[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023153096A1 - 冷延鋼板 - Google Patents

冷延鋼板 Download PDF

Info

Publication number
WO2023153096A1
WO2023153096A1 PCT/JP2022/047431 JP2022047431W WO2023153096A1 WO 2023153096 A1 WO2023153096 A1 WO 2023153096A1 JP 2022047431 W JP2022047431 W JP 2022047431W WO 2023153096 A1 WO2023153096 A1 WO 2023153096A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
cold
content
rolled steel
Prior art date
Application number
PCT/JP2022/047431
Other languages
English (en)
French (fr)
Inventor
拓也 西尾
槙太郎 大倉
優 松本
昌史 東
浩二郎 秋葉
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023580103A priority Critical patent/JPWO2023153096A1/ja
Priority to CN202280091178.4A priority patent/CN118660982A/zh
Priority to MX2024009396A priority patent/MX2024009396A/es
Priority to KR1020247026147A priority patent/KR20240133735A/ko
Publication of WO2023153096A1 publication Critical patent/WO2023153096A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to cold-rolled steel sheets. This application claims priority based on Japanese Patent Application No. 2022-018404 filed in Japan on February 09, 2022, the contents of which are incorporated herein.
  • TS tensile strength
  • R limit bending
  • Patent Documents 1 and 2 show that the hole expansibility is excellent when the microstructure is a tempered martensite single phase structure.
  • the tensile strength is as low as less than 1310 MPa. Therefore, when aiming for higher strength, it is necessary to further improve the workability, which deteriorates along with this.
  • the invention of Patent Document 2 although a high strength of 1310 MPa or more can be achieved, since the steel is cooled to near room temperature during cooling during quenching, the volume fraction of retained austenite is small, and high uniform elongation cannot be obtained.
  • Patent Document 3 proposes a steel sheet utilizing the TRIP effect of retained austenite as a technique for achieving both high strength and high formability.
  • the steel sheet of Patent Document 3 has a ferrite phase, it is difficult to obtain a high strength of 1310 MPa or more, and since there is a difference in strength within the structure, the hole expanding formability is poor.
  • the structure (metal structure) at the position of 1/4 of the plate thickness from the surface is made into a structure mainly composed of tempered martensite containing retained austenite, and the surface layer is softened by dew point control during annealing.
  • the tensile strength (TS) is 1310 MPa or more
  • the uniform elongation is 5.0% or more
  • the ratio of the critical bending radius R to the plate thickness t in 90 ° V bending (R / t ) is 5.0 or less, and a high-strength cold-rolled steel sheet having excellent resistance to hydrogen embrittlement can be obtained.
  • TS tensile strength
  • R critical bending radius
  • the present invention has been made to solve the above problems, and the problem is to provide a cold-rolled steel sheet having excellent formability, which is a problem with high-strength steel sheets, and excellent hydrogen embrittlement resistance. It is to be.
  • the cold-rolled steel sheet includes not only a cold-rolled steel sheet on which no coating layer is formed on the surface, but also a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet.
  • the inventors conducted a detailed investigation of the effects of chemical composition, metallographic structure, and manufacturing conditions on the mechanical properties of cold-rolled steel sheets.
  • the metal structure is made mainly of tempered martensite containing a predetermined amount or more of retained austenite, and by controlling the shape of the crystal grains on the outermost surface, strength, formability, and hydrogen embrittlement resistance are obtained. were found to be obtained at high levels.
  • a cold-rolled steel sheet according to an aspect of the present invention contains, in mass%, C: more than 0.140% and less than 0.400%, Si: less than 1.00%, Mn: more than 2.00%, 3 Less than .50%, P: 0.100% or less, S: 0.010% or less, Al: 0.100% or less, N: 0.0100% or less, Ti: 0% or more, less than 0.050%, Nb : 0% or more and less than 0.050%, V: 0% or more and 0.50% or less, Cu: 0% or more and 1.00% or less, Ni: 0% or more and 1.00% or less, Cr: 0 % or more and 1.00% or less, Mo: 0% or more and 0.50% or less, B: 0% or more and 0.0100% or less, Ca: 0% or more and 0.0100% or less, Mg: 0% or more , 0.0100% or less, Mg: 0% or more , 0.0100% or less, Mg: 0% or more
  • the metal structure at the 1/4 depth position which is the 1/4 position, has a volume fraction of retained austenite: more than 1.0% and less than 10.0%, tempered martensite: 80.0% or more, ferrite and Bainite: 0% or more and 15.0% or less in total, and martensite: 0% or more and 3.0% or less, including the first crystal grain counted from the surface in the plate thickness direction, in the rolling direction
  • the average crystal grain size when viewed from a cross section parallel to the plate thickness direction is 20.0 ⁇ m or less, and the average crystal grain size when viewed from above the surface is 30.0 ⁇ m or less.
  • the cold-rolled steel sheet according to [1] has a tensile strength of 1310 MPa or more, a uniform elongation of 4.0% or more, and a ratio of the limit bending R in 90° V bending to the plate thickness, R/t, of 5. .0 or less.
  • the chemical composition is, in mass%, Ti: 0.001% or more and less than 0.050%, Nb: 0.001% or more, 0 Less than .050%, V: 0.01% to 0.50%, Cu: 0.01% to 1.00%, Ni: 0.01% to 1.00%, Cr: 0 .01% or more and 1.00% or less Mo: 0.01% or more and 0.50% or less B: 0.0001% or more and 0.0100% or less Ca: 0.0001% or more and 0.0100 % or less, Mg: 0.0001% or more and 0.0100% or less, REM: 0.0005% or more and 0.0500% or less, and Bi: 0.0005% or more and 0.050% or less.
  • the cold-rolled steel sheet according to [1] or [2] may have a hot-dip galvanized layer formed on the surface.
  • the cold-rolled steel sheet according to [3] may have a hot-dip galvanized layer formed on the surface.
  • the hot-dip galvanized layer may be an alloyed hot-dip galvanized layer.
  • the hot-dip galvanized layer may be an alloyed hot-dip galvanized layer.
  • the chemical composition and metallographic structure of the cold-rolled steel sheet according to one embodiment of the present invention (hereinafter sometimes simply referred to as the steel sheet according to the present embodiment), and production that can efficiently, stably, and economically manufacture the steel sheet
  • the rolling, annealing conditions, etc. in the method will be described in detail below.
  • the steel sheet according to the present embodiment is not only a cold-rolled steel sheet having no coating layer, but also a hot-dip galvanized steel sheet having a hot-dip galvanized layer on the surface of the base steel sheet, or an alloyed hot-dip galvanized layer on the surface of the base steel sheet.
  • the main conditions shown below are common to the hot-dip galvanized steel sheet and the alloyed hot-dip galvanized steel sheet.
  • the C content should be more than 0.140%.
  • the C content is preferably above 0.160%, more preferably above 0.180%.
  • the C content should be less than 0.400%.
  • the C content is preferably less than 0.350%, more preferably less than 0.300%.
  • Si less than 1.00% If the Si content is 1.00% or more, the austenite transformation during heating in the annealing process is slowed down, and the transformation from ferrite to austenite may not occur sufficiently. In this case, excessive ferrite remains in the structure after annealing, making it impossible to achieve the target tensile strength and degrading bendability. Moreover, when the Si content is 1.00% or more, the surface properties of the steel sheet deteriorate. Furthermore, the chemical conversion treatability and plating properties are significantly deteriorated. Therefore, the Si content should be less than 1.00%.
  • the lower limit of the Si content is not limited and may be 0%, but Si forms an internal oxide in the surface layer of the steel sheet, and the pinning effect of this internal oxide refines the metal structure of the surface layer. It is an effective element for Moreover, Si is a useful element for increasing the strength of the steel sheet by solid-solution strengthening. In addition, since Si suppresses the formation of cementite, it is an element effective in promoting the concentration of C in austenite and forming retained austenite after annealing. To obtain these effects, the Si content is preferably 0.01% or more. The Si content is more preferably 0.05% or more, still more preferably 0.10% or more, and still more preferably 0.50% or more.
  • Mn has the effect of improving the hardenability of steel and is an effective element for obtaining the above metal structure. If the Mn content is 2.00% or less, it becomes difficult to obtain the above metal structure. Also, in this case, sufficient tensile strength cannot be obtained. Moreover, Mn is an element that forms an internal oxide and is effective in refining the metal structure of the surface layer portion due to the pinning effect of this internal oxide. In order to obtain these effects, the Mn content should exceed 2.00%. The Mn content is preferably above 2.20%, more preferably above 2.50%.
  • the Mn content should be less than 3.50%.
  • the Mn content is preferably less than 3.25%, more preferably less than 3.00%.
  • P is an element contained in steel as an impurity, and is an element that segregates at grain boundaries to embrittle the steel. For this reason, the P content is preferably as small as possible and may even be 0%, but the P content is set to 0.100% or less in consideration of the P removal time and cost.
  • the P content is preferably 0.020% or less, more preferably 0.015% or less.
  • S is an element contained in steel as an impurity, and is an element that forms sulfide-based inclusions and deteriorates bendability. For this reason, the S content is preferably as small as possible, even 0%, but the S content is set to 0.010% or less in consideration of the S removal time and cost.
  • the S content is preferably 0.005% or less, more preferably 0.003% or less, still more preferably 0.001% or less.
  • Al 0.100% or less
  • the Al content is set to 0.100% or less.
  • the Al content is preferably 0.050% or less, more preferably 0.040% or less, still more preferably 0.030% or less.
  • Al is an element that has the effect of deoxidizing molten steel.
  • the Al content may be 0%, but Al is contained for the purpose of deoxidizing.
  • the Al content is preferably 0.005% or more, more preferably 0.010% or more, in order to ensure deoxidation.
  • Al, like Si has the effect of increasing the stability of austenite, and is an effective element for obtaining the above metal structure.
  • N is an element contained in steel as an impurity, and is an element that forms coarse precipitates and deteriorates bendability. Therefore, the N content should be 0.0100% or less.
  • the N content is preferably 0.0060% or less, more preferably 0.0050% or less.
  • N content is preferably as small as possible and may be 0%.
  • the steel sheet according to the present embodiment may contain the above elements, and the balance may be Fe and impurities, but one or more of the following elements that affect strength and bendability as optional elements may further contain. However, since it is not always necessary to contain these elements, the lower limit is 0%.
  • Ti, Nb, V, and Cu are elements that act to improve the strength of the steel sheet by precipitation hardening. Therefore, these elements may be contained.
  • the more preferable Ti content and Nb content are each 0.005% or more, and the more preferable V content and Cu content are each 0.05% or more. It is not essential to obtain the above effects.
  • the Ti content is less than 0.050%, the Nb content is less than 0.050%, the V content is 0.50% or less, and the Cu content is 1.00% or less.
  • the Ti content is preferably less than 0.030%, more preferably less than 0.020%.
  • the Nb content is preferably less than 0.030%, more preferably less than 0.020%.
  • the V content is preferably 0.30% or less.
  • the Cu content is preferably 0.50% or less.
  • Ni, Cr, Mo, and B are elements that improve the hardenability of steel and contribute to high strength, and are effective elements for obtaining the metal structure described above. Therefore, these elements may be contained.
  • the Ni content, the Cr content, and the Mo content are respectively 0.01% or more and/or the B content is 0.0001% or more. More preferably, the Ni content, Cr content and Mo content are each 0.05% or more, and the B content is 0.0010% or more.
  • the Ni content and Cr content should each be 1.00% or less, the Mo content should be 0.50% or less, and the B content should be 0.0100% or less.
  • the Ni content and Cr content are preferably 0.50% or less, the Mo content is preferably 0.20% or less, and the B content is preferably 0.0030% or less.
  • Ca 0% or more, 0.0100% or less] [Mg: 0% or more, 0.0100% or less] [REM: 0% or more, 0.0500% or less] [Bi: 0% or more, 0.050% or less]
  • Mg and REM are elements that have the effect of improving strength and bendability by adjusting the shape of inclusions.
  • Bi is an element that has the effect of improving the strength and bendability by refining the solidified structure. Therefore, these elements may be contained.
  • the Ca content and the Mg content are each 0.0001% or more, and the REM content and the Bi content are each 0.005% or more.
  • the Ca content and Mg content are each 0.0008% or more, and the REM content and Bi content are each 0.007% or more. It is not essential to obtain the above effects. Therefore, there is no particular need to limit the lower limits of Ca content, Mg content, Sb content, Zr content and REM content, and their lower limits are 0%. On the other hand, even if these elements are excessively contained, the effects of the above actions become saturated and uneconomical. Therefore, even when they are contained, the Ca content is 0.0100% or less, the Mg content is 0.0100% or less, the REM content is 0.0500% or less, and the Bi content is 0.050% or less.
  • the Ca content is 0.0020% or less
  • the Mg content is 0.0020% or less
  • the REM content is 0.0020% or less
  • the Bi content is 0.010% or less.
  • REM means rare earth elements and is a general term for a total of 17 elements of Sc, Y and lanthanoids, and the REM content is the total content of these elements.
  • the chemical composition of the steel sheet according to this embodiment may be measured by a general method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) for chips according to JIS G 1201:2014. In this case, the chemical composition is the average content over the entire plate thickness. C and S, which cannot be measured by ICP-AES, can be measured using the combustion-infrared absorption method, and N can be measured using the inert gas fusion-thermal conductivity method.
  • the chemical composition may be analyzed after removing the film by mechanical grinding or the like. When the film is a plated layer, it may be removed by dissolving the plated layer in an acid solution containing an inhibitor for suppressing corrosion of the steel sheet.
  • the metal structure of the steel sheet according to this embodiment will be described.
  • the structure fraction is represented by the volume ratio. Therefore, "%" means “% by volume” unless otherwise specified.
  • the reference surface of the 1/4 depth position means the surface of the base steel sheet excluding the coating layer (hot-dip galvanized layer, alloyed hot-dip galvanized layer) in the case of a plated steel sheet. .
  • the steel sheet (including cold-rolled steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet) according to the present embodiment has a metal structure (micro structure) is retained austenite: more than 1.0% and less than 10.0%, tempered martensite: 80.0% or more, ferrite and bainite: 0% or more and 15.0% or less in total, martensite: 0% or more , 3.0% or less.
  • a metal structure micro structure
  • is retained austenite more than 1.0% and less than 10.0%
  • tempered martensite 80.0% or more
  • ferrite and bainite 0% or more and 15.0% or less in total
  • martensite 0% or more , 3.0% or less.
  • the volume fraction of retained austenite is set to more than 1.0%.
  • the volume fraction of retained austenite is preferably over 1.5%, more preferably over 2.0%.
  • the volume fraction of retained austenite is set to less than 10.0%.
  • the volume fraction of retained austenite is preferably less than 8.0%, more preferably less than 7.0%.
  • Tempered martensite like martensite (so-called fresh martensite), is an aggregate of lath-like crystal grains. On the other hand, unlike martensite, it is a hard structure containing fine iron-based carbides inside due to tempering. Tempered martensite is obtained by tempering martensite generated by cooling after annealing by heat treatment or the like. Tempered martensite is a less brittle and ductile structure than martensite.
  • the volume fraction of tempered martensite is set to 80.0% or more in order to improve strength, bendability, and hydrogen embrittlement resistance. The volume ratio is preferably 85.0% or more. The volume fraction of tempered martensite is less than 99.0%.
  • Ferrite and bainite 0% or more and 15.0% or less in total
  • Ferrite is a soft phase formed by dual-phase annealing or slow cooling after holding in the annealing process. Ferrite improves the ductility of a steel sheet when mixed with a hard phase such as martensite, but in order to achieve a high strength of 1310 MPa or more, it is necessary to limit the volume fraction of ferrite.
  • bainite is a phase generated by holding the steel at 350° C. or higher and 450° C. or lower for a certain period of time during the cooling process after holding at the annealing temperature. Since bainite is softer than martensite, it has the effect of improving ductility.
  • the total volume fraction of ferrite and bainite is set to 15.0% or less. Preferably, it is 10.0% or less. Since ferrite and bainite may not be included, the lower limit is 0%. Further, the volume ratio of each of ferrite and bainite is not limited.
  • Martensite (fresh martensite) is an aggregate of lath-like crystal grains generated by transformation from austenite during final cooling. Martensite is hard and brittle, and tends to act as crack initiation points during deformation. Therefore, the volume fraction of martensite is set to 3.0% or less. The volume fraction of martensite is preferably 2.0% or less, more preferably 1.0% or less. The lower limit is 0% because martensite may not be included.
  • the metal structure at the 1/4 depth position may contain pearlite as a residual structure.
  • pearlite is a structure having cementite in the structure and consumes C (carbon) in steel, which contributes to improvement in strength. Therefore, if the pearlite volume fraction exceeds 5.0%, the strength of the steel sheet is lowered. Therefore, the volume ratio of pearlite is set to 5.0% or less.
  • the volume fraction of perlite is preferably 3.0% or less, more preferably 1.0% or less.
  • the volume fraction of each phase in the metal structure at the quarter depth position of the steel sheet according to this embodiment is measured as follows.
  • the volume fraction of ferrite, bainite, martensite, tempered martensite, and pearlite was determined by taking a test piece from an arbitrary position in the rolling direction and width direction of the steel plate, Parallel cross section) is polished, and the metal structure revealed by nital etching at 1/4 depth position (a range of 1/8 to 3/8 of the plate thickness from the surface is acceptable), SEM Observe using In the SEM observation, 5 visual fields of 30 ⁇ m ⁇ 50 ⁇ m are observed at a magnification of 3000 times, the area ratio of each phase is measured from the observed images, and the average value is calculated. In the steel sheet according to the present embodiment, since the area ratio of the longitudinal section parallel to the rolling direction can be regarded as equal to the volume ratio, the area ratio obtained by structural observation is used as each volume ratio.
  • the area where the lower structure does not appear and the brightness is low is defined as ferrite.
  • the region where the substructure does not appear and the brightness is high is assumed to be martensite or retained austenite.
  • the region where the substructure is exposed is assumed to be tempered martensite or bainite.
  • Bainite and tempered martensite can also be distinguished by careful observation of intragranular carbides.
  • tempered martensite is composed of martensite laths and cementite generated inside the laths.
  • cementite constituting tempered martensite has a plurality of variants.
  • Bainite is classified into upper bainite and lower bainite. Since the upper bainite is composed of lath-shaped bainitic ferrite and cementite generated at the lath interface, it can be easily distinguished from tempered martensite.
  • the lower bainite is composed of lath-like bainitic ferrite and cementite generated inside the lath.
  • the bainitic ferrite and cementite have one type of crystal orientation relationship unlike the tempered martensite, and the cementite constituting the lower bainite has the same variant. Therefore, lower bainite and tempered martensite can be distinguished based on the cementite variant.
  • martensite and retained austenite cannot be clearly distinguished by SEM observation. Therefore, the volume fraction of martensite is calculated by subtracting the volume fraction of retained austenite calculated by the method described later from the volume fraction of the structure determined to be martensite or retained austenite.
  • the volume fraction of retained austenite is obtained by taking a test piece from an arbitrary position on the steel plate, chemically polishing the rolled surface from the steel plate surface to a position 1/4 of the plate thickness (1/4 depth position), and measuring ferrite with MoK ⁇ rays. are quantified from the (200), (210) integrated intensities of and the (200), (220), and (311) integrated intensities of austenite.
  • the average crystal grain size of the first crystal grain counted from the surface in the plate thickness direction when viewed from a cross section parallel to the plate thickness direction is 20.0 ⁇ m or less, and the average crystal grain when the surface is viewed in plan diameter of 30.0 ⁇ m or less]
  • Bendability is affected by the occurrence of cracks in the outermost layer of the steel sheet. Therefore, the bendability is improved because the surface layer has a fine uniform structure.
  • bendability is improved by making the first crystal grain counted from the surface in the plate thickness direction, that is, the crystal grain in the outermost layer, particularly fine. Ta.
  • the average crystal grain size when viewed from a cross section parallel to the plate thickness direction of the crystal grains in the outermost layer is 20.0 ⁇ m or less, and the average crystal grain size when the surface is viewed in plan is 30.0 ⁇ m or less. do.
  • the crystal grains in the outermost layer are not limited to any phase, but are often ferrite (including bainitic ferrite) due to decarburization or the like. In order to refine the crystal grains in the outermost layer, it is necessary to promote the austenite transformation while suppressing decarburization of the surface layer by the manufacturing method described later, and to form an internal oxide of Si, and by this internal oxide It is effective to utilize the pinning effect.
  • the surface is the surface of a cold-rolled steel sheet that does not have a coating layer, and the surface of the base steel sheet excluding the coating layer in the case of a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet. It means the surface (which can also be said to be the interface between the base steel sheet and the plating layer).
  • the surface layer portion there were cases where the grain size at a position several tens of ⁇ m from the surface layer was controlled, but as a result of examination by the present inventors, the crystal grains near the surface layer (not the outermost layer) were fine. Also, only the crystal grains in the outermost layer are coarsened, and the bendability and hydrogen embrittlement resistance may be deteriorated.
  • the grain size of the crystal grains in the outermost layer is specified.
  • both the average crystal grain size when viewed from a cross section parallel to the plate thickness direction and the average crystal grain size when viewed from the surface may be coarsened, but one of them may be coarsened. It may coarsen a lot, but the other may not coarsen so much. Therefore, it is necessary to simultaneously satisfy both the average crystal grain size when viewed from a cross section parallel to the plate thickness direction and the average crystal grain size when the surface is viewed from above.
  • the average crystal grain size of the crystal grains in the outermost layer when viewed from a cross section parallel to the plate thickness direction and the average crystal grain size when the surface is viewed from above are obtained by the following methods.
  • the average crystal grain size when viewed from a cross section parallel to the thickness direction is 100 ⁇ m in the thickness direction from the surface and 100 ⁇ m in the longitudinal direction by cutting and polishing a cross section (longitudinal cross section) parallel to the rolling direction and parallel to the thickness direction.
  • EBSD Electro Back Scattering Diffraction
  • Orientation analysis is performed using TSL OIM Analysis, which is software attached to EBSD, and an orientation difference of 5° or more from an adjacent measurement point is defined as a grain boundary, and the average diameter of crystal grains in the outermost layer is obtained.
  • the crystal grain size in plan view of the surface is measured by EBSD in one or more fields of view in a range of 500 ⁇ m in the longitudinal direction and 500 ⁇ m in the width direction, and the average diameter of the crystal grains is determined using TSL OIM Analysis in the same manner as above. demand.
  • the object to be measured is a plated steel sheet, the above measurement is performed after peeling off the plated layer with hydrochloric acid or the like.
  • a tensile strength (TS) of 1310 MPa or more is targeted as a strength that contributes to weight reduction of automobile bodies.
  • the strength of the steel sheet is preferably 1400 MPa or more, more preferably 1470 MPa or more.
  • the uniform elongation (uEl) is targeted to be 4.0% or more.
  • Uniform elongation is preferably 4.5% or more, more preferably 5.0% or more, in order to improve formability.
  • the target ratio (R/t) of the limit bending R in 90° V-bending and the plate thickness t is 5.0 or less.
  • (R/t) is preferably 4.0 or less, more preferably 3.0 or less, in order to improve moldability.
  • Tensile strength (TS) and uniform elongation (uEl) are determined by taking a JIS No. 5 tensile test piece from a steel plate in the direction perpendicular to the rolling direction and performing a tensile test according to JIS Z 2241:2011.
  • a 90° V bending die is used to change the radius R at 0.5 mm pitches to find the minimum bending radius R that does not cause cracking, and divide it by the plate thickness t. demand.
  • the plate thickness of the steel plate according to the present embodiment is not limited, but is preferably 0.8 to 2.6 mm in consideration of products to which it is assumed to be applied.
  • the steel sheet according to this embodiment may have a hot-dip galvanized layer on its surface. Corrosion resistance is improved by providing a plating layer on the surface. Steel sheets for automobiles may not be thinned to a certain thickness or less even if they are strengthened due to concerns about perforation due to corrosion. One of the purposes of increasing the strength of steel sheets is to reduce the weight by making them thinner. Therefore, even if a high-strength steel sheet is developed, its application is limited if the corrosion resistance is low. As a method for solving these problems, it is conceivable to apply a coating such as hot dip galvanizing to the steel sheet, which has high corrosion resistance.
  • the steel sheet according to the present embodiment can be hot-dip galvanized because the steel sheet components are controlled as described above.
  • the hot dip galvanized layer may be an alloyed hot dip galvanized layer.
  • the steel plate according to this embodiment can be manufactured by a manufacturing method including the following steps (I) to (VII).
  • (I) A cast slab having a predetermined chemical composition is heated and hot-rolled under the conditions that the rolling temperature FT of the final stage is 960 ° C. or less and the rolling reduction is 18% or more. Heat to obtain a hot-rolled steel sheet.
  • Inter-rolling step (II) Coiling step of winding the hot-rolled steel sheet at a temperature of [Si] ⁇ 200 + 500 ° C. or less
  • the hot-rolled steel sheet after the winding step is descaled, Cold-rolling step (IV) for cold-rolling to form a cold-rolled steel sheet.
  • the cold-rolled steel sheet after the bending-unbending process (V) bending-unbending process has a dew point of ⁇ 20° C. or higher and 20° C. or lower and contains 1.0% by volume or more and 20% by volume or less of hydrogen.
  • the cold-rolled steel sheet after the post-annealing cooling step (VII) cooling to a temperature of 50 ° C.
  • each step is performed as described above. must be satisfied at the same time.
  • grains are refined in the hot rolling process, carbides are finely dispersed in the coiling process, and cold rolling is performed at a cumulative reduction rate of 60% or less, the surface layer in the annealing process Decarburization is sufficiently suppressed in the part.
  • the inner oxide of Si is formed in the surface layer portion by the annealing process, so that the pinning effect of the inner oxide suppresses the coarsening of the crystal grains in the outermost layer. be. That is, since each process affects the conditions of other processes, it is important to set the conditions throughout the process.
  • Hot rolling process a cast slab having the same chemical composition as the steel sheet according to the present embodiment described above is heated and hot rolled to obtain a hot rolled steel sheet.
  • the slab When the temperature of the cast slab is high, the slab may be subjected to hot rolling as it is without cooling to near room temperature.
  • the slab heating conditions in hot rolling are not limited, but heating to 1100° C. or higher is preferable. If the heating temperature is less than 1100°C, homogenization of the material tends to be insufficient. Although the upper limit is not limited, it may be 1350° C. or less from the viewpoint of economic rationality.
  • the rolling temperature (FT) at the final finishing stage during hot rolling is 960° C. or less, and the rolling reduction at the final stage is 18% or more.
  • the rolling reduction and the rolling reduction in the final stage By setting the rolling reduction and the rolling reduction in the final stage as described above, it is possible to refine the crystal grains and to finely disperse the carbides in the next winding step. With such a structure, decarburization is suppressed in the surface layer portion in the subsequent annealing step. If the rolling temperature (FT) at the final stage exceeds 960°C or the rolling reduction at the final stage is less than 18%, sufficient effects cannot be obtained. Since the rolling load increases as the rolling temperature decreases, the rolling temperature in the final stage is preferably 800° C. or higher. Since the rolling load increases as the rolling reduction increases, the rolling reduction at the final stage is preferably 30% or less.
  • the chemical composition of the cast slab should be the same as the chemical composition of the intended cold-rolled steel sheet.
  • the method of manufacturing the cast slab is not limited. From the viewpoint of productivity, continuous casting is preferable, but ingot casting or thin slab casting may also be used.
  • the heating step may be omitted if the steel slab obtained by continuous casting can be subjected to the hot rolling step at a sufficiently high temperature.
  • the steel sheet (hot rolled steel sheet) after the hot rolling process is CT ⁇ [Si] x 200 + 500 (where the coiling temperature is CT and the Si content in mass% of the steel sheet is [Si]. °C) at a winding temperature CT.
  • CT the coiling temperature
  • °C the cooling conditions up to the coiling temperature after hot rolling.
  • the winding temperature is set to [Si] ⁇ 200+500 (° C.) or less. This can suppress the formation of a Si depleted layer.
  • the inner oxide of Si cannot be formed, and the pinning effect of the inner oxide cannot be obtained.
  • it is effective to suppress the formation of the Si-depleted layer.
  • the carbides can be precipitated in a uniform and finely dispersed state. If the winding temperature exceeds [Si] ⁇ 200+500 (° C.), the above effect cannot be sufficiently obtained.
  • the steel sheet (hot-rolled steel sheet) after the coiling process is descaled by pickling or the like by a known method if necessary, and then cold-rolled at a reduction rate (cumulative reduction rate) of 60% or less. It is rolled into a cold-rolled steel sheet.
  • a high rolling reduction in cold rolling promotes recrystallization during annealing, making it difficult for ⁇ transformation to occur in the surface layer portion during the annealing process. In this case, the crystal grains of the surface layer portion are coarsened by annealing. Therefore, the draft of cold rolling is set to 60% or less.
  • the surface of the steel sheet may be further ground by a brush or the like to a depth of about 0.1 ⁇ m to 5.0 ⁇ m. Grinding produces the effect of further miniaturizing the crystal grains of the outermost layer due to grinding strain.
  • the cold-rolled steel sheet after the cold-rolling process may be subjected to treatment such as degreasing according to a known method, if necessary.
  • the steel sheet (cold-rolled steel sheet) after the cold rolling process is heated to a temperature of 650 ° C. or higher and 800 ° C. or lower so that the average heating rate up to 650 ° C. is 3.0 ° C./sec or higher.
  • the bending angle is 90 degrees or more. .
  • a roll with a radius of 850 mm or less (along the roll), bend it at a bending angle of 90 degrees or more so that the front surface is inside, and then bend it at a bending angle of 90 degrees or more so that the back surface is inside.
  • a bend angle By bending at a bend angle, a defined bend-back bend can be achieved.
  • This bending-bending back applies strain to the surface layer during annealing heating to promote austenite transformation and suppress decarburization, thereby suppressing the surface layer from becoming a ferrite single phase that tends to coarsen grains.
  • the crystal grains of the surface layer and the surface are refined, and high bendability and hydrogen embrittlement resistance are obtained.
  • the strain introduced into the surface layer becomes insufficient and the crystal grains of the surface layer and surface become coarse grains, resulting in high bendability and hydrogen resistance. Embrittlement properties are not obtained.
  • the bending-unbending temperature is less than 650° C., the yield strength of the steel material is high, so elastic deformation occurs and plastic deformation does not occur, and the above effects cannot be obtained sufficiently.
  • the temperature exceeds 800° C., the ferrite grains become coarse before the bending-unbending process, so that the effect of grain refining cannot be obtained. If the average heating rate up to 650° C.
  • the average heating rate up to 650° C. is set to 3.0° C./second or more.
  • the average heating rate is preferably 5.0° C./second or higher, more preferably 7.0° C./second or higher.
  • the bending-unbending tension is preferably 6.0 kN or more, preferably 8.0 kN or more, in order to reliably impart strain to the surface layer.
  • the steel sheet (cold-rolled steel sheet) after the bending-unbending process is heated to a dew point of ⁇ 20° C. or higher and 20° C. or lower and 1.0% by volume or higher and 20.0% by volume or lower as it is without cooling once.
  • the steel is heated to an annealing temperature of 820° C. or higher in a nitrogen-hydrogen mixed atmosphere containing hydrogen at a temperature of 820.degree.
  • the atmosphere during soaking is not limited, but may be the same atmosphere as during heating.
  • the soaking temperature is set to 820° C. or higher.
  • the soaking temperature is preferably 830° C. or higher.
  • the higher the soaking temperature the easier it is to secure the bendability, but if the soaking temperature is too high, the manufacturing cost will increase, so the soaking temperature is preferably 900° C. or less.
  • the soaking temperature is more preferably 880° C. or lower, even more preferably 870° C. or lower.
  • the soaking time is preferably 30 to 450 seconds. If the soaking time is less than 30 seconds, austenitization may not proceed sufficiently. Therefore, the soaking time is preferably 30 seconds or longer. On the other hand, if the soaking time exceeds 450 seconds, the productivity decreases, so the soaking time is preferably 450 seconds or less.
  • the cold-rolled steel sheet after the annealing step is cooled at an average cooling rate in the ferrite transformation temperature range of 700°C to 600°C and the bainite transformation temperature range of 450°C to 350°C in order to obtain the metal structure as described above. is cooled to a temperature of 50° C. or more and 250° C. or less so that the temperature is 5° C./sec or more. If the cooling rate in the above temperature range is slow, the volume ratios of ferrite and bainite at the 1/4 depth position increase, and the volume ratio of tempered martensite decreases.
  • the average cooling rate from 700° C. to 600° C. and from 450° C. to 350° C. should be 5° C./second or more.
  • the average cooling rate is preferably 10° C./second or higher, more preferably 20° C./second or higher.
  • the cooling stop temperature and holding temperature are set to 50°C or higher and 250°C or lower. If the cooling stop temperature is high, the amount of (untempered) martensite increases in the subsequent cooling after the tempering process, and bendability and hydrogen embrittlement resistance deteriorate. Therefore, the cooling stop temperature is set to 250° C. or less.
  • the cooling stop temperature is preferably 220° C.
  • the cooling stop temperature should be 50° C. or higher.
  • the cooling stop temperature is preferably 75°C or higher, more preferably 100°C or higher.
  • Hot dip galvanizing [Alloying]
  • the steel sheet temperature is more than 425 ° C. and less than 600 ° C.
  • plating at an equivalent temperature Hot-dip galvanization may be applied by immersion in a bath.
  • the composition of the plating bath may be within a known range.
  • the hot-dip galvanizing step is followed by, for example, an alloying heat treatment that heats to more than 450 ° C. and less than 600 ° C. may be applied and the plating may be alloyed hot-dip galvanizing.
  • the cold-rolled steel sheet after the post-annealing cooling step is cooled to a temperature of 50°C or higher and 250°C or lower, whereby untransformed austenite transforms into martensite.
  • the cold-rolled steel sheet is tempered at a temperature of 200° C. or higher and 350° C. or lower for 1 second or longer to obtain a structure mainly composed of tempered martensite at the 1 ⁇ 4 depth position.
  • the hot-dip galvanizing process and/or the alloying process are performed, the cold-rolled steel sheet after the hot-dip galvanizing process or the cold-rolled steel sheet after the hot-dip galvanizing process and the alloying process is heated to 50 ° C or higher and 250 ° C or lower.
  • tempering is performed at a temperature of 200° C. or more and 350° C. or less for 1 second or longer. If the tempering temperature exceeds 350°C, the strength of the steel sheet will decrease. Therefore, the tempering temperature should be 350° C. or lower.
  • the tempering temperature is preferably 325°C or lower, more preferably 300°C or lower.
  • the tempering temperature should be 200° C. or higher.
  • the tempering temperature is preferably 220°C or higher, more preferably 250°C or higher.
  • the tempering time may be 1 second or longer, but is preferably 5 seconds or longer, more preferably 10 seconds or longer, for stable tempering.
  • tempering for a long time may reduce the strength of the steel sheet, so the tempering time is preferably 750 seconds or less, more preferably 500 seconds or less.
  • the cold-rolled steel sheet after the tempering step may be subjected to skin-pass rolling after being cooled to a temperature at which skin-pass rolling is possible.
  • the cooling after annealing is water spray cooling, dip cooling, steam-water cooling, etc.
  • skin-pass rolling is applied to remove the oxide film formed by contact with water at high temperature and to improve the chemical conversion treatability of the steel sheet.
  • the term "trace amount” refers to a plating amount of about 3 to 30 mg/m 2 on the surface of the steel sheet.
  • Skin-pass rolling can shape the steel sheet.
  • the elongation of skin pass rolling is preferably 0.05% or more. More preferably, it is 0.10% or more.
  • the elongation rate is preferably 1.00% or less.
  • the elongation rate is more preferably 0.75% or less, more preferably 0.50% or less.
  • a slab having the chemical composition shown in Table 1 was cast.
  • the cast slab was heated to 1100° C. or higher, hot rolled to 2.8 mm, coiled and then cooled to room temperature.
  • the hot rolling conditions and coiling temperature were as shown in Tables 2A and 2B.
  • the scale is removed by pickling, and after cold rolling to 1.4 mm, the temperature range of 650 ° C. or higher and 800 ° C. or lower so that the average heating rate up to 650 ° C. is the rate shown in Table 2A and Table 2B.
  • CR is a cold-rolled steel sheet that is not galvanized
  • GI is a hot-dip galvanized steel sheet
  • GA is an alloyed hot-dip galvanized steel sheet.
  • the alloyed hot-dip galvanized steel sheet was hot-dip galvanized at about 35 to 65 g/m 2 at a temperature above 450°C and below 600°C, and then alloyed at a temperature above 450°C and below 600°C.
  • a test piece for SEM observation was taken as described above, and after polishing a longitudinal section parallel to the rolling direction, the metal structure was observed at a position of 1/4 depth, and image processing was performed to obtain the following: The volume fraction of each tissue was measured.
  • a test piece for X-ray diffraction was collected, and the volume fraction of retained austenite was measured by X-ray diffraction on the surface chemically polished to the 1/4 depth position from the surface layer as described above. As a result, the volume ratios of ferrite, bainite, martensite, tempered martensite, pearlite, and retained austenite were obtained.
  • TS tensile strength
  • uEl uniform elongation
  • R/t hydrogen embrittlement resistance
  • Tensile strength (TS) and uniform elongation (uEl) are obtained by taking JIS No. 5 tensile test pieces from cold-rolled steel sheets in the direction perpendicular to the rolling direction and performing tensile tests according to JIS Z 2241:2011. asked.
  • the following test was performed as an evaluation of hydrogen embrittlement resistance. That is, a test piece with mechanically ground end faces is bent into a U-shape by a push bending method to prepare a U-bend test piece with the minimum bending radius R that can be processed. After being deformed, the steel plate was immersed in hydrochloric acid of pH 1 to conduct a delayed fracture acceleration test in which hydrogen penetrated into the steel plate. A steel sheet in which cracks did not occur even after 100 hours of immersion was evaluated as a steel sheet having good ( ⁇ : OK) delayed fracture resistance, and a steel sheet in which cracks occurred was evaluated as defective (x: NG). In order to remove the influence of plating, the plating layer was removed with hydrochloric acid containing an inhibitor before the test, and then the hydrogen embrittlement resistance was evaluated.
  • Table 4 shows the results of each mechanical property.
  • the steels of the present invention (test numbers 3, 10, 17 to 35) all have TS of 1310 MPa or more, uEl of 4.0% or more, and (R/t) of 5.0 or less. and had good resistance to hydrogen embrittlement.
  • either the chemical composition or the manufacturing method is outside the scope of the present invention, and the metal structure at the 1/4 depth position and the average grain size of the crystal grains in the outermost layer are outside the scope of the present invention.
  • any one or more of tensile strength, uniform elongation, R/t, and hydrogen embrittlement resistance did not achieve the target.
  • the present invention it is possible to provide a cold-rolled steel sheet having excellent formability and excellent resistance to hydrogen embrittlement.
  • this steel sheet When this steel sheet is used as a steel sheet for automobiles, it contributes to weight reduction of the vehicle body, and therefore has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

この冷延鋼板は、所定の化学組成を有し、表面から板厚の1/4の位置である1/4深さ位置での金属組織が、体積率で、残留オーステナイト:1.0%超、10.0%未満、焼戻しマルテンサイト:80.0%以上、フェライトおよびベイナイト:合計で0%以上、15.0%以下、およびマルテンサイト:0%以上、3.0%以下、を含み、表面から板厚方向に数えて1つ目の結晶粒の、圧延方向に平行でかつ前記板厚方向に平行な断面から見た際の平均結晶粒径が20.0μm以下で、前記表面を平面視した際の平均結晶粒径が30.0μm以下である。

Description

冷延鋼板
 本発明は冷延鋼板に関する。
 本願は、2022年02月09日に、日本に出願された特願2022-018404号に基づき優先権を主張し、その内容をここに援用する。
 産業技術分野が高度に分業化した今日、各技術分野において用いられる材料には、特殊かつ高度な性能が要求されている。特に、自動車用鋼板に関しては、地球環境への配慮から、車体を軽量化して燃費を向上させるために、板厚が薄く、成形性に優れる高張力冷延鋼板の需要が著しく高まっている。自動車用鋼板の中でも特に車体骨格部品に使用される冷延鋼板については、高い強度が要求されるようになり、さらに適用拡大に向けた高い成形性が要求されている。
 また、自動車部品は、プレス等によって成形されるので、高強度であっても、成形性(例えば均一伸びや曲げ性)に優れることが求められる。
 また、高強度化に伴い、水素脆化感受性が高まるため、耐水素脆化特性に優れることも重要となる。
 そのため、近年、自動車用鋼板として必要とされる特性として、引張強さ(TS)が1310MPa以上、均一伸びが4.0%以上、90°V曲げでの限界曲げ(最小曲げ半径)Rと板厚との比であるR/tが5.0以下、さらに耐水素脆化特性に優れること、が例示される。
 均一伸びなどの延性を確保するためにはフェライトを含む組織とすることが有効であるものの、フェライトを含む組織で1310MPa以上の強度を得るためには、第二相を硬くする必要がある。しかしながら、硬質な第二相は穴広げ性を劣化させる。
 高強度鋼板の穴広げ性を向上させる技術として、焼戻しマルテンサイトを主相とする鋼板が提案されている(例えば、特許文献1及び2、参照)。特許文献1及び2では、ミクロ組織を焼戻しマルテンサイト単相の組織とすることで穴広げ性に優れることが示されている。
 しかしながら、特許文献1の発明においては、引張強さが1310MPa未満と低い。そのため、より高強度化を目指す場合には、それに伴って劣化する加工性をより向上させる必要がある。また、特許文献2の発明においては、1310MPa以上の高強度を達成できるものの、焼き入れ時の冷却において室温付近まで冷却するので、残留オーステナイトの体積率が少なく、高い均一伸びが得られないという課題がある。
 また、特許文献3には、高強度化と高い成形性とを両立させる技術として、残留オーステナイトによるTRIP効果を利用した鋼板が提案されている。
 しかしながら、特許文献3の鋼板ではフェライト相を有するために1310MPa以上の高強度が得難く、組織内の強度差があるために穴広げ成形性に劣る。
 また、特許文献4には、表面から板厚の1/4の位置の組織(金属組織)を、残留オーステナイトを含む焼戻しマルテンサイト主体の組織とした上で、焼鈍時の露点制御による表層の軟化及び表層部の硬質相の微細化によって、引張強さ(TS)が1310MPa以上、均一伸びが5.0%以上、90°V曲げでの限界曲げ半径Rと板厚tの比(R/t)が5.0以下であり、さらに耐水素脆化特性に優れる高強度冷延鋼板が得られると記載されている。
 しかしながら、近年、更なる特性の向上、特に耐水素脆化特性の向上が求められている。
日本国特開2009-30091号公報 日本国特開2010-215958号公報 日本国特開2006-104532号公報 国際公開第2019/181950号
 上述の通り、近年、引張強さ(TS)が1310MPa以上の高強度を有する鋼板において、より高い成形性及び耐水素脆化特性を有する鋼板が求められている。
 本発明は、上記の問題点を解決するためになされたものであり、その課題は、高強度鋼板で課題となる成形性に優れ、かつ優れた耐水素脆化特性を有する冷延鋼板を提供することである。
 ここで、冷延鋼板には、表面にめっき層が形成されていない冷延鋼板だけでなく、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板を含む。
 本発明者らは、冷延鋼板の機械的特性に及ぼす化学組成、金属組織および製造条件の影響について詳細な調査を行った。その結果、金属組織を、残留オーステナイトを所定量以上含む焼戻しマルテンサイト主体の組織とした上で、最表面にある結晶粒の形状を制御することによって、強度と成形性と耐水素脆化特性とをいずれも高いレベルで得られることを見出した。
 本発明は上記の知見に鑑みてなされた。本発明の要旨は以下の通りである。
[1]本発明の一態様に係る冷延鋼板は、質量%で、C:0.140%超、0.400%未満、Si:1.00%未満、Mn:2.00%超、3.50%未満、P:0.100%以下、S:0.010%以下、Al:0.100%以下、N:0.0100%以下、Ti:0%以上、0.050%未満、Nb:0%以上、0.050%未満、V:0%以上、0.50%以下、Cu:0%以上、1.00%以下、Ni:0%以上、1.00%以下、Cr:0%以上、1.00%以下、Mo:0%以上、0.50%以下、B:0%以上、0.0100%以下、Ca:0%以上、0.0100%以下、Mg:0%以上、0.0100%以下、REM:0%以上、0.0500%以下、Bi:0%以上、0.050%以下、および残部:Feおよび不純物からなる化学組成を有し、表面から板厚の1/4の位置である1/4深さ位置での金属組織が、体積率で、残留オーステナイト:1.0%超、10.0%未満、焼戻しマルテンサイト:80.0%以上、フェライトおよびベイナイト:合計で0%以上、15.0%以下、およびマルテンサイト:0%以上、3.0%以下、を含み、表面から板厚方向に数えて1つ目の結晶粒の、圧延方向に平行でかつ前記板厚方向に平行な断面から見た際の平均結晶粒径が20.0μm以下で、前記表面を平面視した際の平均結晶粒径が30.0μm以下である。
[2][1]に記載の冷延鋼板引張強さが1310MPa以上、均一伸びが4.0%以上、90°V曲げでの限界曲げRと板厚との比であるR/tが5.0以下であってもよい。
[3][1]または[2]に記載の冷延鋼板は、前記化学組成が、質量%で、Ti:0.001%以上、0.050%未満、Nb:0.001%以上、0.050%未満、V:0.01%以上、0.50%以下、Cu:0.01%以上、1.00%以下、Ni:0.01%以上、1.00%以下、Cr:0.01%以上、1.00%以下、Mo:0.01%以上、0.50%以下、B:0.0001%以上、0.0100%以下、Ca:0.0001%以上、0.0100%以下、Mg:0.0001%以上、0.0100%以下、REM:0.0005%以上、0.0500%以下、およびBi:0.0005%以上、0.050%以下、から選択される1種または2種以上を含有してもよい。
[4][1]または[2]に記載の冷延鋼板は、前記表面に溶融亜鉛めっき層が形成されていてもよい。
[5][3]に記載の冷延鋼板は、前記表面に溶融亜鉛めっき層が形成されていてもよい。
[6][4]に記載の冷延鋼板は、前記溶融亜鉛めっき層は、合金化溶融亜鉛めっき層であってもよい。
[7][5]に記載の冷延鋼板は、前記溶融亜鉛めっき層は、合金化溶融亜鉛めっき層であってもよい。
 本発明の上記態様によれば、成形性に優れ、かつ優れた耐水素脆化特性を有する冷延鋼板を提供することができる。
 本発明の一実施形態に係る冷延鋼板(以下、単に本実施形態に係る鋼板という場合がある)における化学組成、金属組織、およびその鋼板を効率的、安定的かつ経済的に製造しうる製造方法における圧延、焼鈍条件等について以下に詳述する。
 本実施形態に係る鋼板は、めっき層を有しない冷延鋼板だけでなく、母材鋼板の表面に溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板、または母材鋼板の表面に合金化溶融亜鉛めっき層を備える合金化溶融亜鉛めっき鋼板を含み、以下に示す主要条件は溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板にも共通である。
<化学組成>
 まず、本実施形態に係る鋼板の化学組成について説明する。化学組成における各元素の含有量を示す「%」とは、断りがない限り、すべて質量%を意味する。
[C:0.140%超、0.400%未満]
 C含有量が0.140%以下では上記の金属組織を得ることが困難となり、目標とする引張強さが達成できなくなる。また、曲げ性が低下する。したがって、C含有量は0.140%超とする。C含有量は、好ましくは0.160%超、より好ましくは0.180%超である。
 一方、C含有量が0.400%以上では溶接性が劣化するとともに曲げ性が劣化する。また耐水素脆化特性も劣化する。したがって、C含有量は0.400%未満とする。C含有量は、好ましくは0.350%未満、より好ましくは、0.300%未満である。
[Si:1.00%未満]
 Si含有量が1.00%以上であると、焼鈍工程における加熱時のオーステナイト変態が遅くなり、十分にフェライトからオーステナイトへの変態が起こらない場合がある。この場合、焼鈍後に組織にフェライトが過剰に残存し、目標とする引張強さが達成できなくなるうえに曲げ性が劣化する。また、Si含有量が1.00%以上であると、鋼板の表面性状が劣化する。さらに、化成処理性およびめっき性が著しく劣化する。したがって、Si含有量は1.00%未満とする。
 Si含有量の下限は限定されず、0%でもよいが、Siは、鋼板の表層部において、内部酸化物を形成し、この内部酸化物によるピン止め効果によって、表層部の金属組織を微細化するために有効な元素である。また、Siは固溶強化により鋼板の強度を増大させるのに有用な元素である。また、Siはセメンタイトの生成を抑制するので、オーステナイト中へのCの濃化を促進させて、焼鈍後に残留オーステナイトを生成させるのに有効な元素である。これらの効果を得る場合、Si含有量を、0.01%以上とすることが好ましい。Si含有量は、より好ましくは0.05%以上、さらに好ましくは0.10%以上、一層好ましくは0.50%以上である。
[Mn:2.00%超、3.50%未満]
 Mnは、鋼の焼入性を向上させる作用を有し、上記の金属組織を得るのに有効な元素である。Mn含有量が2.00%以下では上記の金属組織を得ることが困難となる。また、この場合、十分な引張強さが得られなくなる。また、Mnは、内部酸化物を形成し、この内部酸化物によるピン止め効果によって、表層部の金属組織を微細化するために有効な元素である。これらの効果を得るため、Mn含有量は2.00%超とする。Mn含有量は、好ましくは2.20%超、より好ましくは2.50%超である。
 一方、Mn含有量が3.50%以上では、Mnの偏析により焼入性向上の効果が薄れるばかりか、素材コストの上昇を招く。したがって、Mn含有量は3.50%未満とする。Mn含有量は、好ましくは3.25%未満、より好ましくは3.00%未満である。
[P:0.100%以下]
 Pは、不純物として鋼中に含有される元素であり、粒界に偏析して鋼を脆化させる元素である。このため、P含有量は少ないほど好ましく0%でもよいが、Pの除去時間、コストも考慮してP含有量は0.100%以下とする。P含有量は、好ましくは0.020%以下であり、より好ましくは0.015%以下である。
[S:0.010%以下]
 Sは、不純物として鋼中に含有される元素であり、硫化物系介在物を形成して曲げ性を劣化させる元素である。このため、S含有量は少ないほど好ましく0%でもよいが、Sの除去時間、コストも考慮してS含有量は0.010%以下とする。S含有量は、好ましくは0.005%以下、より好ましくは0.003%以下、さらに好ましくは0.001%以下である。
[Al:0.100%以下]
 Al含有量が高すぎると、アルミナに起因する表面疵が発生しやすくなるばかりか、変態点が大きく上昇し、フェライトの体積率が多くなる。この場合、上記の金属組織を得ることが困難となり、十分な引張強さが得られなくなる。したがって、Al含有量は0.100%以下とする。Al含有量は、好ましくは0.050%以下、より好ましくは0.040%以下、さらに好ましくは0.030%以下である。
 一方、Alは、溶鋼を脱酸する作用を有する元素である。本実施形態に係る鋼板においては、Alと同様に脱酸作用を有するSiを含有させるため、Alは必ずしも含有させる必要はなくAl含有量は0%でもよいが、脱酸目的でAlを含有させる場合は、確実に脱酸するためにAl含有量は0.005%以上が好ましく、0.010%以上がさらに好ましい。また、Alは、Siと同様にオーステナイトの安定性を高める作用を有し、上記の金属組織を得るのに有効な元素であるので、この点で含有させても良い。
[N:0.0100%以下]
 Nは、不純物として鋼中に含有される元素であり、粗大な析出物を生成して曲げ性を劣化させる元素である。したがって、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0060%以下であり、より好ましくは0.0050%以下である。N含有量は少ないほど好ましく0%でもよい。
 本実施形態に係る鋼板は、上記の元素を含有し、残部がFe及び不純物であってもよいが、以下に列記する強度や曲げ性に影響する元素を任意元素として、1種または2種以上をさらに含有してもよい。しかしながら、これらの元素は必ずしも含有させる必要はないので、いずれもその下限は0%である。
[Ti:0%以上、0.050%未満]
[Nb:0%以上、0.050%未満]
[V:0%以上、0.50%以下]
[Cu:0%以上、1.00%以下]
 Ti、Nb、V、Cuは、析出硬化により鋼板の強度を向上させる作用を有する元素である。したがって、これらの元素を含有させてもよい。上記の効果を十分に得るためには、Ti含有量、Nb含有量を、それぞれ0.001%以上、V含有量、Cu含有量を、それぞれ0.01%以上とするのが好ましい。より好ましいTi含有量、Nb含有量は、それぞれ0.005%以上、より好ましいV含有量、Cu含有量は、それぞれ0.05%以上である。上記の効果を得ることは必須でない。このため、Ti含有量、Nb含有量、V含有量、Cu含有量の下限を特に制限する必要はなく、それらの下限は0%である。
 一方、これらの元素を過剰に含有させると、再結晶温度が上昇し、冷延鋼板の金属組織が不均一化し、曲げ性が損なわれる。したがって、含有させる場合でも、Ti含有量は0.050%未満、Nb含有量は0.050%未満、V含有量は0.50%以下、Cu含有量は1.00%以下とする。Ti含有量は好ましくは0.030%未満、より好ましくは0.020%未満である。Nb含有量は好ましくは0.030%未満、より好ましくは0.020%未満である。V含有量は好ましくは0.30%以下である。Cu含有量は好ましくは0.50%以下である。
[Ni:0%以上、1.00%以下]
[Cr:0%以上、1.00%以下]
[Mo:0%以上、0.50%以下]
[B:0%以上、0.0100%以下]
 Ni、Cr、MoおよびBは、鋼の焼入性を向上させ、高強度化に寄与する元素であり、上記の金属組織を得るのに有効な元素である。したがって、これらの元素を含有させてもよい。上記の効果を十分に得るためには、Ni含有量、Cr含有量、Mo含有量をそれぞれ、0.01%以上、及び/またはB含有量を0.0001%以上とすることが好ましい。より好ましくは、Ni含有量、Cr含有量、Mo含有量はそれぞれ0.05%以上であり、B含有量は0.0010%以上である。上記の効果を得ることは必須でない。このため、Ni含有量、Cr含有量、Mo含有量、B含有量の下限を特に制限する必要はなく、それらの下限は0%である。
 一方、これらの元素を過剰に含有させても上記作用による効果が飽和する上、不経済となる。したがって、含有させる場合でも、Ni含有量、Cr含有量はそれぞれ1.00%以下、Mo含有量は0.50%以下、B含有量は0.0100%以下とする。Ni含有量、Cr含有量は好ましくは0.50%以下であり、Mo含有量は好ましくは0.20%以下であり、B含有量は好ましくは0.0030%以下である。
[Ca:0%以上、0.0100%以下]
[Mg:0%以上、0.0100%以下]
[REM:0%以上、0.0500%以下]
[Bi:0%以上、0.050%以下]
 Ca、MgおよびREMは介在物の形状を調整することにより、強度や曲げ性を改善する作用を有する元素である。また、Biは凝固組織を微細化することにより、強度や曲げ性を改善する作用を有する元素である。したがって、これらの元素を含有させてもよい。上記の効果を十分に得るためには、Ca含有量およびMg含有量は、それぞれ0.0001%以上、REM含有量およびBi含有量は、それぞれ0.005%以上とすることが好ましい。より好ましくは、Ca含有量およびMg含有量はそれぞれ0.0008%以上、REM含有量およびBi含有量はそれぞれ0.007%以上である。上記の効果を得ることは必須でない。このため、Ca含有量、Mg含有量、Sb含有量、Zr含有量およびREM含有量の下限を特に制限する必要はなく、それらの下限は0%である。
 一方、これらの元素を過剰に含有させても上記作用による効果が飽和して不経済となる。したがって、含有させる場合でも、Ca含有量は0.0100%以下、Mg含有量は0.0100%以下、REM含有量は0.0500%以下、Bi含有量は0.050%以下とする。好ましくは、Ca含有量は0.0020%以下、Mg含有量は0.0020%以下、REM含有量は0.0020%以下、Bi含有量は0.010%以下である。REMとは希土類元素を意味し、Sc、Yおよびランタノイドの合計17元素の総称であり、REM含有量はこれらの元素の合計含有量である。
 本実施形態に係る鋼板の化学組成は、一般的な方法によって測定すればよい。例えば、JIS G 1201:2014に準じて切粉に対するICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。この場合、化学組成は、全板厚での平均含有量である。ICP-AESで測定できない、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
 鋼板が表面にめっき等の被膜を備える場合は、機械研削等により被膜を除去してから化学組成の分析を行えばよい。被膜がめっき層である場合には、鋼板の腐食を抑制するインヒビターを加えた酸溶液にめっき層を溶解することで除去しても良い。
<金属組織(ミクロ組織)>
 まず、本実施形態に係る鋼板の金属組織について説明する。
 本実施形態に係る鋼板の金属組織の説明において、組織分率は体積率で表す。従って、特に断りがなければ「%」は「体積%」を表す。本実施形態において、1/4深さ位置の基準となる表面とは、めっき鋼板の場合にはめっき層(溶融亜鉛めっき層、合金化溶融亜鉛めっき層)を除く母材鋼板の表面を意味する。
 本実施形態に係る鋼板(冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板を含む)は、1/4深さ位置(表面から板厚の1/4の位置)における金属組織(ミクロ組織)が、残留オーステナイト:1.0%超10.0%未満、焼戻しマルテンサイト:80.0%以上、フェライトおよびベイナイト:合計で0%以上、15.0%以下、マルテンサイト:0%以上、3.0%以下を含む。
[残留オーステナイト:1.0%超、10.0%未満]
 残留オーステナイトは、TRIP効果により延性を向上させ均一伸びの向上に寄与する。そのため、残留オーステナイトの体積率は、1.0%超とする。残留オーステナイトの体積率は、1.5%超が好ましく、2.0%超がより好ましい。
 一方、残留オーステナイトの体積率が過剰になると、残留オーステナイトの粒径が大きくなる。このような粒径の大きな残留オーステナイトは、変形後に粗大かつ硬質なマルテンサイトとなる。この場合、割れの起点が発生しやすくなり、曲げ性が劣化する。このため、残留オーステナイトの体積率は、10.0%未満とする。残留オーステナイトの体積率は、8.0%未満が好ましく、7.0%未満がより好ましい。
[焼戻しマルテンサイト:80.0%以上]
 焼戻しマルテンサイトはマルテンサイト(いわゆるフレッシュマルテンサイト)と同様にラス状の結晶粒の集合である。一方で、マルテンサイトとは異なり、焼戻しにより内部に微細な鉄系炭化物を含む硬質な組織である。焼戻しマルテンサイトは、焼鈍後の冷却等により生成したマルテンサイトを熱処理等により焼戻すことで得られる。
 焼戻しマルテンサイトは、マルテンサイトに比して、脆くなく、延性を有する組織である。本実施形態に係る鋼板では、強度、曲げ性、耐水素脆化特性を向上させるため、焼戻しマルテンサイトの体積率を80.0%以上とする。好ましくは体積率で85.0%以上である。焼戻しマルテンサイトの体積率は99.0%未満である。
[フェライトおよびベイナイト:合計で0%以上、15.0%以下]
 フェライトは、二相域焼鈍、もしくは焼鈍工程の保持後の緩冷却で生成する軟質な相である。フェライトは、マルテンサイトのような硬質相と混在する場合には鋼板の延性を向上させるが、1310MPa以上の高強度を達成するためには、フェライトの体積率を制限する必要がある。
 また、ベイナイトは焼鈍温度での保持後の冷却過程で、350℃以上、450℃以下に一定時間保持することで生成する相である。ベイナイトは、マルテンサイトに対して軟質であるので延性を向上させる効果があるが、1310MPa以上の高強度を達成するためには、上記のフェライト同様にその体積率を制限する必要がある。
 したがって、フェライトおよびベイナイトの体積率は、合計で15.0%以下とする。好ましくは10.0%以下である。フェライト、ベイナイトは含まれなくてもよいので、下限は0%である。また、フェライト、ベイナイトのそれぞれの体積率は限定されない。
[マルテンサイト:0%以上、3.0%以下]
 マルテンサイト(フレッシュマルテンサイト)は、最終冷却時にオーステナイトから変態することで生成する、ラス状の結晶粒の集合である。マルテンサイトは硬質で脆く、変形時の割れ起点となり易いので、マルテンサイトの体積率が多いと、曲げ性が劣化する。このため、マルテンサイトの体積率は3.0%以下とする。マルテンサイトの体積率は、2.0%以下が好ましく、1.0%以下がさらに好ましい。マルテンサイトは含まれなくてもよいので下限は0%である。
[残部組織]
 1/4深さ位置における金属組織では、上記の他に、残部組織として、パーライトを含んでもよい。しかしながら、パーライトは、組織内にセメンタイトを有する組織であり強度の向上に寄与する鋼中のC(炭素)を消費する。そのため、パーライト体積率が5.0%超であると、鋼板の強度が低下する。そのため、パーライトの体積率は、5.0%以下とする。パーライトの体積率は、好ましくは3.0%以下であり、より好ましくは1.0%以下である。
 本実施形態に係る鋼板の1/4深さ位置の金属組織における各相の体積率は、次のようにして測定する。
 すなわち、フェライト、ベイナイト、マルテンサイト、焼戻しマルテンサイト、パーライトの体積率は、鋼板の圧延方向、幅方向に対し任意の位置から試験片を採取し、圧延方向に平行な縦断面(板厚方向に平行な断面)を研磨し、1/4深さ位置(表面から板厚の1/8~3/8の範囲であれば許容される)において、ナイタールエッチングにより現出した金属組織を、SEMを用いて観察する。SEM観察では3000倍の倍率で30μm×50μmの視野を5視野観察し、観察された画像から、各相の面積率を測定し、その平均値を算出する。本実施形態に係る鋼板では、圧延方向に平行な縦断面の面積率は体積率と等しいとみなせるので、組織観察で得られた面積率をそれぞれの体積率とする。
 各相(組織)の面積率の測定に際し、下部組織が現出せず、かつ、輝度の低い領域をフェライトとする。また、下部組織が現出せず、かつ、輝度の高い領域をマルテンサイトまたは残留オーステナイトとする。また、下部組織が現出した領域を、焼戻しマルテンサイトまたはベイナイトとする。
 ベイナイトと焼戻しマルテンサイトとは、さらに粒内の炭化物を注意深く観察することにより区別することができる。
 具体的には、焼戻しマルテンサイトは、マルテンサイトラスと、ラス内部に生成したセメンタイトとから構成される。このとき、マルテンサイトラス及びセメンタイトの結晶方位関係は2種類以上存在するので、焼戻しマルテンサイトを構成するセメンタイトは複数のバリアントを持つ。
 ベイナイトは、上部ベイナイトと下部ベイナイトとに分類される。上部ベイナイトは、ラス状のベイニティックフェライトと、ラス界面に生成したセメンタイトから構成されるため、焼戻しマルテンサイトとは容易に区別できる。下部ベイナイトは、ラス状のベイニティックフェライトと、ラス内部に生成したセメンタイトから構成される。このとき、ベイニティックフェライト及びセメンタイトの結晶方位関係は、焼戻しマルテンサイトとは異なり1種類であり、下部ベイナイトを構成するセメンタイトは同一のバリアントを持つ。従って、下部ベイナイトと焼戻しマルテンサイトとは、セメンタイトのバリアントに基づいて区別できる。
 一方、マルテンサイトと残留オーステナイトとは、SEM観察では明確には区別できない。そのため、マルテンサイトの体積率は、マルテンサイトまたは残留オーステナイトであると判断された組織の体積率から、後述する方法で算出した残留オーステナイトの体積率を減じることで算出する。
 残留オーステナイトの体積率は、鋼板の任意の位置から試験片を採取し、鋼板表面から板厚の1/4の位置(1/4深さ位置)まで圧延面を化学研磨し、MoKα線によるフェライトの(200)、(210)面積分強度とオーステナイトの(200)、(220)、および(311)面積分強度から定量化する。
[表面から板厚方向に数えて1つ目の結晶粒の、板厚方向に平行な断面から見た際の平均結晶粒径が20.0μm以下で、表面を平面視した際の平均結晶粒径が30.0μm以下]
 曲げ性は鋼板の最表層におけるクラック発生により影響を受ける。そのため、表層が微細均一組織であることで曲げ性が向上する。
 本発明者らがさらに検討した結果、特に、表面から板厚方向に数えて1つ目の結晶粒、すなわち最表層にある結晶粒を、微細にすることで、曲げ性が向上することが分かった。
 そのため、最表層にある結晶粒の板厚方向に平行な断面から見た際の平均結晶粒径を20.0μm以下、かつ、表面を平面視した際の平均結晶粒径を30.0μm以下とする。
 最表層にある結晶粒は、いずれの相であるか限定されないが、脱炭等の影響で、フェライト(ベイニティックフェライトを含む)であることが多い。
 最表層にある結晶粒を微細化するためには、後述する製造方法によって表層部の脱炭を抑制しつつオーステナイト変態を促進すること、及び、Siの内部酸化物形成し、この内部酸化物によるピン止め効果を活用することが有効である。
 ここで、表面とは、めっき層を有しない冷延鋼板であれば、その表面であり、溶融亜鉛鋼板または合金化溶融亜鉛めっき鋼板である場合には、めっき層を除いた、母材鋼板の表面(母材鋼板とめっき層との界面とも言える)を意味する。
 従来、表層部として、表層から数十μmの位置の粒径を制御する場合はあったが、本発明者らの検討の結果、表層に近い(最表層ではない)結晶粒が微細であっても、最表層の結晶粒だけが粗大化し、曲げ性や耐水素脆化特性が低下する場合があるので、表層に近い位置の粒径の制御では十分ではないことが分かった。そのため、本実施形態に係る鋼板では、最表層にある結晶粒の粒径を規定する。
 また、最表層の結晶粒は、板厚方向に平行な断面から見た際の平均結晶粒径、表面を平面視した際の平均結晶粒径の両方が粗大化する場合もあるが、一方が大きく粗大化するものの、もう一方はそれほど粗大化しない場合もある。そのため、板厚方向に平行な断面から見た際の平均結晶粒径、表面を平面視した際の平均結晶粒径の両方を同時に満足する必要がある。
 最表層の結晶粒の、板厚方向に平行な断面から見た際の平均結晶粒径および、表面を平面視した際の平均結晶粒径は、以下の方法で求める。
 板厚方向に平行な断面から見た平均結晶粒径は、圧延方向に平行でかつ板厚方向に平行な断面(縦断面)を切りだして研磨し、表面から厚さ方向に100μm、長手方向に1000μmの範囲を3視野以上、EBSD(Electron Back Scattering Diffraction)で測定する。EBSDに付属のソフトであるTSL OIM Analysisを用いて、方位解析し、隣接する測定点との方位差が5°以上を粒界と定義して、最表層にある結晶粒の平均径を求める。
 表面を平面視した結晶粒径は、表面の、長手方向に500μm、幅方向に500μmの範囲を1視野以上EBSDで測定し、上記同様の方法でTSL OIM Analysisを用いて結晶粒の平均径を求める。
 測定対象がめっき鋼板である場合には、めっき層を塩酸等で剥離後に上記の測定を行う。
<機械的特性>
[引張強さが1310MPa以上]
[均一伸びが4.0%以上]
[90°V曲げでの限界曲げRと板厚との比であるR/tが5.0以下]
 本実施形態に係る鋼板では、自動車の車体軽量化に寄与する強度として、引張強さ(TS)は1310MPa以上を目標とする。衝撃吸収性の観点からすると、鋼板の強度は、好ましくは1400MPa以上であり、より好ましくは1470MPa以上である。
 また、成形性の観点より、均一伸び(uEl)は4.0%以上を目標とする。成形性をより良くするために、均一伸び(uEl)は好ましくは4.5%以上、より好ましくは5.0%以上である。
 また、成形性の観点で、90°V曲げでの限界曲げRと板厚tとの比(R/t)は、5.0以下を目標とする。(R/t)は、成形性をより良くするために、好ましくは4.0以下であり、より好ましくは3.0以下である。
 引張強さ(TS)および均一伸び(uEl)は、鋼板から、圧延方向に垂直方向にJIS5号引張試験片を採取し、JIS Z 2241:2011に沿って引張試験を行うことにより求める。
 また、(R/t)については、90°V曲げ金型を用いて、0.5mmピッチで半径Rを変化させて、割れが起こらない最小曲げ半径Rを求め、板厚tで割ることにより求める。
<板厚>
 本実施形態に係る鋼板の板厚は限定されないが、適用が想定される製品を考慮すると、0.8~2.6mmが好ましい。
 本実施形態に係る鋼板では、表面に溶融亜鉛めっき層を備えてもよい。表面にめっき層を備えることで、耐食性が向上する。自動車用鋼板は、腐食による穴あきの懸念があると、高強度化してもある一定の板厚以下に薄手化できない場合がある。鋼板の高強度化の目的の一つは、薄手化による軽量化であることから、高強度鋼板を開発しても、耐食性が低いと適用部位が限られる。これら課題を解決する手法として、耐食性の高い溶融亜鉛めっき等のめっきを鋼板に施すことが考えられる。本実施形態に係る鋼板は、鋼板成分を上述のように制御しているので、溶融亜鉛めっきが可能である。
 溶融亜鉛めっき層は、合金化溶融亜鉛めっき層であってもよい。
<製造方法>
 本実施形態に係る鋼板は、以下の工程(I)~(VII)を含む製造方法によって製造可能である。
(I)所定の化学組成を有する鋳造スラブを、加熱し、最終段の、圧延温度FTが960℃以下、圧下率が18%以上となる条件で熱間圧延を行って熱延鋼板を得る熱間圧延工程
(II)熱延鋼板を[Si]×200+500℃以下の温度で巻き取る巻取工程
(III)巻取工程後の熱延鋼板を、脱スケールし、60%以下の累積圧下率で冷間圧延を行って冷延鋼板とする冷間圧延工程
(IV)冷延鋼板を、650℃までの平均加熱速度が3.0℃/秒以上となるように、650℃以上、800℃以下の温度域に加熱し、この温度域で、3.0kN以上の張力を付与しながら、半径850mm以下のロールを用いて、曲げ角度が90度以上となる、一回以上の曲げ-曲げ戻し変形を施す、曲げ-曲げ戻し工程
(V)曲げ-曲げ戻し工程後の冷延鋼板を、露点が-20℃以上20℃以下でかつ、1.0体積%以上20体積%以下の水素を含有する窒素-水素混合雰囲気にて、820℃以上の焼鈍温度まで加熱し、この焼鈍温度で均熱する焼鈍工程
(VI)焼鈍工程後の冷延鋼板を、700℃から600℃の温度域および450℃から350℃の温度域の平均冷却速度が5℃/秒以上となるように、50℃以上250℃以下の温度まで冷却する焼鈍後冷却工程
(VII)焼鈍後冷却工程後の冷延鋼板に、200℃以上350℃以下の温度で1秒以上焼戻しを行う、焼戻し工程
 本実施形態に係る鋼板の製造方法は、金属組織とともに、従来着目されていなかった表面から板厚方向に数えて1つ目の結晶粒の平均結晶粒径を制御するために、各工程は上記の条件を同時に満足する必要がある。例えば、後述するように、熱間圧延工程で、結晶粒を微細化するとともに、巻取工程で炭化物を微細分散させ、60%以下の累積圧下率で冷間圧延した場合に、焼鈍工程において表層部において、脱炭が十分に抑制される。さらに、そのように脱炭が抑制された上で、焼鈍工程によって表層部にSi内部酸化物を形成することで、内部酸化物によるピン止め効果により最表層の結晶粒の粗粒化が抑制される。すなわち、それぞれの工程は、他の工程の条件に影響を及ぼすので、工程全体を通じた条件の設定が重要である。
 以下、各工程について説明する。
[熱間圧延工程]
 熱間圧延工程では、上述した本実施形態に係る鋼板と同様の化学組成を有する鋳造スラブを加熱し、熱間圧延して熱延鋼板とする。鋳造スラブの温度が高い場合には、一旦室温付近まで冷却せず、そのまま熱間圧延に供してもよい。熱間圧延におけるスラブ加熱条件は限定されないが、1100℃以上に加熱することが好ましい。加熱温度が1100℃未満では、材料の均質化が不十分となりやすい。上限は限定されないが、経済合理性の観点から1350℃以下であってもよい。
 熱間圧延時の仕上げ最終段における圧延温度(FT)は960℃以下、最終段における圧下率は18%以上とする。最終段の圧下率および圧下率を上記の通りとすることで、結晶粒を微細化するとともに、次工程の巻取工程で炭化物を微細分散させることができる。このような組織とすることで、後の焼鈍工程において表層部において、脱炭が抑制される。
 最終段における圧延温度(FT)が960℃超、または、最終段における圧下率が18%未満では、十分な効果を得ることができない。圧延温度は、低くなると圧延負荷が高くなることから、最終段における圧延温度は800℃以上であることが好ましい。圧下率は、高くなると圧延負荷が高くなることから、最終段における圧下率は30%以下が好ましい。
 化学組成は製造過程で実質的に変化しないので、鋳造スラブの化学組成は、目的とする冷延鋼板の化学組成と同じとすればよい。鋳造スラブの製造方法については限定されない。生産性の観点から連続鋳造法によって鋳造することが好ましいが、造塊法又は薄スラブ鋳造法によって製造してもよい。
 連続鋳造によって得られた鋼片を、十分に高い温度のまま熱間圧延工程に供することができる場合には、加熱工程は省略してもよい。
[巻取工程]
 巻取工程では、熱間圧延工程後の鋼板(熱延鋼板)を、巻取温度をCT、鋼板の質量%でのSi含有量を[Si]としたとき、CT≦[Si]×200+500(℃)を満足する巻取温度CTで巻き取る。熱間圧延終了後、巻取温度までの冷却条件については特に限定されない。
 通常は、巻取温度を低くすると、熱延鋼板の強度が上昇し、製造性が低下すると考えられているが、本実施形態に係る鋼板の製造方法では、巻取温度を低くする。具体的には、巻取温度を[Si]×200+500(℃)以下とする。これにより、Si欠乏層の生成を抑制できる。Si欠乏層が生成すると、Si内部酸化物を形成することができず、内部酸化物によるピン止め効果が得られないために、最表層の結晶粒が粗粒化するので、最表層の結晶粒の抑制のためには、Si欠乏層の生成の抑制が有効である。
 また、上記巻取温度とすることで、炭化物を均一、微細に分散した状態で析出させることができる。
 巻取温度が[Si]×200+500(℃)超であると、上記の効果が十分に得られない。
[冷間圧延工程]
 冷間圧延工程では、巻取工程後の鋼板(熱延鋼板)を、必要に応じて公知の方法で酸洗等により脱スケールした後に、60%以下の圧下率(累積圧下率)の冷間圧延を行い、冷延鋼板とする。
 冷間圧延における圧下率が高いと焼鈍時の再結晶が促進され、表層部において、焼鈍工程でのγ変態が起こりづらくなる。この場合、焼鈍により表層部の結晶粒が粗粒化する。そのため、冷間圧延の圧下率を60%以下とする。
 脱スケールの後、冷間圧延の前に、さらに、ブラシ等で鋼板の表面を0.1μm~5.0μm程度研削してもよい。研削を行うことで、研削歪によって、最表層の結晶粒がさらに微細化するという効果が得られる。
 冷間圧延工程後の冷延鋼板は、必要に応じて公知の方法に従って脱脂等の処理が施されてもよい。
[曲げ-曲げ戻し工程]
 曲げ-曲げ戻し工程では、冷間圧延工程後の鋼板(冷延鋼板)を、650℃までの平均加熱速度が3.0℃/秒以上となるように、650℃以上、800℃以下の温度域に加熱し、この温度域で、3.0kN以上の張力を付与しながら、半径850mm以下のロールを用いて、曲げ角度が90度以上となる、一回以上の曲げ-曲げ戻し変形を施す。
 例えば、半径850mm以下のロールを用いて(ロールに沿わせて)、表面が内側になるように、90度以上の曲げ角で曲げを行った後、裏面が内側になるように90度以上の曲げ角で曲げを行うことで、所定の曲げ-曲げ戻しを達成できる。この曲げ-曲げ戻しにより、焼鈍加熱時に表層に歪を加えてオーステナイト変態を促進させて、脱炭を抑制することで、表層が粗粒化しやすいフェライト単相となることを抑制することができる。その結果、表層、表面の結晶粒が細粒化し、高い曲げ性、耐水素脆化特性が得られる。
 曲げに用いるロールの半径が大きい(曲げ半径が大きい)または曲げ角が小さい場合には、表層に導入される歪が不十分となり表層、表面の結晶粒が粗粒化し、高い曲げ性、耐水素脆化特性が得られない。
 また、曲げ-曲げ戻しを行う温度が、650℃未満では、鋼材の降伏強度が高いため、弾性変形となり塑性変形しないため、上記の効果が十分に得られない。一方、800℃超では、曲げ-曲げ戻しを行うより前にフェライトが粗粒化してしまうために細粒化の効果が得られない。
 650℃までの平均加熱速度が遅いと再結晶が進み、焼鈍時に表層のγ変態が起こり難くなり、表層の粗粒化の原因となる。そのため、650℃までの平均加熱速度は3.0℃/秒以上とする。平均加熱速度は5.0℃/秒以上が好ましく、7.0℃/秒以上がより好ましい。
 曲げ-曲げ戻しの張力は、表層に確実に歪を付与する為に、6.0kN以上が好ましく、8.0kN以上が好ましい。
[焼鈍工程]
 焼鈍工程では、曲げ-曲げ戻し工程後の鋼板(冷延鋼板)を、一旦冷却することなくそのまま、露点が-20℃以上20℃以下でかつ、1.0体積%以上20.0体積%以下の水素を含有する窒素-水素混合雰囲気にて、820℃以上の焼鈍温度まで加熱し、この焼鈍温度(均熱温度)で均熱する。
 焼鈍の加熱時の雰囲気を、上記の通りとすることで、微細な内部酸化物を形成し、表層部の結晶粒を微細化することができる。均熱の際の雰囲気は限定されないが、加熱時と同等の雰囲気としてもよい。
 また、均熱温度が低いとオーステナイト単相焼鈍とならず、フェライトの体積率が多くなり曲げ性が劣化する。よって均熱温度は、820℃以上とする。均熱温度は、830℃以上が好ましい。均熱温度が高い方が曲げ性を確保し易いが、均熱温度が高過ぎると製造コストが高くなるので、均熱温度は900℃以下が好ましい。均熱温度は、880℃以下がより好ましく、870℃以下がさらに好ましい。
 均熱時間は、30~450秒であることが好ましい。均熱時間が30秒未満であると、オーステナイト化が十分に進行しない場合がある。そのため、均熱時間は30秒以上が好ましい。一方、均熱時間が450秒を超えると、生産性が低下するので、均熱時間は450秒以下が好ましい。
[焼鈍後冷却工程]
 焼鈍後冷却工程では、焼鈍工程後の冷延鋼板を、上記のような金属組織を得るため、700℃から600℃のフェライト変態温度域および450℃から350℃のベイナイト変態温度域の平均冷却速度がいずれも5℃/秒以上となるように、50℃以上250℃以下の温度まで冷却する。
 上記温度域における冷却速度が遅いと、1/4深さ位置でのフェライト、ベイナイトの体積率が高くなり、焼戻しマルテンサイトの体積率が低下する。その結果、引張強さが低下するとともに曲げ性、耐水素脆化特性が劣化する。よって700℃から600℃および450℃から350℃の平均冷却速度はいずれも5℃/秒以上とする。平均冷却速度は10℃/秒以上が好ましく、20℃/秒以上がさらに好ましい。
 冷却停止温度及び保持温度は50℃以上、250℃以下とする。冷却停止温度が高いと続く焼戻し工程後の冷却で(焼き戻されていない)マルテンサイトが増加し、曲げ性、耐水素脆化特性が劣化する。よって冷却停止温度は250℃以下とする。冷却停止温度は、220℃以下が好ましく、200℃以下がさらに好ましい。
 一方で冷却停止温度が低いと残留オーステナイト分率が低下し、目的とする均一伸びが得られない。よって冷却停止温度は、50℃以上とする。冷却停止温度は、75℃以上が好ましく、100℃以上がさらに好ましい。
[溶融亜鉛めっき]
[合金化]
 表面に溶融亜鉛めっき層を備える冷延鋼板(溶融亜鉛めっき鋼板)を製造する場合には、焼鈍後冷却工程において、さらに鋼板温度が425℃超、600℃未満の状態で、同等の温度のめっき浴に浸漬して溶融亜鉛めっきを施してもよい。めっき浴の組成は公知の範囲でよい。また、表面に合金化溶融亜鉛めっきを備える冷延鋼板(合金化溶融亜鉛めっき鋼板)を製造する場合には、溶融亜鉛めっき工程に引き続き、例えば、450℃超600℃未満に加熱する合金化熱処理を施してめっきを合金化溶融亜鉛めっきとしてもよい。
[焼戻し工程]
 焼鈍後冷却工程後の冷延鋼板は、50℃以上250℃以下の温度まで冷却されることで未変態のオーステナイトがマルテンサイトに変態する。
 焼戻し工程では、冷延鋼板を、200℃以上350℃以下の温度で1秒以上焼戻すことにより、1/4深さ位置にて焼戻しマルテンサイト主体の組織を得る。
 溶融亜鉛めっき工程及びまたは合金化工程が行われた場合には、溶融亜鉛めっき工程後の冷延鋼板または、溶融亜鉛めっき工程及び合金化工程後の冷延鋼板、を50℃以上250℃以下の温度まで冷却した後、200℃以上350℃以下の温度で1秒以上焼戻しを行う。焼戻し温度が350℃超であると鋼板強度が低下する。よって焼戻し温度は350℃以下とする。焼戻し温度は、325℃以下が好ましく、300℃以下がより好ましい。
 一方で焼戻し温度が200℃未満であると焼戻しが不十分となり、曲げ性、耐水素脆化特性が劣化する。よって焼戻し温度は200℃以上とする。焼戻し温度は、220℃以上が好ましく、250℃以上がより好ましい。
 焼戻し時間は1秒以上あればよいが、安定した焼戻し処理を行うために5秒以上が好ましく、10秒以上がさらに好ましい。一方で、長時間の焼戻しでは鋼板強度が低下する場合があるため、焼戻し時間は750秒以下が好ましく、500秒以下がさらに好ましい。
[スキンパス工程]
 焼戻し工程後の冷延鋼板は、スキンパス圧延可能な温度まで冷却した後、スキンパス圧延を行ってもよい。焼鈍後の冷却が水を用いる水スプレー冷却、ディップ冷却、気水冷却などの場合は、高温で水と接触したことによって形成された酸化膜の除去および鋼板の化成処理性向上のため、スキンパス圧延前に、酸洗及び続いて微量のNi、Fe、Co、Sn、Cuのうちの1種または2種以上のめっきを行うことが好ましい。ここで微量とは鋼板表面に3~30mg/m程度のめっき量をいう。
 スキンパス圧延により、鋼板の形状を整えることができる。スキンパス圧延の伸び率は0.05%以上が好ましい。より好ましくは0.10%以上である。一方で、スキンパス圧延の伸び率が高いと残留オーステナイトの体積率が減少し延性が劣化する。そのため、伸び率は1.00%以下とすることが好ましい。伸び率は、0.75%以下がより好ましく、0.50%以下がさらに好ましい。
 本発明を、実施例を参照しながらより具体的に説明する。
 表1に示される化学組成を有するスラブを鋳造した。
 鋳造後のスラブを1100℃以上に加熱し、2.8mmまで熱間圧延し、巻き取り後室温まで冷却した。熱間圧延条件、巻取温度は表2A、表2Bに記載する通りであった。
 その後、酸洗によりスケールを除去し、1.4mmまで冷間圧延した後、650℃までの平均加熱速度が表2A、表2Bに示す速度となるように650℃以上、800℃以下の温度域に加熱し、この温度域で、表2A、表2Bに示す半径のロールに沿わせて、表面が内側になるように90度以上の曲げ角で曲げを行った後、裏面が内側になるように90度以上の曲げ角で曲げを行うことで、曲げ-曲げ戻しを行った。
 その後、続いて(冷却することなく)、露点が-20℃以上20℃以下でかつ、1.0体積%以上20.0体積%以下の水素を含有する窒素-水素混合雰囲気にて表2Aの、表2Bの焼鈍温度まで加熱し、焼鈍温度で120秒焼鈍を行った。
 焼鈍後、700℃から600℃の温度域および450℃から350℃の温度域が平均冷却速度20℃/秒以上となるように、50℃以上250℃以下の冷却停止温度まで冷却した後に、200~350℃で、1秒~500秒焼戻す熱処理を施した。
 一部の例については、焼鈍後冷却中に溶融亜鉛めっき及び合金化を行った。表3A、表3Bに示すめっき有無において、「CR」は亜鉛めっきを行っていない冷延鋼板、「GI」が溶融亜鉛めっき鋼板、「GA」が合金化溶融亜鉛めっき鋼板である。合金化溶融亜鉛めっき鋼板については、450℃超600℃未満の温度で35~65g/m程度の溶融亜鉛めっきを施した後に、さらに450℃超600℃未満の温度で合金化させた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 得られた冷延鋼板から、前述の様にSEM観察用試験片を採取し、圧延方向に平行な縦断面を研磨した後、1/4深さ位置における金属組織を観察し、画像処理により、各組織の体積率を測定した。また、X線回折用試験片を採取し、前述の様に表層より1/4深さ位置まで化学研磨した面でX線回折により残留オーステナイトの体積率を測定した。これにより、フェライト、ベイナイト、マルテンサイト、焼戻しマルテンサイト、パーライト、残留オーステナイトの体積率を得た。
 また、上述の方法で、EBSD及び、付属のソフトであるTSL OIM Analysisを用いて、圧延方向に平行でかつ板厚方向に平行な断面(L断面)から見た際の最表層の結晶粒の平均結晶粒径、表面を平面視した際の平均結晶粒径を求めた。
 結果を表3A、表3Bに示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 また、以下に示す要領で、引張強さ(TS)、および均一伸び(uEl)、(R/t)、耐水素脆化特性を評価した。
 引張強さ(TS)、および均一伸び(uEl)は、冷延鋼板から、圧延方向に対し垂直方向にJIS5号引張試験片を採取し、JIS Z 2241:2011に沿って引張試験を行うことにより求めた。
 曲げ性の指標である(R/t)については、90°V曲げ金型を用いて、0.5mmピッチで半径Rを変化させて、割れが起こらない最小曲げ半径Rを求め、板厚(t=1.4mm)で割ることにより求めた。
 耐水素脆化特性の評価として、下記の試験を行った。
 すなわち、端面を機械研削した試験片を押曲げ法でU字に曲げて、加工できる最小の曲げ半径RでU曲げ試験片を作製し、非曲げ部が平行になるようにボルトで締め付けて弾性変形させた後、pH1の塩酸に浸漬して、鋼板中に水素を侵入させる遅れ破壊促進試験を行った。浸漬時間が100時間となっても割れが生じないものを良好(○:OK)な耐遅れ破壊特性を有する鋼板と評価し、割れが生じたものを不良(×:NG)と評価した。めっきの影響を除去するために、めっき材については試験前にインヒビターを含有する塩酸にてめっき層を除去した後に、耐水素脆化特性を評価した。
 それぞれの機械的特性の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 表1~4から分かるように、本発明鋼(試験番号3、10、17~35)はいずれもTSが1310MPa以上、uElが4.0%以上、(R/t)が5.0以下であり、耐水素脆化特性も良好であった。
 これに対し、化学組成、製造方法のいずれかが本発明の範囲外であり、1/4深さ位置の金属組織、最表層の結晶粒の平均結晶粒径が本発明範囲外となった試験番号(比較例)では、引張強さ、均一伸び、R/t、耐水素脆化特性のいずれか1つ以上が目標を達成しなかった。
 本発明によれば、成形性に優れ、かつ優れた耐水素脆化特性を有する冷延鋼板を提供することができる。この鋼板は、自動車用鋼板として用いた場合に、車体の軽量化に寄与するので、産業上の利用可能性が高い。

Claims (7)

  1.  質量%で、
      C:0.140%超、0.400%未満、
      Si:1.00%未満、
      Mn:2.00%超、3.50%未満、
      P:0.100%以下、
      S:0.010%以下、
      Al:0.100%以下、
      N:0.0100%以下、
      Ti:0%以上、0.050%未満、
      Nb:0%以上、0.050%未満、
      V:0%以上、0.50%以下、
      Cu:0%以上、1.00%以下、
      Ni:0%以上、1.00%以下、
      Cr:0%以上、1.00%以下、
      Mo:0%以上、0.50%以下、
      B:0%以上、0.0100%以下、
      Ca:0%以上、0.0100%以下、
      Mg:0%以上、0.0100%以下、
      REM:0%以上、0.0500%以下、
      Bi:0%以上、0.050%以下、および
      残部:Feおよび不純物
    からなる化学組成を有し、
     表面から板厚の1/4の位置である1/4深さ位置での金属組織が、体積率で、
      残留オーステナイト:1.0%超、10.0%未満、
      焼戻しマルテンサイト:80.0%以上、
      フェライトおよびベイナイト:合計で0%以上、15.0%以下、および
      マルテンサイト:0%以上、3.0%以下、を含み、
     表面から板厚方向に数えて1つ目の結晶粒の、圧延方向に平行でかつ前記板厚方向に平行な断面から見た際の平均結晶粒径が20.0μm以下で、前記表面を平面視した際の平均結晶粒径が30.0μm以下である、
    ことを特徴とする、冷延鋼板。
  2.  引張強さが1310MPa以上、均一伸びが4.0%以上、90°V曲げでの限界曲げRと板厚との比であるR/tが5.0以下である、
    ことを特徴とする、請求項1に記載の冷延鋼板。
  3.  前記化学組成が、質量%で、
      Ti:0.001%以上、0.050%未満、
      Nb:0.001%以上、0.050%未満、
      V:0.01%以上、0.50%以下、
      Cu:0.01%以上、1.00%以下、
      Ni:0.01%以上、1.00%以下、
      Cr:0.01%以上、1.00%以下、
      Mo:0.01%以上、0.50%以下、
      B:0.0001%以上、0.0100%以下、
      Ca:0.0001%以上、0.0100%以下、
      Mg:0.0001%以上、0.0100%以下、
      REM:0.0005%以上、0.0500%以下、および
      Bi:0.0005%以上、0.050%以下、
    から選択される1種または2種以上を含有する、
    ことを特徴とする請求項1または2に記載の冷延鋼板。
  4.  前記表面に溶融亜鉛めっき層が形成されていることを特徴とする、請求項1または2に記載の冷延鋼板。
  5.  前記表面に溶融亜鉛めっき層が形成されていることを特徴とする、請求項3に記載の冷延鋼板。
  6.  前記溶融亜鉛めっき層は、合金化溶融亜鉛めっき層であることを特徴とする、請求項4に記載の冷延鋼板。
  7.  前記溶融亜鉛めっき層は、合金化溶融亜鉛めっき層であることを特徴とする、請求項5に記載の冷延鋼板。
PCT/JP2022/047431 2022-02-09 2022-12-22 冷延鋼板 WO2023153096A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023580103A JPWO2023153096A1 (ja) 2022-02-09 2022-12-22
CN202280091178.4A CN118660982A (zh) 2022-02-09 2022-12-22 冷轧钢板
MX2024009396A MX2024009396A (es) 2022-02-09 2022-12-22 Lamina de acero laminada en frio.
KR1020247026147A KR20240133735A (ko) 2022-02-09 2022-12-22 냉연 강판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-018404 2022-02-09
JP2022018404 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153096A1 true WO2023153096A1 (ja) 2023-08-17

Family

ID=87564200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047431 WO2023153096A1 (ja) 2022-02-09 2022-12-22 冷延鋼板

Country Status (5)

Country Link
JP (1) JPWO2023153096A1 (ja)
KR (1) KR20240133735A (ja)
CN (1) CN118660982A (ja)
MX (1) MX2024009396A (ja)
WO (1) WO2023153096A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126770A (ja) * 2008-11-28 2010-06-10 Jfe Steel Corp 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013018723A1 (ja) * 2011-07-29 2013-02-07 新日鐵住金株式会社 成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法
WO2013047755A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 耐衝撃特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法、並びに、高強度合金化溶融亜鉛めっき鋼板およびその製造方法
WO2013047739A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 機械切断特性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2018147400A1 (ja) * 2017-02-13 2018-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2018159405A1 (ja) * 2017-02-28 2018-09-07 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2021070951A1 (ja) * 2019-10-10 2021-04-15 日本製鉄株式会社 冷延鋼板およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445365B2 (ja) 2004-10-06 2010-04-07 新日本製鐵株式会社 伸びと穴拡げ性に優れた高強度薄鋼板の製造方法
JP5082649B2 (ja) 2007-07-25 2012-11-28 Jfeスチール株式会社 製造安定性に優れた高強度冷延鋼板およびその製造方法
JP5423072B2 (ja) 2009-03-16 2014-02-19 Jfeスチール株式会社 曲げ加工性および耐遅れ破壊特性に優れる高強度冷延鋼板およびその製造方法
JP6635236B1 (ja) 2018-03-19 2020-01-22 日本製鉄株式会社 高強度冷延鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126770A (ja) * 2008-11-28 2010-06-10 Jfe Steel Corp 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013018723A1 (ja) * 2011-07-29 2013-02-07 新日鐵住金株式会社 成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法
WO2013047755A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 耐衝撃特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法、並びに、高強度合金化溶融亜鉛めっき鋼板およびその製造方法
WO2013047739A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 機械切断特性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2018147400A1 (ja) * 2017-02-13 2018-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2018159405A1 (ja) * 2017-02-28 2018-09-07 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2021070951A1 (ja) * 2019-10-10 2021-04-15 日本製鉄株式会社 冷延鋼板およびその製造方法

Also Published As

Publication number Publication date
MX2024009396A (es) 2024-08-14
KR20240133735A (ko) 2024-09-04
CN118660982A (zh) 2024-09-17
JPWO2023153096A1 (ja) 2023-08-17

Similar Documents

Publication Publication Date Title
US11473164B2 (en) High-strength cold-rolled steel sheet and manufacturing method therefor
JP6791371B2 (ja) 高強度冷延鋼板及びその製造方法
CN112996938B (zh) 高强度钢板
JP7216932B2 (ja) 冷延鋼板およびその製造方法
CN111527223B (zh) 高强度冷轧钢板及其制造方法
EP2757169A1 (en) High-strength steel sheet having excellent workability and method for producing same
US20220220577A1 (en) High strength member, method for manufacturing high strength member, and method for manufacturing steel sheet for high strength member
JP6384623B2 (ja) 高強度鋼板およびその製造方法
CN110199045B (zh) 高强度钢板及其制造方法
US20240327965A1 (en) Steel sheet and method for producing same
CN114585758B (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法
US20230059951A1 (en) Steel sheet and manufacturing method thereof
CN114585759A (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法
WO2023153096A1 (ja) 冷延鋼板
JP7140301B1 (ja) 鋼板、部材およびそれらの製造方法
JPWO2019131188A1 (ja) 高強度冷延鋼板及びその製造方法
WO2023153097A1 (ja) 冷延鋼板およびその製造方法
WO2022190959A1 (ja) 冷延鋼板及びその製造方法
WO2022190958A1 (ja) 冷延鋼板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023580103

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/009396

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20247026147

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280091178.4

Country of ref document: CN

Ref document number: 2401005100

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE