WO2023189135A1 - 検査装置及び検査方法 - Google Patents
検査装置及び検査方法 Download PDFInfo
- Publication number
- WO2023189135A1 WO2023189135A1 PCT/JP2023/007539 JP2023007539W WO2023189135A1 WO 2023189135 A1 WO2023189135 A1 WO 2023189135A1 JP 2023007539 W JP2023007539 W JP 2023007539W WO 2023189135 A1 WO2023189135 A1 WO 2023189135A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- detector
- radiation
- movement
- inspection
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims description 28
- 230000007547 defect Effects 0.000 claims abstract description 76
- 230000005855 radiation Effects 0.000 claims abstract description 61
- 230000007246 mechanism Effects 0.000 claims abstract description 29
- 230000032258 transport Effects 0.000 claims description 28
- 230000007723 transport mechanism Effects 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 10
- 230000009975 flexible effect Effects 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 4
- 238000005192 partition Methods 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 238000003384 imaging method Methods 0.000 description 20
- 238000005259 measurement Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 14
- 238000001514 detection method Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 5
- 230000002123 temporal effect Effects 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000005865 ionizing radiation Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002438 flame photometric detection Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/18—Investigating the presence of flaws defects or foreign matter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/044—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using laminography or tomosynthesis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/30—Accessories, mechanical or electrical features
- G01N2223/33—Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/40—Imaging
- G01N2223/401—Imaging image processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/643—Specific applications or type of materials object on conveyor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/646—Specific applications or type of materials flaws, defects
Definitions
- the present invention relates to an inspection device and an inspection method for inspecting minute defects in an object to be inspected (hereinafter sometimes referred to as a "sample").
- nondestructive testing involves, for example, irradiating a sample with electromagnetic waves such as X-rays and detecting the transmitted electromagnetic waves. At this time, differences in the transmittance of electromagnetic waves occur depending on the presence or absence of foreign objects or defects in the sample, the material, etc., and by detecting this and generating a two-dimensional image, the situation inside the sample can be inspected.
- in-line inspection in which products are manufactured in assembly lines and inspected at the same time, is known as a useful means for shortening takt time.
- a transport means for example, when performing an in-line inspection using an X-ray inspection device to detect foreign substances in a sample, the sample is placed while the sample is moved in a predetermined direction by a transport means.
- an apparatus in which an X-ray source and an X-ray detector having linearly arranged pixels are arranged facing each other on a straight line substantially perpendicular to the surface so as to sandwich the surface.
- image data is acquired at a cycle according to the transport speed of the sample, and linear X-ray transmission images generated based on the image data are sequentially arranged and combined to generate a two-dimensional image of the sample.
- Patent Document 2 high-speed inspection is supported by a method in which reading data from detection elements of a detector is shared.
- Patent Document 3 proposes setting a judgment area in advance and transferring and processing data only for pixels corresponding to the area.
- Patent Document 4 by capturing an image while moving the detector in the traveling direction of the sample, the relative speed difference between the detector and the sample is reduced, thereby making it possible for the detector to follow high-speed transport.
- imaging while moving the detector reduces image afterimages and improves temporal resolution.
- the sample transport speed is further increased, the entire image becomes darker and the image becomes darker.
- In order to make the image brighter there is a method of lengthening the exposure time, but this results in a decrease in temporal resolution, resulting in a trade-off between temporal resolution and S/N.
- an object of the present invention to provide an inspection device that can accurately inspect a sample transported at high speed with high resolution, high sensitivity, and high S/N.
- the inspection apparatus of the present invention that solves the above problems includes a transport mechanism that transports a sample to be inspected, a radiation source that radially irradiates a region through which the transported sample passes, and a radiation source that radially irradiates a region through which the transported sample passes.
- a detector arranged to be able to detect transmitted radiation and convert the detected radiation into an electrical signal;
- the apparatus preferably includes at least a determining means for determining the presence or absence of a defect in the sample from image information of the sample from the detector obtained during the time when the sample passes and information about movement of the sample from the transport mechanism.
- the transport mechanism and the movement mechanism have a ratio of Vd to Vw, Vd/, where Vw is the movement speed of the sample by the transport mechanism, and Vd is a movement speed component of the detector by the movement mechanism in the same direction as the movement direction of the sample.
- Vw is the movement speed of the sample by the transport mechanism
- Vd is a movement speed component of the detector by the movement mechanism in the same direction as the movement direction of the sample.
- the inspection device further preferably includes a thickness measuring device that measures the thickness of the sample, and a thickness measuring device that measures the thickness of the sample based on the thickness information of the sample measured by the thickness measuring device and the image information of the sample from the detector.
- This is an inspection device equipped with a calculation means for calculating the position of a defect.
- the present invention it is possible to transport a sample at a high speed that exceeds the transport speed limitations caused by the scan rate of the detector, and it is possible to obtain images with high sensitivity, high S/N, and high resolution. This has the effect that minute defects can be inspected with high precision.
- FIG. 1 is a schematic diagram showing a schematic configuration for explaining an embodiment of the present invention.
- FIG. 1 is a schematic diagram showing a schematic configuration for explaining an embodiment of the present invention.
- FIG. 1 is a schematic diagram showing an internal configuration for explaining an embodiment of the present invention.
- FIG. 1 is a schematic diagram showing an internal configuration for explaining an embodiment of the present invention.
- FIG. 2 is a schematic diagram showing the arrangement relationship of a radiation source, a sample, and a detector.
- FIG. 3 is a schematic diagram showing an example in which an endless annular conveyance belt is used as a moving mechanism for the detection unit. It is a figure explaining the spatial arrangement example of a defect group.
- FIG. 3 is an explanatory diagram showing imaging at time ta.
- FIG. 1 is a schematic diagram showing a schematic configuration for explaining an embodiment of the present invention.
- FIG. 1 is a schematic diagram showing a schematic configuration for explaining an embodiment of the present invention.
- FIG. 1 is a schematic diagram showing an internal configuration for explaining
- FIG. 3 is an explanatory diagram showing imaging at time tb.
- FIG. 3 is an explanatory diagram showing imaging at time tc.
- FIG. 7 is a schematic diagram showing a projected image of defect 15-(1) at each time.
- FIG. 6 is a diagram for explaining a step of determining the depth at which a defect exists. These are images seen from the top of the inspection object used for measurement in the Examples section, where (a) is the overall image and (b) is an enlarged image of the vicinity of the foreign object equivalent. This is an image of the vicinity of an object equivalent to a foreign object in an object to be inspected taken by an X-ray TDI camera, and the black dot pointed by the arrow is an image of the object equivalent to a foreign object.
- the most typical example is a radiation source and a detector placed across the sample transport surface while the sample is being transported, and the sample transport surface and the detector travel line are parallel.
- FDD Fluor Deformation to Detector Distance
- FOD Fluor Deformation to Object Distance
- FIGS. 1 and 2 are schematic diagrams each showing a schematic configuration for explaining one aspect of the inspection apparatus of the present invention.
- Figure 1 shows an in-line inspection device in which samples are conveyed in single sheets
- Figure 2 shows an in-line inspection device in which continuous films, sheets, etc. are transported in a roll-to-roll manner.
- the housing 1 is equipped with an inlet 3 through which a sample is carried in, and an outlet 4 through which a sample is carried out.
- the housing 1, entrance 3, and exit 4 should have shielding walls made of lead, stainless steel, etc. that can shield ionizing radiation on the inner walls.
- the opening of the outlet 3 is provided with a rubber shielding cover to prevent leakage of ionizing radiation to the outside.
- a sample sample 2(a) or sample 2(b)
- the sample conveyance belt 6 is moved by the sample conveyance roll 5 to move inside the housing.
- the sample is introduced at In the case of FIG. 2, the sample 2 comes into contact with the sample transport roll 5 and is directly transported into the housing 1.
- FIG. 3 is a diagram schematically showing the inside of FIG. 1
- FIG. 4 is a diagram schematically showing the inside of FIG. 2.
- inside the housing 1 are a transported sample (sample 2(a) or sample 2(b)), a thickness measurement sensor 7 for measuring the thickness of the sample, and a sensor for irradiating radiation.
- a radiation source 8 for detecting radiation and a detector 10 for detecting radiation 9 and converting it into an electrical signal are arranged.
- the thickness measurement sensor 7 is arranged on the upstream side inside the casing 1, immediately after passing through the entrance 3, and measures the thickness of the sample. By measuring the height profile of the sample from the surface of the sample transport belt 6 using the thickness measurement sensor 7, the thickness H of each sample carried in is calculated.
- the thickness measurement sensors 7 are placed above and below the sample, and the distances between the upper and lower measurement sensors and the sample are measured. If the distance between the upper measurement sensor and sample 2 is Ht, the distance between the lower measurement sensor and sample 2 is Hb, and the distance between the upper and lower measurement sensors is Hd, the thickness H of sample 2 is Hd - Ht. -Hb can be calculated.
- the radiation source 8 which is a point light source
- the radiation spreads radially, and the space to which the radiation is irradiated usually has a conical shape.
- the radiation source 8 Because irradiation is carried out radially, defects located close to the radiation source 8 in the sample are imaged as large images on the detector 10, and defects located on the far side are imaged as small images on the detector 10. be done.
- additional equipment such as a high-voltage generator that supplies high-voltage power to the X-ray tube and an X-ray controller that controls the tube voltage and tube current, but these are not shown in the figure. Not shown.
- the signal (image information) output from the detector 8 is sent to an image processing device that processes the signal, is processed by a data processing section (not shown), and is judged to be good or bad.
- the signal processing section and the data processing section can also be housed inside the housing 1.
- the thickness measurement sensor 7 is used to accurately determine the surface position of the sample.
- a plurality of sensors may be arranged in a direction in which the number of measurement points is desired to be increased, or one sensor may be capable of measuring multiple points.
- the thickness measurement sensor is installed, for example, on the upstream side of the sample transport zone, and measures the thickness one by one while transporting the sample.
- the measuring instruments used include laser triangulation displacement meters, laser interferometers, ultrasonic distance meters, eddy current displacement sensors, and stylus displacement meters.
- a laser triangulation type displacement meter is preferable from the viewpoint of being less susceptible to influence, response speed, and ease of realizing multi-point measurement.
- a method called a photosection method in which a sample is irradiated with linear light generated by a laser light source or the like and a trajectory of reflected and scattered light corresponding to the surface shape of the sample is obtained as a height profile is preferred.
- the measuring device measures the thickness of the sample by reading the position of the trajectory of the light using a light receiving means such as an image sensor and converting it into numerical values as the surface shape of the sample surface.
- the radiation source is not particularly limited as long as it can emit radiation that can pass through the sample, but it generates electromagnetic waves because it is easy to handle and can be expected to have high measurement accuracy. It is preferable to use a radiation source, and it is particularly preferable to use an X-ray source. There are no particular restrictions on the X-ray source that can be used, and any known X-ray source can be used. For example, as the X-ray source, it is preferable to use a microfocus X-ray tube in which the size of the X-ray focal point, which is the divergence point of the X-ray beam, is 50 ⁇ m or less.
- the tube voltage of the X-ray tube There are no particular limitations on the tube voltage of the X-ray tube.
- a radiation source depending on the type of sample and the inspection method, etc., other radiation such as gamma rays and neutron beams or electromagnetic waves can be irradiated instead of X-rays, and irradiation is performed radially from a point light source that is a divergence point. It may be a radiation source.
- the detector has the function of detecting radiation emitted from a radiation source and converting it into an electrical signal.
- the element There is no particular restriction on the element as long as it detects emitted radiation and generates an output according to the detected intensity.
- the radiation irradiated to a sample is X-rays
- indirect conversion type detection elements that convert the X-rays into visible light using a scintillator and then receive the light using a photodiode to generate an output.
- a direct conversion type detection element using a semiconductor such as a-Se or CdTe that directly converts a line into an electrical signal and generates an output can be used.
- a plurality of detectors may be arranged, such as a line sensor in which elements are arranged in a straight line, a TDI (Time Delay Integration) sensor, and a CCD (Charge Sensor) in which elements are arranged in a planar manner.
- a detector having a light receiving element such as a coupled device (coupled device) image sensor or a CMOS (complemary metal oxide semiconductor) image sensor, or a general-purpose two-dimensional X-ray detector FPD (flat panel detector).
- FPD flat panel detector
- the indirect conversion FPD includes a cellular scintillator.
- a scintillator panel is used to convert radiation into visible light.
- the scintillator panel contains a phosphor that emits light with X-rays such as cesium iodide (CsI), and the phosphor emits visible light in response to the emitted X-rays, and the emitted light is transferred to a TFT (Thin Film Transistor) or X-ray information can be converted into digital image information by converting it into an electrical signal using a CCD or CMOS and transferring the electrical signal.
- CsI cesium iodide
- an FPD equipped with a cellular scintillator has high sharpness and can detect minute defects and defect positions with high precision. From the viewpoint of easily forming a cellular scintillator with a large area and high sharpness, it is more preferable to use a cellular scintillator manufactured by processing the partition walls by photolithography using a photosensitive paste.
- a flexible detector that is flexible and can be bent.
- a flexible detector is a detector made by arranging a detection part in which pixels are arranged in a matrix on a substrate made of a flexible resin that can be bent.
- a photodiode that flows a current according to the total amount of energy of the received electromagnetic waves
- a pixel circuit that controls driving of the photodiode, and the like are arranged. This allows each pixel to output an electrical signal corresponding to the total amount of energy received to the control unit.
- the inspection apparatus of the present invention includes a moving mechanism that moves the detector along the direction in which the sample is transported by the transport mechanism.
- a moving mechanism that moves the detector along the direction in which the sample is transported by the transport mechanism.
- the moving mechanism includes an endless annular conveyor belt, and a detector is placed on the conveyor belt for inspection.
- the moving mechanism for moving the detector is such that the transport belt 12 is driven by a driving means 13 in the direction in which the sample is transported. .
- a driving means 13 In order to capture images while moving the detector 10, it is necessary to move stably with high uniformity and straightness. Therefore, it is preferable to provide an auxiliary means for assisting the movement of the conveyance band smoothly, and a buffer means for absorbing the tensile force and compressive force generated due to the movement of the conveyance band.
- These means include, for example, bearings and dampers with a margin for absorbing stress.
- the wiring cables from the detector such as the power supply cable for supplying power to the detector and the communication cable for transmitting and receiving signals for acquiring image data, become tangled and may not move smoothly.
- the power supply cable can be connected to an external power cable with a rotating connector such as a slip ring that transmits power from the outside to the rotating body so that the power supply cable does not become difficult to move.
- wireless communication can be used in the communication cable.
- the timing to start imaging is set for each row of pixels arranged in a direction (X direction) parallel to the conveyance belt surface and perpendicular to the moving direction of the detector. starts image acquisition when the object enters the area irradiated with radiation from the radiation source, and ends image acquisition when the object enters the area outside the irradiation area. Image data during the image acquisition period is temporarily stored in a storage device installed in the detector, and upon completion of image acquisition, the image data is transmitted to an external receiver.
- the timing of starting and ending image acquisition can be determined by arranging sensors capable of detecting passage of the detector on the upstream and downstream sides of the irradiation area and detecting the detector.
- the determination means for determining the presence or absence of a defect is connected to the detector, and acquires sample movement information from the transport mechanism as well as image information of the sample from the detector, and detects defects present in the sample in the irradiation area. It also has means (image information acquisition means, image synthesis means) for generating a mapping image in which the position of the defect is specified during the time when the sample exists in the irradiation area, and preferably the above-mentioned It has a means for acquiring information from a thickness measuring instrument and further acquires information in the sample thickness direction by calculation, a defect candidate detection means for calculating defect candidates from the acquired image, and a defect candidate detection means that corresponds to a defect. and means for determining whether or not to do so.
- ⁇ Image information acquisition means The signal detected by the pixel 11 of the detector and converted into an electrical signal outputs the intensity of the detected radiation as a brightness value.
- a pixel that is strongly detected has a high brightness value (bright), and a pixel that is weakly detected has a high brightness value. The value becomes smaller (darker).
- the size of the pixel 11 of the detector is P [mm] and the desired resolution is Re [mm]
- P/
- the conveyance belt 12 on which the flexible detector 14 is arranged may be moved using a detector movement mechanism on which the flexible detector 14 having bendable and flexible properties is arranged. This makes it possible to image continuous samples such as roll-to-roll without interruption.
- ⁇ Image composition method> It is possible to synthesize an image of the sample at a certain time from the intensity signal from the detector pixel 11 disposed in the detector 10 and the sample position information from the sample transport mechanism. If a defect exists in the sample, the defect will be recognized as a difference in contrast.
- FIG. 7 a case where defects 15-(1), 15-(2), and 15-(3) of different sizes and shapes exist in a certain area of the sample will be explained. do.
- the center of gravity of 15-(3) exists at the coordinates (X1, Y1, Z2).
- Figures 8 to 10 show an example of continuous imaging while moving the sample and detector from left to right in the figure (that is, in the Y-axis direction), and Figure 8 shows continuous imaging.
- Figure 9 shows the position of the sample at time tb and an image at that position from among the images taken at time ta
- Figure 10 shows the position of the sample at time tc. and the image at that position. Note that ta ⁇ tb ⁇ tc.
- the image corresponding to defect 15-(1) is 17-(1)
- the image corresponding to defect 15-(2) is 17-(2)
- the image corresponding to defect 15-(3) is shown as 17-(3).
- defects 15-(1) and 15-(2) exist at the same depth (Z1), so in the projected image 16, the two defects maintain approximately the same distance. It is observed to move.
- defects 15-(1) and 15-(3) exist at different depths (Z1 and Z2), so in the projected image 16, the apparent speed of movement in the Y direction is different, but the X and Y coordinates are the same.
- separated images can be obtained over time. That is, the amount of movement in the projected image (the amount of projected movement) differs depending on the depth of the defect in the sample.
- FIG. 11 shows images of defect 15-(1) and the corresponding image 17-(1) extracted at times ta, tb, and tc.
- images at other acquisition times are shifted by the amount of movement of the defects and superimposed, centering on an image at a certain time.
- images of defects existing at the focused depth overlap and a large signal intensity can be obtained, making it possible to detect even defects with low contrast.
- the image at time tb (16 in FIG. 9) is used as the center and the amount of movement Lab, Lbc of the defect image calculated at depth Z1 is used to calculate the time.
- Defect candidates are extracted from the composite image obtained by the image synthesis method, and the defects are detected using brightness thresholds in the bright direction and brightness thresholds in the dark direction, which can separate defect candidates from non-defect candidates.
- the detection of defect candidates may be performed by narrowing down the regions that satisfy the threshold value based on the size of the detection area, or may be narrowed down based on the feature amount of the detected shape. For example, if it is known that a defective foreign object has an elongated shape in a specific direction due to a certain process, you can narrow it down by using the orientation (angle) of the detected shape and its thinness (aspect ratio) as features. good. Further, a spatial filter or the like may be used prior to detection using a brightness threshold. Defects are determined based on these.
- FIG. 13 shows a top view of the object to be inspected.
- two wires (markers 19) made of SUS304 and having a diameter of 200 ⁇ m were arranged so that the location of the foreign object equivalent could be seen in the captured image.
- a commercially available X-ray tube (L9181-02 manufactured by Hamamatsu Photonics Co., Ltd.), a commercially available X-ray TDI camera (C12300-121 manufactured by Hamamatsu Photonics Co., Ltd.), and a commercially available linear stage 1 (SMC) for transporting the inspection object.
- X-ray imaging was performed by installing a commercially available linear stage 2 (L40B1150-N2-KM02 X-MCC2-KX14B, manufactured by Zaber) for transporting an X-ray TDI camera.
- the X-ray tube, X-ray TDI camera, linear stage 1, A linear stage 2 was installed (see Figure 5). Note that the conveyance direction by the linear stage 1 and the linear stage 2 is the same direction.
- Table 1 shows the results of CNR (contrast-to-noise ratio), which is the value obtained by dividing the contrast C, which is the absolute value of the difference between So and Sb, by ⁇ b.
- CNR contrast-to-noise ratio
- a transmission image is acquired while moving the detector in the same direction as the sample movement direction, a projection image with high temporal resolution can be obtained even with a detector with a low scan rate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- High Energy & Nuclear Physics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
図1および図2は、それぞれ本発明の検査装置の一態様を説明するための概略構成を示す模式図である。試料が枚葉で搬送されるインライン検査装置である場合を図1に、連続するフィルムやシート等のRoll to Rollでのインライン検査装置の場合を図2に示しており、検査装置は、筐体1を備えている。筐体1には、試料が搬入される搬入口3と、試料が搬出される搬出口4が備わっている。線源としてX線等の電離放射線を用いる場合には作業者の安全のため、筐体1、搬入口3、搬出口4は、内壁に鉛、ステンレス等の電離放射線を遮蔽可能な遮蔽壁を備えており、搬出口3の開口部には外部への電離放射線の漏洩を防止するゴム製の遮蔽カバーを備えていることが通常である。図1の場合にあっては、試料(試料2(a)や試料2(b))が試料搬送帯6上に載置され、試料搬送ロール5によって試料搬送帯6が運動して、筐体内に試料が導入される。図2の場合にあっては、試料搬送ロール5に試料2が接して直接に筐体1内に搬送される。
厚み計測センサ7は、試料の表面位置を精度良く求めるために使用するものである。該センサは測定点を増やしたい方向に複数配列し、または一つのセンサが多地点計測できるものであっても良い。厚み計測センサの設置位置は、例えば、試料搬送帯の上流側に配置し、試料を搬送させながら逐次測定する。該計測器はレーザー三角測量方式変位計、レーザー干渉計、超音波距離計、渦電流方式変位センサ、触針式変位計などが用いられるが、非接触で測定ができることや検査対象物の材質に影響されにくいこと、応答速度や多点計測の実現の容易さなどの観点から、レーザー三角測量方式変位計が好ましい。具体的には、光切断法と呼ばれるレーザー光源などにより生成する線状の光を試料に照射し、その表面形状に応じた反射散乱光の軌跡を高さのプロファイルとして取得する方法が好ましい。該計測器は前記光の軌跡をイメージセンサ等の受光手段で位置を読み取り、試料表面の表面形状として数値化することで試料の厚みを計測する。
本発明の検査装置において、放射線源は、試料を透過することができる放射線を放射できるものであれば特に制限はないが、扱いが簡便であり、また、高い測定精度を期待できることから電磁波を発生する線源が望ましく、特にはX線源を用いることが好ましい。用いることができるX線源としては特に制限は無く、公知のX線源を用いることが可能である。例を挙げると、X線源としては、X線ビームの発散点であるX線焦点の大きさが50μm以下のマイクロフォーカスX線管を用いることが好ましい。X線管の管電圧には特に制限は無い。なお、線源としては、試料の種類及び検査態様等に応じて、X線に代えて、ガンマ線、中性子線等の他の放射線や電磁波を照射でき、発散点である点光源から放射状に照射する線源であってもよい。
検出器は放射線源から放射された放射線を検知し、電気信号に変換する機能を有している。放射された放射線を検出し、検出強度に応じた出力を発生する素子であれば特に制限はない。試料に照射される放射線がX線の場合を例にとると、X線をシンチレータで一旦可視光線に変換した上で、フォトダイオードで受光して出力を発生する間接変換タイプの検出素子や、X線を直接電気信号に変換して出力を発生するa-SeやCdTeなどの半導体を利用した直接変換タイプの検出素子などを適用することができる。
本発明の検査装置は、検出器を前記搬送機構で試料が搬送される方向に沿って移動させる移動機構を具備している。後述するようにかかる移動機構が具備されることで高速でも、高い分解能、高感度、高S/Nでの検査を可能としている。移動機構は好ましく無端環状の搬送帯を具備するものであることが好ましく、この搬送帯の上に検出器が配置されて検査が行われる。
欠陥の有無を判断する判定手段は、検出器に接続され、搬送機構からの試料の移動情報とともに検出器からの試料の画像情報とを取得して、照射領域に入っている試料に存在する欠陥を検出するとともに、照射領域内に試料が存在する時間中の欠陥の位置が特定されたマッピング画像を生成する手段(画像情報取得手段、画像合成手段)を有しており、また好ましくは前記の厚み計測器からの情報を取得してさらに試料厚み方向の情報を演算によって獲得する手段を有しており、取得された画像から欠点候補を算出する欠点候補検出手段と、欠点候補が欠陥に該当するか否かを判断する手段とで構成される。
検出器の画素11で検知され、電気信号に変換された信号は、検知された放射線の強度を輝度値として出力し、強く検知した画素では輝度値が高く(明るく)、弱く検出した画素では輝度値が小さく(暗く)なる。検出器の画素11のサイズをP[mm]とし、得ようとする分解能をRe[mm]とすると、図5のようにRe=P/Mとするような拡大率Mの設定が必要となる。この場合、検出器の1秒間に撮像する回数であるスキャンレートf[Hz]は、1回に撮像する時間τとτ=1/f[秒]の関係にあり、試料の搬送速度をVw[mm/秒]とすると、得ようとする分解能Reの長さ分をVw[mm/秒]で試料が搬送されるため、検出器の1回の撮像に必要な撮像時間τは、τ=Re/Vw=P/(M・Vw)[秒]となる。分解能を高く、検出画素を小さく、拡大率を大きく、また試料搬送速度が大きくするほど、1回の撮像に必要な時間τは短くなり、高いスキャンレートの検出器が要求される。検出器を検出器の移動機構によって、検出器の移動速度Vd[mm/秒]で試料搬送方向と同一の方向に沿って移動させた場合は、検出器の画素は搬送されている試料の移動速度Vw[mm/秒]に対して、Vd/M[mm/秒]の分遅く移動しているように見える。そのため、検出器10の1回の撮像に必要な時間τは、τ=Re/|Vw-Vd/M|=P/|M・Vw-Vd| [秒]となり、1回の撮像に費やすことができる時間は長くなり、低いスキャンレートの検出器でも、時間的に高分解能で、早い試料搬送速度に対応することが可能となる。また逆に、一定の解像度に対して許容されるτが大きくなることで試料の移動速度を早くすることも可能である。例えば試料搬送速度Vw=100mm/秒で、狙い分解能Re=0.05mm、検出器画素サイズP=0.1mmを拡大率2倍で撮像する場合、検出器搬送速度Vd=0mm/秒では、τ=0.05/100=0.5m秒の撮像時間(スキャンレートは2kHz)となり、検出器搬送速度Vd=150mm/秒では、τ=0.05/(100-150/2)=2m秒(スキャンレートは0.5kHz)で撮像できる。更に検出器搬送速度Vd=200mm/秒では、限りなく長い撮像時間が可能となる。一方、Vd/MがVwを大きく超えるような速さでは、速度差が大きくなるため、撮像時間を短くしなければ撮像自体が困難となる。高い撮像精度と搬送速度の高速化をより高いレベルで実現するためには、VdのVwに対する速度比Vd/Vwを拡大率Mの2倍以下となるよう検出器を移動させて撮像することが好ましく、また、Vd/Vwを拡大率M以下となるように検出器を移動させて撮像することがさらに好ましい。また、検出器を図6のように、湾曲可能なフレキシブル性を有するフレキシブル検出器14が配置された検出器の移動機構を用いて、フレキシブル検出器14が配置された搬送帯12を運動させることで、Roll to Rollのような連続試料に対して、途切れることなく撮像することが可能となる。
