测用于确定电化学装置的使用是否处于安全状态,最后能够基于安全状态检测的结果确定电化学装置的使用策略,从而能够合理地在电化学装置出现析锂时对电化学装置的使用进行管理,以保证电化学装置出现析锂时的使用安全,并且对于电化学装置的不同的安全状态确定不同的使用策略,降低析锂的影响,能够最大限度的提高电化学装置的使用寿命。
为了更清楚地说明本公开实施例的技术方案,下面将对本公开中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为根据本公开实施例的一个电化学装置管理方法的可选的步骤流程图。
图2为根据本公开实施例的一个示例的第一曲线的曲线图。
图3为根据本公开实施例的一个示例的第二曲线的曲线图。
图4为根据本公开实施例的“基于电化学装置的析锂SOC相对于电化学装置的SOH的变化,确定电化学装置的使用是否处于安全状态”的一个可选的子步骤流程图。
图5为根据本公开实施例的一个电化学装置管理装置的结构框图。
图6为根据本公开实施例的一个充电装置的结构图。
图7为根据本公开实施例的一个电池系统的结构图。
图8为根据本公开实施例的实验例1的实验流程。
图9为根据本公开实施例的实验例2的实验流程。
图10为根据本公开实施例的实验例3的实验流程。
为了使本领域的人员更好地理解本公开实施例中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例仅是本公开实施例一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本公开实施例保护的范围。
在下面的描述中,先对本公开实施例中的电化学装置管理方法、电子设备、充电装置及存储介质进行具体说明,然后给出本公开实施例中的电化学装置管理方法的一些相关的实验例和对比例,用于说明本公开实施例中提供的电化学装置管理方法、电子设备、充电装置及存储介质相对于现有技术的显著优势。
下面结合附图说明本公开实施例具体实现。
本公开实施例的内容中,电化学装置可以包括至少一个锂离子电池,当包括多个锂离子电池时,这些锂离子电池可以通过串联和/或并联的方式存在于电化学装置中。需要说明的是,本公开中虽以锂离子电池作为电化学装置的例子来解释本公开,但是本公开的电化学装置并不仅限于锂离子电池,例如也可以为钠离子电池等。
根据本公开实施例中的一方面,本公开实施例提供了一种电化学装置管理方法,如图1所示的流程图,该电化学装置管理方法包括以下步骤S101、S102和S103:
S101:确定电化学装置的析锂SOC。
具体地,结合图3所示的框图,其示出了一个与该电化学装置管理方法同一发明构思的电化学装置管理装置1000的框图,该电化学装置管理装置1000可以是一个能够进行数据处理的电子设备,示例地,其可以包括电化学装置的电池管理系统(Battery Management System,BMS)或者其可以是BMS的一部分。本步骤S101即确定电化学装置的析锂SOC,可以由电化学装置管理装置1000的第一确定装置101完成。
SOC(State of Charge,荷电状态)是一个电化学装置的重要参数,其可以反映电化学装置使用时的剩余电量,本公开实施例中的析锂SOC可以是与电化学装置的析锂状态相关的电荷状态。
本公开实施例中在此不限制确定电化学装置的析锂SOC的具体步骤,在一些可选的实施例中,步骤S101可以包括:对电化学装置进行间歇式充电操作,在间歇式充电操作中获取与电化学装置相关的数据,基于与电化学装置相关的数据确定电化学装置的析锂SOC。
本公开实施例,通过对电化学装置进行间歇式充电操作,能够在间歇式充电操作过程中得到与电化学装置相关的数据,基于这些数据确定电化学装置的析锂SOC,更加便于后续对电化学装置进行管理。
本公开实施例中,间歇式充电操作可以是指对电化学装置进行间歇式充电的过程。本公开实施例对间歇式充电操作中的充电方式没有特别限制,只要能实现本公开实施例的目的即可,可以是恒压充电,也可以是恒流充电,还可以是恒流和恒压充电,或者分段恒流式充电等等。
本公开实施例中,与电化学装置相关的数据可以是指能够反映电化学装置状态的数据,例如包括但不限于电化学装置的充电电压、充电电流、内阻、SOC等数据。
示例性地,间歇式充电操作可以是这样的过程:在第一个充电期间对电化学装置进行充电,然后停止充电,间隔第一个间断期间后,继续在第二个充电期间对电化学装置进行充电,如此重复,直至电化学装置的SOC达到第一临界值。可以理解的是,随着间歇式充电的进行,电化学装置的SOC随之升高,本公开实施例可以在电化学装置的SOC达到第一临界值时停止间歇式充电,完成间歇式充电操作。本公开实施例对第一临界值没有特别限制,只要能实现本公开目的即可,例如,第一临界值可以为60%、70%、80%、90%或100%。
在一种可选实施方案中,间歇式充电操作具体可以为:对于多个充电周期中的任意一个充电周期,在第一时刻对电化学装置进行充电,直到电化学装置的SOC增加单位幅度后停止充电,直至第三时刻,停止充电的时刻为第二时刻,第三时刻与第二时刻之间的时间间隔为间断期间的时长。间断期间中,电化学装置可以处于未充电也未放电的状态,即静置的状态。
可选地,本公开实施例的间歇式充电操作包括多个充电周期,每个充电周期包括一个充电期间和一个间断期间。示例性地,第一充电期间和第一间断期间形成第一充电周期,第二充电期间和第二间断期间形成第二充电周期,第三充电期间和第三间断期间形成第三充电周期,以此类推。可以理解的是,一个充电周期为一个连续的时间段。
在一些可选的实施方式中,与电化学装置相关的数据包括电化学装置的SOC和电化学装置的内阻,且本公开实施例的间歇式充电操作包括多个充电期间和多个间断期间。在这基础上,“在间歇式充电操作中获取与电化学装置相关的数据,基于与电化学装置相关的数据确定电化学装置的析锂SOC”的步骤包括步骤S1011、S1012和S1013,具体地:
S1011:在间歇式充电操作过程中,对于多个间断期间中的每个间断期间,获取该间断期间的电化学装置的SOC和电化学装置的内阻。
可选地,在间歇式充电操作中,可以基于检测到的充电电压和充电电流确定电化学装置的内阻(例如利用欧姆定律计算);可选地,BMS中可以预先保存一个电压-SOC关系表,电压-SOC关系表中记录有不同充电电压对应的电化学装置的SOC,例如,4.2V对应85%SOC,4.3V对应90%SOC。可见,基于充电电压和电压-SOC关系表便可以确定电化学装置的SOC。
S1012:基于所获取的电化学装置的多个SOC和与多个SOC对应的电化学装置的多个内阻,得到第一曲线,第一曲线表示电化学装置的SOC和内阻对应的映射曲线。
本公开实施例中,获取电化学装置的多个间断期间的SOC和内阻后,可以得到多个SOC和内阻组成的数据对,参考图2,可以以电化学装置的SOC为横坐标,以电化学装置的内阻为纵坐标,将这些数据对所代表的点填充在坐标系中,经拟合后得到第一曲线,第一曲线表示电化学装置的SOC和内阻对应的映射曲线。
在一些可选的实施例中,可以通过如下方式得到第一曲线,其具体包括以下步骤a、b、c、d。
步骤a:获取电化学装置在第二时刻的第一电压、第一电流和第一SOC,以及电化学装置在第三时刻的第二电压和第二电流。
第二时刻为停止充电的时刻,可以获取电化学装置在第二时刻的电压、电流和SOC,即第一电压、第一电流和第一SOC,分别记为V1、I1和SOC1。类似地,可以获取电化学装置在第三时刻的电压和电流,即第二电压和第二电流,分别记为V2和I2。
步骤b:计算电化学装置在间断期间的电压变化值和电流变化值。
间断期间的时长为第三时刻与第二时刻之间的时间间隔,电化学装置在间断期间的电压变化值为ΔV,ΔV=V2-V1,电化学装置在间断期间的电流变化值为ΔI,ΔI=I2-I1。
步骤c:基于电压变化值和电流变化值计算电化学装置在间断期间的第一内阻,将第一内阻和第一SOC作为第一曲线的其中一个数据对,其中,数据对为内阻与SOC的对应关系;
电化学装置在间断期间的第一内阻为R1,R1=ΔV/ΔI。将R1和SOC1作为第一曲线的其中一个数据对。
按照上述相同的方法,可以得到多个数据对。
步骤d:基于计算得到的多个数据对,生成第一曲线。
以电化学装置的SOC为横坐标,以电化学装置的内阻为纵坐标,将这些数据对所代表的点填充在坐标系中,经拟合后得到第一曲线。本公开实施例得到第一曲线后,即可通过第一曲线确定电化学装置的析锂SOC,从而确定电化学装置产生析锂倾向的SOC,便于后续对电化学装置进行管理,以提高电化学装置的使用安全性。
S1013:基于第一曲线,确定电化学装置的析锂SOC。
第一曲线是表示电化学装置的SOC与内阻间映射关系的曲线,可以基于第一曲线确定电化学装置的析锂SOC。上述析锂SOC可以不是实时测量出来的,而是根据间歇式充电操作中得到的充电电压、以及电压-SOC关 系表查找得来的,该电压-SOC关系表可以预先设置的,例如存储在电化学装置管理装置的存储介质中。
在一种可选的实施方案中,上述“基于第一曲线,确定电化学装置的析锂SOC”的过程可以为方法1,方法1包括步骤i和步骤ii。
步骤i:对第一曲线进行一阶微分,得到第二曲线。
如图3所示,对第一曲线进行一阶微分后得到了第二曲线,该第二曲线表示电化学装置的内阻随SOC的变化率。
步骤ii:确定第二曲线首次出现斜率为负的点对应的SOC为析锂SOC。
第二曲线表示内阻随SOC的变化率,当变化率在曲线平坦区域不出现异常降低时,表示无活性锂析出,当变化率在曲线平坦区域出现异常降低时,由于活性锂在负极表面析出并与负极接触,相当于负极石墨部分并联一个锂金属器件,使整个负极部分的阻抗降低,从而使电化学装置的阻抗在活性锂析出时出现异常降低,对应的,第二曲线的平坦区域出现异常降低。参考图3,B点处是第二曲线中首次出现斜率为负的点,即B点处第二曲线的平坦区域首次出现异常降低,表明电化学装置在B点出现析锂倾向或已出现析锂,则可以将B点对应的SOC确定为析锂SOC,以便基于析锂SOC与SOC阈值之间的大小关系,及时对电化学装置进行保护,提高电化学装置的使用安全性。
在一种实施方案中,上述“基于第一曲线,确定电化学装置的析锂SOC”的过程可以为方法2,方法2包括步骤i、步骤ii’和步骤iii’:
步骤i’:对第一曲线进行一阶微分,得到第二曲线。
该步骤同方法1的步骤i,不再赘述。
步骤ii’:对第二曲线进行一阶微分,得到第三曲线。
还可以对第二曲线进行一阶微分,得到第三曲线,可以理解的是,第三曲线也即为第一曲线的二阶微分曲线。
步骤iii’:确定第三曲线首次出现纵坐标小于零的点对应的SOC为析锂SOC。
如果第三曲线的纵坐标出现了小于零的情况,则将第三曲线首次出现纵坐标小于零的点对应的SOC确定为析锂SOC。
基于此,本公开实施例中通过这些可选的方式,能够更加准确地确定电化学装置的析锂SOC。
在一些可选的实施方案中,间歇式充电操作中可以包括多个充电周期,每个充电周期包括充电期间和间断期间,在每个充电期间中,电化学装置的SOC增加单位幅度。即在每个充电期间以一定的幅度增加电化学装置的SOC,例如,在每个充电期间增加0.5%SOC、1%SOC、5%SOC或10%SOC。
示例性地,在T1时刻对电化学装置进行充电,直到电化学装置的SOC增加单位幅度后,停止充电,则停止充电的时刻为T2时刻;从T2时刻开始,将电化学装置静置,则静置结束时刻为T3时刻。
本公开实施例中的电化学装置可以是任意类型或体系的电化学装置,例如,本公开实施例的电化学装置可以包括磷酸铁锂体系电化学装置、镍钴锰酸锂体系电化学装置或钴酸锂体系电化学装置中的至少一种。
本公开实施例中,在间歇式充电操作中,不同体系的电化学装置会对应不同的单位幅度和不同的间断期间时长。在一些可选的实施例中,具体地:
若电化学装置为磷酸铁锂体系电化学装置,则单位幅度的范围为0.5%至10%,间断期间的时长范围为1秒至15秒;
若电化学装置为镍钴锰酸锂体系电化学装置,则单位幅度的范围为0.5%至10%,间断期间的时长范围为1秒至30秒。
若电化学装置为钴酸锂体系电化学装置,则单位幅度的范围为0.5%至10%,间断期间的时长范围为1秒至30秒。
因此,本公开实施例通过对不同体系的电化学装置设置不同的单位幅度和间断期间的时长,更有针对性地对不同体系的电化学装置进行间歇式充电操作,能够更准确地得到不同体系的电化学装置的析锂SOC。
本公开实施例中,在间歇式充电操作中,对于同一体系的电化学装置,不同温度条件下会对应不同的单位幅度和不同的间断期间时长。在一些可选的实施例中,具体地:
在一种实施方案中,电化学装置为磷酸铁锂体系电化学装置,电化学装置处于-10℃至10℃的环境温度下,单位幅度的范围为0.5%至10%,间断期间的时长范围为5秒至15秒。在一种实施方案中,电化学装置为磷酸铁锂体系电化学装置,电化学装置处于10℃至45℃的环境温度下,单位幅度的范围为0.5%至10%,间断期间的时长范围为1秒至10秒。
本公开实施例中,磷酸铁锂体系电化学装置的正极中还可以包括其他正极活性材料,但是磷酸铁锂为主要材料,例如,磷酸铁锂占正极活性材料总质量的51%、60%、70%、80%、90%、98%中的任一值。
在一种实施方案中,电化学装置为镍钴锰酸锂体系电化学装置,电化学装置处于-10℃至10℃的环境温度下,单位幅度的范围为0.5%至10%,间断期间的时长范围为10秒至30秒。在一种实施方案中,电化学装置为镍钴锰酸锂体系电化学装置,电化学装置处于10℃至45℃的环境温度下,单位幅度的范围为0.5%至10%,间断期间的时长范围为1秒至10秒。
本公开实施例中,镍钴锰酸锂体系电化学装置的正极中还可以包括其他正极活性材料,但是镍钴锰酸锂为主要材料,例如,镍钴锰酸锂占正极活性材料总质量的51%、60%、70%、80%、90%、98%中的任一值。
在一种实施方案中,电化学装置为钴酸锂体系电化学装置,电化学装置处于-10℃至10℃的环境温度下,单位幅度的范围为0.5%至10%,间断期间的时长范围为15秒至30秒。在一种实施方案中,电化学装置为钴酸锂体系电化学装置,电化学装置处于10℃至45℃的环境温度下,单位幅度的范围为0.5%至10%,间断期间的时长范围为1秒至10秒。
本公开实施例中,钴酸锂体系电化学装置的正极中还可以包括其他正极活性材料,但是钴酸锂为主要材料,例如,钴酸锂占正极活性材料总质量的51%、60%、70%、80%、90%、98%中的任一值。
本公开实施例通过对同一体系、不同温度下的电化学装置设置不同的单位幅度和间断期间时长,更有针对性地对不同温度环境中的电化学装置进行间歇式充电操作,能够更准确地得到不同体系的电化学装置的析锂SOC。
本公开实施例中也可以是通过其他方式确定电化学装置的析锂SOC,只要可以满足需求即可,在此不进行特别限制。
S102:响应于析锂SOC处于预设析锂SOC范围内,获取电化学装置使用过程中的第一状态数据,并基于第一状态数据和析锂SOC对电化学装置进行安全状态检测。
本公开实施例中,第一状态数据用于指示电化学装置的健康状态,安全状态检测用于确定电化学装置的使用是否处于安全状态。
具体地,步骤S102可由本公开实施例中的电化学装置管理装置1000的检测装置102完成。本公开实施例中,当确定出的电化学装置的析锂SOC处于预设析锂SOC范围内时,可以是说明此时电化学装置已经出现一定程度的析锂的情况,也就是说,本公开实施例中在此时基于第一状态数据和析锂SOC对电化学装置进行安全状态检测,可以对已经出现一定程度析锂的电化学装置合理地确定电化学装置的使用是否处于安全状态,从而便于后续S103中合理地对电化学装置确定使用策略,便于更合理地对电化学装置进行管理,以保证电化学装置的使用安全。
本公开实施例中的预设析锂SOC范围可以依据需要进行设置,本公开实施例中不进行限制。由于不同体系和类型的电化学装置的出现析锂时对应的析锂SOC可能不同,例如前述中,本公开实施例中的电化学装置可以包括磷酸铁锂体系电化学装置、镍钴锰酸锂体系电化学装置、钴酸锂体系电化学装置等等,因此本公开实施例中对于不同体系和类型的电化学装置设置不同的预设析锂SOC范围,在一些可选的实施例中,具体地:
若电化学装置为磷酸铁锂体系电化学装置,预设析锂SOC范围的上限值的取值范围为[30%,95%](例如,可以依据实际情况从[30%,95%]中取值30%、50%、70%、80%、90%、95%等等,在此不进行限制));
若电化学装置为镍钴锰酸锂体系电化学装置,预设析锂SOC范围的上限值的取值范围为[40%,85%](例如,可以依据实际情况从[40%,85%]中取值40%、55%、60%、65%、70%、75%、80%、85%等等,在此不进行限制);
若电化学装置为钴酸锂体系电化学装置,预设析锂SOC范围的上限值的取值范围为[45%,90%](例如,可以依据实际情况从[45%,90%]中取值50%、55%、60%、65%、70%、75%、80%、90%等等,在此不进行限制)。
显然,这使得本公开实施例中的电化学装置管理方法可以适应不用体系的电化学装置的不同析锂情况,满足不同的电化学装置的安全管理需求,从而便于后续针对性地对不同体系或类型的电化学装置进行管理,以达到更佳的管理效果。
前面介绍过,本公开实施例中的析锂SOC越小则电化学装置的析锂越严重,因此本公开实施例中提供预设析锂SOC范围的上限值的取值范围。而预设析锂SOC范围的下限值可以是小于该上限值的一个值,例如,可以为0%、1%、5%、10%等等,本公开在此不进行限制。举一便于理解的示例,在一示例性实施例中,下限值为0%,预设析锂SOC范围的上限值为30%,则预设析锂SOC范围为[0%,30%],当电化学装置的析锂SOC位于0%~30%时,本公开实施例中则能响应于析锂SOC处于预设析锂SOC范围内,获取电化学装置使用过程中的第一状态数据,并基于第一状态数据和析锂SOC对电化学装置进行安全状态检测。
本公开实施例中,第一状态数据可以是任意的一种或者多种能够指示电化学装置的健康状态的电池使用过程中的状态参数,例如可以包括:电化学装置的SOH、电化学装置的剩余电量、电化学装置的循环次数、电化学装置的工作时长等状态参数中的至少一个。
而在一些可选的实施例中,第一状态数据包括电化学装置的SOH,则步骤S102中的“基于第一状态数据和析锂SOC对电化学装置进行安全状态检测”包括:基于电化学装置的析锂SOC相对于电化学装置的SOH的变化,确定电化学装置的使用是否处于安全状态。
SOH(State of healthy,健康状况)作为电化学装置使用过程中的重要参数,可以衡量电化学装置的健康状态,其可以通过相关技术中的任意合理的方式进行计算,本公开实施例中在此不进行限制,只要可以满足需求即可。作为其中一个示例,SOH可以为电化学装置的当次循环放电容量与初始容量的百分比。
本公开实施例中通过结合电化学装置的析锂SOC相对于电化学装置的SOH的变化,在分析时将两者进行了合理的考量,使得安全检测的结果更准确,能够更合理和准确地确定电化学装置是否处于安全状态,以便于后续基于该电化学装置是否处于安全状态的结果对电化学装置进行管理。
本公开实施例中不具体限制基于析锂SOC相对于SOH的变化确定电化学装置的使用是否处于安全状态的具体方式,在一些可选的实施例中,“基于电化学装置的析锂SOC相对于电化学装置的SOH的变化,确定电化学装置的使用是否处于安全状态”可以包括以下步骤S1021和步骤S1022:
S1021:根据电化学装置的析锂SOC和电化学装置的SOH计算电化学装置的安全状态参数COS,其中,COS为电化学装置的析锂SOC对电化学装置的SOH的微分值。
可以理解的是,本公开实施例中,COS为电化学装置的析锂SOC对电化学装置的SOH的微分值,若将析锂SOC记为SOCx,则COS=dSOCx/dSOH,该COS也同样可以认为是电化学装置的析锂SOC对电化学装置的SOH的变化率,显然,该安全状态参数COS可以准确地体现电化学装置的析锂SOC相对于电化学装置的SOH的变化。
S1022:基于COS,确定电化学装置的使用是否处于安全状态。
由前述,该安全状态参数COS可以准确地体现电化学装置的析锂SOC相对于电化学装置的SOH的变化,因此,本公开实施例中基于COS来确定电化学装置的使用是否处于安全状态能够使得安全检测的结果更准确,能够更合理和准确地确定电化学装置是否处于安全状态,以便于后续基于该电化学装置是否处于安全状态的结果对电化学装置进行管理。
本公开实施例中不限制步骤S1022的具体方式,只要能够满足需求即可。在一些可选的示例中,提供了两种不同的可选实施方式来基于COS确定电化学装置的使用是否处于安全状态,下面对这两种可选实施方案进行具体的介绍。
第一种可选实施方式(为便于下文描述,将其记为实施方式①)中,该步骤S1022包括如下子步骤S21和S22:
S21:基于COS和电化学装置的SOH,确定第一变化曲线,其中,第一变化曲线表示COS随电化学装置的SOH的变化。
具体来说,在这实施方式①中,第一变化曲线以电化学装置的SOH为横坐标、以安全状态参数COS为纵坐标,能够准确体现安全状态参数随SOH的变化。
在建立第一变化曲线时,在得到了安全状态参数COS和电化学装置的SOH后,可以得到多个由COS和SOH构成的数据对,将每次得到的COS和SOH的数据对填充到坐标系中,经拟合后可获得该第一变化曲线。可以理解的是,电化学装置的安全状态参数COS和SOH数据采集的越密集,则得到的数据对越多,可以得到更加细致的第一变化曲线。利用数据进行曲线拟合的过程为本领域技术人员所熟知的,本公开实施例对此不做具体限定。可选地,为了更好地利用第一变化曲线,还可以对第一变化曲线进行降噪、平滑等处理。
S22:基于第一变化曲线,确定电化学装置的使用是否处于安全状态。
由于第一变化曲线表示COS随电化学装置的SOH的变化,而COS是析锂SOC对电化学装置的SOH的微分值,因此本公开实施例中结合第一变化变化曲线,便于准确地确定电化学装置的使用是否处于安全状态。
在一些可选的实施例中,本公开实施例中的S22,可以包括以下子步骤S221和S222。
S221:对第一变化曲线进行微分处理,得到第二变化曲线。
由于第一变化曲线表示COS随电化学装置的SOH的变化,因此对第一变化曲线进行微分处理得到的第二变化曲线表示COS随SOH的变化率,其纵坐标也即为dCOS/dSOH。
S222:基于第二变化曲线的纵坐标的绝对值,确定电化学装置的使用是否处于安全状态。
本公开实施例基于第二变化曲线的纵坐标的绝对值,结合实际以合理的方式来确定电化学装置的使用处于安全状态,能够使得对电化学装置进行安全状态检测的结果更加合理,以便于后续基于结果对电化学装置进行管理。
本公开的一种可选的示例中,可以是通过对第二变化曲线的纵坐标的绝对值(即dCOS/dSOH的绝对值)进行阈值判断的方式,基于第二变化曲线的纵坐标的绝对值,确定电化学装置的使用是否处于安全状态,从而完成对电化学装置的安全状态检测。具体地:步骤S222可以包括:若绝对值小于第一绝对值阈值,则确定电化学装置的使用处于安全状态;以及,若绝对值不小于第一绝对值阈值,则确定电化学装置的使用不处于安全状态。
本公开实施例中,当该第二变化曲线的纵坐标的绝对值大于或者等于第一绝对值阈值时,此时电化学装置在出现析锂的基础上,其析锂情况已经对其正常安全使用产生较大的影响,因此可以将安全状态检测的结果确定为电化学装置的使用不处于安全状态;而该第二变化曲线的纵坐标的绝对值小于第一绝对值阈值时,此时电化学装置虽然出现一定程度的析锂,但其析锂情况还不会对电化学装置的正常安全使用产生产生较大的影响,可以在继续监测的情况下继续使用,因此可以将安全状态检测的结果确定为电化学装置的使用仍处于安全状态。
通过这样的判断方式,能够合理地在电化学装置出现析锂时确定电化学装置的使用是否处于安全状态,以便于更好地对电化学装置进行管理,以保证电化学装置在出现析锂时的使用安全。
本公开实施例中,第一绝对值阈值可以依据需要进行设定,在此不进行限制,例如,第一绝对值阈值的取值范围可以是[1000,9000]、[2000,9000]、[2500,9000]、[3000,10000]等等,对于具体的取值,第一绝对值阈值可以为1000、2000、2500、3000、4000、6000、9000、10000等等。并且,本公开实施例中对于不同体系或类型的电化学装置来说,可以设置不同的第一绝对值阈值的取值范围,以适应不同的电化学装置的安全检测需求,从而便于针对性地对不同体系或类型的电化学装置进行管理,以达到更佳的管理效果。例如前述中,本公开实施例中的电化学装置可以包括磷酸铁锂体系电化学装置、镍钴锰酸锂体系电化学装置、钴酸锂体系电化学装置,则在 一些可选的实施例中,其各自对应的第一绝对值阈值的取值范围可以是:
若电化学装置为磷酸铁锂体系电化学装置,第一绝对值阈值的取值范围为[2500,9000];
若电化学装置为镍钴锰酸锂体系电化学装置,第一绝对值阈值的取值范围为[2000,9000];
若电化学装置为钴酸锂体系电化学装置,第一绝对值阈值的取值范围为[2000,9500]。
显然,对于一个确定的电化学装置而言,当第一绝对值阈值分别在其对应的电化学装置体系所相应的取值范围内取值时,可以适应对应的电化学装置的安全检测需求,便于针对性地对不同体系或类型的电化学装置进行管理。显然,对于不同的电化学装置而言,其也可以依据需要从对应的第一绝对值阈值取值范围内选取合适的具体取值,本公开实施例中在此不进行限制。例如在一些示例中,若电化学装置为磷酸铁锂体系电化学装置,第一绝对值阈值的取值范围为[2500,9000],其可以选取3500为第一绝对值阈值;若电化学装置为镍钴锰酸锂体系电化学装置,第一绝对值阈值的取值范围为[2000,9000],其可以选取3000为第一绝对值阈值;若电化学装置为钴酸锂体系电化学装置,第一绝对值阈值的取值范围为[2000,9500],其可以选取3500为第一绝对值阈值。
第二种可选实施方式(为便于下文描述,将其记为实施方式②)中,该步骤S1022包括:若COS小于第一COS阈值,则确定电化学装置的使用处于安全状态;以及,若COS不小于第一COS阈值,则确定电化学装置的使用不处于安全状态。
具体地,在这实施方式②中,可以直接基于安全状态参数COS进行安全状态检测,这种方式同样可以准确地确定电化学装置的使用是否处于安全状态,因此可以按照需要采取实施方式①或者实施方式②对电化学装置进行安全状态检测,本公开实施例中在此不进行特别限制。但需要指出的是,对于实际中的情况而言,实施方式①中的安全状态检测方式相较于实施方式②中的安全状态检测方式来说,其灵敏度会更高一些。
本公开实施例中,当电化学装置的安全状态参数COS大于或者等于第一COS阈值时,此时电化学装置在出现析锂的基础上,其析锂情况已经对其正常安全使用产生较大的影响,因此可以将安全状态检测的结果确定为电化学装置的使用不处于安全状态;而该安全状态参数COS小于第一COS阈值时,此时电化学装置虽然出现一定程度的析锂,但其析锂情况还不会对电化学装置的正常安全使用产生产生较大的影响,可以在继续监测的情况下继续使用,因此可以将安全状态检测的结果确定为电化学装置的使用仍处于安全状态。
通过这样的判断方式,能够合理地在电化学装置出现析锂时确定电化学装置的使用是否处于安全状态,以便于更好地对电化学装置进行管理,以保证电化学装置在出现析锂时的使用安全。
本公开实施例中,第一COS阈值可以依据需要进行设定,在此不进行限制,例如,第一COS阈值的取值范围可以是[20,80]、[10,70]、[30,90]、[40,90]等等,对于具体的取值,第一COS阈值可以为20、30、50、60、70、80、90等等。并且,本公开实施例中对于不同体系或类型的电化学装置来说,可以设置不同的第一COS阈值的取值范围,以适应不同的电化学装置的安全检测需求,从而便于针对性地对不同体系或类型的电化学装置进行管理,以达到更佳的管理效果。例如前述中,本公开实施例中的电化学装置可以包括磷酸铁锂体系电化学装置、镍钴锰酸锂体系电化学装置、钴酸锂体系电化学装置等等,则在一些可选的实施例中,其各自对应的第一COS阈值的取值范围可以是:
若电化学装置为磷酸铁锂体系电化学装置,第一COS阈值的取值范围为[20,80];
若电化学装置为镍钴锰酸锂体系电化学装置,第一COS阈值的取值范围为[10,70];
若电化学装置为钴酸锂体系电化学装置,第一COS阈值的取值范围为[15,85]。
显然,对于一个确定的电化学装置而言,当第一COS阈值分别在其对应的电化学装置体系所相应的取值范围内取值时,可以适应对应的电化学装置的安全检测需求,便于针对性地对不同体系或类型的电化学装置进行管理。显然,对于不同的电化学装置而言,其也可以依据需要从对应的第一COS阈值取值范围内选取合适的具体取值,本公开实施例中在此不进行限制。例如在一些示例中,若电化学装置为磷酸铁锂体系电化学装置,第一COS阈值的取值范围为[20,80],其可以选取30为第一COS阈值;若电化学装置为镍钴锰酸锂体系电化学装置,第一COS阈值的取值范围为[10,70],其可以选取20为第一COS阈值;若电化学装置为钴酸锂体系电化学装置,第一COS阈值的取值范围为[15,85],其可以选取25为第一COS阈值。
S103:基于安全状态检测的结果,确定电化学装置的使用策略。
本公开实施例中,该步骤S103可由电化学装置1000的确定装置103完成,利用基于前述S101和S102中得到的安全状态检测的结果所确定出的使用策略对电化学装置进行管理,确保对电化学装置的使用进行管理的合理性。
本公开实施例中的电化学装置管理方法,由于能够确定电化学装置的析锂SOC,响应于析锂SOC处于预设析锂SOC范围内,并能够获取电化学装置使用过程中的第一状态数据,基于第一状态数据和析锂SOC对电化学装置进行安全状态检测,其中,第一状态数据用于指示电化学装置的健康状态,安全状态检测用于确定电化学装置的使用是否处于安全状态,最后能够基于安全状态检测的结果确定电化学装置的使用策略,从而能够合理地在电化学装置出现析锂时对电化学装置的使用进行管理,以保证电化学装置出现析锂时的使用安全,并且对于电化 学装置的不同的安全状态确定不同的使用策略,降低析锂的影响,能够最大限度的提高电化学装置的使用寿命。
本公开实施例中不对本步骤S103中所确定的使用策略进行特别限制,只要能够满足需求即可,例如,可以是提高或者降低充放电电压、充放电电流等,本公开实施例中不进行具体限制。
在一些可选的实施例中,步骤S103包括:响应于电化学装置的使用不处于安全状态,对电化学装置的使用进行限制。
由于在安全状态检测后的结果是电化学装置不处于安全状态时,电化学装置在出现析锂的基础上,其析锂情况已经对其正常安全使用产生较大影响,因此本公开实施例中的电化学装置管理方法在此时采取对电化学装置的使用进行限制的使用策略,这样就能便于更好地保证电化学装置在使用状态下的安全,进而保证用户在使用电化学装置时的安全。
本公开实施例中,对电化学装置的使用进行限制可以包括降低电化学装置充电电压、充电电流、放电电压、放电电流中的至少之一,或者也可以包括其他限制措施,通过降低这些电化学装置的使用状态参数,有效地对电化学装置的使用进行限制。
前文中介绍了步骤S1022(即“基于COS,确定电化学装置的使用是否处于安全状态”)的两种不同的可选实施方式,即实施方式①和实施方式②,下面结合这两种可选实施方式,对本公开实施例中的步骤S103进行进一步具体说明。
对于实施方式①而言,在其中一些示例中,“响应于电化学装置的使用不处于安全状态,对电化学装置的使用进行限制”可以包括:响应于绝对值不小于第一绝对值阈值且不大于第二绝对值阈值,降低电化学装置的充电电压、放电电压、充电电流、放电电流中的至少一个,其中,第二绝对值阈值大于第一绝对值阈值;以及,响应于绝对值大于第二绝对值阈值,停止对电化学装置的使用。
本公开实施例中,当该第二变化曲线的纵坐标的绝对值不小于第一绝对值阈值且不大于第二绝对值阈值时,此时电化学装置在出现析锂的基础上,可理解为其析锂情况虽然已经对其正常安全使用产生较大的影响,但还可以维持一定的功能,因此这时本公开实施例中可以对其充电电压、放电电压、充电电流和放电电流中的至少一个进行限制和降低,从而保证电化学装置的使用安全、延长电化学装置的使用寿命;而在该第二变化曲线的纵坐标的绝对值大于第二绝对值阈值时,此时电化学装置在出现析锂的基础上,可理解为其析锂情况已经对其正常安全使用产生严重的影响,电化学装置的功能难以继续维持,继续使用将会在短时间内使得电化学装置有发生严重析锂而导致着火、或者胀气等严重后果的风险,因此本公开实施例中在这时采取策略停止电化学装置的使用,从而保证电化学装置的使用安全。
在实施方式①中,本公开实施例中停止对电化学装置的使用,可以是指在该绝对值大于第二绝对值阈值时停止电化学装置的充放电循环操作,或者也可以是关闭电化学装置使之不能被使用,从而停止对电化学装置的使用。
显然,本公开实施例中通过这样的方式能够更合理地对电化学装置进行管理,延长电化学装置的使用寿命,以保证电化学装置的使用安全。
本公开实施例中,第二绝对值阈值也可以依据需要进行设定,在此不进行限制。例如,第一绝对值阈值的取值范围可以是[7000,20000]、[5000,20000]、[6000,20000]、[6000,19000]等等,对于具体的取值,第二绝对值阈值可以为5000、6000、7000、10000、15000、19000、20000等等。并且,本公开实施例中对于不同体系或类型的电化学装置来说,可以设置不同的第二绝对值阈值的取值范围,以适应不同的电化学装置的安全管理需求,从而便于针对性地对不同体系或类型的电化学装置进行管理,以达到更佳的管理效果。例如前述中,本公开实施例中的电化学装置可以包括磷酸铁锂体系电化学装置、镍钴锰酸锂体系电化学装置、钴酸锂体系电化学装置等等,则在一些可选的实施例中,其各自对应的第二绝对值阈值的取值范围可以是:
若电化学装置为磷酸铁锂体系电化学装置,第二绝对值阈值的取值范围为[7000,20000];
若电化学装置为镍钴锰酸锂体系电化学装置,第二绝对值阈值的取值范围为[5000,20000];
若电化学装置为钴酸锂体系电化学装置,第二绝对值阈值的取值范围为[5500,20000]。
显然,对于一个确定的电化学装置而言,当第二绝对值阈值分别在其对应的电化学装置体系所相应的取值范围内取值时,可以适应对应的电化学装置的安全管理需求,便于针对性地对不同体系或类型的电化学装置进行管理。显然,对于不同的电化学装置而言,其也可以依据需要从对应的第二绝对值阈值取值范围内选取合适的具体取值,本公开实施例中在此不进行限制。例如在一些示例中,若电化学装置为磷酸铁锂体系电化学装置,第二绝对值阈值的取值范围为[7000,20000],其可以选取11000为第二绝对值阈值;若电化学装置为镍钴锰酸锂体系电化学装置,第二绝对值阈值的取值范围为[5000,20000],其可以选取10000为第二绝对值阈值;若电化学装置为钴酸锂体系电化学装置,第二绝对值阈值的取值范围为[5500,20000],其可以选取11000为第二绝对值阈值。
对于实施方式②而言,在其中一些示例中,“响应于电化学装置的使用不处于安全状态,对电化学装置的使用进行限制”可以包括:响应于COS不小于第一COS阈值且不大于第二COS阈值,降低电化学装置的充电电压、放电电压、充电电流、放电电流中的至少一个,其中,第二COS阈值大于第一COS阈值;以及,响应于COS大于第二COS阈值,停止对电化学装置的使用。
本公开实施例中,当电化学装置的安全状态参数COS不小于第一COS阈值且不大于第二COS阈值时,此时电化学装置在出现析锂的基础上,可理解为其析锂情况虽然已经对其正常安全使用产生较大的影响,但还可以维持一定的功能,因此这时本公开实施例中可以对其充电电压、放电电压、充电电流和放电电流中的至少一个进行限制和降低,从而保证电化学装置的使用安全、延长电化学装置的使用寿命;而在该安全状态参数COS大于第二COS阈值时,此时电化学装置在出现析锂的基础上,可理解为其析锂情况已经对其正常安全使用产生严重的影响,电化学装置的功能难以继续维持,继续使用将会在短时间内使得电化学装置有发生严重析锂而导致着火、或者胀气等严重后果的风险,因此本公开实施例中在这时采取策略停止电化学装置的使用,从而保证电化学装置的使用安全。
在实施方式②中,本公开实施例中停止对电化学装置的使用,可以是指在该绝对值大于第二COS阈值时停止电化学装置的充放电循环操作,或者也可以是关闭电化学装置使之不能被使用,从而停止对电化学装置的使用。
显然,本公开实施例中通过这样的方式能够更合理地对电化学装置进行管理,延长电化学装置的使用寿命,以保证电化学装置的使用安全。
本公开实施例中,第二COS阈值可以依据需要进行设定,在此不进行限制,例如,第二COS阈值的取值范围可以是[60,100]、[50,100]、[55,90]、[65,90]等等,对于具体的取值,第二COS阈值可以为50、55、60、65、80、90、95、100等等。并且,本公开实施例中对于不同体系或类型的电化学装置来说,可以设置不同的第二COS阈值的取值范围,以适应不同的电化学装置的安全管理需求,从而便于针对性地对不同体系或类型的电化学装置进行管理,以达到更佳的管理效果。例如前述中,本公开实施例中的电化学装置可以包括磷酸铁锂体系电化学装置、镍钴锰酸锂体系电化学装置、钴酸锂体系电化学装置等等,则在一些可选的实施例中,其各自对应的第二COS阈值的取值范围可以是:
若电化学装置为磷酸铁锂体系电化学装置,第二COS阈值的取值范围为[60,100];
若电化学装置为镍钴锰酸锂体系电化学装置,第二COS阈值的取值范围为[50,100];
若电化学装置为钴酸锂体系电化学装置,第二COS阈值的取值范围为[50,100]。
显然,对于一个确定的电化学装置而言,当第二COS阈值分别在其对应的电化学装置体系所相应的取值范围内取值时,可以适应对应的电化学装置的安全管理需求,便于针对性地对不同体系或类型的电化学装置进行管理。显然,对于不同的电化学装置而言,其也可以依据需要从对应的第二COS阈值取值范围内选取合适的具体取值,本公开实施例中在此不进行限制。例如在一些示例中,若电化学装置为磷酸铁锂体系电化学装置,第二COS阈值的取值范围为[60,100],其可以选取70为第二COS阈值;若电化学装置为镍钴锰酸锂体系电化学装置,第二COS阈值的取值范围为[50,100],其可以选取80为第二COS阈值;若电化学装置为钴酸锂体系电化学装置,第二COS阈值的取值范围为[50,100],其可以选取75为第二COS阈值。
当然,以上各个参数值,仅是作为一些便于理解的示例或者可选的实施例,并非作为对本公开实施例中的任何限制。
另外可选地,在安全状态检测的结果是:电化学装置的使用处于安全状态时(对应于实施方式①,即第二变化曲线的纵坐标的绝对值小于第一绝对值阈值;而对应于实施方式②,即COS小于第一COS阈值),此时电化学装置虽然出现一定程度的析锂,但其析锂情况还不会对电化学装置的正常安全使用产生产生较大的影响,可以在继续监测的情况下继续使用,因此在此时本电化学装置管理方法可以不对电化学装置的使用采取限制策略,可继续监测电化学装置的使用状态。
可以理解的是,上文中所介绍的内容,均为本公开实施例中的一些可选的实施方式,而并不作为对本公开实施例中的任何限制。
由此可见,本公开实施例中的电化学装置管理方法,由于能够确定电化学装置的析锂SOC,响应于析锂SOC处于预设析锂SOC范围内,并能够获取电化学装置使用过程中的第一状态数据,基于第一状态数据和析锂SOC对电化学装置进行安全状态检测,其中,第一状态数据用于指示电化学装置的健康状态,安全状态检测用于确定电化学装置的使用是否处于安全状态,最后能够基于安全状态检测的结果确定电化学装置的使用策略,从而能够合理地在电化学装置出现析锂时对电化学装置的使用进行管理,以保证电化学装置出现析锂时的使用安全,并且对于电化学装置的不同的安全状态确定不同的使用策略,降低析锂的影响,能够最大限度的提高电化学装置的使用寿命。
根据本公开实施例中的另一方面,参照图5的结构框图,本公开实施例提供了一种电化学装置管理装置1000,其包括:第一确定装置101、检测装置102和第二确定装置103;
所述第一确定装置101,用于确定电化学装置的析锂SOC;
所述检测装置102,用于响应于所述析锂SOC处于预设析锂SOC范围内,获取电化学装置使用过程中的第一状态数据,并基于所述第一状态数据和析锂SOC对所述电化学装置进行安全状态检测,其中,所述第一状态数据用于指示所述电化学装置的健康状态,所述安全状态检测用于确定所述电化学装置的使用是否处于安全状态;
所述第二确定装置103,用于基于所述安全状态检测的结果,确定所述电化学装置的使用策略。
在一些可选的实施例中,第二确定装置103具体用于:响应于所述电化学装置的使用不处于安全状态,对所 述电化学装置的使用进行限制。
在一些可选的实施例中,所述第一状态数据包括电化学装置的SOH,所述检测装置102具体用于:基于所述电化学装置的析锂SOC相对于所述电化学装置的SOH的变化,确定所述电化学装置的使用是否处于安全状态。
在一些可选的实施例中,所述检测装置102具体用于:根据所述电化学装置的析锂SOC和所述电化学装置的SOH计算所述所述电化学装置的安全状态参数COS,其中,所述COS为所述电化学装置的析锂SOC对所述电化学装置的SOH的微分值;基于所述COS,确定所述电化学装置的使用是否处于安全状态。
在一些可选的实施例中,所述检测装置102具体用于:基于所述COS和所述电化学装置的SOH,确定第一变化曲线,其中,所述第一变化曲线表示所述COS随所述电化学装置的SOH的变化;基于所述第一变化曲线,确定所述电化学装置的使用是否处于安全状态。
在一些可选的实施例中,所述检测装置102具体用于:对所述第一变化曲线进行微分处理,得到第二变化曲线;基于所述第二变化曲线的纵坐标的绝对值,确定所述电化学装置的使用是否处于安全状态。
在一些可选的实施例中,所述检测装置102具体用于:若所述绝对值小于第一绝对值阈值,则确定所述电化学装置的使用处于安全状态;以及,若所述绝对值不小于第一绝对值阈值,则确定所述电化学装置的使用不处于安全状态。
在一些可选的实施例中,所述第二确定装置103具体用于:所述响应于所述电化学装置的使用不处于安全状态,对所述电化学装置的使用进行限制,包括:响应于所述绝对值不小于所述第一绝对值阈值且不大于第二绝对值阈值,降低所述电化学装置的充电电压、放电电压、充电电流、放电电流中的至少一个,其中,所述第二绝对值阈值大于所述第一绝对值阈值;以及,响应于所述绝对值大于所述第二绝对值阈值,停止对所述电化学装置的使用。
在一些可选的实施例中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第一绝对值阈值的取值范围为[2500,9000];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第一绝对值阈值的取值范围为[2000,9000];若所述电化学装置为钴酸锂体系电化学装置,所述第一绝对值阈值的取值范围为[2000,9500]。
在一些可选的实施例中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第二绝对值阈值的取值范围为[7000,20000];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第二绝对值阈值的取值范围为[5000,20000];若所述电化学装置为钴酸锂体系电化学装置,所述第二绝对值阈值的取值范围为[5500,20000]。
在一些可选的实施例中,所述检测装置102具体用于:若所述COS小于第一COS阈值,则确定所述电化学装置的使用处于安全状态;以及,若所述COS不小于第一COS阈值,则确定所述电化学装置的使用不处于安全状态。
在一些可选的实施例中,所述第二确定装置103具体用于:响应于所述COS不小于所述第一COS阈值且不大于第二COS阈值,降低所述电化学装置的充电电压、放电电压、充电电流、放电电流中的至少一个,其中,所述第二COS阈值大于所述第一COS阈值;以及,响应于所述COS大于所述第二COS阈值,停止对所述电化学装置的使用。
在一些可选的实施例中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第一COS阈值的取值范围为[20,80];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第一COS阈值的取值范围为[10,70];若所述电化学装置为钴酸锂体系电化学装置,所述第一COS阈值的取值范围为[15,85]。
在一些可选的实施例中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第二COS阈值的取值范围为[60,100];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第二COS阈值的取值范围为[50,100];若所述电化学装置为钴酸锂体系电化学装置,所述第二COS阈值的取值范围为[50,100]。
在一些可选的实施例中,所述第一确定装置101具体用于:对所述电化学装置进行间歇式充电操作,在所述间歇式充电操作中获取与电化学装置相关的数据,基于所述与电化学装置相关的数据确定电化学装置的析锂SOC。
在一些可选的实施例中,与电化学装置相关的数据包括电化学装置的SOC和电化学装置的内阻,所述间歇式充电操作包括多个充电期间和多个间断期间,所述第一确定装置101具体用于:在间歇式充电操作过程中,对于所述多个间断期间中的每个间断期间,获取该间断期间的电化学装置的SOC和电化学装置的内阻;基于所获取的电化学装置的多个SOC和与所述多个SOC对应的电化学装置的多个内阻,得到第一曲线,所述第一曲线表示所述电化学装置的SOC和内阻对应的映射曲线;基于所述第一曲线,确定所述电化学装置的析锂SOC。
在一些可选的实施例中,所述第一确定装置101具体用于:对所述第一曲线进行一阶微分,得到第二曲线;和确定所述第二曲线首次出现斜率为负的点对应的SOC为所述析锂SOC;或者,对所述第一曲线进行一阶微分,得到第二曲线;对所述第二曲线进行一阶微分,得到第三曲线;和确定所述第三曲线首次出现纵坐标小于零的点对应的SOC为所述析锂SOC。
在一些可选的实施例中,所述间歇式充电操作包括多个充电周期,每个充电周期包括充电期间和间断期间,在每个所述充电期间中,所述电化学装置的SOC增加单位幅度。
在一些可选的实施例中,若电化学装置为磷酸铁锂体系电化学装置,所述单位幅度的范围为0.5%至10%,所 述间断期间的时长范围为1秒至15秒;若所述电化学装置为镍钴锰酸锂体系电化学装置,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至30秒;若所述电化学装置为钴酸锂体系电化学装置,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至30秒。
在一些可选的实施例中,满足条件a)至f)中的至少一个:
a)所述电化学装置为磷酸铁锂体系电化学装置,所述电化学装置处于-10℃至10℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为5秒至15秒;
b)所述电化学装置为磷酸铁锂体系电化学装置,所述电化学装置处于10℃至45℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至10秒;
c)所述电化学装置为镍钴锰酸锂体系电化学装置,所述电化学装置处于-10℃至10℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为10秒至30秒;
d)所述电化学装置为镍钴锰酸锂体系电化学装置,所述电化学装置处于10℃至45℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至10秒;
e)所述电化学装置为钴酸锂体系电化学装置,所述电化学装置处于-10℃至10℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为15秒至30秒;
f)所述电化学装置为钴酸锂体系电化学装置,所述电化学装置处于10℃至45℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至10秒。
在一些可选的实施例中,若所述电化学装置为磷酸铁锂体系电化学装置,所述预设析锂SOC范围的上限值的取值范围为[30%,95%];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述预设析锂SOC范围的上限值的取值范围为[40%,85%];若所述电化学装置为钴酸锂体系电化学装置,所述预设析锂SOC范围的上限值的取值范围为[45%,90%]。
该电化学装置管理装置1000可用于实现前述多个方法实施例中相应的电化学装置管理方法,并具有相应的方法实施例的有益效果,在此不再赘述。此外,本公开实施例的电化学装置管理装置1000中的各个装置的功能实现均可参照前述方法实施例中的相应部分的描述,在此亦不再赘述。
根据本公开实施例中的再一方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现前述任一项的电化学装置管理方法。
根据本公开实施例中的再一方面,本公开实施例提供了一种充电装置,如图6所示,该充电装置200包括处理器201和机器可读存储介质202,该充电装置200还可以包括充电电路模块203、接口204、电源接口205、整流电路206。其中,充电电路模块203用于接收处理器201发出的指令,对锂离子电池2000(即电化学装置)进行充电;充电电路模块203还可以获取锂离子电池2000的相关参数,并将其发送至处理器201;接口204用于与锂离子电池2000电连接,以将锂离子电池2000连接到充电装置200上;电源接口205用于与外部电源连接;整流电路206用于对输入电流进行整流;机器可读存储介质202存储有能够被处理器执行的机器可执行指令,处理器201执行机器可执行指令时,实现上述任一实施方案所述的电化学装置管理方法步骤。
根据本公开实施例中的再一方面,本公开实施例还提供了一种电池系统,如图7所示,该电池系统300包括第二处理器301和第二机器可读存储介质302,该电池系统300还可以包括充电电路模块303、锂离子电池304(即电化学装置)以及第二接口305。其中,充电电路模块303用于接收第二处理器301发出的指令,对电化学装置进行充电;充电电路模块303还可以获取锂离子电池304(即电化学装置)的相关参数,并将其发送至第二处理器301。第二接口305用于与外部充电器400的接口连接;外部充电器400用于提供电力;第二机器可读存储介质302存储有能够被处理器执行的机器可执行指令,第二处理器301执行机器可执行指令时,实现上述任一实施方案所述的电化学装置管理方法步骤。外部充电器400可以包括第一处理器401、第一机器可读存储介质402、第一接口403及相应的整流电路,该外部充电器可以是市售充电器,本公开实施例对其结构不做具体限定。
根据本公开实施例中的再一方面,本公开实施例还提供了一种电子设备,其包括上述的电池系统。
机器可读存储介质可以包括随机存取存储器(Random Access Memory,简称RAM),也可以包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
对于电化学装置管理装置/电子设备/充电装置/存储介质/电池系统实施例而言,由于其基本相似于上述电化学装置管理方法实施例,所以描述的比较简单,相关之处参见上述电化学装置管理方法实施例的部分说明即可,在此不再进行赘述。
下面对本公开实施例中的一些制备例、实验例以及对比例进行具体说明,通过这些制备例、实验例和对比例,可以更方便且明确地看出本公开实施例中提供的化学装置管理方法、装置、充电装置、电池系统、电子设备、计 算机存储介质相对于现有技术的显著优势。应当理解,该制备例、实验例和对比例并非对本公开实施例中的限制。
一、制备例
【制备例1】
镍钴锰酸锂体系电化学装置的制备:
正极极片的制备:将正极活性材料镍钴锰酸锂、乙炔黑、聚偏氟乙烯(PVDF)按质量比94∶3∶3混合,然后加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成固含量为75%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为12μm的铝箔的一个表面上,90℃条件下烘干,冷压后得到正极活性材料层厚度为100μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂覆有正极活性材料层的正极极片。将正极极片裁切成(74mm×867mm)的规格并焊接极耳后待用。
负极极片的制备:将负极活性材料人造石墨、乙炔黑、丁苯橡胶及羧甲基纤维素钠按质量比96∶1∶1.5∶1.5混合,然后加入去离子水作为溶剂,调配成固含量为70%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为8μm的铜箔的一个表面上,110℃条件下烘干,冷压后得到负极活性材料层厚度为150μm的单面涂覆负极活性材料层的负极极片,然后在该负极极片的另一个表面上重复以上涂覆步骤,得到双面涂覆有负极活性材料层的负极极片。将负极极片裁切成(74mm×867mm)的规格并焊接极耳后待用。
隔离膜的制备:以厚度为15m的聚乙烯(PE)多孔聚合薄膜作为隔离膜。
电解液的制备:在含水量小于10ppm的环境下,将非水有机溶剂碳酸乙烯酯(EC)、碳酸亚丙酯(PC)、碳酸二乙酯(DEC)按照质量比1∶1∶1混合,然后向非水有机溶剂中加入六氟磷酸锂(LiPF6)溶解并混合均匀,得到电解液,其中,LiPF6的浓度为1.15mol/L。
锂离子电池的制备:将上述制备的正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正极极片和负极极片中间起到隔离的作用,并卷绕得到电极组件。将电极组件装入铝塑膜包装袋中,并在80℃下脱去水分,注入配好的电解液,经过真空封装、静置、化成、整形等工序得到锂离子电池,锂离子电池的额定容量为5Ah。
【制备例2】
磷酸铁锂体系锂离子电池的制备:
正极极片的制备:将正极活性材料磷酸铁锂、乙炔黑、聚偏氟乙烯(PVDF)按质量比94∶3∶3混合,然后加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成固含量为75%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为12μm的铝箔的一个表面上,90℃条件下烘干,冷压后得到正极活性材料层厚度为100μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂覆有正极活性材料层的正极极片。将正极极片裁切成(74mm×867mm)的规格并焊接极耳后待用。
负极极片的制备、隔离膜的制备、电解液的制备、锂离子电池的制备方法与制备例1相同。锂离子电池的额定容量为4Ah。
【制备例3】
钴酸锂、磷酸铁锂混合体系锂离子电池的制备:
正极极片的制备:将正极活性材料钴酸锂和磷酸铁锂、乙炔黑、聚偏氟乙烯(PVDF)按质量比94∶3∶3混合(其中钴酸锂与磷酸铁锂的质量比为1∶1),然后加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成固含量为75%的浆料,并搅拌均匀。将浆料均匀涂覆在厚度为12μm的铝箔的一个表面上,90℃条件下烘干,冷压后得到正极活性材料层厚度为100μm的正极极片,然后在该正极极片的另一个表面上重复以上步骤,得到双面涂覆有正极活性材料层的正极极片。将正极极片裁切成(74mm×867mm)的规格并焊接极耳后待用。
负极极片的制备、隔离膜的制备、电解液的制备、电化学装置的制备方法与制备例1相同。锂离子电池的额定容量为4.5Ah。
二、实验例
为了便于说明,以下实验例1-6以前述方法实验例中的实施方式②为基础,实验例7以前述方法实验例中的实施方式①为基础,此外下面将前述的第一COS阈值记为a,第二COS阈值记为b。
【实验例1】
镍钴锰酸锂体系锂离子电池测试:
<析锂SOC的检测>
取制备例1制得的锂离子电池,对锂离子电池进行充放电循环操作:以5A电流恒流充电至4.25V,恒压充电至电流下降为250mA,静置15min,再以5A电流恒流放电至2.8V,静置15min,重复上述充放电循环操作,并获取锂离子电池的SOH,SOH为电池当次循环放电容量与初始容量的百分比。对锂离子电池进行间歇式充电操作,析锂检测后得到析锂SOC。
<电池COS的计算>
以电化学装置的析锂SOC为纵坐标,以电化学装置当前的SOH数据为横坐标,将这些数据对所代表的点填充在坐标系中,经拟合后得到析锂SOC和SOH对应的映射曲线。对该曲线进行一阶微分处理,得到安全状态参数COS值。
<锂离子电池的保护操作>
若COS值>第二COS阈值b,电池(即电化学装置)停止进行充放电循环操作,其中b为70;若COS≤b,电池继续进行充放电循环操作,直到COS>b,电池停止进行充放电循环操作。记录充放电循环操作循环次数以及锂离子电池的最终析锂SOC和COS值。
实验例1的实施流程可见图8的流程图所示进行理解。
【实验例2】
除了<锂离子电池的保护操作>与实验例1不同以外,其余与实验例1相同。
<锂离子电池的保护操作>
若COS>b,电池停止进行充放电循环操作,其中b为70;
若COS>第一COS阈值a,电池继续进行充放电循环操作,直到COS>b,电池停止进行充放电循环操作,其中第一COS阈值a为30;
若a≤COS<b,将当前充电电压以0.025V的幅度降低,并在下次进行析锂检测时,再次判断COS与a、b之间的大小关系,以此类推。
当锂离子电池的当前充电电压与其初始充电电压之间的差值大于电压差阈值时,锂离子电池停止进行充放电循环操作。其中电压差阈值为0.1V。
实验例2的实施流程可见图9的流程图所示进行理解,其中的0.025V仅作为该实施流程中的可选示例。
【实验例3】
除了<锂离子电池的保护操作>与实验例1不同以外,其余与实验例1相同。
若COS>b,电池停止进行充放电循环操作,其中b为70;
若COS>a,电池继续进行充放电循环操作,直到COS>b,电池停止进行充放电循环操作,其中第一COS阈值a为30;
若a≤COS<b,将当前充电流压以0.5A的幅度降低,并在下次进行析锂检测时,再次判断COS与a、b之间的大小关系,以此类推。
当锂离子电池的当前充电电流与其初始充电电流之间的差值大于电流差阈值时,锂离子电池停止进行充放电循环操作。其中,电流差阈值为:α×电池额定容量,本实验例3中α为0.25,锂离子电池的额定容量为5Ah,则电流差阈值为0.25×5=1.25A。
实验例3的实施流程可见图10的流程图所示进行理解,其中的0.5A仅作为该实施流程中的可选示例。
【实验例4】
除了采用制备例2的锂离子电池,锂离子电池的充放电循环操作与实验例1不同以外,其余与实验例1相同。
对锂离子电池进行充放电循环操作:以5A电流恒流充电至3.6V,恒压充电至电流下降为250mA,静置15min,再以5A电流恒流放电至2.5V,静置15min,重复上述充放电循环操作。
【实验例5】
除了采用制备例3的锂离子电池以外,其余与实验例1相同。
【实验例6】
除了<锂离子电池进行充放电循环>与实验例2不同以外,其余与实验例2相同。
对锂离子电池进行充放电循环操作:以5A电流恒流充电至4.3V,恒压充电至电流下降为250mA,静置15min,再以5A电流恒流放电至2.8V,静置15min,重复上述充放电循环操作。
【实验例7】
除了<电池COS的计算>和<锂离子电池的保护操作>与实验例1不同以外,其余与实验例1相同。
<电池COS的计算>
以电化学装置的析锂SOC为纵坐标,以电化学装置当前的SOH数据为横坐标,将这些数据对所代表的点填充在坐标系中,经拟合后得到析锂SOC和SOH对应的映射曲线。对该曲线进行一阶微分,得到安全状态参数COS值;对以COS值为纵坐标,以电化学装置当前的SOH数据为横坐标,将这些数据对所代表的点填充在坐标系中,经拟合后得到COS值和SOH对应的映射曲线(即第一变化曲线),对该曲线进行一阶微分,得到dCOS/dSOH值。
<锂离子电池的保护操作>
若dCOS/dSOH值>第二绝对值阈值,电池停止进行充放电循环操作,其中第二绝对值阈值为10000;若析锂SOC≤10000,电池继续进行充放电循环操作,直到dCOS/dSOH值>10000,电池停止进行充放电循环操作。记录充放电循环操作循环次数以及锂离子电池的最终析锂SOC和COS及dCOS/dSOH值。
三、对比例
【对比例1】
<析锂SOC的检测>
取制备例1制得的锂离子电池,对锂离子电池进行充放电循环操作:以5A电流恒流充电至4.25V,恒压充电至电流下降为250mA,静置15min,再以5A电流恒流放电至2.8V,静置15min,重复上述充放电循环操作,在 每次充电时进行析锂检测。
<锂离子电池的保护操作>
若析锂SOC≤第一SOC阈值,电池停止进行充放电循环操作,其中第一SOC阈值为20%;
若析锂SOC>第一SOC阈值,电池继续进行充放电循环,并在每次充电时进行析锂检测,直到析锂SOC≤第一SOC阈值,电池停止进行充放电循环操作。记录充放电循环操作循环次数以及锂离子电池的最终析锂SOC。
【对比例2】
除了<锂离子电池的保护操作>与对比例1不同以外,其余与对比例1相同。
<锂离子电池的保护操作>
若析锂SOC≤第一SOC阈值,电池停止进行充放电循环操作,其中第一SOC阈值为20%;
若析锂SOC>第二SOC阈值,电池继续进行充放电循环操作,在每次充电时进行析锂检测,直到析锂SOC≤第一SOC阈值,电池停止进行充放电循环操作,其中第二SOC阈值为30%;
若第一SOC阈值<析锂SOC≤第二SOC阈值,将当前充电电压以0.025V的幅度降低,并在下次进行析锂检测时,将第一SOC阈值和第二SOC阈值分别降低2.5%,继续判断析锂SOC与第一SOC阈值、第二SOC阈值之间的大小关系,以此类推。
当锂离子电池的当前充电电压与其初始充电电压之间的差值大于电压差阈值时,锂离子电池停止进行充放电循环操作。其中电压差阈值为0.1V。
【对比例3】
除了<锂离子电池的保护操作>与对比例1不同以外,其余与对比例1相同。
<锂离子电池的保护操作>
若析锂SOC≤第一SOC阈值,电池停止进行充放电循环操作,其中第一SOC阈值为20%;
若析锂SOC>第二SOC阈值,电池继续进行充放电循环操作,在每次充电时进行析锂检测,直到析锂SOC≤第一SOC阈值,电池停止进行充放电循环操作,其中第二SOC阈值为30%;
若第一SOC阈值<析锂SOC≤第二SOC阈值,将当前充电流压以0.5A的幅度降低,并在下次进行析锂检测时,再次判断析锂SOC与第一SOC阈值、第二SOC阈值之间的大小关系,以此类推。
当锂离子电池的当前充电电流与其初始充电电流之间的差值大于电流差阈值时,锂离子电池停止进行充放电循环操作。其中,电流差阈值为:α×电池额定容量,本对比例3中α为0.25,锂离子电池的额定容量为5Ah,则电流差阈值为0.25×5=1.25A。
【对比例4】
除了采用制备例2的锂离子电池,在<析锂SOC的检测>中,调整充电电压至3.6V、放电电压至2.5V,其余与对比例1相同。
【对比例5】
除了采用制备例3的锂离子电池以外,其余与对比例1相同。
【对比例6】
除了<锂离子电池进行充放电循环>与对比例2不同以外,其余与对比例2相同。
对锂离子电池进行充放电循环操作:以5A电流恒流充电至4.3V,恒压充电至电流下降为250mA,静置15min,再以5A电流恒流放电至2.8V,静置15min,重复上述充放电循环操作。
四、数据汇总
1、实验例1至6和对比例1至6的性能数据如表1所示:
表1
组别 | 充放电循环操作次数 | 析锂SOC | COS值 |
实验例1 | 673 | 18.3% | 89 |
实验例2 | 1011 | 9.2% | 93 |
实验例3 | 1023 | 17.1% | 87 |
实验例4 | 4530 | 14.5% | 95 |
实验例5 | 3490 | 18.2% | 89 |
实验例6 | 970 | 10.2% | 83 |
对比例1 | 622 | 19.9% | \ |
对比例2 | 799 | 9.9% | \ |
对比例3 | 987 | 19.9% | \ |
对比例4 | 4491 | 14.9% | \ |
对比例5 | 3439 | 18.7% | \ |
对比例6 | 423 | 26.7% | \ |
2、实验例1和7的性能数据如表2所示:
表2
组别 | 充放电循环操作次数 | 析锂SOC | COS值 | dCOS/dSOH |
实验例1 | 673 | 18.3% | 89 | \ |
实验例7 | 651 | 19.4% | 69 | 11531 |
五、结果分析
基于以上各实验例、对比例进行对比,分析得出以下结果:
结果A:从实验例1、4-5和对比例1、4-5可以看出,检测到与对比例基本相同的析锂SOC,准确度相近,但通过COS值判断安全状态,可适当延长电化学装置的使用时间,提高用户体验。
结果B:从实验例2-3和对比例2-3可以看出,检测到与对比例2基本相同的析锂SOC,通过COS值提前识别安全风险,灵敏度更高,识别到风险即采用降电压的方式,电化学装置的使用寿命得到有效延长。
结果C:从实验例6和对比例6可以看出,仅通过析锂SOC很难识别过充导致的失效风险,导致电芯寿命衰减很快,析锂SOC未达到阈值时,电芯容量已衰减至60%以下,实验中止。而通过COS值则可识别此类安全风险,对电化学装置采用降电压等方式进行处理,大幅减小后续循环过程中的析锂风险,有效延长电芯使用寿命,同时也有效保证电化学装置的安全性能。
结果D:从实验例1和实验例7可以看出,通过dCOS/dSOH识别电化学装置的安全风险灵敏度更高(也即使用前述的实施方式①进行安全状态检测相较于实施方式②灵敏度更高),虽然使用寿命会有一定程度减少,但电化学装置的安全性能更有保障。
本公开实施例中在以上实施例和对比例的基础上,进行了多组重复试验,所得结果均能与上述结果A、B、C、D相符合,因此可以看出本公开实施例中的电化学装置管理方案在实际中具有很好的应用前景和能获得较好的技术效果。
由此可见,本公开实施例中的电化学装置管理方案,由于能够确定电化学装置的析锂SOC,响应于析锂SOC处于预设析锂SOC范围内,并能够获取电化学装置使用过程中的第一状态数据,基于第一状态数据和析锂SOC对电化学装置进行安全状态检测,其中,第一状态数据用于指示电化学装置的健康状态,安全状态检测用于确定电化学装置的使用是否处于安全状态,最后能够基于安全状态检测的结果确定电化学装置的使用策略,从而能够合理地在电化学装置出现析锂时对电化学装置的使用进行管理,以保证电化学装置出现析锂时的使用安全,并且对于电化学装置的不同的安全状态确定不同的使用策略,降低析锂的影响,能够最大限度的提高电化学装置的使用寿命。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
应当理解,本公开的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本公开的范围在此方面不受限制。
本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非 在上下文另有明确指出,否则应该理解为“一个或多个”。
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本公开实施方式的方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
Claims (26)
- 一种电化学装置管理方法,包括:确定电化学装置的析锂SOC;响应于所述析锂SOC处于预设析锂SOC范围内,获取电化学装置使用过程中的第一状态数据,并基于所述第一状态数据和析锂SOC对所述电化学装置进行安全状态检测,其中,所述第一状态数据用于指示所述电化学装置的健康状态,所述安全状态检测用于确定所述电化学装置的使用是否处于安全状态;基于所述安全状态检测的结果,确定所述电化学装置的使用策略。
- 根据权利要求1所述的方法,其中,所述基于所述安全状态检测的结果,确定所述电化学装置的使用策略,包括:响应于所述电化学装置的使用不处于安全状态,对所述电化学装置的使用进行限制。
- 根据权利要求2所述的方法,其中,所述第一状态数据包括电化学装置的SOH,所述基于所述第一状态数据和析锂SOC对所述电化学装置进行安全状态检测,包括:基于所述电化学装置的析锂SOC相对于所述电化学装置的SOH的变化,确定所述电化学装置的使用是否处于安全状态。
- 根据权利要求3所述的方法,其中,所述基于所述电化学装置的析锂SOC相对于所述电化学装置的SOH的变化,确定所述电化学装置的使用是否处于安全状态,包括:根据所述电化学装置的析锂SOC和所述电化学装置的SOH计算所述所述电化学装置的安全状态参数COS,其中,所述COS为所述电化学装置的析锂SOC对所述电化学装置的SOH的微分值;基于所述COS,确定所述电化学装置的使用是否处于安全状态。
- 根据权利要求4所述的方法,其中,所述基于所述COS,确定所述电化学装置的使用是否处于安全状态,包括:基于所述COS和所述电化学装置的SOH,确定第一变化曲线,其中,所述第一变化曲线表示所述COS随所述电化学装置的SOH的变化;基于所述第一变化曲线,确定所述电化学装置的使用是否处于安全状态。
- 根据权利要求5所述的方法,其中,所述基于所述第一变化曲线,确定所述电化学装置的使用是否处于安全状态,包括:对所述第一变化曲线进行微分处理,得到第二变化曲线;基于所述第二变化曲线的纵坐标的绝对值,确定所述电化学装置的使用是否处于安全状态。
- 根据权利要求6所述的方法,其中,所述基于所述第二变化曲线的纵坐标的绝对值,确定所述电化学装置的使用是否处于安全状态,包括:若所述绝对值小于第一绝对值阈值,则确定所述电化学装置的使用处于安全状态;以及,若所述绝对值不小于第一绝对值阈值,则确定所述电化学装置的使用不处于安全状态。
- 根据权利要求7所述的方法,其中,所述响应于所述电化学装置的使用不处于安全状态,对所述电化学装置的使用进行限制,包括:响应于所述绝对值不小于所述第一绝对值阈值且不大于第二绝对值阈值,降低所述电化学装置的充电电压、放电电压、充电电流、放电电流中的至少一个,其中,所述第二绝对值阈值大于所述第一绝对值阈值;以及,响应于所述绝对值大于所述第二绝对值阈值,停止对所述电化学装置的使用。
- 根据权利要求7所述的方法,其中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第一绝对值阈值的取值范围为[2500,9000];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第一绝对值阈值的取值范围为[2000,9000];若所述电化学装置为钴酸锂体系电化学装置,所述第一绝对值阈值的取值范围为[2000,9500]。
- 根据权利要求8所述的方法,其中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第二绝对值阈值的取值范围为[7000,20000];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第二绝对值阈值的取值范围为[5000,20000];若所述电化学装置为钴酸锂体系电化学装置,所述第二绝对值阈值的取值范围为[5500,20000]。
- 根据权利要求4所述的方法,其中,所述基于所述COS,确定所述电化学装置的使用是否处于安全状态,包括:若所述COS小于第一COS阈值,则确定所述电化学装置的使用处于安全状态;以及,若所述COS不小于第一COS阈值,则确定所述电化学装置的使用不处于安全状态。
- 根据权利要求9所述的方法,其中,所述响应于所述电化学装置的使用不处于安全状态,对所述电化学装置的使用进行限制,包括:响应于所述COS不小于所述第一COS阈值且不大于第二COS阈值,降低所述电化学装置的充电电压、放电电压、充电电流、放电电流中的至少一个,其中,所述第二COS阈值大于所述第一COS阈值;以及,响应于所述COS大于所述第二COS阈值,停止对所述电化学装置的使用。
- 根据权利要求11所述的方法,其中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第一COS阈值的取值范围为[20,80];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第一COS阈值的取值范围为[10,70];若所述电化学装置为钴酸锂体系电化学装置,所述第一COS阈值的取值范围为[15,85]。
- 根据权利要求12所述的方法,其中,若所述电化学装置为磷酸铁锂体系电化学装置,所述第二COS阈值的取值范围为[60,100];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述第二COS阈值的取值范围为[50,100];若所述电化学装置为钴酸锂体系电化学装置,所述第二COS阈值的取值范围为[50,100]。
- 根据权利要求1-14中任意一项所述的方法,其中,所述确定电化学装置的析锂SOC,包括:对所述电化学装置进行间歇式充电操作,在所述间歇式充电操作中获取与电化学装置相关的数据,基于所述与电化学装置相关的数据确定电化学装置的析锂SOC。
- 根据权利要求15所述的方法,其中,与电化学装置相关的数据包括电化学装置的SOC和电化学装置的内阻,所述间歇式充电操作包括多个充电期间和多个间断期间,所述在所述间歇式充电操作中获取与电化学装置相关的数据,基于所述与电化学装置相关的数据确定电化学装置的析锂SOC的步骤包括:在间歇式充电操作过程中,对于所述多个间断期间中的每个间断期间,获取该间断期间的电化学装置的SOC和电化学装置的内阻;基于所获取的电化学装置的多个SOC和与所述多个SOC对应的电化学装置的多个内阻,得到第一曲线,所述第一曲线表示所述电化学装置的SOC和内阻对应的映射曲线;基于所述第一曲线,确定所述电化学装置的析锂SOC。
- 根据权利要求16所述的方法,其中,所述基于所述第一曲线,确定所述电化学装置的析锂SOC的步骤包括方法1或方法2中的至少一种,其中:方法1包括:对所述第一曲线进行一阶微分,得到第二曲线;和确定所述第二曲线首次出现斜率为负的点对应的SOC为所述析锂SOC;方法2包括:对所述第一曲线进行一阶微分,得到第二曲线;对所述第二曲线进行一阶微分,得到第三曲线;和确定所述第三曲线首次出现纵坐标小于零的点对应的SOC为所述析锂SOC。
- 根据权利要求15所述的方法,其中,所述间歇式充电操作包括多个充电周期,每个充电周期包括充电期间和间断期间,在每个所述充电期间中,所述电化学装置的SOC增加单位幅度。
- 根据权利要求18所述的方法,其中,若所述电化学装置为磷酸铁锂体系电化学装置,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至15秒;若所述电化学装置为镍钴锰酸锂体系电化学装置,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至30秒;若所述电化学装置为钴酸锂体系电化学装置,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至30秒。
- 根据权利要求19所述的方法,其中,所述方法满足条件a)至f)中的至少一个:a)所述电化学装置为磷酸铁锂体系电化学装置,所述电化学装置处于-10℃至10℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为5秒至15秒;b)所述电化学装置为磷酸铁锂体系电化学装置,所述电化学装置处于10℃至45℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至10秒;c)所述电化学装置为镍钴锰酸锂体系电化学装置,所述电化学装置处于-10℃至10℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为10秒至30秒;d)所述电化学装置为镍钴锰酸锂体系电化学装置,所述电化学装置处于10℃至45℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至10秒;e)所述电化学装置为钴酸锂体系电化学装置,所述电化学装置处于-10℃至10℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为15秒至30秒;f)所述电化学装置为钴酸锂体系电化学装置,所述电化学装置处于10℃至45℃的环境温度下,所述单位幅度的范围为0.5%至10%,所述间断期间的时长范围为1秒至10秒。
- 根据权利要求1所述的方法,其中,若所述电化学装置为磷酸铁锂体系电化学装置,所述预设析锂SOC范围的上限值的取值范围为[30%,95%];若所述电化学装置为镍钴锰酸锂体系电化学装置,所述预设析锂SOC范围的上限值的取值范围为[40%,85%];若所述电化学装置为钴酸锂体系电化学装置,所述预设析锂SOC范围的上限值的取值范围为[45%,90%]。
- 一种计算机可读存储介质,其中,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-21任一项所述的方法。
- 一种充电装置,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现权利要求1-21任一项所述的方法。
- 一种电池系统,提供了一种电池系统,其包括处理器、机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现前述的电化学装置管理方法。
- 一种电子设备,其中,所述电子设备包括如权利要求24所述的电池系统。
- 一种电化学装置管理装置,包括:第一确定装置、检测装置和第二确定装置;所述第一确定装置,用于确定电化学装置的析锂SOC;所述检测装置,用于响应于所述析锂SOC处于预设析锂SOC范围内,获取电化学装置使用过程中的第一状态数据,并基于所述第一状态数据和析锂SOC对所述电化学装置进行安全状态检测,其中,所述第一状态数据用于指示所述电化学装置的健康状态,所述安全状态检测用于确定所述电化学装置的使用是否处于安全状态;所述第二确定装置,用于基于所述安全状态检测的结果,确定所述电化学装置的使用策略。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280006527.8A CN116472633A (zh) | 2022-04-12 | 2022-04-12 | 电化学装置管理方法、装置、充电装置、电池系统及介质 |
PCT/CN2022/086239 WO2023197132A1 (zh) | 2022-04-12 | 2022-04-12 | 电化学装置管理方法、装置、充电装置、电池系统及介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/086239 WO2023197132A1 (zh) | 2022-04-12 | 2022-04-12 | 电化学装置管理方法、装置、充电装置、电池系统及介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023197132A1 true WO2023197132A1 (zh) | 2023-10-19 |
Family
ID=87182929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/086239 WO2023197132A1 (zh) | 2022-04-12 | 2022-04-12 | 电化学装置管理方法、装置、充电装置、电池系统及介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116472633A (zh) |
WO (1) | WO2023197132A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102844931A (zh) * | 2010-04-13 | 2012-12-26 | 丰田自动车株式会社 | 用于锂离子二次电池的劣化确定装置和劣化确定方法 |
WO2013038764A1 (ja) * | 2011-09-15 | 2013-03-21 | 日本電気株式会社 | 二次電池システム及び二次電池の運用方法 |
JP2020079764A (ja) * | 2018-11-14 | 2020-05-28 | トヨタ自動車株式会社 | 二次電池の状態判定方法 |
CN114035096A (zh) * | 2021-11-29 | 2022-02-11 | 东莞新能安科技有限公司 | 电化学装置soh评估方法、电子设备及电池系统 |
CN114069077A (zh) * | 2021-11-22 | 2022-02-18 | 东莞新能安科技有限公司 | 电化学装置管理方法、电子设备及电池系统 |
CN114207909A (zh) * | 2021-10-26 | 2022-03-18 | 东莞新能安科技有限公司 | 电化学装置管理方法、系统、电化学装置及电子设备 |
-
2022
- 2022-04-12 CN CN202280006527.8A patent/CN116472633A/zh active Pending
- 2022-04-12 WO PCT/CN2022/086239 patent/WO2023197132A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102844931A (zh) * | 2010-04-13 | 2012-12-26 | 丰田自动车株式会社 | 用于锂离子二次电池的劣化确定装置和劣化确定方法 |
WO2013038764A1 (ja) * | 2011-09-15 | 2013-03-21 | 日本電気株式会社 | 二次電池システム及び二次電池の運用方法 |
JP2020079764A (ja) * | 2018-11-14 | 2020-05-28 | トヨタ自動車株式会社 | 二次電池の状態判定方法 |
CN114207909A (zh) * | 2021-10-26 | 2022-03-18 | 东莞新能安科技有限公司 | 电化学装置管理方法、系统、电化学装置及电子设备 |
CN114069077A (zh) * | 2021-11-22 | 2022-02-18 | 东莞新能安科技有限公司 | 电化学装置管理方法、电子设备及电池系统 |
CN114035096A (zh) * | 2021-11-29 | 2022-02-11 | 东莞新能安科技有限公司 | 电化学装置soh评估方法、电子设备及电池系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116472633A (zh) | 2023-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109839598B (zh) | 一种无损检测锂离子电池正极可逆锂损失方法 | |
WO2012095913A1 (ja) | リチウムイオン二次電池の劣化評価方法、及び電池パック | |
CN103675685B (zh) | 锂离子电池的测试方法及安全性的判断方法 | |
CN105445558A (zh) | 检测电池直流内阻的方法 | |
WO2023088037A1 (zh) | 电化学装置管理方法、电子设备及电池系统 | |
WO2023005436A1 (zh) | 锂离子电池自放电检测方法、设备及计算机可读存储介质 | |
CN106816661A (zh) | 一种退役锂离子动力电池的二次利用选择方法 | |
CN112782599A (zh) | 锂离子电池无损析锂检测方法、装置及计算机设备 | |
CN104777427A (zh) | 一种适用于铅酸电池的soc在线检测方法 | |
CN111505521A (zh) | 一种锂亚电池的储存寿命加速测试方法 | |
WO2023070335A1 (zh) | 一种电化学装置析锂检测方法、系统及电化学装置 | |
WO2019019561A1 (zh) | 一种服务器供电系统的检测维护方法和检测维护装置 | |
WO2024119355A1 (zh) | 电池状态检测方法、装置、设备、存储介质及程序产品 | |
JPWO2017150416A1 (ja) | 劣化判定方法及び蓄電システム | |
WO2023035161A1 (zh) | 动力电池充电的方法和电池管理系统 | |
WO2013071508A1 (zh) | 智能密封阀控铅酸蓄电池装置 | |
US20240128525A1 (en) | Management method of electrochemical device, electronic device, charging device and storage medium | |
WO2023197132A1 (zh) | 电化学装置管理方法、装置、充电装置、电池系统及介质 | |
CN106249165A (zh) | 一种单体铅酸蓄电池优劣判定的测试方法 | |
CN114019385B (zh) | 一种基于单频率阻抗测试的析锂检测方法 | |
WO2023070323A1 (zh) | 电化学装置管理方法、系统、电化学装置及电子设备 | |
WO2023035160A1 (zh) | 动力电池充电的方法和电池管理系统 | |
CN111505520A (zh) | 一种快速验证铅酸蓄电池腐蚀行为的方法及系统 | |
CN113740754A (zh) | 一种检测电池组不一致性的方法与系统 | |
WO2023070316A1 (zh) | 电化学装置管理方法、系统、电子设备及充电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202280006527.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22936789 Country of ref document: EP Kind code of ref document: A1 |