WO2023176657A1 - Système d'affichage et film stratifié - Google Patents
Système d'affichage et film stratifié Download PDFInfo
- Publication number
- WO2023176657A1 WO2023176657A1 PCT/JP2023/008964 JP2023008964W WO2023176657A1 WO 2023176657 A1 WO2023176657 A1 WO 2023176657A1 JP 2023008964 W JP2023008964 W JP 2023008964W WO 2023176657 A1 WO2023176657 A1 WO 2023176657A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- display element
- half mirror
- light
- display
- reflective polarizing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/02—Viewing or reading apparatus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/344—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/346—Image reproducers using prisms or semi-transparent mirrors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/64—Constructional details of receivers, e.g. cabinets or dust covers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/66—Transforming electric information into light information
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
- H05B33/24—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
Definitions
- the present invention relates to a display system and a laminated film.
- Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices are rapidly becoming popular.
- EL electroluminescence
- optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
- the main purpose of the present invention is to provide a display system that can reduce the weight of VR goggles and improve visibility.
- a display system is a display system that displays an image to a user, and includes a display element having a display surface that forwardly emits light representing an image through a polarizing member; a reflective polarizing member disposed in front and reflecting light emitted from the display element; a first lens portion disposed on an optical path between the display element and the reflective polarizing member; and the display element.
- a half mirror that transmits the light emitted from the display element and reflects the light reflected by the reflective polarizing member toward the reflective polarizing member; a first ⁇ /4 member disposed on the optical path between the display element and the half mirror; and a second ⁇ /4 member disposed on the optical path between the half mirror and the reflective polarizing member.
- a protective member disposed on an optical path between the display element and the half mirror, a space is formed between the protective member and the half mirror, and the protective member includes:
- the maximum value of the 30° regular reflectance spectrum in the wavelength range of 420 nm to 680 nm is 1.4% or less. 2.
- the protective member may have a 30° regular reflectance of 0.5% or less at a wavelength of 450 nm. 3. In the display system according to 1 or 2 above, the protective member may have a 30° regular reflectance of 0.5% or less at a wavelength of 600 nm. 4. In the display system according to any one of 1 to 3 above, the protective member may have a surface smoothness of 0.5 arcmin or less. 5. In the display system according to any one of 1 to 4 above, the first ⁇ /4 member may satisfy Re(450) ⁇ Re(550). 6. The display system according to any one of items 1 to 5 above may include a laminated section including the first ⁇ /4 member and the protection member. 7.
- the laminated portion may include a polarizing member included in the display element.
- the laminated film according to the embodiment of the present invention includes a step of transmitting light representing an image emitted through a polarizing member through a first ⁇ /4 member, and a step of transmitting the light that has passed through the first ⁇ /4 member. , passing the light that has passed through the half mirror and the first lens section, passing the light that has passed through the half mirror and the first lens section through a second ⁇ /4 member, and the second ⁇ /4 member.
- the laminated film is arranged in a space formed between the display element and the half mirror, and has a maximum value of a 30° specular reflectance spectrum of 1.4% or less in a wavelength range of 420 nm to 680 nm. be.
- the display unit includes a step of transmitting light representing an image emitted through a polarizing member through a first ⁇ /4 member, and a step of transmitting the light that has passed through the first ⁇ /4 member. , passing the light that has passed through the half mirror and the first lens section, passing the light that has passed through the half mirror and the first lens section through a second ⁇ /4 member, and the second ⁇ /4 member.
- a step of reflecting the light that has passed through the reflective polarizing member toward the half mirror and a step of reflecting the light that has passed through the reflective polarizing member and the half mirror toward the reflective polarizing member using the second a display element that is used in a display method and has a display surface that emits light representing an image forward through the polarizing member, the display element and the half mirror; a first ⁇ /4 member disposed on an optical path between the display element and the half mirror; and a protection member disposed on the optical path between the display element and the half mirror, the protection member configured to
- the maximum value of the 30° specular reflectance spectrum in the 680 nm range is 1.4% or less.
- the display system According to the display system according to the embodiment of the present invention, it is possible to reduce the weight of VR goggles and improve visibility.
- FIG. 1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention.
- 2 is a schematic cross-sectional view showing an example of details of a part of a display element of the display system shown in FIG. 1.
- FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a laminated film according to one embodiment of the present invention.
- 3 is a graph showing 30° regular reflectance spectra of the laminated films of Example 1, Comparative Example 1, and Comparative Example 2.
- (a), (b) and (c) are photographs showing the results of appearance evaluation.
- (a), (b), (c) and (d) are photographs showing the results of appearance evaluation.
- Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
- Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
- In-plane phase difference (Re) "Re( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23°C.
- Re(550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
- Phase difference in thickness direction (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23°C.
- Rth (550) is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C.
- FIG. 1 is a schematic diagram showing the general configuration of a display system according to one embodiment of the present invention.
- FIG. 1 schematically shows the arrangement, shape, etc. of each component of the display system 2.
- the display system 2 includes a display element 12, a reflective polarizing member 14, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second lens section 24. It is equipped with
- the reflective polarizing member 14 is disposed at the front of the display element 12 on the display surface 12a side, and can reflect light emitted from the display element 12.
- the first lens section 16 is arranged on the optical path between the display element 12 and the reflective polarizing member 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16.
- the first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflective polarizing member 14. There is.
- a half mirror or components disposed in front of the first lens part may be collectively referred to as a lens section (lens section 4).
- the display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images.
- the light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) that may be included in the display element 12, and is emitted as first linearly polarized light.
- a polarizing member typically, a polarizing film
- the first retardation member 20 includes a first ⁇ /4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light.
- the first retardation member may correspond to the first ⁇ /4 member.
- the first retardation member 20 may be provided integrally with the display element 12.
- the half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflective polarizing member 14 toward the reflective polarizing member 14.
- the half mirror 18 is provided integrally with the first lens section 16.
- the second retardation member 22 includes a second ⁇ /4 member that can transmit the light reflected by the reflective polarizing member 14 and the half mirror 18 through the reflective polarizing member 14.
- the second retardation member may correspond to the second ⁇ /4 member.
- the second retardation member 22 may be provided integrally with the first lens portion 16.
- the first circularly polarized light emitted from the first ⁇ /4 member included in the first retardation member 20 passes through the half mirror 18 and the first lens portion 16, and The second ⁇ /4 member converts the light into a second linearly polarized light.
- the second linearly polarized light emitted from the second ⁇ /4 member is reflected toward the half mirror 18 without passing through the reflective polarizing member 14.
- the polarization direction of the second linearly polarized light incident on the reflective polarizing member 14 is the same direction as the reflection axis of the reflective polarizing member 14. Therefore, the second linearly polarized light incident on the reflective polarizing member 14 is reflected by the reflective polarizing member 14.
- the second linearly polarized light reflected by the reflective polarizing member 14 is converted into second circularly polarized light by the second ⁇ /4 member included in the second retardation member 22, and is emitted from the second ⁇ /4 member.
- the second circularly polarized light passes through the first lens section 16 and is reflected by the half mirror 18.
- the second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second ⁇ /4 member included in the second retardation member 22.
- the third linearly polarized light is transmitted through the reflective polarizing member 14 .
- the polarization direction of the third linearly polarized light incident on the reflective polarizing member 14 is the same direction as the transmission axis of the reflective polarizing member 14. Therefore, the third linearly polarized light incident on the reflective polarizing member 14 is transmitted through the reflective polarizing member 14.
- the light transmitted through the reflective polarizing member 14 passes through the second lens section 24 and enters the user's eyes 26.
- the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other.
- the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first ⁇ /4 member included in the first retardation member 20 is, for example, 40° to 50°, and 42° to 50°. It may be 48° or about 45°.
- the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second ⁇ /4 member included in the second retardation member 22 is, for example, 40° to 50°, and 42° to 50°. It may be 48° or about 45°.
- the in-plane retardation Re (550) of the first ⁇ /4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. good.
- the first ⁇ /4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
- Re(450)/Re(550) of the first ⁇ /4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
- the in-plane retardation Re (550) of the second ⁇ /4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. good.
- the second ⁇ /4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
- Re(450)/Re(550) of the second ⁇ /4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
- the display system 2 may include an absorptive polarizing member disposed in front of the reflective polarizing member 14.
- the reflection axis of the reflective polarizing member 14 and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other.
- a space may be formed between the display element 12 and the lens portion 4.
- the member disposed between the display element 12 and the lens part 4 be provided integrally with the display element 12.
- the member disposed between the display element 12 and the lens portion 4 be integrated with the display element 12 via an adhesive layer. According to such a configuration, for example, each member can be easily handled.
- the adhesive layer may be formed of an adhesive or a pressure-sensitive adhesive.
- the adhesive layer may be an adhesive layer or an adhesive layer.
- the thickness of the adhesive layer is, for example, 0.05 ⁇ m to 30 ⁇ m.
- FIG. 2 is a schematic cross-sectional view showing an example of details of a part of the display element of the display system shown in FIG. 1. Specifically, FIG. 2 shows a laminated portion of members that are integrally provided to the display element 12. As shown in FIG. Note that the display element and the member provided integrally with the display element may be collectively referred to as a display section.
- the laminated portion 100 includes a first retardation member 20, a polarizing member 12b disposed on one side of the first retardation member 20, and a protection member 30 disposed on the other side of the first retardation member 20. I'm here.
- the polarizing member 12b may correspond to a polarizing member that may be included in the display element 12.
- the main body of the display element 12 is disposed on the polarizing member 12b side of the laminated portion 100.
- the protection member 30 may be located on the outermost surface of the laminated portion 100.
- the polarizing member 12b and the first retardation member 20 are laminated with an adhesive layer (for example, a pressure-sensitive adhesive layer) interposed therebetween.
- the first retardation member 20 and the protection member 30 are laminated with an adhesive layer (for example, a pressure-sensitive adhesive layer) interposed therebetween.
- the first retardation member 20 has a laminated structure of a first ⁇ /4 member 20a and a positive C plate 20b. By using a positive C plate, light leakage (for example, light leakage in an oblique direction) can be prevented.
- the positive C plate 20b is located further forward than the first ⁇ /4 member 20a.
- the first ⁇ /4 member 20a and the positive C plate 20b are laminated, for example, via an adhesive layer (not shown).
- the first ⁇ /4 member exhibits a refractive index characteristic of nx>ny ⁇ nz.
- the Nz coefficient of the first ⁇ /4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
- the first ⁇ /4 member is formed of any suitable material that can satisfy the above characteristics.
- the first ⁇ /4 member may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
- the resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination. Examples of the combination method include blending and copolymerization. When the first ⁇ /4 member exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
- polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol.
- the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. .
- the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary.
- the thickness of the first ⁇ /4 member made of a stretched resin film is, for example, 10 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, and more preferably 20 ⁇ m to 60 ⁇ m.
- the liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed.
- the "alignment hardened layer” is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below.
- rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first ⁇ /4 member (homogeneous alignment).
- Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers.
- the liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
- the liquid crystal compound alignment and solidification layer is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
- the alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound.
- the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
- the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
- the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
- liquid crystal compound any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound.
- the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
- Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
- the thickness of the first ⁇ /4 member composed of the liquid crystal alignment solidified layer is, for example, 1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and still more preferably 1 ⁇ m to 4 ⁇ m. be.
- the retardation Rth (550) in the thickness direction of the positive C plate is preferably -50 nm to -300 nm, more preferably -70 nm to -250 nm, still more preferably -90 nm to -200 nm, and particularly preferably is ⁇ 100 nm to ⁇ 180 nm.
- the in-plane retardation Re (550) of the positive C plate is, for example, less than 10 nm.
- the positive C-plate may be formed of any suitable material
- the positive C-plate preferably consists of a film containing liquid crystal material fixed in a homeotropic orientation.
- the liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
- Specific examples of the method for forming such a liquid crystal compound and positive C plate include the method for forming the liquid crystal compound and the retardation layer described in [0020] to [0028] of JP-A No. 2002-333642.
- the thickness of the positive C plate is preferably 0.5 ⁇ m to 5 ⁇ m.
- the polarizing member 12b may include, for example, a resin film containing a dichroic substance (sometimes referred to as an absorption type polarizing film).
- the thickness of the absorption type polarizing film is, for example, 1 ⁇ m or more and 20 ⁇ m or less, may be 2 ⁇ m or more and 15 ⁇ m or less, may be 12 ⁇ m or less, may be 10 ⁇ m or less, or may be 8 ⁇ m or less, It may be 5 ⁇ m or less.
- the above-mentioned absorption type polarizing film may be produced from a single layer resin film, or may be produced using a laminate of two or more layers.
- a hydrophilic polymer film such as a polyvinyl alcohol (PVA) film, a partially formalized PVA film, or a partially saponified ethylene/vinyl acetate copolymer film is coated with iodine or dichloromethane.
- An absorption type polarizing film can be obtained by performing a dyeing treatment with a dichroic substance such as a color dye, a stretching treatment, and the like. Among these, an absorption type polarizing film obtained by dyeing a PVA film with iodine and uniaxially stretching it is preferred.
- the above-mentioned staining with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution.
- the stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing. Alternatively, it may be dyed after being stretched. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.
- the laminate produced using the above-mentioned laminate of two or more layers is a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or Examples include a laminate of a material and a PVA-based resin layer formed by coating on the resin base material.
- An absorption type polarizing film obtained by using a laminate of a resin base material and a PVA resin layer coated on the resin base material can be obtained by, for example, applying a PVA resin solution to the resin base material, drying it, and applying the resin.
- a PVA-based resin layer on a base material to obtain a laminate of the resin base material and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer an absorption type polarizing film.
- a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin is formed on one side of the resin base material.
- Stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
- the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary.
- the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink by 2% or more in the width direction.
- the manufacturing method of this embodiment includes subjecting the laminate to an in-air auxiliary stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process in this order.
- the obtained resin base material/absorption type polarizing film laminate may be used as is (that is, the resin base material may be used as a protective layer of the absorption type polarizing film), or the resin base material/absorption type polarizing film laminate may be used as is.
- Any suitable protective layer depending on the purpose may be laminated on the peeled surface from which the resin base material is peeled off, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorption type polarizing film are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The entire descriptions of these publications are incorporated herein by reference.
- the cross transmittance (Tc) of the polarizing member (absorbing polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less.
- the single transmittance (Ts) of the polarizing member (absorbing polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more.
- the degree of polarization (P) of the polarizing member (absorbing polarizing film) is, for example, 99.0% to 99.997%, preferably 99.9% or more.
- the above-mentioned orthogonal transmittance, single transmittance, and degree of polarization can be measured using, for example, an ultraviolet-visible spectrophotometer.
- the degree of polarization P can be determined by measuring the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc using an ultraviolet-visible spectrophotometer, and from the obtained Tp and Tc using the following formula.
- Ts, Tp, and Tc are Y values measured using a 2-degree visual field (C light source) according to JIS Z 8701 and subjected to visibility correction.
- Polarization degree P (%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100
- the protective member may be a laminated film having a base material and a surface treatment layer.
- a protective member having a surface treatment layer may be arranged such that the surface treatment layer is located on the front side.
- the surface treatment layer may be located on the outermost surface of the laminated portion.
- the maximum value of the 30° regular reflectance spectrum in the wavelength range of 420 nm to 680 nm of the protective member is 0% or more and 1.4% or less, preferably 1.2% or less, and more preferably 1.0% or less. It is.
- Such light loss can be suppressed extremely well.
- the amount of light required is large, and the effect of suppressing light loss can be significantly obtained.
- the protective member satisfies the above reflection characteristics, it is possible to suppress visual recognition of afterimages (ghosts) resulting from reflection.
- hue management can be important when the amount of light used is large.
- the balance of reflectance in the visible light region can be important.
- the 30° regular reflectance of the protective member at a wavelength of 450 nm is, for example, 0.01% or more and 0.6% or less, preferably 0.5% or less, more preferably 0.4% or less, and even more preferably is 0.3% or less.
- the 30° regular reflectance of the protective member at a wavelength of 600 nm is, for example, 0.01% or more and 0.6% or less, preferably 0.5% or less, more preferably 0.4% or less, and even more preferably is 0.3% or less.
- the 30° specular reflectance spectrum of the protective member in the wavelength range of 420 nm to 680 nm may have minimum values in the wavelength range of 430 nm to 470 nm and in the wavelength range of 550 nm to 590 nm.
- the ratio of the average value Ave (430-470 nm) of 30 degree regular reflectance in the wavelength range 430 nm to 470 nm to the average value Ave (480-510 nm) of 30 degree regular reflectance in the wavelength range 480 nm to 510 nm is: It is preferably 0.10 or more and less than 1.0, and may be 0.80 or less.
- the ratio of the average value Ave (580-620 nm) of 30 degree regular reflectance in the wavelength range from 580 nm to 620 nm to the average value Ave (480-510 nm) of 30 degree regular reflectance in the wavelength range from 480 nm to 510 nm is: It is preferably 0.10 or more and less than 1.0, and may be 0.80 or less.
- the average value of the 30° regular reflectance can be determined, for example, by extracting measured values every 5 nm in each wavelength range and dividing the total by the number of extracted wavelengths.
- the surface smoothness of the protective member is preferably 0.5 arcmin or less, more preferably 0.4 arcmin or less. By using a protective member that satisfies such smoothness, it is possible to suppress the generation of diffused light and to suppress images from becoming unclear. Substantially, the surface smoothness of the protective member is, for example, 0.1 arcmin or more.
- the thickness of the protective member is preferably 10 ⁇ m to 80 ⁇ m, more preferably 15 ⁇ m to 60 ⁇ m, and still more preferably 20 ⁇ m to 45 ⁇ m.
- FIG. 3 is a schematic cross-sectional view showing the general structure of a laminated film according to one embodiment of the present invention.
- the laminated film 34 has a base material 36 and a surface treatment layer 38 disposed above the base material 36.
- the thickness of the base material 36 is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m, and even more preferably 15 ⁇ m to 40 ⁇ m.
- the surface smoothness of the base material 36 is preferably 0.7 arcmin or less, more preferably 0.6 arcmin or less, and even more preferably 0.5 arcmin or less. Note that surface smoothness can be measured by focusing irradiation light on the surface of the target.
- the base material 36 may be composed of any suitable film.
- Materials that are the main components of the film constituting the base material 36 include, for example, cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, and polyethersulfones. , polysulfone-based, polystyrene-based, cycloolefin-based such as polynorbornene, polyolefin-based, (meth)acrylic-based, acetate-based resins, and the like.
- (meth)acrylic refers to acrylic and/or methacrylic.
- the base material 36 is preferably made of (meth)acrylic resin.
- the thickness of the surface treatment layer 38 is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 7 ⁇ m, and even more preferably 2 ⁇ m to 5 ⁇ m.
- the surface treatment layer 38 includes, for example, a hard coat layer 38a and a functional layer 38b having an antireflection function.
- the hard coat layer 38a is typically formed by applying a hard coat layer forming material to the base material 36 and curing the applied layer.
- the hard coat layer forming material typically contains a curable compound as a layer forming component.
- the curing mechanism of the curable compound include a thermosetting type and a photocuring type.
- the curable compound include monomers, oligomers, and prepolymers. Preferably, a polyfunctional monomer or oligomer is used as the curable compound.
- polyfunctional monomers or oligomers examples include monomers or oligomers having two or more (meth)acryloyl groups, urethane (meth)acrylate or urethane (meth)acrylate oligomers, epoxy monomers or oligomers, and silicone monomers or oligomers. can be mentioned.
- the thickness of the hard coat layer 38a is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 7 ⁇ m, and even more preferably 2 ⁇ m to 5 ⁇ m.
- the functional layer 38b has a laminated structure including a high refractive index layer and a low refractive index layer. It is preferable that the functional layer 38b has a high refractive index layer and a low refractive index layer in this order from the base material 36 side. By having such a laminated structure, the above reflection characteristics can be satisfactorily satisfied.
- the high refractive index layer may be made of a high refractive index resin (for example, the refractive index measured at a wavelength of 550 nm is 1.55 or more).
- the high refractive index layer may typically be a coating layer.
- the high refractive index layer may be constituted by an inorganic film.
- the high refractive index layer can typically be formed by vacuum deposition, physical vapor deposition such as sputtering, or chemical vapor deposition.
- the thickness of the high refractive index layer is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm.
- the thickness of the low refractive index layer is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm.
- the above-mentioned low refractive index layer can be obtained, for example, by applying a coating liquid for forming a low refractive index layer (antireflection layer) and curing the resulting coating film.
- the coating liquid for forming an antireflection layer may contain, for example, a resin component (curable compound), a fluorine-containing additive, hollow particles, solid particles, a solvent, etc., and may be obtained by mixing these, for example. I can do it.
- Examples of the curing mechanism of the resin component (curable compound) contained in the coating liquid for forming an antireflection layer include a thermosetting type and a photocuring type.
- a curable compound having at least one of an acrylate group and a methacrylate group is used, such as silicone resin, polyester resin, polyether resin, epoxy resin, urethane resin, alkyd resin, and spiroacetal resin. , polybutadiene resins, polythiol polyene resins, oligomers or prepolymers such as acrylates and methacrylates of polyfunctional compounds such as polyhydric alcohols, and the like. These may be used alone or in combination of two or more.
- a reactive diluent having at least one of an acrylate group and a methacrylate group can also be used.
- the reactive diluent for example, the reactive diluent described in JP-A-2008-88309 can be used, and includes, for example, monofunctional acrylate, monofunctional methacrylate, polyfunctional acrylate, polyfunctional methacrylate, and the like.
- the reactive diluent from the viewpoint of obtaining excellent hardness, trifunctional or higher functional acrylates and trifunctional or higher functional methacrylates are preferably used.
- the reactive diluent examples include butanediol glycerol ether diacrylate, isocyanuric acid acrylate, isocyanuric acid methacrylate, and the like. These may be used alone or in combination of two or more.
- a curing agent may be used to cure the resin component.
- known polymerization initiators eg, thermal polymerization initiators, photopolymerization initiators, etc.
- the above-mentioned fluorine-containing additive may be, for example, an organic compound containing fluorine or an inorganic compound containing fluorine.
- the organic compound containing fluorine include a fluorine-containing antifouling coating agent, a fluorine-containing acrylic compound, and a fluorine/silicon containing acrylic compound.
- Commercially available products can be used as the organic compound containing fluorine. Specific examples of commercially available products include the product name "KY-1203" manufactured by Shin-Etsu Chemical Co., Ltd. and the product name "Megafac" manufactured by DIC Corporation.
- the content of the fluorine-containing additive is, for example, 0.05 parts by weight or more, 0.1 parts by weight or more, 0.15 parts by weight or more, 0.20 parts by weight or more, or 0 parts by weight, based on 100 parts by weight of the resin component.
- the amount may be .25 parts by weight or more, 20 parts by weight or less, 15 parts by weight or less, 10 parts by weight or less, 5 parts by weight or less, or 3 parts by weight or less.
- hollow particles for example, silica particles, acrylic particles, and acrylic-styrene copolymer particles are used.
- hollow silica particles commercially available products (for example, trade names "Sururia 5320" and "Surulia 4320” manufactured by JGC Catalysts & Chemicals, Ltd.) can be used.
- the weight average particle diameter of the hollow particles may be, for example, 30 nm or more, 40 nm or more, 50 nm or more, 60 nm or more, or 70 nm or more, and 150 nm or less, 140 nm or less, 130 nm or less, 120 nm or less, or 110 nm or less. Good too.
- the shape of the hollow particles is not particularly limited, but is preferably approximately spherical. Specifically, the aspect ratio of the hollow particles is preferably 1.5 or less.
- the content of the hollow particles may be, for example, 30 parts by weight or more, 50 parts by weight or more, 70 parts by weight or more, 90 parts by weight or more, or 100 parts by weight or more, based on 100 parts by weight of the resin component. It may be less than 270 parts by weight, less than 250 parts by weight, less than 200 parts by weight, or less than 180 parts by weight.
- the solid particles for example, silica particles, zirconia particles, and titania particles are used.
- the solid silica particles commercially available products (for example, trade names "MEK-2140Z-AC”, “MIBK-ST”, and “IPA-ST” manufactured by Nissan Chemical Industries, Ltd.) can be used.
- the weight average particle diameter of the solid particles may be, for example, 5 nm or more, 10 nm or more, 15 nm or more, 20 nm or more, or 25 nm or more, and 330 nm or less, 250 nm or less, 200 nm or less, 150 nm or less, or 100 nm or less. It's okay.
- the shape of the hollow particles is not particularly limited, but is preferably approximately spherical. Specifically, the aspect ratio of the hollow particles is preferably 1.5 or less.
- the content of the solid particles may be, for example, 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, or 25 parts by weight or more, based on 100 parts by weight of the resin component. It may be 150 parts by weight or less, 120 parts by weight or less, 100 parts by weight or less, or 80 parts by weight or less.
- solvents include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, TBA (tertiary butyl alcohol), and 2-methoxyethanol; ketones such as acetone, methyl ethyl ketone, MIBK (methyl isobutyl ketone), and cyclopentanone.
- alcohols such as methanol, ethanol, isopropyl alcohol, butanol, TBA (tertiary butyl alcohol), and 2-methoxyethanol
- ketones such as acetone, methyl ethyl ketone, MIBK (methyl isobutyl ketone), and cyclopentanone.
- Esters such as methyl acetate, ethyl acetate, butyl acetate, PMA (propylene glycol monomethyl ether acetate); Ethers such as diisopropyl ether, propylene glycol monomethyl ether; Glycols such as ethylene glycol, propylene glycol; Ethyl cellosolve, butyl cellosolve, etc.
- Examples include cellosolves; aliphatic hydrocarbons such as hexane, heptane, and octane; and aromatic hydrocarbons such as benzene, toluene, and xylene. These may be used alone or in combination of two or more.
- the content of the solvent is, for example, such that the weight of the solids relative to the weight of the entire coating liquid for forming an antireflection layer is, for example, 0.1% by weight or more, 0.3% by weight or more, 0.5% by weight or more,
- the content may be 1.0% by weight or more, or 1.5% by weight or more, and may be 20% by weight or less, 15% by weight or less, 10% by weight or less, 5% by weight or less, or 3% by weight or less. You can also do this.
- a coating method for the coating liquid for forming the antireflection layer for example, known coating methods such as fountain coating method, die coating method, spin coating method, spray coating method, gravure coating method, roll coating method, and bar coating method can be used. construction method can be used.
- the drying temperature of the coating film is, for example, 30° C. to 200° C., and the drying time is, for example, 30 seconds to 90 seconds.
- the coating film can be cured by, for example, heating or light irradiation (typically, ultraviolet irradiation).
- a light source for light irradiation for example, a high pressure mercury lamp is used.
- the amount of ultraviolet irradiation is preferably 50 mJ/cm 2 to 500 mJ/cm 2 as a cumulative exposure amount at an ultraviolet wavelength of 365 nm.
- the thickness and surface smoothness are values measured by the following measuring method. Furthermore, unless otherwise specified, "parts" and “%” are based on weight.
- ⁇ Thickness> The thickness of 10 ⁇ m or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
- a measurement sample is placed on a measurement table with a vibration-proof table, interference fringes are generated using a single white LED illumination, and an interference objective lens (1.4x) with a reference plane is placed in the Z direction (thickness).
- the smoothness (surface smoothness) of the outermost surface of the object to be measured in a field of view of 12.4 mm ⁇ was selectively obtained by scanning in the 12.4 mm ⁇ field of view.
- An acrylic adhesive layer with a thickness of 5 ⁇ m and minimal irregularities is formed on microslide glass (manufactured by Matsunami Glass Industries Co., Ltd., product name "S200200”), and the film to be measured is coated with foreign objects, air bubbles, and deformation lines on this adhesive surface.
- the smoothness of the surface opposite to the adhesive layer was measured.
- the value obtained by doubling the angle index "Slope magnitude RMS" (corresponding to 2 ⁇ ) was defined as surface smoothness (unit: arcmin).
- Example 1 Preparation of hard coat layer forming material
- 50 parts of urethane acrylic oligomer manufactured by Shin-Nakamura Chemical Co., Ltd., "NK Oligo UA-53H"
- polyfunctional acrylate whose main component is pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat #300")
- 4-hydroxybutyl acrylate manufactured by Osaka Organic Chemical Industry Co., Ltd.
- a leveling agent manufactured by DIC Corporation, "GRANDIC PC4100
- a photopolymerization initiator manufactured by Ciba Japan, "Irgacure 907
- Three parts were mixed and diluted with methyl isobutyl ketone to a solid content concentration of 50% to prepare a hard coat layer forming material.
- a mixed solvent of TBA tertiary butyl alcohol
- MIBK methyl isobutyl ketone
- PMA propylene glycol monomethyl ether acetate
- the hard coat layer forming material described above was applied to an acrylic film having a lactone ring structure (thickness: 40 ⁇ m, surface smoothness: 0.45 arcmin), heated at 90°C for 1 minute, and the coated layer after heating was coated with a high-pressure mercury lamp.
- the coating layer was cured by irradiating ultraviolet rays with a cumulative light intensity of 300 mJ/cm 2 to produce an acrylic film (44 ⁇ m thick, surface smoothness on the hard coat layer side 0.4 arcmin) on which a 4 ⁇ m thick hard coat layer was formed.
- the coating solution for forming a high refractive index layer was applied onto the hard coat layer using a wire bar, and the applied coating solution was heated at 80° C.
- the dried coating film was cured by irradiating ultraviolet rays with a cumulative light intensity of 300 mJ/cm 2 using a high-pressure mercury lamp to form a high refractive index layer with a thickness of 140 nm.
- the above coating liquid for forming a low refractive index layer is applied onto the high refractive index layer using a wire bar, and the applied coating liquid is heated at 80°C for 1 minute and dried to form a coating film. did.
- the dried coating film was cured by irradiating ultraviolet rays with a cumulative light intensity of 300 mJ/cm 2 using a high-pressure mercury lamp to form a low refractive index layer with a thickness of 105 nm. In this way, a laminated film with a thickness of 44 ⁇ m and a surface smoothness of 0.4 arcmin was obtained.
- Example 1 Same as Example 1 except that a high refractive index layer was not formed and a 100 nm thick low refractive index layer was formed using coating solution B below as a coating solution for forming a low refractive index layer.
- a mixed solvent of TBA tertiary butyl alcohol
- MIBK methyl isobutyl ketone
- PMA propylene glycol monomethyl ether acetate
- Example 2 A laminated film having a thickness of 44 ⁇ m and a surface smoothness of 0.4 arcmin was obtained in the same manner as in Example 1 except that the high refractive index layer and the low refractive index layer were not formed.
- FIG. 4 shows the 30° specular reflectance spectra of the laminated films of Example 1, Comparative Example 1, and Comparative Example 2.
- the maximum value of the 30° regular reflectance spectrum of the laminated film of Example 1 in the wavelength range of 420 nm to 680 nm was 0.85%.
- the 30° regular reflectance at a wavelength of 450 nm was 0.15%
- the 30° regular reflectance at a wavelength of 600 nm was 0.13%.
- the results of Comparative Example 1 and Comparative Example 2 are as follows.
- Example 1 The laminated films of Example 1, Comparative Example 1, and Comparative Example 2 were attached to a black acrylic board using an adhesive to obtain a measurement plate.
- light control volume 1 from a surface emitting unit (manufactured by AItec, LED lighting box "LLBK1" installed 18 cm away from the measurement plate.
- the appearance (reflection appearance) of the measurement plate was visually confirmed.
- the reflection appearance is shown in FIGS. 5(a), 5(b), and 5(c). Specifically, FIG. 5(a) shows the results when white display light is irradiated, FIG. 5(b) shows the results when blue light (wavelength 450nm ⁇ 30nm) is irradiated, and FIG. c) shows the results when red light (wavelength 630 nm ⁇ 30 nm) was irradiated.
- Example 1 Comparative Example 1
- Comparative Example 2 Comparative Example 2
- a surface emitting unit manufactured by AItec, LED lighting box “LLBK1”
- a measuring plate is placed on the light emitting surface, and light is irradiated from the surface emitting unit with dimming volume 1.
- the appearance (transmission appearance) of the measurement plate was visually confirmed. Transmission appearance is shown in FIGS. 6(a), 6(b), 6(c), and 6(d).
- Figure 6(a) shows the results when white display light is irradiated
- Figure 6(b) shows the results when blue light (wavelength 450nm ⁇ 30nm) is irradiated
- Figure 6(c) shows the results when red light is irradiated.
- Wavelength 630 nm ⁇ 30 nm is shown
- FIG. 6(d) shows the result when green light (wavelength 530 nm ⁇ 30 nm) is irradiated.
- Example 1 has much better reflective appearance than Comparative Examples 1 and 2.
- a black acrylic plate was used with the assumption that it would be combined with an absorptive polarizing member, but a similar difference in reflection appearance was confirmed even when a transparent glass plate was used.
- Example 1 it is believed that the problem of ghosts that may occur due to reflected light in a display system can be extremely well resolved by the embodiments of the present invention. Note that, as shown in FIGS. 6(a), 6(b), 6(c), and 6(d), the transmission appearance of Example 1, Comparative Example 1, and Comparative Example 2 is not significantly different. .
- the present invention is not limited to the above embodiments, and various modifications are possible.
- it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same purpose.
- the display system according to the embodiment of the present invention can be used for a display body such as VR goggles, for example.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Polarising Elements (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
L'invention concerne un système d'affichage qui peut rendre des lunettes VR légères et améliorer la visibilité. Un système d'affichage selon un mode de réalisation de la présente invention est destiné à afficher une image à un utilisateur, et comprend : un élément d'affichage ayant une surface d'affichage qui émet, vers l'avant à travers un élément de polarisation, une lumière représentant une image ; un élément de polarisation réfléchissant qui est disposé devant l'élément d'affichage et réfléchit la lumière émise par l'élément d'affichage ; une première unité de lentille disposée sur le trajet optique entre l'élément d'affichage et l'élément de polarisation réfléchissant ; un demi-miroir qui est disposé entre l'élément d'affichage et la première unité de lentille, transmet la lumière émise par l'élément d'affichage, et réfléchit la lumière réfléchie par l'élément de polarisation réfléchissant vers l'élément de polarisation réfléchissant ; un premier élément λ/4 disposé sur le trajet optique entre l'élément d'affichage et le demi-miroir ; un second élément λ/4 disposé sur le trajet optique entre le demi-miroir et l'élément de polarisation réfléchissant ; et un élément de protection disposé sur le trajet optique entre l'élément d'affichage et le demi-miroir, un espace étant formé entre l'élément de protection et le demi-miroir, et l'élément de protection ayant une valeur maximale du spectre de réflectance positive de 30° dans la plage de longueurs d'onde de 420 à 680 nm de 1,4 % ou moins.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380025202.9A CN118829932A (zh) | 2022-03-14 | 2023-03-09 | 显示系统及积层薄膜 |
Applications Claiming Priority (28)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-039286 | 2022-03-14 | ||
JP2022039285 | 2022-03-14 | ||
JP2022039286 | 2022-03-14 | ||
JP2022-039285 | 2022-03-14 | ||
JP2022077676A JP2023166851A (ja) | 2022-05-10 | 2022-05-10 | レンズ部、積層体、表示体、表示体の製造方法および表示方法 |
JP2022077679A JP7516458B2 (ja) | 2022-05-10 | 2022-05-10 | レンズ部、積層体、表示体、表示体の製造方法および表示方法 |
JP2022-077634 | 2022-05-10 | ||
JP2022-077676 | 2022-05-10 | ||
JP2022-077679 | 2022-05-10 | ||
JP2022077657A JP2023134317A (ja) | 2022-03-14 | 2022-05-10 | 表示システム、表示方法、表示体および表示体の製造方法 |
JP2022077678A JP2023166853A (ja) | 2022-05-10 | 2022-05-10 | レンズ部、積層体、表示体、表示体の製造方法および表示方法 |
JP2022-077677 | 2022-05-10 | ||
JP2022-077632 | 2022-05-10 | ||
JP2022077634A JP7516457B2 (ja) | 2022-05-10 | 2022-05-10 | レンズ部、積層体、表示体、表示体の製造方法および表示方法 |
JP2022-077633 | 2022-05-10 | ||
JP2022-077678 | 2022-05-10 | ||
JP2022-077631 | 2022-05-10 | ||
JP2022-077657 | 2022-05-10 | ||
JP2022077677A JP2023166852A (ja) | 2022-05-10 | 2022-05-10 | レンズ部、積層体、表示体、表示体の製造方法および表示方法 |
JP2022077631A JP2023134316A (ja) | 2022-03-14 | 2022-05-10 | レンズ部、積層体、表示体、表示体の製造方法および表示方法 |
JP2022-077659 | 2022-05-10 | ||
JP2022077658A JP2023166840A (ja) | 2022-05-10 | 2022-05-10 | 表示システム、表示方法、表示体および表示体の製造方法 |
JP2022077632A JP7516455B2 (ja) | 2022-05-10 | 2022-05-10 | レンズ部、積層体、表示体、表示体の製造方法および表示方法 |
JP2022077633A JP7516456B2 (ja) | 2022-05-10 | 2022-05-10 | 表示方法 |
JP2022-077658 | 2022-05-10 | ||
JP2022077659A JP2023166841A (ja) | 2022-05-10 | 2022-05-10 | 表示システム、表示方法、表示体および表示体の製造方法 |
JP2022212099A JP2024095087A (ja) | 2022-12-28 | 2022-12-28 | 表示システムおよび積層フィルム |
JP2022-212099 | 2022-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023176657A1 true WO2023176657A1 (fr) | 2023-09-21 |
Family
ID=88023223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/008964 WO2023176657A1 (fr) | 2022-03-14 | 2023-03-09 | Système d'affichage et film stratifié |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202345433A (fr) |
WO (1) | WO2023176657A1 (fr) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08223509A (ja) * | 1995-02-14 | 1996-08-30 | Olympus Optical Co Ltd | 頭部装着型映像表示装置 |
JP2005134713A (ja) * | 2003-10-31 | 2005-05-26 | Konica Minolta Opto Inc | 光学フィルム及びその製造方法、並びに偏光板及び表示装置 |
US20100002288A1 (en) * | 2004-03-22 | 2010-01-07 | Fakespace Labs, Inc. | Electrically Controlled Optical Elements and Method |
JP2015055746A (ja) * | 2013-09-11 | 2015-03-23 | 大日本印刷株式会社 | ヘッドアップディスプレイ表示ユニット |
JP2019526075A (ja) * | 2016-08-02 | 2019-09-12 | アップル インコーポレイテッドApple Inc. | ヘッドマウントディスプレイ用光学システム |
WO2021145446A1 (fr) * | 2020-01-15 | 2021-07-22 | 富士フイルム株式会社 | Système optique |
WO2021193416A1 (fr) * | 2020-03-23 | 2021-09-30 | デクセリアルズ株式会社 | Stratifié optique et article |
-
2023
- 2023-03-09 WO PCT/JP2023/008964 patent/WO2023176657A1/fr unknown
- 2023-03-14 TW TW112109347A patent/TW202345433A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08223509A (ja) * | 1995-02-14 | 1996-08-30 | Olympus Optical Co Ltd | 頭部装着型映像表示装置 |
JP2005134713A (ja) * | 2003-10-31 | 2005-05-26 | Konica Minolta Opto Inc | 光学フィルム及びその製造方法、並びに偏光板及び表示装置 |
US20100002288A1 (en) * | 2004-03-22 | 2010-01-07 | Fakespace Labs, Inc. | Electrically Controlled Optical Elements and Method |
JP2015055746A (ja) * | 2013-09-11 | 2015-03-23 | 大日本印刷株式会社 | ヘッドアップディスプレイ表示ユニット |
JP2019526075A (ja) * | 2016-08-02 | 2019-09-12 | アップル インコーポレイテッドApple Inc. | ヘッドマウントディスプレイ用光学システム |
WO2021145446A1 (fr) * | 2020-01-15 | 2021-07-22 | 富士フイルム株式会社 | Système optique |
WO2021193416A1 (fr) * | 2020-03-23 | 2021-09-30 | デクセリアルズ株式会社 | Stratifié optique et article |
Also Published As
Publication number | Publication date |
---|---|
TW202345433A (zh) | 2023-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024051010A (ja) | 反射防止層付円偏光板および該反射防止層付円偏光板を用いた画像表示装置 | |
WO2023176631A1 (fr) | Stratifié optique, partie de lentille et procédé d'affichage | |
WO2023176657A1 (fr) | Système d'affichage et film stratifié | |
WO2023176654A1 (fr) | Système d'affichage et film stratifié | |
WO2023176658A1 (fr) | Unité de lentille et film stratifié | |
WO2023176661A1 (fr) | Système d'affichage et film de stratification | |
WO2023176659A1 (fr) | Unité de lentille et film stratifié | |
WO2023176660A1 (fr) | Système d'affichage et film stratifié | |
WO2023176655A1 (fr) | Unité de lentille et film stratifié | |
WO2023176656A1 (fr) | Unité de lentille et film stratifié | |
JP2024095086A (ja) | 表示システムおよび積層フィルム | |
JP2024095087A (ja) | 表示システムおよび積層フィルム | |
JP7581313B2 (ja) | 光学積層体、レンズ部および表示方法 | |
KR20240157671A (ko) | 표시 시스템 및 적층 필름 | |
WO2023176630A1 (fr) | Stratifié optique, unité de lentille et procédé d'affichage | |
JP2024095084A (ja) | レンズ部および積層フィルム | |
JP2024095089A (ja) | 表示システムおよび積層フィルム | |
JP2024095082A (ja) | レンズ部および積層フィルム | |
JP2024095085A (ja) | レンズ部および積層フィルム | |
JP2024095088A (ja) | 表示システムおよび積層フィルム | |
JP2024095083A (ja) | レンズ部および積層フィルム | |
WO2023176629A1 (fr) | Stratifié optique, partie de lentille et procédé d'affichage | |
JP7547456B2 (ja) | レンズ部、表示体および表示方法 | |
KR20240161119A (ko) | 렌즈부 및 적층 필름 | |
KR20240161120A (ko) | 렌즈부 및 적층 필름 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23770613 Country of ref document: EP Kind code of ref document: A1 |