[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023035161A1 - 动力电池充电的方法和电池管理系统 - Google Patents

动力电池充电的方法和电池管理系统 Download PDF

Info

Publication number
WO2023035161A1
WO2023035161A1 PCT/CN2021/117311 CN2021117311W WO2023035161A1 WO 2023035161 A1 WO2023035161 A1 WO 2023035161A1 CN 2021117311 W CN2021117311 W CN 2021117311W WO 2023035161 A1 WO2023035161 A1 WO 2023035161A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
power battery
soc
interval value
soc interval
Prior art date
Application number
PCT/CN2021/117311
Other languages
English (en)
French (fr)
Inventor
黄珊
李世超
李海力
赵微
谢岚
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/117311 priority Critical patent/WO2023035161A1/zh
Priority to KR1020237019716A priority patent/KR20230107638A/ko
Priority to CN202180006724.5A priority patent/CN116097541B/zh
Priority to EP21956349.1A priority patent/EP4231412A4/en
Priority to JP2023536183A priority patent/JP2023553499A/ja
Publication of WO2023035161A1 publication Critical patent/WO2023035161A1/zh
Priority to US18/458,168 priority patent/US20230402868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles

Definitions

  • the present application relates to the field of power batteries, in particular to a method for charging a power battery and a battery management system.
  • Embodiments of the present application provide a power battery charging method and a battery management system, which can improve the performance of the power battery.
  • a method for charging a power battery which is applied to a battery management system BMS of the power battery, and the method includes: acquiring state parameters of the power battery during charging of the power battery, wherein the state parameters Including at least one of the following parameters: state of charge SOC, state of health SOH and temperature; according to the state parameters of the power battery, determine the SOC interval value and discharge parameters corresponding to the power battery discharge, the discharge parameters include the following parameters At least one item: discharge time, discharge current and discharge waveform; when the SOC of the power battery changes the SOC interval value, control the power battery to discharge with the discharge parameter.
  • controlling the discharge of the power battery can prevent the risk of lithium deposition in the power battery and improve the safety performance of the power battery.
  • the discharge interval and discharge parameters during the charging process of the power battery can be determined according to the state parameters of the power battery, and the discharge interval is the SOC interval, wherein the state parameters can include: state of charge SOC, state of health SOH and temperature At least one of the state parameters is an important parameter affecting the performance of the power battery, and will affect the occurrence of the lithium precipitation phenomenon of the power battery.
  • the power battery is controlled to discharge with the SOC interval and discharge parameters during the charging process, so that the discharge design of the power battery during the charging process is more reasonable, and on the basis of ensuring the safety performance of the power battery , taking into account the improvement of the charging performance of the power battery.
  • the state parameters include SOC
  • the discharge parameters include discharge time and/or discharge current
  • the SOC interval value and discharge parameters corresponding to the discharge of the power battery are determined, including : If the SOC of the power battery is less than the preset SOC threshold value, determine that the SOC interval value is the first SOC interval value, and the discharge parameter is the first discharge parameter; if the SOC of the power battery is greater than or equal to the preset SOC threshold value, determine The SOC interval value is a second SOC interval value, and the discharge parameter is a second discharge parameter; wherein, the first SOC interval value is greater than the second SOC interval value, and/or, the first discharge parameter is smaller than the second discharge parameters.
  • the SOC of the power battery is divided into two intervals. If the SOC of the power battery is greater than or equal to the preset SOC threshold, the remaining power of the power battery is high and The discharge capacity is relatively high, and the SOC interval value corresponding to the discharge of the power battery is determined to be a smaller first SOC interval value, and/or the discharge parameter corresponding to the discharge of the power battery is determined to be the first larger discharge parameter.
  • the SOC interval value corresponding to the discharge of the power battery is determined to be a larger second SOC interval value, and/or, It is determined that the discharge parameter corresponding to the discharge of the power battery is the second smaller discharge parameter.
  • the SOC interval value and discharge parameters corresponding to the discharge of the power battery can be determined more conveniently according to the SOC of the power battery.
  • the state parameters include SOH
  • the discharge parameters include discharge time and/or discharge current
  • the SOC interval value and discharge parameters corresponding to the discharge of the power battery are determined, including : If the SOH of the power battery is greater than or equal to the preset SOH threshold value, determine that the SOC interval value is the third SOC interval value, and the discharge parameter is the third discharge parameter; if the SOH of the power battery is less than the preset SOH threshold value, determine The SOC interval value is a fourth SOC interval value, and the discharge parameter is a fourth discharge parameter; wherein, the third SOC interval value is greater than the fourth SOC interval value, and/or, the third discharge parameter is greater than the fourth discharge parameters.
  • the SOH of the power battery is divided into two intervals. If the SOH of the power battery is greater than or equal to the preset SOH threshold, the health of the power battery is good and the discharge capacity Stronger, determine that the SOC interval value corresponding to the power battery discharge is the third larger SOC interval value, and/or determine the discharge parameter corresponding to the power battery discharge as the third larger discharge parameter.
  • the SOC interval value corresponding to the discharge of the power battery is determined to be a smaller fourth SOC interval value, and/or, It is determined that the discharge parameter corresponding to the discharge of the power battery is the fourth smaller discharge parameter.
  • the SOC interval value and discharge parameters corresponding to the power battery discharge can be determined more conveniently according to the SOH of the power battery.
  • the state parameters include temperature
  • the discharge parameters include discharge time and/or discharge current
  • the SOC interval value and discharge parameters corresponding to the power battery discharge are determined, including : If the temperature of the power battery is greater than or equal to the first preset temperature threshold, determine that the SOC interval value is the fifth SOC interval value, and the discharge parameter is the fifth discharge parameter; if the temperature of the power battery is lower than the first preset temperature threshold and greater than or equal to the second preset temperature threshold, determine that the SOC interval value is the sixth SOC interval value, and the discharge parameter is the sixth discharge parameter; if the temperature of the power battery is less than the second preset temperature threshold, determine The SOC interval value is the seventh SOC interval value, and the discharge parameter is the seventh discharge parameter; wherein, the sixth SOC interval value is greater than the fifth SOC interval value and the seventh SOC interval value, and/or, the first The sixth discharge parameter is greater than the fifth discharge parameter and the seventh discharge parameter.
  • the temperature of the power battery is divided into three intervals, that is, a suitable temperature interval for the power battery and two unsuitable temperature intervals. If the temperature of the power battery is less than the first preset temperature threshold and greater than or equal to the second preset temperature threshold, that is, the temperature of the power battery is in an appropriate temperature range, the risk of lithium analysis of the power battery is low and the discharge capacity is relatively strong.
  • the SOC interval value corresponding to the discharge is the sixth larger SOC interval value, and/or, the discharge parameter corresponding to the discharge of the power battery is determined to be the sixth larger discharge parameter.
  • the temperature of the power battery is greater than or equal to the first preset temperature threshold or less than the second preset temperature threshold, that is, the temperature of the power battery is in an unsuitable temperature range, the risk of lithium analysis of the power battery is high and the discharge capacity is weak.
  • the SOC interval value and discharge parameters corresponding to the discharge of the power battery can be determined more conveniently according to the temperature of the power battery.
  • the safety performance of the power battery can be fully guaranteed and relatively improved.
  • the charging rate and charging performance when the temperature of the power battery is in an unsuitable temperature range, can prevent the occurrence of lithium precipitation and fully guarantee the safety performance of the power battery.
  • the determining the SOC interval value and discharge parameters corresponding to the discharge of the power battery according to the state parameters of the power battery includes: determining the state parameters of the power battery and the preset mapping relationship. SOC interval value and discharge parameters corresponding to discharge.
  • the SOC interval value and discharge parameters corresponding to the discharge of the power battery can be determined according to multiple types of state parameters of the power battery and the preset mapping relationship, so as to comprehensively improve the safety performance and charging performance of the power battery. performance.
  • the discharge current ranges from 1A to 5C
  • the discharge time ranges from 1s to 60s.
  • the SOC interval ranges from 3% to 95%.
  • the method before controlling the power battery to discharge with the discharge parameter, the method further includes: sending charging demand information, the current demand value carried in the charging demand information is zero, and the charging demand information is used to control The power battery stops charging.
  • the BMS sends charging demand information
  • the charging demand information is used to control the power battery to stop charging, and then the BMS controls the power battery to discharge, which can ensure the life and performance of the power battery and improve the charging and discharging of the power battery. process security.
  • the method before controlling the power battery to discharge, further includes: obtaining the current of the power battery; controlling the power battery to discharge with the discharge parameters, including: when the current of the power battery is less than or equal to the predetermined When the current threshold is set, the power battery is controlled to discharge with the discharge parameter.
  • the BMS before controlling the discharge of the power battery, the BMS first obtains the current of the power battery.
  • the current of the power battery is small, for example, it is less than or equal to the preset current threshold. Only when the battery is small, the BMS controls the discharge of the power battery, which can further ensure the life and performance of the power battery and improve the safety of the power battery charging and discharging process.
  • the method further includes: when the discharge time of the power battery is greater than or equal to the first preset time threshold or the sent time of the charging demand information is greater than or equal to the second When the second preset time threshold is reached, the power battery is controlled to stop discharging.
  • the charging device for charging the power battery can regularly or irregularly receive the charging demand information sent by the BMS.
  • the charging demand information is sent normally, the charging device and the power battery can maintain In the normal communication state, if the charging device does not receive the charging demand information sent by the BMS within a period of time, it may cause the charging device to disconnect the communication connection with the power battery. Therefore, in the technical solution of this embodiment, in addition to setting the first preset time threshold to control the discharge time of the power battery, a second time threshold is also set to compare with the sent time of the charging demand information to prevent the charging demand from The information has been sent for too long, which affects the normal charging process of the power battery, thereby improving the charging efficiency of the power battery.
  • the method further includes: obtaining the running state of the power battery; and controlling the power battery to discharge when the power battery is in a state of being drawn or fully charged.
  • the BMS also obtains the operating status of the power battery, and when the power battery is in the state of pulling out the gun or fully charged, the BMS can control the power battery to discharge briefly, for example, the discharge time is less than the preset time Threshold and/or discharge current less than the preset current threshold to prevent the power battery from directly charging the power battery after the charging device establishes a connection with the power battery during the subsequent charging process, which will further increase the power. Battery safety performance.
  • a battery management system BMS for a power battery including: an acquisition module configured to acquire state parameters of the power battery during charging of the power battery, wherein the state parameters include at least one of the following parameters One item: state of charge SOC, state of health SOH and temperature; a control module, used to determine the SOC interval value and discharge parameters corresponding to the discharge of the power battery according to the SOC of the power battery, and the discharge parameters include at least one of the following parameters : discharge time, discharge current and discharge waveform; and when the SOC of the power battery changes the SOC interval value, control the power battery to discharge with the discharge parameters.
  • the state parameters include at least one of the following parameters One item: state of charge SOC, state of health SOH and temperature
  • a control module used to determine the SOC interval value and discharge parameters corresponding to the discharge of the power battery according to the SOC of the power battery, and the discharge parameters include at least one of the following parameters : discharge time, discharge current and discharge waveform; and when the SOC of the power battery changes the SOC interval value,
  • the state parameter includes SOC
  • the discharge parameter includes discharge time and/or discharge current
  • the control module is used for: if the SOC of the power battery is less than a preset SOC threshold, determine that the SOC interval value is The first SOC interval value, and the discharge parameter is the first discharge parameter; if the SOC of the power battery is greater than or equal to the preset SOC threshold, determine that the SOC interval value is the second SOC interval value, and the discharge parameter is the second discharge parameter; wherein, the first SOC interval value is greater than the second SOC interval value, and/or, the first discharge parameter is smaller than the second discharge parameter.
  • the state parameters include: SOH, the discharge parameters include discharge time and/or discharge current; the control module is used to determine the SOC interval if the SOH of the power battery is greater than or equal to a preset SOH threshold The value is the third SOC interval value, and the discharge parameter is the third discharge parameter; if the SOH of the power battery is less than the preset SOH threshold, it is determined that the SOC interval value is the fourth SOC interval value, and the discharge parameter is the fourth A discharge parameter; wherein, the third SOC interval value is greater than the fourth SOC interval value, and/or, the third discharge parameter is greater than the fourth discharge parameter.
  • the state parameter includes temperature
  • the discharge parameter includes discharge time and/or discharge current
  • the control module is used to determine the SOC if the temperature of the power battery is greater than or equal to a first preset temperature threshold The interval value is the fifth SOC interval value, and the discharge parameter is the fifth discharge parameter; if the temperature of the power battery is less than the first preset temperature threshold and greater than or equal to the second preset temperature threshold, it is determined that the SOC interval value is the fifth Six SOC interval values, and the discharge parameter is the sixth discharge parameter; if the temperature of the power battery is less than the second preset temperature threshold, determine that the SOC interval value is the seventh SOC interval value, and the discharge parameter is the seventh discharge parameter parameter; wherein, the sixth SOC interval value is greater than the fifth SOC interval value and the seventh SOC interval value, and/or, the sixth discharge parameter is greater than the fifth discharge parameter and the seventh discharge parameter.
  • control module is used to: determine the SOC interval value and discharge parameters corresponding to the discharge of the power battery according to the state parameters of the power battery and the preset mapping relationship.
  • the discharge current ranges from 1A to 5C
  • the discharge time ranges from 1s to 60s.
  • the SOC interval ranges from 3% to 95%.
  • the BMS further includes a sending module, configured to send charging demand information, the current demand value carried in the charging demand information is zero, and the charging demand information is used to control the power battery to stop charging.
  • the acquisition module is also used to: acquire the current of the power battery; the control module is used to: when the current of the power battery is less than or equal to a preset current threshold, control the power battery to discharge with the discharge parameter discharge.
  • control module is also used for: when the discharge time of the power battery is greater than or equal to the first preset time threshold or the sent time of the charging demand information is greater than or equal to the second preset time threshold, control The power battery stops discharging.
  • a battery management system BMS for a power battery including a processor and a memory, the memory is used to store a computer program, and the processor is used to call the computer program to execute any one of the first aspect or the first aspect.
  • controlling the discharge of the power battery can prevent the risk of lithium deposition in the power battery and improve the safety performance of the power battery.
  • the discharge interval and discharge parameters during the charging process of the power battery can be determined according to the state parameters of the power battery, and the discharge interval is the SOC interval, wherein the state parameters can include: state of charge SOC, state of health SOH and temperature At least one of the state parameters is an important parameter affecting the performance of the power battery, and will affect the occurrence of the lithium precipitation phenomenon of the power battery.
  • the power battery is controlled to discharge with the SOC interval value and discharge parameters during the charging process, so that the discharge design of the power battery during the charging process is more reasonable, and on the basis of ensuring the safety performance of the power battery On the other hand, taking into account the improvement of the charging performance of the power battery.
  • FIG. 1 is a structural diagram of a charging system applicable to an embodiment of the present application
  • Fig. 2 is a schematic flow diagram of a method for charging a power battery provided in an embodiment of the present application
  • Fig. 3 is a schematic block flow diagram of another power battery charging method provided by the embodiment of the present application.
  • Fig. 4 is a schematic block flow diagram of another power battery charging method provided by the embodiment of the present application.
  • Fig. 5 is a schematic block flow diagram of another power battery charging method provided by the embodiment of the present application.
  • Fig. 6 is a schematic block flow diagram of another power battery charging method provided by the embodiment of the present application.
  • Fig. 7 is a schematic flowchart of another power battery charging method provided by the embodiment of the present application.
  • Fig. 8 is a schematic flowchart of another method for charging a power battery provided by an embodiment of the present application.
  • Fig. 9 is a schematic block flow diagram of another power battery charging method provided by the embodiment of the present application.
  • Fig. 10 is a schematic structural block diagram of a battery management system provided by an embodiment of the present application.
  • Fig. 11 is a schematic structural block diagram of a battery management system provided by an embodiment of the present application.
  • Lithium analysis not only reduces the performance of the power battery and greatly shortens the cycle life, but also limits the fast charging capacity of the power battery, and may cause catastrophic consequences such as combustion and explosion, seriously affecting the overall performance of the power battery.
  • the present application proposes a method for charging a power battery, which can solve the problem of lithium deposition in the power battery and improve the performance of the power battery.
  • Fig. 1 shows a battery system 100 applicable to the embodiments of the present application.
  • the battery system 100 may include: a power battery 110 and a battery management system (battery management system, BMS) 120 .
  • BMS battery management system
  • the power battery 110 may include at least one battery module, which can provide energy and power for the electric vehicle.
  • the power battery 110 can be lithium ion battery, lithium metal battery, lead acid battery, nickel battery, nickel metal hydride battery, lithium sulfur battery, lithium air battery or sodium ion battery, etc., implemented in this application
  • the battery module in the power battery 110 can be a battery cell/battery cell, or a battery pack or battery pack.
  • the example There is no specific limitation in the example.
  • the battery system 100 is generally equipped with a BMS 120 connected to the power battery 110 for monitoring and collecting power battery 110, and the BMS 120 can also realize the control and management of the power battery 110 according to the parameters.
  • the BMS 120 can be used to monitor and collect parameters such as voltage, current and temperature of the power battery 110.
  • the BMS 120 can collect the total voltage and total current of the power battery 110 in real time, the voltage and current of a single battery cell in the power battery 110, and the temperature of at least one temperature measurement point in the power battery 110, etc.
  • the real-time, fast and accurate measurement of the above parameters is the basis for the normal operation of the BMS 120.
  • the BMS 120 can further estimate the state of charge (state of charge, SOC), state of health (state of health, SOH), power state (state of power) of the power battery 110 according to the collected parameters of the power battery 110. , SOP) and other parameters.
  • the SOH can be used to indicate the aging state of the power battery 110 , and can also be understood as the remaining life of the power battery 110 .
  • the performance of the power battery 110 will continue to decline after long-term operation. How to accurately estimate the SOH is an important prerequisite for estimating other parameters of the power battery 110 (such as SOC and SOP).
  • the SOH can be estimated based on the available capacity of the power battery 110, it can be understood that the available capacity of the power battery 110 will vary with the As time increases, the SOH of the power battery 110 can be estimated through the ratio of the current available capacity of the power battery 110 to the initial capacity (or also called the nominal capacity).
  • the SOP can be used to indicate the power state of the power battery 110 , usually represented by a short-term peak power arrival.
  • the peak power output and input of the power battery 110 directly affects the quick start, acceleration and emergency braking capabilities of the vehicle, and further relates to the safety and reliability of the entire vehicle. Therefore, the BMS 120 must have the ability to estimate the peak power of the power battery 110, that is, the SOP.
  • BMS 120 can also be used to determine other parameters of power battery 110. This application The embodiment does not specifically limit this.
  • the BMS 120 acquires various parameters of the power battery 110, it can realize various control and management of the power battery 110 according to the various parameters.
  • the BMS 120 can control the charging and discharging of the power battery 110 according to parameters such as SOC, voltage, and current, so as to ensure the normal energy supply and release of the power battery 110.
  • the BMS 120 can also control components such as a cooling fan or a heating module according to parameters such as temperature, so as to realize thermal management of the power battery 110 .
  • the BMS 120 can also judge whether the power battery 110 is in a normal operating state according to parameters such as voltage and SOH, so as to realize fault diagnosis and early warning of the power battery 110.
  • the battery system 100 may establish a connection with a charging device 101 and an electrical device 102 to realize charging and discharging of the power battery 100 .
  • the BMS 120 in the battery system 100 can establish communication with the charging device 101 through a relevant communication protocol, and then realize charging of the power battery 110 through the charging device 101.
  • the BMS 120 can also establish a communication connection with the electric device 102, so that the BMS 120 can feed back the relevant information it obtains to the electric device 101 and even the user, and the BMS 120 can also obtain the relevant control of the electric device 101. Information, to better control and manage the power battery 110.
  • the charging device 101 shown in FIG. 1 includes, but is not limited to, a charging machine (or also called a charging pile).
  • the power consumption device 102 can be various types of power consumption devices, including but not limited to electric vehicles.
  • Fig. 2 shows a schematic flow diagram of a method 200 for charging a traction battery provided by an embodiment of the present application.
  • the method 200 for charging a traction battery may be applied to a battery management system BMS of a traction battery.
  • the power battery can be the power battery 110 shown in FIG. 1 above, and the method 200 can be applied to the BMS 120 of the power battery 110.
  • the BMS 120 can be used as the method in the following application embodiments 200 executive body.
  • a method 200 for charging a power battery may include the following steps.
  • the state parameter includes at least one of the following parameters: state of charge SOC, state of health SOH and temperature.
  • the discharge parameters include at least one of the following parameters: discharge time, discharge current and discharge waveform.
  • controlling the discharge of the power battery can prevent the risk of lithium deposition in the power battery and improve the safety performance of the power battery.
  • the discharge interval and discharge parameters during the charging process of the power battery can be determined according to the state parameters of the power battery, wherein the discharge parameters can include: discharge current, discharge voltage and discharge waveform, the discharge interval is the SOC interval, and the state parameters can be Including: at least one of the state of charge SOC, state of health SOH and temperature, these state parameters are all important parameters affecting the performance of the power battery, and will affect the occurrence of lithium precipitation in the power battery.
  • the power battery is controlled to discharge with the SOC interval and discharge parameters during the charging process, so that the discharge design of the power battery during the charging process is more reasonable, and on the basis of ensuring the safety performance of the power battery , taking into account the improvement of the charging performance of the power battery.
  • the SOC can be used to indicate the remaining capacity of the power battery.
  • its SOC changes with time . Specifically, if the power battery is charged, the SOC value represented by a common percentage may gradually increase; on the contrary, if the power battery is charged, the SOC value may gradually decrease.
  • the BMS can obtain the SOC in real time during the charging process of the power battery.
  • the method of obtaining the SOC refer to specific solutions in related technologies, which will not be described in detail herein.
  • SOH can be used to indicate the aging state of the power battery, and can also be understood as the remaining life of the power battery. The performance of the power battery will continue to decline after long-term operation, so the remaining life will be shorter, that is, the SOH value expressed in common percentages will be smaller.
  • the BMS can predict and calculate the SOH of the power battery, and store the SOH of the power battery in the storage unit.
  • the BMS may acquire the SOH of the power battery from the storage unit.
  • the specific method for the BMS to predict and calculate the SOH of the power battery can refer to the specific solutions in the related art, which will not be described in detail herein.
  • the temperature of the power battery can be obtained according to the temperature of all battery cells in the power battery, for example, the temperature of the power battery can be the battery cell with the lowest temperature among a plurality of battery cells body temperature. Alternatively, in some other embodiments, the temperature of the power battery can also be obtained only according to the temperature of some battery cells in the power battery.
  • the temperature of the power battery can change in real time with factors such as the environment and the operating state of the power battery.
  • the BMS can obtain the temperature of the power battery from the storage unit, that is, the BMS can obtain the temperature of the power battery and store it in the storage unit before the charging process of the power battery.
  • the BMS can also monitor and obtain the temperature of the power battery in real time during the charging process of the power battery.
  • the BMS determines the SOC interval value and discharge parameters corresponding to the discharge of the power battery according to the obtained state parameters of the power battery, wherein the discharge parameters include at least one of the following parameters: discharge time, discharge current and discharge waveform.
  • the discharge waveform includes but is not limited to any one or more of square wave, trapezoidal wave, sine wave or triangular wave.
  • the discharge parameters may also include other discharge parameters such as discharge voltage, so as to further optimize and precisely control the discharge during the charging process, and the embodiment of the present application does not specifically limit the types of other discharge parameters.
  • the discharge SOC interval value and discharge parameters of the power battery during charging can also be changed accordingly.
  • the discharge control takes into account the change of state parameters and the change of SOC, and takes into account the charging performance of the power battery while improving the safety performance of the power battery.
  • the BMS controls the power battery to discharge according to the discharge parameters.
  • the SOC interval value is X%
  • the BMS controls the power battery to discharge with a certain discharge parameter, where X is a positive number less than 100.
  • the BMS after the BMS acquires the current SOC of the power battery, it judges whether the SOC is the target SOC value.
  • the target SOC value is the SOC value determined according to the SOC interval value. For example, if the SOC interval value is 5%, the target The SOC value can be 5%, 10%, 15%, etc.
  • the BMS judges that the current SOC of the power battery is the target SOC value, it controls the power battery to discharge according to the discharge parameters. On the contrary, when the BMS judges that the current SOC of the power battery is not When it is the target SOC value, continue to continuously detect the SOC of the power battery.
  • the process of BMS controlling the power battery to discharge with discharge parameters can be understood as applying at least one negative pulse with discharge waveform, discharge current and discharge time to the power battery, wherein the waveform of the negative pulse Including but not limited to any one or more of square wave, trapezoidal wave, sine wave or triangular wave.
  • the discharge object of the power battery can be the power-consuming device where the power battery is located, or it can also be a charging device for charging the power battery, or it can also be the power-discharging device and
  • the embodiment of the present application does not specifically limit the discharge object of the power battery.
  • the BMS may control the traction battery to discharge according to the discharge parameter whenever the SOC of the traction battery changes by the SOC interval value.
  • the BMS can continuously control the discharge of the power battery according to the change of the SOC of the power battery.
  • the SOC interval value is determined by the state parameters of the power battery instead of other types of interval values, which can better control the discharge of the current state parameters of the power battery, and further improve the safety performance and charging of the battery. performance.
  • Fig. 3 shows a schematic block flow diagram of another power battery charging method 300 provided by an embodiment of the present application.
  • the state parameters of the power battery may include SOC, and the discharge parameters include discharge time and/or discharge current.
  • a method 300 for charging a power battery may include the following steps.
  • step 310 for the relevant technical solution of step 310, refer to the relevant description of step 210 in FIG. 2 above, and details are not repeated here.
  • step 321 and step 322 in the embodiment of the present application may be a relatively specific implementation manner of step 220 in FIG. 2 above.
  • step 331 and step 332 in the embodiment of the present application may be a relatively specific implementation of step 230 in Figure 2 above.
  • the SOC of the power battery can be compared with the first preset threshold, so as to determine different first SOC interval values and second SOC interval values, and different The first discharge parameter and the second discharge parameter.
  • the first SOC interval value is greater than the second SOC interval value, and/or, the first discharge parameter is smaller than the second discharge parameter.
  • the first discharge parameter includes a first discharge current and a first discharge time
  • the second discharge parameter includes a second discharge current and a second discharge time.
  • the first discharge current is smaller than the second discharge current
  • the first discharge time is shorter than the second discharge time.
  • the SOC of the power battery is relatively large (that is, greater than or equal to the preset SOC threshold), it means that the current remaining capacity of the power battery is relatively high, and the potential of the negative electrode of the power battery is low, which is more prone to lithium precipitation. , and the discharge capacity of the power battery is relatively strong at this time.
  • the SOC of the power battery is small (that is, less than or equal to the preset SOC threshold), it means that the current remaining capacity of the power battery is low, and the negative electrode potential of the power battery is relatively high. Compared with the case where the negative electrode potential is low, It is not prone to lithium precipitation, and the discharge capacity of the power battery is weak at this time.
  • the discharge frequency of the power battery is increased, and the SOC interval value with a small interval (such as the second SOC interval value) controls the discharge of the power battery to prevent
  • the occurrence of lithium analysis phenomenon ensures the safety performance of the battery.
  • the discharge parameters of the power battery can be increased, and a larger discharge time and/or discharge current (such as the second discharge current and/or second discharge time) can be used to control The power battery is discharged to further improve the safety performance of the power battery.
  • the discharge frequency of the power battery can be reduced, and the SOC interval value with a larger interval (such as the first SOC interval value) controls the discharge of the power battery, and also It can prevent the phenomenon of lithium precipitation, and while ensuring the safety performance of the power battery, it can relatively increase the charging rate of the power battery.
  • the discharge parameters of the power battery can be reduced, and a smaller discharge time and/or discharge current (such as the first discharge current and/or first discharge time) can be used to control the power Battery discharge, while preventing the phenomenon of lithium precipitation, can also prevent the low-SOC power battery from undervoltage risk, and further improve the safety performance of the power battery.
  • a smaller discharge time and/or discharge current such as the first discharge current and/or first discharge time
  • the SOC of the power battery is divided into two intervals. If the SOC of the power battery is greater than or equal to the preset SOC threshold, the remaining power of the power battery is relatively high. And the discharge capacity is relatively high, determine the SOC interval value corresponding to the discharge of the power battery as the first smaller SOC interval value, and/or determine the discharge parameter corresponding to the discharge of the power battery as the first larger discharge parameter.
  • the SOC interval value corresponding to the discharge of the power battery is determined to be a larger second SOC interval value, and/or, It is determined that the discharge parameter corresponding to the discharge of the power battery is the second smaller discharge parameter.
  • the SOC interval value and discharge parameters corresponding to the discharge of the power battery can be determined more conveniently according to the SOC of the power battery.
  • the above-mentioned preset SOC threshold can be used to evaluate the remaining capacity of the power battery, so as to assess the risk of lithium precipitation phenomenon, and the preset SOC threshold can be set according to the type of power battery, application scenarios, actual needs, etc.
  • the embodiment of the present application does not specifically limit the preset SOC threshold.
  • the above-mentioned SOC interval value (including the first SOC interval value and the second SOC interval value) and discharge parameters (including the first discharge parameter and the second discharge parameter) can also be based on power
  • the preset values are set for the battery type, application scenario, actual demand, etc., and the embodiment of the present application does not limit the specific values of the SOC interval value and the discharge parameter.
  • the SOC interval value may range between 3% and 95%.
  • the above-mentioned first SOC interval value and the second SOC interval value can be set relatively high to prevent the power battery from Lithium precipitation occurs in a low temperature or ultra-low temperature environment.
  • the above-mentioned first SOC interval value and second SOC interval value may take other specific values between 3% and 95%.
  • the range of the discharge current (including the first discharge current and the second discharge current) in the discharge parameters may be between 1A and 5C. Specifically, the discharge current is greater than or equal to 1A, and the discharge rate of the discharge current is less than or equal to 5C. Similarly, for different battery types and different application scenarios, the discharge current in the embodiments of the present application can be set according to actual conditions.
  • the range of the discharge time (including the first discharge time and the second discharge time) in the discharge parameters can be between 1s and 60s, so that the discharge of the power battery can be effectively controlled without affecting the power.
  • the overall charging time of the battery has a greater impact.
  • only one preset SOC threshold is set, and the SOC of the power battery is divided into two intervals, so that two different SOC interval values and discharge parameters are set correspondingly.
  • Set two or more preset SOC thresholds and divide the SOC of the power battery into three or more intervals, so as to set more different SOC interval values and discharge parameters correspondingly, so as to improve the adaptability under different SOC intervals.
  • the accuracy of discharge control further accurately taking into account the safety performance and charging rate of the power battery.
  • two preset SOC thresholds can be set, 1# preset SOC threshold A% and 2# preset SOC threshold B%, where A% ⁇ B%.
  • the SOC interval value is 1# SOC interval value c 1 %
  • the discharge current is 1# discharge current i 1
  • the discharge time is 1# discharge time t 1 .
  • the SOC interval value is 2#SOC interval value c 2 %
  • the discharge current is 2# discharge current i 2
  • the discharge time is 2# discharge time t 2 .
  • the SOC interval value is 3#SOC interval value c 3 %
  • the discharge current is 3# discharge current i 3
  • the discharge time is 3# discharge time t 3 .
  • i 1 ⁇ i 2 ⁇ i 3 and/or, t 1 ⁇ t 2 ⁇ t 3 .
  • A%, B%, c 1 %, c 2 %, c 3 %, i 1 , i 2 , i 3 , t 1 , t 2 , t 3 are all positive numbers.
  • the above-mentioned multiple SOC interval values may also range from 3% to 95%.
  • the above multiple discharge currents can also range from 1A to 5C.
  • the above multiple discharge times can also range from 1 s to 60 s.
  • Fig. 4 shows a schematic flow diagram of another method 400 for charging a power battery provided by an embodiment of the present application.
  • the state parameters of the power battery include SOH, and the discharge parameters include discharge time and/or discharge current.
  • a method 400 for charging a power battery may include the following steps.
  • step 410 for the relevant technical solution of step 410, refer to the relevant description of step 210 in FIG. 2 above, and details are not repeated here.
  • step 421 and step 422 in the embodiment of the present application may be a relatively specific implementation manner of step 220 in FIG. 2 above.
  • step 431 and step 432 in the embodiment of the present application may be a relatively specific implementation manner of step 230 in FIG. 2 above.
  • the SOH of the power battery can be compared with the preset SOH threshold to determine different third SOC interval values and fourth SOC interval values, as well as different third SOC interval values.
  • the discharge parameter and the fourth discharge parameter are different.
  • the third SOC interval value is greater than the fourth SOC interval value, and/or, the third discharge parameter is greater than the fourth discharge parameter.
  • the third discharge parameter includes a third discharge current and a third discharge time
  • the fourth discharge parameter includes a fourth discharge current and a fourth discharge time.
  • the third discharge current is greater than the fourth discharge current
  • the third discharge time is longer than the fourth discharge time.
  • the SOH is large (for example, greater than or equal to the preset SOH threshold)
  • the risk of lithium deposition in the power battery is low, and the discharge capacity of the power battery is relatively strong at this time.
  • the health of the power battery is poor and the SOH is small (for example, less than the preset SOH threshold)
  • it is more prone to lithium precipitation and the discharge capacity of the power battery is weak at this time.
  • the discharge frequency of the power battery can be reduced, and the SOC interval value with a larger interval (such as the third SOC interval value) controls the discharge of the power battery, and also It can ensure that the power battery will not undergo lithium precipitation, and relatively increase the charging rate.
  • the discharge parameters of the power battery can be increased, and a larger discharge time and/or discharge current (such as a third discharge current and/or a third discharge time) can be used Control the discharge of the power battery to further prevent the occurrence of lithium precipitation and ensure the safety performance of the battery.
  • the discharge frequency of the power battery can be increased, and the SOC interval value with a small interval (such as the fourth SOC interval value) controls the discharge of the power battery to Prevent the phenomenon of lithium precipitation in the power battery and ensure the safety performance of the power battery.
  • the discharge parameters of the power battery can be reduced, and a smaller discharge time and/or discharge current (such as the fourth discharge current and/or fourth discharge time) can be used to control Discharge the power battery, reduce the risk of lithium precipitation, and further improve the safety performance of the power battery.
  • the SOH of the power battery is divided into two intervals. If the SOH of the power battery is greater than or equal to the preset SOH threshold, the health of the power battery is good and the discharge The ability is stronger, and the SOC interval value corresponding to the discharge of the power battery is determined to be the third larger SOC interval value, and/or, the discharge parameter corresponding to the discharge of the power battery is determined to be the third larger discharge parameter.
  • the SOC interval value corresponding to the discharge of the power battery is determined to be a smaller fourth SOC interval value, and/or, It is determined that the discharge parameter corresponding to the discharge of the power battery is the fourth smaller discharge parameter.
  • the SOC interval value and discharge parameters corresponding to the power battery discharge can be determined more conveniently according to the SOH of the power battery.
  • the preset SOH threshold can be used to evaluate whether the health status of the power battery is good.
  • the preset SOH threshold can be set according to the type of power battery, application scenarios, actual needs, etc. This example does not specifically limit the preset SOH threshold.
  • the range of the preset SOH threshold can be between 80% and 99%, so that the health status of the power battery can be well judged by the preset SOH threshold, and the safety performance of the power battery can be guaranteed and balanced. and charging performance.
  • the SOC interval value (including the third SOC interval value and the fourth SOC interval value in the above embodiment) and discharge parameters (including the third discharge parameter and the fourth discharge parameter) in the embodiment of the present application can also be based on power
  • the preset value is set for the battery type, application scenario, actual demand, etc., and the embodiment of the present application does not specifically limit the SOC interval value.
  • the SOC interval may range from 3% to 95%.
  • the range of the discharge current (including the third discharge current and the fourth discharge current) in the discharge parameters may be between 1A and 5C.
  • the discharge time (including the third discharge time and the fourth discharge time) in the discharge parameters may range from 1s to 60s.
  • only one preset SOH threshold is set, and the SOH of the power battery is divided into two intervals, so that two different SOC interval values and discharge parameters are set correspondingly.
  • Setting two or more preset SOH thresholds can divide the SOH of the power battery into three or more intervals, so as to set more different SOC interval values and discharge parameters correspondingly, so as to improve the adaptability of different SOH intervals
  • the accuracy of discharge control further accurately balances the safety performance and charging rate of the power battery.
  • two preset SOH thresholds can be set, 1# preset SOH threshold C% and 2# preset SOH threshold D%, where C% ⁇ D%.
  • the SOC interval value is 4#SOC interval value c 4 %
  • the discharge current is 4# discharge current i 4
  • the discharge time is 4# discharge time t 4 .
  • the SOC interval value is 5#SOC interval value c 5 %
  • the discharge current is 5# discharge current i 5
  • the discharge time is 5# discharge time t 5 .
  • the SOC interval value is 6#SOC interval value c 6 %
  • the discharge current is 6# discharge current i 6
  • the discharge time is 6# discharge time t 6 .
  • C%, D%, c 4 %, c 5 %, c 6 %, i 4 , i 5 , i 6 , t 4 , t 5 , and t 6 are all positive numbers.
  • the above-mentioned multiple SOC interval values may also range from 3% to 95%.
  • the above multiple discharge currents can also range from 1A to 5C.
  • the above multiple discharge times can also range from 1 s to 60 s.
  • Fig. 5 shows a schematic flow diagram of another method 500 for charging a power battery provided by an embodiment of the present application.
  • the state parameters of the power battery may include temperature, and the discharge parameters include discharge time and/or discharge current.
  • a method 500 for charging a power battery may include the following steps.
  • step 510 for the relevant technical solution of step 510, refer to the relevant description of step 210 in FIG. 2 above, and details are not repeated here.
  • step 521, step 522, and step 523 in the embodiment of the present application may be a relatively specific implementation manner of step 220 in FIG. 2 above.
  • step 531, step 532, and step 533 in the embodiment of the present application may be a relatively specific implementation manner of step 230 in FIG. 2 above.
  • the temperature of the power battery can be compared with the preset temperature threshold, so as to determine the different fifth SOC interval value, sixth SOC interval value and seventh SOC interval value , and different fifth discharge parameters, sixth discharge parameters and seventh discharge parameters.
  • the sixth SOC interval value is greater than the fifth SOC interval value and the seventh SOC interval value
  • the sixth discharge parameter is greater than the fifth discharge parameter and the seventh discharge parameter.
  • the fifth discharge parameter includes the fifth discharge current and the fifth discharge time
  • the sixth discharge parameter includes the sixth discharge current and the sixth discharge time
  • the seventh discharge parameter includes the seventh discharge current and the seventh discharge time.
  • the fifth discharge current is greater than the sixth discharge current and the seventh discharge current
  • the fifth discharge time is greater than the sixth discharge time and the seventh discharge time.
  • the risk of lithium deposition and the discharge capacity of the power battery are related to the temperature of the power battery.
  • the temperature of the power battery is in an appropriate temperature range, the risk of lithium deposition in the power battery is low and the discharge capacity is strong.
  • the risk of lithium precipitation in the power battery increases, and the discharge capacity is weak.
  • the temperature of the power battery when the temperature of the power battery is in an appropriate temperature range (for example, the temperature of the power battery is less than the first preset temperature threshold and greater than or equal to the second preset temperature threshold), that is, when the risk of lithium analysis of the power battery is low , can reduce the discharge frequency of the power battery, and the SOC interval value with a larger interval (such as the sixth SOC interval value) controls the discharge of the power battery, and can also ensure that the power battery will not undergo lithium deposition, and relatively increase the charging rate.
  • an appropriate temperature range for example, the temperature of the power battery is less than the first preset temperature threshold and greater than or equal to the second preset temperature threshold
  • the discharge parameters of the power battery can be increased, and a larger discharge time and/or discharge current (such as the sixth discharge current and/or the sixth discharge time) can be used Control the discharge of the power battery to further prevent the occurrence of lithium precipitation and ensure the safety performance of the battery.
  • the discharge frequency of the power battery can be increased, and the SOC interval value with a small interval (such as the fifth SOC interval value or the seventh SOC interval value) controls the discharge of the power battery to prevent the occurrence of lithium precipitation and ensure the safety performance of the battery.
  • the discharge parameters of the power battery can be reduced, and a smaller discharge time and/or discharge current (such as the fifth discharge current and/or the fifth discharge time, or , the seventh discharge current and/or the seventh discharge time) to control the discharge of the power battery can prevent the risk of lithium precipitation and fully ensure the safety performance of the power battery.
  • a smaller discharge time and/or discharge current such as the fifth discharge current and/or the fifth discharge time, or , the seventh discharge current and/or the seventh discharge time
  • the temperature of the power battery is divided into three intervals, that is, one suitable temperature interval and two unsuitable temperature intervals of the power battery. If the temperature of the power battery is less than the first preset temperature threshold and greater than or equal to the second preset temperature threshold, that is, the temperature of the power battery is in an appropriate temperature range, the risk of lithium analysis of the power battery is low and the discharge capacity is relatively strong.
  • the SOC interval value corresponding to the discharge is the sixth larger SOC interval value, and/or, the discharge parameter corresponding to the discharge of the power battery is determined to be the sixth larger discharge parameter.
  • the temperature of the power battery is greater than or equal to the first preset temperature threshold or less than the second preset temperature threshold, that is, the temperature of the power battery is in an unsuitable temperature range, the risk of lithium analysis of the power battery is high and the discharge capacity is weak.
  • the SOC interval value and discharge parameters corresponding to the discharge of the power battery can be determined more conveniently according to the temperature of the power battery.
  • the safety performance of the power battery can be fully guaranteed and relatively improved.
  • the charging rate and charging performance can prevent the risk of lithium precipitation when the temperature of the power battery is in an unsuitable temperature range, and fully guarantee the safety performance of the power battery.
  • the first preset temperature threshold and the second preset temperature threshold can be used to evaluate whether the power battery is in an appropriate temperature range, and the preset SOH threshold can be based on the type of power battery, application scenario, actual Requirements and the like are set, and the embodiment of the present application does not specifically limit the first preset temperature threshold and the second preset temperature threshold.
  • the range of the first preset temperature threshold may be 45°C to 55°C
  • the range of the second preset temperature threshold may be 15°C to 25°C, so as to be able to pass the first preset temperature threshold.
  • the temperature threshold and the second preset temperature threshold can judge the temperature of the power battery well, so as to ensure and balance the safety performance and charging performance of the power battery.
  • the SOC interval value (including the fifth SOC interval value to the seventh SOC interval value in the above embodiment) and the discharge parameters (including the fifth discharge parameter to the seventh discharge parameter) in the embodiment of the present application can also be based on the power
  • the preset value is set for the battery type, application scenario, actual demand, etc., and the embodiment of the present application does not specifically limit the SOC interval value.
  • the SOC interval may range from 3% to 95%.
  • the range of the discharge current (including the fifth discharge current to the seventh discharge current) in the discharge parameter may be between 1A and 5C.
  • the range of the discharge time (including the fifth discharge time to the seventh discharge time) in the discharge parameter may be between 1 s and 60 s.
  • the state parameters of the power battery only include a single type of state parameter.
  • the state parameters of the power battery may also include multiple types of state parameters, and the SOC interval value and discharge parameters corresponding to the discharge of the power battery may be determined according to the various types of state parameters.
  • Fig. 6 shows a schematic flow diagram of another method 600 for charging a power battery provided by an embodiment of the present application.
  • a method 600 for charging a power battery may include the following steps.
  • step 610 and step 630 refer to the relevant description of step 210 and step 230 in FIG. 2 above, and details are not repeated here.
  • step 620 in the embodiment of the present application may be a relatively specific implementation manner of step 220 in FIG. 2 above.
  • the SOC interval value and discharge parameters corresponding to the discharge of the power battery can be determined according to the state parameters of the power battery and the preset mapping relationship, wherein the preset mapping relationship includes but is not limited to a mapping table, a mapping graphs or mapping formulas, etc.
  • the preset mapping relationship may include: the preset mapping relationship between the state parameter interval of the power battery and the SOC interval value and the discharge parameter, for example, the preset mapping relationship between the SOC interval of the power battery and the SOC interval value and the discharge parameter, The preset mapping relationship between the SOH range of the power battery and the SOC interval value and discharge parameters, the preset mapping relationship between the temperature range of the power battery and the SOC interval value and discharge parameters, and so on.
  • the following table 1 shows a preset mapping table of the SOC interval, the SOC interval value and the discharge parameter of the power battery.
  • mapping table c 1 %>c 2 %>c 3 %, and/or, i 1 ⁇ i 2 ⁇ i 3 , and/or, t 1 ⁇ t 2 ⁇ t 3 .
  • A% ⁇ B%, A%, B%, c 1 %, c 2 %, c 3 %, i 1 , i 2 , i 3 , t 1 , t 2 , and t 3 are all positive numbers.
  • the SOC interval value, discharge current, and discharge time can be determined according to the preset mapping table in the embodiment of the present application and the SOC interval where the current SOC of the power battery is located. and other discharge parameters.
  • mapping table shown in Table 1 above is an example rather than a limitation, and the number and range of SOC intervals in the mapping table can be set according to actual needs, which is not specifically limited in this embodiment of the present application.
  • the preset mapping relationship may also include: multiple types of state parameter intervals of the power battery and the SOC interval value and the discharge parameter.
  • the preset mapping relationship for example, the preset mapping relationship between the SOC interval, SOH interval and SOC interval value of the power battery and the discharge parameter, the preset mapping relationship between the SOC interval and temperature interval of the power battery, the SOC interval value and the discharge parameter, and the power.
  • the preset mapping relationship between the SOH range, temperature range, SOC interval value and discharge parameters of the battery the preset mapping relationship between the SOC range, SOH range, temperature range, SOC interval value and discharge parameters of the power battery, etc.
  • Table 2 shows a preset mapping table of SOC range, SOH range, SOC interval value and discharge parameter of a power battery.
  • the relationship between the SOC interval value, discharge current and discharge time corresponding to different SOC intervals can refer to the relevant description in the embodiment shown in FIG. 3 above, That is to say, c 11 %>c 12 %>c 13 %, c 21 %>c 22 %>c 23 %, and/or, i 11 ⁇ i 12 ⁇ i 13 , i 21 ⁇ i 22 ⁇ i 23 , and/or Or, t 11 ⁇ t 12 ⁇ t 13 , t 21 ⁇ t 22 ⁇ t 23 .
  • the relationship between the SOC interval value, discharge current and discharge time corresponding to different SOH intervals can refer to the relevant description in the embodiment shown in FIG. 4 above, That is, c 21 %>c 11 %, c 22 %>c 21 %, c 23 %>c 13 %, and/or, i 21 >i 11 , i 22 >i 12 , i 23 >i 13 , and/or Or, t 21 >t 11 , t 22 >t 12 , t 23 >t 13 .
  • A% ⁇ B%, A%, B%, C%, c 11 %, c 12 %, c 13 %, c 21 %, c 22%, c 23 %, i 11 , i 12 , i 13 , i 21 , i 22 , i 23 , t 11 , t 12 , t 13 , t 21 , t 22 , and t 23 are all positive numbers.
  • the SOC interval value and discharge parameters corresponding to the discharge of the power battery can be determined according to the intervals of the SOH and SOC.
  • mapping table shown in the above table 2 is an example and not a limitation.
  • the number of SOC intervals and SOH intervals and the range of intervals in the mapping table can be set according to actual needs, and this embodiment of the present application does not do this Specific limits.
  • the preset mapping relationship between the SOC interval and temperature interval of the power battery, the SOC interval value and the discharge parameter, the preset mapping relationship between the SOH interval and the temperature interval of the power battery, the SOC interval value and the discharge parameter, and the SOC of the power battery can be a mapping table similar to that shown in Table 2 above.
  • the specific numerical design in the mapping table can be found in Figure 3 to Figure 5 above. Relevant descriptions of the illustrated embodiments are not repeated here.
  • the preset mapping relationship in the embodiment of the present application may also be a mapping formula, a mapping graph, or a neural network model, etc., and the embodiment of the present application does not specifically limit the specific form of the preset mapping relationship.
  • the preset mapping relationship may be a mapping relationship obtained by fitting a large amount of experimental data, which has high reliability and accuracy, so as to ensure the safety performance and charging performance of the power battery.
  • the SOC interval value and discharge parameters corresponding to the discharge of the power battery can be determined according to the state parameters of multiple types of the power battery and the preset mapping relationship, so as to comprehensively improve the safety performance and charging of the power battery. performance.
  • Fig. 7 shows a schematic flow diagram of another method 700 for charging a power battery provided by an embodiment of the present application.
  • a method 700 for charging a power battery may include the following steps.
  • the state parameter includes at least one of the following parameters: state of charge SOC, state of health SOH and temperature.
  • the discharge parameters include at least one of the following parameters: discharge time, discharge current and discharge waveform.
  • step 710 and step 720 for the relevant technical solutions of step 710 and step 720, refer to the relevant description in the above embodiment, and details are not repeated here.
  • step 730 when the SOC of the power battery changes the SOC interval value, the BMS first sends charging demand information, the current demand value carried in the charging demand information is zero, so the charging demand information can be used to control the power battery to stop charging.
  • the charging device such as a charger, is used to charge the power battery.
  • the BMS first sends a current demand value of zero to the charger.
  • the charger stops charging the power battery according to the charging demand information.
  • the charging demand information may be a communication message, which includes but is not limited to a communication message between the BMS and the charger that satisfies the relevant communication protocol.
  • the charging demand information may be a battery Charging demand message BCL.
  • the method 700 of the example may further include: acquiring the current of the power battery, and based on this, step 740 may include: when the current of the power battery is less than or equal to a preset current threshold, controlling the power battery to discharge according to a discharge parameter.
  • the BMS before controlling the discharge of the power battery, the BMS first obtains the current of the power battery.
  • the current of the power battery is small, for example, it is less than or equal to the preset current threshold, and at this time it has an impact on the discharge of the power battery. Only when the battery is small, the BMS controls the discharge of the power battery, which can further ensure the life and performance of the power battery and improve the safety of the power battery charging and discharging process.
  • the preset current threshold may be set according to actual needs, which is not specifically limited in the embodiment of the present application.
  • the range of the preset current threshold may be less than or equal to 50A.
  • Fig. 8 shows a schematic flow diagram of another method 800 for charging a power battery provided by an embodiment of the present application.
  • a method 800 for charging a power battery may include the following steps.
  • the state parameter includes at least one of the following parameters: state of charge SOC, state of health SOH and temperature.
  • the discharge parameters include at least one of the following parameters: discharge time, discharge current and discharge waveform.
  • step 810 to step 840 for the relevant technical solutions from step 810 to step 840, refer to the relevant description in the above embodiment, and details are not repeated here.
  • the BMS controls the discharge of the power battery, it is determined whether to stop discharging according to the discharge time of the power battery and the sent time of the charging demand information. Specifically, when the discharge time of the power battery is greater than or equal to the first preset time threshold, control the power battery to stop discharging; or, when the sent time of the charging demand information is greater than or equal to the second preset time threshold, control the power battery to stop discharging .
  • the BMS when controlling the discharge of the power battery, the BMS counts the discharge time of the power battery, and judges whether the discharge time of the power battery is greater than or equal to the first preset time threshold.
  • the BMS may also time the sent time of the charging demand information after sending the charging demand information carrying a current demand value of zero, and judge whether the sent time of the charging demand information is greater than or equal to the second preset time threshold .
  • the first preset time threshold may be the discharge time corresponding to the discharge of the power battery determined according to the state parameters of the power battery in step 820 .
  • the charging device for charging the power battery can regularly or irregularly receive the charging demand information sent by the BMS.
  • the charging demand information is sent normally, the charging device and the power battery can maintain In the normal communication state, if the charging device does not receive the charging demand information sent by the BMS within a period of time, it may cause the charging device to disconnect the communication connection with the power battery. Therefore, in this embodiment of the application, in addition to setting the first preset time threshold to control the discharge time of the power battery, a second time threshold is also set to compare with the sent time of the charging demand information to prevent the charging demand information from being sent. If the sending time is too long, it will affect the normal charging process of the power battery, thereby improving the charging efficiency of the power battery.
  • the method 800 of the embodiment of the present application further includes step 860: controlling the charging of the power battery. That is, after the BMS controls the power battery to stop discharging, re-control the power battery charging.
  • the BMS can send a new charging demand message to the charging device, such as a charger, and the current demand value carried in the charging demand message is not zero, but can be the current demand determined according to the parameters of the power battery value, so that the charging device can charge the power battery according to the current demand value.
  • step 860 the above step 810 to step 850 may be re-executed to realize the process of the BMS controlling the continuous charging and discharging of the power battery.
  • Fig. 9 shows a schematic flowchart of another method 900 for charging a power battery provided by an embodiment of the present application.
  • a method 900 for charging a power battery may include the following steps.
  • the state parameter includes at least one of the following parameters: state of charge SOC, state of health SOH and temperature.
  • the discharge parameters include at least one of the following parameters: discharge time, discharge current and discharge waveform.
  • step 920 to step 940 for related technical solutions from step 920 to step 940, reference may be made to the relevant description in the above embodiment, and details are not repeated here.
  • the BMS can first obtain the running state of the power battery, and when the power battery is in the charging state, perform step 920, that is, obtain the SOC of the power battery during the charging process of the power battery, and perform steps 930 to 940.
  • the power battery is controlled to discharge when the power battery is in a drawn state or fully charged state.
  • the BMS can determine the current operating state of the power battery by acquiring the operating parameters of the power battery. Among them, when the power battery is disconnected from the charging gun of the charger, the BMS judges that the power battery can be in the state of drawing the gun, that is, the charger is not charging the power battery. In addition, the BMS can obtain parameters such as the voltage of the power battery to determine that when the SOC of the power battery reaches 100%, the SOC of the power battery reaches a fully charged state.
  • the BMS can control the power battery to discharge briefly, for example, perform discharge with a discharge time less than the preset time threshold and/or discharge current less than the preset current threshold, so as to prevent the power battery from In the subsequent charging process, after the charging device is connected to the power battery, the power battery is directly charged to cause the risk of lithium analysis of the power battery, which further improves the safety performance of the power battery.
  • FIG. 10 shows a schematic structural block diagram of a battery management system BMS 900 according to an embodiment of the present application.
  • the BMS 1000 includes: an acquisition module 1010 and a control module 1020.
  • the acquisition module 1010 is used to acquire the state parameters of the power battery during the charging process of the power battery, wherein the state parameters include at least one of the following parameters: state of charge SOC, state of health SOH and temperature; the control module 1020 It is used to determine the SOC interval value and discharge parameters corresponding to the discharge of the power battery according to the SOC of the power battery.
  • the discharge parameters include at least one of the following parameters: discharge time, discharge current and discharge waveform; and every change in the SOC interval of the power battery When the value is set, control the power battery to discharge with the discharge parameter.
  • the state parameters include SOC
  • the discharge parameters include discharge time and/or discharge current
  • the control module 1020 is used to: if the SOC of the power battery is less than the preset SOC threshold, determine the SOC interval as the first SOC interval value, and the discharge parameter is the first discharge parameter; if the SOC of the power battery is greater than or equal to the preset SOC threshold, determine that the SOC interval value is the second SOC interval value, and the discharge parameter is the second discharge parameter; wherein, the first SOC interval value greater than the second SOC interval value, and/or, the first discharge parameter is less than the second discharge parameter.
  • the state parameters include: SOH, and the discharge parameters include discharge time and/or discharge current; the control module 1020 is used to: if the SOH of the power battery is greater than or equal to the preset SOH threshold, determine that the SOC interval value is the third The SOC interval value and the discharge parameter are the third discharge parameter; if the SOH of the power battery is less than the preset SOH threshold, determine that the SOC interval value is the fourth SOC interval value, and the discharge parameter is the fourth discharge parameter; where the third SOC interval The value is greater than the fourth SOC interval value, and/or the third discharge parameter is greater than the fourth discharge parameter.
  • the state parameters include temperature
  • the discharge parameters include discharge time and/or discharge current
  • the control module 1020 is configured to: if the temperature of the power battery is greater than or equal to the first preset temperature threshold, determine that the SOC interval value is the second Five SOC interval values, and the discharge parameter is the fifth discharge parameter; if the temperature of the power battery is less than the first preset temperature threshold and greater than or equal to the second preset temperature threshold, determine the SOC interval value as the sixth SOC interval value, and the discharge parameter is the sixth discharge parameter; if the temperature of the power battery is less than the second preset temperature threshold, determine that the SOC interval value is the seventh SOC interval value, and the discharge parameter is the seventh discharge parameter; wherein, the sixth SOC interval value is greater than the fifth SOC The interval value and the seventh SOC interval value, and/or, the sixth discharge parameter is greater than the fifth discharge parameter and the seventh discharge parameter.
  • control module 1020 is configured to: determine the SOC interval value and discharge parameters corresponding to the discharge of the power battery according to the state parameters of the power battery and the preset mapping relationship.
  • the discharge current ranges from 1A to 5C
  • the discharge time ranges from 1s to 60s.
  • the SOC interval ranges from 3% to 95%.
  • the BMS 1000 may further include a sending module 1030, which is used to send charging demand information, the current demand value carried in the charging demand information is zero, and the charging demand information uses To control the power battery to stop charging.
  • a sending module 1030 which is used to send charging demand information, the current demand value carried in the charging demand information is zero, and the charging demand information uses To control the power battery to stop charging.
  • the obtaining module 1010 is also used to: obtain the current of the power battery; the control module 1020 is used to: when the current of the power battery is less than or equal to the preset current threshold, control the power battery to discharge according to the discharge parameter.
  • control module 1020 is also used to: control the power battery to Stop discharging.
  • FIG. 11 shows a schematic structural block diagram of a BMS 1100 provided by another embodiment of the present application.
  • BMS 1100 includes a memory 1110 and a processor 1120, wherein the memory 1110 is used to store a computer program, and the processor 1120 is used to read the computer program and execute the aforementioned various embodiments of the present application based on the computer program. method.
  • an embodiment of the present application further provides a readable storage medium for storing a computer program, and the computer program is used to execute the methods in the foregoing various embodiments of the present application.
  • the computer program may be the computer program in the above-mentioned BMS.
  • sequence numbers of the processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种动力电池充电的方法和电池管理系统,能够提升动力电池的性能。该动力电池充电的方法应用于动力电池的电池管理系统BMS,该方法包括:在动力电池的充电过程中,获取动力电池的状态参数,其中,状态参数包括以下参数中的至少一项:荷电状态SOC、健康状态SOH和温度;根据动力电池的状态参数,确定动力电池放电对应的SOC间隔值和放电参数,放电参数包括以下参数中的至少一项:放电时间、放电电流和放电波形;在动力电池的SOC变化SOC间隔值时,控制动力电池以放电参数放电。通过该技术方案,综合动力电池的状态参数和SOC,控制动力电池在充电过程中的放电时机以及放电参数,在保证动力电池的安全性能的基础上,提高动力电池的充电性能。

Description

动力电池充电的方法和电池管理系统 技术领域
本申请涉及动力电池领域,特别是涉及一种动力电池充电的方法和电池管理系统。
背景技术
随着时代的发展,电动汽车由于其高环保性、低噪音、使用成本低等优点,具有巨大的市场前景且能够有效促进节能减排,有利社会的发展和进步。
对于电动汽车而言,动力电池技术是关乎其发展的一项重要因素,会影响大众对电动汽车的接受度。因此,如何提升动力电池的性能,是一个待解决的技术问题。
发明内容
本申请实施例提供一种动力电池充电的方法和电池管理系统,能够提升动力电池的性能。
第一方面,提供一种动力电池充电的方法,应用于该动力电池的电池管理系统BMS,该方法包括:在该动力电池的充电过程中,获取该动力电池的状态参数,其中,该状态参数包括以下参数中的至少一项:荷电状态SOC、健康状态SOH和温度;根据该动力电池的状态参数,确定该动力电池放电对应的SOC间隔值和放电参数,该放电参数包括以下参数中的至少一项:放电时间、放电电流和放电波形;在该动力电池的SOC变化该SOC间隔值时,控制该动力电池以该放电参数放电。
通过本申请实施例的技术方案,在动力电池的充电过程中,控制动力电池放电,可以防止动力电池产生析锂风险,提升动力电池的安全性能。进一步地,可根据动力电池的状态参数确定在动力电池在充电过程中的放电间隔和放电参数,且该放电间隔为SOC间隔,其中,状态参数可包括:荷电状态SOC、健康状态SOH和温度中的至少一项,该状态参数均为影响动力电池性能的重要参数,且会影响动力电池的析锂现象的发生。结合该动力电池的状态参数,控制动力电池在充电过程中以SOC间隔和放电参数进行放电,从而使得该动力电池在充电过程中的放电设计更为合理,在保证动力电池的安全性能的基础上,兼顾提高动力电池的充电性能。
在一些可能的实施方式中,该状态参数包括SOC,该放电参数包括放电时间和/或放电电流;该根据该动力电池的状态参数,确定该动力电池放电对应的SOC间隔值和放电参数,包括:若该动力电池的SOC小于预设SOC阈值,确定该SOC间隔值为 第一SOC间隔值,以及该放电参数为第一放电参数;若该动力电池的SOC大于等于该预设SOC阈值,确定该SOC间隔值为第二SOC间隔值,以及该放电参数为第二放电参数;其中,该第一SOC间隔值大于该第二SOC间隔值,和/或,该第一放电参数小于该第二放电参数。
在该实施方式的技术方案中,通过设置一个预设SOC阈值,将动力电池的SOC划分为两个区间,若动力电池的SOC大于等于该预设SOC阈值,则动力电池的剩余电量较高且放电能力较高,确定动力电池放电对应的SOC间隔值为较小的第一SOC间隔值,和/或,确定动力电池放电对应的放电参数为较大的第一放电参数。反之,若动力电池的SOC小于预设SOC阈值,则动力电池的剩余电量较低且放电能力较弱,确定动力电池放电对应的SOC间隔值为较大的第二SOC间隔值,和/或,确定动力电池放电对应的放电参数为较小的第二放电参数。通过该技术方案,可以较为便捷的根据动力电池的SOC,确定动力电池放电对应的SOC间隔值以及放电参数,在动力电池的剩余电量较高时,防止析锂现象的发生,在充分保证动力电池的安全性能的基础上,相对提高动力电池的充电速率,在动力电池的剩余电量较低时,可防止析锂现象和降低欠压风险,充分保证动力电池的安全性能。
在一些可能的实施方式中,该状态参数包括SOH,该放电参数包括放电时间和/或放电电流;该根据该动力电池的状态参数,确定该动力电池放电对应的SOC间隔值和放电参数,包括:若该动力电池的SOH大于等于预设SOH阈值,确定该SOC间隔值为第三SOC间隔值,以及该放电参数为第三放电参数;若该动力电池的SOH小于该预设SOH阈值,确定该SOC间隔值为第四SOC间隔值,以及该放电参数为第四放电参数;其中,该第三SOC间隔值大于该第四SOC间隔值,和/或,该第三放电参数大于该第四放电参数。
在该实施方式的技术方案中,通过设置一个预设SOH阈值,将动力电池的SOH划分为两个区间,若动力电池的SOH大于等于预设SOH阈值,则动力电池的健康状况良好且放电能力较强,确定动力电池放电对应的SOC间隔值为较大的第三SOC间隔值,和/或,确定动力电池放电对应的放电参数为较大的第三放电参数。反之,若动力电池的SOH小于预设SOH阈值,则动力电池的健康状况较差且放电能力较弱,确定动力电池放电对应的SOC间隔值为较小的第四SOC间隔值,和/或,确定动力电池放电对应的放电参数为较小的第四放电参数。通过该技术方案,可以较为便捷的根据动力电池的SOH,确定动力电池放电对应的SOC间隔值和放电参数,在动力电池的健康状况良好时,可充分保证动力电池的安全性能并相对提高动力电池的充电速率以及充电性能,在动力电池的健康状况较差时,可防止析锂现象的发生,充分保证动力电池的安全性能。
在一些可能的实施方式中,该状态参数包括温度,该放电参数包括放电时间和/或放电电流;该根据该动力电池的状态参数,确定该动力电池放电对应的SOC间隔值和放电参数,包括:若该动力电池的温度大于等于第一预设温度阈值,确定该SOC间隔值为第五SOC间隔值,以及该放电参数为第五放电参数;若该动力电池的温度小于该第一预设温度阈值且大于等于第二预设温度阈值,确定该SOC间隔值为第六SOC间 隔值,以及该放电参数为第六放电参数;若该动力电池的温度小于该第二预设温度阈值,确定该SOC间隔值为第七SOC间隔值,以及该放电参数为第七放电参数;其中,该第六SOC间隔值大于该第五SOC间隔值和该第七SOC间隔值,和/或,该第六放电参数大于该第五放电参数和该第七放电参数。
在该实施方式的技术方案中,通过设置两个预设温度阈值,将动力电池的温度划分为三个区间,即动力电池的适宜温度区间和两个非适宜温度区间。若动力电池的温度小于第一预设温度阈值且大于等于第二预设温度阈值,即动力电池的温度处于适宜温度区间,则动力电池的析锂风险较低且放电能力较强,确定动力电池放电对应的SOC间隔值为较大的第六SOC间隔值,和/或,确定动力电池放电对应的放电参数为较大的第六放电参数。反之,若动力电池的温度大于等于第一预设温度阈值或小于第二预设温度阈值,即动力电池的温度处于非适宜温度区间,则动力电池的析锂风险较高且放电能力较弱,确定动力电池放电对应的SOC间隔值为较小的第五SOC间隔值或第七SOC间隔值,和/或,确定动力电池放电对应的放电参数为较小的第五放电参数或第七放电参数。通过该技术方案,可以较为便捷的根据动力电池的温度,确定动力电池放电对应的SOC间隔值和放电参数,在动力电池的温度处于适宜温度区间时,可充分保证动力电池的安全性能并相对提高充电速率和充电性能,在动力电池的温度处于非适宜温度区间时,可防止析锂现象的发生,充分保证动力电池的安全性能。
在一些可能的实施方式中,该根据该动力电池的状态参数,确定该动力电池放电对应的SOC间隔值和放电参数,包括:根据该动力电池的状态参数和预设映射关系,确定该动力电池放电对应的SOC间隔值和放电参数。
在该实施方式的技术方案中,可根据动力电池的多个类型的状态参数和预设映射关系,确定该动力电池放电对应的SOC间隔值和放电参数,以综合提高动力电池的安全性能和充电性能。
在一些可能的实施方式中,该放电电流的范围为1A至5C,该放电时间的范围为1s至60s。
在一些可能的实施方式中,该SOC间隔的范围为3%至95%。
在一些可能的实施方式中,在控制该动力电池以该放电参数放电之前,该方法还包括:发送充电需求信息,该充电需求信息中携带的电流需求值为零,该充电需求信息用于控制该动力电池停止充电。
若在对动力电池充电的过程中,直接控制动力电池放电,不仅会对动力电池造成损伤,影响动力电池的寿命,还会带来安全隐患,影响动力电池的安全性。在该实施方式的技术方案中,在BMS发送充电需求信息,该充电需求信息用于控制动力电池停止充电后,BMS再控制动力电池放电,可保证动力电池的寿命和性能,提升动力电池充放电过程的安全性。
在一些可能的实施方式中,在控制该动力电池放电之前,该方法还包括:获取该动力电池的电流;该控制该动力电池以该放电参数放电,包括:当该动力电池的电流小于等于预设电流阈值时,控制该动力电池以该放电参数放电。
在该实施方式的技术方案中,在控制动力电池放电之前,BMS先获取动力电池 的电流,当动力电池的电流较小,例如小于等于预设电流阈值时,此时其对动力电池的放电影响较小,BMS才控制动力电池进行放电,能够进一步保证动力电池的寿命和性能,提升动力电池充放电过程的安全性。
在一些可能的实施方式中,在控制该动力电池进行脉冲放电之后,该方法还包括:当该动力电池的放电时间大于等于第一预设时间阈值或该充电需求信息的已发送时间大于等于第二预设时间阈值时,控制该动力电池停止放电。
在动力电池的充电过程中,对动力电池进行充电的充电装置,例如充电机,可定时或不定时接收BMS发送的充电需求信息,当充电需求信息发送正常,充电装置与动力电池之间可保持正常的通信状态,若充电装置在一段时间内没有接收到BMS发送的充电需求信息,则可能会造成充电装置断开与动力电池的通信连接。因此,在该实施方式的技术方案中,除了设置第一预设时间阈值以控制动力电池的放电时间以外,还设置有第二时间阈值,与充电需求信息的已发送时间进行比较,防止充电需求信息的已发送时间过长,影响动力电池的正常充电过程,从而提升动力电池的充电效率。
在一些可能的实施方式中,该方法还包括:获取动力电池的运行状态;在动力电池处于拔枪状态或者满充状态时,控制动力电池放电。
在该实施方式的技术方案中,BMS还获取动力电池的运行状态,且在动力电池处于拔枪状态或者满充状态时,BMS可控制动力电池进行短暂放电,例如,执行放电时间小于预设时间阈值和/或放电电流小于预设电流阈值的放电,以防止动力电池在后续充电过程中,充电装置与动力电池建立连接后,直接对动力电池进行充电造成动力电池的析锂风险,进一步提升动力电池的安全性能。
第二方面,提供一种动力电池的电池管理系统BMS,包括:获取模块,用于在该动力电池的充电过程中,获取该动力电池的状态参数,其中,该状态参数包括以下参数中的至少一项:荷电状态SOC、健康状态SOH和温度;控制模块,用于根据该动力电池的SOC确定该动力电池放电对应的SOC间隔值和放电参数,该放电参数包括以下参数中的至少一项:放电时间、放电电流和放电波形;并在该动力电池的SOC每变化该SOC间隔值时,控制该动力电池以该放电参数放电。
在一些可能的实施方式中,该状态参数包括SOC,该放电参数包括放电时间和/或放电电流;该控制模块用于:若该动力电池的SOC小于预设SOC阈值,确定该SOC间隔值为第一SOC间隔值,以及该放电参数为第一放电参数;若该动力电池的SOC大于等于该预设SOC阈值,确定该SOC间隔值为第二SOC间隔值,以及该放电参数为第二放电参数;其中,该第一SOC间隔值大于该第二SOC间隔值,和/或,该第一放电参数小于该第二放电参数。
在一些可能的实施方式中,该状态参数包括:SOH,该放电参数包括放电时间和/或放电电流;该控制模块用于:若该动力电池的SOH大于等于预设SOH阈值,确定该SOC间隔值为第三SOC间隔值,以及该放电参数为第三放电参数;若该动力电池的SOH小于该预设SOH阈值,确定该SOC间隔值为第四SOC间隔值,以及该放电参数为第四放电参数;其中,该第三SOC间隔值大于该第四SOC间隔值,和/或,该第三放电参数大于该第四放电参数。
在一些可能的实施方式中,该状态参数包括温度,该放电参数包括放电时间和/或放电电流;该控制模块用于:若该动力电池的温度大于等于第一预设温度阈值,确定该SOC间隔值为第五SOC间隔值,以及该放电参数为第五放电参数;若该动力电池的温度小于该第一预设温度阈值且大于等于第二预设温度阈值,确定该SOC间隔值为第六SOC间隔值,以及该放电参数为第六放电参数;若该动力电池的温度小于该第二预设温度阈值,确定该SOC间隔值为第七SOC间隔值,以及该放电参数为第七放电参数;其中,该第六SOC间隔值大于该第五SOC间隔值和该第七SOC间隔值,和/或,该第六放电参数大于该第五放电参数和该第七放电参数。
在一些可能的实施方式中,该控制模块用于:根据该动力电池的状态参数和预设映射关系,确定该动力电池放电对应的SOC间隔值和放电参数。
在一些可能的实施方式中,该放电电流的范围为1A至5C,该放电时间的范围为1s至60s。
在一些可能的实施方式中,该SOC间隔的范围为3%至95%。
在一些可能的实施方式中,该BMS还包括发送模块,用于发送充电需求信息,该充电需求信息中携带的电流需求值为零,该充电需求信息用于控制该动力电池停止充电。
在一些可能的实施方式中,该获取模块还用于:获取该动力电池的电流;该控制模块用于:当该动力电池的电流小于等于预设电流阈值时,控制该动力电池以该放电参数放电。
在一些可能的实施方式中,该控制模块还用于:当该动力电池的放电时间大于等于第一预设时间阈值或该充电需求信息的已发送时间大于等于第二预设时间阈值时,控制该动力电池停止放电。
第三方面,提供一种动力电池的电池管理系统BMS,包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用该计算机程序,执行如第一方面或第一方面中任一可能的实施方式中的动力电池充电的方法。
通过本申请实施例的技术方案,在动力电池的充电过程中,控制动力电池放电,可以防止动力电池产生析锂风险,提升动力电池的安全性能。进一步地,可根据动力电池的状态参数确定在动力电池在充电过程中的放电间隔和放电参数,且该放电间隔为SOC间隔,其中,状态参数可包括:荷电状态SOC、健康状态SOH和温度中的至少一项,该状态参数均为影响动力电池性能的重要参数,且会影响动力电池的析锂现象的发生。结合该动力电池的状态参数,控制动力电池在充电过程中以SOC间隔值和放电参数进行放电,从而使得该动力电池在充电过程中的放电设计更为合理,在保证动力电池的安全性能的基础上,兼顾提高动力电池的充电性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施 例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例适用的一种充电系统的架构图;
图2是本申请实施例提供的一种动力电池充电的方法的示意性流程框图;
图3是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图4是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图5是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图6是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图7是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图8是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图9是本申请实施例提供的另一动力电池充电的方法的示意性流程框图;
图10是本申请实施例提供的电池管理系统的示意性结构框图;
图11是本申请实施例提供的电池管理系统的示意性结构框图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在新能源领域中,动力电池作为用电装置,例如车辆、船舶或航天器等的主要动力源,其重要性不言而喻。目前市面上的动力电池多为可充电的二次电池(Rechargeable battery),常见的是锂离子电池或锂离子聚合物电池。在低温下对动力电池进行持续充电,或者通过大的充电倍率或者充电电压对动力电池进行持续充电,会造成动力电池的析锂现象。
析锂不仅使动力电池性能下降,循环寿命大幅缩短,还限制了动力电池的快充容量,并有可能引起燃烧、爆炸等灾难性后果,严重影响了动力电池的整体性能。
鉴于此,本申请提出一种动力电池充电的方法,能够解决动力电池的析锂问题, 提升动力电池的性能。
图1示出了本申请实施例适用的一种电池系统100。
如图1所示,该电池系统100可包括:动力电池110和电池管理系统(battery management system,BMS)120。
具体地,该动力电池110可包括至少一个电池模组,其可为电动汽车提供能量和动力。从电池的种类而言,该动力电池110可以是锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在本申请实施例中不做具体限定。从电池规模而言,本申请实施例中,动力电池110中的电池模组可以是电芯/电池单体(battery cell),也可以是电池组或电池包(battery pack),在本申请实施例中不做具体限定。
此外,为了智能化管理及维护该动力电池110,防止电池出现故障,延长电池的使用寿命,电池系统100中一般还设置有BMS 120,该BMS 120连接于动力电池110,用于监控采集动力电池110的参数,且BMS 120还可根据该参数实现对动力电池110的控制管理。
作为示例,该BMS 120可用于监控采集动力电池110的电压、电流和温度等参数。其中,BMS 120可实时采集动力电池110的总电压、总电流,动力电池110中单个电池单体的电压、电流、以及动力电池110中至少一个测温点的温度等等。上述参数的实时,快速,准确的测量是BMS 120正常运行的基础。
可选地,BMS 120可根据该采集的动力电池110的参数,进一步估算动力电池110的荷电状态(state of charge,SOC)、健康状态(state of health,SOH)、功率状态(state of power,SOP)等参数。
其中,SOC可用于表示动力电池110的剩余容量,其数值上定义为动力电池110当前的剩余容量与总的可用容量的比值,常用百分比表示。具体地,SOC=100%时,表示动力电池110完全充满;反之,SOC=0%时,表示动力电池110完全放电。对SOC的准确估算,既是电动汽车估算续航里程最基本的要求,又是提升动力电池110利用效率和安全性能的基本保证。
另外,SOH可用于表示动力电池110的老化状态,也可理解为动力电池110的剩余寿命。众所周知,动力电池110经过长期运行后性能将会不断衰减,如何精确的估算SOH是估算动力电池110其它参数(例如SOC和SOP等参数)的重要前提。一般情况下,SOH也常用百分比表示,SOH=100%时,表示动力电池110为未经使用的新电池,随之使用时间增长,SOH逐渐下降,其剩余生命越短。在现有的相关技术中,可采用多种方式对动力电池110的SOH进行估算,例如,可基于动力电池110的可用容量对SOH进行估算,可以理解的是,动力电池110的可用容量会随着时间的增长逐渐下降,通过动力电池110当前的可用容量与初始容量(或者,也可称为标称容量)的比值,可估算得到动力电池110的SOH。
SOP可用于表示动力电池110的功率状态,通常用短时峰值功率至来表示。动力电池110输出输入的峰值功率直接影响车辆的快速启动、加速和紧急制动能力,进而关系到整车运行的安全性和可靠性。因此,BMS 120必须具备对动力电池110峰值功率 即SOP的估计能力。
可以理解的是,上文仅以SOC、SOH和SOP为例,简单了介绍了BMS 120可估算的部分参数,除此之外,BMS 120还可以用于确定动力电池110的其它参数,本申请实施例对此不做具体限定。
进一步地,BMS 120获取动力电池110的多种参数以后,可根据该多种参数实现对动力电池110各种控制和管理。
例如,BMS 120可根据SOC、电压、电流等参数实现对动力电池110的充放电控制,保证动力电池110正常的能量供给和释放。
又例如,BMS 120还可根据温度等参数,控制散热风扇或者加热模块等组件,实现动力电池110的热管理。
再例如,BMS 120还可根据电压、SOH等参数,判断动力电池110是否处于正常运行状态,以实现动力电池110的故障诊断和预警。
可选地,如图1所示,电池系统100可与充电装置101和用电装置102建立连接,以实现动力电池100的充放电。
具体地,电池系统100中的BMS 120可通过相关通信协议与充电装置101建立通信,进而通过充电装置101实现对动力电池110的充电。
可选地,BMS 120也可与用电装置102建立通信连接,从而使得BMS 120可将其获取的相关信息反馈给用电装置101乃至用户,且BMS 120也可获取用电装置101的相关控制信息,更好的对动力电池110进行控制和管理。
作为示例,图1中所示的充电装置101包括但不限于是充电机(或者也称充电桩)。另外,用电装置102可为各种类型的用电装置,其包括但不限于是电动汽车。
图2示出了本申请实施例提供的一种动力电池充电的方法200的示意性流程框图,该动力电池充电的方法200可应用于动力电池的电池管理系统BMS。可选地,本申请实施例中,动力电池可为上述图1中所示的动力电池110,该方法200可应用于动力电池110的BMS 120,换言之,BMS 120可作为下文申请实施例中方法200的执行主体。
如图2所示,在本申请实施例中,动力电池充电的方法200可包括以下步骤。
210:在动力电池的充电过程中,获取动力电池的状态参数。其中,该状态参数包括以下参数中的至少一项:荷电状态SOC、健康状态SOH和温度。
220:根据动力电池的状态参数,确定动力电池放电对应的SOC间隔值和放电参数。其中,放电参数包括以下参数中的至少一项:放电时间、放电电流和放电波形。
230:在动力电池的SOC变化SOC间隔值时,控制动力电池以放电参数放电。
通过本申请实施例的技术方案,在动力电池的充电过程中,控制动力电池放电,可以防止动力电池产生析锂风险,提升动力电池的安全性能。进一步地,可根据动力电池的状态参数确定在动力电池在充电过程中的放电间隔和放电参数,其中,放电参数可包括:放电电流、放电电压和放电波形,放电间隔为SOC间隔,状态参数可包括:荷电状态SOC、健康状态SOH和温度中的至少一项,该状态参数均为影响动力电池性能的重要参数,且会影响动力电池的析锂现象的发生。结合该动力电池的状态参数, 控制动力电池在充电过程中以SOC间隔和放电参数进行放电,从而使得该动力电池在充电过程中的放电设计更为合理,在保证动力电池的安全性能的基础上,兼顾提高动力电池的充电性能。
具体地,对于上述动力电池的各项状态参数,如上文图1所示实施例所述,SOC可用于表示动力电池的剩余容量,在动力电池的充放电过程中,其SOC是随时间变化的。具体地,若对动力电池充电,则常用百分比表示的SOC数值可逐渐增大,反之,若对动力电池充电,则SOC数值可逐渐减小。
在本申请实施例的步骤210中,BMS可在动力电池的充电过程中实时获取该SOC,该获取SOC的方式具体可参见相关技术中的具体方案,本文不做具体赘述。
SOH可用于表示动力电池的老化状态,也可理解为动力电池的剩余寿命。动力电池经过长期运行后性能将会不断衰减,因此,剩余寿命也就越短,即常用百分比表示的SOH数值也就越小。
由于动力电池的SOH变化较缓慢且计算方式较为复杂,因此,在动力电池的充电过程之前,BMS可预估计算得到动力电池的SOH,并将该动力电池的SOH存储至存储单元,在本申请实施例的步骤210中,在动力电池的充电过程中,BMS可从存储单元中获取动力电池的SOH。其中,BMS预估计算动力电池的SOH的具体方式可参见相关技术中的具体方案,本文不做具体赘述。
对于动力电池的温度,在一些实施方式中,该动力电池的温度可根据动力电池中全部电池单体的温度得到,例如,该动力电池的温度可为多个电池单体中温度最低的电池单体的温度。或者,在另一些实施方式中,该动力电池的温度也可仅根据动力电池中部分电池单体的温度得到。该动力电池的温度可随环境、动力电池运行状态等因素发生实时变化。
在本申请实施例的步骤210中,BMS可从存储单元中获取动力电池的温度,即BMS可在动力电池的充电过程之前,就获取动力电池的温度并将其存储于存储单元中。或者,BMS也可在动力电池的充电过程中,实时监测并获取动力电池的温度。该获取动力电池的温度的方式具体可参见相关技术中的具体方案,本文不做具体赘述。
进一步地,在本申请实施例的步骤220中,BMS根据获取得到的动力电池的状态参数,确定动力电池放电对应的SOC间隔值和放电参数,其中,放电参数包括以下参数的至少一项:放电时间、放电电流和放电波形。可选地,该放电波形包括但不限于是方波、梯形波、正弦波或三角波中的任意一种或多种。
可选地,放电参数还可包括放电电压等等其它放电参数,以进一步优化并精确控制充电过程中的放电,本申请实施例对其它放电参数的类型不做具体限定。
因此,在本申请实施例中,若动力电池的状态参数发生变化,即动力电池的SOC、SOH以及温度中的至少一项发生变化,则动力电池在充电过程中的放电SOC间隔值和放电参数也可随之发生变化,放电控制兼顾状态参数变化和SOC变化,在提升动力电池安全性能的同时兼顾动力电池的充电性能。
对于本申请实施例的步骤230,在动力电池的充电过程中,动力电池的SOC实时变化,当SOC变化SOC间隔值时,则BMS控制动力电池以放电参数放电。作为示 例,SOC间隔值若为X%,检测动力电池的SOC变化X%时,则BMS控制动力电池以某放电参数放电,其中,X为小于100的正数。
在一些具体实现方式中,BMS获取动力电池当前的SOC后,判断该SOC是否为目标SOC值,该目标SOC值为根据SOC间隔值确定的SOC值,例如,SOC间隔值为5%,则目标SOC值可为5%,10%,15%……等,当BMS判断动力电池当前的SOC为目标SOC值时,则控制动力电池以放电参数放电,反之,当BMS判断动力电池当前的SOC不为目标SOC值时,则继续持续检测动力电池的SOC。
进一步地,在本申请实施例中,BMS控制动力电池以放电参数放电的过程,可理解为给动力电池施加具有放电波形、放电电流以及放电时间的至少一个负脉冲,其中,该负脉冲的波形包括但不限于是方波、梯形波、正弦波或三角波中的任意一种或多种。
可选地,本申请实施例中,动力电池的放电对象可为动力电池所在的用电装置,或者,也可为给动力电池进行充电的充电装置,又或者,还可为除用电装置和充电装置以外的其它外部装置,本申请实施例对该动力电池的放电对象不做具体限定。
可选地,在动力电池的整个充电过程中,动力电池的SOC每变化SOC间隔值时,BMS可控制动力电池以放电参数放电。换言之,在整个充电过程中,BMS可根据动力电池SOC的变化,持续对动力电池的放电控制。
通过本申请实施例的技术方案,通过动力电池的状态参数确定SOC间隔值而非其它类型的间隔值,可以更好的针对动力电池的当前状态参数进行放电控制,进一步提升电池的安全性能和充电性能。
图3示出了本申请实施例提供的另一动力电池充电的方法300的示意性流程框图。
在本申请实施例中,动力电池的状态参数可包括SOC,放电参数包括放电时间和/或放电电流。
如图3所示,动力电池充电的方法300可包括以下步骤。
310:在动力电池的充电过程中,获取动力电池的SOC。
321:若动力电池的SOC小于预设SOC阈值,确定SOC间隔值为第一SOC间隔值,以及放电参数为第一放电参数。
331:在动力电池的SOC变化第一SOC间隔值时,控制动力电池以第一放电参数放电。
322:若动力电池的SOC大于等于预设SOC阈值,确定SOC间隔值为第二SOC间隔值,以及放电参数为第二放电参数。
332:在动力电池的SOC变化第二SOC间隔值时,控制动力电池以第二放电参数放电。
具体地,在本申请实施例中,步骤310的相关技术方案可参见上文图2中步骤210的相关描述,此处不做过多赘述。
另外,本申请实施例中的步骤321和步骤322可为上文图2中步骤220的一种相对具体的实施方式。对应的,本申请实施例中的步骤331和步骤332可为上文图2中 步骤230的一种相对具体的实施方式。
对于步骤321和步骤322,在本申请实施例中,可将动力电池的SOC,与第一预设阈值进行比较,从而确定出不同的第一SOC间隔值和第二SOC间隔值,以及不同的第一放电参数与第二放电参数。其中,第一SOC间隔值大于第二SOC间隔值,和/或,第一放电参数小于第二放电参数。
具体的,第一放电参数包括第一放电电流和第一放电时间,第二放电参数包括第二放电电流和第二放电时间,在本申请实施例中,第一放电电流小于第二放电电流,和/或,第一放电时间小于第二放电时间。
在本申请实施例中,若动力电池的SOC较大(即大于等于预设SOC阈值),则说明动力电池当前的剩余容量较高,动力电池的负极电位较低,其较容易发生析锂现象,且此时动力电池的放电能力较强。对应的,若动力电池的SOC较小(即小于等于预设SOC阈值),则说明动力电池当前的剩余容量较低,动力电池的负极电位相对较高,相比于负极电位较低的情况,其不易发生析锂现象,且此时动力电池的放电能力较弱。
因此,在动力电池的SOC较大时,即在析锂风险较高的情况下,提高动力电池的放电频率,间隔较小的SOC间隔值(例如第二SOC间隔值)控制动力电池放电,防止析锂现象的发生,保证电池的安全性能。和/或,在动力电池放电能力较强的情况下,可增大动力电池的放电参数,采用较大的放电时间和/或放电电流(例如第二放电电流和/或第二放电时间)控制动力电池放电,以进一步提升动力电池的安全性能。
对应的,在动力电池的SOC较小时,在析锂风险较低的情况下,可降低动力电池的放电频率,间隔较大的SOC间隔值(例如第一SOC间隔值)控制动力电池放电,也可防止析锂现象的发生,在保证动力电池的安全性能的同时,可相对提高动力电池的充电速率。和/或,在动力电池放电能力较弱的情况下,可降低动力电池的放电参数,采用较小的放电时间和/或放电电流(例如第一放电电流和/或第一放电时间)控制动力电池放电,在防止析锂现象发生的同时,也可防止低SOC的动力电池产生欠压风险,进一步提升动力电池的安全性能。
综上,在本申请实施例中,通过设置一个预设SOC阈值,将动力电池的SOC划分为两个区间,若动力电池的SOC大于等于该预设SOC阈值,则动力电池的剩余电量较高且放电能力较高,确定动力电池放电对应的SOC间隔值为较小的第一SOC间隔值,和/或,确定动力电池放电对应的放电参数为较大的第一放电参数。反之,若动力电池的SOC小于预设SOC阈值,则动力电池的剩余电量较低且放电能力较弱,确定动力电池放电对应的SOC间隔值为较大的第二SOC间隔值,和/或,确定动力电池放电对应的放电参数为较小的第二放电参数。通过该技术方案,可以较为便捷的根据动力电池的SOC,确定动力电池放电对应的SOC间隔值以及放电参数,在动力电池的剩余电量较高时,防止析锂现象的发生,在充分保证动力电池的安全性能的基础上,相对提高动力电池的充电速率,在动力电池的剩余电量较低时,可防止析锂现象和降低欠压风险,充分保证动力电池的安全性能。
可选地,上述预设SOC阈值可用于评价动力电池的剩余容量的高低,以评估发 生析锂现象发生的风险,该预设SOC阈值可根据动力电池的类型、应用场景、实际需求等进行设定,本申请实施例对该预设SOC阈值不做具体限定。
可选地,除了该预设SOC阈值以外,上述SOC间隔值(包括第一SOC间隔值和第二SOC间隔值)和放电参数(包括第一放电参数和第二放电参数)也可为根据动力电池的类型、应用场景、实际需求等进行设定的预设值,本申请实施例对该SOC间隔值和放电参数的具体数值不做限定。
在一些可能的实施方式中,SOC间隔值的范围可在3%至95%之间。在一些对动力电池的性能要求较为严苛的场景下,例如动力电池运行于低温或超低温环境下,上述第一SOC间隔值和第二SOC间隔值均可设置相对较高,以避免动力电池在低温或超低温环境下发生析锂。当然,在其它不同应用场景和不同电池类型的情况下,上述第一SOC间隔值和第二SOC间隔值可取值为3%至95%之间的其它特定值。
在一些可能的实施方式中,放电参数中的放电电流(包括第一放电电流和第二放电电流)的范围可在1A至5C之间。具体地,放电电流大于等于1A,且放电电流的放电倍率小于等于5C。类似地,对于不同的电池类型和不同的应用场景,本申请实施例中的放电电流可根据实际情况进行设定。
在一些可能的实施方式中,放电参数中的放电时间(包括第一放电时间和第二放电时间)的范围可在1s至60s之间,以使得能够有效控制动力电池进行放电且不会对动力电池的整体充电时长造成较大的影响。
上文图3所示申请实施例中,仅设置了一个预设SOC阈值,将动力电池的SOC划分为两个区间,从而对应设置两个不同的SOC间隔值以及放电参数,类似地,还可设置两个或两个以上的预设SOC阈值,将动力电池的SOC划分为三个或更多的区间,从而对应设置更多不同的SOC间隔值以及放电参数,以适应性提高不同SOC区间下,放电控制的精确度,进一步精确兼顾动力电池的安全性能和充电速率。
作为示例,可设置两个预设SOC阈值,1#预设SOC阈值A%和2#预设SOC阈值B%,其中,A%<B%。动力电池的SOC位于[0,A%)区间时,SOC间隔值为1#SOC间隔值c 1%,放电电流为1#放电电流i 1,放电时间为1#放电时间t 1。动力电池的SOC位于[A%,B%)区间时,SOC间隔值为2#SOC间隔值c 2%,放电电流为2#放电电流i 2,放电时间为2#放电时间t 2。动力电池的SOC位于[B%,100%]区间时,SOC间隔值为3#SOC间隔值c 3%,放电电流为3#放电电流i 3,放电时间为3#放电时间t 3。其中,c 1%>c 2%>c 3%,和/或,i 1<i 2<i 3,和/或,t 1<t 2<t 3。A%,B%,c 1%,c 2%,c 3%,i 1,i 2,i 3,t 1,t 2,t 3均为正数。
可选地,上述多个SOC间隔值(包括1#SOC间隔值、2#SOC间隔值和3#SOC间隔值)的范围同样可在3%至95%之间。上述多个放电电流(包括1#放电电流、2#放电电流和3#放电电流)的范围同样可在1A至5C之间。上述多个放电时间(包括1#放电时间、2#放电时间和3#放电时间)的范围同样可在1s至60s之间。
图4示出了本申请实施例提供的另一动力电池充电的方法400的示意性流程框图。
在本申请实施例中,动力电池的状态参数包括SOH,放电参数包括放电时间和 /或放电电流。
如图4所示,动力电池充电的方法400可包括以下步骤。
410:在动力电池的充电过程中,获取动力电池的SOH。
421:若动力电池的SOH大于等于预设SOH阈值,确定SOC间隔值为第三SOC间隔值,以及放电参数为第三放电参数。
431:在动力电池的SOC变化第三SOC间隔值时,控制动力电池以第三放电参数放电。
422:若动力电池的SOH小于预设SOH阈值,确定SOC间隔值为第四SOC间隔值,以及放电参数为第四放电参数。
432:在动力电池的SOC变化第四SOC间隔值时,控制动力电池以第四放电参数放电。
具体地,在本申请实施例中,步骤410的相关技术方案可参见上文图2中步骤210的相关描述,此处不做过多赘述。
另外,本申请实施例中的步骤421和步骤422可为上文图2中步骤220的一种相对具体的实施方式。对应的,本申请实施例中的步骤431和步骤432可为上文图2中步骤230的一种相对具体的实施方式。
对于步骤421和步骤422,在本申请实施例中,可将动力电池的SOH与预设SOH阈值进行比较,从而确定出不同的第三SOC间隔值和第四SOC间隔值,以及不同的第三放电参数与第四放电参数。其中,第三SOC间隔值大于第四SOC间隔值,和/或,第三放电参数大于第四放电参数。
具体的,第三放电参数包括第三放电电流和第三放电时间,第四放电参数包括第四放电电流和第四放电时间,在本申请实施例中,第三放电电流大于第四放电电流,和/或,第三放电时间大于第四放电时间。
具体地,在动力电池的健康状况较优、SOH较大(例如大于等于预设SOH阈值)时,动力电池发生析锂现象的风险较低,且此时动力电池的放电能力较强。相对应的,在动力电池的健康状况较差,SOH较小(例如小于预设SOH阈值)时,其较易发生析锂现象,且此时动力电池的放电能力较弱。
因此,在动力电池的SOH较大时,在析锂风险较低的情况下,可降低动力电池的放电频率,间隔较大的SOC间隔值(例如第三SOC间隔值)控制动力电池放电,也可保证动力电池不会发生析锂,且相对提高充电速率。和/或,在动力电池的放电能力较强的情况下,可增大动力电池的放电参数,采用较大的放电时间和/或放电电流(例如第三放电电流和/或第三放电时间)控制动力电池放电,以进一步防止析锂现象的发生,保证电池的安全性能。
对应的,在动力电池的SOH较小时,在析锂风险较高的情况下,可增加动力电池的放电频率,间隔较小的SOC间隔值(例如第四SOC间隔值)控制动力电池放电,以防止动力电池发生析锂现象,保证动力电池的安全性能。和/或,在动力电池的放电能力较弱的情况下,可降低动力电池的放电参数,采用较小的放电时间和/或放电电流(例如第四放电电流和/或第四放电时间)控制动力电池放电,降低析锂现象的发生风 险,进一步提升动力电池的安全性能。
综上,在本申请实施例中,通过设置一个预设SOH阈值,将动力电池的SOH划分为两个区间,若动力电池的SOH大于等于预设SOH阈值,则动力电池的健康状况良好且放电能力较强,确定动力电池放电对应的SOC间隔值为较大的第三SOC间隔值,和/或,确定动力电池放电对应的放电参数为较大的第三放电参数。反之,若动力电池的SOH小于预设SOH阈值,则动力电池的健康状况较差且放电能力较弱,确定动力电池放电对应的SOC间隔值为较小的第四SOC间隔值,和/或,确定动力电池放电对应的放电参数为较小的第四放电参数。通过该技术方案,可以较为便捷的根据动力电池的SOH,确定动力电池放电对应的SOC间隔值和放电参数,在动力电池的健康状况良好时,可充分保证动力电池的安全性能并相对提高动力电池的充电速率以及充电性能,在动力电池的健康状况较差时,可防止析锂现象的发生风险,充分保证动力电池的安全性能。
可选地,本申请实施例中,预设SOH阈值可用于评价动力电池的健康状况是否良好,该预设SOH阈值可根据动力电池的类型、应用场景、实际需求等进行设定,本申请实施例对该预设SOH阈值不做具体限定。
在一些可能的实施方式中,该预设SOH阈值的范围可在80%至99%之间,以能够通过该预设SOH阈值良好的判断动力电池的健康状况,保证和平衡动力电池的安全性能和充电性能。
另外,本申请实施例中SOC间隔值(包括上文实施例中的第三SOC间隔值和第四SOC间隔值)和放电参数(包括第三放电参数和第四放电参数)也可为根据动力电池的类型、应用场景、实际需求等进行设定的预设值,本申请实施例对该SOC间隔值不做具体限定。
在一些可能的实施方式中,该SOC间隔值的范围可在3%至95%之间。
在一些可能的实施方式中,放电参数中的放电电流(包括第三放电电流和第四放电电流)的范围可在1A至5C之间。放电参数中的放电时间(包括第三放电时间和第四放电时间)的范围可在1s至60s之间。
上文图4所示申请实施例中,仅设置了一个预设SOH阈值,将动力电池的SOH划分为两个区间,从而对应设置两个不同的SOC间隔值以及放电参数,类似地,还可设置两个或两个以上的预设SOH阈值,可将动力电池的SOH划分为三个或更多的区间,从而对应设置更多不同的SOC间隔值以及放电参数,以适应性提高不同SOH区间下,放电控制的精确度,进一步精确兼顾动力电池的安全性能和充电速率。
作为示例,可设置两个预设SOH阈值,1#预设SOH阈值C%和2#预设SOH阈值D%,其中,C%<D%。动力电池的SOH位于[0,C%)区间时,SOC间隔值为4#SOC间隔值c 4%,放电电流为4#放电电流i 4,放电时间为4#放电时间t 4。动力电池的SOH位于[C%,D%)区间时,SOC间隔值为5#SOC间隔值c 5%,放电电流为5#放电电流i 5,放电时间为5#放电时间t 5。动力电池的SOH位于[D%,100%]区间时,SOC间隔值为6#SOC间隔值c 6%,放电电流为6#放电电流i 6,放电时间为6#放电时间t 6。其中,c 4%<c 5%<c 6%,和/或,i 4<i 5<i 6,和/或,t 4<t 5<t 6。其中,C%,D%,c 4%,c 5%,c 6%, i 4,i 5,i 6,t 4,t 5,t 6均为正数。
可选地,上述多个SOC间隔值(包括4#SOC间隔值、5#SOC间隔值和6#SOC间隔值)的范围同样可在3%至95%之间。上述多个放电电流(包括4#放电电流、5#放电电流和6#放电电流)的范围同样可在1A至5C之间。上述多个放电时间(包括4#放电时间、5#放电时间和6#放电时间)的范围同样可在1s至60s之间。
图5示出了本申请实施例提供的另一动力电池充电的方法500的示意性流程框图。
在本申请实施例中,动力电池的状态参数可包括温度,放电参数包括放电时间和/或放电电流。
如图5所示,动力电池充电的方法500可包括以下步骤。
510:在动力电池的充电过程中,获取动力电池的温度。
521:若动力电池的温度大于等于第一预设温度阈值,确定SOC间隔值为第五SOC间隔值,以及放电参数为第五放电参数。
531:在动力电池的SOC变化第五SOC间隔值时,控制动力电池以第五放电参数放电。
522:若动力电池的温度小于第一预设温度阈值且大于等于第二预设温度阈值,确定SOC间隔值为第六SOC间隔值,以及放电参数为第六放电参数。
532:在动力电池的SOC变化第六SOC间隔值时,控制动力电池以第六放电参数放电。
523:若动力电池的温度小于第二预设温度阈值,确定SOC间隔值为第七SOC间隔值,以及放电参数为第七放电参数。
533:在动力电池的SOC变化第七SOC间隔值时,控制动力电池以第七放电参数放电。
具体地,在本申请实施例中,步骤510的相关技术方案可参见上文图2中步骤210的相关描述,此处不做过多赘述。
另外,本申请实施例中的步骤521、步骤522和步骤523可为上文图2中步骤220的一种相对具体的实施方式。对应的,本申请实施例中的步骤531、步骤532和步骤533可为上文图2中步骤230的一种相对具体的实施方式。
对于步骤521和步骤522,在本申请实施例中,可将动力电池的温度与预设温度阈值进行比较,从而确定出不同的第五SOC间隔值、第六SOC间隔值和第七SOC间隔值,以及不同的第五放电参数、第六放电参数与第七放电参数。其中,第六SOC间隔值大于第五SOC间隔值和第七SOC间隔值,和/或,第六放电参数大于第五放电参数和第七放电参数。
具体的,第五放电参数包括第五放电电流和第五放电时间,第六放电参数包括第六放电电流和第六放电时间,第七放电参数包括第七放电电流和第七放电时间,在本申请实施例中,第五放电电流大于第六放电电流和第七放电电流,和/或,第五放电时间大于第六放电时间和第七放电时间。
具体地,动力电池的析锂风险和放电能力与动力电池的温度相关,在动力电池 的温度处于适宜的温度区间时,动力电池发生析锂的风险较低,且放电能力较强。而在适宜的温度区间之外,动力电池的析锂风险上升,且放电能力较弱。
因此,在动力电池的温度处于适宜的温度区间(例如动力电池的温度小于第一预设温度阈值且大于等于第二预设温度阈值)时,即在动力电池的析锂风险较低的情况下,可降低动力电池的放电频率,间隔较大的SOC间隔值(例如第六SOC间隔值)控制动力电池放电,也可保证动力电池不会发生析锂,且相对提高充电速率。和/或,在动力电池的放电能力较强的情况下,可增大动力电池的放电参数,采用较大的放电时间和/或放电电流(例如第六放电电流和/或第六放电时间)控制动力电池放电,以进一步防止析锂现象的发生,保证电池的安全性能。
对应的,在动力电池的温度处于适宜的温度区间之外(例如动力电池的温度大于等于第一预设温度阈值或小于第二预设温度阈值)时,即在动力电池的析锂风险较高的情况下,可提高动力电池的放电频率,间隔较小的SOC间隔值(例如第五SOC间隔值或第七SOC间隔值)控制动力电池放电,防止析锂现象的发生,保证电池的安全性能。和/或,在动力电池的放电能力较弱的情况下,可降低动力电池的放电参数,采用较小的放电时间和/或放电电流(例如第五放电电流和/或第五放电时间,或者,第七放电电流和/或第七放电时间)控制动力电池放电,可防止析锂现象的发生风险,充分保证动力电池的安全性能。
综上,在本申请实施例中,通过设置两个预设温度阈值,将动力电池的温度划分为三个区间,即动力电池的一个适宜温度区间和两个非适宜温度区间。若动力电池的温度小于第一预设温度阈值且大于等于第二预设温度阈值,即动力电池的温度处于适宜温度区间,则动力电池的析锂风险较低且放电能力较强,确定动力电池放电对应的SOC间隔值为较大的第六SOC间隔值,和/或,确定动力电池放电对应的放电参数为较大的第六放电参数。反之,若动力电池的温度大于等于第一预设温度阈值或小于第二预设温度阈值,即动力电池的温度处于非适宜温度区间,则动力电池的析锂风险较高且放电能力较弱,确定动力电池放电对应的SOC间隔值为较小的第五SOC间隔值或第七SOC间隔值,和/或,确定动力电池放电对应的放电参数为较小的第五放电参数或第七放电参数。通过该技术方案,可以较为便捷的根据动力电池的温度,确定动力电池放电对应的SOC间隔值和放电参数,在动力电池的温度处于适宜温度区间时,可充分保证动力电池的安全性能并相对提高充电速率和充电性能,在动力电池的温度处于非适宜温度区间时,可防止析锂现象的发生风险,充分保证动力电池的安全性能。
可选地,本申请实施例中,第一预设温度阈值和第二预设温度阈值可用于评价动力电池是否处于适宜温度区间,该预设SOH阈值可根据动力电池的类型、应用场景、实际需求等进行设定,本申请实施例对该第一预设温度阈值和第二预设温度阈值不做具体限定。
在一些可能的实施方式中,该第一预设温度阈值的范围可为45℃至55℃,该第二预设温度阈值的范围可为15℃至25℃,以能够通过该第一预设温度阈值和第二预设温度阈值良好的判断动力电池的温度情况,保证和平衡动力电池的安全性能和充电性能。
另外,本申请实施例中SOC间隔值(包括上文实施例中的第五SOC间隔值至第七SOC间隔值)和放电参数(包括第五放电参数至第七放电参数)也可为根据动力电池的类型、应用场景、实际需求等进行设定的预设值,本申请实施例对该SOC间隔值不做具体限定。
在一些可能的实施方式中,该SOC间隔值的范围可在3%至95%之间。
在一些可能的实施方式中,放电参数中的放电电流(包括第五放电电流至第七放电电流)的范围可在1A至5C之间。放电参数中的放电时间(包括第五放电时间至第七放电时间)的范围可在1s至60s之间。
上文图5所示申请实施例中,仅设置了两个预设温度阈值,将动力电池的温度划分为两个区间,从而对应设置不同的SOC间隔值以及放电参数,类似地,还可设置三个或三个以上的预设温度阈值,可将动力电池的温度划分为更多的区间,从而对应设置更多不同的SOC间隔值以及放电参数,以适应性提高不同温度区间下,放电控制的精确度,进一步精确兼顾动力电池的安全性能和充电速率。
可以理解的是,上文图3至图5所示实施例中,动力电池的状态参数仅包括单一类型的状态参数。在其它实施例中,动力电池的状态参数也可包括多种类型的状态参数,可根据该多种类型的状态参数确定动力电池放电对应的SOC间隔值和放电参数。
图6示出了本申请实施例提供的另一动力电池充电的方法600的示意性流程框图。
如图6所示,动力电池充电的方法600可包括以下步骤。
610:在动力电池的充电过程中,获取动力电池的状态参数。
620:根据动力电池的状态参数和预设映射关系,确定动力电池放电对应的SOC间隔值和放电参数。
630:在动力电池的SOC变化SOC间隔值时,控制动力电池以放电参数放电。
具体地,在本申请实施例中,步骤610和步骤630的相关技术方案可参见上文图2中步骤210和步骤230的相关描述,此处不做过多赘述。
另外,本申请实施例中的步骤620可为上文图2中步骤220的一种相对具体的实施方式。
具体地,在步骤620中,可根据动力电池的状态参数和预设映射关系,确定动力电池放电对应的SOC间隔值和放电参数,其中,该预设映射关系包括但不限于是映射表、映射图或者映射公式等等。
可选地,预设映射关系可包括:动力电池的状态参数区间与SOC间隔值和放电参数的预设映射关系,例如,动力电池的SOC区间与SOC间隔值和放电参数的预设映射关系、动力电池的SOH区间与SOC间隔值和放电参数的预设映射关系、动力电池的温度区间与SOC间隔值和放电参数的预设映射关系等等。
作为示例,如下表1示出了一种动力电池的SOC区间与SOC间隔值和放电参数的预设映射表。
表1
SOC区间 SOC间隔值 放电电流(A) 放电时间(s)
[0,A%) c 1 i 1 t 1
[A%,B%) c 2 i 2 t 2
[B%,100%] c 3 i 3 t 3
可选地,在该映射表中,c 1%>c 2%>c 3%,和/或,i 1<i 2<i 3,和/或,t 1<t 2<t 3。其中,A%<B%,A%,B%,c 1%,c 2%,c 3%,i 1,i 2,i 3,t 1,t 2,t 3均为正数。
从该映射表可以看出,上述图3所示实施例中,可根据本申请实施例中预设映射表,以及动力电池当前SOC所处的SOC区间,确定SOC间隔值以及放电电流、放电时间等放电参数。
可以理解的是,上述表1所示的映射表作为示例而非限定,该映射表中SOC区间的个数以及区间范围可随实际需要进行设定,本申请实施例对此不做具体限定。
类似地,上述图4和图5所示实施例中,也可根据预设映射关系以及动力电池当前SOH所处的SOH区间,或者,根据预设映射关系以及动力电池当前温度所处的温度区间,确定SOC间隔值以及放电电流、放电时间等放电参数。
当然,除了上述单个类型的状态参数区间与SOC间隔值和放电参数的预设映射关系以外,预设映射关系还可包括:动力电池的多个类型的状态参数区间与SOC间隔值和放电参数的预设映射关系,例如,动力电池的SOC区间、SOH区间与SOC间隔值和放电参数的预设映射关系,动力电池的SOC区间、温度区间与SOC间隔值和放电参数的预设映射关系,动力电池的SOH区间、温度区间与SOC间隔值和放电参数的预设映射关系,动力电池的SOC区间、SOH区间、温度区间与SOC间隔值和放电参数的预设映射关系等等。
作为示例,如下表2示出了一种动力电池的SOC区间、SOH区间与SOC间隔值和放电参数的预设映射表。
表2
Figure PCTCN2021117311-appb-000001
可选地,在该映射表中,在同一SOH区间下,不同SOC区间对应的SOC间隔值、放电电流和放电时间之间的相互关系可以参见上文图3所示实施例中的相关描述,即满足c 11%>c 12%>c 13%,c 21%>c 22%>c 23%,和/或,i 11<i 12<i 13,i 21<i 22<i 23,和/或,t 11<t 12<t 13,t 21<t 22<t 23
可选地,在该映射表中,在同一SOC区间下,不同SOH区间对应的SOC间隔值、放电电流和放电时间之间的相互关系可以参见上文图4所示实施例中的相关描述,即满足c 21%>c 11%,c 22%>c 21%,c 23%>c 13%,和/或,i 21>i 11,i 22>i 12,i 23>i 13,和/ 或,t 21>t 11,t 22>t 12,t 23>t 13
其中,A%<B%,A%,B%,C%,c 11%,c 12%,c 13%,c 21%,c 22%,c 23%,i 11,i 12,i 13,i 21,i 22,i 23,t 11,t 12,t 13,t 21,t 22,t 23均为正数。
通过上述映射表,获取动力电池当前的SOH和SOC后,可根据该SOH和SOC所处的区间,确定动力电池放电对应的SOC间隔值和放电参数。
可以理解的是,上述表2所示的映射表作为示例而非限定,该映射表中SOC区间、SOH区间的个数以及区间范围可随实际需要进行设定,本申请实施例对此不做具体限定。
另外,对于动力电池的SOC区间、温度区间与SOC间隔值和放电参数的预设映射关系,动力电池的SOH区间、温度区间与SOC间隔值和放电参数的预设映射关系,以及动力电池的SOC区间、SOH区间、温度区间与SOC间隔值和放电参数的预设映射关系,均可为类似于如上述表2所示的映射表,映射表中具体数值设计可参见上文图3至图5所示实施例的相关描述,此处不做过多赘述。
除了上述映射表以外,本申请实施例中的预设映射关系还可以为映射公式、映射图或者神经网络模型等等,本申请实施例对该预设映射关系的具体形式不做具体限定。具体地,该预设映射关系可以是由大量的实验数据拟合得到的映射关系,具有较高的可信度和准确度,以保证动力电池的安全性能和充电性能。
通过本申请实施例的技术方案,可根据动力电池的多个类型的状态参数和预设映射关系,确定该动力电池放电对应的SOC间隔值和放电参数,以综合提高动力电池的安全性能和充电性能。
图7示出了本申请实施例提供的另一动力电池充电的方法700的示意性流程框图。
如图7所示,在本申请实施例中,动力电池充电的方法700可包括以下步骤。
710:在动力电池的充电过程中,获取动力电池的状态参数。其中,该状态参数包括以下参数中的至少一项:荷电状态SOC、健康状态SOH和温度。
720:根据动力电池的状态参数,确定动力电池放电对应的SOC间隔值和放电参数。其中,放电参数包括以下参数中的至少一项:放电时间、放电电流和放电波形。
730:在动力电池的SOC变化SOC间隔值时,发送充电需求信息,该充电需求信息中携带的电流需求值为零。
740:控制动力电池以放电参数放电。
具体地,在本申请实施例中,步骤710和步骤720的相关技术方案可参见上文实施例中的相关描述,此处不做过多赘述。
在步骤730中,在动力电池的SOC变化SOC间隔值时,BMS先发送充电需求信息,该充电需求信息中携带的电流需求值为零,因而该充电需求信息可用于控制动力电池停止充电。
在一些可能的实施方式中,充电装置,例如充电机,用于对动力电池进行充电,在充电过程中,在动力电池的SOC变化SOC间隔值时,BMS先向充电机发送电流需求值为零的充电需求信息,充电机根据该充电需求信息,停止向动力电池进行充电。
可选地,该充电需求信息可为一种通信报文,该通信报文包括但不限于是BMS与充电机之间满足相关通信协议的通信报文,作为示例,该充电需求信息可为电池充电需求报文BCL。
若在对动力电池充电的过程中,直接控制动力电池放电,不仅会对动力电池造成损伤,影响动力电池的寿命,还会带来安全隐患,影响动力电池的安全性。通过本申请实施例的技术方案,在BMS发送充电需求信息,该充电需求信息用于控制动力电池停止充电后,BMS再控制动力电池放电,可保证动力电池的寿命和性能,提升动力电池充放电过程的安全性。
当BMS发送上述充电需求信息后,动力电池的电流是缓慢变化的,且需要一定时间逐步下降为零,因此,为了进一步提升动力电池充放电过程的安全性,在上述步骤730之前,本申请实施例的方法700还可包括:获取动力电池的电流,在此基础上,步骤740可包括:当动力电池的电流小于等于预设电流阈值时,控制动力电池以放电参数放电。
通过本申请实施例的技术方案,在控制动力电池放电之前,BMS先获取动力电池的电流,当动力电池的电流较小,例如小于等于预设电流阈值时,此时其对动力电池的放电影响较小,BMS才控制动力电池进行放电,能够进一步保证动力电池的寿命和性能,提升动力电池充放电过程的安全性。
可选地,上述预设电流阈值可根据实际需求进行设定,本申请实施例对此不做具体限定,作为示例,该预设电流阈值的范围可小于等于50A。
图8示出了本申请实施例提供的另一动力电池充电的方法800的示意性流程框图。
如图8所示,在本申请实施例中,动力电池充电的方法800可包括以下步骤。
810:在动力电池的充电过程中,获取动力电池的状态参数。其中,该状态参数包括以下参数中的至少一项:荷电状态SOC、健康状态SOH和温度。
820:根据动力电池的状态参数,确定动力电池放电对应的SOC间隔值和放电参数。其中,放电参数包括以下参数中的至少一项:放电时间、放电电流和放电波形。
830:在动力电池的SOC变化SOC间隔值时,发送充电需求信息,该充电需求信息中携带的电流需求值为零。
840:控制动力电池以放电参数放电。
850:当动力电池的放电时间大于等于第一预设时间阈值或充电需求信息的已发送时间大于等于第二预设时间阈值时,控制动力电池停止放电。
860:控制动力电池充电。
具体地,在本申请实施例中,步骤810至步骤840的相关技术方案可参见上文实施例中的相关描述,此处不做过多赘述。
另外,在BMS控制动力电池放电后,根据动力电池的放电时间和充电需求信息的已发送时间确定是否停止放电。具体地,当动力电池的放电时间大于等于第一预设时间阈值时,控制动力电池停止放电;或者,当充电需求信息的已发送时间大于等于第二预设时间阈值时,控制动力电池停止放电。可选地,BMS在控制动力电池放电 时,对动力电池的放电时间进行计时,判断动力电池的放电时间是否大于等于第一预设时间阈值。另外,BMS也可在发送携带的电流需求值为零的充电需求信息之后,对该充电需求信息的已发送时间进行计时,判断该充电需求信息的已发送时间是否大于等于第二预设时间阈值。
其中,第一预设时间阈值可为步骤820中根据动力电池的状态参数确定的动力电池放电对应的放电时间。
在动力电池的充电过程中,对动力电池进行充电的充电装置,例如充电机,可定时或不定时接收BMS发送的充电需求信息,当充电需求信息发送正常,充电装置与动力电池之间可保持正常的通信状态,若充电装置在一段时间内没有接收到BMS发送的充电需求信息,则可能会造成充电装置断开与动力电池的通信连接。因此,在本申请实施例中,除了设置第一预设时间阈值以控制动力电池的放电时间以外,还设置有第二时间阈值,与充电需求信息的已发送时间进行比较,防止充电需求信息的已发送时间过长,影响动力电池的正常充电过程,从而提升动力电池的充电效率。
可选地,如图8所示,本申请实施例的方法800还包括步骤860:控制动力电池充电。即在BMS控制动力电池停止放电之后,重新控制动力电池充电。
在一些实施方式中,BMS可向充电装置,例如充电机,发送新的充电需求消息,该充电需求消息中携带的电流需求值不为零,而可为根据动力电池的参数确定得到的电流需求值,从而使得充电装置可根据该电流需求值对动力电池进行充电。
经过步骤860之后,可重新执行上述步骤810至步骤850,以实现BMS控制动力电池持续充放电的过程。
图9示出了本申请实施例提供的另一动力电池充电的方法900的示意性流程框图。
如图9所示,在本申请实施例中,动力电池充电的方法900可包括以下步骤。
910:获取动力电池的运行状态。
920:在动力电池的充电过程中,获取动力电池的状态参数。其中,该状态参数包括以下参数中的至少一项:荷电状态SOC、健康状态SOH和温度。
930:根据动力电池的状态参数,确定动力电池放电对应的SOC间隔值和放电参数。其中,放电参数包括以下参数中的至少一项:放电时间、放电电流和放电波形。
940:在动力电池的SOC变化SOC间隔值时,控制动力电池以放电参数放电。
950:在动力电池处于拔枪状态或者满充状态时,控制动力电池放电。
具体地,在本申请实施例中,步骤920至步骤940的相关技术方案可参见上文实施例中的相关描述,此处不做过多赘述。
另外,在步骤920之前,BMS可先获取动力电池的运行状态,在动力电池处于充电状态时,执行步骤920,即在动力电池的充电过程中,获取动力电池的SOC,并执行步骤930至步骤940。
对于步骤950,在动力电池处于拔枪状态或者满充状态时,控制动力电池放电。具体地,BMS可通过获取动力电池的运行参数,判断动力电池当前的运行状态。其中,动力电池与充电机的充电枪断开连接时,BMS判断动力电池可处于拔枪状态,即充电 机未对动力电池进行充电。另外,BMS可通过获取动力电池的电压等参数,确定动力电池的SOC达到100%时,动力电池的SOC达到满充状态。
在动力电池处于拔枪状态或者满充状态时,BMS可控制动力电池进行短暂放电,例如,执行放电时间小于预设时间阈值和/或放电电流小于预设电流阈值的放电,以防止动力电池在后续充电过程中,充电装置与动力电池建立连接后,直接对动力电池进行充电造成动力电池的析锂风险,进一步提升动力电池的安全性能。
上文结合图2至图9说明了本申请提供的电池充电的方法的具体实施例,下面,结合图10至图11说明本申请提供的相关装置的具体实施例,可以理解的是,下述各装置实施例中的相关描述可以参考前述各方法实施例,为了简洁,不再赘述。
图10示出了本申请一个实施例的电池管理系统BMS 900的示意性结构框图。如图10所示,该BMS 1000包括:获取模块1010,控制模块1020。
具体地,获取模块1010用于在动力电池的充电过程中,获取动力电池的状态参数,其中,状态参数包括以下参数中的至少一项:荷电状态SOC、健康状态SOH和温度;控制模块1020用于根据动力电池的SOC确定动力电池放电对应的SOC间隔值和放电参数,放电参数包括以下参数中的至少一项:放电时间、放电电流和放电波形;并在动力电池的SOC每变化SOC间隔值时,控制动力电池以放电参数放电。
在一些可能的实施方式中,状态参数包括SOC,放电参数包括放电时间和/或放电电流;控制模块1020用于:若动力电池的SOC小于预设SOC阈值,确定SOC间隔值为第一SOC间隔值,以及放电参数为第一放电参数;若动力电池的SOC大于等于预设SOC阈值,确定SOC间隔值为第二SOC间隔值,以及放电参数为第二放电参数;其中,第一SOC间隔值大于第二SOC间隔值,和/或,第一放电参数小于第二放电参数。
在一些可能的实施方式中,状态参数包括:SOH,放电参数包括放电时间和/或放电电流;控制模块1020用于:若动力电池的SOH大于等于预设SOH阈值,确定SOC间隔值为第三SOC间隔值,以及放电参数为第三放电参数;若动力电池的SOH小于预设SOH阈值,确定SOC间隔值为第四SOC间隔值,以及放电参数为第四放电参数;其中,第三SOC间隔值大于第四SOC间隔值,和/或,第三放电参数大于第四放电参数。
在一些可能的实施方式中,状态参数包括温度,放电参数包括放电时间和/或放电电流;控制模块1020用于:若动力电池的温度大于等于第一预设温度阈值,确定SOC间隔值为第五SOC间隔值,以及放电参数为第五放电参数;若动力电池的温度小于第一预设温度阈值且大于等于第二预设温度阈值,确定SOC间隔值为第六SOC间隔值,以及放电参数为第六放电参数;若动力电池的温度小于第二预设温度阈值,确定SOC间隔值为第七SOC间隔值,以及放电参数为第七放电参数;其中,第六SOC间隔值大于第五SOC间隔值和第七SOC间隔值,和/或,第六放电参数大于第五放电参数和第七放电参数。
在一些可能的实施方式中,控制模块1020用于:根据动力电池的状态参数和预设映射关系,确定动力电池放电对应的SOC间隔值和放电参数。
在一些可能的实施方式中,放电电流的范围为1A至5C,放电时间的范围为1s至60s。
在一些可能的实施方式中,SOC间隔的范围为3%至95%。
在一些可能的实施方式中,如图10所示,BMS 1000还可包括发送模块1030,该发送模块1030用于发送充电需求信息,充电需求信息中携带的电流需求值为零,充电需求信息用于控制动力电池停止充电。
在一些可能的实施方式中,获取模块1010还用于:获取动力电池的电流;控制模块1020用于:当动力电池的电流小于等于预设电流阈值时,控制动力电池以放电参数放电。
在一些可能的实施方式中,控制模块1020还用于:当动力电池的放电时间大于等于第一预设时间阈值或充电需求信息的已发送时间大于等于第二预设时间阈值时,控制动力电池停止放电。
图11示出了本申请另一实施例提供的BMS 1100的示意性结构框图。如图11所示,BMS 1100包括存储器1110和处理器1120,其中,存储器1110用于存储计算机程序,处理器1120用于读取该计算机程序并基于该计算机程序执行前述本申请各种实施例的方法。
此外,本申请实施例还提供了一种可读存储介质,用于存储计算机程序,所述计算机程序用于执行前述本申请各种实施例的方法。可选地,该计算机程序可以为上述BMS中的计算机程序。
应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本说明书中描述的各种实施方式,既可以单独实施,也可以组合实施,本申请实施例对此并不限定。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (21)

  1. 一种动力电池充电的方法,其特征在于,应用于所述动力电池的电池管理系统BMS,所述方法包括:
    在所述动力电池的充电过程中,获取所述动力电池的状态参数,其中,所述状态参数包括以下参数中的至少一项:荷电状态SOC、健康状态SOH和温度;
    根据所述动力电池的状态参数,确定所述动力电池放电对应的SOC间隔值和放电参数,所述放电参数包括以下参数中的至少一项:放电时间、放电电流和放电波形;
    在所述动力电池的SOC变化所述SOC间隔值时,控制所述动力电池以所述放电参数放电。
  2. 根据权利要求1所述的方法,其特征在于,所述状态参数包括SOC,所述放电参数包括放电时间和/或放电电流;
    所述根据所述动力电池的状态参数,确定所述动力电池放电对应的SOC间隔值和放电参数,包括:
    若所述动力电池的SOC小于预设SOC阈值,确定所述SOC间隔值为第一SOC间隔值,以及所述放电参数为第一放电参数;
    若所述动力电池的SOC大于等于所述预设SOC阈值,确定所述SOC间隔值为第二SOC间隔值,以及所述放电参数为第二放电参数;
    其中,所述第一SOC间隔值大于所述第二SOC间隔值,和/或,所述第一放电参数小于所述第二放电参数。
  3. 根据权利要求1所述的方法,其特征在于,所述状态参数包括SOH,所述放电参数包括放电时间和/或放电电流;
    所述根据所述动力电池的状态参数,确定所述动力电池放电对应的SOC间隔值和放电参数,包括:
    若所述动力电池的SOH大于等于预设SOH阈值,确定所述SOC间隔值为第三SOC间隔值,以及所述放电参数为第三放电参数;
    若所述动力电池的SOH小于所述预设SOH阈值,确定所述SOC间隔值为第四SOC间隔值,以及所述放电参数为第四放电参数;
    其中,所述第三SOC间隔值大于所述第四SOC间隔值,和/或,所述第三放电参数大于所述第四放电参数。
  4. 根据权利要求1所述的方法,其特征在于,所述状态参数包括温度,所述放电参数包括放电时间和/或放电电流;
    所述根据所述动力电池的状态参数,确定所述动力电池放电对应的SOC间隔值和放电参数,包括:
    若所述动力电池的温度大于等于第一预设温度阈值,确定所述SOC间隔值为第五SOC间隔值,以及所述放电参数为第五放电参数;
    若所述动力电池的温度小于所述第一预设温度阈值且大于等于第二预设温度阈值, 确定所述SOC间隔值为第六SOC间隔值,以及所述放电参数为第六放电参数;
    若所述动力电池的温度小于所述第二预设温度阈值,确定所述SOC间隔值为第七SOC间隔值,以及所述放电参数为第七放电参数;
    其中,所述第六SOC间隔值大于所述第五SOC间隔值和所述第七SOC间隔值,和/或,所述第六放电参数大于所述第五放电参数和所述第七放电参数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述动力电池的状态参数,确定所述动力电池放电对应的SOC间隔值和放电参数,包括:
    根据所述动力电池的状态参数和预设映射关系,确定所述动力电池放电对应的SOC间隔值和放电参数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述放电电流的范围为1A至5C,所述放电时间的范围为1s至60s。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述SOC间隔的范围为3%至95%。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,在控制所述动力电池以所述放电参数放电之前,所述方法还包括:
    发送充电需求信息,所述充电需求信息中携带的电流需求值为零,所述充电需求信息用于控制所述动力电池停止充电。
  9. 根据权利要求8所述的方法,其特征在于,在控制所述动力电池放电之前,所述方法还包括:
    获取所述动力电池的电流;
    所述控制所述动力电池以所述放电参数放电,包括:
    当所述动力电池的电流小于等于预设电流阈值时,控制所述动力电池以所述放电参数放电。
  10. 根据权利要求8或9所述的方法,其特征在于,在控制所述动力电池进行脉冲放电之后,所述方法还包括:
    当所述动力电池的放电时间大于等于第一预设时间阈值或所述充电需求信息的已发送时间大于等于第二预设时间阈值时,控制所述动力电池停止放电。
  11. 一种动力电池的电池管理系统BMS,其特征在于,包括:
    获取模块,用于在所述动力电池的充电过程中,获取所述动力电池的状态参数,其中,所述状态参数包括以下参数中的至少一项:荷电状态SOC、健康状态SOH和温度;
    控制模块,用于根据所述动力电池的SOC确定所述动力电池放电对应的SOC间隔值和放电参数,所述放电参数包括以下参数中的至少一项:放电时间、放电电流和放电波形;
    并在所述动力电池的SOC每变化所述SOC间隔值时,控制所述动力电池以所述放电参数放电。
  12. 根据权利要求11所述的BMS,其特征在于,所述状态参数包括SOC,所述放电参数包括放电时间和/或放电电流;
    所述控制模块用于:
    若所述动力电池的SOC小于预设SOC阈值,确定所述SOC间隔值为第一SOC间隔值,以及所述放电参数为第一放电参数;
    若所述动力电池的SOC大于等于所述预设SOC阈值,确定所述SOC间隔值为第二SOC间隔值,以及所述放电参数为第二放电参数;
    其中,所述第一SOC间隔值大于所述第二SOC间隔值,和/或,所述第一放电参数小于所述第二放电参数。
  13. 根据权利要求11所述的BMS,其特征在于,所述状态参数包括:SOH,所述放电参数包括放电时间和/或放电电流;
    所述控制模块用于:
    若所述动力电池的SOH大于等于预设SOH阈值,确定所述SOC间隔值为第三SOC间隔值,以及所述放电参数为第三放电参数;
    若所述动力电池的SOH小于所述预设SOH阈值,确定所述SOC间隔值为第四SOC间隔值,以及所述放电参数为第四放电参数;
    其中,所述第三SOC间隔值大于所述第四SOC间隔值,和/或,所述第三放电参数大于所述第四放电参数。
  14. 根据权利要求11所述的BMS,其特征在于,所述状态参数包括温度,所述放电参数包括放电时间和/或放电电流;
    所述控制模块用于:
    若所述动力电池的温度大于等于第一预设温度阈值,确定所述SOC间隔值为第五SOC间隔值,以及所述放电参数为第五放电参数;
    若所述动力电池的温度小于所述第一预设温度阈值且大于等于第二预设温度阈值,确定所述SOC间隔值为第六SOC间隔值,以及所述放电参数为第六放电参数;
    若所述动力电池的温度小于所述第二预设温度阈值,确定所述SOC间隔值为第七SOC间隔值,以及所述放电参数为第七放电参数;
    其中,所述第六SOC间隔值大于所述第五SOC间隔值和所述第七SOC间隔值,和/或,所述第六放电参数大于所述第五放电参数和所述第七放电参数。
  15. 根据权利要求11至14中任一项所述的BMS,其特征在于,所述控制模块用于:
    根据所述动力电池的状态参数和预设映射关系,确定所述动力电池放电对应的SOC间隔值和放电参数。
  16. 根据权利要求11至15中任一项所述的BMS,其特征在于,所述放电电流的范围为1A至5C,所述放电时间的范围为1s至60s。
  17. 根据权利要求11至16中任一项所述的BMS,其特征在于,所述SOC间隔的范围为3%至95%。
  18. 根据权利要求11至17中任一项所述的BMS,其特征在于,所述BMS还包括发送模块,用于发送充电需求信息,所述充电需求信息中携带的电流需求值为零,所述充电需求信息用于控制所述动力电池停止充电。
  19. 根据权利要求18所述的BMS,其特征在于,所述获取模块还用于:获取所述 动力电池的电流;
    所述控制模块用于:当所述动力电池的电流小于等于预设电流阈值时,控制所述动力电池以所述放电参数放电。
  20. 根据权利要求18或19所述的BMS,其特征在于,所述控制模块还用于:当所述动力电池的放电时间大于等于第一预设时间阈值或所述充电需求信息的已发送时间大于等于第二预设时间阈值时,控制所述动力电池停止放电。
  21. 一种动力电池的电池管理系统BMS,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,执行如权利要求1至10中任一项所述的动力电池充电的方法。
PCT/CN2021/117311 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统 WO2023035161A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2021/117311 WO2023035161A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统
KR1020237019716A KR20230107638A (ko) 2021-09-08 2021-09-08 파워 배터리 충전 방법 및 배터리 관리 시스템
CN202180006724.5A CN116097541B (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统
EP21956349.1A EP4231412A4 (en) 2021-09-08 2021-09-08 POWER BATTERY CHARGING METHOD AND BATTERY MANAGEMENT SYSTEM
JP2023536183A JP2023553499A (ja) 2021-09-08 2021-09-08 動力電池充電の方法と電池管理システム
US18/458,168 US20230402868A1 (en) 2021-09-08 2023-08-30 Method for charging traction battery and battery management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/117311 WO2023035161A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/458,168 Continuation US20230402868A1 (en) 2021-09-08 2023-08-30 Method for charging traction battery and battery management system

Publications (1)

Publication Number Publication Date
WO2023035161A1 true WO2023035161A1 (zh) 2023-03-16

Family

ID=85507121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117311 WO2023035161A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统

Country Status (6)

Country Link
US (1) US20230402868A1 (zh)
EP (1) EP4231412A4 (zh)
JP (1) JP2023553499A (zh)
KR (1) KR20230107638A (zh)
CN (1) CN116097541B (zh)
WO (1) WO2023035161A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116134694B (zh) * 2021-09-08 2024-01-26 宁德时代新能源科技股份有限公司 动力电池充电的方法和电池管理系统
CN118322931B (zh) * 2024-06-13 2024-08-23 湖南工程学院 新能源汽车化学电池储能系统的智能控制与管理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576306A (zh) * 2014-10-17 2016-05-11 东莞新能源科技有限公司 电池快速充电方法
CN107104249A (zh) * 2016-02-23 2017-08-29 东莞新能源科技有限公司 锂离子电池充电方法
JP2019097353A (ja) * 2017-11-27 2019-06-20 トヨタ自動車株式会社 発電機の制御装置
CN110611133A (zh) * 2019-09-20 2019-12-24 河南锂动电源有限公司 一种锂离子电池管理系统的充电方法
CN110828924A (zh) * 2019-11-18 2020-02-21 深圳新恒业电池科技有限公司 电池的快速充电方法、装置、终端及存储介质
CN112366375A (zh) * 2020-09-03 2021-02-12 万向一二三股份公司 一种锂离子动力电池快速充电方法
US20210132152A1 (en) * 2019-10-31 2021-05-06 Kookmin University Industry Academy Cooperation Foundation Method of managing battery, battery management system, and electric vehicle charging system having the battery management system
CN112886675A (zh) * 2021-03-18 2021-06-01 昆山宝创新能源科技有限公司 电池模组充电方法、装置、充电设备及可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010532B1 (fr) * 2013-09-11 2017-06-09 Commissariat Energie Atomique Procede, dispositif et systeme d'estimation de l'etat de charge d'une batterie
CN104297690A (zh) * 2014-09-22 2015-01-21 北汽福田汽车股份有限公司 锂电池soc-ocv曲线的测定方法
KR102547282B1 (ko) * 2018-02-23 2023-06-26 삼성전자주식회사 배터리 충방전 시간에 기반하여 충전을 제어하는 장치 및 방법
DE102019123739A1 (de) * 2019-09-04 2021-03-04 Bayerische Motoren Werke Aktiengesellschaft Laden einer Batteriezelle
CN112083335B (zh) * 2020-09-28 2023-10-17 国联汽车动力电池研究院有限责任公司 一种车用蓄电池的快充方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576306A (zh) * 2014-10-17 2016-05-11 东莞新能源科技有限公司 电池快速充电方法
CN107104249A (zh) * 2016-02-23 2017-08-29 东莞新能源科技有限公司 锂离子电池充电方法
JP2019097353A (ja) * 2017-11-27 2019-06-20 トヨタ自動車株式会社 発電機の制御装置
CN110611133A (zh) * 2019-09-20 2019-12-24 河南锂动电源有限公司 一种锂离子电池管理系统的充电方法
US20210132152A1 (en) * 2019-10-31 2021-05-06 Kookmin University Industry Academy Cooperation Foundation Method of managing battery, battery management system, and electric vehicle charging system having the battery management system
CN110828924A (zh) * 2019-11-18 2020-02-21 深圳新恒业电池科技有限公司 电池的快速充电方法、装置、终端及存储介质
CN112366375A (zh) * 2020-09-03 2021-02-12 万向一二三股份公司 一种锂离子动力电池快速充电方法
CN112886675A (zh) * 2021-03-18 2021-06-01 昆山宝创新能源科技有限公司 电池模组充电方法、装置、充电设备及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4231412A4 *

Also Published As

Publication number Publication date
US20230402868A1 (en) 2023-12-14
EP4231412A4 (en) 2024-02-21
CN116097541B (zh) 2024-02-02
EP4231412A1 (en) 2023-08-23
JP2023553499A (ja) 2023-12-21
CN116097541A (zh) 2023-05-09
KR20230107638A (ko) 2023-07-17

Similar Documents

Publication Publication Date Title
JP4615439B2 (ja) 二次電池管理装置、二次電池管理方法及びプログラム
US20230402868A1 (en) Method for charging traction battery and battery management system
WO2013044543A1 (zh) 一种锂离子电池组管理系统及方法
WO2024060537A1 (zh) 电池异常自放电预警方法、系统、电子设备及存储介质
CN110450677B (zh) 一种基于电池老化状态估计的复合储能电动汽车的能量管理方法
WO2023159708A1 (zh) 一种电池常带电自保养的控制方法及常带电自保养的电池
CN109216803A (zh) 一种UMDs电池管理系统
WO2019019561A1 (zh) 一种服务器供电系统的检测维护方法和检测维护装置
US20230398902A1 (en) Method for charging traction battery and battery management system
WO2023004712A1 (zh) 充放电装置、电池充电的方法和充放电系统
WO2023004659A1 (zh) 充放电装置和电池充电的方法
US20230307937A1 (en) Method for charging traction battery and battery management system
US20230271523A1 (en) Method for charging traction battery and battery management system
WO2023221053A1 (zh) 电池的充电方法和充电装置
WO2023035163A1 (zh) 动力电池充电的方法和电池管理系统
EP4152552B1 (en) Battery charging method and charging and discharging apparatus
WO2023004711A1 (zh) 充放电装置、电池充电的方法和充放电系统
CN111987374A (zh) 一种基于正向尖脉冲激励的铅酸蓄电池在线活化维护系统
WO2023004673A1 (zh) 电池充电的方法、电池管理系统和充放电装置
WO2023221055A1 (zh) 电池的放电方法和放电装置
WO2023035164A1 (zh) 动力电池充电的方法和电池管理系统
CN118693886B (zh) 一种新能源大送端电网电化学储能电站系统
WO2023197132A1 (zh) 电化学装置管理方法、装置、充电装置、电池系统及介质
WO2023092413A1 (zh) 动力电池充电的方法和电池管理系统
CN116031513A (zh) 电化学装置管理方法、电子设备、充电装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021956349

Country of ref document: EP

Effective date: 20230517

ENP Entry into the national phase

Ref document number: 20237019716

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023536183

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE