WO2023182301A1 - 半導体スイッチング素子の短絡検出回路 - Google Patents
半導体スイッチング素子の短絡検出回路 Download PDFInfo
- Publication number
- WO2023182301A1 WO2023182301A1 PCT/JP2023/010975 JP2023010975W WO2023182301A1 WO 2023182301 A1 WO2023182301 A1 WO 2023182301A1 JP 2023010975 W JP2023010975 W JP 2023010975W WO 2023182301 A1 WO2023182301 A1 WO 2023182301A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- desaturation
- switching element
- semiconductor switching
- short
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 83
- 239000003990 capacitor Substances 0.000 claims abstract description 77
- 238000001514 detection method Methods 0.000 claims description 99
- 238000010586 diagram Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 7
- 230000000630 rising effect Effects 0.000 description 5
- 230000000873 masking effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/082—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
Definitions
- It relates to a short circuit detection circuit that detects a short circuit in an insulated gate type semiconductor switching element.
- a driving device for a semiconductor switching element which is connected to a desaturation detection circuit for detecting a short circuit in the semiconductor switching element and has a protection function for detecting the short circuit and avoiding damage to the semiconductor switching element due to overcurrent.
- an IGBT driving device is connected to a desaturation detection circuit including a diode and a capacitor, and includes a constant current source for charging the capacitor.
- the capacitor is charged by a constant current source, and a larger constant current is generated after the timing that matches the saturation voltage. charge at a power source.
- Patent Document 1 the delay time in capacitor charging is used to adjust the mask time for short circuit detection, so it is difficult to shorten the capacitor charging time. Therefore, there is a limit to how much time it takes to detect an IGBT short circuit.
- the present disclosure aims to provide a technique for more quickly detecting a short circuit in a semiconductor switching element.
- the present disclosure includes an insulated gate type semiconductor switching element, a diode having a cathode connected to a high potential side terminal of the semiconductor switching element, one end connected to an anode side of the diode, and the other end of the semiconductor switching element.
- the present invention provides first and second short circuit detection circuits that are applied to a desaturation detection circuit comprising a capacitor connected to a low potential side terminal and detect a short circuit of the semiconductor switching element.
- the first short circuit detection circuit includes a gate voltage terminal that acquires a gate voltage of the semiconductor switching element, a desaturation voltage terminal that acquires a desaturation voltage corresponding to the voltage of the capacitor, and a desaturation voltage terminal that obtains a desaturation voltage corresponding to the voltage of the capacitor. and a determination circuit that detects that the semiconductor switching element is short-circuited based on the fact that the desaturation voltage exceeds a predetermined desaturation voltage threshold.
- the first short circuit detection circuit includes a gate voltage terminal that acquires the gate voltage of the semiconductor switching element, and a desaturation voltage terminal that acquires the desaturation voltage corresponding to the voltage of the capacitor.
- Mask time can be secured by detecting that the gate voltage exceeds a predetermined gate voltage threshold, so there is no need to adjust the mask time for short circuit detection by capacitor design, and the capacitor charging time can be designed to be short. I can do it. That is, by detecting that the semiconductor switching element is short-circuited based on the gate voltage exceeding a predetermined gate voltage threshold and the desaturation voltage exceeding a predetermined desaturation voltage threshold, the charging time of the capacitor is reduced. Since it can be shortened, short circuits in semiconductor switching elements can be quickly detected. As a result, for example, it is possible to contribute to quick protection of the semiconductor switching element when the semiconductor switching element is short-circuited.
- a second detection circuit includes a desaturation voltage terminal that acquires a desaturation voltage corresponding to the voltage of the capacitor, a timer that measures the time that has elapsed from a predetermined timing, and a predetermined elapsed time that the timer measures. and a determination circuit that detects that the semiconductor switching element is short-circuited when the desaturation voltage exceeds a predetermined desaturation voltage threshold.
- the capacitor charging time is determined by detecting that the semiconductor switching element is short-circuited. Since it can be shortened, short circuits in semiconductor switching elements can be quickly detected. As a result, for example, it is possible to contribute to quick protection of the semiconductor switching element when the semiconductor switching element is short-circuited.
- FIG. 1 is a circuit diagram including a short circuit detection circuit for a semiconductor switching element according to a first embodiment
- FIG. 2 is a diagram illustrating short-circuit detection of the semiconductor switching element according to the first embodiment
- FIG. 3 is a circuit diagram including a short circuit detection circuit of a semiconductor switching element according to a second embodiment
- FIG. 4 is a diagram illustrating short circuit detection of a semiconductor switching element according to the second embodiment
- FIG. 5 is a circuit diagram including a short circuit detection circuit of a semiconductor switching element according to a third embodiment
- FIG. 1 is a circuit diagram including a short circuit detection circuit for a semiconductor switching element according to a first embodiment
- FIG. 2 is a diagram illustrating short-circuit detection of the semiconductor switching element according to the first embodiment
- FIG. 3 is a circuit diagram including a short circuit detection circuit of a semiconductor switching element according to a second embodiment
- FIG. 4 is a diagram illustrating short circuit detection of a semiconductor switching element according to the second embodiment
- FIG. 5 is a circuit
- FIG. 6 is a diagram illustrating short circuit detection of a semiconductor switching element according to the third embodiment
- FIG. 7 is a circuit diagram including a short circuit detection circuit for a semiconductor switching element according to a fourth embodiment
- FIG. 8 is a diagram illustrating short circuit detection of a semiconductor switching element according to the fourth embodiment
- FIG. 9 is a diagram illustrating short circuit detection of a semiconductor switching element according to a modification
- FIG. 10 is a diagram illustrating short-circuit detection of a semiconductor switching element according to a modification.
- FIG. 1 shows a circuit diagram including a DESAT detection circuit 1 and a short circuit detection circuit 20 connected to an IGBT 11, which is an example of a semiconductor switching element on the insulated gate side.
- the IGBT 11 is, for example, an IGBT used as a switching element constituting an inverter circuit, and may be connected in parallel with a free wheel diode.
- the short circuit detection circuit 20 may be, for example, a circuit configured in a drive IC that drives the IGBT 11.
- the desaturation detection circuit 1 includes a diode 12, a desaturation resistor 13, and a capacitor 14.
- the short circuit detection circuit 20 includes a desaturation voltage terminal 21, a gate voltage terminal 22, a MOSFET 23, a first resistor 24 and a second resistor 25, a switch 26, a constant current source 27, and comparators 28 and 29. There is.
- the short circuit detection circuit 20 is connected to the desaturation detection circuit 1 via a desaturation voltage terminal 21 and to the gate of the IGBT 11 via a gate voltage terminal 22.
- the collector of the IGBT 11 is connected to the diode 12, and the emitter is connected to the capacitor 14, MOSFET 23, and second resistor 25.
- the diode 12 connects the desaturation voltage terminal 21 and the collector of the IGBT 11 via the desaturation resistor 13.
- the diode 12 is a diode whose forward direction is the direction from the desaturation voltage terminal 21 toward the IGBT 11.
- One end of the capacitor 14 is connected to a connection wire connecting the desaturation resistor 13 and the desaturation voltage terminal 21, and is connected to the anode side of the diode 12 via the desaturation resistor 13.
- the other end of the capacitor 14 is connected to the emitter of the IGBT 11.
- the short circuit detection circuit 20 can obtain the desaturation voltage corresponding to the voltage of the capacitor 14 by connecting to the desaturation detection circuit 1 through the desaturation voltage terminal 21. By monitoring the desaturation voltage, the charging voltage of the capacitor 14 can be monitored.
- the short circuit detection circuit 20 can obtain the gate voltage of the IGBT 11 by connecting to the gate of the IGBT 11 through the gate voltage terminal 22 .
- the first resistor 24 and the second resistor 25 are connected in series, one end of the first resistor 24 is connected to the desaturation voltage terminal 21 and connected to a constant current source 27 via a switch 26, and the other end is connected to the second resistor 25. It is connected to the. One end of the second resistor 25 is connected to the first resistor 24, and the other end is connected to the emitter of the IGBT 11.
- the MOSFET 23 has a drain connected to a connection wiring connecting the first resistor 24 and the desaturation voltage terminal 21, and a source connected to the emitter of the IGBT 11. When the switch 26 is on and the MOSFET 23 is off, the capacitor 14 is charged. When the MOSFET 23 is turned on while the capacitor 14 is charged, the capacitor 14 is discharged.
- a positive terminal of the comparator 28 is connected between the first resistor 24 and the second resistor 25.
- the negative terminal of comparator 28 is connected to a capacitor threshold voltage source (not shown) that provides a desaturation voltage threshold.
- a positive terminal of the comparator 29 is connected to the gate voltage terminal 22.
- the negative terminal of comparator 29 is connected to a gate threshold voltage source (not shown) that provides a gate voltage threshold.
- the output terminals of comparators 28 and 29 are connected by an AND circuit.
- the desaturation detection circuit 1 includes a diode 12 whose cathode is connected to the collector, which is a high potential side terminal of the IGBT 11, and one end connected to the anode side of the diode 12, and the other end connected to the emitter, which is the low potential side terminal of the IGBT 11. and a capacitor 14.
- the short circuit detection circuit 20 is applied to the desaturation detection circuit 1 and has a function of detecting that the IGBRT 11 is short-circuited. According to the short circuit detection circuit 20, a short circuit in the IGBT 11 can be detected by the desaturation voltage terminal 21, the gate voltage terminal 22, and the comparators 28 and 29 connected by an AND circuit.
- the gate voltage input to the positive terminal of the comparator 29 exceeds the gate voltage threshold input to the negative terminal
- the desaturation voltage input to the positive terminal of the comparator 28 exceeds the gate voltage threshold input to the negative terminal.
- the de-sat voltage threshold is exceeded, an output is generated by the AND circuit, and it is possible to detect that the IGBT 11 is short-circuited.
- the AND circuit and comparators 28 and 29 have a function as a determination circuit that detects that the IGBT 11 is short-circuited.
- the short circuit detection circuit 20 can secure mask time by detecting that the gate voltage exceeds a predetermined gate voltage threshold.
- FIG. 2 shows a time chart when the IGBT 11 is turned on.
- the vertical axis of FIG. 2 is, from top to bottom, (a) gate voltage Vg of IGBT 11, (b) collector-emitter voltage Vce of IGBT 11, (c) desaturation voltage Vd, (d) on/off state of switch 26, ( e) It shows the on/off state of the MOSFET 23, and the horizontal axis shows time.
- the collector-emitter voltage Vce of the IGBT 11 drops to the saturation voltage after it is turned on. Then, the charging voltage of the capacitor 14 connected in parallel between the collector and emitter of the IGBT 11 is clamped to the same magnitude as the IGBT 311 saturation voltage. At this time, the constant current from the constant current source 27 flows to the IGBT 11 via the diode 12. Therefore, under normal conditions, as shown by the solid lines Vg1, Vce1, and Vd1 in FIGS. 2(a) to (c), the collector-emitter voltage Vce1 decreases to the saturation voltage, and the desaturation voltage Vd1 stops increasing.
- the gate voltage Vg1 stops increasing and becomes a substantially constant value lower than the gate voltage threshold X1. Thereafter, after the gate voltage Vg1 resumes rising, it becomes a substantially constant value higher than the gate voltage threshold X1, but at this time, the desaturation voltage Vd1 becomes an almost constant value that is lower than the desaturation voltage threshold Y1. . Under normal conditions, Vd1>Y1 and Vg1>X1 are not satisfied, so the AND circuit included in the short circuit detection circuit 20 does not output an output indicating that the IGBT 11 is short-circuited.
- the period during which the gate voltage detected after the IGBT 11 is turned on is maintained at a constant voltage is a mirror period, and the gate voltage during the mirror period is the mirror voltage.
- the gate voltage threshold X1 is set to a value higher than the mirror voltage of the IGBT 11.
- the collector-emitter voltage Vce becomes unsaturated after the IGBT 11 is turned on, and the charging voltage of the capacitor 14 is no longer clamped to the saturated voltage. That is, when the collector-emitter voltage Vce becomes unsaturated, the potential on the cathode side of the diode 12 rises accordingly, and the constant current from the constant current source 27 flows to the capacitor 14 side. If a constant current is supplied, the capacitor 14 will be further charged. Therefore, in the event of a short circuit, the collector-emitter voltage Vce2 does not decrease and becomes unsaturated, as shown by broken lines Vg2, Vce2, and Vd2 in FIGS.
- gate voltage Vg2 exceeds gate voltage threshold X1
- desaturation voltage Vd2 exceeds desaturation voltage threshold Y1.
- Vg2>X1 and Vd2>Y1 it is possible to detect that the IGBT 11 is short-circuited by the output from the AND circuit included in the short-circuit detection circuit 20.
- mask time can be ensured by detecting that the gate voltage exceeds a predetermined gate voltage threshold. Since it is not necessary to adjust the mask time for short circuit detection due to the design of the capacitor 14, the charging time of the capacitor 14 can be designed to be short by increasing the current supplied to the capacitor 14 from the constant current source 27. As a result, a short circuit in the IGBT 11 can be quickly detected.
- FIG. 3 shows a circuit diagram including a desaturation detection circuit 10 and a short circuit detection circuit 20 according to the second embodiment.
- the desaturation detection circuit 10 differs from the desaturation detection circuit 1 shown in FIG. 1 in that it includes a charging resistor 17.
- the charging resistor 17 is connected to the capacitor 14 through a connection wiring that connects the desaturation resistor 13 and the desaturation voltage terminal 21 .
- FIG. 4 shows a time chart during switching of the IGBT 11.
- the vertical axis of FIG. 4 is, from top to bottom, (a) gate voltage Vg of IGBT 11, (b) collector-emitter voltage Vce of IGBT 11, (c) desaturation voltage Vd, (d) on/off state of switch 26, ( e) It shows the on/off state of the MOSFET 23, and the horizontal axis shows time.
- the gate voltage Vg starts to rise.
- the MOSFET 23 is switched from the on state to the off state and the switch 26 is switched from the off state to the on state, current is supplied from the constant current source 27 to the capacitor 14.
- the desaturation voltage Vd starts to rise.
- the rate of change of the desaturation voltage Vd becomes faster in the case shown in FIG. 4(c) than in the case shown in FIG. 2(c). Note that when the charging resistor 17 is provided, the constant current source 27 does not need to be provided because the capacitor 14 can be quickly charged without supplying current to the capacitor 14 from the constant current source 27.
- the collector-emitter voltage Vce1 decreases to the saturation voltage, as shown by the solid lines Vg1, Vce1, and Vd1 in FIGS. 4(a) to 4(c), and the gate voltage Vg1 stops increasing and becomes a substantially constant value lower than the gate voltage threshold X2.
- the desaturation voltage Vd1 since the desaturation voltage Vd1 has a faster rate of change compared to the first embodiment, it temporarily exceeds the desaturation voltage threshold Y2, but as the collector-emitter voltage Vce1 decreases, it becomes lower than the desaturation voltage threshold Y2. It becomes an almost constant value at low values.
- Vd1>Y2 Even if Vd1>Y2 is satisfied, Vg1>X2 is not satisfied, so the AND circuit included in the short-circuit detection circuit 20 does not output an output indicating that the IGBT 11 is short-circuited. Thereafter, after the gate voltage Vg1 resumes rising, it becomes a substantially constant value higher than the gate voltage threshold X1, but at this time, the desaturation voltage Vd1 becomes an almost constant value that is lower than the desaturation voltage threshold Y1. . Under normal conditions, Vd1>Y1 and Vg1>X1 are not satisfied, so the AND circuit included in the short circuit detection circuit 20 does not output an output indicating that the IGBT 11 is short-circuited.
- the collector-emitter voltage Vce2 does not decrease and is in an unsaturated state, as shown by broken lines Vg2, Vce2, and Vd2 in FIGS. 4(a) to (c).
- the gate voltage Vg2 and the desaturation voltage Vd2 do not stop rising.
- gate voltage Vg2 exceeds gate voltage threshold X2
- desaturation voltage Vd exceeds desaturation voltage threshold Y2.
- Vg2>X2 and Vd2>Y2 it is possible to detect that the IGBT 11 is short-circuited by the output from the AND circuit included in the short-circuit detection circuit 20.
- masking time can be ensured by detecting that the gate voltage exceeds a predetermined gate voltage threshold. Therefore, as a result of providing the charging resistor 17 and designing the charging time of the capacitor 14 to be shorter, even if the desaturation voltage Vd once exceeds the desaturation voltage threshold Y2 during the normal operation of the IGBT 11, the IGBT 11 will not be short-circuited. It is possible to prevent false detection. Therefore, a design that can more quickly detect a short circuit in the IGBT 11, such as speeding up the charging of the capacitor 14, becomes possible.
- FIG. 5 shows a circuit diagram including a desaturation detection circuit 10 and a short circuit detection circuit 30 according to the third embodiment.
- the short circuit detection circuit 30 is different from the short circuit detection circuit 20 in that it includes a wiring 31 including a gate of a MOSFET 23 and a NOT circuit 32 that inverts the output of a comparator 29.
- the MOSFET 23 can be turned off at the timing when the comparator 29 outputs. That is, the wiring 31 functions as a charging timing control circuit that controls the timing to start charging the capacitor 14 when the gate voltage input from the gate voltage terminal 22 exceeds the gate voltage threshold.
- the charging resistor 17 and the constant current source 27 may be provided.
- FIG. 6 shows a time chart during switching of the IGBT 11.
- the vertical axis of FIG. 6 shows, from top to bottom, (a) gate voltage Vg of IGBT 11, (b) collector-emitter voltage Vce of IGBT 11, (c) desaturation voltage Vd, (d) on/off state of switch 26, ( e) It shows the on/off state of the MOSFET 23, and the horizontal axis shows time.
- the gate voltage Vg exceeds the gate voltage threshold X3 at time t31, as shown by broken lines Vg2, Vce2, and Vd2 in FIGS. 6(a) to (c). Therefore, at time t31, the MOSFET 23 is switched from the on state to the off state, the switch 26 is switched from the off state to the on state, and current is supplied from the constant current source 27 to the capacitor 14. As a result, the desaturation voltage Vd starts to rise.
- Vg2>X3 and Vd2>Y3 it is possible to detect that the IGBT 11 is short-circuited by the output from the AND circuit included in the short-circuit detection circuit 30.
- charging of the capacitor 14 is started at the timing when the gate voltage exceeds a predetermined gate voltage threshold. Therefore, during normal operation of the IGBT 11, the desaturation voltage Vd starts to rise with the collector-emitter voltage Vce1 decreasing, and the desaturation voltage Vd remains approximately constant with almost no increase, suppressing the desaturation voltage from exceeding the desaturation voltage threshold Y3. be done. As a result, it is possible to prevent erroneous detection that the IGBT 11 is short-circuited. Therefore, a design that can more quickly detect a short circuit in the IGBT 11, such as speeding up the charging of the capacitor 14, becomes possible.
- FIG. 7 shows a circuit diagram including a desaturation detection circuit 10 and a short circuit detection circuit 40 according to the fourth embodiment.
- the short circuit detection circuit 40 differs from the short circuit detection circuit 20 in that it does not include the gate voltage terminal 22 and includes a timer 41 instead of the comparator 29.
- the timer 41 measures the time that has passed since a predetermined timing, and outputs to the AND circuit that the elapsed time measured by the timer 41 has exceeded the predetermined time.
- the AND circuit, the comparator 28, and the timer 41 have a function as a determination circuit that detects that the IGBT 11 is short-circuited. This determination circuit detects that the IGBT 11 is short-circuited when the elapsed time measured by the timer 41 exceeds a predetermined time and the desaturation voltage exceeds a predetermined desaturation voltage threshold.
- FIG. 8 shows a time chart during switching of the IGBT 11.
- the vertical axis of FIG. 8 is, from top to bottom, (a) gate voltage Vg of IGBT 11, (b) collector-emitter voltage Vce of IGBT 11, (c) desaturation voltage Vd, (d) on/off state of switch 26, ( e) shows the on/off state of the MOSFET 23, (f) shows the valid/invalid state of the timer, and the horizontal axis shows time.
- the gate voltage Vg is also included for reference, and the short circuit detection circuit 40 does not acquire the gate voltage Vg.
- the gate voltage Vg starts to rise.
- the MOSFET 23 is switched from the on state to the off state and the switch 26 is switched from the off state to the on state, current is supplied from the constant current source 27 to the capacitor 14.
- the desaturation voltage Vd starts to rise.
- the timer 41 is set to time t41 as a predetermined timing, and measures the time that has passed since time t41.
- the collector-emitter voltage Vce1 decreases to the saturation voltage, and the desaturation voltage Vd1 increases, as shown by the solid lines Vce1 and Vd1 in FIGS. 8(b) and 8(c). stops and becomes a substantially constant value lower than the desaturation voltage threshold Y4.
- Time t42 is the point in time when a predetermined time has elapsed from time t41.
- the masking time can be secured by the timer 41. Since it is not necessary to adjust the mask time for short circuit detection due to the design of the capacitor 14, the charging time of the capacitor 14 can be designed to be short by increasing the current supplied to the capacitor 14 from the constant current source 27. Therefore, a short circuit in the IGBT 11 can be quickly detected.
- the gate voltage threshold when setting the gate voltage threshold, an example has been described in which the gate voltage threshold is set to a value higher than the mirror voltage Xm of the IGBT 11, but the invention is not limited to this. Like the gate voltage threshold X5 shown in FIG. 9, it may be set to a value lower than the mirror voltage Xm of the IGBT 11, or the gate voltage threshold may be set to the mirror voltage Xm.
- a short circuit is detected when the desaturation voltage exceeds the desaturation voltage threshold, but the present invention is not limited thereto.
- time t52 after the filter time has elapsed from time t51, which is the time when gate voltage Vg2 exceeded gate voltage threshold X1, desaturation voltage Vd2 exceeds desaturation voltage threshold Y1. It may also be possible to detect a short circuit.
- the desaturation voltage Vd2 exceeds the desaturation voltage threshold Y1 earlier than time t52, but a short circuit is detected for the first time at time t52.
- the filter time can be set.
- the predetermined timing is set when the gate voltage Vg exceeds a predetermined gate voltage threshold.
- the determination circuit is configured to detect that the semiconductor switching element is short-circuited when the elapsed time measured by the timer exceeds a predetermined time and the desaturation voltage exceeds a predetermined desaturation voltage threshold.
- the insulated gate semiconductor switching element is an IGBT
- the present invention is not limited thereto.
- the short circuit detection circuit according to each of the embodiments described above can be suitably used to detect short circuits in various insulated gate semiconductor switching elements such as IGBTs, MOSFETs, and the like.
- the short circuit detection circuits 20, 30, and 40 are short circuit detection circuits that detect short circuits in insulated gate type semiconductor switching elements (for example, IGBT 11), and are short circuit detection circuits that detect short circuits in insulated gate type semiconductor switching elements (for example, IGBT11), and are short circuit detection circuits for detecting short circuits in insulated gate type semiconductor switching elements (for example, IGBT11). 12) and a capacitor 14 whose one end is connected to the anode side of the diode and the other end is connected to the low potential side terminal of the semiconductor switching element.
- the short circuit detection circuits 20 and 30 have a gate voltage terminal 22 that acquires the gate voltage Vg of the semiconductor switching element, a desaturation voltage terminal 21 that acquires the voltage of the capacitor 14 as the desaturation voltage Vd, and a gate voltage that is set to a predetermined gate voltage threshold (for example, the present invention includes a determination circuit that detects that the semiconductor switching element is short-circuited based on the fact that the de-sat voltage Vd exceeds a predetermined de-sat voltage threshold (for example, Y1). By detecting that the gate voltage exceeds a predetermined gate voltage threshold, the masking time can be secured, so that the charging time of the capacitor can be designed to be short. As a result, a short circuit in the semiconductor switching element can be quickly detected, and, for example, it is possible to contribute to the prompt protection of the semiconductor switching element when the semiconductor switching element is short-circuited.
- a predetermined de-sat voltage threshold for example, Y1
- the desaturation detection circuit may include a resistive element (for example, a charging resistor 17) connected to the capacitor 14 to increase the rate of change of the desaturation voltage when switching the semiconductor switching element. good.
- the charging time of the capacitor 14 can be further shortened.
- the short circuit detection circuit may further include a charging timing control circuit (for example, wiring 31) that controls the start timing of charging the capacitor 14 based on the gate voltage Vg, for example, like the short circuit detection circuit 20.
- the charging timing control circuit preferably controls the start timing when the gate voltage Vg exceeds a predetermined gate voltage threshold.
- the short circuit detection circuit may further include a timer that measures the time that has passed since a predetermined timing.
- the predetermined timing is preferably when the gate voltage exceeds a predetermined gate voltage threshold.
- the determination circuit is configured to detect that the semiconductor switching element is short-circuited when the elapsed time measured by the timer exceeds a predetermined time and the desaturation voltage exceeds a predetermined desaturation voltage threshold. Good too.
- the gate voltage threshold may be higher or lower than the mirror voltage of the semiconductor switching element.
- the short circuit detection circuit 40 includes a desaturation voltage terminal 21 that acquires the voltage of the capacitor 14 as a desaturation voltage Vd, a timer 41 that measures the time that has elapsed from a predetermined timing, and a timer 41 that measures the elapsed time that has exceeded the predetermined time and , a determination circuit that detects that the semiconductor switching element is short-circuited when the desaturation voltage Vd exceeds a predetermined desaturation voltage threshold (for example, Y4). Since the masking time can be secured by the timer 41, the capacitor charging time can be designed to be short. As a result, a short circuit in the semiconductor switching element can be quickly detected, and, for example, it is possible to contribute to the prompt protection of the semiconductor switching element when the semiconductor switching element is short-circuited.
- a predetermined desaturation voltage threshold for example, Y4
- a short circuit detection circuit (20, 30) that is applied to a desaturation detection circuit (1, 10) comprising a capacitor (14) connected to a capacitor (14), and detects a short circuit of the semiconductor switching element, a gate voltage terminal (21) for acquiring the gate voltage of the semiconductor switching element; a desaturation voltage terminal (22) for obtaining a desaturation voltage corresponding to the voltage of the capacitor;
- a determination circuit (28, 29) that detects that the semiconductor switching element is short-circuited based on that the gate voltage exceeds a predetermined gate voltage threshold and that the desaturation voltage exceeds a predetermined desaturation voltage threshold.
- a short circuit detection circuit comprising; [Configuration 2] The short circuit detection circuit according to configuration 1, wherein the desaturation detection circuit includes a resistance element (17) that is connected to the capacitor and increases the rate of change of the desaturation voltage when switching the semiconductor switching element. [Configuration 3] further comprising a charging timing control circuit (31) that controls a start timing of charging the capacitor based on the gate voltage, The short circuit detection circuit according to configuration 1 or 2, wherein the charging timing control circuit controls the start timing when the gate voltage exceeds a predetermined gate voltage threshold.
- [Configuration 4] It further includes a timer that measures the time elapsed from a predetermined timing, The predetermined timing is when the gate voltage exceeds a predetermined gate voltage threshold, Configurations 1 to 3 in which the determination circuit detects that the semiconductor switching element is short-circuited when the elapsed time measured by the timer exceeds a predetermined time and the desaturation voltage exceeds a predetermined desaturation voltage threshold.
- [Configuration 5] 5 5.
- a short circuit detection circuit (40) that is applied to a desaturation detection circuit (1) comprising a capacitor (14) connected to a capacitor (14) and detects a short circuit of the semiconductor switching element, a desaturation voltage terminal (22) for obtaining a desaturation voltage corresponding to the voltage of the capacitor; a timer (41) that measures the time elapsed from a predetermined timing; a determination circuit (28, 41) that detects that the semiconductor switching element is short-circuited when the elapsed time measured by the timer exceeds a predetermined time and the desaturation voltage exceeds a predetermined desaturation voltage threshold;
- a short circuit detection circuit comprising:
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Conversion In General (AREA)
Abstract
短絡検出回路(20,30)は、絶縁ゲート型の半導体スイッチング素子(11)の高電位側端子にカソードが接続されたダイオード(12)と、一端がダイオードのアノード側に接続され、他端が半導体スイッチング素子の低電位側端子に接続されたコンデンサ(14)と、を備えるデサット検出回路(1,10)に適用され、半導体スイッチング素子(11)の短絡を検出し、半導体スイッチング素子のゲート電圧を取得するゲート電圧端子(21)と、コンデンサの電圧に対応するデサット電圧を取得するデサット電圧端子(22)と、ゲート電圧が所定のゲート電圧閾値を超えたことと、デサット電圧が所定のデサット電圧閾値を超えたことに基づいて、半導体スイッチング素子が短絡したことを検出する判定回路(28,29)と、を備える。
Description
本出願は、2022年3月24日に出願された日本出願番号2022-048713号に基づくもので、ここにその記載内容を援用する。
絶縁ゲート型の半導体スイッチング素子の短絡を検出する短絡検出回路に関する。
半導体スイッチング素子の短絡を検出するためのデサット検出回路に接続され、短絡を検出して、過電流により半導体スイッチング素子が損傷することを回避する保護機能を備える半導体スイッチング素子の駆動装置が知られている。特許文献1では、IGBTの駆動装置は、ダイオードと、コンデンサとを備えるデサット検出回路に接続され、コンデンサを充電するための定電流源を備えている。IGBTのオン動作中に短絡が発生した際にIGBTを保護するために、駆動信号がオン信号である場合に、定電流源によりコンデンサを充電し、飽和電圧に一致したタイミング以後にさらに大きな定電流源で充電する。
特許文献1では、コンデンサ充電における遅延時間を利用して、短絡検出のマスク時間を調整するため、コンデンサの充電時間を短縮することが難しい。このため、IGBTの短絡を検出する時間の短縮に制限がある。
上記に鑑み、本開示は、半導体スイッチング素子の短絡をより速やかに検出する技術を提供することを目的とする。
本開示は、絶縁ゲート型の半導体スイッチング素子と、前記半導体スイッチング素子の高電位側端子にカソードが接続されたダイオードと、一端が前記ダイオードのアノード側に接続され、他端が前記半導体スイッチング素子の低電位側端子に接続されたコンデンサと、を備えるデサット検出回路に適用され、前記半導体スイッチング素子の短絡を検出する、第1および第2の短絡検出回路を提供する。第1の短絡検出回路は、前記半導体スイッチング素子のゲート電圧を取得するゲート電圧端子と、前記コンデンサの電圧に対応するデサット電圧を取得するデサット電圧端子と、前記ゲート電圧が所定のゲート電圧閾値を超えたことと、前記デサット電圧が所定のデサット電圧閾値を超えたことに基づいて、前記半導体スイッチング素子が短絡したことを検出する判定回路と、を備える。
本開示に係る第1の短絡検出回路は、半導体スイッチング素子のゲート電圧を取得するゲート電圧端子と、コンデンサの電圧に対応するデサット電圧を取得するデサット電圧端子を備える。ゲート電圧が所定のゲート電圧閾値を超えたことを検出することにより、マスク時間を確保できるため、コンデンサの設計により短絡検出のマスク時間を調整する必要がなく、コンデンサの充電時間を短く設計することができる。すなわち、ゲート電圧が所定のゲート電圧閾値を超えたことと、デサット電圧が所定のデサット電圧閾値を超えたことに基づいて、半導体スイッチング素子が短絡したことを検出することにより、コンデンサの充電時間を短縮できるため、半導体スイッチング素子の短絡を速やかに検出することができる。その結果、例えば、半導体スイッチング素子の短絡時における速やかな半導体スイッチング素子の保護に寄与することができる。
本開示に係る第2の検出回路は、前記コンデンサの電圧に対応するデサット電圧を取得するデサット電圧端子と、所定のタイミングから経過した時間を測定するタイマーと、前記タイマーが測定する経過時間が所定時間を超え、かつ、前記デサット電圧が所定のデサット電圧閾値を超えた場合に、前記半導体スイッチング素子が短絡したことを検出する判定回路と、を備える。
第2の短絡検出回路によれば、タイマーによりマスク時間を確保できるため、コンデンサの設計により短絡検出のマスク時間を調整する必要がなく、コンデンサの充電時間を短く設計することができる。すなわち、タイマーが測定する経過時間が所定時間を超え、かつ、デサット電圧が所定のデサット電圧閾値を超えたことに基づいて、半導体スイッチング素子が短絡したことを検出することにより、コンデンサの充電時間を短縮できるため、半導体スイッチング素子の短絡を速やかに検出することができる。その結果、例えば、半導体スイッチング素子の短絡時における速やかな半導体スイッチング素子の保護に寄与することができる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る半導体スイッチング素子の短絡検出回路を含む回路図であり、
図2は、第1実施形態に係る半導体スイッチング素子の短絡検出について説明する図であり、
図3は、第2実施形態に係る半導体スイッチング素子の短絡検出回路を含む回路図であり、
図4は、第2実施形態に係る半導体スイッチング素子の短絡検出について説明する図であり、
図5は、第3実施形態に係る半導体スイッチング素子の短絡検出回路を含む回路図であり、
図6は、第3実施形態に係る半導体スイッチング素子の短絡検出について説明する図であり、
図7は、第4実施形態に係る半導体スイッチング素子の短絡検出回路を含む回路図であり、
図8は、第4実施形態に係る半導体スイッチング素子の短絡検出について説明する図であり、
図9は、変形例に係る半導体スイッチング素子の短絡検出について説明する図であり、
図10は、変形例に係る半導体スイッチング素子の短絡検出について説明する図である。
(第1実施形態)
図1に、絶縁ゲート側の半導体スイッチング素子の一例であるIGBT11に接続されたデサット(DESAT)検出回路1と、短絡検出回路20とを含む回路図を示す。IGBT11は、例えば、インバータ回路を構成するスイッチング素子として用いられるIGBTであり、還流ダイオードと並列接続されていてもよい。短絡検出回路20は、例えば、IGBT11を駆動する駆動ICに構成される回路であってもよい。
図1に、絶縁ゲート側の半導体スイッチング素子の一例であるIGBT11に接続されたデサット(DESAT)検出回路1と、短絡検出回路20とを含む回路図を示す。IGBT11は、例えば、インバータ回路を構成するスイッチング素子として用いられるIGBTであり、還流ダイオードと並列接続されていてもよい。短絡検出回路20は、例えば、IGBT11を駆動する駆動ICに構成される回路であってもよい。
デサット検出回路1は、ダイオード12と、デサット抵抗13と、コンデンサ14とを備えている。短絡検出回路20は、デサット電圧端子21と、ゲート電圧端子22と、MOSFET23と、第1抵抗24および第2抵抗25と、スイッチ26と、定電流源27と、コンパレータ28,29とを備えている。短絡検出回路20は、デサット電圧端子21によりデサット検出回路1に接続され、ゲート電圧端子22によりIGBT11のゲートに接続されている。
IGBT11のコレクタはダイオード12に接続され、エミッタはコンデンサ14,MOSFET23、第2抵抗25に接続されている。ダイオード12は、デサット抵抗13を介してデサット電圧端子21とIGBT11のコレクタとを接続している。ダイオード12は、デサット電圧端子21からIGBT11に向かう方向を順方向とするダイオードである。コンデンサ14の一端は、デサット抵抗13とデサット電圧端子21との間を接続する接続配線に接続され、デサット抵抗13を介してダイオード12のアノード側に接続されている。コンデンサ14の他端は、IGBT11のエミッタに接続されている。
短絡検出回路20は、デサット電圧端子21によりデサット検出回路1と接続することにより、コンデンサ14の電圧に対応するデサット電圧を取得できる。デサット電圧をモニタすることにより、コンデンサ14の充電電圧をモニタできる。短絡検出回路20は、ゲート電圧端子22によりIGBT11のゲートと接続することにより、IGBT11のゲート電圧を取得できる。
第1抵抗24と第2抵抗25は直列接続され、第1抵抗24の一端はデサット電圧端子21に接続されるとともにスイッチ26を介して定電流源27と接続され、他端は第2抵抗25に接続されている。第2抵抗25の一端は第1抵抗24に接続され、他端はIGBT11のエミッタに接続されている。MOSFET23は、ドレインが第1抵抗24とデサット電圧端子21との間を接続する接続配線に接続されており、ソースがIGBT11のエミッタに接続されている。スイッチ26がオン状態かつMOSFET23がオフ状態である場合に、コンデンサ14が充電される。コンデンサ14が充電された状態で、MOSFET23がターンオンされると、コンデンサ14が放電される。
コンパレータ28のプラス端子は、第1抵抗24と第2抵抗25との間に接続されている。コンパレータ28のマイナス端子は、デサット電圧閾値を与えるコンデンサ閾値電圧源(図示していない)に接続されている。コンパレータ29のプラス端子は、ゲート電圧端子22に接続されている。コンパレータ29のマイナス端子は、ゲート電圧閾値を与えるゲート閾値電圧源(図示していない)に接続されている。コンパレータ28,29の出力端子はAND回路で接続されている。
デサット検出回路1は、IGBT11の高電位側端子であるコレクタにカソードが接続されたダイオード12と、一端がダイオード12のアノード側に接続され、他端がIGBT11の低電位側端子であるエミッタに接続されたコンデンサ14と、を備える。短絡検出回路20は、デサット検出回路1に適用され、IGBRT11が短絡したことを検出する機能を有する。短絡検出回路20によれば、デサット電圧端子21と、ゲート電圧端子22と、AND回路で接続されたコンパレータ28,29とによって、IGBT11が短絡したことを検出できる。具体的には、コンパレータ29のプラス端子に入力されるゲート電圧が、マイナス端子に入力されるゲート電圧閾値を超え、かつ、コンパレータ28のプラス端子に入力されるデサット電圧が、マイナス端子に入力されるデサット電圧閾値を超えた場合にAND回路による出力が成され、IGBT11が短絡したことを検出することができる。AND回路およびコンパレータ28,29は、IGBT11が短絡したことを検出する判定回路としての機能を有する。短絡検出回路20では、ゲート電圧が所定のゲート電圧閾値を超えたことを検出することにより、マスク時間を確保できる。
図2に、IGBT11のターンオン時におけるタイムチャートを示す。図2の縦軸は、上から順に、(a)IGBT11のゲート電圧Vg、(b)IGBT11のコレクタ-エミッタ間の電圧Vce、(c)デサット電圧Vd、(d)スイッチ26のオンオフ状態、(e)MOSFET23のオンオフ状態を示し、横軸は時間を示す。
図2に示すように、IGBT11のターンオン時には、ゲート電圧Vgが上昇を開始する。時刻t11において、MOSFET23がオン状態からオフ状態に切り替わり、スイッチ26がオフ状態からオン状態に切り替わると、定電流源27からコンデンサ14に電流供給が行われる。これにより、デサット電圧Vdが上昇を開始する。
IGBT11が短絡故障していない通常時の場合には、IGBT11については、ターンオン後にコレクタ-エミッタ間の電圧Vceが飽和電圧まで降下する。そうすると、IGBT11のコレクタエミッタ間に並列に接続したコンデンサ14の充電電圧は、IGBT311飽和電圧と同じ大きさでクランプされる。このとき、定電流源27からの定電流は、ダイオード12を介してIGBT11へと流れる。このため、通常時には、図2(a)~(c)に実線Vg1,Vce1,Vd1で示すように、コレクタ-エミッタ間の電圧Vce1が飽和電圧まで低下することにより、デサット電圧Vd1の上昇が停止し、デサット電圧閾値Y1よりも低い値で略一定値となる。また、ゲート電圧Vg1の上昇が停止し、ゲート電圧閾値X1よりも低い値で略一定値となる。その後、ゲート電圧Vg1の上昇が再開した後、ゲート電圧閾値X1よりも高い値で略一定値となるが、このときにはデサット電圧Vd1はデサット電圧閾値Y1よりも低い値で略一定値となっている。通常時には、Vd1>Y1かつVg1>X1を満たす状態とならないため、短絡検出回路20が備えるAND回路からは、IGBT11が短絡したこと示す出力が成されない。なお、IGBT11のターンオン後に検出されるゲート電圧が一定電圧に維持される期間がミラー期間であり、ミラー期間におけるゲート電圧がミラー電圧である。ゲート電圧閾値X1は、IGBT11のミラー電圧より高い値に設定されている。
これに対し、IGBT11が短絡故障している短絡時の場合には、IGBT11のターンオン後にコレクタ-エミッタ間の電圧Vceが不飽和となり、コンデンサ14の充電電圧は飽和電圧にクランプされなくなる。つまり、コレクタ-エミッタ間の電圧Vceが不飽和となると、それに応じてダイオード12のカソード側の電位が上昇し、定電流源27からの定電流はコンデンサ14側へと流れる。定電流が供給されればコンデンサ14にさらに充電されていくこととなる。このため、短絡時には、図2(a)~(c)に破線Vg2,Vce2,Vd2で示すように、コレクタ-エミッタ間の電圧Vce2が低下せず、不飽和状態となることにより、ゲート電圧Vg2およびデサット電圧Vd2の上昇が停止しない。その結果、ゲート電圧Vg2はゲート電圧閾値X1を超え、デサット電圧Vd2はデサット電圧閾値Y1を超える。時刻t12において、Vg2>X1かつVd2>Y1となると、短絡検出回路20が備えるAND回路からの出力により、IGBT11が短絡したことを検出できる。
第1実施形態によれば、ゲート電圧が所定のゲート電圧閾値を超えたことを検出することにより、マスク時間を確保できる。コンデンサ14の設計により短絡検出のマスク時間を調整する必要がないため、定電流源27からコンデンサ14に供給する電流を増大させる等により、コンデンサ14の充電時間を短く設計することができる。その結果、IGBT11の短絡を速やかに検出できる。
(第2実施形態)
図3に、第2実施形態に係るデサット検出回路10と、短絡検出回路20とを含む回路図を示す。デサット検出回路10は、充電抵抗17を備える点において、図1に示すデサット検出回路1と相違している。充電抵抗17は、デサット抵抗13とデサット電圧端子21との間を接続する接続配線においてコンデンサ14と接続されている。コンデンサ14に接続される抵抗素子として充電抵抗17を備えることにより、IGBT11を切替えた際のコンデンサ14における電圧の変化速度を速くすることができる。
図3に、第2実施形態に係るデサット検出回路10と、短絡検出回路20とを含む回路図を示す。デサット検出回路10は、充電抵抗17を備える点において、図1に示すデサット検出回路1と相違している。充電抵抗17は、デサット抵抗13とデサット電圧端子21との間を接続する接続配線においてコンデンサ14と接続されている。コンデンサ14に接続される抵抗素子として充電抵抗17を備えることにより、IGBT11を切替えた際のコンデンサ14における電圧の変化速度を速くすることができる。
図4に、IGBT11のスイッチング時におけるタイムチャートを示す。図4の縦軸は、上から順に、(a)IGBT11のゲート電圧Vg、(b)IGBT11のコレクタ-エミッタ間の電圧Vce、(c)デサット電圧Vd、(d)スイッチ26のオンオフ状態、(e)MOSFET23のオンオフ状態を示し、横軸は時間を示す。
図4に示すように、IGBT11のターンオン時には、ゲート電圧Vgが上昇を開始する。時刻t21において、MOSFET23がオン状態からオフ状態に切り替わり、スイッチ26がオフ状態からオン状態に切り替わると、定電流源27からコンデンサ14に電流供給が行われる。これにより、デサット電圧Vdが上昇を開始する。充電抵抗17が設けられていることにより、図4(c)に示す場合は、図2(c)に示す場合と比較してデサット電圧Vdの変化速度が速くなる。なお、充電抵抗17が設けられている場合には、定電流源27からコンデンサ14に電流供給しなくてもコンデンサ14を迅速に充電できるため、定電流源27は備えられていなくてもよい。
IGBT11が短絡故障していない通常時には、図4(a)~(c)に実線Vg1,Vce1,Vd1で示すように、コレクタ-エミッタ間の電圧Vce1が飽和電圧まで低下することにより、ゲート電圧Vg1の上昇が停止し、ゲート電圧閾値X2よりも低い値で略一定値となる。一方、デサット電圧Vd1は、第1実施形態と比較して変化速度が速いため、一旦、デサット電圧閾値Y2を超えるが、コレクタ-エミッタ間の電圧Vce1が低下することにより、デサット電圧閾値Y2よりも低い値で略一定値となる。Vd1>Y2を満たす状態となっても、Vg1>X2を満たす状態とならないため、短絡検出回路20が備えるAND回路からは、IGBT11が短絡したこと示す出力が成されない。その後、ゲート電圧Vg1の上昇が再開した後、ゲート電圧閾値X1よりも高い値で略一定値となるが、このときにはデサット電圧Vd1はデサット電圧閾値Y1よりも低い値で略一定値となっている。通常時には、Vd1>Y1かつVg1>X1を満たす状態とならないため、短絡検出回路20が備えるAND回路からは、IGBT11が短絡したこと示す出力が成されない。
これに対し、IGBT11が短絡故障している短絡時には、図4(a)~(c)に破線Vg2,Vce2,Vd2で示すように、コレクタ-エミッタ間の電圧Vce2が低下せず、不飽和状態となることにより、ゲート電圧Vg2およびデサット電圧Vd2の上昇が停止しない。その結果、ゲート電圧Vg2はゲート電圧閾値X2を超え、デサット電圧Vdはデサット電圧閾値Y2を超える。時刻t22において、Vg2>X2かつVd2>Y2となると、短絡検出回路20が備えるAND回路からの出力により、IGBT11が短絡したことを検出できる。
第2実施形態によれば、ゲート電圧が所定のゲート電圧閾値を超えたことを検出することにより、マスク時間を確保できる。このため、充電抵抗17を設けてコンデンサ14の充電時間をより短く設計した結果、IGBT11の通常時に、デサット電圧Vdがデサット電圧閾値Y2を一旦超えることがあっても、IGBT11が短絡していると誤検出することを防ぐことができる。このため、コンデンサ14への充電を速める等のIGBT11の短絡をより速やかに検出できる設計が可能となる。
(第3実施形態)
図5に、第3実施形態に係るデサット検出回路10と、短絡検出回路30とを含む回路図を示す。短絡検出回路30は、MOSFET23のゲートと、コンパレータ29の出力を反転するNOT回路32を含む配線31を備える点において、短絡検出回路20と相違している。配線31によれば、コンパレータ29の出力があったタイミングで、MOSFET23をターンオフすることができる。すなわち、配線31は、コンデンサ14に充電を開始する開始タイミングを、ゲート電圧端子22から入力されるゲート電圧がゲート電圧閾値を超えた時に制御する充電タイミング制御回路として機能する。なお、充電抵抗17と、定電流源27とは、少なくともいずれか一方が備えられていればよい。
図5に、第3実施形態に係るデサット検出回路10と、短絡検出回路30とを含む回路図を示す。短絡検出回路30は、MOSFET23のゲートと、コンパレータ29の出力を反転するNOT回路32を含む配線31を備える点において、短絡検出回路20と相違している。配線31によれば、コンパレータ29の出力があったタイミングで、MOSFET23をターンオフすることができる。すなわち、配線31は、コンデンサ14に充電を開始する開始タイミングを、ゲート電圧端子22から入力されるゲート電圧がゲート電圧閾値を超えた時に制御する充電タイミング制御回路として機能する。なお、充電抵抗17と、定電流源27とは、少なくともいずれか一方が備えられていればよい。
図6に、IGBT11のスイッチング時におけるタイムチャートを示す。図6の縦軸は、上から順に、(a)IGBT11のゲート電圧Vg、(b)IGBT11のコレクタ-エミッタ間の電圧Vce、(c)デサット電圧Vd、(d)スイッチ26のオンオフ状態、(e)MOSFET23のオンオフ状態を示し、横軸は時間を示す。
図6に示すように、IGBT11のターンオン時には、ゲート電圧Vgが上昇を開始する。IGBT11が短絡故障していない通常時には、図6(a)~(c)に実線Vg1,Vce1,Vd1で示すように、ゲート電圧Vg1がゲート電圧閾値X3を超えたときには、コレクタ-エミッタ間の電圧Vce1が飽和して低下した状態となっている。このため、デサット電圧Vd1は殆ど上昇せず、デサット電圧閾値Y3よりも低い値で略一定値となる。時刻t33においてVg1>X3を満たす状態となっても、Vd1>Y3を満たす状態とならないため、短絡検出回路30が備えるAND回路からは、IGBT11が短絡したこと示す出力が成されない。
IGBT11が短絡故障している短絡時には、図6(a)~(c)に破線Vg2,Vce2,Vd2で示すように、時刻t31において、ゲート電圧Vgがゲート電圧閾値X3を超える。このため、時刻t31において、MOSFET23がオン状態からオフ状態に切り替わり、スイッチ26がオフ状態からオン状態に切り替わって、定電流源27からコンデンサ14に電流供給が行われる。これにより、デサット電圧Vdが上昇を開始する。時刻t32において、Vg2>X3かつVd2>Y3となると、短絡検出回路30が備えるAND回路からの出力により、IGBT11が短絡したことを検出できる。
第3実施形態によれば、ゲート電圧が所定のゲート電圧閾値を超えたタイミングでコンデンサ14の充電を開始する。このため、IGBT11の通常時には、コレクタ-エミッタ間の電圧Vce1が低下した状態でデサット電圧Vdの上昇が開始され、デサット電圧Vdが殆ど上昇しないまま略一定となり、デサット電圧閾値Y3を超えることが抑制される。その結果、IGBT11が短絡していると誤検出することを防ぐことができる。このため、コンデンサ14への充電を速める等のIGBT11の短絡をより速やかに検出できる設計が可能となる。
(第4実施形態)
図7に、第4実施形態に係るデサット検出回路10と、短絡検出回路40とを含む回路図を示す。短絡検出回路40は、ゲート電圧端子22を備えない点、コンパレータ29に替えてタイマー41を備える点において、短絡検出回路20と相違している。タイマー41は、所定のタイミングから経過した時間を測定し、タイマー41が測定する経過時間が所定時間を超えたことをAND回路に出力する。AND回路とコンパレータ28とタイマー41は、IGBT11が短絡したことを検出する判定回路としての機能を有する。この判定回路は、タイマー41が測定する経過時間が所定時間を超え、かつ、デサット電圧が所定のデサット電圧閾値を超えた場合に、IGBT11が短絡したことを検出する。
図7に、第4実施形態に係るデサット検出回路10と、短絡検出回路40とを含む回路図を示す。短絡検出回路40は、ゲート電圧端子22を備えない点、コンパレータ29に替えてタイマー41を備える点において、短絡検出回路20と相違している。タイマー41は、所定のタイミングから経過した時間を測定し、タイマー41が測定する経過時間が所定時間を超えたことをAND回路に出力する。AND回路とコンパレータ28とタイマー41は、IGBT11が短絡したことを検出する判定回路としての機能を有する。この判定回路は、タイマー41が測定する経過時間が所定時間を超え、かつ、デサット電圧が所定のデサット電圧閾値を超えた場合に、IGBT11が短絡したことを検出する。
図8に、IGBT11のスイッチング時におけるタイムチャートを示す。図8の縦軸は、上から順に、(a)IGBT11のゲート電圧Vg、(b)IGBT11のコレクタ-エミッタ間の電圧Vce、(c)デサット電圧Vd、(d)スイッチ26のオンオフ状態、(e)MOSFET23のオンオフ状態、(f)タイマーの有効無効状態、を示し、横軸は時間を示す。なお、ゲート電圧Vgは参照用に併記したものであり、短絡検出回路40ではゲート電圧Vgを取得しない。
図8に示すように、IGBT11のターンオン時には、ゲート電圧Vgが上昇を開始する。時刻t41において、MOSFET23がオン状態からオフ状態に切り替わり、スイッチ26がオフ状態からオン状態に切り替わると、定電流源27からコンデンサ14に電流供給が行われる。これにより、デサット電圧Vdが上昇を開始する。タイマー41は、時刻t41を所定のタイミングとして設定されており、時刻t41から経過した時間を測定する。
IGBT11が短絡故障していない通常時には、図8(b),(c)に実線Vce1,Vd1で示すように、コレクタ-エミッタ間の電圧Vce1が飽和電圧まで低下することにより、デサット電圧Vd1の上昇が停止し、デサット電圧閾値Y4よりも低い値で略一定値となる。
これに対し、IGBT11が短絡故障している短絡時には、図8(b),(c)に破線Vg2,Vce2,Vd2で示すように、コレクタ-エミッタ間の電圧Vce2が低下せず、不飽和状態となることにより、ゲート電圧Vg2およびデサット電圧Vd2の上昇が停止しない。その結果、デサット電圧Vdはデサット電圧閾値Y4を超える。時刻t42は、時刻t41から所定の時間が経過した時点である。時刻t42において、タイマー41の状態が無効から有効に切り替わった後、時刻t43において、Vd2>Y4となると、短絡検出回路40が備えるAND回路からの出力により、IGBT11が短絡したことを検出できる。
第4実施形態によれば、タイマー41によりマスク時間を確保できる。コンデンサ14の設計により短絡検出のマスク時間を調整する必要がないため、定電流源27からコンデンサ14に供給する電流を増大させる等により、コンデンサ14の充電時間を短く設計することができる。このため、IGBT11の短絡を速やかに検出できる。
(変形例)
上記の各実施形態では、ゲート電圧閾値を設定する場合、IGBT11のミラー電圧Xmより高い値に設定する場合を例示して説明したが、これに限定されない。図9に示すゲート電圧閾値X5のように、IGBT11のミラー電圧Xmより低い値に設定してもよいし、ゲート電圧閾値をミラー電圧Xmに設定してもよい。
上記の各実施形態では、ゲート電圧閾値を設定する場合、IGBT11のミラー電圧Xmより高い値に設定する場合を例示して説明したが、これに限定されない。図9に示すゲート電圧閾値X5のように、IGBT11のミラー電圧Xmより低い値に設定してもよいし、ゲート電圧閾値をミラー電圧Xmに設定してもよい。
また、ゲート電圧Vgがゲート電圧閾値を超え、かつ、デサット電圧がデサット電圧閾値を超えたことを満たす場合に短絡したことを検出する場合には、ゲート電圧Vgがゲート電圧閾値を超えているときには、いつでも、さらにデサット電圧がデサット電圧閾値を超えた状態となったことにより短絡したことを検出したが、これに限定されない。図10に示すように、ゲート電圧Vg2がゲート電圧閾値X1を超えた時点である時刻t51からフィルタ時間経過後の時刻t52から、デサット電圧Vd2がデサット電圧閾値Y1を超えた状態となったことにより短絡したことを検出するようにしてもよい。図10では、デサット電圧Vd2は時刻t52よりも早い時点でデサット電圧閾値Y1を超えているが、時刻t52において、はじめて短絡したことが検出される。
短絡検出回路20,30に、所定のタイミングから経過した時間を測定するタイマーをさらに備えるように構成することにより、フィルタ時間を設定できる。所定のタイミングはゲート電圧Vgが所定のゲート電圧閾値を超えた時に設定される。判定回路は、タイマーが測定する経過時間が所定時間を超え、かつ、デサット電圧が所定のデサット電圧閾値を超えた場合に、半導体スイッチング素子が短絡したことを検出するように構成される。
なお、上記の各実施形態では、絶縁ゲート型の半導体スイッチング素子がIGBTである場合を例示して説明したが、これに限定されない。上記の各実施形態に係る短絡検出回路は、IGBT,MOSFET等に例示される各種の絶縁ゲート型半導体スイッチング素子の短絡の検出に好適に用いることができる。
上記の各実施形態によれば、下記の効果を得ることができる。
短絡検出回路20,30,40は、絶縁ゲート型の半導体スイッチング素子(例えばIGBT11)の短絡を検出する短絡検出回路であり、半導体スイッチング素子の高電位側端子にカソードが接続されたダイオード(例えばダイオード12)と、一端がダイオードのアノード側に接続され、他端が半導体スイッチング素子の低電位側端子に接続されたコンデンサ14と、を備えるデサット検出回路1,10に適用される。
短絡検出回路20,30は、半導体スイッチング素子のゲート電圧Vgを取得するゲート電圧端子22と、コンデンサ14の電圧をデサット電圧Vdとして取得するデサット電圧端子21と、ゲート電圧が所定のゲート電圧閾値(例えばX1)を超えたことと、デサット電圧Vdが所定のデサット電圧閾値(例えばY1)を超えたことに基づいて、半導体スイッチング素子が短絡したことを検出する判定回路と、を備える。ゲート電圧が所定のゲート電圧閾値を超えたことを検出することにより、マスク時間を確保できるため、コンデンサの充電時間を短く設計することができる。その結果、半導体スイッチング素子の短絡を速やかに検出することができ、例えば、半導体スイッチング素子の短絡時における速やかな半導体スイッチング素子の保護に寄与することができる。
デサット検出回路は、例えばデサット検出回路10のように、コンデンサ14に接続され、半導体スイッチング素子を切替えた際のデサット電圧の変化速度を速くする抵抗素子(例えば、充電抵抗17)を備えていてもよい。コンデンサ14の充電時間をより短くすることができる。
短絡検出回路は、例えば短絡検出回路20のように、ゲート電圧Vgに基づいてコンデンサ14に充電を開始する開始タイミングを制御する充電タイミング制御回路(例えば、配線31)をさらに備えていてもよい。この場合、充電タイミング制御回路は、開始タイミングをゲート電圧Vgが所定のゲート電圧閾値を超えた時に制御するものであることが好ましい。
短絡検出回路は、所定のタイミングから経過した時間を測定するタイマーをさらに備えていてもよい。この場合、所定のタイミングは前記ゲート電圧が所定のゲート電圧閾値を超えた時であることが好ましい。また、判定回路は、タイマーが測定する経過時間が所定時間を超え、かつ、デサット電圧が所定のデサット電圧閾値を超えた場合に、半導体スイッチング素子が短絡したことを検出するように構成されていてもよい。
ゲート電圧閾値は、半導体スイッチング素子のミラー電圧より高くてもよいし、低くてもよい。
短絡検出回路40は、コンデンサ14の電圧をデサット電圧Vdとして取得するデサット電圧端子21と、所定のタイミングから経過した時間を測定するタイマー41と、タイマーが測定する経過時間が所定時間を超え、かつ、デサット電圧Vdが所定のデサット電圧閾値(例えばY4)を超えた場合に、半導体スイッチング素子が短絡したことを検出する判定回路と、を備える。タイマー41によりマスク時間を確保できるため、コンデンサの充電時間を短く設計することができる。その結果、半導体スイッチング素子の短絡を速やかに検出することができ、例えば、半導体スイッチング素子の短絡時における速やかな半導体スイッチング素子の保護に寄与することができる。
以下、上述した各実施形態から抽出される特徴的な構成を記載する。
[構成1]
絶縁ゲート型の半導体スイッチング素子(11)の高電位側端子にカソードが接続されたダイオード(12)と、一端が前記ダイオードのアノード側に接続され、他端が前記半導体スイッチング素子の低電位側端子に接続されたコンデンサ(14)と、を備えるデサット検出回路(1,10)に適用され、前記半導体スイッチング素子の短絡を検出する短絡検出回路(20,30)であって、
前記半導体スイッチング素子のゲート電圧を取得するゲート電圧端子(21)と、
前記コンデンサの電圧に対応するデサット電圧を取得するデサット電圧端子(22)と、
前記ゲート電圧が所定のゲート電圧閾値を超えたことと、前記デサット電圧が所定のデサット電圧閾値を超えたことに基づいて、前記半導体スイッチング素子が短絡したことを検出する判定回路(28,29)と、を備える短絡検出回路。
[構成2]
前記デサット検出回路は、前記コンデンサに接続され、前記半導体スイッチング素子を切替えた際の前記デサット電圧の変化速度を速くする抵抗素子(17)を備える構成1に記載の短絡検出回路。
[構成3]
前記ゲート電圧に基づいて前記コンデンサに充電を開始する開始タイミングを制御する充電タイミング制御回路(31)をさらに備え、
前記充電タイミング制御回路は、前記開始タイミングを前記ゲート電圧が所定のゲート電圧閾値を超えた時に制御する構成1または2に記載の短絡検出回路。
[構成4]
所定のタイミングから経過した時間を測定するタイマーをさらに備え、
前記所定のタイミングは前記ゲート電圧が所定のゲート電圧閾値を超えた時であり、
前記判定回路は、前記タイマーが測定する経過時間が所定時間を超え、かつ、前記デサット電圧が所定のデサット電圧閾値を超えた場合に、前記半導体スイッチング素子が短絡したことを検出する構成1~3のいずれかに記載の短絡検出回路。
[構成5]
前記ゲート電圧閾値は、前記半導体スイッチング素子のミラー電圧より高い構成1~4のいずれかに記載の短絡検出回路。
[構成6]
前記ゲート電圧閾値は、前記半導体スイッチング素子のミラー電圧より低い構成1~4のいずれかに記載の短絡検出回路。
[構成7]
絶縁ゲート型の半導体スイッチング素子(11)の高電位側端子にカソードが接続されたダイオード(12)と、一端が前記ダイオードのアノード側に接続され、他端が前記半導体スイッチング素子の低電位側端子に接続されたコンデンサ(14)と、を備えるデサット検出回路(1)に適用され、前記半導体スイッチング素子の短絡を検出する短絡検出回路(40)であって、
前記コンデンサの電圧に対応するデサット電圧を取得するデサット電圧端子(22)と、
所定のタイミングから経過した時間を測定するタイマー(41)と、
前記タイマーが測定する経過時間が所定時間を超え、かつ、前記デサット電圧が所定のデサット電圧閾値を超えた場合に、前記半導体スイッチング素子が短絡したことを検出する判定回路(28,41)と、を備える短絡検出回路。
[構成1]
絶縁ゲート型の半導体スイッチング素子(11)の高電位側端子にカソードが接続されたダイオード(12)と、一端が前記ダイオードのアノード側に接続され、他端が前記半導体スイッチング素子の低電位側端子に接続されたコンデンサ(14)と、を備えるデサット検出回路(1,10)に適用され、前記半導体スイッチング素子の短絡を検出する短絡検出回路(20,30)であって、
前記半導体スイッチング素子のゲート電圧を取得するゲート電圧端子(21)と、
前記コンデンサの電圧に対応するデサット電圧を取得するデサット電圧端子(22)と、
前記ゲート電圧が所定のゲート電圧閾値を超えたことと、前記デサット電圧が所定のデサット電圧閾値を超えたことに基づいて、前記半導体スイッチング素子が短絡したことを検出する判定回路(28,29)と、を備える短絡検出回路。
[構成2]
前記デサット検出回路は、前記コンデンサに接続され、前記半導体スイッチング素子を切替えた際の前記デサット電圧の変化速度を速くする抵抗素子(17)を備える構成1に記載の短絡検出回路。
[構成3]
前記ゲート電圧に基づいて前記コンデンサに充電を開始する開始タイミングを制御する充電タイミング制御回路(31)をさらに備え、
前記充電タイミング制御回路は、前記開始タイミングを前記ゲート電圧が所定のゲート電圧閾値を超えた時に制御する構成1または2に記載の短絡検出回路。
[構成4]
所定のタイミングから経過した時間を測定するタイマーをさらに備え、
前記所定のタイミングは前記ゲート電圧が所定のゲート電圧閾値を超えた時であり、
前記判定回路は、前記タイマーが測定する経過時間が所定時間を超え、かつ、前記デサット電圧が所定のデサット電圧閾値を超えた場合に、前記半導体スイッチング素子が短絡したことを検出する構成1~3のいずれかに記載の短絡検出回路。
[構成5]
前記ゲート電圧閾値は、前記半導体スイッチング素子のミラー電圧より高い構成1~4のいずれかに記載の短絡検出回路。
[構成6]
前記ゲート電圧閾値は、前記半導体スイッチング素子のミラー電圧より低い構成1~4のいずれかに記載の短絡検出回路。
[構成7]
絶縁ゲート型の半導体スイッチング素子(11)の高電位側端子にカソードが接続されたダイオード(12)と、一端が前記ダイオードのアノード側に接続され、他端が前記半導体スイッチング素子の低電位側端子に接続されたコンデンサ(14)と、を備えるデサット検出回路(1)に適用され、前記半導体スイッチング素子の短絡を検出する短絡検出回路(40)であって、
前記コンデンサの電圧に対応するデサット電圧を取得するデサット電圧端子(22)と、
所定のタイミングから経過した時間を測定するタイマー(41)と、
前記タイマーが測定する経過時間が所定時間を超え、かつ、前記デサット電圧が所定のデサット電圧閾値を超えた場合に、前記半導体スイッチング素子が短絡したことを検出する判定回路(28,41)と、を備える短絡検出回路。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (7)
- 絶縁ゲート型の半導体スイッチング素子(11)の高電位側端子にカソードが接続されたダイオード(12)と、一端が前記ダイオードのアノード側に接続され、他端が前記半導体スイッチング素子の低電位側端子に接続されたコンデンサ(14)と、を備えるデサット検出回路(1,10)に適用され、前記半導体スイッチング素子の短絡を検出する短絡検出回路(20,30)であって、
前記半導体スイッチング素子のゲート電圧を取得するゲート電圧端子(21)と、
前記コンデンサの電圧に対応するデサット電圧を取得するデサット電圧端子(22)と、
前記ゲート電圧が所定のゲート電圧閾値を超えたことと、前記デサット電圧が所定のデサット電圧閾値を超えたことに基づいて、前記半導体スイッチング素子が短絡したことを検出する判定回路(28,29)と、を備える短絡検出回路。 - 前記デサット検出回路は、前記コンデンサに接続され、前記半導体スイッチング素子を切替えた際の前記デサット電圧の変化速度を速くする抵抗素子(17)を備える請求項1に記載の短絡検出回路。
- 前記ゲート電圧に基づいて前記コンデンサに充電を開始する開始タイミングを制御する充電タイミング制御回路(31)をさらに備え、
前記充電タイミング制御回路は、前記開始タイミングを前記ゲート電圧が所定のゲート電圧閾値を超えた時に制御する請求項1または2に記載の短絡検出回路。 - 所定のタイミングから経過した時間を測定するタイマーをさらに備え、
前記所定のタイミングは前記ゲート電圧が所定のゲート電圧閾値を超えた時であり、
前記判定回路は、前記タイマーが測定する経過時間が所定時間を超え、かつ、前記デサット電圧が所定のデサット電圧閾値を超えた場合に、前記半導体スイッチング素子が短絡したことを検出する請求項1または2に記載の短絡検出回路。 - 前記ゲート電圧閾値は、前記半導体スイッチング素子のミラー電圧より高い請求項1または2に記載の短絡検出回路。
- 前記ゲート電圧閾値は、前記半導体スイッチング素子のミラー電圧より低い請求項1または2に記載の短絡検出回路。
- 絶縁ゲート型の半導体スイッチング素子(11)の高電位側端子にカソードが接続されたダイオード(12)と、一端が前記ダイオードのアノード側に接続され、他端が前記半導体スイッチング素子の低電位側端子に接続されたコンデンサ(14)と、を備えるデサット検出回路(1)に適用され、前記半導体スイッチング素子の短絡を検出する短絡検出回路(40)であって、
前記コンデンサの電圧に対応するデサット電圧を取得するデサット電圧端子(22)と、
所定のタイミングから経過した時間を測定するタイマー(41)と、
前記タイマーが測定する経過時間が所定時間を超え、かつ、前記デサット電圧が所定のデサット電圧閾値を超えた場合に、前記半導体スイッチング素子が短絡したことを検出する判定回路(28,41)と、を備える短絡検出回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024510186A JPWO2023182301A1 (ja) | 2022-03-24 | 2023-03-20 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022048713 | 2022-03-24 | ||
JP2022-048713 | 2022-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023182301A1 true WO2023182301A1 (ja) | 2023-09-28 |
Family
ID=88101066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010975 WO2023182301A1 (ja) | 2022-03-24 | 2023-03-20 | 半導体スイッチング素子の短絡検出回路 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023182301A1 (ja) |
WO (1) | WO2023182301A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019165347A (ja) * | 2018-03-20 | 2019-09-26 | 三菱電機株式会社 | 駆動装置及びパワーモジュール |
JP2021057976A (ja) * | 2019-09-30 | 2021-04-08 | 株式会社デンソー | スイッチの駆動回路 |
JP2022036558A (ja) * | 2020-08-24 | 2022-03-08 | 株式会社デンソー | スイッチング素子の駆動回路 |
-
2023
- 2023-03-20 WO PCT/JP2023/010975 patent/WO2023182301A1/ja unknown
- 2023-03-20 JP JP2024510186A patent/JPWO2023182301A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019165347A (ja) * | 2018-03-20 | 2019-09-26 | 三菱電機株式会社 | 駆動装置及びパワーモジュール |
JP2021057976A (ja) * | 2019-09-30 | 2021-04-08 | 株式会社デンソー | スイッチの駆動回路 |
JP2022036558A (ja) * | 2020-08-24 | 2022-03-08 | 株式会社デンソー | スイッチング素子の駆動回路 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023182301A1 (ja) | 2023-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4752811B2 (ja) | 電圧駆動型素子の駆動回路 | |
US9628067B2 (en) | Gate driver | |
JP5500192B2 (ja) | スイッチング素子の駆動回路 | |
US11095283B2 (en) | Drive control apparatus for driving a switching element including a sense element | |
US8884660B2 (en) | Driver for switching element and control system for machine using the same | |
US7642817B2 (en) | Driver circuit for a semiconductor power switching element | |
US9476916B2 (en) | Overcurrent detection apparatus and intelligent power module using same | |
US8842405B2 (en) | Electronic device | |
JP5761215B2 (ja) | ゲート駆動回路 | |
US11228307B2 (en) | Overcurrent detection device, control device, and overcurrent detection method | |
US9722594B2 (en) | Drive device | |
US8045310B2 (en) | Semiconductor device with overcurrent protection | |
EP3104527B1 (en) | Semiconductor device | |
US8503146B1 (en) | Gate driver with short-circuit protection | |
JP7326762B2 (ja) | 半導体モジュールおよび駆動回路 | |
JP2014183680A (ja) | 短絡電流保護装置 | |
CN114270205A (zh) | 用于通过功率半导体开关中的饱和检测来进行短路探测的方法和装置 | |
KR100680892B1 (ko) | 반도체장치 | |
WO2023182301A1 (ja) | 半導体スイッチング素子の短絡検出回路 | |
JP6711059B2 (ja) | 保護回路 | |
JP7552550B2 (ja) | スイッチの過電流検出装置 | |
WO2022255009A1 (ja) | ゲート駆動装置 | |
KR101026043B1 (ko) | 인버터 제어 장치 | |
JP2004236485A (ja) | 電圧駆動素子の過電流検知回路 | |
JP6753348B2 (ja) | スイッチング素子の駆動回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23774896 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024510186 Country of ref document: JP Kind code of ref document: A |