[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023145346A1 - 油井用高強度ステンレス継目無鋼管 - Google Patents

油井用高強度ステンレス継目無鋼管 Download PDF

Info

Publication number
WO2023145346A1
WO2023145346A1 PCT/JP2022/047592 JP2022047592W WO2023145346A1 WO 2023145346 A1 WO2023145346 A1 WO 2023145346A1 JP 2022047592 W JP2022047592 W JP 2022047592W WO 2023145346 A1 WO2023145346 A1 WO 2023145346A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
steel pipe
precipitated
amount
Prior art date
Application number
PCT/JP2022/047592
Other languages
English (en)
French (fr)
Inventor
健一郎 江口
信介 井手
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2024006585A priority Critical patent/MX2024006585A/es
Priority to EP22924193.0A priority patent/EP4414463A1/en
Priority to JP2023516199A priority patent/JP7347714B1/ja
Priority to CN202280078178.0A priority patent/CN118318055A/zh
Publication of WO2023145346A1 publication Critical patent/WO2023145346A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a high-strength seamless stainless steel pipe for oil wells, which is suitable for use in oil and gas wells of crude oil or natural gas (hereinafter simply referred to as "oil wells").
  • the present invention particularly relates to an oil well containing carbon dioxide gas (CO 2 ) and chloride ions (Cl ⁇ ) and having excellent carbon dioxide corrosion resistance and low temperature toughness in extremely severe corrosive environments at temperatures of 150° C. or higher.
  • the present invention relates to high-strength stainless steel seamless steel pipes for use.
  • 13Cr martensitic stainless steel pipes have been widely used as oil country tubular goods for mining in oil and gas fields in environments containing carbon dioxide (CO 2 ), chloride ions (Cl ⁇ ), and the like. Furthermore, recently, the use of improved 13Cr martensitic stainless steel with reduced C content and increased Ni, Mo, etc. in 13Cr martensitic stainless steel is also expanding.
  • Patent Documents 1 to 3 In response to such a demand, there are techniques disclosed in Patent Documents 1 to 3, for example.
  • Patent Document 1 in mass%, C: 0.01 to 0.10%, Cr: 9.0 to 15.0%, Ni: 0.1 to 7.0%, N: 0.005 to 0 .1%, Si: 0.05-1.0%, Mn: 0.05-1.5%, Cu: 0.1-5.0%, Mo: 0.1-3.0%, V: 0.01 to 0.20% and Al: 0.0005% to less than 0.05%, the balance consisting of Fe and impurities, and P and S in the impurities are 0.03% or less and 0.01%, respectively
  • a martensitic stainless steel pipe is disclosed in which the ratio of austenite in the structure is 0.3 to 1.3% and the absolute value of the compressive residual stress in the circumferential direction is 1.0 MPa or less.
  • Patent Document 2 in mass%, C: 0.08% or less, Si: 1% or less, Mn: 0.1 to 2%, Cr: 7 to 15%, Ni: 0.5 to 7%, Nb : 0.005-0.5%, Al: 0.001-0.1%, N: 0.001-0.05%, P: 0.04% or less, S: 0.005% or less , the balance is substantially Fe, the contents of Cr, C, Nb and Ni satisfy a predetermined relational expression, and the cross-sectional steel structure has 10 2 to 10 8 chromium nitrides with a size of 0.2 ⁇ m or less. /mm 2 and a yield strength of 760 MPa or more, high-strength martensitic stainless steel with improved carbon dioxide corrosion resistance is disclosed.
  • Patent Document 3 in mass%, C: 0.020% or less, Cr: 10 to 14%, Ni: 3% or less, Nb: 0.03 to 0.2%, N: 0.05% or less
  • the composition has a balance of Fe and unavoidable impurities, and has a structure in which the amount of precipitated Nb is 0.020% or more in terms of Nb, and has high strength with a yield strength of 95 ksi or more and a fracture surface transition in a Charpy impact test.
  • a martensitic stainless seamless steel pipe for oil country tubular goods is disclosed, which has low-temperature toughness at a temperature vTrs of -40°C or less.
  • JP-A-2004-238662 Japanese Patent Application Laid-Open No. 2002-241902 JP 2010-168646 A
  • Seamless steel pipes used as steel pipes for oil wells are subjected to severe strain during the manufacturing process, so the surface of the steel pipe is easily damaged during pipe making. In order to prevent this, it has also been required to have excellent hot workability.
  • Patent Documents 1 to 3 have high strength, they do not have sufficient excellent carbon dioxide gas corrosion resistance and low temperature toughness.
  • the fracture surface transition temperature in the Charpy impact test is 0° C., and the Ni content is low, so the carbon dioxide gas corrosion resistance is poor.
  • the fracture surface transition temperature in the Charpy impact test is ⁇ 10° C., and the Ni content is low, so the carbon dioxide gas corrosion resistance is poor.
  • the fracture surface transition temperature in the Charpy impact test is ⁇ 40° C., and the Ni content is low, so the carbon dioxide gas corrosion resistance is poor.
  • the present invention solves the problems of the prior art and provides a high-strength seamless stainless steel pipe for oil wells, which has high strength and excellent hot workability, as well as excellent carbon dioxide corrosion resistance and low-temperature toughness. With the goal.
  • high strength in the present invention means a case where the yield strength YS is 110 ksi (758 MPa) or more.
  • excellent hot workability in the present invention means that a round bar test piece with a parallel part diameter of 10 mm taken from a billet is used and heated to 1250 ° C. with a Gleeble tester. , held at the heating temperature for 100 seconds, cooled at 1 ° C./sec to 1000 ° C., held at 1000 ° C. for 10 seconds, pulled until fracture, measured the cross-sectional reduction rate (%), and the cross-sectional reduction rate was 70%.
  • the above cases shall be referred to.
  • excellent carbon dioxide gas corrosion resistance in the present invention means that the test liquid held in the autoclave: 20% by mass NaCl aqueous solution (liquid temperature: 150 ° C., 10 atm CO 2 gas atmosphere)
  • the corrosion rate is 0.125 mm / y or less when the immersion period is 14 days
  • the corrosion test piece after the corrosion test is examined with a magnifying glass of 10 times magnification. The presence or absence of pitting corrosion on the surface of the corrosion test piece is observed, and the case where no pitting corrosion with a diameter of 0.2 mm or more occurs.
  • excellent low-temperature toughness means that the absorbed energy vE- 60 in the Charpy impact test (V-notch test piece (5 mm thickness)) at -60°C is 20 J or more.
  • Cr, Ni, and Mo form dense corrosion products on the surface of steel pipes and reduce the corrosion rate in a carbon dioxide gas environment.
  • C and N combine with Cr and reduce the amount of Cr that effectively improves corrosion resistance. Therefore, in order to have excellent corrosion resistance in a high-temperature carbon dioxide gas environment, it is necessary to appropriately adjust the amounts of Cr, Ni, Mo, C, and N.
  • Nb and V it is necessary to deposit appropriate amounts of Nb and V. Desired high strength cannot be obtained only by reducing the contents of C and N. Therefore, by adding an appropriate amount of Nb and V, carbonitrides of Nb and V are precipitated, which not only contributes to the increase in strength, but also reduces the content of C and N dissolved in solid solution, thereby improving carbon dioxide corrosion resistance. can be improved. Note that Ti forms coarse TiN and deteriorates the low-temperature toughness value, so it cannot be added in the present invention.
  • the present invention has been completed based on these findings and further studies.
  • the gist of the present invention is as follows. [1] in % by mass, C: 0.015% or less, Si: 0.05 to 0.50%, Mn: 0.04 to 1.80%, P: 0.030% or less, S: 0.005% or less, Cr: 11.0 to 14.0%, Ni: more than 2.0% and 5.0% or less, Mo: 0.5% or more and less than 1.8%, Al: 0.005-0.10%, V: 0.005-0.20%, Nb: 0.005 to 0.05%, N: less than 0.015%, O: contains 0.010% or less, And, when the value represented by the formula (2) is Neff, Cr, Ni, Mo and C satisfy the formula (1), and Cr, Mo, Si, C, Mn, Ni, Cu and N are ( 3) satisfies the formula, Having a component composition in which the balance is Fe and unavoidable impurities, The sum of the amount of precipitated Nb and the amount of precipitated V sati
  • the amount of precipitated Nb and the amount of precipitated V in the formula (4) are the total precipitated amount (% by mass) of Nb and V precipitated as precipitates.
  • Neff is a negative value in equation (2)
  • Neff in equation (1) is set to zero.
  • Group A One or more selected from Cu: 3.0% or less, W: 3.0% or less, Co: 0.3% or less
  • a high-strength stainless steel seamless steel pipe for oil wells having excellent hot workability, excellent carbon dioxide corrosion resistance, excellent low-temperature toughness, and high yield strength YS of 758 MPa or more is provided. can get.
  • the C content 0.015% or less C forms Cr carbide and lowers the carbon dioxide corrosion resistance. Therefore, the C content should be 0.015% or less. Although there is no lower limit to the C content, reducing the C content to less than 0.003% will result in a rise in manufacturing costs. Therefore, in the present invention, the C content is preferably 0.003% or more. The C content is preferably 0.012% or less, more preferably 0.010% or less.
  • Si 0.05-0.50% Si is an element that acts as a deoxidizing agent. This effect is obtained with a Si content of 0.05% or more. On the other hand, if the Si content exceeds 0.50%, the hot workability deteriorates and the carbon dioxide gas corrosion resistance deteriorates. Therefore, the Si content should be 0.05 to 0.50%.
  • the Si content is preferably 0.10% or more, more preferably 0.15% or more.
  • the Si content is preferably 0.40% or less, more preferably 0.30% or less.
  • Mn 0.04-1.80% Mn is an element that suppresses the formation of ⁇ ferrite during hot working and improves hot workability. In the present invention, 0.04% or more of Mn is required. On the other hand, excessive Mn adversely affects low temperature toughness and SSC resistance. Therefore, the Mn content should be 0.04 to 1.80%.
  • the Mn content is preferably 0.05% or more, more preferably 0.10% or more.
  • the Mn content is preferably 0.80% or less, more preferably 0.50% or less, and even more preferably 0.26% or less.
  • P 0.030% or less
  • P is an element that lowers both carbon dioxide corrosion resistance and pitting corrosion resistance. In the present invention, it is preferable to reduce it as much as possible, but an extreme reduction causes a rise in manufacturing costs. For this reason, the P content is set to 0.030% or less as a range that can be industrially implemented at relatively low cost without causing an extreme decrease in properties. Preferably, the P content is 0.020% or less. In addition, the lower limit of the P content is not particularly limited. However, since excessive reduction causes an increase in manufacturing cost as described above, the P content is preferably 0.005% or more.
  • S 0.005% or less S significantly lowers hot workability and deteriorates low-temperature toughness due to segregation to prior austenite grain boundaries, so it is preferable to reduce it as much as possible. If the S content is 0.005% or less, the segregation of S to the prior austenite grain boundaries can be suppressed, and the low temperature toughness aimed at in the present invention can be obtained. For this reason, the S content is set to 0.005% or less. Preferably, the S content is 0.0015% or less. However, excessive reduction causes an increase in manufacturing costs, so the S content is preferably 0.0005% or more.
  • Cr 11.0-14.0% Cr is an element that forms a protective film and contributes to the improvement of carbon dioxide corrosion resistance.
  • the present invention requires a Cr content of 11.0% or more. and On the other hand, the content of Cr exceeding 14.0% makes it easy to generate retained austenite without martensite transformation, which reduces the stability of the martensite phase and makes it impossible to obtain the desired strength in the present invention. . Therefore, the Cr content is set to 11.0 to 14.0%.
  • the Cr content is preferably 11.5% or more, more preferably 12.0% or more.
  • the Cr content is preferably 13.5% or less, more preferably 13.0% or less.
  • Ni More than 2.0% and 5.0% or less Ni is an element that has the effect of strengthening the protective film and improving the carbon dioxide gas corrosion resistance. In addition, Ni forms a solid solution to increase the strength of the steel and greatly improve the low temperature toughness. Such an effect is obtained with a Ni content exceeding 2.0%. In addition, it suppresses the formation of ferrite phase at high temperatures and improves hot workability. On the other hand, if the Ni content exceeds 5.0%, martensite transformation does not occur, and residual austite tends to occur, which reduces the stability of the martensite phase and reduces the strength. Along with this, costs increase. Therefore, the Ni content should be more than 2.0% and not more than 5.0%. The Ni content is preferably 3.0% or more. The Ni content is preferably 4.9% or less, more preferably 4.8% or less.
  • Mo 0.5% or more and less than 1.8%
  • Mo is an element that increases the resistance to pitting corrosion due to Cl.sup.- or low pH, and the present invention requires a Mo content of 0.5% or more. If the Mo content is less than 0.5%, the carbon dioxide gas corrosion resistance in a severe corrosive environment is lowered. On the other hand, if the Mo content is 1.8% or more, ⁇ ferrite is generated, leading to a decrease in hot workability and an increase in cost. Therefore, the Mo content should be 0.5% or more and less than 1.8%.
  • the Mo content is preferably 0.7% or more, more preferably 0.8% or more.
  • the Mo content is preferably 1.6% or less, more preferably 1.4% or less, still more preferably 1.3% or less.
  • Al 0.005-0.10%
  • Al is an element that acts as a deoxidizing agent. This effect is obtained by containing 0.005% or more of Al.
  • the Al content is set to 0.005 to 0.10%.
  • the Al content is preferably 0.010% or more and preferably 0.03% or less.
  • V 0.005-0.20%
  • V is an element that improves the strength of steel through solid solution strengthening and precipitation strengthening. It also has the effect of fixing N, which lowers the carbon dioxide corrosion resistance, as precipitates (V precipitates) and improving the carbon dioxide corrosion resistance. This effect is obtained by containing 0.005% or more of V.
  • the V content should be 0.005 to 0.20%.
  • the V content is preferably 0.05% or more, more preferably 0.07% or more.
  • the V content is preferably 0.15% or less, more preferably 0.13% or less.
  • Nb 0.005-0.05%
  • Nb is an element that improves the strength of steel through solid solution strengthening and precipitation strengthening. It also has the effect of fixing N, which lowers the carbon dioxide corrosion resistance, as precipitates (Nb precipitates) and improving the carbon dioxide corrosion resistance. Such an effect is obtained by containing 0.005% or more of Nb.
  • the Nb content should be 0.005 to 0.05%.
  • the Nb content is preferably 0.010% or more, more preferably 0.02% or more.
  • the Nb content is more preferably 0.04% or less.
  • N less than 0.015% N forms Cr nitrides and lowers the carbon dioxide corrosion resistance. Therefore, the N content should be less than 0.015%. Although there is no particular lower limit for the N content, if the N content is less than 0.003%, the manufacturing cost will rise significantly. Therefore, the N content is preferably 0.003% or more, more preferably 0.005% or more. The N content is preferably 0.013% or less, more preferably 0.012% or less, and still more preferably 0.010% or less.
  • O (oxygen) 0.010% or less O (oxygen) exists as an oxide in steel and adversely affects various properties. Therefore, it is desirable to reduce O as much as possible. In particular, when the O content exceeds 0.010%, both hot workability and low temperature toughness are remarkably lowered. Therefore, the O content is set to 0.010% or less.
  • the O content is preferably 0.006% or less, more preferably 0.004% or less. An excessive reduction causes an increase in manufacturing costs, so the content is preferably 0.0005% or more.
  • Neff when the value represented by the formula (2) is Neff, Cr, Ni, Mo, C, N, V, and Nb are within the above ranges, and the following formula (1) is Contain satisfactorily.
  • Neff N-14 ⁇ (V/50.94+Nb/92.91) (2)
  • Cr, Ni, Mo, C, N, V and Nb in the formulas (1) and (2) are the contents (% by mass) of the respective elements, and the contents of the elements not contained are zero.
  • Neff is a negative value in equation (2)
  • Neff in equation (1) is set to zero.
  • the left side value of formula (1) is preferably 13.35 or more. Note that there is no particular upper limit for the left-side value of expression (1). From the viewpoint of suppressing cost increase and strength reduction due to excessive alloying, the left side value of the formula (1) is preferably 14.0 or less, more preferably 13.8 or less.
  • Cr, Mo, Si, C, Mn, Ni, Cu, and N are contained so as to satisfy the following formula (3).
  • Cr, Mo, Si, C, Mn, Ni, Cu, and N in the formula (3) are the content (% by mass) of each element, and the content of the element not contained is zero.
  • the value of the left side of the formula (3) (“Cr + Mo + 0.3 x Si – 43.3 x C – 0.4 x Mn – Ni – 0.3 x Cu – 9 x N”) exceeds 11.0, The required and sufficient hot workability cannot be obtained for pipe making, and the manufacturability of the steel pipe decreases. Therefore, in the present invention, Cr, Mo, Si, C, Mn, Ni, Cu, and N are contained so as to satisfy the formula (3).
  • the left-side value of formula (3) is preferably 10.0 or less. Note that there is no particular lower limit for the left-side value of equation (3). Since the effect is saturated, it is preferable to set the left-side value of the formula (3) to 5 or more.
  • the balance other than the above components consists of iron (Fe) and unavoidable impurities.
  • the above ingredients are the basic ingredients.
  • the high-strength stainless seamless steel pipe for oil wells of the present invention can obtain the desired properties by having these basic components and satisfying all of the above-described formulas (1) to (3).
  • Nb and V it is necessary to reduce C and N, add appropriate amounts of Cr, Ni and Mo, and precipitate appropriate amounts of Nb and V.
  • Nb and V carbonitrides of Nb and V are precipitated, which not only contributes to the increase in strength, but also improves the carbon dioxide corrosion resistance by reducing dissolved C and N. This is because Therefore, precipitated Nb and precipitated V in the stainless seamless steel pipe are contained so as to satisfy the following formula (4).
  • the amount of precipitated Nb and the amount of precipitated V in the formula (4) are the total amount of Nb and V precipitated as precipitates in the steel (% by mass) obtained by the electrolytic extraction residue method described in Examples below. is. For elements that do not precipitate, the amount of precipitation is set to zero.
  • the value of the left side of the formula (that is, the value of "precipitated Nb amount + precipitated V amount”) is less than 0.002%, the amount of precipitation is insufficient, and Nb carbonitride, V carbonitride Therefore, the dislocation pinning effect and the C and N fixing effect cannot be obtained, and the high strength aimed at in the present invention cannot be obtained.
  • the left side value of the formula is preferably 0.004% or more. Note that there is no particular upper limit for the left-side value of equation (4). From the viewpoint of preventing deterioration of low-temperature toughness due to an excessive increase in YS, the total amount of precipitated Nb and precipitated V is preferably 0.010% or less, more preferably 0.007% or less.
  • the following optional elements can be contained as necessary for the purpose of further improving strength, low-temperature toughness, etc.
  • the following components Cu, W, Co, Zr, B, REM, Ca, Sn, Ta, Mg, and Sb can be contained as necessary, so these components may be 0%.
  • Cu 3.0% or less
  • W 3.0% or less
  • Co 0.3% or less
  • Cu 3.0% or less
  • Cu strengthens the protective film. It is an element that enhances the carbon dioxide gas corrosion resistance and can be contained as necessary. Such an effect is obtained by containing 0.05% or more of Cu.
  • the Cu content is preferably 3.0% or less.
  • the Cu content is preferably 0.05% or more, more preferably 0.5% or more, and still more preferably 0.7% or more.
  • the Cu content is more preferably 2.5% or less, more preferably 1.5% or less.
  • W 3.0% or less W is an element that contributes to an increase in strength, and can be contained as necessary. Such an effect is obtained by containing 0.05% or more of W. On the other hand, even if the W content exceeds 3.0%, the effect is saturated. Therefore, when W is contained, the W content is preferably 3.0% or less.
  • the W content is preferably 0.05% or more, more preferably 0.5% or more.
  • the W content is more preferably 1.5% or less.
  • Co 0.3% or less
  • Co is an element that raises the Ms point to reduce the fraction of retained austenite and improve the strength and SSC resistance. Such an effect is obtained by containing 0.01% or more of Co.
  • the Co content exceeds 0.3%, the low temperature toughness value decreases. Therefore, when Co is contained, the Co content is preferably 0.3% or less.
  • the Co content is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.07% or more.
  • the Co content is more preferably 0.15% or less, more preferably 0.09% or less.
  • Zr 0.20% or less
  • B 0.01% or less
  • REM 0.01% or less
  • Ca 0.0100% or less
  • Sn 0.20% or less
  • Ta 0.10% or less
  • Mg 0.01% or less
  • Sb 1 or 2 or more selected from 0.50% or less
  • Zr 0.20% or less
  • Zr content is preferably 0.20% or less.
  • the Zr content is preferably 0.01% or more, more preferably 0.03% or more.
  • the Zr content is more preferably 0.10% or less, more preferably 0.05% or less.
  • B 0.01% or less B is an element that contributes to an increase in strength, and can be contained as necessary. Such an effect is obtained by containing 0.0005% or more of B.
  • the B content is preferably 0.01% or less.
  • the B content is preferably 0.0005% or more, more preferably 0.0007% or more.
  • the B content is more preferably 0.005% or less.
  • REM 0.01% or less REM (rare earth metal) is an element that contributes to improvement of hot workability and carbon dioxide corrosion resistance, and can be contained as necessary. Such an effect is obtained by containing 0.0005% or more of REM. On the other hand, even if the content of REM exceeds 0.01%, the effect is saturated, and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when REM is contained, the REM content is preferably 0.01% or less. The REM content is preferably 0.0005% or more, more preferably 0.001% or more. The REM content is more preferably 0.005% or less.
  • Ca 0.0100% or less
  • Ca is an element that contributes to the improvement of hot workability, and can be contained as necessary. Such an effect is obtained by containing 0.0005% or more of Ca.
  • the Ca content exceeds 0.0100%, the number density of coarse Ca-based inclusions increases, making it impossible to obtain the desired low temperature toughness. Therefore, when Ca is contained, the Ca content is preferably 0.0100% or less.
  • the Ca content is preferably 0.0005% or more, more preferably 0.0010% or more.
  • the Ca content is more preferably 0.0040% or less.
  • Sn 0.20% or less
  • Sn is an element that contributes to improvement of carbon dioxide corrosion resistance, and can be contained as necessary. Such an effect is obtained by containing 0.02% or more of Sn.
  • the Sn content is preferably 0.20% or less.
  • the Sn content is preferably 0.02% or more, more preferably 0.04% or more.
  • the Sn content is more preferably 0.15% or less.
  • Ta 0.10% or less
  • Ta is an element that increases strength.
  • Ta is an element that provides the same effect as Nb, and part of Nb can be replaced with Ta. Such an effect is obtained by containing 0.01% or more of Ta.
  • the Ta content is preferably 0.10% or less.
  • the Ta content is preferably 0.01% or more, more preferably 0.03% or more.
  • the Ta content is more preferably 0.08% or less.
  • Mg 0.01% or less Mg is an element that improves carbon dioxide corrosion resistance and can be contained as necessary. Such an effect is obtained by containing 0.002% or more of Mg. On the other hand, even if the Mg content exceeds 0.01%, the effect is saturated, and the effect corresponding to the content cannot be expected. Therefore, when Mg is contained, the Mg content is preferably 0.01% or less. The Mg content is preferably 0.002% or more, more preferably 0.004% or more. The Mg content is more preferably 0.008% or less.
  • Sb 0.50% or less
  • Sb is an element that contributes to improvement of carbon dioxide corrosion resistance, and can be contained as necessary. Such an effect is obtained by containing 0.02% or more of Sb.
  • the Sb content is preferably 0.50% or less.
  • the Sb content is preferably 0.02% or more, more preferably 0.04% or more.
  • the Sb content is more preferably 0.3% or less.
  • the steel pipe structure of the high-strength stainless steel seamless steel pipe for oil wells of the present invention has martensite as the main phase, and contains 10% or less (including 0%) of retained austenite and less than 5% (including 0%) of ferrite.
  • the steel pipe structure has martensite (that is, tempered martensite) as the main phase.
  • the "main phase” refers to a structure that occupies 70% or more of the volume of the entire steel pipe.
  • the volume fraction of martensite is preferably 80% or more, more preferably 90% or more.
  • the volume fraction of martensite may be 100%.
  • the volume fraction of martensite is preferably 95% or less.
  • the steel pipe structure of the present invention contains retained austenite at a volume ratio of 10% or less with respect to the entire steel pipe.
  • the volume fraction of retained austenite is preferably 8% or less, more preferably 6% or less. Even when the retained austenite content is 0%, the intended properties of the present invention can be obtained.
  • the volume fraction of retained austenite is preferably 2% or more, more preferably 4% or more.
  • the balance other than martensite and retained austenite is ferrite.
  • the volume ratio of the remaining structure that is, ferrite
  • the volume fraction of ferrite is preferably 3% or less.
  • Each tissue described above can be measured by the following method. First, a test piece for tissue observation was taken from the central part of the wall thickness of a cross section perpendicular to the tube axis direction, and corroded with a Villella reagent (picric acid, hydrochloric acid, and ethanol mixed in proportions of 2 g, 10 ml, and 100 ml, respectively). Then, the structure is imaged with a scanning electron microscope (magnification: 1000 times), the structure fraction (area %) of ferrite is calculated using an image analyzer, and this area ratio is treated as volume ratio %.
  • a Villella reagent picric acid, hydrochloric acid, and ethanol mixed in proportions of 2 g, 10 ml, and 100 ml, respectively.
  • the X-ray diffraction test piece is ground and polished so that the cross section (C cross section) perpendicular to the tube axis direction becomes the measurement surface, and the amount of retained austenite ( ⁇ ) is measured using the X-ray diffraction method. .
  • the amount of retained austenite is obtained by measuring the diffraction X-ray integrated intensity of the (220) plane of ⁇ and the (211) plane of ⁇ (ferrite) and converting it using the following formula.
  • ⁇ (volume ratio) 100/(1 + (I ⁇ R ⁇ /I ⁇ R ⁇ ))
  • I ⁇ integrated intensity of ⁇
  • R ⁇ theoretical crystallographically calculated value of ⁇
  • I ⁇ integrated intensity of ⁇
  • R ⁇ theoretically calculated crystallographic value of ⁇
  • the fraction (volume ratio) of martensite is the remainder other than ferrite and retained ⁇ .
  • the temperature (°C) is the surface temperature of the steel pipe material and steel pipe (seamless steel pipe after pipe making) unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like.
  • the starting material is a steel pipe material having the above composition.
  • the method of manufacturing the steel pipe material, which is the starting material is not particularly limited.
  • the molten steel having the above composition is melted by a melting method such as a converter or a vacuum melting furnace, and then a billet It is preferable to use a steel pipe material (slab) such as
  • these steel pipe materials are heated (heating process), and the heated steel pipe materials are made into hollow shells with a piercing machine using the Mannesmann-plug mill method or the Mannesmann-mandrel mill method, and then hot-worked to make pipes. (tube-making process).
  • a seamless steel pipe having the above chemical composition with desired dimensions (predetermined shape) is obtained.
  • the seamless steel pipe may be produced by hot extrusion using a press method.
  • the heating temperature is set to a temperature in the range of 1100 to 1300°C. If the heating temperature is less than 1100° C., the hot workability deteriorates and many defects occur during pipe making. On the other hand, if the heating temperature exceeds 1300° C., the crystal grains become coarse and the low-temperature toughness decreases. Therefore, the heating temperature in the heating step is set to a temperature in the range of 1100 to 1300.degree.
  • the above heating temperature is preferably 1150° C. or higher and preferably 1280° C. or lower.
  • the seamless steel pipe after pipemaking is cooled to room temperature at a cooling rate faster than air cooling. Thereby, a steel pipe structure having martensite as a main phase can be secured.
  • the seamless steel pipe (steel pipe) after pipemaking is subjected to heat treatment (that is, quenching treatment and tempering treatment).
  • heat treatment that is, quenching treatment and tempering treatment.
  • the steel pipe is reheated to a temperature equal to or higher than the Ac 3 transformation point (that is, the heating temperature), held for a predetermined time, and then cooled at a cooling rate equal to or higher than air cooling so that the surface temperature of the steel pipe is reduced to 100. C. or less (that is, the cooling stop temperature).
  • the heating temperature (that is, the reheating temperature) for the quenching treatment is preferably 800 to 950° C. from the viewpoint of preventing coarsening of the structure. Moreover, from the viewpoint of ensuring uniform heating, it is preferable to hold the above reheating temperature for 5 minutes or longer.
  • the retention time is preferably 30 minutes or less.
  • the cooling stop temperature is set to 100° C. or less.
  • the cooling stop temperature is preferably 80° C. or lower.
  • cooling rate equal to or higher than air cooling is 0.01°C/s or higher.
  • the steel pipe subjected to the above-described quenching treatment is subjected to tempering treatment.
  • the steel pipe is heated to a temperature of 500° C. or more and less than the Ac 1 transformation point (that is, the tempering temperature), held for a predetermined time, and then air-cooled.
  • Other cooling such as water cooling, oil cooling, or mist cooling may be performed instead of all or part of the air cooling.
  • the tempering temperature is equal to or higher than the Ac1 transformation point, fresh martensite precipitates after tempering, making it impossible to ensure the desired high strength.
  • the tempering temperature is less than 500° C., the strength becomes excessive, which makes it difficult to ensure the desired low temperature toughness. Therefore, the tempering temperature should be 500° C. or higher and lower than the Ac 1 transformation point.
  • the steel pipe structure becomes a structure in which tempered martensite is the main phase, and a seamless steel pipe having desired strength and desired carbon dioxide corrosion resistance is obtained. From the viewpoint of ensuring uniform heating of the material, it is preferable to hold the material at the above tempering temperature for 10 minutes or longer. This retention time is preferably 300 minutes or less.
  • the present invention is not limited to this. It is also possible to manufacture electric resistance welded steel pipes and UOE steel pipes by using steel pipe materials having the above-described chemical compositions, and use them as steel pipes for oil wells. In this case, if the obtained steel pipe for oil wells is subjected to quenching treatment and tempering treatment under the conditions described above, the high-strength stainless steel seamless steel pipe for oil wells of the present invention can be obtained.
  • the intermediate product (billet, etc.) in the intermediate stage of manufacturing the product has excellent hot workability, excellent carbon dioxide corrosion resistance, low temperature toughness, and yield strength.
  • a high-strength stainless seamless steel pipe for oil wells having a high strength of YS: 758 MPa or more can be obtained.
  • a test piece material was cut out from the steel material obtained by hot working.
  • the dimensions of the steel material were length: 1100 mm, width: 160 mm, and thickness: 15 mm.
  • heat treatment quenching treatment and tempering treatment
  • the quenching treatment and tempering treatment are performed on the cut test piece material, but it can be regarded as the same as the case of quenching treatment and tempering treatment for a seamless steel pipe.
  • a corrosion test piece having a thickness of 3 mm, a width of 30 mm, and a length of 40 mm was machined from the quenched and tempered test piece material, and a corrosion test was performed.
  • the corrosion test was performed by immersing a corrosion test piece in a test liquid: 20% by mass NaCl aqueous solution (liquid temperature: 150°C, 10 atm CO2 gas atmosphere) held in an autoclave for an immersion period of 14 days. bottom.
  • the weight of the corrosion test piece after the test was measured, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained.
  • samples with a corrosion rate of 0.125 mm/y or less were accepted, and samples with a corrosion rate of more than 0.125 mm/y were rejected.
  • pitting corrosion present refers to the case where pitting corrosion having a diameter of 0.2 mm or more occurs.
  • No pitting corrosion refers to cases where no pitting corrosion occurs, and cases where pitting corrosion occurs but has a diameter of less than 0.2 mm.
  • tissue measurement Specimens for microstructural observation were prepared from specimen materials that had been quenched and tempered, and each microstructure was measured. The observation surface of the structure was a cross section (C cross section) perpendicular to the rolling direction.
  • a test piece for tissue observation was corroded with Vilera's reagent (picric acid, hydrochloric acid, and ethanol mixed at a ratio of 2 g, 10 ml, and 100 ml, respectively), and the tissue was imaged with a scanning electron microscope (magnification: 1000 times). , an image analyzer was used to calculate the ferrite structure fraction (% by volume).
  • the X-ray diffraction test piece was ground and polished so that the cross section perpendicular to the rolling direction (C cross section) was the measurement surface, and the amount of retained austenite ( ⁇ ) was measured using the X-ray diffraction method.
  • the amount of retained austenite was obtained by measuring the diffraction X-ray integrated intensity of the (220) plane of ⁇ and the (211) plane of ⁇ (ferrite) and converting it using the following formula.
  • ⁇ (volume ratio) 100/(1 + (I ⁇ R ⁇ /I ⁇ R ⁇ ))
  • I ⁇ integrated intensity of ⁇
  • R ⁇ theoretical crystallographically calculated value of ⁇
  • I ⁇ integrated intensity of ⁇
  • R ⁇ theoretically calculated crystallographic value of ⁇ .
  • the fraction (volume ratio) of martensite was the remainder other than ferrite and retained austenite.
  • a test piece for electrolytic extraction was taken from the test piece material that had been subjected to the quenching treatment and the tempering treatment. Using the collected electrolytic extraction test piece, electrolytic extraction was performed in a 10% AA (10% acetylacetone-1% tetramethylammonium chloride-methanol) solution, and the residue remaining after passing through a 0.2 ⁇ m filter mesh (electrolytic residue) was obtained.
  • the amounts of Nb and V contained in the resulting electrolytic residue were determined by ICP measurement, and were defined as the amount of precipitated Nb and the amount of precipitated V contained in the sample.
  • the "Amount of Precipitate" column shows the total amount of the measured precipitated Nb amount and precipitated V amount.
  • All of the present invention examples have a yield strength (YS) of 758 MPa or more, a reduction in area of 70% or more, and are excellent in hot workability, and at high temperatures of 150 ° C. or more containing CO 2 and Cl ⁇ Excellent carbon dioxide gas corrosion resistance (corrosion resistance) in a corrosive environment and excellent low temperature toughness.
  • At least one of the yield strength (YS), hot workability, carbon dioxide corrosion resistance, and low temperature toughness could not obtain the desired value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

油井用高強度ステンレス継目無鋼管を提供する。本発明のステンレス継目無鋼管は、質量%で、C:0.015%以下、Si:0.05~0.50%、Mn:0.04~1.80%、P:0.030%以下、S:0.005%以下、Cr:11.0~14.0%、Ni:2.0%超5.0%以下、Mo:0.5%以上1.8%未満、Al:0.005~0.10%、V:0.005~0.20%、Nb:0.005~0.05%、N:0.015%未満、O:0.010%以下を含有し、かつCr、Mo、Si、C、Mn、Ni、Cu、N、VおよびNbが所定の関係式を満たし、残部がFeおよび不可避的不純物からなる成分組成を有し、析出Nb量と析出V量の合計が0.002%以上であり、降伏強さが758MPa以上であり、vE-60が20J以上であり、腐食速度が0.125mm/y以下である。

Description

油井用高強度ステンレス継目無鋼管
 本発明は、原油あるいは天然ガスの油井およびガス井(以下、単に「油井」と称する。)等に好適に用いられる油井用高強度ステンレス継目無鋼管に関する。本発明は、特に、炭酸ガス(CO2)および塩素イオン(Cl-)を含み、かつ150℃以上の高温での極めて厳しい腐食環境下における耐炭酸ガス腐食性と、低温靭性とに優れた油井用高強度ステンレス継目無鋼管に関する。
 近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇という観点から、従来、省みられなかったような、高深度の油田や、硫化水素等を含む、いわゆるサワー環境下にある厳しい腐食環境の油田やガス田等の開発が盛んになっている。このような油田、ガス田は一般に深度が極めて深く、またその雰囲気も高温でかつCO2、Cl-、さらにH2Sを含む厳しい腐食環境となっている。このような環境下で使用される油井用鋼管には、所望の高強度および優れた耐食性を兼ね備えた材質とすることが要求される。
 従来、炭酸ガス(CO2)、塩素イオン(Cl-)等を含む環境の油田、ガス田では、採掘に使用する油井管として13Crマルテンサイト系ステンレス鋼管が多く使用されている。さらに、最近では13Crマルテンサイト系ステンレス鋼のCを低減し、Ni、Mo等を増加させた成分系の改良型13Crマルテンサイト系ステンレス鋼の使用も拡大している。
 このような要望に対し、例えば特許文献1~特許文献3の技術がある。
特許文献1には、質量%で、C:0.01~0.10%、Cr:9.0~15.0%、Ni:0.1~7.0%、N:0.005~0.1%、Si:0.05~1.0%、Mn:0.05~1.5%、Cu:0.1~5.0%、Mo:0.1~3.0%、V:0.01~0.20%及びAl:0.0005%から0.05%未満を含み、残部がFe及び不純物から成り、不純物中のP及びSがそれぞれ0.03%以下及び0.01%以下で、組織に占めるオーステナイトの割合が0.3~1.3%、且つ円周方向の圧縮残留応力の絶対値が1.0MPa以下であるマルテンサイト系ステンレス鋼管が開示されている。
 特許文献2には、質量%で、C:0.08%以下、Si:1%以下、Mn:0.1~2%、Cr:7~15%、Ni:0.5~7%、Nb:0.005~0.5%、Al:0.001~0.1%、N:0.001~0.05%、P:0.04%以下、S:0.005%以下を含有し、残部は実質的にFeであり、Cr、C、NbおよびNi含有量が所定の関係式を満足し、断面の鋼組織が大きさ0.2μm以下のクロム窒化物を102~108個/mm2含み、降伏強度が760MPa以上である、耐炭酸ガス腐食性を改善した高強度マルテンサイト系ステンレス鋼が開示されている。
 特許文献3には、mass%で、C:0.020%以下、Cr:10~14%、Ni:3%以下、Nb:0.03~0.2%、N:0.05%以下を含み、残部Feおよび不可避的不純物からなる組成と、さらに析出Nb量がNb換算で0.020%以上である組織とを有し、降伏強さ95ksi以上の高強度とシャルピー衝撃試験の破面遷移温度vTrsが-40℃以下の低温靭性とを兼備する、油井管用マルテンサイト系ステンレス継目無鋼管が開示されている。
特開2004-238662号公報 特開2002-241902号公報 特開2010-168646号公報
 最近の厳しい腐食環境における油田やガス田等の開発に伴い、油井用鋼管には、高強度と、150℃以上の高温で、かつ、炭酸ガス(CO2)、塩素イオン(Cl-)を含む厳しい腐食環境下においても、優れた耐炭酸ガス腐食性とを兼備することが求められてきた。また、寒冷地における油田開発が増加してきており、優れた低温靭性も求められてきた。
 油井用鋼管として用いられるシームレス鋼管(継目無鋼管)は、製造プロセスにおいて厳しい歪みを付与されるため、造管時に鋼管表面に傷が発生しやすい。これを防止するため、優れた熱間加工性を備えることも求められてきた。
 しかしながら、特許文献1~3に記載された技術では、高強度は有するものの、優れた耐炭酸ガス腐食性、低温靭性が十分ではなかった。具体的には、特許文献1に記載の技術では、シャルピー衝撃試験の破面遷移温度が0℃であり、また、Ni含有量が低いので、耐炭酸ガス腐食性が悪い。特許文献2に記載の技術では、シャルピー衝撃試験の破面遷移温度が-10℃であり、また、Ni含有量が低いので、耐炭酸ガス腐食性が悪い。特許文献3に記載の技術では、シャルピー衝撃試験の破面遷移温度が-40℃であり、また、Ni含有量が低いので、耐炭酸ガス腐食性が悪い。
 そこで、本発明は、かかる従来技術の問題を解決し、高強度で熱間加工性に優れるとともに、耐炭酸ガス腐食性および低温靭性にも優れる、油井用高強度ステンレス継目無鋼管を提供することを目的とする。
 ここで、本発明における「高強度」とは、降伏強さYSが110ksi(758MPa)以上を有する場合をいうものとする。
 また、本発明における「熱間加工性に優れる」とは、鋳片(ビレット)から採取した平行部径10mmの丸棒形状の丸棒試験片を用い、グリーブル試験機にて1250℃に加熱し、加熱温度で100秒間保持し、1℃/secで1000℃まで冷却し、1000℃で10秒間保持した後に、破断するまで引っ張り、断面減少率(%)を測定し、断面減少率が70%以上の場合をいうものとする。
 また、本発明における「耐炭酸ガス腐食性に優れる」とは、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:150℃、10気圧のCO2ガス雰囲気)中に、腐食試験片を浸漬し、浸漬期間を14日間として実施した際の腐食速度が、0.125mm/y以下の場合で、かつ、腐食試験後の腐食試験片について、倍率:10倍のルーペを用いて腐食試験片表面の孔食発生の有無を観察し、直径:0.2mm以上の孔食の発生がない場合をいうものとする。
 また、本発明における「低温靭性が優れる」とは、-60℃におけるシャルピー衝撃試験(Vノッチ試験片(5mm厚))の吸収エネルギーvE-60が20J以上の場合をいうものとする。
 なお、上記の各試験は、後述する実施例に記載の方法で行うことができる。
 本発明者らは、上記した目的を達成するために、各種成分組成のステンレス鋼管における耐炭酸ガス腐食性および低温靭性への影響について鋭意検討した。その結果、YS110ksi級(758MPa~896MPa)の高強度材における耐炭酸ガス腐食性と低温靭性を両立するためには、C、Nを低減し、かつCr、Ni、Moを適切な量で添加させた上で、適切な量のNb、Vを析出させる必要があることが分かった。
 Cr、Ni、Moは鋼管表面に緻密な腐食生成物を生成し、炭酸ガス環境下における腐食速度を低下させる。一方で、C、Nは、Crと結合し、耐食性向上に有効に作用するCr量を低減させる。したがって、高温炭酸ガス環境下において優れた耐食性を有するためには、Cr、Ni、Mo、C、Nの量を適宜調整する必要がある。
 また、本発明においては、適切な量のNb、Vを析出させる必要がある。C、Nの含有量を低減するだけでは、所望の高強度を得ることができない。そこでNb、Vを適量添加することで、Nb、Vの炭窒化物を析出し、強度上昇に寄与するだけでなく、固溶したC、Nの含有量を低減することで耐炭酸ガス腐食性を向上させることができる。なお、Tiは、粗大なTiNを生成し、低温靭性値を悪化させるため、本発明においては、添加することができない。
 また、優れた熱間加工性を有するためには、ビレット加熱時のδフェライト分率を所定の値以下とする必要がある。そのためには、フェライト生成元素とオーステナイト生成元素の添加量を適宜調整する必要がある。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。本発明の要旨は次のとおりである。
[1] 質量%で、
 C :0.015%以下、     Si:0.05~0.50%、
 Mn:0.04~1.80%、   P :0.030%以下、
 S :0.005%以下、     Cr:11.0~14.0%、
 Ni:2.0%超5.0%以下、  Mo:0.5%以上1.8%未満、
 Al:0.005~0.10%、  V :0.005~0.20%、
 Nb:0.005~0.05%、  N :0.015%未満、
 O :0.010%以下
を含有し、
かつ、(2)式で表される値をNeffとするとき、Cr、Ni、MoおよびCが(1)式を満たすとともに、Cr、Mo、Si、C、Mn、Ni、CuおよびNが(3)式を満たし、
残部がFeおよび不可避的不純物からなる成分組成を有し、
 析出Nb量と析出V量の合計が(4)式を満たし、
 降伏強さが758MPa以上であり、
 -60℃における吸収エネルギーvE-60が20J以上であり、
 腐食速度が0.125mm/y以下である、油井用高強度ステンレス継目無鋼管。
Cr+0.2×Ni+0.25×Mo-20×C -3.7×Neff ≧13.25     ‥‥(1)
Neff = N- 14×(V/50.94+Nb/92.91)            ‥‥(2)
Cr+Mo+0.3×Si-43.3×C-0.4×Mn-Ni-0.3×Cu-9×N ≦ 11.0 ‥‥(3)
析出Nb量+ 析出V量 ≧ 0.002              ‥‥(4)
ここで、(1)式~(3)式におけるCr、Ni、Mo、Cu、C、Si、Mn、N、VおよびNbは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
また、(4)式における析出Nb量、および析出V量は、析出物として析出したNbおよびVの合計析出量(質量%)である。
ただし、(2)式においてNeffが負の値のときには、(1)式のNeffをゼロとする。
[2] 前記成分組成に加えて、質量%で、以下のA群およびB群のうちから選ばれた1群または2群を含有する、[1]に記載の油井用高強度ステンレス継目無鋼管。
A群:Cu:3.0%以下、W:3.0%以下、Co:0.3%以下のうちから選ばれた1種または2種以上
B群:Zr:0.20%以下、B:0.01%以下、REM:0.01%以下、Ca:0.0100%以下、Sn:0.20%以下、Ta:0.10%以下、Mg:0.01%以下、Sb:0.50%以下のうちから選ばれた1種または2種以上
 本発明によれば、熱間加工性に優れるとともに、耐炭酸ガス腐食性に優れ、低温靭性にも優れ、かつ降伏強さYS:758MPa以上の高強度を有する油井用高強度ステンレス継目無鋼管を得られる。
 以下、本発明について詳細に説明する。なお、本発明は以下の実施形態に限定されない。
 まず、本発明の油井用高強度ステンレス継目無鋼管の成分組成と、その限定理由について説明する。以下、特に断わらない限り、質量%は単に「%」と記す。
 C:0.015%以下
 Cは、Cr炭化物を形成し、耐炭酸ガス腐食性を低下させる。そのため、C含有量は0.015%以下とすることが必要である。C含有量に下限は設けないが、C含有量を0.003%未満に低下させるためには製造コストの高騰を招く。そのため、本発明では、C含有量は0.003%以上とすることが好ましい。C含有量は、好ましくは0.012%以下とし、より好ましくは0.010%以下とする。
 Si:0.05~0.50%
 Siは、脱酸剤として作用する元素である。この効果は0.05%以上のSiの含有で得られる。一方、0.50%を超えるSiの含有は、熱間加工性が低下するとともに、耐炭酸ガス腐食性が低下する。このため、Si含有量は0.05~0.50%とする。Si含有量は、好ましくは0.10%以上とし、より好ましくは0.15%以上とする。Si含有量は、好ましくは0.40%以下とし、より好ましくは0.30%以下とする。
 Mn:0.04~1.80%
 Mnは、熱間加工時のδフェライト生成を抑制し、熱間加工性を向上させる元素であり、本発明では0.04%以上のMnの含有を必要とする。一方、Mnは過剰に含有すると、低温靭性や耐SSC性に悪影響を及ぼす。このため、Mn含有量は0.04~1.80%とする。Mn含有量は、好ましくは0.05%以上とし、より好ましくは0.10%以上とする。Mn含有量は、好ましくは0.80%以下とし、より好ましくは0.50%以下とし、さらに好ましくは0.26%以下とする。
 P:0.030%以下
 Pは、耐炭酸ガス腐食性、耐孔食性をともに低下させる元素である。本発明では、できるだけ低減することが好ましいが、極端な低減は製造コストの高騰を招く。このため、特性の極端な低下を招くことなく、工業的に比較的安価に実施可能な範囲として、P含有量は0.030%以下とする。好ましくは、P含有量は0.020%以下である。なお、P含有量の下限は特に限定されない。ただし、上述のように過度の低減は製造コストの増加を招くため、P含有量は好ましくは0.005%以上とする。
 S:0.005%以下
 Sは、熱間加工性を著しく低下させ、また、旧オーステナイト粒界への偏析によって低温靭性を悪化させるため、できるだけ低減することが好ましい。S含有量は0.005%以下であれば、旧オーステナイト粒界へのSの偏析を抑制し、本発明で目的とする低温靭性を得ることができる。このようなことから、S含有量は0.005%以下とする。好ましくは、S含有量は0.0015%以下である。ただし、過度の低減は製造コストの増加を招くため、S含有量は好ましくは0.0005%以上とする。
 Cr:11.0~14.0%
 Crは、保護皮膜を形成して耐炭酸ガス腐食性向上に寄与する元素であり、高温での耐炭酸ガス腐食性を確保するために、本発明では11.0%以上のCrの含有を必要とする。一方、14.0%を超えるCrの含有は、マルテンサイト変態させずに、残留オーステナイトを生じやすくすることで、マルテンサイト相の安定性が低下し、本発明で目的とする強度が得られなくなる。このため、Cr含有量は11.0~14.0%とする。Cr含有量は、好ましくは11.5%以上とし、より好ましくは12.0%以上とする。Cr含有量は、好ましくは13.5%以下とし、より好ましくは13.0%以下とする。
 Ni:2.0%超5.0%以下
 Niは、保護皮膜を強固にして耐炭酸ガス腐食性を向上させる作用を有する元素である。また、Niは、固溶して鋼の強度を増加させるとともに低温靭性を大きく向上させる。このような効果は2.0%を超えるNiの含有で得られる。また、高温におけるフェライト相の生成を抑制し、熱間加工性を改善する。一方、5.0%を超えるNiの含有は、マルテンサイト変態させずに、残留オーステイトを生じやすくすることで、マルテンサイト相の安定性が低下し、強度が低下する。これとともに、コストが増大する。このため、Ni含有量は2.0%超5.0%以下とする。Ni含有量は、好ましくは3.0%以上とする。Ni含有量は、好ましくは4.9%以下とし、より好ましくは4.8%以下とする。
 Mo:0.5%以上1.8%未満
 Moは、Clや低pHによる孔食に対する抵抗性を増加させる元素であり、本発明では0.5%以上のMoの含有を必要とする。0.5%未満のMoの含有では、苛酷な腐食環境下での耐炭酸ガス腐食性を低下させる。一方、1.8%以上のMoの含有は、δフェライトを発生させて、熱間加工性の低下を招くうえ、コストが増大する。このため、Mo含有量は0.5%以上1.8%未満とする。Mo含有量は、好ましくは0.7%以上とし、より好ましくは0.8%以上とする。Mo含有量は、好ましくは1.6%以下とし、より好ましくは1.4%以下とし、さらに好ましくは1.3%以下とする。
 Al:0.005~0.10%
 Alは、脱酸剤として作用する元素である。この効果は、0.005%以上のAlを含有することで得られる。一方、0.10%を超えてAlを含有すると、酸化物量が多くなりすぎて、低温靭性に悪影響を及ぼす。このため、Al含有量は0.005~0.10%とする。Al含有量は、好ましくは0.010%以上とし、好ましくは0.03%以下とする。
 V:0.005~0.20%
 Vは、固溶強化および析出強化により鋼の強度を向上させる元素である。また、耐炭酸ガス腐食性を低下させるNを析出物(V析出物)として固定し、耐炭酸ガス腐食性を向上させる効果もある。この効果は、Vを0.005%以上含有することで得られる。一方、0.20%を超えてVを含有しても、強度が過剰に高くなり、その結果、低温靭性が低下する。このため、V含有量は0.005~0.20%とする。V含有量は、好ましくは0.05%以上とし、より好ましくは0.07%以上とする。V含有量は、好ましくは0.15%以下とし、より好ましくは0.13%以下とする。
 Nb:0.005~0.05%
 Nbは、固溶強化および析出強化により鋼の強度を向上させる元素である。また、耐炭酸ガス腐食性を低下させるNを析出物(Nb析出物)として固定し、耐炭酸ガス腐食性を向上させる効果もある。このような効果は、0.005%以上のNbを含有することで得られる。一方、0.05%を超えてNbを含有しても、強度が過剰に高くなり、その結果、低温靭性が低下する。このため、Nb含有量は0.005~0.05%とする。Nb含有量は、好ましくは0.010%以上とし、より好ましくは0.02%以上とする。Nb含有量は、より好ましくは0.04%以下とする。
 N:0.015%未満
 Nは、Cr窒化物を生成し、耐炭酸ガス腐食性を低下させる。このため、N含有量は0.015%未満とする。N含有量の下限は特に設けないが、N含有量を0.003%未満とすると、著しい製造コストの上昇を招く。したがって、N含有量は、好ましくは0.003%以上とし、より好ましくは0.005%以上とする。N含有量は、好ましくは0.013%以下とし、より好ましくは0.012%以下とし、さらに好ましくは0.010%以下とする。
 O(酸素):0.010%以下
 O(酸素)は、鋼中では酸化物として存在し、各種特性に悪影響を及ぼす。このため、Oはできるだけ低減することが望ましい。特に、O含有量が0.010%を超えると、熱間加工性、低温靭性がともに著しく低下する。このため、O含有量は0.010%以下とする。O含有量は、好ましくは0.006%以下であり、より好ましくは0.004%以下である。過度の低減は製造コストの増加を招くため、好ましくは0.0005%以上とする。
 また、本発明では、(2)式で表される値をNeffとするとき、Cr、Ni、Mo、C、N、V、およびNbを、上記した範囲内とし、かつ下記(1)式を満足するように含有する。
Cr+0.2×Ni+0.25×Mo-20×C -3.7×Neff ≧ 13.25  ‥‥(1)
Neff = N- 14×(V/50.94+Nb/92.91)  ‥‥(2)
ここで、(1)式および(2)式におけるCr、Ni、Mo、C、N、VおよびNbは各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。ただし、(2)式においてNeffが負の値のときには、(1)式のNeffをゼロとする。
 (1)式の左辺の値(「Cr+0.2×Ni+0.25×Mo-20×C -3.7×Neff」の値)が13.25未満であると、150℃以上の高温で、かつCO2、Clを含む高温腐食環境下における、耐炭酸ガス腐食性が低下する。その理由はCr、Ni、Moを主成分とする保護性のある腐食生成物の生成が不十分だからである。このため、本発明では、Cr、Ni、Mo、およびCについて、(1)式を満足するように含有する。(1)式の左辺値は、好ましくは13.35以上とする。なお、(1)式の左辺値の上限は特に設けない。過剰な合金添加によるコスト増の抑制および強度低下の抑制の観点から、(1)式の左辺値は14.0以下とすることが好ましく、13.8以下とすることがより好ましい。
 さらに、本発明では、Cr、Mo、Si、C、Mn、Ni、Cu、およびNを、下記(3)式を満足するように含有する。
Cr+Mo+0.3×Si-43.3×C-0.4×Mn-Ni-0.3×Cu-9×N ≦ 11.0 ‥‥(3)
ここで、(3)式におけるCr、Mo、Si、C、Mn、Ni、Cu、およびNは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
 (3)式の左辺の値(「Cr+Mo+0.3×Si-43.3×C-0.4×Mn-Ni-0.3×Cu-9×N」の値)が11.0超えであると、ステンレス継目無鋼管を造管するうえで必要十分な熱間加工性を得ることができず、鋼管の製造性が低下する。このため、本発明では、Cr、Mo、Si、C、Mn、Ni、Cu、およびNについて、(3)式を満足するように含有する。(3)式の左辺値は、好ましくは10.0以下とする。なお、(3)式の左辺値の下限は特に設けない。効果が飽和することから、(3)式の左辺値は5以上とすることが好ましい。
 本発明では、上記した成分以外の残部は、鉄(Fe)および不可避的不純物からなる。
 上記した成分が基本の成分である。この基本成分を有し、かつ、上記した(1)式~(3)式の全てを満足することで、本発明の油井用高強度ステンレス継目無鋼管は目的とする特性を得られる。
 さらに本発明では、上述のように、C、Nを低減し、かつCr、Ni、Moを適切な量で添加させた上で、適切な量のNb、Vを析出させる必要がある。Nb、Vを適量添加することで、Nb、Vの炭窒化物を析出し、強度上昇に寄与するだけでなく、固溶したC、Nを低減することで耐炭酸ガス腐食性を向上させることができるからである。そのため、ステンレス継目無鋼管中の析出Nbおよび析出Vを、下記(4)式を満足するように含有する。
析出Nb量+ 析出V量 ≧ 0.002  ‥‥(4)
ここで、(4)式における析出Nb量、析出V量は後述の実施例に記載の電解抽出残渣法により求めた、鋼中に析出物として析出したNbおよびVの合計析出量(質量%)である。なお、析出しない元素は析出量をゼロとする。
 (4)式の左辺の値(すなわち、「析出Nb量 + 析出V量」の値)が0.002%未満であると、析出量が不十分であり、Nb炭窒化物、V炭窒化物による転位のピン止め効果やC、Nの固定効果を得られず、本発明で目的とする高強度が得られなくなる。(4)式の左辺値は、好ましくは0.004%以上とする。なお、(4)式の左辺値の上限は特に設けない。過剰なYS上昇による低温靭性悪化を防止する観点から、析出Nb量と析出V量の合計は0.010%以下とすることが好ましく、0.007%以下とすることがより好ましい。
 また、本発明では、強度、低温靭性等の更なる向上を目的として、上記した基本成分に加えて、必要に応じて下記の選択元素を含有することができる。以下の、Cu、W、Co、Zr、B、REM、Ca、Sn、Ta、Mg、Sbの各成分は、必要に応じて含有できるので、これらの成分は0%であってもよい。
 Cu:3.0%以下、W:3.0%以下、Co:0.3%以下のうちから選ばれた1種または2種以上
 Cu:3.0%以下
 Cuは、保護皮膜を強固にして、耐炭酸ガス腐食性を高める元素であり、必要に応じて含有できる。このような効果は、0.05%以上のCuを含有することで得られる。一方、3.0%を超えるCuの含有は、CuSの粒界析出を招き熱間加工性が低下する。このため、Cuを含有する場合には、Cu含有量は3.0%以下とすることが好ましい。Cu含有量は、好ましくは0.05%以上とし、より好ましくは0.5%以上とし、さらに好ましくは0.7%以上とする。Cu含有量は、より好ましくは2.5%以下とし、さらに好ましくは1.5%以下とする。
 W:3.0%以下
 Wは、強度増加に寄与する元素であり、必要に応じて含有できる。このような効果は、0.05%以上のWを含有することで得られる。一方、3.0%を超えてWを含有しても、効果は飽和する。このため、Wを含有する場合には、W含有量は3.0%以下とすることが好ましい。W含有量は、好ましくは0.05%以上とし、より好ましくは0.5%以上とする。W含有量は、より好ましくは1.5%以下とする。
 Co:0.3%以下
 Coは、Ms点を上昇させることで残留オーステナイト分率を低減し、強度および耐SSC性を向上させる元素である。このような効果は0.01%以上のCoを含有することで得られる。一方、0.3%を超えてCoを含有すると低温靭性値が低下する。このため、Coを含有する場合には、Co含有量は0.3%以下とすることが好ましい。Co含有量は、好ましくは0.01%以上とし、より好ましくは0.05%以上とし、さらに好ましくは0.07%以上とする。Co含有量は、より好ましくは0.15%以下とし、さらに好ましくは0.09%以下とする。
 Zr:0.20%以下、B:0.01%以下、REM:0.01%以下、Ca:0.0100%以下、Sn:0.20%以下、Ta:0.10%以下、Mg:0.01%以下、Sb:0.50%以下のうちから選ばれた1種または2種以上
 Zr:0.20%以下
 Zrは、強度の増加に寄与する元素であり、必要に応じて含有できる。このような効果は、0.01%以上のZrを含有することで得られる。一方、0.20%を超えてZrを含有しても、効果は飽和する。このため、Zrを含有する場合には、Zr含有量は0.20%以下とすることが好ましい。Zr含有量は、好ましくは0.01%以上とし、より好ましくは0.03%以上とする。Zr含有量は、より好ましくは0.10%以下とし、さらに好ましくは0.05%以下とする。
 B:0.01%以下
 Bは、強度の増加に寄与する元素であり、必要に応じて含有できる。このような効果は、0.0005%以上のBを含有することで得られる。一方、0.01%を超えてBを含有すると、熱間加工性が低下する。このため、Bを含有する場合には、B含有量は0.01%以下とすることが好ましい。B含有量は、好ましくは0.0005%以上とし、より好ましくは0.0007%以上とする。B含有量は、より好ましくは0.005%以下とする。
 REM:0.01%以下
 REM(希土類金属)は、熱間加工性や耐炭酸ガス腐食性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.0005%以上のREMを含有することで得られる。一方、0.01%を超えてREMを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、REMを含有する場合には、REM含有量は0.01%以下とすることが好ましい。REM含有量は、好ましくは0.0005%以上とし、より好ましくは0.001%以上とする。REM含有量は、より好ましくは0.005%以下とする。
 Ca:0.0100%以下
 Caは、熱間加工性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.0005%以上のCaを含有することで得られる。一方、0.0100%を超えてCaを含有すると、粗大なCa系介在物の数密度が増加し、所望の低温靭性を得ることができなくなる。このため、Caを含有する場合には、Ca含有量は0.0100%以下とすることが好ましい。Ca含有量は、好ましくは0.0005%以上とし、より好ましくは0.0010%以上とする。Ca含有量は、より好ましくは0.0040%以下とする。
 Sn:0.20%以下
 Snは、耐炭酸ガス腐食性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.02%以上のSnを含有することで得られる。一方、0.20%を超えてSnを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Snを含有する場合には、Sn含有量は0.20%以下とすることが好ましい。Sn含有量は、好ましくは0.02%以上とし、より好ましくは0.04%以上とする。Sn含有量は、より好ましくは0.15%以下とする。
 Ta:0.10%以下
 Taは、強度を増加させる元素である。また、Taは、Nbと同様の効果をもたらす元素であり、Nbの一部をTaに置き換えることができる。このような効果は、0.01%以上のTaを含有することで得られる。一方、0.10%を超えてTaを含有すると、低温靭性が低下する。このため、Taを含有する場合には、Ta含有量は0.10%以下とすることが好ましい。Ta含有量は、好ましくは0.01%以上とし、より好ましくは0.03%以上とする。Ta含有量は、より好ましくは0.08%以下とする。
 Mg:0.01%以下
 Mgは、耐炭酸ガス腐食性を向上させる元素であり、必要に応じて含有できる。このような効果は、0.002%以上のMgを含有することで得られる。一方、0.01%を超えてMgを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、Mgを含有する場合には、Mg含有量は0.01%以下とすることが好ましい。Mg含有量は、好ましくは0.002%以上とし、より好ましくは0.004%以上とする。Mg含有量は、より好ましくは0.008%以下とする。
 Sb:0.50%以下
 Sbは、耐炭酸ガス腐食性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.02%以上のSbを含有することで得られる。一方、0.50%を超えてSbを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Sbを含有する場合には、Sb含有量は0.50%以下とすることが好ましい。Sb含有量は、好ましくは0.02%以上とし、より好ましくは0.04%以上とする。Sb含有量は、より好ましくは0.3%以下とする。
 次に、本発明の油井用高強度ステンレス継目無鋼管の鋼管組織と、その限定理由について説明する。
 本発明の油井用高強度ステンレス継目無鋼管の鋼管組織は、マルテンサイトを主相とし、10%以下(0%を含む)の残留オーステナイトと、5%未満(0%を含む)のフェライトとからなる。
本発明で目的とする強度、耐炭酸ガス腐食性を確保するために、鋼管組織はマルテンサイト(すなわち、焼戻マルテンサイト)を主相とする。ここで、「主相」とは、鋼管全体に対する体積率で70%以上を占める組織のことを指す。マルテンサイトの体積率は、好ましくは80%以上とし、より好ましくは90%以上とする。マルテンサイトの体積率は100%であってもよい。マルテンサイトの体積率は、好ましくは95%以下とする。
 また、本発明の鋼管組織は、鋼管全体に対する体積率で10%以下の残留オーステナイトを含有する。残留オーステナイトの体積率が大きくなると、低温靭性が向上する。一方、残留オーステナイトが体積率で10%を超えると、強度が低下する。このため、残留オーステナイトは、体積率で10%以下とする。残留オーステナイトは、体積率で、より好ましくは8%以下とし、より好ましくは6%以下とする。なお、残留オーステナイトが0%の場合でも、本発明で目的とする特性を得られる。残留オーステナイトは、体積率で、好ましくは2%以上とし、より好ましくは4%以上とする。
 また、本発明の鋼管組織は、マルテンサイトおよび残留オーステナイト以外の残部は、フェライトである。残部の組織(すなわち、フェライト)の体積率は、熱間加工性確保の観点から、鋼管全体に対する体積率で5%未満(0%を含む)とする。フェライトの体積率は、好ましくは3%以下である。
 上記した各組織は、次の方法で測定することができる。
まず、組織観察用試験片を管軸方向に直交する断面の肉厚の中央部から採取し、ビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(倍率:1000倍)で組織を撮像し、画像解析装置を用いて、フェライトの組織分率(面積%)を算出し、この面積率を体積率%として扱う。
 そして、X線回折用試験片を、管軸方向に直交する断面(C断面)が測定面となるように、研削および研磨し、X線回折法を用いて残留オーステナイト(γ)量を測定する。残留オーステナイト量は、γの(220)面、α(フェライト)の(211)面、の回折X線積分強度を測定し、次式を用いて換算する。
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値である。
 また、マルテンサイト(焼戻しマルテンサイト)の分率(体積率)は、フェライトおよび残留γ以外の残部とする。
 次に、本発明の油井用高強度ステンレス継目無鋼管の製造方法の好ましい一実施形態について、説明する。
なお、以下の製造方法の説明において、温度(℃)は、特に断らない限り鋼管素材および鋼管(造管後の継目無鋼管)の表面温度とする。これらの表面温度は、放射温度計等で測定することができる。
 本発明では、上記した成分組成を有する鋼管素材を出発素材とする。出発素材である鋼管素材の製造方法は、特に限定しない。例えば、上記した成分組成の溶鋼を、転炉、真空溶解炉等の溶製方法で溶製し、次いで、連続鋳造法、造塊-分塊圧延法、熱間鍛造法等の方法で、ビレット等の鋼管素材(鋳片)とすることが好ましい。
 次いで、これら鋼管素材を加熱し(加熱工程)、マンネスマン-プラグミル方式あるいはマンネスマン-マンドレルミル方式を用いて、加熱された鋼管素材を穿孔機で中空素管とした後、熱間加工し、造管する(造管工程)。これにより、所望の寸法(所定形状)の上記成分組成を有する継目無鋼管とする。なお、上記方式にかえて、プレス方式による熱間押出によって継目無鋼管としてもよい。
 上述の本発明の鋼管組織および特性を得る観点からは、以下の製造条件とすることが望ましい。
 例えば、上記した鋼管素材の加熱工程では、加熱温度は1100~1300℃の範囲の温度とする。加熱温度が1100℃未満では、熱間加工性が低下し、造管時に疵が多発する。一方、加熱温度が1300℃を超えて高温となると、結晶粒が粗大化し、低温靭性が低下する。このため、加熱工程における加熱温度は、1100~1300℃の範囲の温度とする。上記の加熱温度は、好ましくは1150℃以上とし、好ましくは1280℃以下とする。
 次いで、造管後の継目無鋼管は、空冷以上の冷却速度で室温まで冷却する。これにより、マルテンサイトを主相とする鋼管組織を確保できる。
 次いで、上記冷却に引き続き、造管後の継目無鋼管(鋼管)に熱処理(すなわち、焼入れ処理および焼戻処理)を施す。具体的には、焼入れ処理では、鋼管を、Ac3変態点以上の温度(すなわち、加熱温度)へ再加熱し、所定時間保持した後、続いて空冷以上の冷却速度で鋼管の表面温度が100℃以下の温度(すなわち、冷却停止温度)となるまで冷却する。
 この焼入れ処理により、マルテンサイトの微細化と高強度化が達成できる。
なお、焼入れ処理の加熱温度(すなわち、再加熱温度)は、組織の粗大化を防止する観点から、800~950℃とすることが好ましい。また、均熱性確保の観点からは、上記の再加熱温度で5分間以上保持することが好ましい。保持時間は、好ましくは30分以下とする。
 焼入れ処理の冷却では、冷却停止温度が100℃超えの場合、残留オーステナイト量が過大となり、所望の強度が得られない。このため、冷却停止温度は100℃以下とする。冷却停止温度は、好ましくは80℃以下とする。
 ここで、「空冷以上の冷却速度」とは、0.01℃/s以上である。
 次いで、上記した焼入れ処理を施された鋼管は、焼戻処理を施される。
焼戻処理では、鋼管を、500℃以上Ac1変態点未満の温度(すなわち、焼戻温度)に加熱し、所定時間保持した後、空冷する。なお、空冷の全部または一部にかえて、水冷、油冷、ミスト冷却等の他の冷却を行ってもよい。
 焼戻温度がAc1変態点以上となると、焼戻後に、フレッシュマルテンサイトが析出し、所望の高強度を確保できなくなる。一方、焼戻温度が500℃未満になると、強度が過剰となり、それに伴い所望の低温靭性を確保することが困難となる。このため、焼戻温度は500℃以上Ac変態点未満とする。これにより、鋼管組織が、焼戻マルテンサイトを主相とする組織となり、所望の強度と、所望の耐炭酸ガス腐食性を有する継目無鋼管となる。なお、材料の均熱性確保の観点から、上記の焼戻温度で10分間以上保持することが好ましい。この保持時間は、好ましくは300分以下とする。
 なお、上記のAc3変態点およびAc1変態点は、15℃/minの平均加熱速度で試験片(φ:3mm×L(長さ):10mm)を昇温、冷却した場合の膨張率(線膨張率)の変化から読み取った実測値とする。
 以上、継目無鋼管を例にして説明したが、本発明はこれに限定されるものではない。上記した成分組成の鋼管素材を用いて、電縫鋼管、UOE鋼管を製造し油井用鋼管とすることも可能である。この場合、得られた油井用鋼管に対し、上記した条件で焼入れ処理および焼戻処理を施せば、本発明の油井用高強度ステンレス継目無鋼管を得られる。
 以上に説明したように、本発明によれば、製品を製造する途中段階の中間生成物(ビレット等)が熱間加工性に優れるとともに、耐炭酸ガス腐食性および低温靭性に優れ、かつ降伏強さYS:758MPa以上の高強度を有する、油井用高強度ステンレス継目無鋼管を得ることができる。
 以下、実施例に基づき、本発明を説明する。なお、本発明は以下の実施例に限定されない。
 表1に示す成分組成の溶鋼を真空溶解炉で溶製し、熱間鍛造法で鋳片を作成した。得られた鋳片を1250℃で1時間加熱し、熱間加工した。
なお、表1中の「-」は、意図的に元素を添加しないことを表しており、元素を含有しない(0%)場合だけでなく、不可避的に含有する場合も含むものとした。上記の(2)式で求めたNeffの値が負の値の場合には、表1中の「Neff」にゼロを示した。
 熱間加工によって得られた鋼材から、試験片素材を切り出した。ここで、鋼材の寸法は、縦:1100mm、横:160mm、厚さ:15mmとした。各試験片素材を用いて、表2に示す条件で熱処理(焼入れ処理および焼戻処理)を施した。なお、切り出した試験片素材に対して焼入れ処理および焼戻処理をしているが、継目無鋼管を焼入れ処理および焼戻処理する場合と同様であると見做してよい。
 そして、以下に説明する方法で、引張特性、腐食特性の評価、熱間加工性の評価、低温靭性の評価、組織および析出量の測定をそれぞれ行った。
 〔引張特性の評価〕
 焼入れ処理および焼戻処理を施された試験片素材から、JIS(Japanese IndustrialStandards)14A号引張試験片(Φ6.0mm)を採取し、JIS Z2241:2011の規定に準拠して引張試験を実施し、引張特性(降伏強さ(YS)、引張強さ(TS))を求めた。ここでは、降伏強さ(YS)が758MPa以上のものを合格とし、降伏強さが758MPa未満のものを不合格とした。
 〔腐食特性の評価〕
 焼入れ処理および焼戻処理を施された試験片素材から、厚さ:3mm、幅:30mm、長さ:40mmとなる寸法の腐食試験片を機械加工によって作製し、腐食試験を実施した。
 腐食試験は、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:150℃、10気圧のCO2ガス雰囲気)中に、腐食試験片を浸漬し、浸漬期間を14日間として実施した。試験後の腐食試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。ここでは、腐食速度が0.125mm/y以下のものを合格とし、腐食速度が0.125mm/y超えのものを不合格とした。
 また、腐食試験後の腐食試験片について、倍率:10倍のルーペを用いて腐食試験片表面の孔食発生の有無を観察した。なお、「孔食有り」とは、直径:0.2mm以上の孔食が発生した場合をいう。「孔食無し」とは、孔食が発生しなかった場合、および、孔食が発生しても直径:0.2mm未満の孔食であった場合、をいう。ここでは、孔食発生が無し(表3の「孔食」の欄に「無」と示す)のものを合格とし、孔食発生が有り(表3の「孔食」の欄に「あり」と示す)のものを不合格とした。
 本発明では、腐食速度による評価および孔食発生の有無による評価が、いずれも合格の場合を、優れた耐炭酸ガス腐食性を有するとみなした。
 〔熱間加工性の評価〕
 熱間加工性の評価には、鋳片から採取した平行部径10mmの丸棒形状の丸棒試験片を用い、グリーブル試験機にて1250℃に加熱し、加熱温度で100秒間保持し、1℃/secで1000℃まで冷却し、1000℃で10秒間保持した後に、破断するまで引っ張り、断面減少率(%)を測定した。ここでは、断面減少率が70%以上の場合を、優れた熱間加工性を有するとみなして合格とした。一方、断面減少率が70%未満の場合を不合格とした。
 〔低温靭性の評価〕
 シャルピー衝撃試験には、JIS Z 2242:2018の規定に準拠して、試験片長手方向が圧延方向となるように採取した、Vノッチ試験片(5mm厚)を用いた。試験温度は-60℃とし、-60℃における吸収エネルギーvE-60を求め、低温靭性を評価した。なお、上記試験片は各3本とし、得られた値の算術平均を吸収エネルギー(J)とした。ここでは、-60℃における吸収エネルギーvE-60が20J以上の場合を、優れた低温靭性を有するとみなして合格とした。一方、-60℃における吸収エネルギーvE-60が20J未満の場合を、不合格とした。
 〔組織の測定〕
 焼入れ処理および焼戻処理を施された試験片素材から組織観察用試験片を作製し、各組織の測定を行った。組織の観察面は、圧延方向に直交する断面(C断面)とした。まず、組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(倍率:1000倍)で組織を撮像し、画像解析装置を用いて、フェライトの組織分率(体積%)を算出した。
 そして、X線回折用試験片を、圧延方向に直交する断面(C断面)が測定面となるように、研削および研磨し、X線回折法を用いて残留オーステナイト(γ)量を測定した。残留オーステナイト量は、γの(220)面、α(フェライト)の(211)面、の回折X線積分強度を測定し、次式を用いて換算した。
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値とした。
 また、マルテンサイト(すなわち、焼戻しマルテンサイト)の分率(体積率)は、フェライトおよび残留オーステナイト以外の残部とした。
 〔析出量の測定〕
 焼入れ処理および焼戻処理を施された試験片素材から、電解抽出用試験片を採取した。採取した電解抽出用試験片を用いて、10%AA(10%アセチルアセトン-1%塩化テトラメチルアンモニウム-メタノール)溶液中で電解抽出し、0.2μmのフィルターメッシュを透過させて残った残渣(電解残渣)を得た。得られた電解残渣に含まれるNb量、V量をICP測定により求め、試料中に含まれる析出Nb量、析出V量とした。なお、表3の「析出物量」の欄には、測定された析出Nb量および析出V量の合計量を示した。
 得られた結果を表3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例は、いずれも、降伏強さ(YS)が758MPa以上であり、断面減少率が70%以上と熱間加工性に優れるとともに、CO2、Clを含む150℃以上の高温での腐食環境下における耐炭酸ガス腐食性(耐食性)に優れ、さらに低温靭性に優れていた。
 一方、本発明の範囲を外れる比較例は、降伏強さ(YS)、熱間加工性、耐炭酸ガス腐食性、低温靭性のうち少なくとも1つが所望の値を得られなかった。

Claims (2)

  1.  質量%で、
     C :0.015%以下、
     Si:0.05~0.50%、
     Mn:0.04~1.80%、
     P :0.030%以下、
     S :0.005%以下、
     Cr:11.0~14.0%、
     Ni:2.0%超5.0%以下、
     Mo:0.5%以上1.8%未満、
     Al:0.005~0.10%、
     V :0.005~0.20%、
     Nb:0.005~0.05%、
     N :0.015%未満、および
     O :0.010%以下
    を含有し、
    かつ、(2)式で表される値をNeffとするとき、Cr、Ni、MoおよびCが(1)式を満たすとともに、Cr、Mo、Si、C、Mn、Ni、CuおよびNが(3)式を満たし、
    残部がFeおよび不可避的不純物からなる成分組成を有し、
     析出Nb量と析出V量の合計が(4)式を満たし、
     降伏強さが758MPa以上であり、
     -60℃における吸収エネルギーvE-60が20J以上であり、
     腐食速度が0.125mm/y以下である、油井用高強度ステンレス継目無鋼管。
    Cr+0.2×Ni+0.25×Mo-20×C -3.7×Neff ≧ 13.25 ‥‥(1)
    Neff = N- 14×(V/50.94+Nb/92.91) ‥‥(2)
    Cr+Mo+0.3×Si-43.3×C-0.4×Mn-Ni-0.3×Cu-9×N ≦ 11.0 ‥‥(3)
    析出Nb量+ 析出V量 ≧ 0.002  ‥‥(4)
    ここで、(1)式~(3)式におけるCr、Ni、Mo、Cu、C、Si、Mn、N、VおよびNbは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
    また、(4)式における析出Nb量、および析出V量は、析出物として析出したNbおよびVの合計析出量(質量%)である。
    ただし、(2)式においてNeffが負の値のときには、(1)式のNeffをゼロとする。
  2.  前記成分組成に加えて、質量%で、以下のA群およびB群のうちから選ばれた1群または2群を含有する、請求項1に記載の油井用高強度ステンレス継目無鋼管。
    A群:Cu:3.0%以下、W:3.0%以下、Co:0.3%以下のうちから選ばれた1種または2種以上
    B群:Zr:0.20%以下、B:0.01%以下、REM:0.01%以下、Ca:0.0100%以下、Sn:0.20%以下、Ta:0.10%以下、Mg:0.01%以下、Sb:0.50%以下のうちから選ばれた1種または2種以上
PCT/JP2022/047592 2022-01-31 2022-12-23 油井用高強度ステンレス継目無鋼管 WO2023145346A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2024006585A MX2024006585A (es) 2022-01-31 2022-12-23 Tuberia de acero inoxidable sin soldadura de alta resistencia para pozos petroliferos.
EP22924193.0A EP4414463A1 (en) 2022-01-31 2022-12-23 High-strength seamless stainless steel pipe for oil wells
JP2023516199A JP7347714B1 (ja) 2022-01-31 2022-12-23 油井用高強度ステンレス継目無鋼管
CN202280078178.0A CN118318055A (zh) 2022-01-31 2022-12-23 油井用高强度不锈钢无缝钢管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-013270 2022-01-31
JP2022013270 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145346A1 true WO2023145346A1 (ja) 2023-08-03

Family

ID=87471696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047592 WO2023145346A1 (ja) 2022-01-31 2022-12-23 油井用高強度ステンレス継目無鋼管

Country Status (6)

Country Link
EP (1) EP4414463A1 (ja)
JP (1) JP7347714B1 (ja)
CN (1) CN118318055A (ja)
AR (1) AR128378A1 (ja)
MX (1) MX2024006585A (ja)
WO (1) WO2023145346A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226642A (ja) * 1999-02-02 2000-08-15 Kawasaki Steel Corp ラインパイプ用高Cr鋼管
JP2010168646A (ja) * 2008-09-04 2010-08-05 Jfe Steel Corp 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP2014025145A (ja) * 2012-06-21 2014-02-06 Jfe Steel Corp 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
WO2017168874A1 (ja) * 2016-03-29 2017-10-05 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管
WO2021206080A1 (ja) * 2020-04-07 2021-10-14 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
WO2021210564A1 (ja) * 2020-04-13 2021-10-21 日本製鉄株式会社 マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226642A (ja) * 1999-02-02 2000-08-15 Kawasaki Steel Corp ラインパイプ用高Cr鋼管
JP2010168646A (ja) * 2008-09-04 2010-08-05 Jfe Steel Corp 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP2014025145A (ja) * 2012-06-21 2014-02-06 Jfe Steel Corp 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
WO2017168874A1 (ja) * 2016-03-29 2017-10-05 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管
WO2021206080A1 (ja) * 2020-04-07 2021-10-14 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
WO2021210564A1 (ja) * 2020-04-13 2021-10-21 日本製鉄株式会社 マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法

Also Published As

Publication number Publication date
AR128378A1 (es) 2024-04-24
EP4414463A1 (en) 2024-08-14
MX2024006585A (es) 2024-06-11
CN118318055A (zh) 2024-07-09
JPWO2023145346A1 (ja) 2023-08-03
JP7347714B1 (ja) 2023-09-20

Similar Documents

Publication Publication Date Title
EP3670693B1 (en) High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JP6226081B2 (ja) 高強度ステンレス継目無鋼管およびその製造方法
JP6399259B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6384636B1 (ja) 高強度ステンレス継目無鋼管およびその製造方法
WO2017138050A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6156609B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2020067247A1 (ja) マルテンサイトステンレス鋼材
JP2005336595A (ja) 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
WO2014097628A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP7315097B2 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2014112353A1 (ja) 油井用ステンレス継目無鋼管およびその製造方法
JP7156536B2 (ja) ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
WO2013190834A1 (ja) 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
JP7201094B2 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP7226675B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP7156537B2 (ja) ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
WO2016079920A1 (ja) 油井用高強度ステンレス継目無鋼管
JP4470617B2 (ja) 耐炭酸ガス腐食性に優れる油井用高強度ステンレス鋼管
CN114450430A (zh) 不锈钢无缝钢管及其制造方法
WO2023053743A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP7226571B2 (ja) ステンレス継目無鋼管およびその製造方法
JP7347714B1 (ja) 油井用高強度ステンレス継目無鋼管
CN114450428A (zh) 不锈钢无缝钢管及其制造方法
JP7279863B2 (ja) ステンレス鋼管およびその製造方法
JPH06299301A (ja) 110Ksi グレードの高強度耐食性マルテンサイト系ステンレス鋼管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023516199

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924193

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022924193

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022924193

Country of ref document: EP

Effective date: 20240508

WWE Wipo information: entry into national phase

Ref document number: 18712826

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280078178.0

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024010353

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112024010353

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240523

NENP Non-entry into the national phase

Ref country code: DE