検出器10に配置した検出器の画素11からの強度信号および試料の搬送機構からの試料の位置情報とからある時間における試料の像を合成することが可能である。そして、試料の中に欠点が存在する場合、その欠点はコントラストの差として認識されることとなる。
前記画像合成方法によって得られた合成画像から欠点候補を抽出し、欠点候補とそうでない部位を切り分けることが可能な、明方向の輝度閾値と、暗方向の輝度閾値によって、欠点を検出する。なお、欠点候補の検出は閾値を満たす領域を検出面積の大きさで絞りこんでもよいし、検出形状の特徴量で絞り込んでもよい。例えば、欠点となる異物が、ある工程が原因で特定の方向に細長い形状となることがわかっていれば、検出形状の向き(角度)とその細さ(縦横比)などを特徴量として絞り込んでもよい。また輝度閾値での検出に先んじて、空間フィルタなどを用いてもよい。これらにより欠点判定をする。
市販のポリエチレンテレフタレートフイルム上に異物相当物18として直径50μm、高さ50μmのSUS304製の円筒をその底面(または上面)を接着面としてエポキシ樹脂で接着し、検査対象物とした(東レ・プレシジョン株式会社製)。該検査対象物の上面像を図13に示す。なおここで、撮像画像において、異物相当物の配置場所がわかるように、SUS304製の直径200μmのワイヤ(マーカー19)を2本、配置した。
市販のX線管(浜松ホトニクス株式会社製 L9181-02)と、市販のX線TDIカメラ(浜松ホトニクス株式会社製 C12300-121)と、検査対象物を搬送するための市販のリニアステージ1(SMC社製 LEFB32T-1200-S5C5183)と、X線TDIカメラを搬送するための市販のリニアステージ2(Zaber社製 L40B1150-N2-KM02 X-MCC2-KX14B)を設置してX線撮像を実施した。X線管の焦点からX線TDIカメラまでの距離FDDを325mm、X線管の焦点から検査対象物までの距離FODを95mmとなるように、X線管、X線TDIカメラ、リニアステージ1、リニアステージ2を設置した(図5を参照)。なお、リニアステージ1とリニアステージ2による搬送方向は同じ方向である。
上記装置で撮像した画像において、異物相当物が写っている部分の最小輝度Soと、異物相当物が写っていない部分の平均輝度Sbと、異物相当物が写っていない部分の輝度の標準偏差σbを測定した。なお、Sbおよびσbは画像内の異物相当物が配置されていた場所およびその近傍(周囲20画素四方(この実施例ではおよそ280μm×280μm))を除く任意に選択した400画素から測定した。輝度はX線TDIカメラで撮像し、出力されたX線画像の信号量を用いた。表1に、SoとSbの差の絶対値であるコントラストCをσbで除算した値であるCNR(コントラスト対ノイズ比)を、表1に結果を示す。CNRは、値が大きいほど、検査対象物の信号強度コントラストが、検査対象物の無い部分のノイズよりも大きく、検出しやすいことを示す。
2、2(a)、2(b): 試料
3: 搬入口
4: 搬出口
5: 試料搬送ロール
6: 試料搬送帯
7: 厚み計測センサ
8: 線源
9: 放射線
10: 検出器
11: 検出器の画素
12: 検出器搬送帯
13: 移動機構の駆動手段
14: フレキシブル検出器
15-(1)、15-(2)、15-(3): 試料中に存在する欠点
16: 投影像
17-(1)、17-(2)、17-(3): 試料中に存在する欠点の画像
18: 異物相当物(SUS304製の円筒)
19: マーカー(SUS304製のワイヤ)
Claims (15)
- 検査対象である試料を搬送する搬送機構と、該搬送される試料が通過する領域に放射線を放射状に照射する放射線源と、前記搬送される試料を透過した放射線を検知可能に配置され検知した放射線が電気信号に変換される検出器と、前記搬送機構で試料が搬送される方向に沿って前記検出器を移動させる移動機構と、前記領域を試料が通過する時間中に得られる検出器からの試料の画像情報と前記搬送機構からの試料の移動情報とから試料中の欠陥の有無を判断する判定手段を少なくとも具備する検査装置。
- 前記搬送機構および移動機構は、前記搬送機構による試料の移動速度をVw、前記試料の移動方向と同方向の前記移動機構による検出器の移動速度成分をVdとしたとき、Vwに対するVdの比Vd/Vwが、放射線源と試料の間の距離(FOD)に対する放射線源と検出器の間の距離(FDD)の比(FDD/FOD)の2倍以下となるように試料および検出器の移動を行うものである、請求項1記載の検査装置。
- さらに、試料の厚みを測定する厚み計測器と、該厚み計測器で測定した試料の厚み情報と前記検出器からの試料の画像情報とに基づいて試料中の欠陥の位置を演算する演算手段を具備する請求項1または2に記載の検査装置。
- 前記検出器が、試料の搬送方向に沿って複数配置された請求項1~3のいずれかに記載の検査装置。
- 前記移動機構が、無端環状の搬送帯を具備する移動機構であり、該移動機構は、前記搬送帯に駆動力を付与する駆動手段と、前記搬送帯の運動を円滑に行なわせるように補助する補助手段と、前記搬送帯の運動に伴って搬送体に生じる引張力および圧縮力を吸収する緩衝手段とを有したものである請求項1~4のいずれかの検査装置。
- 前記検出器が、湾曲可能なフレキシブル性を有するフレキシブル検出器であって、該検出器が前記移動機構の移動方向に沿って配置されている請求項1~5のいずれかの検査装置。
- 前記放射線が電磁波である請求項1~6のいずれかの検査装置。
- 前記検出器が、基材に形成された格子状の隔壁によって区画された空間に、放射線によって発光する蛍光体が充填された画素構造を有するシンチレータパネルと、該区画に対応したセル組織を有し、前記蛍光体からの発光を光電変換する光電変換素子とを具備した間接変換方式の検出器である請求項1~7のいずれかに記載の検査装置。
- 試料中に内在される欠陥の有無を検査する方法であって、
放射線を放射状に照射する放射線源からの放射線が照射された領域内に検査対象である試料を搬送機構によって通過させ、
移動機構に備えられ、前記領域を通過する試料を透過した放射線を検知可能に配置され検知された放射線が電気信号に変換される検出器によって、前記領域を通過する試料を透過した放射線を、前記検出器を前記搬送機構で試料が搬送される方向に沿って移動させながら放射線の検知と電気信号への変換を行う工程と、
前記領域を試料が通過する時間中に得られる検出器からの試料の画像情報と前記搬送機構からの試料の移動情報とから試料中の欠陥の有無を判定する工程とを有する、
検査方法。 - 前記搬送機構および移動機構による試料および検出器の移動を、搬送機構による試料の移動速度Vw、前記試料の移動方向と同方向の前記移動機構による検出器の移動速度成分をVdとしたとき、Vwに対するVdの比Vd/Vwが、放射線源と試料の間の距離(FOD)に対する放射線源と検出器の間の距離(FDD)の比(FDD/FOD)の2倍以下となるように試料および受光器の移動を行うことを特徴とする請求項9に記載の検査方法。
- さらに、試料の厚みを測定し、測定された厚み情報と前記検出器からの試料の画像情報とに基づいて試料中の欠陥の位置を演算することを特徴とする請求項9または10に記載の検査方法。
- 前記検出器は、前記試料の搬送方向に沿って複数配置されている請求項9~11のいずれかに記載の検査方法。
- 前記移動機構が、無端環状の搬送帯を具備する移動機構であり、該移動機構は、前記搬送帯に駆動力を付与する駆動手段と、前記搬送帯の運動を円滑に行なわせるように補助する補助手段と、搬送帯の運動に伴って搬送帯に生じる引張力および圧縮力を吸収する緩衝手段とを有したものである請求項9から12のいずれかに記載の検査方法。
- 前記放射線が、電磁波である請求項9~13のいずれかに記載の検査方法。
- 前記検出器が、基材に形成された格子状の隔壁によって区画された空間に、放射線によって発光する蛍光体が充填された画素構造を有するシンチレータパネルと、該区画に対応したセル組織を有し、前記蛍光体からの発光を光電変換する光電変換素子とを具備した間接変換方式の放射線検出器である請求項9~14のいずれかに記載の検査方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380030743.0A CN119013552A (zh) | 2022-03-31 | 2023-03-01 | 检查装置和检查方法 |
EP23779165.2A EP4471411A1 (en) | 2022-03-31 | 2023-03-01 | Inspection device and inspection method |
KR1020247024350A KR20240169596A (ko) | 2022-03-31 | 2023-03-01 | 검사 장치 및 검사 방법 |
JP2023515104A JPWO2023189135A1 (ja) | 2022-03-31 | 2023-03-01 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022058034 | 2022-03-31 | ||
JP2022-058034 | 2022-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023189135A1 true WO2023189135A1 (ja) | 2023-10-05 |
Family
ID=88201127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/007539 WO2023189135A1 (ja) | 2022-03-31 | 2023-03-01 | 検査装置及び検査方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4471411A1 (ja) |
JP (1) | JPWO2023189135A1 (ja) |
KR (1) | KR20240169596A (ja) |
CN (1) | CN119013552A (ja) |
WO (1) | WO2023189135A1 (ja) |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000221144A (ja) | 1999-02-01 | 2000-08-11 | Sekisui Chem Co Ltd | 透明フィルムの異物検査装置 |
JP2006258781A (ja) * | 2005-02-15 | 2006-09-28 | Takashima Giken Kk | 異物検査方法及び異物検査装置 |
JP2008157821A (ja) * | 2006-12-25 | 2008-07-10 | Matsushita Electric Works Ltd | X線異物検査装置 |
JP2011064640A (ja) * | 2009-09-18 | 2011-03-31 | Hamamatsu Photonics Kk | 放射線検出装置 |
JP2011191217A (ja) * | 2010-03-15 | 2011-09-29 | Omron Corp | X線検査方法、x線検査装置およびx線検査プログラム |
JP2011242374A (ja) * | 2010-05-21 | 2011-12-01 | Anritsu Sanki System Co Ltd | X線検査装置 |
JP2013190380A (ja) * | 2012-03-15 | 2013-09-26 | Omron Corp | X線検査装置、x線検査のための撮像方法 |
JP2014085252A (ja) * | 2012-10-24 | 2014-05-12 | Toyota Motor Corp | フィルム検査方法 |
JP2014152001A (ja) * | 2013-02-07 | 2014-08-25 | Hitachi Building Systems Co Ltd | 乗客コンベアの移動手摺り探傷装置 |
JP2015064336A (ja) | 2013-08-29 | 2015-04-09 | 株式会社イシダ | 透過光検査装置 |
JP2017032285A (ja) * | 2015-07-29 | 2017-02-09 | 株式会社日立ハイテクサイエンス | X線透過検査装置及びx線透過検査方法 |
JP2017181306A (ja) * | 2016-03-30 | 2017-10-05 | アンリツインフィビス株式会社 | 異物検出装置および異物検出方法 |
WO2019176903A1 (ja) * | 2018-03-15 | 2019-09-19 | 東レ株式会社 | 異物の検査方法、検査装置、フィルムロール及びフィルムロールの製造方法 |
JP2019158473A (ja) * | 2018-03-09 | 2019-09-19 | 浜松ホトニクス株式会社 | 画像取得システムおよび画像取得方法 |
WO2020004435A1 (ja) * | 2018-06-27 | 2020-01-02 | 東レ株式会社 | 放射線透過検査方法及び装置、並びに微多孔膜の製造方法 |
JP2020003322A (ja) | 2018-06-28 | 2020-01-09 | 株式会社 システムスクエア | 検査装置 |
JP2020143922A (ja) | 2019-03-04 | 2020-09-10 | 株式会社日立ハイテクサイエンス | X線検査装置及びx線検査方法 |
JP2020180829A (ja) * | 2019-04-24 | 2020-11-05 | Ckd株式会社 | 検査装置、包装シート製造装置及び包装シート製造方法 |
-
2023
- 2023-03-01 JP JP2023515104A patent/JPWO2023189135A1/ja active Pending
- 2023-03-01 WO PCT/JP2023/007539 patent/WO2023189135A1/ja active Application Filing
- 2023-03-01 CN CN202380030743.0A patent/CN119013552A/zh active Pending
- 2023-03-01 EP EP23779165.2A patent/EP4471411A1/en active Pending
- 2023-03-01 KR KR1020247024350A patent/KR20240169596A/ko unknown
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000221144A (ja) | 1999-02-01 | 2000-08-11 | Sekisui Chem Co Ltd | 透明フィルムの異物検査装置 |
JP2006258781A (ja) * | 2005-02-15 | 2006-09-28 | Takashima Giken Kk | 異物検査方法及び異物検査装置 |
JP2008157821A (ja) * | 2006-12-25 | 2008-07-10 | Matsushita Electric Works Ltd | X線異物検査装置 |
JP2011064640A (ja) * | 2009-09-18 | 2011-03-31 | Hamamatsu Photonics Kk | 放射線検出装置 |
JP2011191217A (ja) * | 2010-03-15 | 2011-09-29 | Omron Corp | X線検査方法、x線検査装置およびx線検査プログラム |
JP2011242374A (ja) * | 2010-05-21 | 2011-12-01 | Anritsu Sanki System Co Ltd | X線検査装置 |
JP2013190380A (ja) * | 2012-03-15 | 2013-09-26 | Omron Corp | X線検査装置、x線検査のための撮像方法 |
JP2014085252A (ja) * | 2012-10-24 | 2014-05-12 | Toyota Motor Corp | フィルム検査方法 |
JP2014152001A (ja) * | 2013-02-07 | 2014-08-25 | Hitachi Building Systems Co Ltd | 乗客コンベアの移動手摺り探傷装置 |
JP2015064336A (ja) | 2013-08-29 | 2015-04-09 | 株式会社イシダ | 透過光検査装置 |
JP2017032285A (ja) * | 2015-07-29 | 2017-02-09 | 株式会社日立ハイテクサイエンス | X線透過検査装置及びx線透過検査方法 |
JP2017181306A (ja) * | 2016-03-30 | 2017-10-05 | アンリツインフィビス株式会社 | 異物検出装置および異物検出方法 |
JP2019158473A (ja) * | 2018-03-09 | 2019-09-19 | 浜松ホトニクス株式会社 | 画像取得システムおよび画像取得方法 |
WO2019176903A1 (ja) * | 2018-03-15 | 2019-09-19 | 東レ株式会社 | 異物の検査方法、検査装置、フィルムロール及びフィルムロールの製造方法 |
WO2020004435A1 (ja) * | 2018-06-27 | 2020-01-02 | 東レ株式会社 | 放射線透過検査方法及び装置、並びに微多孔膜の製造方法 |
JP2020003322A (ja) | 2018-06-28 | 2020-01-09 | 株式会社 システムスクエア | 検査装置 |
JP2020143922A (ja) | 2019-03-04 | 2020-09-10 | 株式会社日立ハイテクサイエンス | X線検査装置及びx線検査方法 |
JP2020180829A (ja) * | 2019-04-24 | 2020-11-05 | Ckd株式会社 | 検査装置、包装シート製造装置及び包装シート製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN119013552A (zh) | 2024-11-22 |
KR20240169596A (ko) | 2024-12-03 |
JPWO2023189135A1 (ja) | 2023-10-05 |
EP4471411A1 (en) | 2024-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7236564B2 (en) | Linear array detector system and inspection method | |
EP3348997A1 (en) | X-ray inspection method and x-ray inspection device | |
CN106404811B (zh) | X射线透射检查装置和x射线透射检查方法 | |
JP5555048B2 (ja) | X線検査装置 | |
KR20080022089A (ko) | X선-단층촬영 및/또는 저선량단층촬영 장치 | |
JP5709721B2 (ja) | ベルトコンベアのベルトの検査装置 | |
JP2004257884A (ja) | X線異物検査方法及び装置 | |
JP6462228B2 (ja) | X線検査装置 | |
KR101480968B1 (ko) | X-선 ct 및 레이저 표면 검사를 이용하는 검사 장치 및 검사 방법 | |
WO2023189135A1 (ja) | 検査装置及び検査方法 | |
JP6450075B2 (ja) | X線検査装置 | |
JP2018084556A (ja) | 放射線検出装置、放射線画像取得装置、及び放射線画像の取得方法。 | |
JP5620801B2 (ja) | X線異物検出装置 | |
CN110793985A (zh) | X射线透射检查装置和x射线透射检查方法 | |
EP4411317A1 (en) | Sheet-like material unevenness measuring device, and sheet-like material unevenness measuring method | |
JP6371572B2 (ja) | X線検査装置 | |
JP2008256587A (ja) | X線検査装置およびx線検査方法 | |
JP6506629B2 (ja) | X線受光装置およびこれを備えたx線検査装置 | |
JP2022013497A (ja) | X線分析装置 | |
JP2004340606A (ja) | X線異物位置検出装置及び方法 | |
JP6401504B2 (ja) | X線検査装置 | |
JP7582507B2 (ja) | X線検査装置及びx線検査方法 | |
JP2007170926A (ja) | X線検査装置、断層画像異常表示装置、x線検査方法、断層画像異常表示方法、プログラム、および記録媒体 | |
JP2000111501A (ja) | 透視検査装置 | |
CN119234143A (zh) | X射线检查装置及x射线检查方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023515104 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23779165 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023779165 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023779165 Country of ref document: EP Effective date: 20240829 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380030743.0 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |