WO2023166668A1 - Shaping method and shaping device - Google Patents
Shaping method and shaping device Download PDFInfo
- Publication number
- WO2023166668A1 WO2023166668A1 PCT/JP2022/009156 JP2022009156W WO2023166668A1 WO 2023166668 A1 WO2023166668 A1 WO 2023166668A1 JP 2022009156 W JP2022009156 W JP 2022009156W WO 2023166668 A1 WO2023166668 A1 WO 2023166668A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semi
- roller
- curing
- layer
- flattening
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 238000007493 shaping process Methods 0.000 title abstract description 7
- 239000012530 fluid Substances 0.000 claims abstract description 77
- 238000007599 discharging Methods 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims description 69
- 229910052751 metal Inorganic materials 0.000 claims description 69
- 230000008569 process Effects 0.000 claims description 55
- 238000000465 moulding Methods 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 6
- 230000001965 increasing effect Effects 0.000 claims description 6
- 239000002923 metal particle Substances 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 229920005989 resin Polymers 0.000 description 96
- 239000011347 resin Substances 0.000 description 96
- 238000010586 diagram Methods 0.000 description 14
- 238000007689 inspection Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 239000010408 film Substances 0.000 description 6
- 238000009499 grossing Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/112—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/188—Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
- B29C64/194—Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
- B29C64/236—Driving means for motion in a direction within the plane of a layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
- B29C64/241—Driving means for rotary motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present disclosure relates to a modeling method and modeling apparatus that performs modeling using a curable viscous fluid.
- a curable viscous fluid such as ultraviolet curable resins
- a curable viscous fluid is ejected by an ejection device
- the ejected curable viscous fluid is cured by irradiating it with ultraviolet rays
- a desired modeled object is created using the cured cured layer.
- a first unit layer which has been discharged with an ultraviolet curable resin, is semi-cured by being irradiated with ultraviolet rays, and the first unit layer is flattened by a flattening roller unit.
- the surface tension of the UV curable resin may form a local enlarged portion.
- the edge of a modeled object and the central part of a modeled object with a small width of several millimeters or less become higher than the target height in the design data due to surface tension.
- the shape of the upper layer and the shape of the finished product may be affected by the local enlarged portion.
- the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a modeling method and a modeling apparatus capable of flattening the local enlarged portion formed in the semi-hardened layer.
- the modeling method of the present disclosure includes a first discharging step of discharging a first curable viscous fluid from above a stage, and moving the stage in a direction opposite to the rotation direction of the roller.
- the content of the present disclosure is not limited to being implemented as a modeling method, but is extremely effective when implemented as a modeling apparatus including a discharge device, rollers, a curing device, and a control device.
- droplets of the first curable viscous fluid to be flattened are smaller than in the second flattening step.
- the intermolecular force between the members is weakened. Therefore, by moving the stage in a direction opposite to the rotation direction of the roller to flatten the surface, the first curable viscous fluid can be transferred to the roller while flattening can be performed quickly, and the modeling time can be shortened.
- the second curable viscous fluid of the semi-hard layer has a large fluid film, and the fluid itself and the fluid and other members The intermolecular force between Therefore, in the second flattening step, flattening is performed by moving the stage in the same direction as the rotation direction of the roller. Accordingly, the second curable viscous fluid can be appropriately transferred to the roller by relatively lengthening the time for the second curable viscous fluid to move to the surface of the roller. As a result, compared to the case of flattening the second curable viscous fluid by moving the stage in the direction opposite to the direction of rotation of the roller, the locally increased portion of the semi-hardened layer can be flattened more.
- FIG. 4 is a schematic diagram showing a state in which an ultraviolet curable resin is ejected from an inkjet head; The schematic diagram which shows the state which is planarizing the ultraviolet curing resin by the planarization apparatus.
- FIG. 4 is a schematic diagram showing a state in which a first planarization layer is formed by curing a planarized ultraviolet curable resin in a curing section;
- FIG. 4 is a schematic diagram showing a first planarization layer with a planarized surface;
- FIG. 4 is a schematic diagram showing a state in which metal ink is ejected;
- FIG. 4 is a schematic diagram showing a state in which metal wiring is formed;
- FIG. 1 shows a modeling apparatus 10 of this embodiment.
- the modeling apparatus 10 includes a conveying device 20, a modeling unit 22, a mounting unit 23, an inspection unit 24, and a control device 26 (see FIG. 2).
- the conveying device 20 , the modeling unit 22 , the mounting unit 23 and the inspection unit 24 are arranged on the base 28 of the modeling device 10 .
- Base 28 is generally rectangular in shape.
- the longitudinal direction of the base 28 is referred to as the X-axis direction
- the lateral direction of the base 28 is referred to as the Y-axis direction
- the direction orthogonal to both the X-axis direction and the Y-axis direction is referred to as the Z-axis direction.
- the transport device 20 has an X-axis slide mechanism 30 and a Y-axis slide mechanism 32 .
- the X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36 .
- the X-axis slide rail 34 is arranged on the base 28 so as to extend in the X-axis direction.
- the X-axis slider 36 is held by an X-axis slide rail 34 so as to be slidable in the X-axis direction.
- the X-axis slide mechanism 30 has an electromagnetic motor 38 (see FIG. 2), and by driving the electromagnetic motor 38, the X-axis slider 36 is moved to an arbitrary position in the X-axis direction.
- the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52 .
- the Y-axis slide rail 50 is arranged on the base 28 so as to extend in the Y-axis direction.
- One end of the Y-axis slide rail 50 in the Y-axis direction is connected to the X-axis slider 36 .
- the Y-axis slide rail 50 can move in the X-axis direction as the X-axis slider 36 slides.
- the stage 52 is held by a Y-axis slide rail 50 so as to be slidable in the Y-axis direction.
- the Y-axis slide mechanism 32 has an electromagnetic motor 56 (see FIG.
- the stage 52 is moved to any position in the Y-axis direction.
- the stage 52 can be moved to any position in the X-axis direction and the Y-axis direction on the base 28 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32 .
- the stage 52 has a base 60 , a holding device 62 and an elevating device 64 .
- the base 60 is formed in a flat plate shape, and a base member 70 (see FIG. 4) is mounted on the upper surface thereof.
- the base member 70 is, for example, a metal plate such as iron or stainless steel.
- the holding devices 62 are provided on both sides of the base 60 in the X-axis direction.
- the base member 70 is placed on the base 60 and is fixedly held with respect to the base 60 by sandwiching both edges in the X-axis direction with the holding device 62 .
- the lifting device 64 is arranged below the base 60 and lifts and lowers the base 60 in the Z-axis direction.
- the modeling unit 22 is a unit that models a structure on the base member 70 placed on the base 60 of the stage 52 , and has a printing section 72 and a curing section 74 .
- the printing unit 72 has an inkjet head 75 and ejects a thin film of fluid onto the base member 70 placed on the base 60 .
- an ultraviolet curable resin 76 (see FIG. 4) that is cured by ultraviolet rays can be used.
- the UV curable resin 76 is an example of first and second curable viscous fluids of the present disclosure.
- the curable viscous fluid other viscous fluids such as a thermosetting resin can be used in addition to the ultraviolet curable resin.
- the inkjet head 75 can eject, for example, metal ink 77 (see FIG. 12) in addition to the ultraviolet curing resin 76 .
- Metal ink 77 is an example of a fluid containing metal particles of the present disclosure.
- the metal ink 77 is made by, for example, dispersing fine particles of nanometer-sized metal (such as silver) in a solvent, and is cured by being baked by heat. The surface of the metal fine particles is coated with, for example, a dispersant to suppress aggregation in the solvent.
- the ultraviolet curable resin 76 When the inkjet head 75 ejects the ultraviolet curable resin 76, the ultraviolet curable resin 76 is ejected from a plurality of nozzles by, for example, a piezo method using piezoelectric elements.
- the inkjet head 75 may eject the ultraviolet curable resin 76 from a plurality of nozzles by a thermal method in which air bubbles are generated by heating the ultraviolet curable resin 76 and ejected from the nozzles.
- the inkjet head 75 when ejecting the metal ink 77, the inkjet head 75 ejects the metal ink 77 from a plurality of nozzles by, for example, a piezo method using piezoelectric elements.
- the ejection device is not limited to the inkjet head 75 having a plurality of nozzles, and may be, for example, a dispenser having one nozzle.
- the inkjet head 75 may have separate nozzles for ejecting the metal ink 77 and nozzles for ejecting the ultraviolet curable resin 76, or may share a nozzle for ejecting two viscous fluids.
- the ultraviolet curing resin 76 and the metal ink 77 they may be referred to as a viscous fluid.
- the curing section 74 has a flattening device 78, an irradiation device 81, and a heater .
- the flattening device 78 is a device for flattening the upper surface of the ultraviolet curable resin 76 and the metal ink 77 ejected onto the base member 70 by the inkjet head 75 .
- the flattening device 78 has a roller 79 and a collection section 80 (see FIG. 5).
- the roller 79 has, for example, a cylindrical shape, and rotates in contact with the fluid viscous fluid (ultraviolet curable resin 76 or metal ink 77) under the control of the flattening device 78, and the surplus viscous fluid is transferred and flattened.
- the recovery unit 80 has, for example, a blade protruding toward the surface of the roller 79, scrapes the viscous fluid transferred to the roller 79 with the blade, and stores and discharges the viscous fluid scraped off with the blade.
- the recovery unit 80 for example, discharges the recovered viscous fluid to a waste liquid tank.
- the flattening device 78 flattens the surface of the viscous fluid by scraping off excess viscous fluid while flattening the surface of the viscous fluid. Note that the recovery unit 80 may return the recovered viscous fluid to the supply tank again. Further, the flattening by the flattening device 78 does not have to be performed every time the viscous fluid is discharged. For example, planarization may be performed only when forming a particular layer.
- the irradiation device 81 irradiates the ultraviolet curing resin 76 discharged onto the base member 70 with ultraviolet rays, for example.
- the UV curable resin 76 is cured by irradiation with UV rays to form a thin insulating layer (such as the first planarizing layer 86 in FIG. 6).
- a heater 82 is a device for heating the ejected metal ink 77 .
- the metal ink 77 is baked by applying heat from the heater 82 to form metal wiring. Firing of the metal ink 77 means, for example, applying energy to evaporate the solvent and decompose the protective film of the metal fine particles, that is, to decompose the dispersant. This is a phenomenon in which the electrical conductivity increases.
- a device for heating the metal ink 77 is not limited to the heater 82 .
- the modeling apparatus 10 heats the metal ink 77 by putting a laser irradiation device that irradiates the metal ink 77 with a laser beam, or putting the first planarization layer 86 onto which the metal ink 77 is ejected into a furnace to heat it.
- An atmosphere furnace may be provided.
- the mounting unit 23 shown in FIG. 1 is, for example, a unit for mounting various electronic components connected to the metal wiring formed by the molding unit 22, and includes a mounting portion 83 and a supply portion 84.
- the mounting unit 83 has, for example, a suction nozzle (not shown) that suctions an electronic component, and mounts the electronic component held by the suction nozzle onto the metal wiring.
- the supply unit 84 has, for example, a plurality of tape feeders that feed taped electronic components one by one, and supplies the electronic components to the mounting unit 83 . Note that the supply unit 84 is not limited to a configuration including a tape feeder, and may be a tray-type supply device that picks up and supplies electronic components from a tray.
- the mounting unit 23 moves the mounting portion 83 to the component supply position of the supply portion 84 and supplies the components.
- the part 84 is driven to supply the necessary parts.
- the mounting section 83 sucks and holds the electronic component from the component supply position of the supply section 84 by means of the suction nozzle, and mounts it on the metal wiring or the like formed on the base member 70 .
- the inspection unit 24 is a unit that inspects the structure manufactured by the modeling unit 22 and the mounting unit 23.
- the inspection unit 24 includes, for example, an imaging device such as a camera. Based on the image data captured by the inspection unit 24, the control device 26 can determine whether or not the electronic component is normally mounted.
- the modeling apparatus 10 may include a laser microscope or the like for inspecting the shape of the modeled object (unevenness of the smooth surface 93 to be described later, etc.).
- the control device 26 includes a controller 102, a plurality of drive circuits 104, and a storage device 106.
- a plurality of drive circuits 104 are connected to the electromagnetic motors 38 and 56, the holding device 62, the lifting device 64, the inkjet head 75, the flattening device 78, the irradiation device 81, the heater 82, the mounting section 83, the supply section 84, and the inspection unit 24. It is connected.
- the controller 102 includes a CPU, ROM, RAM, etc., is mainly a computer, and is connected to a plurality of drive circuits 104 .
- the storage device 106 includes RAM, ROM, hard disk, etc., and stores a control program 107 for controlling the modeling apparatus 10 .
- the controller 102 can control the operations of the conveying device 20, the modeling unit 22, and the like by executing the control program 107 with the CPU.
- the modeling apparatus 10 of the present embodiment has the configuration described above, by curing the ultraviolet curing resin 76 and the metal ink 77 as the viscous fluid, the first flattening layer 86 (see FIG. 6) having insulating properties, the smoothing layer 151 (see FIG. 12) and a conductive metal wiring 95 (see FIG. 13) are formed.
- the modeling apparatus 10 can model a structure of any shape.
- the modeling apparatus 10 may mount electronic components using the mounting unit 23 during the modeling process.
- the control program 107 is set with three-dimensional data of each layer obtained by slicing the structure.
- the controller 102 discharges and hardens the viscous fluid to form a structure.
- the controller 102 also detects information such as the layer and position where the electronic component is to be placed based on the data of the control program 107, and mounts the electronic component based on the detected information.
- FIG. 3 is a flow chart showing the details of the modeling process.
- the control device 26 executes a predetermined program of the control program 107 to start the modeling process shown in FIG.
- the fact that the controller 102 executes the control program 107 to control each device may be simply referred to as "device name".
- the controller 102 moves the base 60 means "the controller 102 executes the control program 107, controls the operation of the carrier device 20 via the drive circuit 104, and controls the operation of the carrier device 20. It means “to move the base 60".
- 4 to 8, 12, and 13 schematically show each step of the modeling process. 4 to 8, 12, and 13 (such as the X-axis direction) are examples.
- the base member 70 is set on the base 60 of the stage 52 .
- the setting of the base member 70 may be performed manually or automatically by the modeling apparatus 10 .
- the controller 102 controls the transport device 20 to move the stage 52 on which the base member 70 is set below the modeling unit 22 .
- the controller 102 moves the stage 52 in the X-axis direction, for example, as shown in FIG. is discharged onto the base member 70 .
- the inkjet head 75 ejects the ultraviolet curable resin 76 onto the base member 70 in the form of a thin film.
- the controller 102 may execute ejection by the inkjet head 75 in S11, for example, only one scan (one pass) along the X-axis direction, or may execute a plurality of scans.
- the controller 102 rotates the rollers 79 of the flattening device 78 on the upper surface of the thin ultraviolet curable resin 76 to flatten it.
- the controller 102 moves the base member 70 (stage 52) in a movement direction 133 opposite to the rotation direction 131 of the roller 79, as indicated by the arrow in FIG.
- a roller 79 flattens the resin 76 .
- the controller 102 rotates the roller 79 in a counterclockwise rotation direction 131 in FIG. 5 around a rotation axis parallel to the Y-axis direction.
- the controller 102 moves the stage 52 in a movement direction 133 (a direction toward the back in FIG.
- the controller 102 raises the stage 52 by the lifting device 64 to a position where the roller 79 contacts the ultraviolet curable resin 76 discharged onto the base member 70 to perform flattening. Further, the controller 102 makes the rotation speed of the roller 79 in the rotation direction 131 larger (faster) than the moving speed of the stage 52 in the moving direction 133 .
- the roller 79 contacts the UV curable resin 76 in a flowable state, transfers the UV curable resin 76 to the roller 79, scrapes it up, and recovers it by the recovery unit 80, while flattening the surface of the UV curable resin 76.
- the operating directions and the like of the base member 70 and the rollers 79 described above are examples.
- the roller 79 is configured to be movable in the X-axis direction, and the controller 102 moves the roller 79 in a moving direction 133 or a direction opposite to the moving direction 133 and rotates it in a rotating direction 131 to perform flattening. can be
- the controller 102 causes the irradiation device 81 to irradiate the flattened ultraviolet curing resin 76 with ultraviolet rays.
- the irradiation device 81 irradiates the ultraviolet curable resin 76 (see FIG. 5) spread in a thin film with ultraviolet rays to cure the ultraviolet curable resin 76, thereby forming a first flattening film having insulating properties.
- a layer 86 is formed. Thereby, a first planarization layer 86 having a planarized first planarization surface 86A on its surface is formed.
- the controller 102 determines whether or not the first planarization layer 86 with a predetermined thickness has been formed (S17).
- the controller 102 makes a negative determination in S17 (S17: NO) until the thickness reaches a value designated by a setting value of the control program 107 or an operation input from the outside.
- the controller 102 can determine the thickness of the formed first planarization layer 86 based on, for example, the size of droplets of the ultraviolet curable resin 76 ejected from the inkjet head 75, the number of times S11 to S15 are repeatedly executed, and the like. .
- the controller 102 stacks insulating layers by repeatedly executing the processes of S11 to S15 to form the first planarizing layer 86 having a first planarizing surface 86A and a predetermined thickness. Note that the controller 102 does not have to execute the first flattening process of S13 each time S11 is executed. For example, the controller 102 may execute the first flattening process of S13 each time S11 and S15 are executed multiple times.
- the controller 102 determines in S17 that the first planarizing layer 86 having a predetermined thickness has been formed (S17: YES)
- the first planarizing surface 86A of the first planarizing layer 86 is removed in the second ejection process in S19.
- an ultraviolet curable resin 76 is discharged onto the first flattened surface 86A.
- a planarized first planarized surface 86A can be formed on the surface of the first planarized layer 86.
- FIG. 7 schematically shows the first planarization layer 86 whose surface is planarized. As shown in FIG.
- the surface on which the fine unevenness 91 is formed is defined as a flattened surface. Further, a surface on which the fine irregularities 91 are reduced or the surface irregularities are ⁇ 1 ⁇ m or less (it can be hypothesized that the original irregularities 91 are eliminated) is defined as a smoothed surface.
- the thickness of the formed metal wiring varies.
- the electrical conductivity of the metal wiring may be lowered because the metal wiring is not completely baked (the metal fine particles do not contact or fuse together) in the thick portion. As a result, the resistance value of the metal wiring becomes uniform, making it difficult to obtain desired high-frequency characteristics.
- the controller 102 discharges the ultraviolet curing resin 76 again onto the flattened first flattened surface 86A of the first flattened layer 86 to reduce or eliminate the unevenness 91 .
- the controller 102 ejects the ultraviolet curable resin 76 onto the first flattened surface 86A from the inkjet head 75 in the second ejection process of S19 of FIG.
- the UV curable resin 76 of S19 will be referred to as the second UV curable resin 76A.
- the controller 102 sets the discharge amount of the second ultraviolet curable resin 76A in S19 to an amount corresponding to the size of the unevenness 91 .
- the controller 102 executes processing to increase the ejection amount of the inkjet head 75 when the height of the unevenness 91 to be formed is high (the groove is deep).
- the controller 102 may discharge the second ultraviolet curable resin 76A at a constant discharge rate regardless of the size of the unevenness 91 .
- the controller 102 performs a semi-curing process on the second ultraviolet curing resin 76A discharged in S19 (S23).
- the controller 102 irradiates the second ultraviolet curing resin 76A with ultraviolet rays from the irradiation device 81 to semi-harden it (see FIG. 6).
- the term "semi-cured state" as used herein means a state in which the viscosity is lowered and the fluidity is improved, and the physical properties are not completely stable.
- the semi-cured state means, for example, when a new second ultraviolet curable resin 76A is discharged onto a layer of the semi-cured second ultraviolet curable resin 76A, the discharged second ultraviolet curable resin 76A does not mix with the layer.
- the controller 102 controls, for example, the intensity (light intensity) of the ultraviolet rays irradiated to the second ultraviolet curing resin 76A, the scanning speed of the ultraviolet rays, the number of scanning times,
- the second ultraviolet curable resin 76A is semi-cured by reducing the irradiation time, the number of times of irradiation, and the like.
- the controller 102 repeatedly executes the processes of S19 to S23 until a semi-cured layer having a predetermined thickness is formed (S25: NO), and the semi-cured second ultraviolet curable resin Laminate 76A.
- a semi-cured layer 92 is formed by laminating a semi-cured second ultraviolet curable resin 76A.
- the semi-cured second ultraviolet curable resin 76A spreads over the fine irregularities 91 of the first flattened surface 86A due to the leveling effect and smoothes them to form a smooth surface 93.
- the leveling effect referred to here is a phenomenon in which the surface area of a liquid becomes as small as possible due to surface tension.
- the thin film formed by the second ultraviolet curing resin 76A changes to a flat (more uniform) film thickness over time.
- the second ultraviolet curable resin 76A spreads by being discharged onto the first flattened surface 86A, and spreads so as to fill the irregularities 91. As shown in FIG.
- FIG. 9 is a schematic diagram for explaining the enlargement part 135. As shown in FIG. 9, for example, when a small shaped object 139 with a width 137 in the X-axis direction of several millimeters or less is formed, the semi-cured layer 92 has a Z-axis due to the surface tension of the second ultraviolet curable resin 76A.
- An enlarged portion 135 that bulges upward in the axial direction is formed. Further, for example, when the modeled object 141 is formed with the width in the X-axis direction and the Y-axis direction expanded to a certain width (for example, 3 mm) or more, the ends of the modeled object 141 in the X-axis direction and the Y-axis direction have , an enlarged portion 135 bulging upward is formed.
- An enlarged portion 135 protruding from a predetermined height 143 is formed on each of the shaped objects 139 and 141 . This predetermined height 143 is, for example, a target height defined by three-dimensional data of the control program 107 or the like, and is the height at which the smooth surface 93 is formed.
- the ultraviolet curable resin discharged onto the enlarged portion 135 has a surface tension higher than that of the ultraviolet curable resin printed on a flat surface such as the smooth surface 93. , the force of adhering to the base (enlarged portion 135) is increased. For this reason, if the UV curable resin is discharged in the same amount onto the enlarged portion 135 and the smooth surface 93 and the flattening process is performed under the same conditions, the enlarged portion 135 will remain in the modeled object. As a result, the thickness and modeling accuracy of the completed modeled object deteriorate.
- the controller 102 executes the second flattening process of S27 to reduce the increase portion 135 (suppress the increase).
- the controller 102 moves the stage 52 to the position of the flattening device 78 so that the lower ends of the rollers 79 are positioned on the smooth surface 93, that is, at a predetermined height 143, as shown in FIG. Adjust the height of 52.
- the positions of the rollers 79 in the X-axis direction and the Y-axis direction are fixed.
- the position where the rotating roller 79 contacts the semi-hardened layer 92 while this position is fixed is aligned with the position of the upper surface (smooth surface 93) of the semi-hardened layer 92 in the design data, and flattening by the roller 79 is performed.
- the second ultraviolet curable resin 76A contained in the enlarged portion 135 projecting from the smooth surface 93 can be transferred to the roller 79 and collected, thereby reducing the size of the enlarged portion 135 and flattening it.
- the second flattening process may be performed while moving the roller 79 without fixing its position. Also, the position of the roller 79 may be slightly above or below the smooth surface 93 .
- the method of aligning the position of the roller 79 with the position of the upper surface of the semi-hardened layer 92 is not particularly limited. Based on the three-dimensional data of the control program 107 , the position of the lower end of the roller 79 may be aligned with the target height for forming the smooth surface 93 . Alternatively, the height of the upper surface of the semi-hardened layer 92 may be measured by forming a modeled object on a trial basis, and the position of the roller 79 may be aligned. Alternatively, the position of the roller 79 may be adjusted by measuring the height of the upper surface of the shaped semi-hardened layer 92 with a sensor or the like before executing S27 in the actual shaping process.
- the position of the stage 52 may be fixed, the position of the roller 79 in the Z-axis direction may be adjusted, and the position of the roller 79 may be aligned with the position of the upper surface of the semi-hardened layer 92 . Moreover, both the stage 52 and the roller 79 may be moved in the Z-axis direction for adjustment.
- the controller 102 moves the stage 52 in the moving direction 145, which is the same direction as the rotating direction 131 of the roller 79, as shown in FIG. is flattened by rollers 79 .
- the same direction as the rotation direction 131 here means, for example, parallel to the upper surface of the stage 52 , the tangential direction of the roller 79 , and the same direction as the rotation direction 131 . Since the position of the roller 79 is fixed as described above, the roller 79 rotates while the position in the movement direction 145 of the stage 52, for example, the X-axis direction is fixed.
- FIG. 10 is a schematic diagram of the first planarization process.
- the ultraviolet curable resin 76 to be processed in the first planarization process is one by one, compared to the state in which many layers of the semi-cured second ultraviolet curable resin 76A are stacked as in the second planarization process.
- One droplet is small.
- the UV curable resin 76 has a weak intermolecular force between the droplet itself and the cured film (already cured portion of the first planarization layer 86) (see arrow in FIG. 10).
- the rotation direction 131 and the movement direction 133 are reversed, and force is applied from the roller 79 to the ultraviolet curable resin 76 in the direction of the arrow 147 shown in FIG. , and can be planarized quickly and efficiently. As a result, the molding time can be shortened.
- FIG. 11 is a schematic diagram of the second planarization process.
- the cycle of S19 to S23 is executed a plurality of times to fill the irregularities 91, and the semi-cured second ultraviolet curing resin 76A is laminated.
- the liquid film formed by the droplets of the second ultraviolet curing resin 76A is large.
- the intermolecular force between 86 is strong (see arrow in FIG. 11).
- the second ultraviolet curable resin 76A cannot be sufficiently collected (transferred). Therefore, by setting the rotating direction 131 of the roller 79 and the moving direction 145 of the stage 52 in the same direction, the time for the second ultraviolet curable resin 76A to move to the surface of the roller 79, that is, the transfer time can be lengthened. , the surplus second ultraviolet curable resin 76A can be more reliably transferred to the roller 79 and recovered to be flattened. The enlarged portion 135 can be made smaller more reliably.
- the controller 102 increases (increases) the rotational speed of the rollers 79 in the rotational direction 131 compared to the movement speed of the stage 52 in the movement direction 133 in the first flattening process.
- the controller 102 makes the rotational speed of the roller 79 several times the moving speed of the stage 52 .
- the roller 79 is rotated at a high speed, and the transfer amount to the roller 79 per unit time is increased. It is possible to shorten the time required for the first planarization process. As a result, the molding time can be shortened.
- the controller 102 makes the moving speed of the stage 52 in the moving direction 145 and the rotating speed of the roller 79 in the rotating direction 131 the same in the second flattening process.
- the difference in relative moving speed between the roller 79 and the second ultraviolet curable resin 76A on the stage 52 can be eliminated, as if the roller 79 holds down the second ultraviolet curable resin 76A from above.
- the second flattening process in which the intermolecular force is strong and droplet transfer is difficult compared to the first flattening process, by eliminating the relative movement between the roller 79 and the second ultraviolet curable resin 76A, the excess amount can be more reliably removed.
- the second ultraviolet curable resin 76A can be transferred to the roller 79. As shown in FIG.
- the controller 102 executes a second curing process for curing the semi-cured layer 92 (S29).
- the controller 102 moves the stage 52 to the irradiation device 81 and irradiates the semi-cured layer 92 that has undergone the second planarization process with ultraviolet rays.
- the second ultraviolet curable resin 76A is cured so as to fill the irregularities 91 by being irradiated with ultraviolet rays and increasing in viscosity.
- a smoothing layer 151 obtained by curing the semi-cured layer 92 is formed on the first planarizing layer 86 (see FIG. 12).
- a smooth surface 93 formed on the upper surface of the smooth layer 151 is a surface with reduced or no unevenness 91 due to the above-described leveling effect. Further, the smooth surface 93 becomes a surface in which the enlarged portion 135 is reduced or eliminated by the second flattening process.
- the controller 102 forms metal wiring at predetermined locations on the smooth surface 93 based on the three-dimensional data of the control program 107 . More specifically, in the metal fluid ejection process of S31, the controller 102 controls the inkjet head 75 to eject the metal ink 77 in a thin film form onto the smooth surface 93 of the smooth layer 151 (see FIG. 12). In the conductor forming process of S33, the controller 102 heats and bakes the metal ink 77 ejected onto the smooth surface 93 by the heater 82 (see FIG. 13). The controller 102 determines in S35 whether or not the metal wiring 95 having the desired thickness and shape has been formed.
- the controller 102 makes a negative determination in S35 up to a preset number of times (S35: NO), and repeats S31 and S33 to form the desired metal wiring 95 on the smooth surface 93 .
- the desired metal wiring 95 referred to here is the metal wiring 95 that satisfies the required thickness, shape, position, and electrical characteristics.
- the controller 102 makes an affirmative determination in S35 (S35: YES), and executes S37.
- the first planarization layer 86 (wiring substrate) having the metal wiring 95 formed on the smooth surface 93 can be formed.
- the thickness of the metal wiring 95 becomes uneven due to the unevenness 91 . Then, problems such as an increase in the resistance value of the metal wiring 95, disconnection, and deterioration of high-frequency characteristics may occur.
- the minute unevenness 91 and the enlarged portion 135 of the first flattened surface 86A are reduced, and the metal ink 77 is ejected onto the reduced smooth surface 93.
- a metal wiring 95 having a uniform thickness can be formed. As a result, the resistance value of metal wiring 95 can be reduced to a desired value, and the occurrence of disconnection can be suppressed.
- the controller 102 executes other processing in S37.
- the controller 102 ejects the metal ink 77 from the inkjet head 75 onto the metal wiring 95, controls the mounting unit 23, and arranges the electronic component so that the ejected ink contacts the terminal of the electronic component. Also good.
- the controller 102 connects the electronic component with the metal wiring 95 (circuit) by baking the metal ink 77 with the heater 82 .
- the controller 102 may re-execute the process from S11 when further shaping of the first planarization layer 86 and the metal wiring 95 is required.
- the controller 102 may also control the inspection unit 24 to perform inspection of the completed structure (such as the first planarization layer 86 loaded with electronic components).
- the controller 102 ends the modeling process shown in FIG. Thereby, a desired structure can be modeled.
- the controller 102 of the modeling apparatus 10 moves the stage 52 in a direction opposite to the rotation direction 131 of the roller 79 in a first ejection process (S11) in which the ultraviolet curable resin 76 is ejected from above the stage 52, and ejects in S11.
- a first flattening process (S13) of flattening the ultraviolet curable resin 76 flattened by the roller 79 and a first hardening process (S15) of hardening the flattened ultraviolet curable resin 76 in S13 are performed.
- the controller 102 repeats S11, S13, and S15 to form the first planarization layer 86 until the predetermined thickness is reached (S17: NO).
- the controller 102 performs a second ejection process (S19) for ejecting the second ultraviolet curable resin 76A onto the first planarizing layer 86, and a semi-curing process for semi-curing the second ultraviolet curable resin 76A ejected in S19. (S23) is executed.
- the controller 102 repeats S19 and S23 to form the semi-hardened layer 92 on the first planarization layer 86 until the predetermined thickness is reached (S25: NO).
- the controller 102 moves the stage 52 in the same direction as the rotation direction 131 of the rollers 79 to flatten the semi-hardened layer 92 by the rollers 79 (S27).
- the ultraviolet curable resin 76 can be transferred to the roller 79 and the flattening can be performed quickly. , the molding time can be shortened. Furthermore, in S23, by moving the stage 52 in the same direction as the rotation direction 131 of the roller 79 to perform flattening, the time required for the second ultraviolet curable resin 76A of the semi-cured layer 92 to move to the surface of the roller 79 is It can be relatively long and can perform adequate transfer.
- the localized enlarged portion 135 of the semi-cured layer 92 is flattened more. can.
- the controller 102 of the control device 26 includes a first ejection section 110, a first planarization section 111, a first curing section 112, a planarization layer forming section 113, and a second ejection section. It has a portion 115 , a semi-hardened portion 116 , a semi-hardened layer forming portion 117 and a second flattened portion 118 .
- the first ejection unit 110 and the like are, for example, processing modules realized by executing the control program 107 in the CPU of the controller 102 . Note that the first ejection unit 110 and the like may be configured by hardware instead of software.
- the first ejection part 110 is a functional part that ejects the ultraviolet curing resin 76 from the inkjet head 75 above the stage 52 .
- the first flattening section 111 is a functional section that flattens the ultraviolet curable resin 76 discharged by the first discharge section 110 by moving the stage 52 in a direction opposite to the rotation direction 131 of the roller 79 .
- the first curing section 112 is a functional section that causes the curing section 74 to cure the ultraviolet curable resin 76 flattened by the first flattening section 111 .
- the planarization layer forming unit 113 is a functional unit that repeatedly executes S11, S13, and S15 to form the first planarization layer 86 on the stage 52.
- the second ejection part 115 is a functional part that ejects the second ultraviolet curable resin 76A onto the first planarization layer 86 from the inkjet head 75 .
- the semi-curing section 116 is a functional section that semi-cures the second ultraviolet curable resin 76A discharged from the second discharge section 115 by the curing section 74 .
- the semi-hardened layer forming part 117 is a functional part that repeatedly executes S19 and S23 to form the semi-hardened layer 92 on the first planarization layer 86 .
- the second flattening section 118 is a functional section that flattens the semi-hardened layer 92 by the roller 79 by moving the stage 52 in the same direction as the rotation direction 131 of the roller 79 .
- the curing section 74 is an example of a curing device.
- the inkjet head 75 is an example of an ejection device.
- the ultraviolet curable resin 76 is an example of the first curable viscous fluid.
- Metal ink 77 is an example of a fluid containing metal particles.
- the second ultraviolet curable resin 76A is an example of a second curable viscous fluid.
- the first planarization layer 86 is an example of a planarization layer.
- Metal wiring 95 is an example of a conductor.
- S11 is an example of the first discharge step and the planarizing layer forming step.
- S13 is an example of a first planarization step and a planarization layer formation step.
- S15 is an example of a first curing step and a flattening layer forming step.
- S19 is an example of a second ejection step, a semi-hardened layer forming step.
- S23 is an example of a semi-curing step and a semi-cured layer forming step.
- S27 is an example of a second planarization step.
- S29 is an example of a second curing step.
- S31 is an example of the metal fluid ejection step.
- S33 is an example of a conductor forming step.
- the present disclosure is not limited to the above-described embodiments, and can be implemented in various modes with various modifications and improvements based on the knowledge of those skilled in the art.
- the contents, order, etc. of each step of the manufacturing process shown in FIG. 3 are an example.
- the first planarizing layer 86 is formed on the base member 70 of the stage 52 and the smooth layer 151 is formed on the first planarizing layer 86, but the present invention is not limited to this.
- the smoothing layer 151 may be formed on the base member 70
- the first planarizing layer 86 may be formed on the smoothing layer 151
- the smoothing layer 151 may be formed on the first planarizing layer 86.
- the controller 102 does not need to form the metal wiring 95 . Further, the controller 102 may set the rotational speed of the roller 79 to be the same as or lower than the moving speed of the stage 52 in S13. Also, the controller 102 may make the moving speed of the stage 52 higher or lower than the rotational speed of the roller 79 in S27. Although the position of the roller 79 is fixed in the modeling apparatus 10, the structure may be such that the position is not fixed. The modeling apparatus 10 may perform flattening by moving the roller 79 in each of the XYZ axial directions in each flattening step (processing). Also, the controller 102 does not have to mount electronic components.
- the first curable viscous fluid and the second curable viscous fluid of the present disclosure are not limited to the ultraviolet curable resin 76, and various curable viscous fluids that are cured by light, heat, or the like can be employed. Therefore, the method for curing the first curable viscous fluid and the second curable viscous fluid is not limited to ultraviolet rays.
- the first curable viscous fluid and the second curable viscous fluid may be different types of curable viscous fluids.
- the fluid containing metal particles of the present disclosure is not limited to the metal ink 77 containing silver, and fluids containing other metals can be employed.
- the modeling apparatus 10 that manufactures wiring boards is employed as the modeling apparatus of the present disclosure, but the present invention is not limited to this. As the manufacturing apparatus of the present disclosure, various manufacturing apparatuses that perform modeling using the first curable viscous fluid and the second curable viscous fluid can be employed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
Abstract
The present invention provides a shaping method and a shaping device by which a locally thickened region formed on a semi-cured layer can be further flattened. This shaping method includes: a first discharge step of discharging a first curable viscous fluid from above a stage; a first flattening step in which the first curable viscous fluid discharged in the first discharge step is flattened by means of a roller by moving the stage in the opposite direction to a rotating direction of the roller; a first curing step in which the first curable viscous fluid flattened in the first flattening step is cured; a flattened layer formation step in which a flattened layer is formed on the stage by repeating the above three steps; a second discharge step in which a second curable viscous fluid is discharged onto the flattened layer; a semi-curing step in which the second curable viscous fluid discharged in the second discharge step is semi-cured; a semi-cured layer formation step in which a semi-cured layer is formed on the flattened layer by repeating the above two steps; and a second flattening step in which the semi-cured layer is flattened by the roller by moving the stage in the same direction as the rotating direction of the roller.
Description
本開示は、硬化性粘性流体を用いて造形を行う造形方法及び造形装置に関する。
The present disclosure relates to a modeling method and modeling apparatus that performs modeling using a curable viscous fluid.
従来、紫外線硬化樹脂などの硬化性粘性流体によって造形物を造形する造形方法に係わる技術が開発されている。具体的には、この造形方法では、例えば、吐出装置によって硬化性粘性流体を吐出し、吐出した硬化性粘性流体に紫外線を照射することで硬化させ、硬化した硬化層で所望の造形物を造形する。下記特許文献1では、紫外線硬化樹脂を吐出した第1単位層に紫外線を照射することで半硬化させ、平坦化ローラユニットで第1単位層の平坦化処理を行なっている。
Conventionally, technologies related to modeling methods have been developed that use curable viscous fluids such as ultraviolet curable resins to model objects. Specifically, in this modeling method, for example, a curable viscous fluid is ejected by an ejection device, the ejected curable viscous fluid is cured by irradiating it with ultraviolet rays, and a desired modeled object is created using the cured cured layer. do. In Japanese Unexamined Patent Application Publication No. 2002-100001, a first unit layer, which has been discharged with an ultraviolet curable resin, is semi-cured by being irradiated with ultraviolet rays, and the first unit layer is flattened by a flattening roller unit.
上記した紫外線硬化樹脂の半硬化の工程では、紫外線硬化樹脂の表面張力によって局所的な増大部が形成される場合がある。例えば、造形物の端部や、数mm以下の幅の小さい造形物の中央部が、表面張力によって設計データ上の目標高さよりも高くなってしまう。その結果、さらに上層の形状や、完成品の造形物の形状が、局所的な増大部の影響を受ける虞があった。
In the process of semi-curing the UV curable resin described above, the surface tension of the UV curable resin may form a local enlarged portion. For example, the edge of a modeled object and the central part of a modeled object with a small width of several millimeters or less become higher than the target height in the design data due to surface tension. As a result, the shape of the upper layer and the shape of the finished product may be affected by the local enlarged portion.
本開示は、そのような実情に鑑みてなされたものであり、半硬化層に形成される局所的な増大部をより平坦化できる造形方法及び造形装置を提供することを課題とする。
The present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a modeling method and a modeling apparatus capable of flattening the local enlarged portion formed in the semi-hardened layer.
上記課題を解決するために、本開示の造形方法は、第1硬化性粘性流体をステージの上方から吐出する第1吐出工程と、前記ローラの回転方向とは逆方向へ前記ステージを移動させて、前記第1吐出工程により吐出した前記第1硬化性粘性流体をローラにより平坦化する第1平坦化工程と、前記第1平坦化工程により平坦化した前記第1硬化性粘性流体を硬化する第1硬化工程と、前記第1吐出工程、前記第1平坦化工程、前記第1硬化工程を繰り返し実行し、前記ステージの上に平坦化層を形成する平坦化層形成工程と、前記平坦化層の上に第2硬化性粘性流体を吐出する第2吐出工程と、前記第2吐出工程により吐出した前記第2硬化性粘性流体を半硬化させる半硬化工程と、前記第2吐出工程、前記半硬化工程を繰り返し実行し、前記平坦化層の上に半硬化層を形成する半硬化層形成工程と、前記ローラの回転方向と同じ方向へ前記ステージを移動させて、前記半硬化層を前記ローラにより平坦化する第2平坦化工程と、を含む。
In order to solve the above problems, the modeling method of the present disclosure includes a first discharging step of discharging a first curable viscous fluid from above a stage, and moving the stage in a direction opposite to the rotation direction of the roller. a first flattening step of flattening the first hardening viscous fluid discharged in the first flattening step with a roller; 1 curing step, said first discharging step, said first planarizing step, and said first curing step are repeatedly performed to form a planarized layer on said stage; said planarized layer forming step; a second discharging step of discharging a second curable viscous fluid onto the liquid, a semi-curing step of semi-curing the second curable viscous fluid discharged in the second discharging step, the second discharging step, the half a semi-cured layer forming step of repeatedly performing a curing step to form a semi-cured layer on the flattening layer; and a second planarization step of planarizing by
また、本開示の内容は、造形方法としての実施に限らず、吐出装置と、ローラと、硬化装置と、制御装置と、を備える造形装置として実施しても極めて有効である。
Further, the content of the present disclosure is not limited to being implemented as a modeling method, but is extremely effective when implemented as a modeling apparatus including a discharge device, rollers, a curing device, and a control device.
本開示の製造方法、製造装置において、第1平坦化工程は、第2平坦化工程に比べて平坦化の対象となる第1硬化性粘性流体の液滴が小さく、流体自体や流体と他の部材との間の分子間力が弱くなる。そこで、ステージを、ローラの回転方向とは逆方向へ移動させて平坦化することで、第1硬化性粘性流体をローラに転写しつつ、迅速に平坦化を実行でき、造形時間を短縮できる。一方、半硬化層形成工程において、第2吐出工程、半硬化工程を繰り返し実行することで、半硬化層の第2硬化性粘性流体は、流体膜が大きく、流体自体や流体と他の部材との間の分子間力が大きくなる。そこで、第2平坦化工程では、ローラの回転方向と同じ方向へステージを移動させて平坦化を実行する。これにより、ローラの表面に第2硬化性粘性流体が移動する時間を比較的長くすることで、第2硬化性粘性流体をローラに適切に転写できる。その結果、ローラの回転方向とは逆方向にステージを移動させて第2硬化性粘性流体を平坦化する場合に比べて、半硬化層の局所的な増大部をより平坦化できる。
In the manufacturing method and manufacturing apparatus of the present disclosure, in the first flattening step, droplets of the first curable viscous fluid to be flattened are smaller than in the second flattening step. The intermolecular force between the members is weakened. Therefore, by moving the stage in a direction opposite to the rotation direction of the roller to flatten the surface, the first curable viscous fluid can be transferred to the roller while flattening can be performed quickly, and the modeling time can be shortened. On the other hand, in the semi-hard layer forming step, by repeatedly performing the second discharging step and the semi-hardening step, the second curable viscous fluid of the semi-hard layer has a large fluid film, and the fluid itself and the fluid and other members The intermolecular force between Therefore, in the second flattening step, flattening is performed by moving the stage in the same direction as the rotation direction of the roller. Accordingly, the second curable viscous fluid can be appropriately transferred to the roller by relatively lengthening the time for the second curable viscous fluid to move to the surface of the roller. As a result, compared to the case of flattening the second curable viscous fluid by moving the stage in the direction opposite to the direction of rotation of the roller, the locally increased portion of the semi-hardened layer can be flattened more.
(1.造形装置10の構成)
以下、本開示の造形方法、造形装置を具体化した一実施例について説明する。図1は、本実施例の造形装置10を示している。図1に示すように、造形装置10は、搬送装置20と、造形ユニット22と、装着ユニット23と、検査ユニット24と、制御装置26(図2参照)とを備えている。搬送装置20、造形ユニット22、装着ユニット23、検査ユニット24は、造形装置10のベース28の上に配置されている。ベース28は、概して長方形状をなしている。以下の説明では、ベース28の長手方向をX軸方向、ベース28の短手方向をY軸方向、X軸方向及びY軸方向の両方に直交する方向をZ軸方向と称して説明する。 (1. Configuration of modeling apparatus 10)
An embodiment embodying the modeling method and modeling apparatus of the present disclosure will be described below. FIG. 1 shows amodeling apparatus 10 of this embodiment. As shown in FIG. 1, the modeling apparatus 10 includes a conveying device 20, a modeling unit 22, a mounting unit 23, an inspection unit 24, and a control device 26 (see FIG. 2). The conveying device 20 , the modeling unit 22 , the mounting unit 23 and the inspection unit 24 are arranged on the base 28 of the modeling device 10 . Base 28 is generally rectangular in shape. In the following description, the longitudinal direction of the base 28 is referred to as the X-axis direction, the lateral direction of the base 28 is referred to as the Y-axis direction, and the direction orthogonal to both the X-axis direction and the Y-axis direction is referred to as the Z-axis direction.
以下、本開示の造形方法、造形装置を具体化した一実施例について説明する。図1は、本実施例の造形装置10を示している。図1に示すように、造形装置10は、搬送装置20と、造形ユニット22と、装着ユニット23と、検査ユニット24と、制御装置26(図2参照)とを備えている。搬送装置20、造形ユニット22、装着ユニット23、検査ユニット24は、造形装置10のベース28の上に配置されている。ベース28は、概して長方形状をなしている。以下の説明では、ベース28の長手方向をX軸方向、ベース28の短手方向をY軸方向、X軸方向及びY軸方向の両方に直交する方向をZ軸方向と称して説明する。 (1. Configuration of modeling apparatus 10)
An embodiment embodying the modeling method and modeling apparatus of the present disclosure will be described below. FIG. 1 shows a
搬送装置20は、X軸スライド機構30と、Y軸スライド機構32を備えている。X軸スライド機構30は、X軸スライドレール34と、X軸スライダ36を有している。X軸スライドレール34は、X軸方向に延びるように、ベース28の上に配設されている。X軸スライダ36は、X軸スライドレール34によって、X軸方向にスライド可能に保持されている。さらに、X軸スライド機構30は、電磁モータ38(図2参照)を有しており、電磁モータ38の駆動により、X軸スライダ36をX軸方向の任意の位置に移動させる。
The transport device 20 has an X-axis slide mechanism 30 and a Y-axis slide mechanism 32 . The X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36 . The X-axis slide rail 34 is arranged on the base 28 so as to extend in the X-axis direction. The X-axis slider 36 is held by an X-axis slide rail 34 so as to be slidable in the X-axis direction. Further, the X-axis slide mechanism 30 has an electromagnetic motor 38 (see FIG. 2), and by driving the electromagnetic motor 38, the X-axis slider 36 is moved to an arbitrary position in the X-axis direction.
また、Y軸スライド機構32は、Y軸スライドレール50と、ステージ52を有している。Y軸スライドレール50は、Y軸方向に延びるように、ベース28の上に配設されている。Y軸方向におけるY軸スライドレール50の一端部は、X軸スライダ36に連結されている。これにより、Y軸スライドレール50は、X軸スライダ36のスライド移動にともなって、X軸方向に移動可能とされている。ステージ52は、Y軸スライドレール50によってY軸方向にスライド可能に保持されている。さらに、Y軸スライド機構32は、電磁モータ56(図2参照)を有しており、電磁モータ56の駆動により、ステージ52をY軸方向の任意の位置に移動させる。これにより、ステージ52は、X軸スライド機構30及びY軸スライド機構32の駆動により、ベース28上において、X軸方向及びY軸方向の任意の位置に移動可能となっている。
Also, the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52 . The Y-axis slide rail 50 is arranged on the base 28 so as to extend in the Y-axis direction. One end of the Y-axis slide rail 50 in the Y-axis direction is connected to the X-axis slider 36 . As a result, the Y-axis slide rail 50 can move in the X-axis direction as the X-axis slider 36 slides. The stage 52 is held by a Y-axis slide rail 50 so as to be slidable in the Y-axis direction. Furthermore, the Y-axis slide mechanism 32 has an electromagnetic motor 56 (see FIG. 2), and by driving the electromagnetic motor 56, the stage 52 is moved to any position in the Y-axis direction. As a result, the stage 52 can be moved to any position in the X-axis direction and the Y-axis direction on the base 28 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32 .
ステージ52は、基台60と、保持装置62と、昇降装置64を有している。基台60は、平板状に形成され、上面にベース部材70(図4参照)が載置される。ベース部材70は、例えば、鉄やステンレスなどの金属製の板である。保持装置62は、基台60のX軸方向の両側部に設けられている。ベース部材70は、基台60に載置され、X軸方向の両縁部を保持装置62によって挟まれることで、基台60に対して固定的に保持される。また、昇降装置64は、基台60の下方に配設されており、基台60をZ軸方向に昇降させる。
The stage 52 has a base 60 , a holding device 62 and an elevating device 64 . The base 60 is formed in a flat plate shape, and a base member 70 (see FIG. 4) is mounted on the upper surface thereof. The base member 70 is, for example, a metal plate such as iron or stainless steel. The holding devices 62 are provided on both sides of the base 60 in the X-axis direction. The base member 70 is placed on the base 60 and is fixedly held with respect to the base 60 by sandwiching both edges in the X-axis direction with the holding device 62 . Further, the lifting device 64 is arranged below the base 60 and lifts and lowers the base 60 in the Z-axis direction.
造形ユニット22は、ステージ52の基台60に載置されたベース部材70の上に構造物を造形するユニットであり、印刷部72と、硬化部74を有している。印刷部72は、図4に示すように、インクジェットヘッド75を有しており、基台60に載置されたベース部材70の上に、流体を薄膜状に吐出する。インクジェットヘッド75が吐出する流体としては、紫外線によって硬化する紫外線硬化樹脂76(図4参照)を採用することができる。紫外線硬化樹脂76は、本開示の第1及び第2硬化性粘性流体の一例である。尚、硬化性粘性流体としては、紫外線硬化樹脂の他に、熱硬化性樹脂などの他の粘性流体を採用することができる。
The modeling unit 22 is a unit that models a structure on the base member 70 placed on the base 60 of the stage 52 , and has a printing section 72 and a curing section 74 . As shown in FIG. 4 , the printing unit 72 has an inkjet head 75 and ejects a thin film of fluid onto the base member 70 placed on the base 60 . As the fluid ejected by the inkjet head 75, an ultraviolet curable resin 76 (see FIG. 4) that is cured by ultraviolet rays can be used. The UV curable resin 76 is an example of first and second curable viscous fluids of the present disclosure. As the curable viscous fluid, other viscous fluids such as a thermosetting resin can be used in addition to the ultraviolet curable resin.
また、インクジェットヘッド75は、紫外線硬化樹脂76の他に、例えば、金属インク77(図12参照)を吐出可能となっている。金属インク77は、本開示の金属粒子を含む流体の一例である。金属インク77は、例えば、ナノメートルサイズの金属(銀など)の微粒子を溶剤中に分散させたものであり、熱により焼成されて硬化する。金属微粒子の表面は、例えば、分散剤によりコーティングされており、溶剤中での凝集が抑制されている。
In addition, the inkjet head 75 can eject, for example, metal ink 77 (see FIG. 12) in addition to the ultraviolet curing resin 76 . Metal ink 77 is an example of a fluid containing metal particles of the present disclosure. The metal ink 77 is made by, for example, dispersing fine particles of nanometer-sized metal (such as silver) in a solvent, and is cured by being baked by heat. The surface of the metal fine particles is coated with, for example, a dispersant to suppress aggregation in the solvent.
インクジェットヘッド75は、紫外線硬化樹脂76を吐出する場合、例えば、圧電素子を用いたピエゾ方式によって複数のノズルから紫外線硬化樹脂76を吐出する。尚、インクジェットヘッド75は、紫外線硬化樹脂76を加熱して気泡を発生させノズルから吐出するサーマル方式によって複数のノズルから紫外線硬化樹脂76を吐出しても良い。また、インクジェットヘッド75は、金属インク77を吐出する場合、例えば、圧電素子を用いたピエゾ方式によって複数のノズルから金属インク77を吐出する。尚、吐出装置としては、複数のノズルを備えるインクジェットヘッド75に限らず、例えば、1つのノズルを備えたディスペンサーでも良い。また、インクジェットヘッド75は、金属インク77を吐出するノズルと、紫外線硬化樹脂76を吐出するノズルとを別々に備えてもよく、2つの粘性流体を吐出するノズルを共用しても良い。以下の説明では、紫外線硬化樹脂76と金属インク77とを総称する場合、粘性流体と記載する場合がある。
When the inkjet head 75 ejects the ultraviolet curable resin 76, the ultraviolet curable resin 76 is ejected from a plurality of nozzles by, for example, a piezo method using piezoelectric elements. The inkjet head 75 may eject the ultraviolet curable resin 76 from a plurality of nozzles by a thermal method in which air bubbles are generated by heating the ultraviolet curable resin 76 and ejected from the nozzles. Moreover, when ejecting the metal ink 77, the inkjet head 75 ejects the metal ink 77 from a plurality of nozzles by, for example, a piezo method using piezoelectric elements. Note that the ejection device is not limited to the inkjet head 75 having a plurality of nozzles, and may be, for example, a dispenser having one nozzle. The inkjet head 75 may have separate nozzles for ejecting the metal ink 77 and nozzles for ejecting the ultraviolet curable resin 76, or may share a nozzle for ejecting two viscous fluids. In the following description, when collectively referring to the ultraviolet curing resin 76 and the metal ink 77, they may be referred to as a viscous fluid.
図2に示すように、硬化部74は、平坦化装置78と、照射装置81と、ヒータ82を有している。平坦化装置78は、インクジェットヘッド75によってベース部材70の上に吐出された紫外線硬化樹脂76や金属インク77の上面を平坦化する装置である。平坦化装置78は、ローラ79と、回収部80を有している(図5参照)。ローラ79は、例えば、円柱形状をなし、平坦化装置78の制御に基づいて、流動可能な状態の粘性流体(紫外線硬化樹脂76や金属インク77)に接触して回転し、余剰分の粘性流体を転写させながら平坦化する。回収部80は、例えば、ローラ79の表面に向かって突出するブレードを有しており、ローラ79に転写された粘性流体をブレードで掻き取り、ブレードで掻き取った粘性流体を貯めて排出する。回収部80は、例えば、回収した粘性流体を廃液タンクに排出する。平坦化装置78は、粘性流体の表面を均しながら余剰分の粘性流体を掻き取ることで、粘性流体の表面を平坦化する。尚、回収部80は、回収した粘性流体を、再度、供給タンクに戻しても良い。また、平坦化装置78による平坦化は、粘性流体の吐出ごとに実行しなくとも良い。例えば、特定の層の形成時のみ平坦化を実行しても良い。
As shown in FIG. 2, the curing section 74 has a flattening device 78, an irradiation device 81, and a heater . The flattening device 78 is a device for flattening the upper surface of the ultraviolet curable resin 76 and the metal ink 77 ejected onto the base member 70 by the inkjet head 75 . The flattening device 78 has a roller 79 and a collection section 80 (see FIG. 5). The roller 79 has, for example, a cylindrical shape, and rotates in contact with the fluid viscous fluid (ultraviolet curable resin 76 or metal ink 77) under the control of the flattening device 78, and the surplus viscous fluid is transferred and flattened. The recovery unit 80 has, for example, a blade protruding toward the surface of the roller 79, scrapes the viscous fluid transferred to the roller 79 with the blade, and stores and discharges the viscous fluid scraped off with the blade. The recovery unit 80, for example, discharges the recovered viscous fluid to a waste liquid tank. The flattening device 78 flattens the surface of the viscous fluid by scraping off excess viscous fluid while flattening the surface of the viscous fluid. Note that the recovery unit 80 may return the recovered viscous fluid to the supply tank again. Further, the flattening by the flattening device 78 does not have to be performed every time the viscous fluid is discharged. For example, planarization may be performed only when forming a particular layer.
また、照射装置81は、例えば、ベース部材70の上に吐出された紫外線硬化樹脂76に紫外線を照射する。紫外線硬化樹脂76は、紫外線の照射により硬化し、薄膜状の絶縁層(図6の第1平坦化層86など)を形成する。また、ヒータ82は、吐出された金属インク77を加熱する装置である。金属インク77は、ヒータ82から熱を付与されることで焼成し、金属配線を形成する。金属インク77の焼成とは、例えば、エネルギーを付与することによって、溶媒の気化や金属微粒子の保護膜、つまり、分散剤の分解等が行われ、金属微粒子が接触又は融着をすることで、導電率が高くなる現象である。そして、金属インクを焼成することで、金属配線を形成することができる。造形方法の詳細については、後述する。尚、金属インク77を加熱する装置は、ヒータ82に限らない。例えば、造形装置10は、金属インク77を加熱する装置としてレーザ光を金属インク77に照射するレーザ照射装置や、金属インク77を吐出された第1平坦化層86を炉内に入れて加熱する雰囲気炉を備えても良い。
Also, the irradiation device 81 irradiates the ultraviolet curing resin 76 discharged onto the base member 70 with ultraviolet rays, for example. The UV curable resin 76 is cured by irradiation with UV rays to form a thin insulating layer (such as the first planarizing layer 86 in FIG. 6). A heater 82 is a device for heating the ejected metal ink 77 . The metal ink 77 is baked by applying heat from the heater 82 to form metal wiring. Firing of the metal ink 77 means, for example, applying energy to evaporate the solvent and decompose the protective film of the metal fine particles, that is, to decompose the dispersant. This is a phenomenon in which the electrical conductivity increases. Then, by baking the metal ink, metal wiring can be formed. The details of the modeling method will be described later. A device for heating the metal ink 77 is not limited to the heater 82 . For example, the modeling apparatus 10 heats the metal ink 77 by putting a laser irradiation device that irradiates the metal ink 77 with a laser beam, or putting the first planarization layer 86 onto which the metal ink 77 is ejected into a furnace to heat it. An atmosphere furnace may be provided.
また、図1に示す装着ユニット23は、例えば、造形ユニット22によって造形した金属配線に接続される各種の電子部品を装着するユニットであり、装着部83と、供給部84を備えている。装着部83は、例えば、電子部品を吸着する吸着ノズル(図示略)を有しており、吸着ノズルで保持した電子部品を金属配線に装着する。供給部84は、例えば、テーピング化された電子部品を1つずつ送り出すテープフィーダを複数有しており、装着部83へ電子部品を供給する。尚、供給部84は、テープフィーダを備える構成に限らず、トレイから電子部品をピックアップして供給するトレイ型の供給装置でもよい。
The mounting unit 23 shown in FIG. 1 is, for example, a unit for mounting various electronic components connected to the metal wiring formed by the molding unit 22, and includes a mounting portion 83 and a supply portion 84. The mounting unit 83 has, for example, a suction nozzle (not shown) that suctions an electronic component, and mounts the electronic component held by the suction nozzle onto the metal wiring. The supply unit 84 has, for example, a plurality of tape feeders that feed taped electronic components one by one, and supplies the electronic components to the mounting unit 83 . Note that the supply unit 84 is not limited to a configuration including a tape feeder, and may be a tray-type supply device that picks up and supplies electronic components from a tray.
装着ユニット23は、例えば、ステージ52の移動にともなって、装着部83の下方の位置にベース部材70が移動してくると、装着部83を供給部84の部品供給位置まで移動させるとともに、供給部84を駆動させて必要な部品を供給させる。そして、装着部83は、吸着ノズルによって供給部84の部品供給位置から電子部品を吸着保持し、ベース部材70上に造形された金属配線等の上に装着する。
For example, when the base member 70 moves to a position below the mounting portion 83 as the stage 52 moves, the mounting unit 23 moves the mounting portion 83 to the component supply position of the supply portion 84 and supplies the components. The part 84 is driven to supply the necessary parts. The mounting section 83 sucks and holds the electronic component from the component supply position of the supply section 84 by means of the suction nozzle, and mounts it on the metal wiring or the like formed on the base member 70 .
検査ユニット24は、造形ユニット22及び装着ユニット23によって製造した構造物を検査するユニットである。検査ユニット24は、例えば、カメラ等の撮像装置を備える。制御装置26は、検査ユニット24で撮像した画像データに基づいて、電子部品が正常に実装されているか否かを判断することができる。また、造形装置10は、造形物の形状(後述する平滑面93の凹凸など)を検査するレーザ顕微鏡などを備えても良い。
The inspection unit 24 is a unit that inspects the structure manufactured by the modeling unit 22 and the mounting unit 23. The inspection unit 24 includes, for example, an imaging device such as a camera. Based on the image data captured by the inspection unit 24, the control device 26 can determine whether or not the electronic component is normally mounted. In addition, the modeling apparatus 10 may include a laser microscope or the like for inspecting the shape of the modeled object (unevenness of the smooth surface 93 to be described later, etc.).
図2に示すように、制御装置26は、コントローラ102と、複数の駆動回路104と、記憶装置106を備えている。複数の駆動回路104は、上記電磁モータ38,56、保持装置62、昇降装置64、インクジェットヘッド75、平坦化装置78、照射装置81、ヒータ82、装着部83、供給部84、検査ユニット24に接続されている。コントローラ102は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路104に接続されている。記憶装置106は、RAM、ROM、ハードディスク等を備えており、造形装置10の制御を行う制御プログラム107が記憶されている。コントローラ102は、制御プログラム107をCPUで実行することで、搬送装置20、造形ユニット22等の動作を制御することが可能となっている。
As shown in FIG. 2, the control device 26 includes a controller 102, a plurality of drive circuits 104, and a storage device 106. A plurality of drive circuits 104 are connected to the electromagnetic motors 38 and 56, the holding device 62, the lifting device 64, the inkjet head 75, the flattening device 78, the irradiation device 81, the heater 82, the mounting section 83, the supply section 84, and the inspection unit 24. It is connected. The controller 102 includes a CPU, ROM, RAM, etc., is mainly a computer, and is connected to a plurality of drive circuits 104 . The storage device 106 includes RAM, ROM, hard disk, etc., and stores a control program 107 for controlling the modeling apparatus 10 . The controller 102 can control the operations of the conveying device 20, the modeling unit 22, and the like by executing the control program 107 with the CPU.
本実施例の造形装置10は、上述した構成によって、粘性流体として紫外線硬化樹脂76や金属インク77を硬化させることで、絶縁性を有する第1平坦化層86(図6参照)、平滑層151(図12参照)や、導電性を有する金属配線95(図13参照)を形成する。造形装置10は、第1平坦化層86、平滑層151、金属配線95の形状を変更することで、任意の形状の構造物を造形することが可能となっている。また、造形装置10は、造形する過程で装着ユニット23によって電子部品を実装しても良い。例えば、制御プログラム107には、構造物をスライスした各層の三次元のデータが設定されている。コントローラ102は、制御プログラム107のデータに基づいて、粘性流体を吐出、硬化等させて構造物を形成する。また、コントローラ102は、制御プログラム107のデータに基づいて電子部品を配置する層や位置等の情報を検出し、検出した情報に基づいて電子部品を実装する。
The modeling apparatus 10 of the present embodiment has the configuration described above, by curing the ultraviolet curing resin 76 and the metal ink 77 as the viscous fluid, the first flattening layer 86 (see FIG. 6) having insulating properties, the smoothing layer 151 (see FIG. 12) and a conductive metal wiring 95 (see FIG. 13) are formed. By changing the shapes of the first planarization layer 86, the smooth layer 151, and the metal wiring 95, the modeling apparatus 10 can model a structure of any shape. Further, the modeling apparatus 10 may mount electronic components using the mounting unit 23 during the modeling process. For example, the control program 107 is set with three-dimensional data of each layer obtained by slicing the structure. Based on the data of the control program 107, the controller 102 discharges and hardens the viscous fluid to form a structure. The controller 102 also detects information such as the layer and position where the electronic component is to be placed based on the data of the control program 107, and mounts the electronic component based on the detected information.
(2.造形装置10の動作)
次に、造形装置10の動作の一例として、平滑層151の上に金属配線95を造形する造形処理について説明する。図3は、造形処理の内容を示すフローチャートである。制御装置26は、例えば、造形開始の指示を受け付けると、制御プログラム107の所定のプログラムを実行し、図3に示す造形処理を開始する。また、以下の説明では、コントローラ102が、制御プログラム107を実行して各装置を制御することを、単に「装置名」で記載する場合がある。例えば、「コントローラ102が基台60を移動させる」とは、「コントローラ102が、制御プログラム107を実行し、駆動回路104を介して搬送装置20の動作を制御して、搬送装置20の動作によって基台60を移動させる」ことを意味している。また、図4~図8、図12、図13は、造形処理の各工程を模式的に示している。また、図4~図8、図12、図13に示す方向(X軸方向など)は、一例である。 (2. Operation of modeling apparatus 10)
Next, as an example of the operation of themodeling apparatus 10, modeling processing for modeling the metal wiring 95 on the smooth layer 151 will be described. FIG. 3 is a flow chart showing the details of the modeling process. For example, when receiving an instruction to start modeling, the control device 26 executes a predetermined program of the control program 107 to start the modeling process shown in FIG. Also, in the following description, the fact that the controller 102 executes the control program 107 to control each device may be simply referred to as "device name". For example, "the controller 102 moves the base 60" means "the controller 102 executes the control program 107, controls the operation of the carrier device 20 via the drive circuit 104, and controls the operation of the carrier device 20. It means "to move the base 60". 4 to 8, 12, and 13 schematically show each step of the modeling process. 4 to 8, 12, and 13 (such as the X-axis direction) are examples.
次に、造形装置10の動作の一例として、平滑層151の上に金属配線95を造形する造形処理について説明する。図3は、造形処理の内容を示すフローチャートである。制御装置26は、例えば、造形開始の指示を受け付けると、制御プログラム107の所定のプログラムを実行し、図3に示す造形処理を開始する。また、以下の説明では、コントローラ102が、制御プログラム107を実行して各装置を制御することを、単に「装置名」で記載する場合がある。例えば、「コントローラ102が基台60を移動させる」とは、「コントローラ102が、制御プログラム107を実行し、駆動回路104を介して搬送装置20の動作を制御して、搬送装置20の動作によって基台60を移動させる」ことを意味している。また、図4~図8、図12、図13は、造形処理の各工程を模式的に示している。また、図4~図8、図12、図13に示す方向(X軸方向など)は、一例である。 (2. Operation of modeling apparatus 10)
Next, as an example of the operation of the
まず、ステージ52の基台60にベース部材70がセットされる。ベース部材70のセットは、人が実施しても良く、造形装置10が自動で実行しても良い。コントローラ102は、搬送装置20を制御し、ベース部材70をセットされたステージ52を、造形ユニット22の下方に移動させる。図3のS11に示す第1吐出処理において、コントローラ102は、例えば、図4に示すように、ステージ52をX軸方向へ移動させ、印刷部72のインクジェットヘッド75を制御して紫外線硬化樹脂76をベース部材70の上に吐出する。インクジェットヘッド75は、ベース部材70の上に紫外線硬化樹脂76を薄膜状に吐出する。尚、コントローラ102は、S11におけるインクジェットヘッド75による吐出を、例えば、X軸方向に沿って1回の走査(1パス)だけ実行しても良く、複数回の走査を実行しても良い。
First, the base member 70 is set on the base 60 of the stage 52 . The setting of the base member 70 may be performed manually or automatically by the modeling apparatus 10 . The controller 102 controls the transport device 20 to move the stage 52 on which the base member 70 is set below the modeling unit 22 . In the first ejection process shown in S11 of FIG. 3, the controller 102 moves the stage 52 in the X-axis direction, for example, as shown in FIG. is discharged onto the base member 70 . The inkjet head 75 ejects the ultraviolet curable resin 76 onto the base member 70 in the form of a thin film. Note that the controller 102 may execute ejection by the inkjet head 75 in S11, for example, only one scan (one pass) along the X-axis direction, or may execute a plurality of scans.
次に、S13の第1平坦化処理において、コントローラ102は、薄膜状の紫外線硬化樹脂76の上面において平坦化装置78のローラ79を回転させ平坦化を実行する。コントローラ102は、図5の矢印で示すように、ローラ79の回転方向131とは逆方向となる移動方向133へベース部材70(ステージ52)を移動させて、第1吐出処理により吐出した紫外線硬化樹脂76をローラ79により平坦化する。例えば、コントローラ102は、ローラ79をY軸方向と平行な回転軸を中心に図5における反時計回りの回転方向131へ回転させる。また、コントローラ102は、X軸方向に沿った方向であり、且つ回転方向131と逆方向となる移動方向133(図5の奥へ向かう方向)へステージ52を移動させる。ここでいう回転方向131の逆方向とは、例えば、ステージ52の上面と並行で、ローラ79の接線方向であり、且つ、回転方向131と反対の方向である。本実施例では、ローラ79は、XYZ軸方向において位置を固定されている。コントローラ102は、ベース部材70の上に吐出された紫外線硬化樹脂76にローラ79が接触する位置まで昇降装置64によりステージ52を上昇させ平坦化を実行する。また、コントローラ102は、ステージ52の移動方向133への移動速度に比べてローラ79の回転方向131への回転速度を大きく(速く)する。
Next, in the first flattening process of S13, the controller 102 rotates the rollers 79 of the flattening device 78 on the upper surface of the thin ultraviolet curable resin 76 to flatten it. The controller 102 moves the base member 70 (stage 52) in a movement direction 133 opposite to the rotation direction 131 of the roller 79, as indicated by the arrow in FIG. A roller 79 flattens the resin 76 . For example, the controller 102 rotates the roller 79 in a counterclockwise rotation direction 131 in FIG. 5 around a rotation axis parallel to the Y-axis direction. Further, the controller 102 moves the stage 52 in a movement direction 133 (a direction toward the back in FIG. 5) that is along the X-axis direction and opposite to the rotation direction 131 . The direction opposite to the rotation direction 131 here is, for example, parallel to the upper surface of the stage 52 , tangential to the roller 79 , and opposite to the rotation direction 131 . In this embodiment, the position of the roller 79 is fixed in the XYZ axis directions. The controller 102 raises the stage 52 by the lifting device 64 to a position where the roller 79 contacts the ultraviolet curable resin 76 discharged onto the base member 70 to perform flattening. Further, the controller 102 makes the rotation speed of the roller 79 in the rotation direction 131 larger (faster) than the moving speed of the stage 52 in the moving direction 133 .
ローラ79は、流動可能な状態の紫外線硬化樹脂76に接触し、紫外線硬化樹脂76をローラ79に転写して掻き上げて回収部80により回収しつつ、紫外線硬化樹脂76の表面を平坦化させる。尚、上記したベース部材70とローラ79の動作方向等は一例である。例えば、ローラ79をX軸方向に移動可能に構成し、コントローラ102が、移動方向133又は移動方向133とは逆方向にローラ79を移動させつつ、回転方向131に回転させて平坦化を実行しても良い。
The roller 79 contacts the UV curable resin 76 in a flowable state, transfers the UV curable resin 76 to the roller 79, scrapes it up, and recovers it by the recovery unit 80, while flattening the surface of the UV curable resin 76. It should be noted that the operating directions and the like of the base member 70 and the rollers 79 described above are examples. For example, the roller 79 is configured to be movable in the X-axis direction, and the controller 102 moves the roller 79 in a moving direction 133 or a direction opposite to the moving direction 133 and rotates it in a rotating direction 131 to perform flattening. can be
次に、S15の第1硬化処理において、コントローラ102は、平坦化した紫外線硬化樹脂76に対して、照射装置81により紫外線を照射する。図6に示すように、照射装置81は、薄膜状に広がった紫外線硬化樹脂76(図5参照)に対し紫外線を照射することで紫外線硬化樹脂76を硬化し、絶縁性を有する第1平坦化層86を形成する。これにより、平坦化された第1平坦化面86Aを表面に有する第1平坦化層86を形成する。
Next, in the first curing process of S15, the controller 102 causes the irradiation device 81 to irradiate the flattened ultraviolet curing resin 76 with ultraviolet rays. As shown in FIG. 6, the irradiation device 81 irradiates the ultraviolet curable resin 76 (see FIG. 5) spread in a thin film with ultraviolet rays to cure the ultraviolet curable resin 76, thereby forming a first flattening film having insulating properties. A layer 86 is formed. Thereby, a first planarization layer 86 having a planarized first planarization surface 86A on its surface is formed.
次に、コントローラ102は、所定の厚みの第1平坦化層86を形成できたか否かを判断する(S17)。コントローラ102は、例えば、制御プログラム107の設定値や外部からの操作入力で指定された値の厚みとなるまでの間、S17において否定判断する(S17:NO)。コントローラ102は、例えば、インクジェットヘッド75から吐出する紫外線硬化樹脂76の液滴の大きさ、S11~S15を繰り返し実行した回数などに基づいて、形成済みの第1平坦化層86の厚みを判断できる。コントローラ102は、S11~S15の処理を繰り返し実行することで絶縁層を積層し、第1平坦化面86Aを表面に有し、且つ所定の厚みである第1平坦化層86を形成する。尚、コントローラ102は、S11を実行するごとにS13の第1平坦化処理を実行しなくとも良い。例えば、コントローラ102は、S11及びS15を複数回実行するごとに、S13の第1平坦化処理を実行しても良い。
Next, the controller 102 determines whether or not the first planarization layer 86 with a predetermined thickness has been formed (S17). The controller 102, for example, makes a negative determination in S17 (S17: NO) until the thickness reaches a value designated by a setting value of the control program 107 or an operation input from the outside. The controller 102 can determine the thickness of the formed first planarization layer 86 based on, for example, the size of droplets of the ultraviolet curable resin 76 ejected from the inkjet head 75, the number of times S11 to S15 are repeatedly executed, and the like. . The controller 102 stacks insulating layers by repeatedly executing the processes of S11 to S15 to form the first planarizing layer 86 having a first planarizing surface 86A and a predetermined thickness. Note that the controller 102 does not have to execute the first flattening process of S13 each time S11 is executed. For example, the controller 102 may execute the first flattening process of S13 each time S11 and S15 are executed multiple times.
コントローラ102は、S17において所定の厚みの第1平坦化層86を形成できたと判断すると(S17:YES)、S19の第2吐出処理において、第1平坦化層86の第1平坦化面86Aを平滑化するために、第1平坦化面86Aに紫外線硬化樹脂76を吐出する。ここで、S11~S15を繰り返し実行することで、平坦化した第1平坦化面86Aを第1平坦化層86の表面に形成できる。図7は、表面を平坦化された第1平坦化層86を模式的に示している。図7に示すように、平坦化した第1平坦化層86の第1平坦化面86Aには、例えば、インクジェットヘッド75のノズルから吐出する紫外線硬化樹脂76の量の差や、紫外線硬化樹脂76の液滴の大きさなどに起因して微細な凹凸91が形成される。この凹凸91の高さは、例えば、±10μmとなる可能性があり、ローラ79の大きさに比べて極めて小さくなる。従って、第1平坦化層86の第1平坦化面86Aをローラ79で平坦化したとしても、微細な凹凸91まで平坦化することは困難となる。本開示では、この微細な凹凸91が形成された面を平坦化された面と定義する。また、この微細な凹凸91を減らす、又は表面の凹凸が±1μm以下となった(元々の凹凸91がなくなったと擬制できる)面を平滑化された平滑面と定義する。
When the controller 102 determines in S17 that the first planarizing layer 86 having a predetermined thickness has been formed (S17: YES), the first planarizing surface 86A of the first planarizing layer 86 is removed in the second ejection process in S19. For smoothing, an ultraviolet curable resin 76 is discharged onto the first flattened surface 86A. Here, by repeatedly performing S11 to S15, a planarized first planarized surface 86A can be formed on the surface of the first planarized layer 86. Next, as shown in FIG. FIG. 7 schematically shows the first planarization layer 86 whose surface is planarized. As shown in FIG. 7, on the flattened first planarization surface 86A of the first planarization layer 86, for example, there is a difference in the amount of the ultraviolet curable resin 76 ejected from the nozzles of the inkjet head 75, and the amount of the ultraviolet curable resin 76 is Fine irregularities 91 are formed due to the size of the liquid droplets. The height of this unevenness 91 can be, for example, ±10 μm, which is extremely small compared to the size of the roller 79 . Therefore, even if the first planarizing surface 86A of the first planarizing layer 86 is planarized by the roller 79, it is difficult to planarize even the minute unevenness 91. FIG. In the present disclosure, the surface on which the fine unevenness 91 is formed is defined as a flattened surface. Further, a surface on which the fine irregularities 91 are reduced or the surface irregularities are ±1 μm or less (it can be hypothesized that the original irregularities 91 are eliminated) is defined as a smoothed surface.
第1平坦化面86Aに凹凸91が形成されることで、この第1平坦化面86Aに金属配線を形成した場合、形成される金属配線の厚みにばらつきが発生する。あるいは、厚みの大きい部分で金属配線が完全に焼成されない(金属微粒子が接触又は融着しない)ことで、金属配線の導電率が低下する虞がある。結果として、金属配線の抵抗値が均一性となり、所望の高周波特性を得ることが困難となる。
Due to the unevenness 91 formed on the first flattened surface 86A, when metal wiring is formed on the first flattened surface 86A, the thickness of the formed metal wiring varies. Alternatively, the electrical conductivity of the metal wiring may be lowered because the metal wiring is not completely baked (the metal fine particles do not contact or fuse together) in the thick portion. As a result, the resistance value of the metal wiring becomes uniform, making it difficult to obtain desired high-frequency characteristics.
そこで、コントローラ102は、平坦化した第1平坦化層86の第1平坦化面86Aに、再度、紫外線硬化樹脂76を吐出して凹凸91を減らす、又はなくす平滑化を実行する。コントローラ102は、図3のS19の第2吐出処理において、インクジェットヘッド75により紫外線硬化樹脂76を第1平坦化面86Aに吐出する。以下の説明では、S11の第1吐出処理の紫外線硬化樹脂76と、S19の第2吐出処理の紫外線硬化樹脂76を区別する場合、S19の紫外線硬化樹脂76を、第2紫外線硬化樹脂76Aと称する。コントローラ102は、S19の第2紫外線硬化樹脂76Aの吐出量を、凹凸91の大きさに応じた量とする。例えば、コントローラ102は、形成される凹凸91の高さが高い(溝が深い)場合、インクジェットヘッド75の吐出量を増やす処理を実行する。尚、コントローラ102は、凹凸91の大きさに関係なく、一定の吐出量で第2紫外線硬化樹脂76Aを吐出しても良い。
Therefore, the controller 102 discharges the ultraviolet curing resin 76 again onto the flattened first flattened surface 86A of the first flattened layer 86 to reduce or eliminate the unevenness 91 . The controller 102 ejects the ultraviolet curable resin 76 onto the first flattened surface 86A from the inkjet head 75 in the second ejection process of S19 of FIG. In the following description, when distinguishing between the UV curable resin 76 in the first ejection process of S11 and the UV curable resin 76 in the second ejection process of S19, the UV curable resin 76 of S19 will be referred to as the second UV curable resin 76A. . The controller 102 sets the discharge amount of the second ultraviolet curable resin 76A in S19 to an amount corresponding to the size of the unevenness 91 . For example, the controller 102 executes processing to increase the ejection amount of the inkjet head 75 when the height of the unevenness 91 to be formed is high (the groove is deep). Note that the controller 102 may discharge the second ultraviolet curable resin 76A at a constant discharge rate regardless of the size of the unevenness 91 .
次に、コントローラ102は、S19で吐出した第2紫外線硬化樹脂76Aに対し半硬化処理を実行する(S23)。コントローラ102は、第2紫外線硬化樹脂76Aに対し、照射装置81から紫外線を照射して半硬化する(図6参照)。ここでいう半硬化状態とは、粘性が低下し、流動性が向上した状態であり、物性のレベルでは完全に安定はしていない状態である。半硬化状態とは、例えば、半硬化させた第2紫外線硬化樹脂76Aの層の上に新たな第2紫外線硬化樹脂76Aを吐出した場合、吐出した第2紫外線硬化樹脂76Aが層に混じり合わず、半硬化状態の層の上に乗る(積まれる)程度まで硬化した状態である。コントローラ102は、例えば、通常の硬化処理(S15の第1硬化処理など)に比べて第2紫外線硬化樹脂76Aに照射する紫外線の強度(光の強度)、紫外線を走査させる走査速度、走査回数、照射時間、照射回数などを減らすことで、第2紫外線硬化樹脂76Aを半硬化させる。
Next, the controller 102 performs a semi-curing process on the second ultraviolet curing resin 76A discharged in S19 (S23). The controller 102 irradiates the second ultraviolet curing resin 76A with ultraviolet rays from the irradiation device 81 to semi-harden it (see FIG. 6). The term "semi-cured state" as used herein means a state in which the viscosity is lowered and the fluidity is improved, and the physical properties are not completely stable. The semi-cured state means, for example, when a new second ultraviolet curable resin 76A is discharged onto a layer of the semi-cured second ultraviolet curable resin 76A, the discharged second ultraviolet curable resin 76A does not mix with the layer. , is a state in which it is cured to the extent that it rides (stacks) on the semi-cured layer. The controller 102 controls, for example, the intensity (light intensity) of the ultraviolet rays irradiated to the second ultraviolet curing resin 76A, the scanning speed of the ultraviolet rays, the number of scanning times, The second ultraviolet curable resin 76A is semi-cured by reducing the irradiation time, the number of times of irradiation, and the like.
コントローラ102は、上記したS17と同様に、所定の厚みの半硬化層が形成されるまでの間(S25:NO)、S19~S23の処理を繰り返し実行し、半硬化状態の第2紫外線硬化樹脂76Aを積層する。図8に示すように、第1平坦化層86の上には、半硬化した第2紫外線硬化樹脂76Aを積層した半硬化層92が形成される。半硬化した第2紫外線硬化樹脂76Aは、レベリング効果により第1平坦化面86Aの微細な凹凸91の上に広がって平滑化し、平滑面93を形成する。ここでいうレベリング効果とは、表面張力により液体の表面積がなるべく小さくなる現象である。液体の粘度にも左右されるが時間の経過にともなって、第2紫外線硬化樹脂76Aにより形成した薄膜が平坦な(より均一な)膜厚に変化する。第2紫外線硬化樹脂76Aは、第1平坦化面86Aに吐出されることで塗れ広がり、凹凸91を埋めるように広がる。
As in S17 described above, the controller 102 repeatedly executes the processes of S19 to S23 until a semi-cured layer having a predetermined thickness is formed (S25: NO), and the semi-cured second ultraviolet curable resin Laminate 76A. As shown in FIG. 8, on the first planarizing layer 86, a semi-cured layer 92 is formed by laminating a semi-cured second ultraviolet curable resin 76A. The semi-cured second ultraviolet curable resin 76A spreads over the fine irregularities 91 of the first flattened surface 86A due to the leveling effect and smoothes them to form a smooth surface 93. As shown in FIG. The leveling effect referred to here is a phenomenon in which the surface area of a liquid becomes as small as possible due to surface tension. Although it depends on the viscosity of the liquid, the thin film formed by the second ultraviolet curing resin 76A changes to a flat (more uniform) film thickness over time. The second ultraviolet curable resin 76A spreads by being discharged onto the first flattened surface 86A, and spreads so as to fill the irregularities 91. As shown in FIG.
コントローラ102は、所定の厚みの半硬化層92を形成すると(S25:YES)、第2平坦化処理を実行する(S27)。ここで、上記したS19~S25の半硬化層92の形成時、あるいはその後の硬化時に、第2紫外線硬化樹脂76Aの表面張力により局所的な増大部が形成される。詳述すると、図9は、増大部135を説明するための模式図である。図9に示すように、例えば、X軸方向の幅137が数mm以下となる幅の小さい造形物139を造形した場合、半硬化層92には、第2紫外線硬化樹脂76Aの表面張力によってZ軸方向の上方へ膨らんだ増大部135が形成される。また、例えば、X軸方向やY軸方向の幅を一定の幅(例えば、3mm)以上まで広げた造形物141を造形した場合、造形物141のX軸方向やY軸方向の端部には、上方へ膨らんだ増大部135が形成される。各造形物139,141には、所定の高さ143よりも突出した増大部135が形成される。この所定の高さ143は、例えば、制御プログラム107の三次元データなどで規定された目標となる高さであり、平滑面93を形成する高さである。
After forming the semi-hardened layer 92 with a predetermined thickness (S25: YES), the controller 102 executes the second planarization process (S27). Here, during the formation of the semi-cured layer 92 in S19 to S25 described above, or during the subsequent curing, the surface tension of the second ultraviolet curable resin 76A forms a local increased portion. More specifically, FIG. 9 is a schematic diagram for explaining the enlargement part 135. As shown in FIG. As shown in FIG. 9, for example, when a small shaped object 139 with a width 137 in the X-axis direction of several millimeters or less is formed, the semi-cured layer 92 has a Z-axis due to the surface tension of the second ultraviolet curable resin 76A. An enlarged portion 135 that bulges upward in the axial direction is formed. Further, for example, when the modeled object 141 is formed with the width in the X-axis direction and the Y-axis direction expanded to a certain width (for example, 3 mm) or more, the ends of the modeled object 141 in the X-axis direction and the Y-axis direction have , an enlarged portion 135 bulging upward is formed. An enlarged portion 135 protruding from a predetermined height 143 is formed on each of the shaped objects 139 and 141 . This predetermined height 143 is, for example, a target height defined by three-dimensional data of the control program 107 or the like, and is the height at which the smooth surface 93 is formed.
また、半硬化層92の上にさらに造形を継続した場合、例えば、増大部135の上に吐出された紫外線硬化樹脂は、平滑面93等の平面に印刷された紫外線硬化樹脂に比べ、表面張力によって下地(増大部135)に付着する力が強くなる。このため、増大部135と平滑面93の上に同じ吐出量で紫外線硬化樹脂を吐出し、同じ条件の平坦化処理を実行すると、増大部135が造形物に残ってしまう。その結果、完成した造形物の厚みや造形精度が悪くなる。また、平坦化処理において増大部135とローラ79とが接触し、造形物の一部が破損する虞や、造形物の削り片が回収部80に回収される虞がある。
Further, when further modeling is continued on the semi-cured layer 92, for example, the ultraviolet curable resin discharged onto the enlarged portion 135 has a surface tension higher than that of the ultraviolet curable resin printed on a flat surface such as the smooth surface 93. , the force of adhering to the base (enlarged portion 135) is increased. For this reason, if the UV curable resin is discharged in the same amount onto the enlarged portion 135 and the smooth surface 93 and the flattening process is performed under the same conditions, the enlarged portion 135 will remain in the modeled object. As a result, the thickness and modeling accuracy of the completed modeled object deteriorate. In addition, there is a risk that the enlargement portion 135 and the roller 79 will come into contact with each other during the flattening process, and that a part of the modeled article will be damaged, and that the shavings of the modeled article will be collected by the collecting section 80 .
そこで、コントローラ102は、S27の第2平坦化処理を実行し、増大部135を小さくする(増大を抑制する)。コントローラ102は、ステージ52を平坦化装置78の位置まで移動させ、図9に示すように、平滑面93、即ち、所定の高さ143の位置にローラ79の下端が配置されるように、ステージ52の高さを調整する。上記したように、本実施例では、ローラ79のX軸方向やY軸方向における位置が固定されている。そして、この位置を固定された状態で回転するローラ79が半硬化層92と接触する位置を、設計データにおける半硬化層92の上面(平滑面93)の位置に合わせてローラ79による平坦化を実行する。これにより、平滑面93から突出する増大部135に含まれる第2紫外線硬化樹脂76Aをローラ79に転写させ回収し、増大部135の大きさを小さくして平坦化することができる。尚、ローラ79の位置を固定せずに移動させながら第2平坦化処理を実行しても良い。また、ローラ79の位置を平滑面93よりも若干だけ上方や下方にしても良い。
Therefore, the controller 102 executes the second flattening process of S27 to reduce the increase portion 135 (suppress the increase). The controller 102 moves the stage 52 to the position of the flattening device 78 so that the lower ends of the rollers 79 are positioned on the smooth surface 93, that is, at a predetermined height 143, as shown in FIG. Adjust the height of 52. As described above, in this embodiment, the positions of the rollers 79 in the X-axis direction and the Y-axis direction are fixed. Then, the position where the rotating roller 79 contacts the semi-hardened layer 92 while this position is fixed is aligned with the position of the upper surface (smooth surface 93) of the semi-hardened layer 92 in the design data, and flattening by the roller 79 is performed. Execute. As a result, the second ultraviolet curable resin 76A contained in the enlarged portion 135 projecting from the smooth surface 93 can be transferred to the roller 79 and collected, thereby reducing the size of the enlarged portion 135 and flattening it. The second flattening process may be performed while moving the roller 79 without fixing its position. Also, the position of the roller 79 may be slightly above or below the smooth surface 93 .
また、ローラ79の位置を半硬化層92の上面の位置に合わせる方法は、特に限定されない。制御プログラム107の三次元データに基づいて、平滑面93を造形する目標高さにローラ79の下端の位置を合わせても良い。また、試験的に造形物を造形して半硬化層92の上面の高さを測定し、ローラ79の位置を合わせても良い。あるいは、実際の造形工程でS27を実行する前に、センサ等で造形した半硬化層92の上面の高さを測定しローラ79の位置を調整しても良い。また、ステージ52の位置を固定し、ローラ79のZ軸方向の位置を調整し、ローラ79の位置を半硬化層92の上面の位置に合わせても良い。また、ステージ52とローラ79の両方をZ軸方向に移動させて調整しても良い。
Also, the method of aligning the position of the roller 79 with the position of the upper surface of the semi-hardened layer 92 is not particularly limited. Based on the three-dimensional data of the control program 107 , the position of the lower end of the roller 79 may be aligned with the target height for forming the smooth surface 93 . Alternatively, the height of the upper surface of the semi-hardened layer 92 may be measured by forming a modeled object on a trial basis, and the position of the roller 79 may be aligned. Alternatively, the position of the roller 79 may be adjusted by measuring the height of the upper surface of the shaped semi-hardened layer 92 with a sensor or the like before executing S27 in the actual shaping process. Further, the position of the stage 52 may be fixed, the position of the roller 79 in the Z-axis direction may be adjusted, and the position of the roller 79 may be aligned with the position of the upper surface of the semi-hardened layer 92 . Moreover, both the stage 52 and the roller 79 may be moved in the Z-axis direction for adjustment.
さらに、コントローラ102は、S13の第1平坦化処理とは異なり、図9に示すように、ローラ79の回転方向131と同じ方向である移動方向145へステージ52を移動させて、半硬化層92をローラ79により平坦化する。ここでいう回転方向131の同じ方向とは、例えば、ステージ52の上面と並行で、ローラ79の接線方向であり、且つ、回転方向131と同じ方向である。上記したようにローラ79の位置は固定されているため、ローラ79は、ステージ52の移動方向145、例えば、X軸方向における位置を固定された状態で回転する。ここで、図10は、第1平坦化処理の模式図である。S13の第1平坦化処理では、例えば、1回の第1吐出処理(S11)後に平坦化を実行している。このため、第1平坦化処理で対象となる紫外線硬化樹脂76は、第2平坦化処理のような半硬化状態の第2紫外線硬化樹脂76Aを何層も重ねた状態に比べて、1つ1つの液滴が小さい。紫外線硬化樹脂76は、液滴自身や、液滴と硬化膜(第1平坦化層86の既に硬化した部分)の間の分子間力が弱い(図10の矢印参照)。このような場合には、回転方向131と移動方向133を逆方向にし、図10に示す矢印147の方向にローラ79から紫外線硬化樹脂76へ力を掛け、余剰分の紫外線硬化樹脂76をローラ79に転写させ、素早く効率良く平坦化できる。その結果、造形時間の短縮を図ることができる。
Further, unlike the first flattening process of S13, the controller 102 moves the stage 52 in the moving direction 145, which is the same direction as the rotating direction 131 of the roller 79, as shown in FIG. is flattened by rollers 79 . The same direction as the rotation direction 131 here means, for example, parallel to the upper surface of the stage 52 , the tangential direction of the roller 79 , and the same direction as the rotation direction 131 . Since the position of the roller 79 is fixed as described above, the roller 79 rotates while the position in the movement direction 145 of the stage 52, for example, the X-axis direction is fixed. Here, FIG. 10 is a schematic diagram of the first planarization process. In the first flattening process of S13, for example, flattening is performed after one first ejection process (S11). For this reason, the ultraviolet curable resin 76 to be processed in the first planarization process is one by one, compared to the state in which many layers of the semi-cured second ultraviolet curable resin 76A are stacked as in the second planarization process. One droplet is small. The UV curable resin 76 has a weak intermolecular force between the droplet itself and the cured film (already cured portion of the first planarization layer 86) (see arrow in FIG. 10). In such a case, the rotation direction 131 and the movement direction 133 are reversed, and force is applied from the roller 79 to the ultraviolet curable resin 76 in the direction of the arrow 147 shown in FIG. , and can be planarized quickly and efficiently. As a result, the molding time can be shortened.
一方、図11は、第2平坦化処理の模式図である。S27の第2平坦化処理では、例えば、凹凸91を埋めるためS19~S23のサイクルを複数回実行し、半硬化状態の第2紫外線硬化樹脂76Aを積層する。このため、第1平坦化処理のように素早く転写さて回収しようとしても、第2紫外線硬化樹脂76Aの液滴で形成された液膜が大きく、液滴自身や、液滴と第1平坦化層86の間の分子間力が強い(図11の矢印参照)。従って、第1平坦化処理のように移動方向133と回転方向131を逆にして平坦化を実施すると、第2紫外線硬化樹脂76Aを十分に回収(転写)できない虞がある。そこで、ローラ79の回転方向131とステージ52の移動方向145を同一方向にすることで、ローラ79の表面に第2紫外線硬化樹脂76Aが移動する時間、即ち、転写させる時間を長くすることができ、余剰分の第2紫外線硬化樹脂76Aをより確実にローラ79に転写させ回収し平坦化できる。増大部135をより確実に小さくできる。
On the other hand, FIG. 11 is a schematic diagram of the second planarization process. In the second flattening process of S27, for example, the cycle of S19 to S23 is executed a plurality of times to fill the irregularities 91, and the semi-cured second ultraviolet curing resin 76A is laminated. For this reason, even if an attempt is made to quickly transfer and recover the droplets of the second ultraviolet curable resin 76A as in the first planarization process, the liquid film formed by the droplets of the second ultraviolet curing resin 76A is large. The intermolecular force between 86 is strong (see arrow in FIG. 11). Therefore, if the movement direction 133 and the rotation direction 131 are reversed to perform planarization as in the first planarization process, there is a possibility that the second ultraviolet curable resin 76A cannot be sufficiently collected (transferred). Therefore, by setting the rotating direction 131 of the roller 79 and the moving direction 145 of the stage 52 in the same direction, the time for the second ultraviolet curable resin 76A to move to the surface of the roller 79, that is, the transfer time can be lengthened. , the surplus second ultraviolet curable resin 76A can be more reliably transferred to the roller 79 and recovered to be flattened. The enlarged portion 135 can be made smaller more reliably.
さらに、コントローラ102は、上記したように、第1平坦化処理において、ステージ52の移動方向133への移動速度に比べてローラ79の回転方向131への回転速度を大きくする(速くする)。例えば、コントローラ102は、ローラ79の回転速度を、ステージ52の移動速度の数倍にする。これにより、第2平坦化処理に比べて分子間力が弱く液滴を転写させ易い第1平坦化処理ではローラ79を速く回転させ、他単位時間当たりのローラ79への転写量を増加させ、第1平坦化処理に必要な時間の短縮を図ることができる。結果として、造形時間を短縮できる。
Furthermore, as described above, the controller 102 increases (increases) the rotational speed of the rollers 79 in the rotational direction 131 compared to the movement speed of the stage 52 in the movement direction 133 in the first flattening process. For example, the controller 102 makes the rotational speed of the roller 79 several times the moving speed of the stage 52 . As a result, in the first flattening process, in which the intermolecular force is weaker than that in the second flattening process and droplets are easily transferred, the roller 79 is rotated at a high speed, and the transfer amount to the roller 79 per unit time is increased. It is possible to shorten the time required for the first planarization process. As a result, the molding time can be shortened.
また、コントローラ102は、第2平坦化処理において、ステージ52の移動方向145への移動速度と、ローラ79の回転方向131への回転速度を同一にする。これにより、ローラ79とステージ52上の第2紫外線硬化樹脂76Aとの相対的な移動速度の差をなくし、あたかもローラ79が第2紫外線硬化樹脂76Aを上から抑えるような状態にできる。第1平坦化処理に比べて分子間力が強く液滴の転写が難しい第2平坦化処理ではローラ79と第2紫外線硬化樹脂76Aの相対的な移動をなくすことで、より確実に余剰分の第2紫外線硬化樹脂76Aをローラ79に転写できる。
In addition, the controller 102 makes the moving speed of the stage 52 in the moving direction 145 and the rotating speed of the roller 79 in the rotating direction 131 the same in the second flattening process. As a result, the difference in relative moving speed between the roller 79 and the second ultraviolet curable resin 76A on the stage 52 can be eliminated, as if the roller 79 holds down the second ultraviolet curable resin 76A from above. In the second flattening process, in which the intermolecular force is strong and droplet transfer is difficult compared to the first flattening process, by eliminating the relative movement between the roller 79 and the second ultraviolet curable resin 76A, the excess amount can be more reliably removed. The second ultraviolet curable resin 76A can be transferred to the roller 79. As shown in FIG.
コントローラ102は、S27を実行すると、半硬化層92を硬化する第2硬化処理を実行する(S29)。コントローラ102は、ステージ52を照射装置81まで移動させ、第2平坦化処理を実行した半硬化層92に紫外線を照射する。第2紫外線硬化樹脂76Aは、紫外線を照射され、粘度が上昇することで、凹凸91を埋めるように硬化する。第1平坦化層86の上には、半硬化層92を硬化した平滑層151が形成される(図12参照)。平滑層151の上面に形成される平滑面93は、上記したレベリング効果により、凹凸91を減らした面、あるいはなくなった面となる。また、平滑面93は、第2平坦化処理により増大部135を小さく、あるいはなくなった面となる。
After executing S27, the controller 102 executes a second curing process for curing the semi-cured layer 92 (S29). The controller 102 moves the stage 52 to the irradiation device 81 and irradiates the semi-cured layer 92 that has undergone the second planarization process with ultraviolet rays. The second ultraviolet curable resin 76A is cured so as to fill the irregularities 91 by being irradiated with ultraviolet rays and increasing in viscosity. A smoothing layer 151 obtained by curing the semi-cured layer 92 is formed on the first planarizing layer 86 (see FIG. 12). A smooth surface 93 formed on the upper surface of the smooth layer 151 is a surface with reduced or no unevenness 91 due to the above-described leveling effect. Further, the smooth surface 93 becomes a surface in which the enlarged portion 135 is reduced or eliminated by the second flattening process.
次に、コントローラ102は、制御プログラム107の三次元データに基づいて、平滑面93の所定箇所に金属配線を形成する。詳述すると、S31の金属流体吐出処理において、コントローラ102は、インクジェットヘッド75を制御して、平滑層151の平滑面93に金属インク77を薄膜状に吐出する(図12参照)。S33の導体形成処理において、コントローラ102は、平滑面93に吐出した金属インク77を、ヒータ82によって加熱し焼成する(図13参照)。コントローラ102は、S35において、所望の厚みや形状の金属配線95を形成できたか否かを判断する。コントローラ102は、例えば、予め設定された回数までS35で否定判断し(S35:NO)、S31、S33を繰り返し実行することで所望の金属配線95を平滑面93に形成する。ここでいう所望の金属配線95とは、必要としている厚み、形状、位置や、電気的特性を満たす金属配線95である。コントローラ102は、予め設定された回数までS31、S33を繰り返し実行すると、S35で肯定判断し(S35:YES)、S37を実行する。これにより、金属配線95を平滑面93に形成された第1平坦化層86(配線基板)を造形することができる。
Next, the controller 102 forms metal wiring at predetermined locations on the smooth surface 93 based on the three-dimensional data of the control program 107 . More specifically, in the metal fluid ejection process of S31, the controller 102 controls the inkjet head 75 to eject the metal ink 77 in a thin film form onto the smooth surface 93 of the smooth layer 151 (see FIG. 12). In the conductor forming process of S33, the controller 102 heats and bakes the metal ink 77 ejected onto the smooth surface 93 by the heater 82 (see FIG. 13). The controller 102 determines in S35 whether or not the metal wiring 95 having the desired thickness and shape has been formed. For example, the controller 102 makes a negative determination in S35 up to a preset number of times (S35: NO), and repeats S31 and S33 to form the desired metal wiring 95 on the smooth surface 93 . The desired metal wiring 95 referred to here is the metal wiring 95 that satisfies the required thickness, shape, position, and electrical characteristics. After repeating S31 and S33 up to the preset number of times, the controller 102 makes an affirmative determination in S35 (S35: YES), and executes S37. As a result, the first planarization layer 86 (wiring substrate) having the metal wiring 95 formed on the smooth surface 93 can be formed.
ここで、凹凸91が形成された第1平坦化面86Aに、金属インク77を吐出及び硬化させて金属配線95を形成すると、金属配線95の厚みが、凹凸91によって不均一となる。そして、金属配線95の抵抗値の増大、断線、高周波特性の低下などの不具合が生じる虞がある。これに対し、本実施例の造形装置10では、第1平坦化面86Aの微細な凹凸91や増大部135までを低減し、低減した平滑面93に金属インク77を吐出等することで、より均一な厚みの金属配線95を形成することができる。その結果、金属配線95の抵抗値を所望の値まで低減し、断線の発生を抑制することができる。
Here, when the metal wiring 95 is formed by ejecting and curing the metal ink 77 on the first flattened surface 86A on which the unevenness 91 is formed, the thickness of the metal wiring 95 becomes uneven due to the unevenness 91 . Then, problems such as an increase in the resistance value of the metal wiring 95, disconnection, and deterioration of high-frequency characteristics may occur. On the other hand, in the modeling apparatus 10 of the present embodiment, the minute unevenness 91 and the enlarged portion 135 of the first flattened surface 86A are reduced, and the metal ink 77 is ejected onto the reduced smooth surface 93. A metal wiring 95 having a uniform thickness can be formed. As a result, the resistance value of metal wiring 95 can be reduced to a desired value, and the occurrence of disconnection can be suppressed.
次に、コントローラ102は、S37において、その他の処理を実行する。例えば、コントローラ102は、インクジェットヘッド75から金属インク77を金属配線95の上に吐出し、装着ユニット23を制御して、吐出したインクと電子部品の端子が接触するように電子部品を配置しても良い。コントローラ102は、金属インク77をヒータ82で焼成することで、電子部品を金属配線95(回路)と接続する。あるいは、コントローラ102は、第1平坦化層86や金属配線95の造形がさらに必要な場合、S11からの処理を再度実行しても良い。また、コントローラ102は、検査ユニット24を制御して、完成した構造物(電子部品を装着された第1平坦化層86など)の検査を実行しても良い。コントローラ102は、S37を実行すると、図3に示す造形処理を終了する。これにより、所望の構造物を造形することができる。
Next, the controller 102 executes other processing in S37. For example, the controller 102 ejects the metal ink 77 from the inkjet head 75 onto the metal wiring 95, controls the mounting unit 23, and arranges the electronic component so that the ejected ink contacts the terminal of the electronic component. Also good. The controller 102 connects the electronic component with the metal wiring 95 (circuit) by baking the metal ink 77 with the heater 82 . Alternatively, the controller 102 may re-execute the process from S11 when further shaping of the first planarization layer 86 and the metal wiring 95 is required. The controller 102 may also control the inspection unit 24 to perform inspection of the completed structure (such as the first planarization layer 86 loaded with electronic components). After executing S37, the controller 102 ends the modeling process shown in FIG. Thereby, a desired structure can be modeled.
上記した実施例によれば、以下の効果を奏する。
造形装置10のコントローラ102は、紫外線硬化樹脂76をステージ52の上方から吐出する第1吐出処理(S11)と、ローラ79の回転方向131とは逆方向へステージ52を移動させて、S11で吐出した紫外線硬化樹脂76をローラ79により平坦化する第1平坦化処理(S13)と、S13で平坦化した紫外線硬化樹脂76を硬化する第1硬化処理(S15)を実行する。コントローラ102は、所定の厚みとなるまでの間(S17:NO)、S11、S13、S15を繰り返し実行し第1平坦化層86を形成する。また、コントローラ102は、第1平坦化層86の上に第2紫外線硬化樹脂76Aを吐出する第2吐出処理(S19)と、S19で吐出した第2紫外線硬化樹脂76Aを半硬化させる半硬化処理(S23)を実行する。コントローラ102は、所定の厚みとなるまでの間(S25:NO)、S19、S23を繰り返し実行し第1平坦化層86の上に半硬化層92を形成する。そして、コントローラ102は、ローラ79の回転方向131と同じ方向へステージ52を移動させて、半硬化層92をローラ79により平坦化する(S27)。 According to the above-described embodiment, the following effects are obtained.
The controller 102 of themodeling apparatus 10 moves the stage 52 in a direction opposite to the rotation direction 131 of the roller 79 in a first ejection process (S11) in which the ultraviolet curable resin 76 is ejected from above the stage 52, and ejects in S11. A first flattening process (S13) of flattening the ultraviolet curable resin 76 flattened by the roller 79 and a first hardening process (S15) of hardening the flattened ultraviolet curable resin 76 in S13 are performed. The controller 102 repeats S11, S13, and S15 to form the first planarization layer 86 until the predetermined thickness is reached (S17: NO). Further, the controller 102 performs a second ejection process (S19) for ejecting the second ultraviolet curable resin 76A onto the first planarizing layer 86, and a semi-curing process for semi-curing the second ultraviolet curable resin 76A ejected in S19. (S23) is executed. The controller 102 repeats S19 and S23 to form the semi-hardened layer 92 on the first planarization layer 86 until the predetermined thickness is reached (S25: NO). Then, the controller 102 moves the stage 52 in the same direction as the rotation direction 131 of the rollers 79 to flatten the semi-hardened layer 92 by the rollers 79 (S27).
造形装置10のコントローラ102は、紫外線硬化樹脂76をステージ52の上方から吐出する第1吐出処理(S11)と、ローラ79の回転方向131とは逆方向へステージ52を移動させて、S11で吐出した紫外線硬化樹脂76をローラ79により平坦化する第1平坦化処理(S13)と、S13で平坦化した紫外線硬化樹脂76を硬化する第1硬化処理(S15)を実行する。コントローラ102は、所定の厚みとなるまでの間(S17:NO)、S11、S13、S15を繰り返し実行し第1平坦化層86を形成する。また、コントローラ102は、第1平坦化層86の上に第2紫外線硬化樹脂76Aを吐出する第2吐出処理(S19)と、S19で吐出した第2紫外線硬化樹脂76Aを半硬化させる半硬化処理(S23)を実行する。コントローラ102は、所定の厚みとなるまでの間(S25:NO)、S19、S23を繰り返し実行し第1平坦化層86の上に半硬化層92を形成する。そして、コントローラ102は、ローラ79の回転方向131と同じ方向へステージ52を移動させて、半硬化層92をローラ79により平坦化する(S27)。 According to the above-described embodiment, the following effects are obtained.
The controller 102 of the
これによれば、S13において、ローラ79の回転方向131とは逆方向へステージ52を移動させて平坦化することで、紫外線硬化樹脂76をローラ79に転写しつつ、迅速に平坦化を実行でき、造形時間を短縮できる。さらに、S23において、ローラ79の回転方向131と同じ方向へステージ52を移動させて平坦化を実行することで、ローラ79の表面に半硬化層92の第2紫外線硬化樹脂76Aが移動する時間を比較的長くすることができ適切な転写を実行できる。その結果、ローラ79の回転方向131とは逆方向にステージ52を移動させて第2紫外線硬化樹脂76Aを平坦化する場合に比べて、半硬化層92の局所的な増大部135をより平坦化できる。
According to this, in S13, by moving the stage 52 in the direction opposite to the rotation direction 131 of the roller 79 for flattening, the ultraviolet curable resin 76 can be transferred to the roller 79 and the flattening can be performed quickly. , the molding time can be shortened. Furthermore, in S23, by moving the stage 52 in the same direction as the rotation direction 131 of the roller 79 to perform flattening, the time required for the second ultraviolet curable resin 76A of the semi-cured layer 92 to move to the surface of the roller 79 is It can be relatively long and can perform adequate transfer. As a result, compared to the case where the stage 52 is moved in the direction opposite to the rotation direction 131 of the roller 79 to flatten the second ultraviolet curing resin 76A, the localized enlarged portion 135 of the semi-cured layer 92 is flattened more. can.
尚、制御装置26のコントローラ102は、図2に示すように、第1吐出部110と、第1平坦化部111と、第1硬化部112と、平坦化層形成部113と、第2吐出部115と、半硬化部116と、半硬化層形成部117と、第2平坦化部118を有している。第1吐出部110等は、例えば、コントローラ102のCPUにおいて制御プログラム107を実行することで実現される処理モジュールである。尚、第1吐出部110等を、ソフトウェアで構成せずに、ハードウェアで構成しても良い。
As shown in FIG. 2, the controller 102 of the control device 26 includes a first ejection section 110, a first planarization section 111, a first curing section 112, a planarization layer forming section 113, and a second ejection section. It has a portion 115 , a semi-hardened portion 116 , a semi-hardened layer forming portion 117 and a second flattened portion 118 . The first ejection unit 110 and the like are, for example, processing modules realized by executing the control program 107 in the CPU of the controller 102 . Note that the first ejection unit 110 and the like may be configured by hardware instead of software.
第1吐出部110は、紫外線硬化樹脂76をステージ52の上方のインクジェットヘッド75から吐出させる機能部である。第1平坦化部111は、ローラ79の回転方向131とは逆方向へステージ52を移動させて、第1吐出部110により吐出した紫外線硬化樹脂76をローラ79により平坦化する機能部である。第1硬化部112は、第1平坦化部111により平坦化した紫外線硬化樹脂76を硬化部74により硬化させる機能部である。平坦化層形成部113は、S11、S13、S15を繰り返し実行し、ステージ52の上に第1平坦化層86を形成する機能部である。第2吐出部115は、第1平坦化層86の上に第2紫外線硬化樹脂76Aをインクジェットヘッド75から吐出させる機能部である。半硬化部116は、第2吐出部115により吐出した第2紫外線硬化樹脂76Aを硬化部74により半硬化させる機能部である。半硬化層形成部117は、S19、S23を繰り返し実行し、第1平坦化層86の上に半硬化層92を形成する機能部である。第2平坦化部118は、ローラ79の回転方向131と同じ方向へステージ52を移動させて、半硬化層92をローラ79により平坦化する機能部である。
The first ejection part 110 is a functional part that ejects the ultraviolet curing resin 76 from the inkjet head 75 above the stage 52 . The first flattening section 111 is a functional section that flattens the ultraviolet curable resin 76 discharged by the first discharge section 110 by moving the stage 52 in a direction opposite to the rotation direction 131 of the roller 79 . The first curing section 112 is a functional section that causes the curing section 74 to cure the ultraviolet curable resin 76 flattened by the first flattening section 111 . The planarization layer forming unit 113 is a functional unit that repeatedly executes S11, S13, and S15 to form the first planarization layer 86 on the stage 52. FIG. The second ejection part 115 is a functional part that ejects the second ultraviolet curable resin 76A onto the first planarization layer 86 from the inkjet head 75 . The semi-curing section 116 is a functional section that semi-cures the second ultraviolet curable resin 76A discharged from the second discharge section 115 by the curing section 74 . The semi-hardened layer forming part 117 is a functional part that repeatedly executes S19 and S23 to form the semi-hardened layer 92 on the first planarization layer 86 . The second flattening section 118 is a functional section that flattens the semi-hardened layer 92 by the roller 79 by moving the stage 52 in the same direction as the rotation direction 131 of the roller 79 .
因みに、上記実施例において、硬化部74は、硬化装置の一例である。インクジェットヘッド75は、吐出装置の一例である。紫外線硬化樹脂76は、第1硬化性粘性流体の一例である。金属インク77は、金属粒子を含む流体の一例である。第2紫外線硬化樹脂76Aは、第2硬化性粘性流体の一例である。第1平坦化層86は、平坦化層の一例である。金属配線95は、導体の一例である。S11は、第1吐出工程、平坦化層形成工程の一例である。S13は、第1平坦化工程、平坦化層形成工程の一例である。S15は、第1硬化工程、平坦化層形成工程の一例である。S19は、第2吐出工程、半硬化層形成工程の一例である。S23は、半硬化工程、半硬化層形成工程の一例である。S27は、第2平坦化工程の一例である。S29は、第2硬化工程の一例である。S31は、金属流体吐出工程の一例である。S33は、導体形成工程の一例である。
By the way, in the above embodiment, the curing section 74 is an example of a curing device. The inkjet head 75 is an example of an ejection device. The ultraviolet curable resin 76 is an example of the first curable viscous fluid. Metal ink 77 is an example of a fluid containing metal particles. The second ultraviolet curable resin 76A is an example of a second curable viscous fluid. The first planarization layer 86 is an example of a planarization layer. Metal wiring 95 is an example of a conductor. S11 is an example of the first discharge step and the planarizing layer forming step. S13 is an example of a first planarization step and a planarization layer formation step. S15 is an example of a first curing step and a flattening layer forming step. S19 is an example of a second ejection step, a semi-hardened layer forming step. S23 is an example of a semi-curing step and a semi-cured layer forming step. S27 is an example of a second planarization step. S29 is an example of a second curing step. S31 is an example of the metal fluid ejection step. S33 is an example of a conductor forming step.
(3.その他)
尚、本開示は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。
例えば、図3に示す製造処理の各ステップの内容、順番等は一例である。例えば、図3の製造工程では、ステージ52のベース部材70の上に第1平坦化層86を造形し、第1平坦化層86の上に平滑層151を造形したが、これに限らない。例えば、ベース部材70の上に平滑層151を造形し、平滑層151の上に第1平坦化層86を造形し、さらに第1平坦化層86の上に平滑層151を造形しても良い。
また、コントローラ102は、金属配線95を形成しなくとも良い。
また、コントローラ102は、S13において、ローラ79の回転速度を、ステージ52の移動速度と同一、又は移動速度よりも小さくしても良い。
また、コントローラ102は、S27において、ステージ52の移動速度を、ローラ79の回転速度より大きく、又は小さくしても良い。
造形装置10は、ローラ79の位置が固定されていたが、固定しない構成でも良い。造形装置10は、各平坦化工程(処理)において、ローラ79をXYZの各軸方向に移動させて平坦化を実行しても良い。
また、コントローラ102は、電子部品の実装を実施しなくとも良い。 (3. Others)
The present disclosure is not limited to the above-described embodiments, and can be implemented in various modes with various modifications and improvements based on the knowledge of those skilled in the art.
For example, the contents, order, etc. of each step of the manufacturing process shown in FIG. 3 are an example. For example, in the manufacturing process of FIG. 3, thefirst planarizing layer 86 is formed on the base member 70 of the stage 52 and the smooth layer 151 is formed on the first planarizing layer 86, but the present invention is not limited to this. For example, the smoothing layer 151 may be formed on the base member 70, the first planarizing layer 86 may be formed on the smoothing layer 151, and the smoothing layer 151 may be formed on the first planarizing layer 86. .
Also, the controller 102 does not need to form themetal wiring 95 .
Further, the controller 102 may set the rotational speed of theroller 79 to be the same as or lower than the moving speed of the stage 52 in S13.
Also, the controller 102 may make the moving speed of thestage 52 higher or lower than the rotational speed of the roller 79 in S27.
Although the position of theroller 79 is fixed in the modeling apparatus 10, the structure may be such that the position is not fixed. The modeling apparatus 10 may perform flattening by moving the roller 79 in each of the XYZ axial directions in each flattening step (processing).
Also, the controller 102 does not have to mount electronic components.
尚、本開示は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。
例えば、図3に示す製造処理の各ステップの内容、順番等は一例である。例えば、図3の製造工程では、ステージ52のベース部材70の上に第1平坦化層86を造形し、第1平坦化層86の上に平滑層151を造形したが、これに限らない。例えば、ベース部材70の上に平滑層151を造形し、平滑層151の上に第1平坦化層86を造形し、さらに第1平坦化層86の上に平滑層151を造形しても良い。
また、コントローラ102は、金属配線95を形成しなくとも良い。
また、コントローラ102は、S13において、ローラ79の回転速度を、ステージ52の移動速度と同一、又は移動速度よりも小さくしても良い。
また、コントローラ102は、S27において、ステージ52の移動速度を、ローラ79の回転速度より大きく、又は小さくしても良い。
造形装置10は、ローラ79の位置が固定されていたが、固定しない構成でも良い。造形装置10は、各平坦化工程(処理)において、ローラ79をXYZの各軸方向に移動させて平坦化を実行しても良い。
また、コントローラ102は、電子部品の実装を実施しなくとも良い。 (3. Others)
The present disclosure is not limited to the above-described embodiments, and can be implemented in various modes with various modifications and improvements based on the knowledge of those skilled in the art.
For example, the contents, order, etc. of each step of the manufacturing process shown in FIG. 3 are an example. For example, in the manufacturing process of FIG. 3, the
Also, the controller 102 does not need to form the
Further, the controller 102 may set the rotational speed of the
Also, the controller 102 may make the moving speed of the
Although the position of the
Also, the controller 102 does not have to mount electronic components.
本開示の第1硬化性粘性流体及び第2硬化性粘性流体は、紫外線硬化樹脂76に限らず、光、熱等により硬化する種々の硬化性粘性流体を採用することが可能である。従って、第1硬化性粘性流体及び第2硬化性粘性流体を硬化させる方法は、紫外線に限らない。
第1硬化性粘性流体と第2硬化性粘性流体は、異なる種類の硬化性粘性流体でも良い。
本開示の金属粒子を含む流体は、銀を含む金属インク77に限らず、他の金属を含む流体を採用することができる。
上記実施例では、本開示の造形装置として配線基板を製造する造形装置10を採用したが、これに限らない。本開示の製造装置としては、第1硬化性粘性流体及び第2硬化性粘性流体を用いて造形を行なう様々な製造装置を採用できる。 The first curable viscous fluid and the second curable viscous fluid of the present disclosure are not limited to the ultravioletcurable resin 76, and various curable viscous fluids that are cured by light, heat, or the like can be employed. Therefore, the method for curing the first curable viscous fluid and the second curable viscous fluid is not limited to ultraviolet rays.
The first curable viscous fluid and the second curable viscous fluid may be different types of curable viscous fluids.
The fluid containing metal particles of the present disclosure is not limited to themetal ink 77 containing silver, and fluids containing other metals can be employed.
In the above embodiment, themodeling apparatus 10 that manufactures wiring boards is employed as the modeling apparatus of the present disclosure, but the present invention is not limited to this. As the manufacturing apparatus of the present disclosure, various manufacturing apparatuses that perform modeling using the first curable viscous fluid and the second curable viscous fluid can be employed.
第1硬化性粘性流体と第2硬化性粘性流体は、異なる種類の硬化性粘性流体でも良い。
本開示の金属粒子を含む流体は、銀を含む金属インク77に限らず、他の金属を含む流体を採用することができる。
上記実施例では、本開示の造形装置として配線基板を製造する造形装置10を採用したが、これに限らない。本開示の製造装置としては、第1硬化性粘性流体及び第2硬化性粘性流体を用いて造形を行なう様々な製造装置を採用できる。 The first curable viscous fluid and the second curable viscous fluid of the present disclosure are not limited to the ultraviolet
The first curable viscous fluid and the second curable viscous fluid may be different types of curable viscous fluids.
The fluid containing metal particles of the present disclosure is not limited to the
In the above embodiment, the
10 造形装置、26 制御装置、52 ステージ、74 硬化部(硬化装置)、75 インクジェットヘッド(吐出装置)、76 紫外線硬化樹脂(第1硬化性粘性流体)、76A 第2紫外線硬化樹脂(第2硬化性粘性流体)、77 金属インク(金属粒子を含む流体)、79 ローラ、86 第1平坦化層(平坦化層)、92 半硬化層、93 平滑面、95 金属配線(導体)、110 第1吐出部、111 平坦化部、112 第1硬化部、113 平坦化層形成部、115 第2吐出部、116 半硬化部、117 半硬化層形成部、118 第2平坦化部、131 回転方向、151 平滑層。
10 molding device, 26 control device, 52 stage, 74 curing unit (curing device), 75 inkjet head (ejection device), 76 ultraviolet curing resin (first curing viscous fluid), 76A second ultraviolet curing resin (second curing viscous fluid), 77 metal ink (fluid containing metal particles), 79 roller, 86 first flattening layer (flattening layer), 92 semi-hardened layer, 93 smooth surface, 95 metal wiring (conductor), 110 first Ejecting part 111 Flattening part 112 First hardening part 113 Flattening layer forming part 115 Second ejecting part 116 Semi-hardening part 117 Semi-hardening layer forming part 118 Second flattening part 131 Rotation direction 151 Smooth layer.
Claims (6)
- 第1硬化性粘性流体をステージの上方から吐出する第1吐出工程と、
ローラの回転方向とは逆方向へ前記ステージを移動させて、前記第1吐出工程により吐出した前記第1硬化性粘性流体を前記ローラにより平坦化する第1平坦化工程と、
前記第1平坦化工程により平坦化した前記第1硬化性粘性流体を硬化する第1硬化工程と、
前記第1吐出工程、前記第1平坦化工程、前記第1硬化工程を繰り返し実行し、前記ステージの上に平坦化層を形成する平坦化層形成工程と、
前記平坦化層の上に第2硬化性粘性流体を吐出する第2吐出工程と、
前記第2吐出工程により吐出した前記第2硬化性粘性流体を半硬化させる半硬化工程と、
前記第2吐出工程、前記半硬化工程を繰り返し実行し、前記平坦化層の上に半硬化層を形成する半硬化層形成工程と、
前記ローラの回転方向と同じ方向へ前記ステージを移動させて、前記半硬化層を前記ローラにより平坦化する第2平坦化工程と、
を含む、造形方法。 a first discharging step of discharging the first curable viscous fluid from above the stage;
a first flattening step of moving the stage in a direction opposite to the rotating direction of the roller to flatten the first curable viscous fluid discharged in the first discharging step by the roller;
a first curing step of curing the first curable viscous fluid flattened by the first flattening step;
a planarization layer forming step of repeatedly performing the first discharge step, the first planarization step, and the first curing step to form a planarization layer on the stage;
a second discharging step of discharging a second curable viscous fluid onto the planarizing layer;
a semi-curing step of semi-curing the second curable viscous fluid discharged in the second discharging step;
a semi-hardened layer forming step of repeatedly performing the second discharging step and the semi-hardening step to form a semi-hardened layer on the planarizing layer;
a second flattening step of flattening the semi-hardened layer with the roller by moving the stage in the same direction as the rotation direction of the roller;
A molding method, including - 前記第1平坦化工程において、
前記ステージの移動速度に比べて前記ローラの回転速度を大きくする、請求項1に記載の造形方法。 In the first planarization step,
2. The modeling method according to claim 1, wherein the rotational speed of said roller is increased compared to the moving speed of said stage. - 前記第2平坦化工程において、
前記ステージの移動速度と、前記ローラの回転速度を同一にする、請求項1又は請求項2に記載の造形方法。 In the second planarization step,
3. The modeling method according to claim 1, wherein the moving speed of the stage and the rotating speed of the roller are the same. - 前記第2平坦化工程において、
前記ステージの移動方向における前記ローラの位置を固定し、且つ、前記ローラが前記半硬化層と接触する位置を、設計データにおける前記半硬化層の上面の位置に合わせて前記ローラによる平坦化を実行する、請求項1から請求項3の何れか1項に記載の造形方法。 In the second planarization step,
The position of the roller in the moving direction of the stage is fixed, and the position where the roller contacts the semi-hardened layer is aligned with the position of the upper surface of the semi-hardened layer in the design data, and flattening is performed by the roller. The modeling method according to any one of claims 1 to 3, wherein: - 前記第2平坦化工程により平坦化した前記半硬化層を硬化し、表面に平滑面を有する平滑層を形成する第2硬化工程と、
前記平滑面の上に金属粒子を含む流体を吐出する金属流体吐出工程と、
前記金属流体吐出工程により吐出した前記金属粒子を含む流体を硬化し、前記平滑面の上に金属製の導体を形成する導体形成工程と、
を含む、請求項1から請求項4の何れか1項に記載の造形方法。 a second curing step of curing the semi-cured layer flattened by the second flattening step to form a smooth layer having a smooth surface;
a metal fluid ejection step of ejecting a fluid containing metal particles onto the smooth surface;
a conductor forming step of curing the fluid containing the metal particles ejected by the metal fluid ejecting step to form a metallic conductor on the smooth surface;
The modeling method according to any one of claims 1 to 4, comprising: - 吐出装置と、
ローラと、
硬化装置と、
制御装置と、
を備え、
前記制御装置は、
第1硬化性粘性流体を前記吐出装置によりステージの上方から吐出させる第1吐出部と、
前記ローラの回転方向とは逆方向へ前記ステージを移動させて、前記第1吐出部により吐出した前記第1硬化性粘性流体を前記ローラにより平坦化する第1平坦化部と、
前記第1平坦化部により平坦化した前記第1硬化性粘性流体を前記硬化装置により硬化する第1硬化部と、
前記第1吐出部、前記第1平坦化部、前記第1硬化部による処理を繰り返し実行し、前記ステージの上に平坦化層を形成する平坦化層形成部と、
前記平坦化層の表面上に第2硬化性粘性流体を前記吐出装置により吐出する第2吐出部と、
前記第2吐出部により吐出した前記第2硬化性粘性流体を前記硬化装置により半硬化させる半硬化部と、
前記第2吐出部、前記半硬化部による処理を繰り返し実行し、前記平坦化層の上に半硬化層を形成する半硬化層形成部と、
前記ローラの回転方向と同じ方向へ前記ステージを移動させて、前記半硬化層を前記ローラにより平坦化する第2平坦化部と、
を備える、造形装置。 a discharge device;
Laura and
a curing device;
a controller;
with
The control device is
a first ejection unit for ejecting the first curable viscous fluid from above the stage by the ejection device;
a first flattening section for flattening the first curable viscous fluid discharged by the first discharge section by moving the stage in a direction opposite to the rotation direction of the roller;
a first curing section for curing the first curable viscous fluid flattened by the first flattening section by the curing device;
a planarization layer forming unit that repeatedly executes the processes by the first ejection unit, the first planarization unit, and the first curing unit to form a planarization layer on the stage;
a second ejection unit for ejecting a second curable viscous fluid onto the surface of the planarizing layer by the ejection device;
a semi-curing section that semi-cures the second curable viscous fluid discharged by the second discharging section by the curing device;
a semi-hardened layer forming part that repeatedly executes the processes by the second ejection part and the semi-hardened part to form a semi-hardened layer on the planarizing layer;
a second flattening unit that flattens the semi-hardened layer with the roller by moving the stage in the same direction as the rotation direction of the roller;
A molding device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/009156 WO2023166668A1 (en) | 2022-03-03 | 2022-03-03 | Shaping method and shaping device |
JP2024504270A JPWO2023166668A1 (en) | 2022-03-03 | 2022-03-03 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/009156 WO2023166668A1 (en) | 2022-03-03 | 2022-03-03 | Shaping method and shaping device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023166668A1 true WO2023166668A1 (en) | 2023-09-07 |
Family
ID=87883320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009156 WO2023166668A1 (en) | 2022-03-03 | 2022-03-03 | Shaping method and shaping device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023166668A1 (en) |
WO (1) | WO2023166668A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017132059A (en) * | 2016-01-25 | 2017-08-03 | 富士ゼロックス株式会社 | Molding device |
JP2018103488A (en) * | 2016-12-27 | 2018-07-05 | 株式会社Screenホールディングス | Temperature control method of droplet discharge device, droplet discharge device and three-dimensional molding device |
US20180333911A1 (en) * | 2017-05-15 | 2018-11-22 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
WO2019058515A1 (en) * | 2017-09-22 | 2019-03-28 | 株式会社Fuji | Semi-cured layer forming method and semi-cured layer forming device |
JP2021079605A (en) * | 2019-11-18 | 2021-05-27 | 株式会社リコー | Apparatus for manufacturing three-dimensional molded article, method for manufacturing three-dimensional molded article, and program for manufacturing three-dimensional molded article |
WO2021106699A1 (en) * | 2019-11-25 | 2021-06-03 | 株式会社ミマキエンジニアリング | Shaping apparatus and shaping method |
-
2022
- 2022-03-03 WO PCT/JP2022/009156 patent/WO2023166668A1/en active Application Filing
- 2022-03-03 JP JP2024504270A patent/JPWO2023166668A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017132059A (en) * | 2016-01-25 | 2017-08-03 | 富士ゼロックス株式会社 | Molding device |
JP2018103488A (en) * | 2016-12-27 | 2018-07-05 | 株式会社Screenホールディングス | Temperature control method of droplet discharge device, droplet discharge device and three-dimensional molding device |
US20180333911A1 (en) * | 2017-05-15 | 2018-11-22 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
WO2019058515A1 (en) * | 2017-09-22 | 2019-03-28 | 株式会社Fuji | Semi-cured layer forming method and semi-cured layer forming device |
JP2021079605A (en) * | 2019-11-18 | 2021-05-27 | 株式会社リコー | Apparatus for manufacturing three-dimensional molded article, method for manufacturing three-dimensional molded article, and program for manufacturing three-dimensional molded article |
WO2021106699A1 (en) * | 2019-11-25 | 2021-06-03 | 株式会社ミマキエンジニアリング | Shaping apparatus and shaping method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023166668A1 (en) | 2023-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7213343B2 (en) | Modeling method and modeling apparatus | |
JP7197489B2 (en) | Structure forming method and structure forming apparatus having hardened layer and metal wiring | |
JP6533112B2 (en) | Circuit formation method | |
WO2023166668A1 (en) | Shaping method and shaping device | |
JP7083039B2 (en) | Circuit formation method | |
WO2023166669A1 (en) | Shaping method and shaping device | |
JP6714109B2 (en) | Circuit forming method and circuit forming apparatus | |
JP6811770B2 (en) | Circuit formation method | |
WO2016189577A1 (en) | Wiring forming method | |
WO2017006412A1 (en) | Shaping device and shaping method | |
JP7495870B2 (en) | Molding method and molding device | |
JP7238206B2 (en) | Modeling method | |
JP7325532B2 (en) | 3D object manufacturing method and 3D object manufacturing device by layered manufacturing method | |
JP6987972B2 (en) | Circuit forming method and circuit forming device | |
WO2022176152A1 (en) | Printing work machine, work system, and printing method | |
WO2020095340A1 (en) | Circuit forming method | |
JP7543432B2 (en) | Method and device for manufacturing three-dimensional objects | |
WO2023112205A1 (en) | Three-dimensional laminate shaping device | |
JP6818154B2 (en) | Wiring forming method and wiring forming device | |
WO2023067707A1 (en) | 3d forming apparatus and pallet transfer method | |
JP7487038B2 (en) | Manufacturing method of a jig, a jig, a manufacturing device for a three-dimensional object, and a manufacturing method of a three-dimensional object | |
WO2023079607A1 (en) | Circuit-forming method and circuit-forming apparatus | |
WO2023095184A1 (en) | Circuit-forming method and circuit-forming apparatus | |
JP6996007B2 (en) | Circuit manufacturing system | |
JP2023131281A (en) | Electric circuit formation method and control program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22929813 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024504270 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |