WO2023153099A1 - 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 - Google Patents
熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 Download PDFInfo
- Publication number
- WO2023153099A1 WO2023153099A1 PCT/JP2022/047778 JP2022047778W WO2023153099A1 WO 2023153099 A1 WO2023153099 A1 WO 2023153099A1 JP 2022047778 W JP2022047778 W JP 2022047778W WO 2023153099 A1 WO2023153099 A1 WO 2023153099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot
- coating layer
- steel sheet
- less
- steel plate
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 130
- 239000010959 steel Substances 0.000 title claims abstract description 130
- 238000007731 hot pressing Methods 0.000 title claims abstract description 43
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000011247 coating layer Substances 0.000 claims abstract description 104
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 19
- 239000000956 alloy Substances 0.000 claims abstract description 19
- 239000010410 layer Substances 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 abstract description 65
- 230000007797 corrosion Effects 0.000 abstract description 17
- 238000005260 corrosion Methods 0.000 abstract description 17
- 239000002184 metal Substances 0.000 abstract description 16
- 229910001338 liquidmetal Inorganic materials 0.000 abstract description 13
- 238000000576 coating method Methods 0.000 abstract description 12
- 238000005336 cracking Methods 0.000 abstract description 12
- 239000011248 coating agent Substances 0.000 abstract description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 36
- 239000000203 mixture Substances 0.000 description 35
- 238000007747 plating Methods 0.000 description 31
- 239000011701 zinc Substances 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 239000000523 sample Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- 238000005098 hot rolling Methods 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- RRIWRJBSCGCBID-UHFFFAOYSA-L nickel sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-]S([O-])(=O)=O RRIWRJBSCGCBID-UHFFFAOYSA-L 0.000 description 7
- 229940116202 nickel sulfate hexahydrate Drugs 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000010422 painting Methods 0.000 description 6
- 238000005240 physical vapour deposition Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 238000007670 refining Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 238000005422 blasting Methods 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 229910018605 Ni—Zn Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 2
- 229910000165 zinc phosphate Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- QWMFKVNJIYNWII-UHFFFAOYSA-N 5-bromo-2-(2,5-dimethylpyrrol-1-yl)pyridine Chemical compound CC1=CC=C(C)N1C1=CC=C(Br)C=N1 QWMFKVNJIYNWII-UHFFFAOYSA-N 0.000 description 1
- -1 AlN nitrides Chemical class 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- MEYVLGVRTYSQHI-UHFFFAOYSA-L cobalt(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Co+2].[O-]S([O-])(=O)=O MEYVLGVRTYSQHI-UHFFFAOYSA-L 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910001055 inconels 600 Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- RWVGQQGBQSJDQV-UHFFFAOYSA-M sodium;3-[[4-[(e)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]-2-methylcyclohexa-2,5-dien-1-ylidene]methyl]-n-ethyl-3-methylanilino]methyl]benzenesulfonate Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C(=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=2C(=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C)C=C1 RWVGQQGBQSJDQV-UHFFFAOYSA-M 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/562—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
- B32B15/015—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/052—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 40%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/36—Pretreatment of metallic surfaces to be electroplated of iron or steel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
Definitions
- the present invention relates to a hot press steel sheet, a hot press member, and a method for manufacturing a hot press member.
- underbody members such as chassis
- structural members for skeleton such as B-pillars.
- Hot pressing is a forming method in which a steel sheet is heated to the austenite temperature range, then press-formed at a high temperature, and at the same time rapidly cooled by contact with a die. In hot pressing, press forming is performed in a state in which the strength of the material steel sheet is relatively low, and the strength is increased by subsequent quenching.
- the steel sheet is heated to a high temperature as described above, so there is a problem that the surface of the steel sheet is oxidized and scale is generated.
- oxides derived from the scale adhere to the heating equipment.
- the heating is typically performed in a heating furnace, and in that case, oxides adhere to the inner wall of the heating furnace, the transport rollers provided in the furnace, and the like. Therefore, maintenance of the heating equipment is required, resulting in a decrease in productivity.
- scale exists on the surface of the steel sheet, sufficient coating film adhesion cannot be obtained in the subsequent coating process. Therefore, it was necessary to remove the scale by shot blasting or the like after hot pressing.
- Patent Documents 1 and 2 a steel sheet having a film such as an Al-based plating layer, a Zn-based plating layer, and an Al--Zn-based plating layer on its surface as a steel sheet for hot pressing.
- the presence of the plating layer suppresses oxidation of the surface of the base steel sheet during hot pressing, thereby preventing the formation of scale.
- liquid metal embrittlement cracking When a tensile stress is applied to the surface of a solid metal in contact with the liquid metal, the solid metal becomes embrittled. This phenomenon is called Liquid Metal Embrittlement (LME). Also in hot pressing, if the metal contained in the plating layer is melted by heating and press forming is performed in that state, liquid metal embrittlement cracking will occur in the bent portion that receives tensile stress.
- LME Liquid Metal Embrittlement
- hot press steel sheet for hot press are generally used in a painted state after hot pressing. Therefore, the hot press steel sheet is also required to have excellent post-coating corrosion resistance in the finally obtained hot press member.
- the present invention has been completed to solve the above problems, and the gist thereof is as follows.
- a base material steel plate comprising a coating layer having a thickness of 7 to 20 ⁇ m provided on both sides of the base steel plate, A steel sheet for hot press working, wherein the coating layer is made of Ni or a Ni-based alloy, and the Zn content in the coating layer is 0 to 10% by mass.
- the coating layer contains 50% by mass or less in total of at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Mo, and W. Steel plate for press.
- a hot press member having a coating layer with a thickness of 7 to 20 ⁇ m provided on both sides of the base steel plate, The hot press member, wherein the coating layer is made of Ni or a Ni-based alloy, and the Zn content in the coating layer is 0 to 10% by mass.
- a method for producing a hot pressed member comprising hot pressing the steel plate for hot pressing according to 1 or 2 above to form a hot pressed member.
- the above problems can be solved. That is, since the steel sheet for hot press use of the present invention has a coating layer on its surface, it is possible to prevent the formation of scale during hot press and reduce the adhesion of oxides to heating equipment. In addition, by using a coating layer made of Ni or a Ni-based alloy and having a Zn concentration of 10% or less as the coating layer, adhesion of molten metal to the heating equipment is reduced, and during hot press molding, Liquid metal embrittlement cracking can be prevented. Furthermore, the hot press member obtained by hot pressing the steel sheet for hot press use of the present invention is excellent in corrosion resistance after painting.
- the unit "%" of the content in the chemical composition of the coating layer and the steel sheet represents “% by mass” unless otherwise specified.
- a steel plate for hot press working according to one embodiment of the present invention includes a base steel plate and coating layers having a thickness of 7 to 20 ⁇ m provided on both sides of the base steel plate.
- the coating layer is made of Ni or a Ni-based alloy, and has a Zn concentration of 0 to 10%.
- the coating layer may be a coating layer made of Ni (Ni coating layer) or a coating layer made of a Ni-based alloy (Ni-based alloy coating layer).
- Ni-based alloy refers to an alloy with a Ni content of 50% or more.
- the coating layer of the present invention is a coating layer having a Ni content of 50% or more.
- the surface layer of the steel sheet is oxidized by oxygen and water vapor in the atmosphere.
- the steel sheet for hot press of the present invention has a Ni-based coating layer having a high melting point and oxidation resistance on the surface, oxidation of the base steel sheet can be suppressed and scale generation can be prevented.
- the Ni content in the coating layer is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
- the upper limit of the Ni content in the coating layer is not particularly limited, and may be 100%.
- the Zn content in the coating layer is set to 10% or less. From the viewpoint of preventing liquid metal embrittlement cracking, the Zn content is preferably 5% or less, more preferably 1% or less. On the other hand, the lower the Zn content, the better, so the lower limit of the Zn content is set to 0%.
- the coating layer can optionally contain at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Mo, and W in a total amount of 50% or less.
- Ti, V, Cr, Mn, Fe, Co, Mo, and W By adding at least one of Ti, V, Cr, Mn, Co, Mo, and W, even better oxidation resistance can be obtained.
- Fe eluted from the base steel sheet into the plating bath may be incorporated into the coating layer. If the content of these elements becomes excessive, the Ni content in the coating layer is relatively reduced, impairing the function of the coating layer. Therefore, the total content of the elements should be 50% or less, preferably 40% or less, more preferably 35% or less.
- the lower limit of the total content is not particularly limited, and may be 0%.
- the Fe content in the coating layer is preferably 20% or less, more preferably 5% or less, and even more preferably 1% or less.
- the lower limit of Fe content may be 0%.
- the coating layer in one embodiment of the present invention, in mass %, Zn: 0-10%, At least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Mo, and W: 0 to 50% in total, It has a component composition in which the balance is Ni and unavoidable impurities.
- Thickness 7-20 ⁇ m
- Ni in the coating layer and Fe in the base steel sheet interdiffuse, and a Ni-based alloy layer with an increased Fe concentration is formed on the surface layer of the hot press member.
- the thickness of the coating layer of the steel sheet for hot press is less than 7 ⁇ m, especially when heated at a high temperature for a long time, Fe diffused and reaches the surface layer is oxidized to form a thick and brittle Fe-containing oxide layer. If thick and brittle Fe-containing oxides are present, the oxides adhere and accumulate on the conveying rollers and press molds during the hot pressing process. Therefore, equipment maintenance is required, and productivity decreases.
- the thickness of the coating layer is set to 7 ⁇ m or more. Further, the thickness of the coating layer is preferably 8 ⁇ m or more, more preferably 9 ⁇ m or more, because the thicker the coating layer remains after heating, the better the corrosion resistance can be obtained. On the other hand, when the thickness of the coating layer exceeds 20 ⁇ m, the oxidation resistance effect and the corrosion resistance improvement effect become saturated, resulting in an increase in manufacturing cost. Therefore, the thickness of the coating layer should be 20 ⁇ m or less, preferably 16 ⁇ m or less, more preferably 12 ⁇ m or less.
- the thickness of the coating layer is defined as the thickness per side of the steel plate.
- the steel sheet for hot press working of the present invention has coating layers on both sides thereof, and the thickness of the coating layer on one side may be the same as or different from the thickness of the coating layer on the other side. may
- the base material steel plate may be either a hot-rolled steel plate or a cold-rolled steel plate.
- the base steel plate should contain C: 0.05 to 0.50%, Si: 0.1 to 0.5%, Mn: 0.5-3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.10% or less and N: 0.01% or less, It is preferable to use a steel sheet having a chemical composition in which the balance is Fe and unavoidable impurities. The reason why the above component composition is preferable will be described below.
- C 0.05-0.50% C improves strength by forming martensite or the like as a steel structure.
- the C content is preferably 0.05% or more, more preferably 0.10% or more.
- the amount of C is preferably 0.50% or less.
- the C content is more preferably 0.45% or less, even more preferably 0.43% or less, and most preferably 0.40% or less.
- Si 0.1-0.5% Si is an effective element for strengthening steel and obtaining a good quality.
- the amount of Si should be 0.1% or more. Therefore, the Si content is preferably 0.1% or more, more preferably 0.2% or more.
- the Si content is preferably 0.5% or less.
- the Si content is more preferably 0.4% or less, more preferably 0.3% or less.
- Mn 0.5-3.0%
- Mn is an effective element for securing the strength after cooling over a wide cooling rate range.
- the Mn content is preferably 0.5% or more, more preferably 0.7% or more, and even more preferably 1.0% or more.
- the Mn content is preferably 3.0% or less.
- the Mn content is more preferably 2.5% or less, even more preferably 2.0% or less, and most preferably 1.5% or less.
- the amount of P is 0.1% or less.
- the lower limit of the P content is not particularly limited, and may be 0%, but from the viewpoint of refining cost, the P content is preferably 0.002% or more.
- S 0.01% or less S becomes inclusions such as MnS and causes deterioration of impact resistance and cracks along the metal flow of the weld. Therefore, it is desirable to reduce the S content as much as possible, and the S content is preferably 0.01% or less. From the viewpoint of ensuring good stretch flangeability, the S content is more preferably 0.005% or less, and even more preferably 0.001% or less. On the other hand, the lower limit of the amount of S is not particularly limited, and may be 0%, but from the viewpoint of refining cost, it is preferably 0.0002% or more.
- the Al content is preferably 0.10% or less.
- the Al content is more preferably 0.07% or less, more preferably 0.04% or less.
- the lower limit of the amount of Al is not particularly limited, and may be 0%, but from the viewpoint of securing the effect as a deoxidizer, it is preferably 0.01% or more.
- the N content is preferably 0.01% or less.
- the lower limit of the N content is not particularly limited, and may be 0%, but from the viewpoint of refining cost, the N content is preferably 0.001% or more.
- the chemical composition of the base steel sheet is Nb: 0.10% or less, Ti: 0.05% or less, B: 0.0002 to 0.005%, Cr: 0.05%. At least one selected from the group consisting of 1 to 1.0% and Sb: 0.003 to 0.03% can be further optionally contained.
- Nb 0.10% or less
- Nb is a component effective in strengthening steel, but if it is included in excess, the rolling load increases. Therefore, when Nb is contained, the Nb content is 0.10% or less, preferably 0.06% or less, and more preferably 0.03% or less.
- the lower limit of the Nb content is not particularly limited, and may be 0%, but from the viewpoint of refining cost, it is preferably 0.005% or more.
- Ti 0.05% or less Ti, like Nb, is also effective in strengthening steel, but if contained excessively, the shape fixability deteriorates. Therefore, when Ti is contained, the amount of Ti should be 0.05% or less, preferably 0.03% or less. On the other hand, the lower limit of the amount of Ti is not particularly limited, and may be 0%, but from the viewpoint of refining cost, it is preferably 0.003% or more.
- B 0.0002 to 0.005% B is an element that has the effect of suppressing the formation and growth of ferrite from the austenite grain boundaries.
- the amount of B is preferably 0.0002% or more, more preferably 0.0010% or more, in order to obtain the above effect.
- excessive B content greatly impairs moldability. Therefore, when B is contained, the amount of B is 0.005% or less, preferably 0.003% or less.
- Cr 0.1-1.0% Cr, like Mn, is an element that improves the strength and hardenability of steel.
- the Cr content is made 0.1% or more, preferably 0.2% or more, in order to obtain the above effect.
- adding more than 1.0% causes a significant cost increase. Therefore, when Cr is contained, the amount of C is 1.0% or less, preferably 0.5% or less, and more preferably 0.2% or less.
- Sb 0.003-0.03%
- Sb is an element that has the effect of suppressing decarburization of the surface layer of the steel sheet in the annealing process when manufacturing the base steel sheet.
- the amount of Sb is made 0.003% or more, preferably 0.005% or more, in order to obtain the above effect.
- the amount of Sb exceeds 0.03%, the rolling load increases, resulting in a decrease in productivity. Therefore, when Sb is contained, the amount of Sb should be 0.03% or less, preferably 0.02% or less, and more preferably 0.01% or less.
- the steel sheet for hot press forming of the present invention can be produced by any method without particular limitation, but preferred production conditions will be described below.
- the base material steel plate is manufactured.
- the base steel plate can be produced by rolling a steel slab typically obtained by casting.
- As the steel slab it is preferable to use a steel slab having the chemical composition described above.
- the hot piece obtained by casting may be directly subjected to hot rolling (without reheating), and after casting, the cold piece whose temperature has decreased is reheated and subjected to hot rolling. may There is almost no difference in the properties of the obtained steel sheets between the case where the hot slab is directly rolled and the case where the cold slab is reheated and then rolled.
- the reheating temperature is not particularly limited, but it is preferably in the range of 1000° C. to 1300° C. in consideration of productivity.
- the hot rolling can be either a normal hot rolling process or a continuous hot rolling process in which slabs are bonded and rolled in finish rolling.
- the rolling end temperature in hot rolling is not particularly limited, it is preferably at least the Ar3 transformation point from the viewpoint of productivity and plate thickness accuracy.
- the hot-rolled steel sheet obtained by the above hot rolling is then cooled according to a conventional method.
- the winding temperature at that time is preferably 550° C. or higher from the viewpoint of productivity.
- the winding temperature is preferably 750° C. or lower.
- pickling is preferably carried out according to a conventional method.
- a cold-rolled steel sheet When a cold-rolled steel sheet is used as the base material steel sheet, it may be further cold-rolled according to a conventional method after the pickling.
- a coating layer is formed on the surface of the obtained steel plate.
- the method of forming the coating layer is not particularly limited, and any method such as plating, PVD (physical vapor deposition), and clad rolling can be used.
- the plating include electroplating.
- Examples of PVD include vacuum deposition, sputtering, and ion plating.
- layers having a desired composition may be laminated on both sides of the base steel sheet and then rolled.
- the method of forming the coating layer is preferably selected according to the composition of the coating layer to be formed.
- the coating layer is a Ni layer, a Ni--Cr alloy layer, or a Ni--Zn alloy layer, it is preferably formed by electroplating, but it can be formed by other methods without any problem.
- the coating layer has a composition such as a Ni--Ti alloy that is difficult to electrodeposit from an aqueous solution, it is preferably formed by PVD.
- the conditions may be adjusted so that the coating layer on one side (surface) of the steel sheet and the other side (back surface) of the steel sheet have a desired thickness.
- the thickness of the coating layer on each surface can be adjusted by changing either or both of the current density and the energization time on each surface.
- a hot pressed member in one embodiment of the present invention is a hot pressed member having a base steel plate and coating layers with a thickness of 7 to 20 ⁇ m provided on both sides of the base steel plate, wherein the coating layer is made of Ni or a Ni-based alloy, and the Zn content in the coating layer is 0 to 10%.
- the hot pressed member further has an oxide layer with a thickness of 10 ⁇ m or less on the coating layer.
- the hot press member of the present embodiment includes a base steel plate, a coating layer having a thickness of 7 to 20 ⁇ m provided on both sides of the base steel plate, and a thickness of 10 ⁇ m or less provided on the coating layer.
- the coating layer is made of Ni or a Ni-based alloy, and the Zn content in the coating layer is 0 to 10%.
- the oxide layer is formed by reacting the components contained in the coating layer or the base steel sheet with oxygen or water vapor in the atmosphere during the hot pressing process.
- the composition and thickness of the oxide layer vary depending on heating conditions such as heating temperature, heating time, and atmosphere. If the thickness of the oxide layer exceeds 10 ⁇ m, the coating film adhesion is lowered, and as a result, sufficient post-coating corrosion resistance cannot be obtained. Therefore, if an oxide layer is present, the thickness of the oxide layer should be 10 ⁇ m or less, preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less.
- the thickness of the oxide layer is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and even more preferably 2 ⁇ m or more.
- the formed oxide layer may be removed by subjecting it to shot blasting after hot pressing.
- removal of the oxide layer is not essential, as removal of the oxide layer results in an increase in manufacturing costs.
- the thickness of the oxide layer can be measured by observing the cross section of the hot pressed member with a scanning electron microscope (SEM). More specifically, it can be measured by the method described in Examples.
- SEM scanning electron microscope
- the composition of the oxide layer is not particularly limited. However, the inventors have found that even better corrosion resistance can be obtained when the Ni fraction in the metal elements in the oxide layer is 50 atomic % or more.
- the reason is considered as follows. That is, as described above, the oxide layer is formed by oxidizing the components contained in the coating layer or the base steel sheet in the hot pressing process. For example, when the oxide layer is mainly composed of oxides of Fe contained in the base steel sheet, the electrical resistance of the oxide layer is relatively low. On the other hand, Ni oxides have higher electric resistance than other oxides such as Fe oxides. can be suppressed.
- the Ni fraction in the metal elements in the oxide layer it is preferable to set to 50 atomic % or more.
- the upper limit of the Ni fraction is not particularly limited, and may be 100%, but from the viewpoint of ease of production, it is preferably 98% or less.
- the Ni fraction in the metal elements in the oxide layer can be measured by quantitatively analyzing the cross section of the hot pressed member using an EPMA (electron probe microanalyzer). More specifically, it can be measured by the method described in Examples.
- EPMA electron probe microanalyzer
- a plated steel sheet for hot press is hot pressed to produce a hot press member.
- the hot pressing method is not particularly limited, and can be carried out according to a conventional method.
- a steel plate for hot press is heated to a predetermined heating temperature (heating step), and then the steel plate for hot press heated in the heating step is hot pressed (hot press step).
- heating step heating step
- hot press step hot press step
- the heating temperature in the heating step is lower than the Ac3 transformation point of the base steel sheet, the strength of the final hot pressed member will be low. Therefore, the heating temperature is preferably equal to or higher than the Ac3 transformation point of the base steel sheet.
- the heating temperature is preferably 860° C. or higher.
- the heating temperature is preferably 1000° C. or lower, more preferably 960° C. or lower, and even more preferably 920° C. or lower.
- the Ac3 transformation point of the base steel sheet differs depending on the steel composition, it can be obtained by a Formaster test.
- the temperature at which the heating is started is not particularly limited, it is generally room temperature.
- the time required to raise the temperature from the start of heating until reaching the heating temperature is not particularly limited, and can be any time. However, if the heating time exceeds 300 seconds, the exposure time to the high temperature becomes long, and the oxide layer formed by oxidation of the base material and the plating layer becomes excessively thick. Therefore, from the viewpoint of suppressing deterioration of paint adhesion due to oxides, the heating time is preferably 300 seconds or less, more preferably 270 seconds or less, and further preferably 240 seconds or less. preferable. On the other hand, if the temperature rise time is less than 150 seconds, the coating layer may melt excessively during heating, which may damage the heating device and the mold. Therefore, from the viewpoint of further enhancing the effect of preventing contamination of the heating device and the mold, the heating time is preferably 150 seconds or longer, more preferably 180 seconds or longer, and 210 seconds or longer. is more preferred.
- the holding time is not particularly limited, and the holding can be carried out for an arbitrary length.
- the holding time exceeds 300 seconds, the oxide layer formed by oxidizing the base material and the coating layer becomes excessively thick, which may deteriorate the paint adhesion of the resulting hot pressed member. Therefore, the retention time is preferably 300 seconds or less, more preferably 210 seconds or less, and even more preferably 120 seconds or less.
- the holding time may be 0 seconds. However, from the viewpoint of uniformly austenitizing the base steel sheet, it is preferable to set the holding time to 10 seconds or longer.
- the atmosphere in the heating step is not particularly limited, and heating can be performed in any atmosphere.
- the heating may be performed, for example, under an air atmosphere, or may be performed under an atmosphere into which an air atmosphere flows.
- the dew point of the atmosphere is preferably 10° C. or less.
- the lower limit of the dew point is not particularly limited, but in order to keep the dew point below ⁇ 80° C., special equipment is required to prevent the inflow of air from the outside and maintain a low dew point, which increases costs. do. Therefore, from the viewpoint of cost, the dew point is preferably ⁇ 80° C. or higher, more preferably ⁇ 40° C. or higher.
- the method of heating the steel sheet for hot pressing is not particularly limited, and it can be heated by any method.
- the heating can be performed, for example, by furnace heating, electric heating, induction heating, high-frequency heating, flame heating, or the like. Any heating furnace such as an electric furnace or a gas furnace can be used as the heating furnace.
- hot press working is performed, and at the same time or immediately after working, a hot press member is manufactured by cooling using a mold or a coolant such as water.
- hot press conditions are not particularly limited.
- pressing can be started at 600-800° C., which is the general hot pressing temperature range.
- the hot pressing start temperature is preferably 600 to 1000°C.
- a coating layer was formed on both sides of the base steel plate by the method shown in Table 1. Each of the methods used is described below. For comparison, Comparative Example No. In No. 1, no covering layer was formed.
- Electrolysis was performed using the base steel plate as the cathode and the iridium oxide-coated titanium plate as the anode, and the thickness of the coating layer was adjusted by changing the energization time.
- Ni plating/plating solution composition Nickel sulfate hexahydrate 240g/L Boric acid 30g/L ⁇ pH: 3.0 ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
- Ni—Fe alloy plating/plating solution composition Nickel sulfate hexahydrate 192g/L iron sulfate heptahydrate 48 g/L, Boric acid 30g/L ⁇ pH: 3.0 ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
- Ni—Co alloy plating/plating solution composition Nickel sulfate hexahydrate 180g/L Cobalt sulfate heptahydrate 60g/L Boric acid 30g/L - pH 3.0, ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
- Ni—Mo alloy plating/plating solution composition Nickel sulfate hexahydrate 13g/L Sodium molybdate dihydrate 19g/L Citric acid 88g/L ⁇ pH: 3.5 ⁇ Temperature: 25°C ⁇ Current density: 10 A/dm 2
- Ni—W alloy plating/plating solution composition Nickel sulfate hexahydrate 13g/L Sodium tungstate dihydrate 30g/L Citric acid 88g/L ⁇ pH: 3.5 ⁇ Temperature: 25°C ⁇ Current density: at 10A/ dm2
- Ni—Zn alloy plating/plating solution composition Nickel sulfate hexahydrate 240g/L Zinc sulfate heptahydrate 20g/L ⁇ pH: 2.0 ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
- Ni—Zn alloy plating/plating solution composition Nickel sulfate hexahydrate 240g/L Zinc sulfate heptahydrate 30g/L ⁇ pH: 2.0 ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
- Zn plating/plating solution composition Zinc sulfate heptahydrate 240g/L ⁇ pH: 2.0 ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
- PVD The formation of the coating layer by PVD was carried out by ion plating using a batch radio frequency (RF) excitation type ion plating apparatus manufactured by Showa Shinku Co., Ltd.
- the temperature of the base steel plate was 400°C, the pressure was 3 Pa, and the bias voltage was -20V.
- the composition of the coating layer was controlled by adjusting the composition of the metal used as the deposition source. Also, the thickness of the coating layer was controlled by adjusting the deposition time.
- the component composition and thickness of the coating layer of the obtained steel sheet for hot press were measured by the following methods. Table 1 shows the measurement results.
- Component composition of coating layer A steel sheet for hot press to be evaluated was subjected to shearing to obtain a sample of 10 mm ⁇ 15 mm. A cross-sectional sample of a steel sheet for hot pressing was produced by embedding the sample in a conductive resin. Next, an EPMA (electron probe microanalyzer) was used to measure the average composition in the range from the outermost layer of the coating layer to the interface between the coating layer and the base steel plate. Three samples were subjected to similar measurements, and the measured values were averaged to determine the component composition of the coating layer.
- EPMA electron probe microanalyzer
- the thickness of the coating layer of the steel sheet for hot pressing was measured by observing the cross-sectional sample with an SEM (scanning electron microscope). Specifically, the thickness of the coating layer was measured at 10 arbitrary points within a field of view with a width of 100 ⁇ m or more. The thickness of the coating layer was obtained by performing similar measurements on three samples and averaging all the obtained measured values.
- the steel sheet for hot pressing was subjected to hot pressing. Specifically, a test piece of 100 mm ⁇ 200 mm was taken from the steel plate for hot pressing, and the test piece was heated in a roll-conveying far-infrared heating furnace. The heating was performed under the conditions of a heating temperature of 900° C., a heating time of 180 seconds, and a holding time of 10 seconds.
- a hat-shaped hot press was performed at 2 spm (Strokes Per Minute) by a pressing device installed adjacent to the heating furnace.
- the molding start temperature was 750°C.
- the shape of the obtained hot press member was 100 mm long on the upper flat portion, 50 mm long on the side flat portion, and 50 mm long on the lower flat portion.
- the bending R of the mold was 7R for both shoulders of the upper surface and both shoulders of the lower surface.
- Example No. The hot pressed member of No. 8 was pneumatically shot blasted to remove the oxide layer.
- the air pressure was set to 2 kgf/cm 2
- the distance between the nozzle and the hot press member was set to 20 mm
- steel balls having an average particle size of 0.3 mm were used as shot bullets.
- Component composition and thickness of coating layer The component composition and thickness of the coating layer of the obtained hot pressed member were measured respectively. First, a flat portion of the top of the hot pressed member pressed into the hat shape was cut out and sheared to obtain a sample of 10 mm ⁇ 15 mm. Next, by embedding the sample in a conductive resin, a cross-sectional sample of the flat portion of the hot pressed member was produced. Using the cross-sectional sample, the chemical composition and thickness of the coating layer were measured in the same manner as the measurement of the coating layer of the steel sheet for hot press. Table 2 shows the measurement results.
- composition and thickness of the oxide layer in the hot pressed member were measured by the following methods. Table 2 shows the measurement results.
- composition of oxide layer The composition of the oxide layer in the hot pressed member was measured by EPMA using the cross-sectional sample. Point analysis was performed at arbitrary 10 points within a field of view with a width of 100 ⁇ m or more. In the measured value, the Ni fraction of the oxide layer was calculated by dividing the atomic concentration of Ni by the sum of the atomic concentrations of all metal elements.
- the thickness of the oxide layer in the hot pressed member was measured by SEM (scanning electron microscope) observation using the cross-sectional sample. Specifically, the thickness of the coating layer was measured at 10 arbitrary points in a field of view with a width of 100 ⁇ m or more, and the thickness of the oxide layer was obtained by averaging all the measured values.
- the post-coating corrosion resistance of the obtained hot pressed parts was evaluated by the following procedure. First, a test piece cut from the flat portion of the upper surface of the hot pressed member was subjected to zinc phosphate chemical conversion treatment and electrodeposition coating to prepare a sample.
- the zinc phosphate chemical conversion treatment is performed under standard conditions using PB-SX35 manufactured by Nihon Parkerizing Co., Ltd., and the electrodeposition coating is performed using a cationic electrodeposition paint Electron GT100 manufactured by Kansai Paint Co., Ltd. so that the coating film thickness is 15 ⁇ m. went to The baking conditions were 170° C. and holding for 20 minutes.
- the steel sheet for hot press forming of the present invention has reduced adhesion of metals and oxides to heating equipment, and is free from liquid metal embrittlement cracking during hot press forming. had been prevented. Furthermore, the hot press member obtained by hot pressing the steel sheet for hot press use of the present invention was also excellent in corrosion resistance after painting.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
(1)加熱設備への酸化物および金属の付着が低減されていること。
(2)熱間プレス成形時に液体金属脆化割れが生じないこと。
(3)塗装後耐食性に優れること。
前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを含む熱間プレス用鋼板であって、
前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10質量%である、熱間プレス用鋼板。
前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを有する熱間プレス部材であって、
前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10質量%である、熱間プレス部材。
本発明の一実施形態における熱間プレス用鋼板は、母材鋼板と、前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを含む。そして、前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn濃度が0~10%である。
前記被覆層は、Niからなる被覆層(Ni被覆層)であってもよく、Ni基合金からなる被覆層(Ni基合金被覆層)であってもよい。ここで、「Ni基合金」とはNi含有量が50%以上である合金を指すものとする。言い換えると、本発明の被覆層はNi含有量が50%以上である被覆層である。
前記被覆層が多量のZnを含有すると、耐酸化性が低下する。加えて、加熱によりZnが溶融し、熱間成形時に液体金属脆化割れが発生する。そのため、前記被覆層におけるZn含有量は10%以下とする。液体金属脆化割れを防止するという観点から、Zn含有量は5%以下であることが好ましく、1%以下であることがより好ましい。一方、Zn含有量は低ければ低いほど好ましいため、Zn含有量の下限は0%とする。
Zn:0~10%、
Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つ:合計で0~50%含有し、
残部がNiおよび不可避的不純物からなる成分組成を有する。
なお、上記熱間プレス用鋼板を加熱すると、被覆層中のNiと母材鋼板中のFeが相互拡散し、熱間プレス部材の表層にはFe濃度の上昇したNi基合金層が生じる。熱間プレス用鋼板の被覆層の厚さが7μm未満であると、特に高温で長時間加熱した場合、拡散し表層に到達したFeが酸化され、厚く脆いFe含有酸化物層が形成される。厚く脆いFe含有酸化物が存在すると、熱間プレス工程において酸化物が搬送ローラーやプレス型に付着、堆積する。そのため、設備のメンテナンスが必要となり、生産性が低下する。また、搬送ローラーやプレス型に堆積した酸化物が熱間プレス部材の表面に付着することで熱間プレス部材の表面品質を害する。そのため、Fe酸化物の成長の抑制、すなわちスケールガード機能の観点で、被覆層の厚さは7μm以上とする。また、加熱後に被覆層が厚く残存するほど優れた耐食性を得られることから、被覆層の厚さは、8μm以上であることが好ましく、9μm以上であることがより好ましい。一方、被覆層の厚さが20μmを超えると、耐酸化効果と耐食性向上効果が飽和し、製造コスト増となるばかりである。そのため、被覆層の厚さは20μm以下、好ましくは16μm以下、より好ましくは12μm以下とする。
上記母材鋼板としては、特に限定されることなく任意の鋼板を用いることができる。前記母材鋼板は、熱延鋼板と冷延鋼板のいずれであってもよい。
C :0.05~0.50%、
Si:0.1~0.5%、
Mn:0.5~3.0%、
P :0.1%以下、
S :0.01%以下、
Al:0.10%以下、および
N :0.01%以下を含有し、
残部がFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることが好ましい。前記成分組成が好ましい理由について、以下説明する。
Cは、鋼組織としてマルテンサイトなどを形成させることで強度を向上させる。980MPa級を超えるような強度を得るためにはC量を0.05%以上とする必要がある。したがって、C量は0.05%以上とすることが好ましく、0.10%以上とすることがより好ましい。一方、C量が0.50%を超えるとスポット溶接部の靱性が低下する。したがって、C量は0.50%以下とすることが好ましい。C量は0.45%以下とすることがより好ましく、0.43%以下とすることがさらに好ましく、0.40%以下とすることがもっとも好ましい。
Siは鋼を強化して良好な材質を得るのに有効な元素である。前記効果を得るためにはSi量を0.1%以上とする必要がある。したがって、Si量は0.1%以上とすることが好ましく、0.2%以上とすることがより好ましい。一方、Si量が0.5%を超えるとフェライトが安定化されるため、焼き入れ性が低下する。したがって、Si量は0.5%以下とすることが好ましい。Si量は0.4%以下とすることがより好ましく、0.3%以下とすることがさらに好ましい。
Mnは、広い冷却速度範囲で、冷却後の強度を確保するために有効な元素である。優れた機械特性、特に強度を確保するためは、Mn量を0.5%以上とすることが望ましい。したがって、Mn量は0.5%以上とすることが好ましく、0.7%以上とすることがより好ましく、1.0%以上とすることがさらに好ましい。一方、Mn量が3.0%を超えると、コストが上昇するばかりでなく効果が飽和する。したがって、Mn量は3.0%以下とすることが好ましい。Mn量は2.5%以下とすることがより好ましく、2.0%以下とすることがさらに好ましく、1.5%以下とすることがもっとも好ましい。
P量が0.1%を超えると鋳造時のオーステナイト粒界へのP偏析に伴う粒界脆化により、局部延性の劣化を通じて強度と延性のバランスが低下する。したがって、P量は0.1%以下とすることが好ましい。一方、P量の下限はとくに限定されず、0%であってよいが、精錬コストの観点からは、P量を0.002%以上とすることが好ましい。
SはMnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となる。したがって、極力低減することが望ましく、S量を0.01%以下とすることが好ましい。また、良好な伸びフランジ性を確保するという観点からは、S量を0.005%以下とすることがより好ましく、0.001%以下とすることがさらに好ましい。一方、S量の下限はとくに限定されず、0%であってよいが、精錬コストの観点からは0.0002%以上とすることが好ましい。
Al量が0.1%を超えると、素材の鋼板のブランキング加工性や焼入れ性を低下させる。したがって、Al量は0.10%以下とすることが好ましい。Al量は0.07%以下とすることがより好ましく、0.04%と以下とすることがさらに好ましい。一方、Al量の下限はとくに限定されず、0%であってよいが、脱酸材としての効果を確保する観点からは、0.01%以上とすることが好ましい。
N量が0.01%を超えると、熱間圧延時や熱間プレス前の加熱時にAlNの窒化物を形成し、素材の鋼板のブランキング加工性や焼入れ性を低下させる。したがって、N量は0.01%以下とすることが好ましい。一方、N量の下限はとくに限定されず、0%であってよいが、精錬コストの観点からは、N量を0.001%以上とすることが好ましい。
Nbは鋼の強化に有効な成分であるが、過剰に含まれると圧延荷重が増大する。したがって、Nbを含有させる場合は、Nb量は0.10%以下、好ましくは0.06%以下、より好ましくは0.03%以下とする。一方、Nb量の下限は特に限定されず、0%であってよいが、精錬コストの観点からは、0.005%以上とすることが好ましい。
TiもNbと同様に鋼の強化には有効であるが、過剰に含まれると形状凍結性が低下する。したがって、Tiを含有させる場合は、Ti量は0.05%以下、好ましくは0.03%以下とする。一方、Ti量の下限は特に限定されず、0%であってよいが、精錬コストの観点からは、0.003%以上とすることが好ましい。
Bは、オーステナイト粒界からのフェライト生成および成長を抑制する作用を有する元素である。B量を含有させる場合、前記効果を得るために、B量を0.0002%以上とすることが好ましく、0.0010%以上とすることがより好ましい。一方、過剰なBの含有は成形性を大きく損なう。そのため、Bを含有させる場合、B量は0.005%以下、好ましくは0.003%以下とする。
Crは、Mnと同様に鋼の強化および焼き入れ性を向上させる元素である。Crを添加する場合、前記効果を得るためにCr含有量を0.1%以上、好ましくは0.2%以上とする。一方、Crは高価であるため1.0%を超える添加は大幅なコストアップを招く。そのため、Crを含有させる場合、C量を1.0%以下、好ましくは0.5%以下、より好ましくは0.2%以下とする。
Sbは、母材鋼板を製造する際に、焼鈍工程で、鋼板表層の脱炭を抑止する効果を有する元素である。Sbを含有する場合には、前記効果を得るためにSb量を0.003%以上、好ましくは0.005%以上とする。一方、Sb量が0.03%を超えると圧延荷重の増加を招くため生産性が低下する。そのため、Sbを含有させる場合、Sb量は0.03%以下、好ましくは0.02%以下、より好ましくは0.01%以下とする。
本発明の熱間プレス用鋼板は、とくに限定されることなく任意の方法で製造することができるが、以下に好適な製造条件について説明する。
本発明の一実施形態における熱間プレス部材は、母材鋼板と、前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを有する熱間プレス部材であって、前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10%である。
上記酸化物層は、熱間プレス工程で被覆層または母材鋼板に含まれる成分が雰囲気中の酸素または水蒸気と反応することで形成される。前記酸化物層の組成と厚さは、加熱温度、加熱時間、雰囲気などの加熱条件により変化する。前記酸化物層の厚さが10μmを超えると塗膜密着性が低下し、その結果、十分な塗装後耐食性を得ることができなくなる。そのため、酸化物層が存在する場合、該酸化物層の厚さは10μm以下、好ましくは7μm以下、より好ましくは5μm以下とする。
本発明の一実施形態においては、熱間プレス用めっき鋼板を熱間プレスして熱間プレス部材を製造する。熱間プレスを行う方法はとくに限定されず、常法に従って行うことができる。典型的には、熱間プレス用鋼板を所定の加熱温度まで加熱し(加熱工程)、次いで、前記加熱工程で加熱された前記熱間プレス用鋼板を熱間プレスする(熱間プレス工程)。以下、好ましい熱間プレス条件について説明する。
電気めっき法による被覆層の形成は、以下の条件で実施した。なお、いずれの場合においても、母材鋼板をカソード、酸化イリジウム被覆チタン板をアノードとして電解を行い、通電時間を変化させることにより被覆層の厚さを調整した。
・めっき液組成:
硫酸ニッケル六水和物240g/L
ホウ酸30g/L
・pH:3.0
・温度:50℃
・電流密度:40A/dm2
・めっき液組成:
硫酸ニッケル六水和物192g/L
硫酸鉄七水和物48g/L、
ホウ酸30g/L
・pH:3.0
・温度:50℃
・電流密度:40A/dm2
・めっき液組成:
硫酸ニッケル六水和物180g/L
硫酸コバルト七水和物60g/L
ホウ酸30g/L
・pH3.0、
・温度:50℃
・電流密度:40A/dm2
・めっき液組成:
硫酸ニッケル六水和物13g/L
モリブデン酸ナトリウム二水和物19g/L
クエン酸88g/L
・pH:3.5
・温度:25℃
・電流密度:10A/dm2
・めっき液組成:
硫酸ニッケル六水和物13g/L
タングステン酸ナトリウム二水和物30g/L
クエン酸88g/L
・pH:3.5
・温度:25℃
・電流密度:10A/dm2で
・めっき液組成:
硫酸ニッケル六水和物240g/L
硫酸亜鉛七水和物20g/L
・pH:2.0
・温度:50℃
・電流密度:40A/dm2
・めっき液組成:
硫酸ニッケル六水和物240g/L
硫酸亜鉛七水和物30g/L
・pH:2.0
・温度:50℃
・電流密度:40A/dm2
・めっき液組成:
硫酸亜鉛七水和物240g/L
・pH:2.0
・温度:50℃
・電流密度:40A/dm2
PVDによる被覆層の形成は、昭和真空株式会社製のバッチ式高周波(RF)励起式イオンプレーティング装置を用い、イオンプレーティングにより実施した。母材鋼板の温度は400℃とし、圧力は3Pa、バイアス電圧は-20Vとした。被覆層の組成は、蒸着源として用いる金属の組成を調整することにより制御した。また、被覆層の厚さは、蒸着時間を調整することにより制御した。
上記母材鋼板と同一の組成を有する、厚さ30mmの鋼スラブの両面に、厚さ300μmのNi-15.5%Cr-8%Fe合金(Alloy 600)を積層し、圧延することにより熱間プレス用鋼板を作製した。
溶融めっき法による被覆層の形成は、母材鋼板を溶融めっき浴に1秒間浸漬し、その後N2ガスワイピングを行うことにより実施した。被覆層の組成は、使用する溶融めっき浴の組成を調整することにより制御した。
評価対象とする熱間プレス用鋼板を剪断加工して、10mm×15mmの試料を採取した。前記試料を導電性樹脂に埋め込みことで、熱間プレス用鋼板の断面試料を作製した。次いで、EPMA(電子線プローブマイクロアナライザ)により、被覆層の最表層から、該御被覆層と母材鋼板との界面までの範囲における平均組成を測定した。同様の測定を3試料で行い、測定値を平均することで、被覆層の成分組成とした。
熱間プレス用鋼板の被覆層の厚さは、前記断面試料をSEM(走査電子顕微鏡)観察することによって測定した。具体的には、100μm以上の幅の視野内で、任意の10か所で被覆層の厚さを測定した。同様の測定を3試料で行い、得られたすべての測定値を平均することで、被覆層の厚さとした。
得られた熱間プレス部材の被覆層の成分組成および厚さを、それぞれ測定した。まず、前記ハット形状にプレスされた熱間プレス部材の頭頂の平坦部を切り出し、さらに剪断加工して、10mm×15mmの試料を採取した。次いで、前記試料を導電性樹脂に埋め込みことで、熱間プレス部材の平坦部の断面試料を作製した。前記断面試料を使用し、上述した熱間プレス用鋼板における被覆層の測定と同様の方法で、該被覆層の成分組成および厚さを測定した。測定結果を表2に示す。
熱間プレス部材における酸化物層の組成は、前記断面試料を用いてEPMAによって測定した。100μm以上の幅の視野内で、任意の10点で点分析を行った。測定値において、Niの原子濃度を全金属元素の原子濃度の和で割ることにより、酸化物層のNi分率を算出した。
熱間プレス部材における酸化物層の厚さは、前記断面試料を用いてSEM(走査電子顕微鏡)観察によって測定した。具体的には、100μm以上の幅の視野内で、任意の10か所で被覆層の厚さを測定し、全測定値を平均することで、酸化物層の厚さとした。
加熱設備への金属や酸化物の付着性を評価するために、各熱間プレス用鋼板について60ショットの熱間プレスを実施した。その後、前記熱間プレスに用いた加熱炉の搬送ローラーを室温まで冷却し、該搬送ローラーの表面における付着物の有無を目視にて確認した。加熱炉の搬送ローラー全体の内、3mm2以上の大きさの付着物が認められたローラーの割合(付着ローラー率)に基づいて、以下の4水準で搬送ローラーへの付着性を評価した。評価結果が1~3である場合を合格とした。評価結果を表2に示す。
1:付着ローラー率=0%
2:0%<付着ローラー率≦5%
3:5%<付着ローラー率≦10%
4:付着ローラー率>10%
熱間プレス成形時における液体金属脆化割れを評価するために、得られた熱間プレス部材におけるクラックを測定した。具体的には、まず、ハット形状の熱間プレス部材の上面の肩部を切り出し、樹脂に埋め込んだのち、3%ナイタールによりエッチングした。次いで、断面を観察し、肩部の表面から板厚内部に進展しているクラックの深さを測定した。各実施例につき、3つのサンプルで観察を行い、最も長いクラックの長さに基づいて以下の4水準で成形時LME割れを評価した。評価結果が1~3である場合を合格とした。評価結果を表2に示す。
1:最大クラック長さ=0mm
2:0mm<最大クラック長さ≦0.01mm
3:0.01mm<最大クラック長さ≦0.1mm
4:最大クラック長さ>0.1mm
得られた熱間プレス部材の塗装後耐食性を以下の手順で評価した。まず、熱間プレス部材の上面の平坦部から切り出した試験片に、リン酸亜鉛系化成処理および電着塗装を施して試料を作成した。前記リン酸亜鉛系化成処理は、日本パーカライジング社製PB-SX35を用いて標準条件で行い、前記電着塗装は関西ペイント社製カチオン電着塗料エレクトロンGT100を用いて塗装膜厚が15μmとなるように行った。焼付け条件は170℃で20分間保持とした。
1:片側最大膨れ幅<1.5mm
2:1.5mm≦片側最大膨れ幅<2.0mm
3:2.0mm≦片側最大膨れ幅<3.0mm
4:3.0mm≦片側最大膨れ幅
Claims (6)
- 母材鋼板と、
前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを含む熱間プレス用鋼板であって、
前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10質量%である、熱間プレス用鋼板。 - 前記被覆層が、Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つを、合計で50質量%以下含有する、請求項1に記載の熱間プレス用鋼板。
- 母材鋼板と、
前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを有する熱間プレス部材であって、
前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10質量%である、熱間プレス部材。 - さらに、前記被覆層の上に、厚さ10μm以下の酸化物層を有する、請求項3に記載の熱間プレス部材。
- 前記酸化物層中の金属元素におけるNiの分率が50原子%以上である、請求項4に記載の熱間プレス部材。
- 請求項1または2に記載の熱間プレス用鋼板を熱間プレスして熱間プレス部材とする、熱間プレス部材の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22926113.6A EP4403675A1 (en) | 2022-02-08 | 2022-12-23 | Steel sheet for hot pressing, hot-pressed member and method for producing hot-pressed member |
KR1020247015342A KR20240070708A (ko) | 2022-02-08 | 2022-12-23 | 열간 프레스용 강판, 열간 프레스 부재 및, 열간 프레스 부재의 제조 방법 |
CN202280078207.3A CN118302564A (zh) | 2022-02-08 | 2022-12-23 | 热压用钢板、热压部件和热压部件的制造方法 |
JP2023520275A JP7586303B2 (ja) | 2022-02-08 | 2022-12-23 | 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-018307 | 2022-02-08 | ||
JP2022018307 | 2022-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023153099A1 true WO2023153099A1 (ja) | 2023-08-17 |
Family
ID=87564216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/047778 WO2023153099A1 (ja) | 2022-02-08 | 2022-12-23 | 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4403675A1 (ja) |
KR (1) | KR20240070708A (ja) |
CN (1) | CN118302564A (ja) |
WO (1) | WO2023153099A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000038640A (ja) | 1998-07-09 | 2000-02-08 | Sollac | 熱処理後の耐久性に優れた熱間圧延および冷間圧延被覆鋼板 |
JP2003073774A (ja) | 2001-08-31 | 2003-03-12 | Sumitomo Metal Ind Ltd | 熱間プレス用めっき鋼板 |
US20060130940A1 (en) * | 2004-12-20 | 2006-06-22 | Benteler Automotive Corporation | Method for making structural automotive components and the like |
JP2011122207A (ja) * | 2009-12-11 | 2011-06-23 | Jfe Steel Corp | 熱間プレス部材およびその製造方法 |
JP2012062500A (ja) * | 2010-09-14 | 2012-03-29 | Sumitomo Metal Ind Ltd | 被覆熱処理鋼材およびその製造方法 |
JP2012197505A (ja) * | 2011-03-10 | 2012-10-18 | Jfe Steel Corp | 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法 |
JP2015151615A (ja) * | 2014-02-19 | 2015-08-24 | 新日鐵住金株式会社 | 熱処理用鋼板およびその製造方法 |
KR20160077582A (ko) * | 2014-12-23 | 2016-07-04 | 주식회사 포스코 | 열간 프레스 성형용 강판, 열간 프레스 성형품의 제조방법 및 이에 의해 제조된 열간 프레스 성형품 |
JP2019518136A (ja) * | 2016-04-29 | 2019-06-27 | アルセロールミタル | プレス焼入れ方法 |
-
2022
- 2022-12-23 CN CN202280078207.3A patent/CN118302564A/zh active Pending
- 2022-12-23 WO PCT/JP2022/047778 patent/WO2023153099A1/ja active Application Filing
- 2022-12-23 EP EP22926113.6A patent/EP4403675A1/en active Pending
- 2022-12-23 KR KR1020247015342A patent/KR20240070708A/ko unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000038640A (ja) | 1998-07-09 | 2000-02-08 | Sollac | 熱処理後の耐久性に優れた熱間圧延および冷間圧延被覆鋼板 |
JP2003073774A (ja) | 2001-08-31 | 2003-03-12 | Sumitomo Metal Ind Ltd | 熱間プレス用めっき鋼板 |
US20060130940A1 (en) * | 2004-12-20 | 2006-06-22 | Benteler Automotive Corporation | Method for making structural automotive components and the like |
JP2011122207A (ja) * | 2009-12-11 | 2011-06-23 | Jfe Steel Corp | 熱間プレス部材およびその製造方法 |
JP2012062500A (ja) * | 2010-09-14 | 2012-03-29 | Sumitomo Metal Ind Ltd | 被覆熱処理鋼材およびその製造方法 |
JP2012197505A (ja) * | 2011-03-10 | 2012-10-18 | Jfe Steel Corp | 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法 |
JP2015151615A (ja) * | 2014-02-19 | 2015-08-24 | 新日鐵住金株式会社 | 熱処理用鋼板およびその製造方法 |
KR20160077582A (ko) * | 2014-12-23 | 2016-07-04 | 주식회사 포스코 | 열간 프레스 성형용 강판, 열간 프레스 성형품의 제조방법 및 이에 의해 제조된 열간 프레스 성형품 |
JP2019518136A (ja) * | 2016-04-29 | 2019-06-27 | アルセロールミタル | プレス焼入れ方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20240070708A (ko) | 2024-05-21 |
EP4403675A1 (en) | 2024-07-24 |
JPWO2023153099A1 (ja) | 2023-08-17 |
CN118302564A (zh) | 2024-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100561893B1 (ko) | 강도-연성 밸런스와 도금 밀착성이 우수한 용융아연도금강판 및 그 제조방법 | |
EP2813595B1 (en) | High-strength cold-rolled steel sheet and process for manufacturing same | |
JP6879402B2 (ja) | 高強度亜鉛めっき鋼板および高強度部材 | |
EP2684985A1 (en) | Steel sheet for hot pressing, and process for producing hot-pressed member utilizing same | |
WO2010150919A1 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP6673534B2 (ja) | 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法 | |
JP2011173135A (ja) | 熱間プレス部品の製造方法および熱間プレス部品 | |
JP7063430B1 (ja) | 熱間プレス部材、塗装部材、熱間プレス用鋼板、および熱間プレス部材の製造方法ならびに塗装部材の製造方法 | |
CN107849662B (zh) | 冷轧钢板、镀覆钢板和它们的制造方法 | |
JP7243948B1 (ja) | 熱間プレス部材 | |
JP7586303B2 (ja) | 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 | |
JP7269524B2 (ja) | ホットスタンプ部材 | |
WO2022091529A1 (ja) | 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法 | |
JP7269526B2 (ja) | ホットスタンプ用鋼板 | |
JP7364961B2 (ja) | ホットスタンプ成形体 | |
WO2023132289A1 (ja) | ホットスタンプ用鋼板およびホットスタンプ成形体 | |
WO2023153099A1 (ja) | 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 | |
WO2022091351A1 (ja) | Zn系めっきホットスタンプ成形品 | |
CN111936649B (zh) | 高强度镀锌钢板、高强度部件和它们的制造方法 | |
JP6981385B2 (ja) | 熱間プレス用鋼板 | |
JP7173368B2 (ja) | 熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法 | |
JP7338606B2 (ja) | 熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法 | |
WO2024053207A1 (ja) | 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 | |
JP7485219B2 (ja) | 熱間プレス部材および熱間プレス用鋼板、ならびにそれらの製造方法 | |
JP7126093B2 (ja) | 熱間プレス部材およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023520275 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22926113 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022926113 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022926113 Country of ref document: EP Effective date: 20240419 |
|
ENP | Entry into the national phase |
Ref document number: 20247015342 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280078207.3 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |