[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023153099A1 - 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 - Google Patents

熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 Download PDF

Info

Publication number
WO2023153099A1
WO2023153099A1 PCT/JP2022/047778 JP2022047778W WO2023153099A1 WO 2023153099 A1 WO2023153099 A1 WO 2023153099A1 JP 2022047778 W JP2022047778 W JP 2022047778W WO 2023153099 A1 WO2023153099 A1 WO 2023153099A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
coating layer
steel sheet
less
steel plate
Prior art date
Application number
PCT/JP2022/047778
Other languages
English (en)
French (fr)
Inventor
林太 佐藤
洋一 牧水
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP22926113.6A priority Critical patent/EP4403675A1/en
Priority to KR1020247015342A priority patent/KR20240070708A/ko
Priority to CN202280078207.3A priority patent/CN118302564A/zh
Priority to JP2023520275A priority patent/JP7586303B2/ja
Publication of WO2023153099A1 publication Critical patent/WO2023153099A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/052Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the present invention relates to a hot press steel sheet, a hot press member, and a method for manufacturing a hot press member.
  • underbody members such as chassis
  • structural members for skeleton such as B-pillars.
  • Hot pressing is a forming method in which a steel sheet is heated to the austenite temperature range, then press-formed at a high temperature, and at the same time rapidly cooled by contact with a die. In hot pressing, press forming is performed in a state in which the strength of the material steel sheet is relatively low, and the strength is increased by subsequent quenching.
  • the steel sheet is heated to a high temperature as described above, so there is a problem that the surface of the steel sheet is oxidized and scale is generated.
  • oxides derived from the scale adhere to the heating equipment.
  • the heating is typically performed in a heating furnace, and in that case, oxides adhere to the inner wall of the heating furnace, the transport rollers provided in the furnace, and the like. Therefore, maintenance of the heating equipment is required, resulting in a decrease in productivity.
  • scale exists on the surface of the steel sheet, sufficient coating film adhesion cannot be obtained in the subsequent coating process. Therefore, it was necessary to remove the scale by shot blasting or the like after hot pressing.
  • Patent Documents 1 and 2 a steel sheet having a film such as an Al-based plating layer, a Zn-based plating layer, and an Al--Zn-based plating layer on its surface as a steel sheet for hot pressing.
  • the presence of the plating layer suppresses oxidation of the surface of the base steel sheet during hot pressing, thereby preventing the formation of scale.
  • liquid metal embrittlement cracking When a tensile stress is applied to the surface of a solid metal in contact with the liquid metal, the solid metal becomes embrittled. This phenomenon is called Liquid Metal Embrittlement (LME). Also in hot pressing, if the metal contained in the plating layer is melted by heating and press forming is performed in that state, liquid metal embrittlement cracking will occur in the bent portion that receives tensile stress.
  • LME Liquid Metal Embrittlement
  • hot press steel sheet for hot press are generally used in a painted state after hot pressing. Therefore, the hot press steel sheet is also required to have excellent post-coating corrosion resistance in the finally obtained hot press member.
  • the present invention has been completed to solve the above problems, and the gist thereof is as follows.
  • a base material steel plate comprising a coating layer having a thickness of 7 to 20 ⁇ m provided on both sides of the base steel plate, A steel sheet for hot press working, wherein the coating layer is made of Ni or a Ni-based alloy, and the Zn content in the coating layer is 0 to 10% by mass.
  • the coating layer contains 50% by mass or less in total of at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Mo, and W. Steel plate for press.
  • a hot press member having a coating layer with a thickness of 7 to 20 ⁇ m provided on both sides of the base steel plate, The hot press member, wherein the coating layer is made of Ni or a Ni-based alloy, and the Zn content in the coating layer is 0 to 10% by mass.
  • a method for producing a hot pressed member comprising hot pressing the steel plate for hot pressing according to 1 or 2 above to form a hot pressed member.
  • the above problems can be solved. That is, since the steel sheet for hot press use of the present invention has a coating layer on its surface, it is possible to prevent the formation of scale during hot press and reduce the adhesion of oxides to heating equipment. In addition, by using a coating layer made of Ni or a Ni-based alloy and having a Zn concentration of 10% or less as the coating layer, adhesion of molten metal to the heating equipment is reduced, and during hot press molding, Liquid metal embrittlement cracking can be prevented. Furthermore, the hot press member obtained by hot pressing the steel sheet for hot press use of the present invention is excellent in corrosion resistance after painting.
  • the unit "%" of the content in the chemical composition of the coating layer and the steel sheet represents “% by mass” unless otherwise specified.
  • a steel plate for hot press working according to one embodiment of the present invention includes a base steel plate and coating layers having a thickness of 7 to 20 ⁇ m provided on both sides of the base steel plate.
  • the coating layer is made of Ni or a Ni-based alloy, and has a Zn concentration of 0 to 10%.
  • the coating layer may be a coating layer made of Ni (Ni coating layer) or a coating layer made of a Ni-based alloy (Ni-based alloy coating layer).
  • Ni-based alloy refers to an alloy with a Ni content of 50% or more.
  • the coating layer of the present invention is a coating layer having a Ni content of 50% or more.
  • the surface layer of the steel sheet is oxidized by oxygen and water vapor in the atmosphere.
  • the steel sheet for hot press of the present invention has a Ni-based coating layer having a high melting point and oxidation resistance on the surface, oxidation of the base steel sheet can be suppressed and scale generation can be prevented.
  • the Ni content in the coating layer is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
  • the upper limit of the Ni content in the coating layer is not particularly limited, and may be 100%.
  • the Zn content in the coating layer is set to 10% or less. From the viewpoint of preventing liquid metal embrittlement cracking, the Zn content is preferably 5% or less, more preferably 1% or less. On the other hand, the lower the Zn content, the better, so the lower limit of the Zn content is set to 0%.
  • the coating layer can optionally contain at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Mo, and W in a total amount of 50% or less.
  • Ti, V, Cr, Mn, Fe, Co, Mo, and W By adding at least one of Ti, V, Cr, Mn, Co, Mo, and W, even better oxidation resistance can be obtained.
  • Fe eluted from the base steel sheet into the plating bath may be incorporated into the coating layer. If the content of these elements becomes excessive, the Ni content in the coating layer is relatively reduced, impairing the function of the coating layer. Therefore, the total content of the elements should be 50% or less, preferably 40% or less, more preferably 35% or less.
  • the lower limit of the total content is not particularly limited, and may be 0%.
  • the Fe content in the coating layer is preferably 20% or less, more preferably 5% or less, and even more preferably 1% or less.
  • the lower limit of Fe content may be 0%.
  • the coating layer in one embodiment of the present invention, in mass %, Zn: 0-10%, At least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Mo, and W: 0 to 50% in total, It has a component composition in which the balance is Ni and unavoidable impurities.
  • Thickness 7-20 ⁇ m
  • Ni in the coating layer and Fe in the base steel sheet interdiffuse, and a Ni-based alloy layer with an increased Fe concentration is formed on the surface layer of the hot press member.
  • the thickness of the coating layer of the steel sheet for hot press is less than 7 ⁇ m, especially when heated at a high temperature for a long time, Fe diffused and reaches the surface layer is oxidized to form a thick and brittle Fe-containing oxide layer. If thick and brittle Fe-containing oxides are present, the oxides adhere and accumulate on the conveying rollers and press molds during the hot pressing process. Therefore, equipment maintenance is required, and productivity decreases.
  • the thickness of the coating layer is set to 7 ⁇ m or more. Further, the thickness of the coating layer is preferably 8 ⁇ m or more, more preferably 9 ⁇ m or more, because the thicker the coating layer remains after heating, the better the corrosion resistance can be obtained. On the other hand, when the thickness of the coating layer exceeds 20 ⁇ m, the oxidation resistance effect and the corrosion resistance improvement effect become saturated, resulting in an increase in manufacturing cost. Therefore, the thickness of the coating layer should be 20 ⁇ m or less, preferably 16 ⁇ m or less, more preferably 12 ⁇ m or less.
  • the thickness of the coating layer is defined as the thickness per side of the steel plate.
  • the steel sheet for hot press working of the present invention has coating layers on both sides thereof, and the thickness of the coating layer on one side may be the same as or different from the thickness of the coating layer on the other side. may
  • the base material steel plate may be either a hot-rolled steel plate or a cold-rolled steel plate.
  • the base steel plate should contain C: 0.05 to 0.50%, Si: 0.1 to 0.5%, Mn: 0.5-3.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.10% or less and N: 0.01% or less, It is preferable to use a steel sheet having a chemical composition in which the balance is Fe and unavoidable impurities. The reason why the above component composition is preferable will be described below.
  • C 0.05-0.50% C improves strength by forming martensite or the like as a steel structure.
  • the C content is preferably 0.05% or more, more preferably 0.10% or more.
  • the amount of C is preferably 0.50% or less.
  • the C content is more preferably 0.45% or less, even more preferably 0.43% or less, and most preferably 0.40% or less.
  • Si 0.1-0.5% Si is an effective element for strengthening steel and obtaining a good quality.
  • the amount of Si should be 0.1% or more. Therefore, the Si content is preferably 0.1% or more, more preferably 0.2% or more.
  • the Si content is preferably 0.5% or less.
  • the Si content is more preferably 0.4% or less, more preferably 0.3% or less.
  • Mn 0.5-3.0%
  • Mn is an effective element for securing the strength after cooling over a wide cooling rate range.
  • the Mn content is preferably 0.5% or more, more preferably 0.7% or more, and even more preferably 1.0% or more.
  • the Mn content is preferably 3.0% or less.
  • the Mn content is more preferably 2.5% or less, even more preferably 2.0% or less, and most preferably 1.5% or less.
  • the amount of P is 0.1% or less.
  • the lower limit of the P content is not particularly limited, and may be 0%, but from the viewpoint of refining cost, the P content is preferably 0.002% or more.
  • S 0.01% or less S becomes inclusions such as MnS and causes deterioration of impact resistance and cracks along the metal flow of the weld. Therefore, it is desirable to reduce the S content as much as possible, and the S content is preferably 0.01% or less. From the viewpoint of ensuring good stretch flangeability, the S content is more preferably 0.005% or less, and even more preferably 0.001% or less. On the other hand, the lower limit of the amount of S is not particularly limited, and may be 0%, but from the viewpoint of refining cost, it is preferably 0.0002% or more.
  • the Al content is preferably 0.10% or less.
  • the Al content is more preferably 0.07% or less, more preferably 0.04% or less.
  • the lower limit of the amount of Al is not particularly limited, and may be 0%, but from the viewpoint of securing the effect as a deoxidizer, it is preferably 0.01% or more.
  • the N content is preferably 0.01% or less.
  • the lower limit of the N content is not particularly limited, and may be 0%, but from the viewpoint of refining cost, the N content is preferably 0.001% or more.
  • the chemical composition of the base steel sheet is Nb: 0.10% or less, Ti: 0.05% or less, B: 0.0002 to 0.005%, Cr: 0.05%. At least one selected from the group consisting of 1 to 1.0% and Sb: 0.003 to 0.03% can be further optionally contained.
  • Nb 0.10% or less
  • Nb is a component effective in strengthening steel, but if it is included in excess, the rolling load increases. Therefore, when Nb is contained, the Nb content is 0.10% or less, preferably 0.06% or less, and more preferably 0.03% or less.
  • the lower limit of the Nb content is not particularly limited, and may be 0%, but from the viewpoint of refining cost, it is preferably 0.005% or more.
  • Ti 0.05% or less Ti, like Nb, is also effective in strengthening steel, but if contained excessively, the shape fixability deteriorates. Therefore, when Ti is contained, the amount of Ti should be 0.05% or less, preferably 0.03% or less. On the other hand, the lower limit of the amount of Ti is not particularly limited, and may be 0%, but from the viewpoint of refining cost, it is preferably 0.003% or more.
  • B 0.0002 to 0.005% B is an element that has the effect of suppressing the formation and growth of ferrite from the austenite grain boundaries.
  • the amount of B is preferably 0.0002% or more, more preferably 0.0010% or more, in order to obtain the above effect.
  • excessive B content greatly impairs moldability. Therefore, when B is contained, the amount of B is 0.005% or less, preferably 0.003% or less.
  • Cr 0.1-1.0% Cr, like Mn, is an element that improves the strength and hardenability of steel.
  • the Cr content is made 0.1% or more, preferably 0.2% or more, in order to obtain the above effect.
  • adding more than 1.0% causes a significant cost increase. Therefore, when Cr is contained, the amount of C is 1.0% or less, preferably 0.5% or less, and more preferably 0.2% or less.
  • Sb 0.003-0.03%
  • Sb is an element that has the effect of suppressing decarburization of the surface layer of the steel sheet in the annealing process when manufacturing the base steel sheet.
  • the amount of Sb is made 0.003% or more, preferably 0.005% or more, in order to obtain the above effect.
  • the amount of Sb exceeds 0.03%, the rolling load increases, resulting in a decrease in productivity. Therefore, when Sb is contained, the amount of Sb should be 0.03% or less, preferably 0.02% or less, and more preferably 0.01% or less.
  • the steel sheet for hot press forming of the present invention can be produced by any method without particular limitation, but preferred production conditions will be described below.
  • the base material steel plate is manufactured.
  • the base steel plate can be produced by rolling a steel slab typically obtained by casting.
  • As the steel slab it is preferable to use a steel slab having the chemical composition described above.
  • the hot piece obtained by casting may be directly subjected to hot rolling (without reheating), and after casting, the cold piece whose temperature has decreased is reheated and subjected to hot rolling. may There is almost no difference in the properties of the obtained steel sheets between the case where the hot slab is directly rolled and the case where the cold slab is reheated and then rolled.
  • the reheating temperature is not particularly limited, but it is preferably in the range of 1000° C. to 1300° C. in consideration of productivity.
  • the hot rolling can be either a normal hot rolling process or a continuous hot rolling process in which slabs are bonded and rolled in finish rolling.
  • the rolling end temperature in hot rolling is not particularly limited, it is preferably at least the Ar3 transformation point from the viewpoint of productivity and plate thickness accuracy.
  • the hot-rolled steel sheet obtained by the above hot rolling is then cooled according to a conventional method.
  • the winding temperature at that time is preferably 550° C. or higher from the viewpoint of productivity.
  • the winding temperature is preferably 750° C. or lower.
  • pickling is preferably carried out according to a conventional method.
  • a cold-rolled steel sheet When a cold-rolled steel sheet is used as the base material steel sheet, it may be further cold-rolled according to a conventional method after the pickling.
  • a coating layer is formed on the surface of the obtained steel plate.
  • the method of forming the coating layer is not particularly limited, and any method such as plating, PVD (physical vapor deposition), and clad rolling can be used.
  • the plating include electroplating.
  • Examples of PVD include vacuum deposition, sputtering, and ion plating.
  • layers having a desired composition may be laminated on both sides of the base steel sheet and then rolled.
  • the method of forming the coating layer is preferably selected according to the composition of the coating layer to be formed.
  • the coating layer is a Ni layer, a Ni--Cr alloy layer, or a Ni--Zn alloy layer, it is preferably formed by electroplating, but it can be formed by other methods without any problem.
  • the coating layer has a composition such as a Ni--Ti alloy that is difficult to electrodeposit from an aqueous solution, it is preferably formed by PVD.
  • the conditions may be adjusted so that the coating layer on one side (surface) of the steel sheet and the other side (back surface) of the steel sheet have a desired thickness.
  • the thickness of the coating layer on each surface can be adjusted by changing either or both of the current density and the energization time on each surface.
  • a hot pressed member in one embodiment of the present invention is a hot pressed member having a base steel plate and coating layers with a thickness of 7 to 20 ⁇ m provided on both sides of the base steel plate, wherein the coating layer is made of Ni or a Ni-based alloy, and the Zn content in the coating layer is 0 to 10%.
  • the hot pressed member further has an oxide layer with a thickness of 10 ⁇ m or less on the coating layer.
  • the hot press member of the present embodiment includes a base steel plate, a coating layer having a thickness of 7 to 20 ⁇ m provided on both sides of the base steel plate, and a thickness of 10 ⁇ m or less provided on the coating layer.
  • the coating layer is made of Ni or a Ni-based alloy, and the Zn content in the coating layer is 0 to 10%.
  • the oxide layer is formed by reacting the components contained in the coating layer or the base steel sheet with oxygen or water vapor in the atmosphere during the hot pressing process.
  • the composition and thickness of the oxide layer vary depending on heating conditions such as heating temperature, heating time, and atmosphere. If the thickness of the oxide layer exceeds 10 ⁇ m, the coating film adhesion is lowered, and as a result, sufficient post-coating corrosion resistance cannot be obtained. Therefore, if an oxide layer is present, the thickness of the oxide layer should be 10 ⁇ m or less, preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the thickness of the oxide layer is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and even more preferably 2 ⁇ m or more.
  • the formed oxide layer may be removed by subjecting it to shot blasting after hot pressing.
  • removal of the oxide layer is not essential, as removal of the oxide layer results in an increase in manufacturing costs.
  • the thickness of the oxide layer can be measured by observing the cross section of the hot pressed member with a scanning electron microscope (SEM). More specifically, it can be measured by the method described in Examples.
  • SEM scanning electron microscope
  • the composition of the oxide layer is not particularly limited. However, the inventors have found that even better corrosion resistance can be obtained when the Ni fraction in the metal elements in the oxide layer is 50 atomic % or more.
  • the reason is considered as follows. That is, as described above, the oxide layer is formed by oxidizing the components contained in the coating layer or the base steel sheet in the hot pressing process. For example, when the oxide layer is mainly composed of oxides of Fe contained in the base steel sheet, the electrical resistance of the oxide layer is relatively low. On the other hand, Ni oxides have higher electric resistance than other oxides such as Fe oxides. can be suppressed.
  • the Ni fraction in the metal elements in the oxide layer it is preferable to set to 50 atomic % or more.
  • the upper limit of the Ni fraction is not particularly limited, and may be 100%, but from the viewpoint of ease of production, it is preferably 98% or less.
  • the Ni fraction in the metal elements in the oxide layer can be measured by quantitatively analyzing the cross section of the hot pressed member using an EPMA (electron probe microanalyzer). More specifically, it can be measured by the method described in Examples.
  • EPMA electron probe microanalyzer
  • a plated steel sheet for hot press is hot pressed to produce a hot press member.
  • the hot pressing method is not particularly limited, and can be carried out according to a conventional method.
  • a steel plate for hot press is heated to a predetermined heating temperature (heating step), and then the steel plate for hot press heated in the heating step is hot pressed (hot press step).
  • heating step heating step
  • hot press step hot press step
  • the heating temperature in the heating step is lower than the Ac3 transformation point of the base steel sheet, the strength of the final hot pressed member will be low. Therefore, the heating temperature is preferably equal to or higher than the Ac3 transformation point of the base steel sheet.
  • the heating temperature is preferably 860° C. or higher.
  • the heating temperature is preferably 1000° C. or lower, more preferably 960° C. or lower, and even more preferably 920° C. or lower.
  • the Ac3 transformation point of the base steel sheet differs depending on the steel composition, it can be obtained by a Formaster test.
  • the temperature at which the heating is started is not particularly limited, it is generally room temperature.
  • the time required to raise the temperature from the start of heating until reaching the heating temperature is not particularly limited, and can be any time. However, if the heating time exceeds 300 seconds, the exposure time to the high temperature becomes long, and the oxide layer formed by oxidation of the base material and the plating layer becomes excessively thick. Therefore, from the viewpoint of suppressing deterioration of paint adhesion due to oxides, the heating time is preferably 300 seconds or less, more preferably 270 seconds or less, and further preferably 240 seconds or less. preferable. On the other hand, if the temperature rise time is less than 150 seconds, the coating layer may melt excessively during heating, which may damage the heating device and the mold. Therefore, from the viewpoint of further enhancing the effect of preventing contamination of the heating device and the mold, the heating time is preferably 150 seconds or longer, more preferably 180 seconds or longer, and 210 seconds or longer. is more preferred.
  • the holding time is not particularly limited, and the holding can be carried out for an arbitrary length.
  • the holding time exceeds 300 seconds, the oxide layer formed by oxidizing the base material and the coating layer becomes excessively thick, which may deteriorate the paint adhesion of the resulting hot pressed member. Therefore, the retention time is preferably 300 seconds or less, more preferably 210 seconds or less, and even more preferably 120 seconds or less.
  • the holding time may be 0 seconds. However, from the viewpoint of uniformly austenitizing the base steel sheet, it is preferable to set the holding time to 10 seconds or longer.
  • the atmosphere in the heating step is not particularly limited, and heating can be performed in any atmosphere.
  • the heating may be performed, for example, under an air atmosphere, or may be performed under an atmosphere into which an air atmosphere flows.
  • the dew point of the atmosphere is preferably 10° C. or less.
  • the lower limit of the dew point is not particularly limited, but in order to keep the dew point below ⁇ 80° C., special equipment is required to prevent the inflow of air from the outside and maintain a low dew point, which increases costs. do. Therefore, from the viewpoint of cost, the dew point is preferably ⁇ 80° C. or higher, more preferably ⁇ 40° C. or higher.
  • the method of heating the steel sheet for hot pressing is not particularly limited, and it can be heated by any method.
  • the heating can be performed, for example, by furnace heating, electric heating, induction heating, high-frequency heating, flame heating, or the like. Any heating furnace such as an electric furnace or a gas furnace can be used as the heating furnace.
  • hot press working is performed, and at the same time or immediately after working, a hot press member is manufactured by cooling using a mold or a coolant such as water.
  • hot press conditions are not particularly limited.
  • pressing can be started at 600-800° C., which is the general hot pressing temperature range.
  • the hot pressing start temperature is preferably 600 to 1000°C.
  • a coating layer was formed on both sides of the base steel plate by the method shown in Table 1. Each of the methods used is described below. For comparison, Comparative Example No. In No. 1, no covering layer was formed.
  • Electrolysis was performed using the base steel plate as the cathode and the iridium oxide-coated titanium plate as the anode, and the thickness of the coating layer was adjusted by changing the energization time.
  • Ni plating/plating solution composition Nickel sulfate hexahydrate 240g/L Boric acid 30g/L ⁇ pH: 3.0 ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
  • Ni—Fe alloy plating/plating solution composition Nickel sulfate hexahydrate 192g/L iron sulfate heptahydrate 48 g/L, Boric acid 30g/L ⁇ pH: 3.0 ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
  • Ni—Co alloy plating/plating solution composition Nickel sulfate hexahydrate 180g/L Cobalt sulfate heptahydrate 60g/L Boric acid 30g/L - pH 3.0, ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
  • Ni—Mo alloy plating/plating solution composition Nickel sulfate hexahydrate 13g/L Sodium molybdate dihydrate 19g/L Citric acid 88g/L ⁇ pH: 3.5 ⁇ Temperature: 25°C ⁇ Current density: 10 A/dm 2
  • Ni—W alloy plating/plating solution composition Nickel sulfate hexahydrate 13g/L Sodium tungstate dihydrate 30g/L Citric acid 88g/L ⁇ pH: 3.5 ⁇ Temperature: 25°C ⁇ Current density: at 10A/ dm2
  • Ni—Zn alloy plating/plating solution composition Nickel sulfate hexahydrate 240g/L Zinc sulfate heptahydrate 20g/L ⁇ pH: 2.0 ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
  • Ni—Zn alloy plating/plating solution composition Nickel sulfate hexahydrate 240g/L Zinc sulfate heptahydrate 30g/L ⁇ pH: 2.0 ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
  • Zn plating/plating solution composition Zinc sulfate heptahydrate 240g/L ⁇ pH: 2.0 ⁇ Temperature: 50°C ⁇ Current density: 40 A/dm 2
  • PVD The formation of the coating layer by PVD was carried out by ion plating using a batch radio frequency (RF) excitation type ion plating apparatus manufactured by Showa Shinku Co., Ltd.
  • the temperature of the base steel plate was 400°C, the pressure was 3 Pa, and the bias voltage was -20V.
  • the composition of the coating layer was controlled by adjusting the composition of the metal used as the deposition source. Also, the thickness of the coating layer was controlled by adjusting the deposition time.
  • the component composition and thickness of the coating layer of the obtained steel sheet for hot press were measured by the following methods. Table 1 shows the measurement results.
  • Component composition of coating layer A steel sheet for hot press to be evaluated was subjected to shearing to obtain a sample of 10 mm ⁇ 15 mm. A cross-sectional sample of a steel sheet for hot pressing was produced by embedding the sample in a conductive resin. Next, an EPMA (electron probe microanalyzer) was used to measure the average composition in the range from the outermost layer of the coating layer to the interface between the coating layer and the base steel plate. Three samples were subjected to similar measurements, and the measured values were averaged to determine the component composition of the coating layer.
  • EPMA electron probe microanalyzer
  • the thickness of the coating layer of the steel sheet for hot pressing was measured by observing the cross-sectional sample with an SEM (scanning electron microscope). Specifically, the thickness of the coating layer was measured at 10 arbitrary points within a field of view with a width of 100 ⁇ m or more. The thickness of the coating layer was obtained by performing similar measurements on three samples and averaging all the obtained measured values.
  • the steel sheet for hot pressing was subjected to hot pressing. Specifically, a test piece of 100 mm ⁇ 200 mm was taken from the steel plate for hot pressing, and the test piece was heated in a roll-conveying far-infrared heating furnace. The heating was performed under the conditions of a heating temperature of 900° C., a heating time of 180 seconds, and a holding time of 10 seconds.
  • a hat-shaped hot press was performed at 2 spm (Strokes Per Minute) by a pressing device installed adjacent to the heating furnace.
  • the molding start temperature was 750°C.
  • the shape of the obtained hot press member was 100 mm long on the upper flat portion, 50 mm long on the side flat portion, and 50 mm long on the lower flat portion.
  • the bending R of the mold was 7R for both shoulders of the upper surface and both shoulders of the lower surface.
  • Example No. The hot pressed member of No. 8 was pneumatically shot blasted to remove the oxide layer.
  • the air pressure was set to 2 kgf/cm 2
  • the distance between the nozzle and the hot press member was set to 20 mm
  • steel balls having an average particle size of 0.3 mm were used as shot bullets.
  • Component composition and thickness of coating layer The component composition and thickness of the coating layer of the obtained hot pressed member were measured respectively. First, a flat portion of the top of the hot pressed member pressed into the hat shape was cut out and sheared to obtain a sample of 10 mm ⁇ 15 mm. Next, by embedding the sample in a conductive resin, a cross-sectional sample of the flat portion of the hot pressed member was produced. Using the cross-sectional sample, the chemical composition and thickness of the coating layer were measured in the same manner as the measurement of the coating layer of the steel sheet for hot press. Table 2 shows the measurement results.
  • composition and thickness of the oxide layer in the hot pressed member were measured by the following methods. Table 2 shows the measurement results.
  • composition of oxide layer The composition of the oxide layer in the hot pressed member was measured by EPMA using the cross-sectional sample. Point analysis was performed at arbitrary 10 points within a field of view with a width of 100 ⁇ m or more. In the measured value, the Ni fraction of the oxide layer was calculated by dividing the atomic concentration of Ni by the sum of the atomic concentrations of all metal elements.
  • the thickness of the oxide layer in the hot pressed member was measured by SEM (scanning electron microscope) observation using the cross-sectional sample. Specifically, the thickness of the coating layer was measured at 10 arbitrary points in a field of view with a width of 100 ⁇ m or more, and the thickness of the oxide layer was obtained by averaging all the measured values.
  • the post-coating corrosion resistance of the obtained hot pressed parts was evaluated by the following procedure. First, a test piece cut from the flat portion of the upper surface of the hot pressed member was subjected to zinc phosphate chemical conversion treatment and electrodeposition coating to prepare a sample.
  • the zinc phosphate chemical conversion treatment is performed under standard conditions using PB-SX35 manufactured by Nihon Parkerizing Co., Ltd., and the electrodeposition coating is performed using a cationic electrodeposition paint Electron GT100 manufactured by Kansai Paint Co., Ltd. so that the coating film thickness is 15 ⁇ m. went to The baking conditions were 170° C. and holding for 20 minutes.
  • the steel sheet for hot press forming of the present invention has reduced adhesion of metals and oxides to heating equipment, and is free from liquid metal embrittlement cracking during hot press forming. had been prevented. Furthermore, the hot press member obtained by hot pressing the steel sheet for hot press use of the present invention was also excellent in corrosion resistance after painting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

被覆層によるスケールの発生が防止された熱間プレス用鋼板において、加熱設備への金属の付着を低減し、熱間プレス成形時における液体金属脆化割れを防止し、かつ、優れた塗装後耐食性を達成する。母材鋼板と、前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを含む熱間プレス用めっき鋼板であって、前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10質量%である、熱間プレス用鋼板。

Description

熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法
 本発明は、熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法に関する。
 近年、自動車分野においては、車体強度の向上と軽量化という相反する要求を満たすために、部品の素材として高強度鋼板が用いられており、該高強度鋼板に求められる強度も年々高くなる傾向にある。
 しかし、一般的に、鋼板の強度を向上させるとプレス成形性が低下するため、複雑な部品形状を得ることは困難になる。自動車用途で複雑な形状の部材としては。例えば、シャシーなどの足回り部材やBピラーなどの骨格用構造部材などが挙げられる。
 このような背景から、冷間ではなく熱間で形成を行う、熱間プレス技術の適用が増加している。熱間プレスとは、鋼板をオーステナイト温度域まで加熱した後に、高温のままでプレス成形し、同時に金型との接触により急冷する成形方法である。熱間プレスでは、素材鋼板の強度が比較的低い状態でプレス成形が行われ、その後の急冷によって高強度化されるため、高強度化とプレス成形性の確保とを両立させることができる。
 しかし、熱間プレスでは、上述したように鋼板が高温に加熱されるため、鋼板表面が酸化してスケールが発生するという問題がある。鋼板表面にスケールが存在すると、該スケールに由来する酸化物が加熱設備に付着する。前記加熱は、典型的には加熱炉により行われるが、その場合、加熱炉の内壁や炉内に設けられた搬送ローラーなどに酸化物が付着する。そのため、加熱設備のメンテナンスが必要となり、生産性が低下する。また、鋼板表面にスケールが存在すると、その後の塗装工程において十分な塗膜密着性を得ることができない。そのため、熱間プレス後にショットブラストなどによりスケールを除去する必要があった。
 そこで、Al系めっき層、Zn系めっき層、およびAl-Zn系めっき層などの被膜を表面に備える鋼板を熱間プレス用鋼板として用いることが広く行われている(特許文献1、2)。めっき層が存在することにより、熱間プレス時の母材鋼板表面の酸化が抑制され、スケールの発生を防止することができる。
特開2000-038640号公報 特開2003-073774号公報
 上述したように、めっき層を表面に備える熱間プレス用鋼板を用いることにより、熱間プレス時の母材鋼板表面の酸化を抑制し、スケールの発生を防止することができる。
 しかし、上記従来技術の熱間プレス用鋼板には以下に述べる問題があった。
 一つは、加熱設備へのめっき金属の付着の問題である。すなわち、熱間プレスにおいては、鋼板がオーステナイト温度域まで加熱される。この加熱により、めっき層中に含まれる金属が溶融または蒸発し、加熱設備、例えば、加熱炉の内壁や炉内に設けられたローラーなどに付着する。上述したスケールの場合と同様、めっき金属が加熱設備に付着するとメンテナンスが必要となり、生産性が低下する。また、ローラーに金属が付着すると、付着した金属とローラーの材質とが反応することで脆化が生じ、ローラーの破損など重篤な事故を招くおそれもある。
 もう一つは、液体金属脆化割れの問題である。固体金属の表面に液体金属が接触した状態で引張応力が付与されると前記固体金属が脆化する。この現象を液体金属脆化(Liquid Metal Embrittlement、LME)という。熱間プレスにおいても、加熱によってめっき層に含まれる金属が溶融し、その状態でプレス成形が行われると、引張応力を受ける曲げ加工部で液体金属脆化割れが発生する。
 このように、従来のめっき層を備える熱間プレス用鋼板においては、加熱設備への金属の付着と液体金属脆化割れの問題があった。
 さらに、熱間プレス用鋼板は一般的に熱間プレスの後、塗装した状態で用いられる。そのため、熱間プレス用鋼板には、最終的に得られる熱間プレス部材が塗装後耐食性に優れることも求められる。
 本発明は、上記実情に鑑みてなされたものであり、下記(1)~(3)の要求を満足することができる熱間プレス用鋼板および熱間プレス部材を提供することを目的とする。
(1)加熱設備への酸化物および金属の付着が低減されていること。
(2)熱間プレス成形時に液体金属脆化割れが生じないこと。
(3)塗装後耐食性に優れること。
 本発明は、上記課題を解決するために基づいて完成されたものであり、その要旨は以下の通りである。
1.母材鋼板と、
 前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを含む熱間プレス用鋼板であって、
 前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10質量%である、熱間プレス用鋼板。
2.前記被覆層が、Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つを、合計で、50質量%以下含有する、上記1に記載の熱間プレス用鋼板。
3.母材鋼板と、
 前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを有する熱間プレス部材であって、
 前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10質量%である、熱間プレス部材。
4.さらに、前記被覆層の上に、厚さ10μm以下の酸化物層を有する、上記3に記載の熱間プレス部材。
5.前記酸化物層中の金属元素におけるNiの分率が50原子%以上である、上記4に記載の熱間プレス部材。
6.上記1または2に記載の熱間プレス用鋼板を熱間プレスして熱間プレス部材とする、熱間プレス部材の製造方法。
 本発明によれば上記課題を解決することができる。すなわち、本発明の熱間プレス用鋼板は、表面に被覆層を備えているため、熱間プレス時のスケール発生を防止し、加熱設備への酸化物の付着を低減することができる。加えて、前記被覆層として、NiまたはNi基合金からなり、Zn濃度が10%以下である被覆層を用いることにより、加熱設備への溶融金属の付着を低減するとともに、熱間プレス成形時の液体金属脆化割れを防止することができる。さらに、本発明の熱間プレス用鋼板を熱間プレスして得られる熱間プレス部材は、塗装後耐食性に優れている。
 以下、本発明を実施するための形態について具体的に説明する。なお、本発明はこの実施形態に限定されるものではない。また、被覆層および鋼板の成分組成における含有量の単位「%」は、とくに断らない限り「質量%」を表すものとする。
[熱間プレス用鋼板]
 本発明の一実施形態における熱間プレス用鋼板は、母材鋼板と、前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを含む。そして、前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn濃度が0~10%である。
[[被覆層]]
 前記被覆層は、Niからなる被覆層(Ni被覆層)であってもよく、Ni基合金からなる被覆層(Ni基合金被覆層)であってもよい。ここで、「Ni基合金」とはNi含有量が50%以上である合金を指すものとする。言い換えると、本発明の被覆層はNi含有量が50%以上である被覆層である。
 先にも述べたように、熱間プレスに先立つ加熱工程において、鋼板の表層は雰囲気中の酸素や水蒸気による酸化を受ける。しかし、本発明の熱間プレス用鋼板は表面に高融点かつ耐酸化性を有するNi系被覆層を備えているため、母材鋼板の酸化を抑制し、スケールの発生を防止することができる。
 上記の効果を高めるという観点からは、前記被覆層におけるNi含有量は60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましい。一方、前記被覆層におけるNi含有量の上限はとくに限定されず、100%であってもよい。
Zn:0~10%
 前記被覆層が多量のZnを含有すると、耐酸化性が低下する。加えて、加熱によりZnが溶融し、熱間成形時に液体金属脆化割れが発生する。そのため、前記被覆層におけるZn含有量は10%以下とする。液体金属脆化割れを防止するという観点から、Zn含有量は5%以下であることが好ましく、1%以下であることがより好ましい。一方、Zn含有量は低ければ低いほど好ましいため、Zn含有量の下限は0%とする。
 前記被覆層は、任意に、Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つを、合計で50%以下含有することができる。Ti、V、Cr、Mn、Co、Mo、およびWの少なくとも1つを添加することにより、さらに優れた耐酸化性を得ることができる。また、前記被覆層を電気めっきにより形成する場合、母材鋼板からめっき浴中に溶出したFeが被覆層中に取り込まれる場合がある。これらの元素の含有量が過剰となると、相対的に被覆層におけるNi含有量が低下するため、被覆層の機能が損なわれる。そのため、前記元素の合計含有量は50%以下、好ましくは40%以下、より好ましくは35%以下とする。前記合計含有量の下限はとくに限定されず、0%であってよい。
 なお、被覆層中のFe含有量は20%以下とすることが好ましく、5%以下とすることがより好ましく、1%以下とすることがさらに好ましい。Fe含有量の下限は0%であってよい。
 本発明の一実施形態における被覆層は、質量%で、
 Zn:0~10%、
 Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つ:合計で0~50%含有し、
 残部がNiおよび不可避的不純物からなる成分組成を有する。
厚さ:7~20μm
 なお、上記熱間プレス用鋼板を加熱すると、被覆層中のNiと母材鋼板中のFeが相互拡散し、熱間プレス部材の表層にはFe濃度の上昇したNi基合金層が生じる。熱間プレス用鋼板の被覆層の厚さが7μm未満であると、特に高温で長時間加熱した場合、拡散し表層に到達したFeが酸化され、厚く脆いFe含有酸化物層が形成される。厚く脆いFe含有酸化物が存在すると、熱間プレス工程において酸化物が搬送ローラーやプレス型に付着、堆積する。そのため、設備のメンテナンスが必要となり、生産性が低下する。また、搬送ローラーやプレス型に堆積した酸化物が熱間プレス部材の表面に付着することで熱間プレス部材の表面品質を害する。そのため、Fe酸化物の成長の抑制、すなわちスケールガード機能の観点で、被覆層の厚さは7μm以上とする。また、加熱後に被覆層が厚く残存するほど優れた耐食性を得られることから、被覆層の厚さは、8μm以上であることが好ましく、9μm以上であることがより好ましい。一方、被覆層の厚さが20μmを超えると、耐酸化効果と耐食性向上効果が飽和し、製造コスト増となるばかりである。そのため、被覆層の厚さは20μm以下、好ましくは16μm以下、より好ましくは12μm以下とする。
 ここで、被覆層の厚さとは、鋼板の片面あたりの厚さを指すものと定義する。本発明の熱間プレス用鋼板は、その両面に被覆層を備えているが、一方の面の被覆層の厚さは、他方の面の被覆層の厚さと同じであってもよく、異なっていてもよい。
[[母材鋼板]]
 上記母材鋼板としては、特に限定されることなく任意の鋼板を用いることができる。前記母材鋼板は、熱延鋼板と冷延鋼板のいずれであってもよい。
 熱間プレス後に引張強度で980MPa級を超えるような熱間プレス部材を得るという観点からは、前記母材鋼板としては、質量%で、
 C :0.05~0.50%、
 Si:0.1~0.5%、
 Mn:0.5~3.0%、
 P :0.1%以下、
 S :0.01%以下、
 Al:0.10%以下、および
 N :0.01%以下を含有し、
 残部がFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることが好ましい。前記成分組成が好ましい理由について、以下説明する。
C:0.05~0.50%
 Cは、鋼組織としてマルテンサイトなどを形成させることで強度を向上させる。980MPa級を超えるような強度を得るためにはC量を0.05%以上とする必要がある。したがって、C量は0.05%以上とすることが好ましく、0.10%以上とすることがより好ましい。一方、C量が0.50%を超えるとスポット溶接部の靱性が低下する。したがって、C量は0.50%以下とすることが好ましい。C量は0.45%以下とすることがより好ましく、0.43%以下とすることがさらに好ましく、0.40%以下とすることがもっとも好ましい。
Si:0.1~0.5%
 Siは鋼を強化して良好な材質を得るのに有効な元素である。前記効果を得るためにはSi量を0.1%以上とする必要がある。したがって、Si量は0.1%以上とすることが好ましく、0.2%以上とすることがより好ましい。一方、Si量が0.5%を超えるとフェライトが安定化されるため、焼き入れ性が低下する。したがって、Si量は0.5%以下とすることが好ましい。Si量は0.4%以下とすることがより好ましく、0.3%以下とすることがさらに好ましい。
Mn:0.5~3.0%
 Mnは、広い冷却速度範囲で、冷却後の強度を確保するために有効な元素である。優れた機械特性、特に強度を確保するためは、Mn量を0.5%以上とすることが望ましい。したがって、Mn量は0.5%以上とすることが好ましく、0.7%以上とすることがより好ましく、1.0%以上とすることがさらに好ましい。一方、Mn量が3.0%を超えると、コストが上昇するばかりでなく効果が飽和する。したがって、Mn量は3.0%以下とすることが好ましい。Mn量は2.5%以下とすることがより好ましく、2.0%以下とすることがさらに好ましく、1.5%以下とすることがもっとも好ましい。
P:0.1%以下
 P量が0.1%を超えると鋳造時のオーステナイト粒界へのP偏析に伴う粒界脆化により、局部延性の劣化を通じて強度と延性のバランスが低下する。したがって、P量は0.1%以下とすることが好ましい。一方、P量の下限はとくに限定されず、0%であってよいが、精錬コストの観点からは、P量を0.002%以上とすることが好ましい。
S:0.01%以下
 SはMnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となる。したがって、極力低減することが望ましく、S量を0.01%以下とすることが好ましい。また、良好な伸びフランジ性を確保するという観点からは、S量を0.005%以下とすることがより好ましく、0.001%以下とすることがさらに好ましい。一方、S量の下限はとくに限定されず、0%であってよいが、精錬コストの観点からは0.0002%以上とすることが好ましい。
Al:0.10%以下
 Al量が0.1%を超えると、素材の鋼板のブランキング加工性や焼入れ性を低下させる。したがって、Al量は0.10%以下とすることが好ましい。Al量は0.07%以下とすることがより好ましく、0.04%と以下とすることがさらに好ましい。一方、Al量の下限はとくに限定されず、0%であってよいが、脱酸材としての効果を確保する観点からは、0.01%以上とすることが好ましい。
N:0.01%以下
 N量が0.01%を超えると、熱間圧延時や熱間プレス前の加熱時にAlNの窒化物を形成し、素材の鋼板のブランキング加工性や焼入れ性を低下させる。したがって、N量は0.01%以下とすることが好ましい。一方、N量の下限はとくに限定されず、0%であってよいが、精錬コストの観点からは、N量を0.001%以上とすることが好ましい。
 また、前記母材鋼板の成分組成は、特性の更なる改善のため、Nb:0.10%以下、Ti:0.05%以下、B:0.0002~0.005%、Cr:0.1~1.0%、Sb:0.003~0.03%からなる群より選択される少なくとも1つを、さらに任意に含有することができる。
Nb:0.10%以下
 Nbは鋼の強化に有効な成分であるが、過剰に含まれると圧延荷重が増大する。したがって、Nbを含有させる場合は、Nb量は0.10%以下、好ましくは0.06%以下、より好ましくは0.03%以下とする。一方、Nb量の下限は特に限定されず、0%であってよいが、精錬コストの観点からは、0.005%以上とすることが好ましい。
Ti:0.05%以下
 TiもNbと同様に鋼の強化には有効であるが、過剰に含まれると形状凍結性が低下する。したがって、Tiを含有させる場合は、Ti量は0.05%以下、好ましくは0.03%以下とする。一方、Ti量の下限は特に限定されず、0%であってよいが、精錬コストの観点からは、0.003%以上とすることが好ましい。
B:0.0002~0.005%
 Bは、オーステナイト粒界からのフェライト生成および成長を抑制する作用を有する元素である。B量を含有させる場合、前記効果を得るために、B量を0.0002%以上とすることが好ましく、0.0010%以上とすることがより好ましい。一方、過剰なBの含有は成形性を大きく損なう。そのため、Bを含有させる場合、B量は0.005%以下、好ましくは0.003%以下とする。
Cr:0.1~1.0%
 Crは、Mnと同様に鋼の強化および焼き入れ性を向上させる元素である。Crを添加する場合、前記効果を得るためにCr含有量を0.1%以上、好ましくは0.2%以上とする。一方、Crは高価であるため1.0%を超える添加は大幅なコストアップを招く。そのため、Crを含有させる場合、C量を1.0%以下、好ましくは0.5%以下、より好ましくは0.2%以下とする。
Sb:0.003~0.03%
 Sbは、母材鋼板を製造する際に、焼鈍工程で、鋼板表層の脱炭を抑止する効果を有する元素である。Sbを含有する場合には、前記効果を得るためにSb量を0.003%以上、好ましくは0.005%以上とする。一方、Sb量が0.03%を超えると圧延荷重の増加を招くため生産性が低下する。そのため、Sbを含有させる場合、Sb量は0.03%以下、好ましくは0.02%以下、より好ましくは0.01%以下とする。
[熱間プレス用鋼板の製造方法]
 本発明の熱間プレス用鋼板は、とくに限定されることなく任意の方法で製造することができるが、以下に好適な製造条件について説明する。
 まず、母材鋼板を製造する。母材鋼板は、典型的には鋳造により得られた鋼スラブを圧延することにより製造することができる。前記鋼スラブとしては、上述した成分組成を有する鋼スラブを用いることが好ましい。
 圧延においては、鋳造により得られた熱片を直接(再加熱することなく)熱間圧延に供してもよく、また、鋳造後、温度が低下した冷片を再加熱して熱間圧延に供してもよい。熱片スラブを直接圧延した場合と、冷片を再加熱した後に圧延した場合とで、得られる鋼板の特性の違いはほとんどない。熱間圧延前に冷片を再加熱する場合、再加熱温度は特に限定されないが、生産性を考慮して1000℃から1300℃の範囲とすることが好ましい。
 前記熱間圧延は、通常の熱延工程、あるいは仕上圧延においてスラブを接合し圧延する連続化熱延工程のどちらでも可能である。熱間圧延における圧延終了温度はとくに限定されないが、生産性や板厚精度の観点からはAr3変態点以上とすることが好ましい。
 上記熱間圧延により得られた熱延鋼板は、次に、常法に従って冷却される。その際の巻取温度は、生産性の観点からは550℃以上とすることが好ましい。また、巻取温度が高すぎる場合には酸洗性が劣化するため、巻取温度は750℃以下とすることが好ましい。前記冷却の後は、常法に従って酸洗を行うことが好ましい。
 母材鋼板として冷延鋼板を使用する場合には、上記酸洗の後、さらに常法に従って冷間圧延を行えばよい。
 次いで、得られた鋼板の表面に被覆層を形成する。被覆層の形成方法はとくに限定されることなく、めっき、PVD(physical vapor deposition)、クラッド圧延など、任意の方法により形成することができる。前記めっきとしては、例えば、電気めっきが挙げられる。前記PVDとしては、例えば、真空蒸着、スパッタリング、イオンプレーティングなどが挙げられる。また、クラッド圧延を用いる場合、母材鋼板の両面に、所望の組成を有する層を積層し、圧延すればよい。
 被覆層の形成方法は、形成する被覆層の組成に合わせて選択することが好ましい。例えば、被覆層がNi層、Ni-Cr合金層、またはNi-Zn合金層である場合、電気めっきにより成膜することが好ましいが、その他の方法でも問題なく成膜することができる。被覆層がNi-Ti合金のように、水溶液からの電析が困難な組成である場合には、PVDにより成膜することが好ましい。
 なお、いずれの方法により被覆層を形成する場合でも、鋼板の一方の面(表面)と、鋼板のもう一方の面(裏面)の被覆層が所望の厚さとなるように条件を調整すればよい。例えば、電気めっき法の場合、それぞれの面における電流密度と通電時間のいずれかまたは両方を変化させることで、各面における被覆層の厚さを調整することができる。
[熱間プレス部材]
 本発明の一実施形態における熱間プレス部材は、母材鋼板と、前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを有する熱間プレス部材であって、前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10%である。
 また、本発明の他の実施形態における熱間プレス部材は、さらに、前記被覆層の上に、厚さ10μm以下の酸化物層を有する。すなわち、本実施形態の熱間プレス部材は、母材鋼板と、前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層と、前記被覆層の上に設けられた厚さ10μm以下の酸化物層とを有し、前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10%である。
 上記母材鋼板および被覆層については、上述した熱間プレス用鋼板における母材鋼板および被覆層の説明が適用される。
[酸化物層]
 上記酸化物層は、熱間プレス工程で被覆層または母材鋼板に含まれる成分が雰囲気中の酸素または水蒸気と反応することで形成される。前記酸化物層の組成と厚さは、加熱温度、加熱時間、雰囲気などの加熱条件により変化する。前記酸化物層の厚さが10μmを超えると塗膜密着性が低下し、その結果、十分な塗装後耐食性を得ることができなくなる。そのため、酸化物層が存在する場合、該酸化物層の厚さは10μm以下、好ましくは7μm以下、より好ましくは5μm以下とする。
 一方、前記酸化物層は必ずしも必要ではないため、その厚さの下限は0μmであってよい。しかし、被覆層の上に薄い酸化物層を設けることにより、塗膜密着性を向上させ、塗装後耐食性をさらに改善することができる。そのため、さらなる塗装後耐食性向上の観点からは、前記酸化物層の厚さを0.1μm以上とすることが好ましく、1μm以上とすることがより好ましく、2μm以上とすることがさらに好ましい。
 なお、熱間プレス後にショットブラスト処理を施すことで、形成された酸化物層を除去してもよい。しかし、酸化物層の除去は製造コストの増加を招くため、酸化物層の除去は必須ではない。
 酸化物層の厚さは、熱間プレス部材の断面を走査電子顕微鏡(SEM)で観察することにより測定することができる。より具体的には、実施例に記載した方法で測定することができる。
 上記酸化物層の組成は特に限定されない。しかし、本発明者らは、酸化物層中の金属元素におけるNiの分率が50原子%以上である場合に、さらに優れた耐食性が得られることを見出した。その理由は次のように考えられる。すなわち、上述したように、前記酸化物層は熱間プレス工程で被覆層または母材鋼板に含まれる成分が酸化されることにより形成される。例えば、該酸化物層が、主に母材鋼板に含まれるFeの酸化物で構成されている場合、酸化物層の電気抵抗は比較的低くなる。これに対して、Niの酸化物はFeの酸化物などの他の酸化物に比べて電気抵抗が高いため、酸化物層に含まれるNi酸化物の割合を高めることにより電気化学的な腐食を抑制することができる。そのため、電気化学的な腐食を抑制し、さらに耐食性を高めるという観点からは、酸化物層中の金属元素におけるNiの分率を50原子%以上とすることが好ましい。一方、前記Niの分率の上限はとくに限定されず、100%であってよいが、製造しやすさの観点からは、98%以下とすることが好ましい。
 なお、酸化物層中の金属元素におけるNiの分率は、熱間プレス部材の断面をEPMA(電子線プローブマイクロアナライザ)により定量分析することで測定できる。より具体的には実施例に記載した方法で測定することができる。
[熱間プレス部材の製造方法]
 本発明の一実施形態においては、熱間プレス用めっき鋼板を熱間プレスして熱間プレス部材を製造する。熱間プレスを行う方法はとくに限定されず、常法に従って行うことができる。典型的には、熱間プレス用鋼板を所定の加熱温度まで加熱し(加熱工程)、次いで、前記加熱工程で加熱された前記熱間プレス用鋼板を熱間プレスする(熱間プレス工程)。以下、好ましい熱間プレス条件について説明する。
 前記加熱工程における加熱温度が母材鋼板のAc3変態点より低いと、最終的な熱間プレス部材の強度が低くなる。そのため、前記加熱温度は母材鋼板のAc3変態点以上とすることが好ましい。前記加熱温度は860℃以上とすることが好ましい。一方、前記加熱温度が1000℃を超えると、母材や被覆層が酸化して生じる酸化物層が過度に厚くなることにより、得られる熱間プレス部材の塗料密着性が劣化するおそれがある。そのため、前記加熱温度は1000℃以下とすることが好ましく、960℃以下とすることがより好ましく、920℃以下とすることがさらに好ましい。なお、母材鋼板のAc3変態点は鋼成分により異なるが、フォーマスタ試験により求められる。
 前記加熱を開始する温度はとくに限定されないが、一般的には室温である。
 加熱を開始してから前記加熱温度に到達するまでの昇温に要する時間(昇温時間)はとくに限定されることなく、任意の時間とすることができる。しかし、前記昇温時間が300秒を超えると、高温にさらされる時間が長くなるため、母材やめっき層が酸化して生じる酸化物層が過度に厚くなる。そのため、酸化物による塗料密着性の低下を抑制するという観点からは、前記昇温時間を300秒以下とすることが好ましく、270秒以下とすることがより好ましく、240秒以下とすることがさらに好ましい。一方、前記昇温時間が150秒未満であると、加熱途中に被覆層が過度に溶融し、加熱装置や金型を汚損するおそれがある。そのため、加熱装置や金型の汚損を防止する効果をさらに高めるという観点からは、前記昇温時間を150秒以上とすることが好ましく、180秒以上とすることがより好ましく、210秒以上とすることがさらに好ましい。
 前記加熱温度に到達した後は、当該加熱温度に保持してもよい。前記保持を行う場合、保持時間はとくに限定されず、任意の長さの保持を行うことができる。しかし、保持時間が300秒を超えると、母材や被覆層が酸化して生じる酸化物層が過度に厚くなることにより、得られる熱間プレス部材の塗料密着性が劣化するおそれがある。そのため、保持時間は300秒以下とすることが好ましく、210秒以下とすることがより好ましく、120秒以下とすることがさらに好ましい。一方、前記保持は任意の工程であるため、保持時間は0秒であってもよい。しかし、母材鋼板を均質にオーステナイト化させるという観点からは、保持時間を10秒以上とすることが好ましい。
 前記加熱工程における雰囲気は特に限定されず、任意の雰囲気中で加熱を行うことができる。前記加熱は、例えば、大気雰囲気下で行ってもよく、また、大気雰囲気の流入する雰囲気のもとで行ってもよい。熱間プレス後の部材に残留する拡散性水素量を低減するという観点からは、前記雰囲気の露点を10℃以下とすることが好ましい。前記露点の下限についてもとくに限定されないが、露点を-80℃未満とするためには外部からの大気の流入を防止して、低露点を維持するために特殊な設備が必要となり、コストが増加する。そのため、コストの観点からは、前記露点を-80℃以上とすることが好ましく、-40℃以上とすることがより好ましい。
 熱間プレス用鋼板を加熱する方法はとくに限定されず、任意の方法で加熱することができる。前記加熱は、例えば、炉加熱による加熱、通電加熱、誘導加熱、高周波加熱、火炎加熱などにより行うことができる。前記加熱炉としては、電気炉やガス炉など、任意の加熱炉を用いることができる。
 加熱に次いで、熱間プレス加工を行い、加工と同時または直後に金型や水などの冷媒を用いて冷却を行うことにより熱間プレス部材が製造される。本発明においては、熱間プレス条件は特に限定されない。例えば、一般的な熱間プレス温度範囲である600~800℃でプレスを開始する事が出来る。また、本発明の熱間プレス用鋼板は液体金属脆性のリスクを有さないことから、一般的な熱間プレスよりも高温で成形を実施することも可能である。そのため、熱間プレス開始温度は、600~1000℃とすることが好ましい。
 以下、本発明を実施例に基づいて具体的に説明する。
 母材鋼板として、質量%で、C:0.34%、Si:0.25%、Mn:1.20%、P:0.005%、S:0.001%、Al:0.03%、N:0.004%、Ti:0.02%、B:0.002%、Cr:0.18%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、板厚1.4mmの冷延鋼板を用いた。前記母材鋼板のAc3変態点は783℃、Ar3変態点は706℃であった。
 上記母材鋼板の両面に、表1に示す方法で被覆層を形成した。使用した方法のそれぞれについて、以下に説明する。なお、比較のため、比較例No.1においては、被覆層の形成を行わなかった。
(電気めっき)
 電気めっき法による被覆層の形成は、以下の条件で実施した。なお、いずれの場合においても、母材鋼板をカソード、酸化イリジウム被覆チタン板をアノードとして電解を行い、通電時間を変化させることにより被覆層の厚さを調整した。
(1)Niめっき
・めっき液組成:
 硫酸ニッケル六水和物240g/L
 ホウ酸30g/L
・pH:3.0
・温度:50℃
・電流密度:40A/dm
(2)Ni-Fe合金めっき
・めっき液組成:
 硫酸ニッケル六水和物192g/L
 硫酸鉄七水和物48g/L、
 ホウ酸30g/L
・pH:3.0
・温度:50℃
・電流密度:40A/dm
(3)Ni-Co合金めっき
・めっき液組成:
 硫酸ニッケル六水和物180g/L
 硫酸コバルト七水和物60g/L
 ホウ酸30g/L
・pH3.0、
・温度:50℃
・電流密度:40A/dm
(4)Ni-Mo合金めっき
・めっき液組成:
 硫酸ニッケル六水和物13g/L
 モリブデン酸ナトリウム二水和物19g/L
 クエン酸88g/L
・pH:3.5
・温度:25℃
・電流密度:10A/dm
(5)Ni-W合金めっき
・めっき液組成:
 硫酸ニッケル六水和物13g/L
 タングステン酸ナトリウム二水和物30g/L
 クエン酸88g/L
・pH:3.5
・温度:25℃
・電流密度:10A/dm
(6)Ni-Zn合金めっき
・めっき液組成:
 硫酸ニッケル六水和物240g/L
 硫酸亜鉛七水和物20g/L
・pH:2.0
・温度:50℃
・電流密度:40A/dm
(7)Ni-Zn合金めっき
・めっき液組成:
 硫酸ニッケル六水和物240g/L
 硫酸亜鉛七水和物30g/L
・pH:2.0
・温度:50℃
・電流密度:40A/dm
(8)Znめっき
・めっき液組成:
 硫酸亜鉛七水和物240g/L
・pH:2.0
・温度:50℃
・電流密度:40A/dm
(PVD)
 PVDによる被覆層の形成は、昭和真空株式会社製のバッチ式高周波(RF)励起式イオンプレーティング装置を用い、イオンプレーティングにより実施した。母材鋼板の温度は400℃とし、圧力は3Pa、バイアス電圧は-20Vとした。被覆層の組成は、蒸着源として用いる金属の組成を調整することにより制御した。また、被覆層の厚さは、蒸着時間を調整することにより制御した。
(クラッド圧延)
 上記母材鋼板と同一の組成を有する、厚さ30mmの鋼スラブの両面に、厚さ300μmのNi-15.5%Cr-8%Fe合金(Alloy 600)を積層し、圧延することにより熱間プレス用鋼板を作製した。
(溶融めっき)
 溶融めっき法による被覆層の形成は、母材鋼板を溶融めっき浴に1秒間浸漬し、その後Nガスワイピングを行うことにより実施した。被覆層の組成は、使用する溶融めっき浴の組成を調整することにより制御した。
 得られた熱間プレス用鋼板の被覆層の成分組成および厚さを、それぞれ以下の方法で測定した。測定結果を表1に示す。
(被覆層の成分組成)
 評価対象とする熱間プレス用鋼板を剪断加工して、10mm×15mmの試料を採取した。前記試料を導電性樹脂に埋め込みことで、熱間プレス用鋼板の断面試料を作製した。次いで、EPMA(電子線プローブマイクロアナライザ)により、被覆層の最表層から、該御被覆層と母材鋼板との界面までの範囲における平均組成を測定した。同様の測定を3試料で行い、測定値を平均することで、被覆層の成分組成とした。
(被覆層の厚さ)
 熱間プレス用鋼板の被覆層の厚さは、前記断面試料をSEM(走査電子顕微鏡)観察することによって測定した。具体的には、100μm以上の幅の視野内で、任意の10か所で被覆層の厚さを測定した。同様の測定を3試料で行い、得られたすべての測定値を平均することで、被覆層の厚さとした。
 次に、上記熱間プレス用鋼板を、熱間プレスに供した。具体的には、前記熱間プレス用鋼板から100mm×200mmの試験片を採取し、前記試験片をロール搬送型の遠赤外式加熱炉により加熱した。前記加熱は、加熱温度:900℃、昇温時間180秒、保持時間:10秒の条件で実施した。
 次いで、前記加熱炉に隣接して設置されたプレス装置により、2spm(Strokes Per Minute)にて、ハット形状の熱間プレスを行った。成形開始温度は750℃とした。なお、得られた熱間プレス部材の形状は、上面の平坦部長さ100mm、側面の平坦部長さ50mm、下面の平坦部長さ50mmとした。また、金型の曲げRは上面の両肩、下面の両肩いずれも7Rであった。
 さらに、実施例No.8の熱間プレス部材については、空気圧式のショットブラスト処理を行って、酸化物層を除去した。前記ショットブラスト処理においては、空気圧を2kgf/cm、ノズルと熱間プレス部材との間の距離を20mmとし、平均粒径0.3mmの鋼球をショット弾として使用した。
(被覆層の成分組成および厚さ)
 得られた熱間プレス部材の被覆層の成分組成および厚さを、それぞれ測定した。まず、前記ハット形状にプレスされた熱間プレス部材の頭頂の平坦部を切り出し、さらに剪断加工して、10mm×15mmの試料を採取した。次いで、前記試料を導電性樹脂に埋め込みことで、熱間プレス部材の平坦部の断面試料を作製した。前記断面試料を使用し、上述した熱間プレス用鋼板における被覆層の測定と同様の方法で、該被覆層の成分組成および厚さを測定した。測定結果を表2に示す。
 また、前記熱間プレス部材における酸化物層の組成および厚さを、それぞれ以下の方法で測定した。測定結果を表2に示す。
(酸化物層の組成)
 熱間プレス部材における酸化物層の組成は、前記断面試料を用いてEPMAによって測定した。100μm以上の幅の視野内で、任意の10点で点分析を行った。測定値において、Niの原子濃度を全金属元素の原子濃度の和で割ることにより、酸化物層のNi分率を算出した。
(酸化物層の厚さ)
 熱間プレス部材における酸化物層の厚さは、前記断面試料を用いてSEM(走査電子顕微鏡)観察によって測定した。具体的には、100μm以上の幅の視野内で、任意の10か所で被覆層の厚さを測定し、全測定値を平均することで、酸化物層の厚さとした。
<搬送ローラーへの付着性>
 加熱設備への金属や酸化物の付着性を評価するために、各熱間プレス用鋼板について60ショットの熱間プレスを実施した。その後、前記熱間プレスに用いた加熱炉の搬送ローラーを室温まで冷却し、該搬送ローラーの表面における付着物の有無を目視にて確認した。加熱炉の搬送ローラー全体の内、3mm以上の大きさの付着物が認められたローラーの割合(付着ローラー率)に基づいて、以下の4水準で搬送ローラーへの付着性を評価した。評価結果が1~3である場合を合格とした。評価結果を表2に示す。
1:付着ローラー率=0%
2:0%<付着ローラー率≦5%
3:5%<付着ローラー率≦10%
4:付着ローラー率>10%
<成形時LME割れ>
 熱間プレス成形時における液体金属脆化割れを評価するために、得られた熱間プレス部材におけるクラックを測定した。具体的には、まず、ハット形状の熱間プレス部材の上面の肩部を切り出し、樹脂に埋め込んだのち、3%ナイタールによりエッチングした。次いで、断面を観察し、肩部の表面から板厚内部に進展しているクラックの深さを測定した。各実施例につき、3つのサンプルで観察を行い、最も長いクラックの長さに基づいて以下の4水準で成形時LME割れを評価した。評価結果が1~3である場合を合格とした。評価結果を表2に示す。
1:最大クラック長さ=0mm
2:0mm<最大クラック長さ≦0.01mm
3:0.01mm<最大クラック長さ≦0.1mm
4:最大クラック長さ>0.1mm
<塗装後耐食性>
 得られた熱間プレス部材の塗装後耐食性を以下の手順で評価した。まず、熱間プレス部材の上面の平坦部から切り出した試験片に、リン酸亜鉛系化成処理および電着塗装を施して試料を作成した。前記リン酸亜鉛系化成処理は、日本パーカライジング社製PB-SX35を用いて標準条件で行い、前記電着塗装は関西ペイント社製カチオン電着塗料エレクトロンGT100を用いて塗装膜厚が15μmとなるように行った。焼付け条件は170℃で20分間保持とした。
 得られた試料を腐食試験(SAE-J2334)に供し、60サイクル後の腐食状況の評価を行った。クロスカットからの片側最大膨れ幅を測定し、前記片側最大膨れ幅に基づいて以下の4水準で塗装後耐食性を評価した。評価結果が1~3である場合を合格とした。評価結果を表2に示す。
1:片側最大膨れ幅<1.5mm
2:1.5mm≦片側最大膨れ幅<2.0mm
3:2.0mm≦片側最大膨れ幅<3.0mm
4:3.0mm≦片側最大膨れ幅
 表1、2の結果から分かるように、本発明の熱間プレス用鋼板は、加熱設備への金属や酸化物の付着が低減されているとともに、熱間プレス成形時の液体金属脆化割れが防止されていた。さらに、本発明の熱間プレス用鋼板を熱間プレスして得られる熱間プレス部材は、塗装後耐食性にも優れていた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  母材鋼板と、
     前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを含む熱間プレス用鋼板であって、
     前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10質量%である、熱間プレス用鋼板。
  2.  前記被覆層が、Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つを、合計で50質量%以下含有する、請求項1に記載の熱間プレス用鋼板。
  3.  母材鋼板と、
     前記母材鋼板の両面に設けられた厚さ7~20μmの被覆層とを有する熱間プレス部材であって、
     前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~10質量%である、熱間プレス部材。
  4.  さらに、前記被覆層の上に、厚さ10μm以下の酸化物層を有する、請求項3に記載の熱間プレス部材。
  5.  前記酸化物層中の金属元素におけるNiの分率が50原子%以上である、請求項4に記載の熱間プレス部材。
  6.  請求項1または2に記載の熱間プレス用鋼板を熱間プレスして熱間プレス部材とする、熱間プレス部材の製造方法。
PCT/JP2022/047778 2022-02-08 2022-12-23 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 WO2023153099A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22926113.6A EP4403675A1 (en) 2022-02-08 2022-12-23 Steel sheet for hot pressing, hot-pressed member and method for producing hot-pressed member
KR1020247015342A KR20240070708A (ko) 2022-02-08 2022-12-23 열간 프레스용 강판, 열간 프레스 부재 및, 열간 프레스 부재의 제조 방법
CN202280078207.3A CN118302564A (zh) 2022-02-08 2022-12-23 热压用钢板、热压部件和热压部件的制造方法
JP2023520275A JP7586303B2 (ja) 2022-02-08 2022-12-23 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-018307 2022-02-08
JP2022018307 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023153099A1 true WO2023153099A1 (ja) 2023-08-17

Family

ID=87564216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047778 WO2023153099A1 (ja) 2022-02-08 2022-12-23 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法

Country Status (4)

Country Link
EP (1) EP4403675A1 (ja)
KR (1) KR20240070708A (ja)
CN (1) CN118302564A (ja)
WO (1) WO2023153099A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038640A (ja) 1998-07-09 2000-02-08 Sollac 熱処理後の耐久性に優れた熱間圧延および冷間圧延被覆鋼板
JP2003073774A (ja) 2001-08-31 2003-03-12 Sumitomo Metal Ind Ltd 熱間プレス用めっき鋼板
US20060130940A1 (en) * 2004-12-20 2006-06-22 Benteler Automotive Corporation Method for making structural automotive components and the like
JP2011122207A (ja) * 2009-12-11 2011-06-23 Jfe Steel Corp 熱間プレス部材およびその製造方法
JP2012062500A (ja) * 2010-09-14 2012-03-29 Sumitomo Metal Ind Ltd 被覆熱処理鋼材およびその製造方法
JP2012197505A (ja) * 2011-03-10 2012-10-18 Jfe Steel Corp 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP2015151615A (ja) * 2014-02-19 2015-08-24 新日鐵住金株式会社 熱処理用鋼板およびその製造方法
KR20160077582A (ko) * 2014-12-23 2016-07-04 주식회사 포스코 열간 프레스 성형용 강판, 열간 프레스 성형품의 제조방법 및 이에 의해 제조된 열간 프레스 성형품
JP2019518136A (ja) * 2016-04-29 2019-06-27 アルセロールミタル プレス焼入れ方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038640A (ja) 1998-07-09 2000-02-08 Sollac 熱処理後の耐久性に優れた熱間圧延および冷間圧延被覆鋼板
JP2003073774A (ja) 2001-08-31 2003-03-12 Sumitomo Metal Ind Ltd 熱間プレス用めっき鋼板
US20060130940A1 (en) * 2004-12-20 2006-06-22 Benteler Automotive Corporation Method for making structural automotive components and the like
JP2011122207A (ja) * 2009-12-11 2011-06-23 Jfe Steel Corp 熱間プレス部材およびその製造方法
JP2012062500A (ja) * 2010-09-14 2012-03-29 Sumitomo Metal Ind Ltd 被覆熱処理鋼材およびその製造方法
JP2012197505A (ja) * 2011-03-10 2012-10-18 Jfe Steel Corp 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP2015151615A (ja) * 2014-02-19 2015-08-24 新日鐵住金株式会社 熱処理用鋼板およびその製造方法
KR20160077582A (ko) * 2014-12-23 2016-07-04 주식회사 포스코 열간 프레스 성형용 강판, 열간 프레스 성형품의 제조방법 및 이에 의해 제조된 열간 프레스 성형품
JP2019518136A (ja) * 2016-04-29 2019-06-27 アルセロールミタル プレス焼入れ方法

Also Published As

Publication number Publication date
KR20240070708A (ko) 2024-05-21
EP4403675A1 (en) 2024-07-24
JPWO2023153099A1 (ja) 2023-08-17
CN118302564A (zh) 2024-07-05

Similar Documents

Publication Publication Date Title
KR100561893B1 (ko) 강도-연성 밸런스와 도금 밀착성이 우수한 용융아연도금강판 및 그 제조방법
EP2813595B1 (en) High-strength cold-rolled steel sheet and process for manufacturing same
JP6879402B2 (ja) 高強度亜鉛めっき鋼板および高強度部材
EP2684985A1 (en) Steel sheet for hot pressing, and process for producing hot-pressed member utilizing same
WO2010150919A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6673534B2 (ja) 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
JP2011173135A (ja) 熱間プレス部品の製造方法および熱間プレス部品
JP7063430B1 (ja) 熱間プレス部材、塗装部材、熱間プレス用鋼板、および熱間プレス部材の製造方法ならびに塗装部材の製造方法
CN107849662B (zh) 冷轧钢板、镀覆钢板和它们的制造方法
JP7243948B1 (ja) 熱間プレス部材
JP7586303B2 (ja) 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法
JP7269524B2 (ja) ホットスタンプ部材
WO2022091529A1 (ja) 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法
JP7269526B2 (ja) ホットスタンプ用鋼板
JP7364961B2 (ja) ホットスタンプ成形体
WO2023132289A1 (ja) ホットスタンプ用鋼板およびホットスタンプ成形体
WO2023153099A1 (ja) 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法
WO2022091351A1 (ja) Zn系めっきホットスタンプ成形品
CN111936649B (zh) 高强度镀锌钢板、高强度部件和它们的制造方法
JP6981385B2 (ja) 熱間プレス用鋼板
JP7173368B2 (ja) 熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法
JP7338606B2 (ja) 熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法
WO2024053207A1 (ja) 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法
JP7485219B2 (ja) 熱間プレス部材および熱間プレス用鋼板、ならびにそれらの製造方法
JP7126093B2 (ja) 熱間プレス部材およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023520275

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022926113

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022926113

Country of ref document: EP

Effective date: 20240419

ENP Entry into the national phase

Ref document number: 20247015342

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280078207.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE