WO2023145346A1 - 油井用高強度ステンレス継目無鋼管 - Google Patents
油井用高強度ステンレス継目無鋼管 Download PDFInfo
- Publication number
- WO2023145346A1 WO2023145346A1 PCT/JP2022/047592 JP2022047592W WO2023145346A1 WO 2023145346 A1 WO2023145346 A1 WO 2023145346A1 JP 2022047592 W JP2022047592 W JP 2022047592W WO 2023145346 A1 WO2023145346 A1 WO 2023145346A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- content
- steel pipe
- precipitated
- amount
- Prior art date
Links
- 239000003129 oil well Substances 0.000 title claims abstract description 23
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 15
- 239000010935 stainless steel Substances 0.000 title claims abstract description 15
- 230000007797 corrosion Effects 0.000 claims abstract description 80
- 238000005260 corrosion Methods 0.000 claims abstract description 80
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 26
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 24
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 24
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 23
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 22
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 20
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 67
- 239000010959 steel Substances 0.000 claims description 67
- 239000002244 precipitate Substances 0.000 claims description 11
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 abstract description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 88
- 229910002092 carbon dioxide Inorganic materials 0.000 description 44
- 239000001569 carbon dioxide Substances 0.000 description 43
- 239000011651 chromium Substances 0.000 description 35
- 230000000694 effects Effects 0.000 description 34
- 238000012360 testing method Methods 0.000 description 34
- 239000007789 gas Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 21
- 229910001566 austenite Inorganic materials 0.000 description 20
- 229910000734 martensite Inorganic materials 0.000 description 20
- 238000001816 cooling Methods 0.000 description 18
- 230000000717 retained effect Effects 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 238000005496 tempering Methods 0.000 description 14
- 229910000859 α-Fe Inorganic materials 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 13
- 229910052761 rare earth metal Inorganic materials 0.000 description 12
- 150000002910 rare earth metals Chemical class 0.000 description 12
- 238000010791 quenching Methods 0.000 description 11
- 230000000171 quenching effect Effects 0.000 description 11
- 230000009467 reduction Effects 0.000 description 11
- 239000003921 oil Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 238000009863 impact test Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- -1 chromium nitrides Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- YLRAQZINGDSCCK-UHFFFAOYSA-M methanol;tetramethylazanium;chloride Chemical compound [Cl-].OC.C[N+](C)(C)C YLRAQZINGDSCCK-UHFFFAOYSA-M 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- the present invention relates to a high-strength seamless stainless steel pipe for oil wells, which is suitable for use in oil and gas wells of crude oil or natural gas (hereinafter simply referred to as "oil wells").
- the present invention particularly relates to an oil well containing carbon dioxide gas (CO 2 ) and chloride ions (Cl ⁇ ) and having excellent carbon dioxide corrosion resistance and low temperature toughness in extremely severe corrosive environments at temperatures of 150° C. or higher.
- the present invention relates to high-strength stainless steel seamless steel pipes for use.
- 13Cr martensitic stainless steel pipes have been widely used as oil country tubular goods for mining in oil and gas fields in environments containing carbon dioxide (CO 2 ), chloride ions (Cl ⁇ ), and the like. Furthermore, recently, the use of improved 13Cr martensitic stainless steel with reduced C content and increased Ni, Mo, etc. in 13Cr martensitic stainless steel is also expanding.
- Patent Documents 1 to 3 In response to such a demand, there are techniques disclosed in Patent Documents 1 to 3, for example.
- Patent Document 1 in mass%, C: 0.01 to 0.10%, Cr: 9.0 to 15.0%, Ni: 0.1 to 7.0%, N: 0.005 to 0 .1%, Si: 0.05-1.0%, Mn: 0.05-1.5%, Cu: 0.1-5.0%, Mo: 0.1-3.0%, V: 0.01 to 0.20% and Al: 0.0005% to less than 0.05%, the balance consisting of Fe and impurities, and P and S in the impurities are 0.03% or less and 0.01%, respectively
- a martensitic stainless steel pipe is disclosed in which the ratio of austenite in the structure is 0.3 to 1.3% and the absolute value of the compressive residual stress in the circumferential direction is 1.0 MPa or less.
- Patent Document 2 in mass%, C: 0.08% or less, Si: 1% or less, Mn: 0.1 to 2%, Cr: 7 to 15%, Ni: 0.5 to 7%, Nb : 0.005-0.5%, Al: 0.001-0.1%, N: 0.001-0.05%, P: 0.04% or less, S: 0.005% or less , the balance is substantially Fe, the contents of Cr, C, Nb and Ni satisfy a predetermined relational expression, and the cross-sectional steel structure has 10 2 to 10 8 chromium nitrides with a size of 0.2 ⁇ m or less. /mm 2 and a yield strength of 760 MPa or more, high-strength martensitic stainless steel with improved carbon dioxide corrosion resistance is disclosed.
- Patent Document 3 in mass%, C: 0.020% or less, Cr: 10 to 14%, Ni: 3% or less, Nb: 0.03 to 0.2%, N: 0.05% or less
- the composition has a balance of Fe and unavoidable impurities, and has a structure in which the amount of precipitated Nb is 0.020% or more in terms of Nb, and has high strength with a yield strength of 95 ksi or more and a fracture surface transition in a Charpy impact test.
- a martensitic stainless seamless steel pipe for oil country tubular goods is disclosed, which has low-temperature toughness at a temperature vTrs of -40°C or less.
- JP-A-2004-238662 Japanese Patent Application Laid-Open No. 2002-241902 JP 2010-168646 A
- Seamless steel pipes used as steel pipes for oil wells are subjected to severe strain during the manufacturing process, so the surface of the steel pipe is easily damaged during pipe making. In order to prevent this, it has also been required to have excellent hot workability.
- Patent Documents 1 to 3 have high strength, they do not have sufficient excellent carbon dioxide gas corrosion resistance and low temperature toughness.
- the fracture surface transition temperature in the Charpy impact test is 0° C., and the Ni content is low, so the carbon dioxide gas corrosion resistance is poor.
- the fracture surface transition temperature in the Charpy impact test is ⁇ 10° C., and the Ni content is low, so the carbon dioxide gas corrosion resistance is poor.
- the fracture surface transition temperature in the Charpy impact test is ⁇ 40° C., and the Ni content is low, so the carbon dioxide gas corrosion resistance is poor.
- the present invention solves the problems of the prior art and provides a high-strength seamless stainless steel pipe for oil wells, which has high strength and excellent hot workability, as well as excellent carbon dioxide corrosion resistance and low-temperature toughness. With the goal.
- high strength in the present invention means a case where the yield strength YS is 110 ksi (758 MPa) or more.
- excellent hot workability in the present invention means that a round bar test piece with a parallel part diameter of 10 mm taken from a billet is used and heated to 1250 ° C. with a Gleeble tester. , held at the heating temperature for 100 seconds, cooled at 1 ° C./sec to 1000 ° C., held at 1000 ° C. for 10 seconds, pulled until fracture, measured the cross-sectional reduction rate (%), and the cross-sectional reduction rate was 70%.
- the above cases shall be referred to.
- excellent carbon dioxide gas corrosion resistance in the present invention means that the test liquid held in the autoclave: 20% by mass NaCl aqueous solution (liquid temperature: 150 ° C., 10 atm CO 2 gas atmosphere)
- the corrosion rate is 0.125 mm / y or less when the immersion period is 14 days
- the corrosion test piece after the corrosion test is examined with a magnifying glass of 10 times magnification. The presence or absence of pitting corrosion on the surface of the corrosion test piece is observed, and the case where no pitting corrosion with a diameter of 0.2 mm or more occurs.
- excellent low-temperature toughness means that the absorbed energy vE- 60 in the Charpy impact test (V-notch test piece (5 mm thickness)) at -60°C is 20 J or more.
- Cr, Ni, and Mo form dense corrosion products on the surface of steel pipes and reduce the corrosion rate in a carbon dioxide gas environment.
- C and N combine with Cr and reduce the amount of Cr that effectively improves corrosion resistance. Therefore, in order to have excellent corrosion resistance in a high-temperature carbon dioxide gas environment, it is necessary to appropriately adjust the amounts of Cr, Ni, Mo, C, and N.
- Nb and V it is necessary to deposit appropriate amounts of Nb and V. Desired high strength cannot be obtained only by reducing the contents of C and N. Therefore, by adding an appropriate amount of Nb and V, carbonitrides of Nb and V are precipitated, which not only contributes to the increase in strength, but also reduces the content of C and N dissolved in solid solution, thereby improving carbon dioxide corrosion resistance. can be improved. Note that Ti forms coarse TiN and deteriorates the low-temperature toughness value, so it cannot be added in the present invention.
- the present invention has been completed based on these findings and further studies.
- the gist of the present invention is as follows. [1] in % by mass, C: 0.015% or less, Si: 0.05 to 0.50%, Mn: 0.04 to 1.80%, P: 0.030% or less, S: 0.005% or less, Cr: 11.0 to 14.0%, Ni: more than 2.0% and 5.0% or less, Mo: 0.5% or more and less than 1.8%, Al: 0.005-0.10%, V: 0.005-0.20%, Nb: 0.005 to 0.05%, N: less than 0.015%, O: contains 0.010% or less, And, when the value represented by the formula (2) is Neff, Cr, Ni, Mo and C satisfy the formula (1), and Cr, Mo, Si, C, Mn, Ni, Cu and N are ( 3) satisfies the formula, Having a component composition in which the balance is Fe and unavoidable impurities, The sum of the amount of precipitated Nb and the amount of precipitated V sati
- the amount of precipitated Nb and the amount of precipitated V in the formula (4) are the total precipitated amount (% by mass) of Nb and V precipitated as precipitates.
- Neff is a negative value in equation (2)
- Neff in equation (1) is set to zero.
- Group A One or more selected from Cu: 3.0% or less, W: 3.0% or less, Co: 0.3% or less
- a high-strength stainless steel seamless steel pipe for oil wells having excellent hot workability, excellent carbon dioxide corrosion resistance, excellent low-temperature toughness, and high yield strength YS of 758 MPa or more is provided. can get.
- the C content 0.015% or less C forms Cr carbide and lowers the carbon dioxide corrosion resistance. Therefore, the C content should be 0.015% or less. Although there is no lower limit to the C content, reducing the C content to less than 0.003% will result in a rise in manufacturing costs. Therefore, in the present invention, the C content is preferably 0.003% or more. The C content is preferably 0.012% or less, more preferably 0.010% or less.
- Si 0.05-0.50% Si is an element that acts as a deoxidizing agent. This effect is obtained with a Si content of 0.05% or more. On the other hand, if the Si content exceeds 0.50%, the hot workability deteriorates and the carbon dioxide gas corrosion resistance deteriorates. Therefore, the Si content should be 0.05 to 0.50%.
- the Si content is preferably 0.10% or more, more preferably 0.15% or more.
- the Si content is preferably 0.40% or less, more preferably 0.30% or less.
- Mn 0.04-1.80% Mn is an element that suppresses the formation of ⁇ ferrite during hot working and improves hot workability. In the present invention, 0.04% or more of Mn is required. On the other hand, excessive Mn adversely affects low temperature toughness and SSC resistance. Therefore, the Mn content should be 0.04 to 1.80%.
- the Mn content is preferably 0.05% or more, more preferably 0.10% or more.
- the Mn content is preferably 0.80% or less, more preferably 0.50% or less, and even more preferably 0.26% or less.
- P 0.030% or less
- P is an element that lowers both carbon dioxide corrosion resistance and pitting corrosion resistance. In the present invention, it is preferable to reduce it as much as possible, but an extreme reduction causes a rise in manufacturing costs. For this reason, the P content is set to 0.030% or less as a range that can be industrially implemented at relatively low cost without causing an extreme decrease in properties. Preferably, the P content is 0.020% or less. In addition, the lower limit of the P content is not particularly limited. However, since excessive reduction causes an increase in manufacturing cost as described above, the P content is preferably 0.005% or more.
- S 0.005% or less S significantly lowers hot workability and deteriorates low-temperature toughness due to segregation to prior austenite grain boundaries, so it is preferable to reduce it as much as possible. If the S content is 0.005% or less, the segregation of S to the prior austenite grain boundaries can be suppressed, and the low temperature toughness aimed at in the present invention can be obtained. For this reason, the S content is set to 0.005% or less. Preferably, the S content is 0.0015% or less. However, excessive reduction causes an increase in manufacturing costs, so the S content is preferably 0.0005% or more.
- Cr 11.0-14.0% Cr is an element that forms a protective film and contributes to the improvement of carbon dioxide corrosion resistance.
- the present invention requires a Cr content of 11.0% or more. and On the other hand, the content of Cr exceeding 14.0% makes it easy to generate retained austenite without martensite transformation, which reduces the stability of the martensite phase and makes it impossible to obtain the desired strength in the present invention. . Therefore, the Cr content is set to 11.0 to 14.0%.
- the Cr content is preferably 11.5% or more, more preferably 12.0% or more.
- the Cr content is preferably 13.5% or less, more preferably 13.0% or less.
- Ni More than 2.0% and 5.0% or less Ni is an element that has the effect of strengthening the protective film and improving the carbon dioxide gas corrosion resistance. In addition, Ni forms a solid solution to increase the strength of the steel and greatly improve the low temperature toughness. Such an effect is obtained with a Ni content exceeding 2.0%. In addition, it suppresses the formation of ferrite phase at high temperatures and improves hot workability. On the other hand, if the Ni content exceeds 5.0%, martensite transformation does not occur, and residual austite tends to occur, which reduces the stability of the martensite phase and reduces the strength. Along with this, costs increase. Therefore, the Ni content should be more than 2.0% and not more than 5.0%. The Ni content is preferably 3.0% or more. The Ni content is preferably 4.9% or less, more preferably 4.8% or less.
- Mo 0.5% or more and less than 1.8%
- Mo is an element that increases the resistance to pitting corrosion due to Cl.sup.- or low pH, and the present invention requires a Mo content of 0.5% or more. If the Mo content is less than 0.5%, the carbon dioxide gas corrosion resistance in a severe corrosive environment is lowered. On the other hand, if the Mo content is 1.8% or more, ⁇ ferrite is generated, leading to a decrease in hot workability and an increase in cost. Therefore, the Mo content should be 0.5% or more and less than 1.8%.
- the Mo content is preferably 0.7% or more, more preferably 0.8% or more.
- the Mo content is preferably 1.6% or less, more preferably 1.4% or less, still more preferably 1.3% or less.
- Al 0.005-0.10%
- Al is an element that acts as a deoxidizing agent. This effect is obtained by containing 0.005% or more of Al.
- the Al content is set to 0.005 to 0.10%.
- the Al content is preferably 0.010% or more and preferably 0.03% or less.
- V 0.005-0.20%
- V is an element that improves the strength of steel through solid solution strengthening and precipitation strengthening. It also has the effect of fixing N, which lowers the carbon dioxide corrosion resistance, as precipitates (V precipitates) and improving the carbon dioxide corrosion resistance. This effect is obtained by containing 0.005% or more of V.
- the V content should be 0.005 to 0.20%.
- the V content is preferably 0.05% or more, more preferably 0.07% or more.
- the V content is preferably 0.15% or less, more preferably 0.13% or less.
- Nb 0.005-0.05%
- Nb is an element that improves the strength of steel through solid solution strengthening and precipitation strengthening. It also has the effect of fixing N, which lowers the carbon dioxide corrosion resistance, as precipitates (Nb precipitates) and improving the carbon dioxide corrosion resistance. Such an effect is obtained by containing 0.005% or more of Nb.
- the Nb content should be 0.005 to 0.05%.
- the Nb content is preferably 0.010% or more, more preferably 0.02% or more.
- the Nb content is more preferably 0.04% or less.
- N less than 0.015% N forms Cr nitrides and lowers the carbon dioxide corrosion resistance. Therefore, the N content should be less than 0.015%. Although there is no particular lower limit for the N content, if the N content is less than 0.003%, the manufacturing cost will rise significantly. Therefore, the N content is preferably 0.003% or more, more preferably 0.005% or more. The N content is preferably 0.013% or less, more preferably 0.012% or less, and still more preferably 0.010% or less.
- O (oxygen) 0.010% or less O (oxygen) exists as an oxide in steel and adversely affects various properties. Therefore, it is desirable to reduce O as much as possible. In particular, when the O content exceeds 0.010%, both hot workability and low temperature toughness are remarkably lowered. Therefore, the O content is set to 0.010% or less.
- the O content is preferably 0.006% or less, more preferably 0.004% or less. An excessive reduction causes an increase in manufacturing costs, so the content is preferably 0.0005% or more.
- Neff when the value represented by the formula (2) is Neff, Cr, Ni, Mo, C, N, V, and Nb are within the above ranges, and the following formula (1) is Contain satisfactorily.
- Neff N-14 ⁇ (V/50.94+Nb/92.91) (2)
- Cr, Ni, Mo, C, N, V and Nb in the formulas (1) and (2) are the contents (% by mass) of the respective elements, and the contents of the elements not contained are zero.
- Neff is a negative value in equation (2)
- Neff in equation (1) is set to zero.
- the left side value of formula (1) is preferably 13.35 or more. Note that there is no particular upper limit for the left-side value of expression (1). From the viewpoint of suppressing cost increase and strength reduction due to excessive alloying, the left side value of the formula (1) is preferably 14.0 or less, more preferably 13.8 or less.
- Cr, Mo, Si, C, Mn, Ni, Cu, and N are contained so as to satisfy the following formula (3).
- Cr, Mo, Si, C, Mn, Ni, Cu, and N in the formula (3) are the content (% by mass) of each element, and the content of the element not contained is zero.
- the value of the left side of the formula (3) (“Cr + Mo + 0.3 x Si – 43.3 x C – 0.4 x Mn – Ni – 0.3 x Cu – 9 x N”) exceeds 11.0, The required and sufficient hot workability cannot be obtained for pipe making, and the manufacturability of the steel pipe decreases. Therefore, in the present invention, Cr, Mo, Si, C, Mn, Ni, Cu, and N are contained so as to satisfy the formula (3).
- the left-side value of formula (3) is preferably 10.0 or less. Note that there is no particular lower limit for the left-side value of equation (3). Since the effect is saturated, it is preferable to set the left-side value of the formula (3) to 5 or more.
- the balance other than the above components consists of iron (Fe) and unavoidable impurities.
- the above ingredients are the basic ingredients.
- the high-strength stainless seamless steel pipe for oil wells of the present invention can obtain the desired properties by having these basic components and satisfying all of the above-described formulas (1) to (3).
- Nb and V it is necessary to reduce C and N, add appropriate amounts of Cr, Ni and Mo, and precipitate appropriate amounts of Nb and V.
- Nb and V carbonitrides of Nb and V are precipitated, which not only contributes to the increase in strength, but also improves the carbon dioxide corrosion resistance by reducing dissolved C and N. This is because Therefore, precipitated Nb and precipitated V in the stainless seamless steel pipe are contained so as to satisfy the following formula (4).
- the amount of precipitated Nb and the amount of precipitated V in the formula (4) are the total amount of Nb and V precipitated as precipitates in the steel (% by mass) obtained by the electrolytic extraction residue method described in Examples below. is. For elements that do not precipitate, the amount of precipitation is set to zero.
- the value of the left side of the formula (that is, the value of "precipitated Nb amount + precipitated V amount”) is less than 0.002%, the amount of precipitation is insufficient, and Nb carbonitride, V carbonitride Therefore, the dislocation pinning effect and the C and N fixing effect cannot be obtained, and the high strength aimed at in the present invention cannot be obtained.
- the left side value of the formula is preferably 0.004% or more. Note that there is no particular upper limit for the left-side value of equation (4). From the viewpoint of preventing deterioration of low-temperature toughness due to an excessive increase in YS, the total amount of precipitated Nb and precipitated V is preferably 0.010% or less, more preferably 0.007% or less.
- the following optional elements can be contained as necessary for the purpose of further improving strength, low-temperature toughness, etc.
- the following components Cu, W, Co, Zr, B, REM, Ca, Sn, Ta, Mg, and Sb can be contained as necessary, so these components may be 0%.
- Cu 3.0% or less
- W 3.0% or less
- Co 0.3% or less
- Cu 3.0% or less
- Cu strengthens the protective film. It is an element that enhances the carbon dioxide gas corrosion resistance and can be contained as necessary. Such an effect is obtained by containing 0.05% or more of Cu.
- the Cu content is preferably 3.0% or less.
- the Cu content is preferably 0.05% or more, more preferably 0.5% or more, and still more preferably 0.7% or more.
- the Cu content is more preferably 2.5% or less, more preferably 1.5% or less.
- W 3.0% or less W is an element that contributes to an increase in strength, and can be contained as necessary. Such an effect is obtained by containing 0.05% or more of W. On the other hand, even if the W content exceeds 3.0%, the effect is saturated. Therefore, when W is contained, the W content is preferably 3.0% or less.
- the W content is preferably 0.05% or more, more preferably 0.5% or more.
- the W content is more preferably 1.5% or less.
- Co 0.3% or less
- Co is an element that raises the Ms point to reduce the fraction of retained austenite and improve the strength and SSC resistance. Such an effect is obtained by containing 0.01% or more of Co.
- the Co content exceeds 0.3%, the low temperature toughness value decreases. Therefore, when Co is contained, the Co content is preferably 0.3% or less.
- the Co content is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.07% or more.
- the Co content is more preferably 0.15% or less, more preferably 0.09% or less.
- Zr 0.20% or less
- B 0.01% or less
- REM 0.01% or less
- Ca 0.0100% or less
- Sn 0.20% or less
- Ta 0.10% or less
- Mg 0.01% or less
- Sb 1 or 2 or more selected from 0.50% or less
- Zr 0.20% or less
- Zr content is preferably 0.20% or less.
- the Zr content is preferably 0.01% or more, more preferably 0.03% or more.
- the Zr content is more preferably 0.10% or less, more preferably 0.05% or less.
- B 0.01% or less B is an element that contributes to an increase in strength, and can be contained as necessary. Such an effect is obtained by containing 0.0005% or more of B.
- the B content is preferably 0.01% or less.
- the B content is preferably 0.0005% or more, more preferably 0.0007% or more.
- the B content is more preferably 0.005% or less.
- REM 0.01% or less REM (rare earth metal) is an element that contributes to improvement of hot workability and carbon dioxide corrosion resistance, and can be contained as necessary. Such an effect is obtained by containing 0.0005% or more of REM. On the other hand, even if the content of REM exceeds 0.01%, the effect is saturated, and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when REM is contained, the REM content is preferably 0.01% or less. The REM content is preferably 0.0005% or more, more preferably 0.001% or more. The REM content is more preferably 0.005% or less.
- Ca 0.0100% or less
- Ca is an element that contributes to the improvement of hot workability, and can be contained as necessary. Such an effect is obtained by containing 0.0005% or more of Ca.
- the Ca content exceeds 0.0100%, the number density of coarse Ca-based inclusions increases, making it impossible to obtain the desired low temperature toughness. Therefore, when Ca is contained, the Ca content is preferably 0.0100% or less.
- the Ca content is preferably 0.0005% or more, more preferably 0.0010% or more.
- the Ca content is more preferably 0.0040% or less.
- Sn 0.20% or less
- Sn is an element that contributes to improvement of carbon dioxide corrosion resistance, and can be contained as necessary. Such an effect is obtained by containing 0.02% or more of Sn.
- the Sn content is preferably 0.20% or less.
- the Sn content is preferably 0.02% or more, more preferably 0.04% or more.
- the Sn content is more preferably 0.15% or less.
- Ta 0.10% or less
- Ta is an element that increases strength.
- Ta is an element that provides the same effect as Nb, and part of Nb can be replaced with Ta. Such an effect is obtained by containing 0.01% or more of Ta.
- the Ta content is preferably 0.10% or less.
- the Ta content is preferably 0.01% or more, more preferably 0.03% or more.
- the Ta content is more preferably 0.08% or less.
- Mg 0.01% or less Mg is an element that improves carbon dioxide corrosion resistance and can be contained as necessary. Such an effect is obtained by containing 0.002% or more of Mg. On the other hand, even if the Mg content exceeds 0.01%, the effect is saturated, and the effect corresponding to the content cannot be expected. Therefore, when Mg is contained, the Mg content is preferably 0.01% or less. The Mg content is preferably 0.002% or more, more preferably 0.004% or more. The Mg content is more preferably 0.008% or less.
- Sb 0.50% or less
- Sb is an element that contributes to improvement of carbon dioxide corrosion resistance, and can be contained as necessary. Such an effect is obtained by containing 0.02% or more of Sb.
- the Sb content is preferably 0.50% or less.
- the Sb content is preferably 0.02% or more, more preferably 0.04% or more.
- the Sb content is more preferably 0.3% or less.
- the steel pipe structure of the high-strength stainless steel seamless steel pipe for oil wells of the present invention has martensite as the main phase, and contains 10% or less (including 0%) of retained austenite and less than 5% (including 0%) of ferrite.
- the steel pipe structure has martensite (that is, tempered martensite) as the main phase.
- the "main phase” refers to a structure that occupies 70% or more of the volume of the entire steel pipe.
- the volume fraction of martensite is preferably 80% or more, more preferably 90% or more.
- the volume fraction of martensite may be 100%.
- the volume fraction of martensite is preferably 95% or less.
- the steel pipe structure of the present invention contains retained austenite at a volume ratio of 10% or less with respect to the entire steel pipe.
- the volume fraction of retained austenite is preferably 8% or less, more preferably 6% or less. Even when the retained austenite content is 0%, the intended properties of the present invention can be obtained.
- the volume fraction of retained austenite is preferably 2% or more, more preferably 4% or more.
- the balance other than martensite and retained austenite is ferrite.
- the volume ratio of the remaining structure that is, ferrite
- the volume fraction of ferrite is preferably 3% or less.
- Each tissue described above can be measured by the following method. First, a test piece for tissue observation was taken from the central part of the wall thickness of a cross section perpendicular to the tube axis direction, and corroded with a Villella reagent (picric acid, hydrochloric acid, and ethanol mixed in proportions of 2 g, 10 ml, and 100 ml, respectively). Then, the structure is imaged with a scanning electron microscope (magnification: 1000 times), the structure fraction (area %) of ferrite is calculated using an image analyzer, and this area ratio is treated as volume ratio %.
- a Villella reagent picric acid, hydrochloric acid, and ethanol mixed in proportions of 2 g, 10 ml, and 100 ml, respectively.
- the X-ray diffraction test piece is ground and polished so that the cross section (C cross section) perpendicular to the tube axis direction becomes the measurement surface, and the amount of retained austenite ( ⁇ ) is measured using the X-ray diffraction method. .
- the amount of retained austenite is obtained by measuring the diffraction X-ray integrated intensity of the (220) plane of ⁇ and the (211) plane of ⁇ (ferrite) and converting it using the following formula.
- ⁇ (volume ratio) 100/(1 + (I ⁇ R ⁇ /I ⁇ R ⁇ ))
- I ⁇ integrated intensity of ⁇
- R ⁇ theoretical crystallographically calculated value of ⁇
- I ⁇ integrated intensity of ⁇
- R ⁇ theoretically calculated crystallographic value of ⁇
- the fraction (volume ratio) of martensite is the remainder other than ferrite and retained ⁇ .
- the temperature (°C) is the surface temperature of the steel pipe material and steel pipe (seamless steel pipe after pipe making) unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like.
- the starting material is a steel pipe material having the above composition.
- the method of manufacturing the steel pipe material, which is the starting material is not particularly limited.
- the molten steel having the above composition is melted by a melting method such as a converter or a vacuum melting furnace, and then a billet It is preferable to use a steel pipe material (slab) such as
- these steel pipe materials are heated (heating process), and the heated steel pipe materials are made into hollow shells with a piercing machine using the Mannesmann-plug mill method or the Mannesmann-mandrel mill method, and then hot-worked to make pipes. (tube-making process).
- a seamless steel pipe having the above chemical composition with desired dimensions (predetermined shape) is obtained.
- the seamless steel pipe may be produced by hot extrusion using a press method.
- the heating temperature is set to a temperature in the range of 1100 to 1300°C. If the heating temperature is less than 1100° C., the hot workability deteriorates and many defects occur during pipe making. On the other hand, if the heating temperature exceeds 1300° C., the crystal grains become coarse and the low-temperature toughness decreases. Therefore, the heating temperature in the heating step is set to a temperature in the range of 1100 to 1300.degree.
- the above heating temperature is preferably 1150° C. or higher and preferably 1280° C. or lower.
- the seamless steel pipe after pipemaking is cooled to room temperature at a cooling rate faster than air cooling. Thereby, a steel pipe structure having martensite as a main phase can be secured.
- the seamless steel pipe (steel pipe) after pipemaking is subjected to heat treatment (that is, quenching treatment and tempering treatment).
- heat treatment that is, quenching treatment and tempering treatment.
- the steel pipe is reheated to a temperature equal to or higher than the Ac 3 transformation point (that is, the heating temperature), held for a predetermined time, and then cooled at a cooling rate equal to or higher than air cooling so that the surface temperature of the steel pipe is reduced to 100. C. or less (that is, the cooling stop temperature).
- the heating temperature (that is, the reheating temperature) for the quenching treatment is preferably 800 to 950° C. from the viewpoint of preventing coarsening of the structure. Moreover, from the viewpoint of ensuring uniform heating, it is preferable to hold the above reheating temperature for 5 minutes or longer.
- the retention time is preferably 30 minutes or less.
- the cooling stop temperature is set to 100° C. or less.
- the cooling stop temperature is preferably 80° C. or lower.
- cooling rate equal to or higher than air cooling is 0.01°C/s or higher.
- the steel pipe subjected to the above-described quenching treatment is subjected to tempering treatment.
- the steel pipe is heated to a temperature of 500° C. or more and less than the Ac 1 transformation point (that is, the tempering temperature), held for a predetermined time, and then air-cooled.
- Other cooling such as water cooling, oil cooling, or mist cooling may be performed instead of all or part of the air cooling.
- the tempering temperature is equal to or higher than the Ac1 transformation point, fresh martensite precipitates after tempering, making it impossible to ensure the desired high strength.
- the tempering temperature is less than 500° C., the strength becomes excessive, which makes it difficult to ensure the desired low temperature toughness. Therefore, the tempering temperature should be 500° C. or higher and lower than the Ac 1 transformation point.
- the steel pipe structure becomes a structure in which tempered martensite is the main phase, and a seamless steel pipe having desired strength and desired carbon dioxide corrosion resistance is obtained. From the viewpoint of ensuring uniform heating of the material, it is preferable to hold the material at the above tempering temperature for 10 minutes or longer. This retention time is preferably 300 minutes or less.
- the present invention is not limited to this. It is also possible to manufacture electric resistance welded steel pipes and UOE steel pipes by using steel pipe materials having the above-described chemical compositions, and use them as steel pipes for oil wells. In this case, if the obtained steel pipe for oil wells is subjected to quenching treatment and tempering treatment under the conditions described above, the high-strength stainless steel seamless steel pipe for oil wells of the present invention can be obtained.
- the intermediate product (billet, etc.) in the intermediate stage of manufacturing the product has excellent hot workability, excellent carbon dioxide corrosion resistance, low temperature toughness, and yield strength.
- a high-strength stainless seamless steel pipe for oil wells having a high strength of YS: 758 MPa or more can be obtained.
- a test piece material was cut out from the steel material obtained by hot working.
- the dimensions of the steel material were length: 1100 mm, width: 160 mm, and thickness: 15 mm.
- heat treatment quenching treatment and tempering treatment
- the quenching treatment and tempering treatment are performed on the cut test piece material, but it can be regarded as the same as the case of quenching treatment and tempering treatment for a seamless steel pipe.
- a corrosion test piece having a thickness of 3 mm, a width of 30 mm, and a length of 40 mm was machined from the quenched and tempered test piece material, and a corrosion test was performed.
- the corrosion test was performed by immersing a corrosion test piece in a test liquid: 20% by mass NaCl aqueous solution (liquid temperature: 150°C, 10 atm CO2 gas atmosphere) held in an autoclave for an immersion period of 14 days. bottom.
- the weight of the corrosion test piece after the test was measured, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained.
- samples with a corrosion rate of 0.125 mm/y or less were accepted, and samples with a corrosion rate of more than 0.125 mm/y were rejected.
- pitting corrosion present refers to the case where pitting corrosion having a diameter of 0.2 mm or more occurs.
- No pitting corrosion refers to cases where no pitting corrosion occurs, and cases where pitting corrosion occurs but has a diameter of less than 0.2 mm.
- tissue measurement Specimens for microstructural observation were prepared from specimen materials that had been quenched and tempered, and each microstructure was measured. The observation surface of the structure was a cross section (C cross section) perpendicular to the rolling direction.
- a test piece for tissue observation was corroded with Vilera's reagent (picric acid, hydrochloric acid, and ethanol mixed at a ratio of 2 g, 10 ml, and 100 ml, respectively), and the tissue was imaged with a scanning electron microscope (magnification: 1000 times). , an image analyzer was used to calculate the ferrite structure fraction (% by volume).
- the X-ray diffraction test piece was ground and polished so that the cross section perpendicular to the rolling direction (C cross section) was the measurement surface, and the amount of retained austenite ( ⁇ ) was measured using the X-ray diffraction method.
- the amount of retained austenite was obtained by measuring the diffraction X-ray integrated intensity of the (220) plane of ⁇ and the (211) plane of ⁇ (ferrite) and converting it using the following formula.
- ⁇ (volume ratio) 100/(1 + (I ⁇ R ⁇ /I ⁇ R ⁇ ))
- I ⁇ integrated intensity of ⁇
- R ⁇ theoretical crystallographically calculated value of ⁇
- I ⁇ integrated intensity of ⁇
- R ⁇ theoretically calculated crystallographic value of ⁇ .
- the fraction (volume ratio) of martensite was the remainder other than ferrite and retained austenite.
- a test piece for electrolytic extraction was taken from the test piece material that had been subjected to the quenching treatment and the tempering treatment. Using the collected electrolytic extraction test piece, electrolytic extraction was performed in a 10% AA (10% acetylacetone-1% tetramethylammonium chloride-methanol) solution, and the residue remaining after passing through a 0.2 ⁇ m filter mesh (electrolytic residue) was obtained.
- the amounts of Nb and V contained in the resulting electrolytic residue were determined by ICP measurement, and were defined as the amount of precipitated Nb and the amount of precipitated V contained in the sample.
- the "Amount of Precipitate" column shows the total amount of the measured precipitated Nb amount and precipitated V amount.
- All of the present invention examples have a yield strength (YS) of 758 MPa or more, a reduction in area of 70% or more, and are excellent in hot workability, and at high temperatures of 150 ° C. or more containing CO 2 and Cl ⁇ Excellent carbon dioxide gas corrosion resistance (corrosion resistance) in a corrosive environment and excellent low temperature toughness.
- At least one of the yield strength (YS), hot workability, carbon dioxide corrosion resistance, and low temperature toughness could not obtain the desired value.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
特許文献1には、質量%で、C:0.01~0.10%、Cr:9.0~15.0%、Ni:0.1~7.0%、N:0.005~0.1%、Si:0.05~1.0%、Mn:0.05~1.5%、Cu:0.1~5.0%、Mo:0.1~3.0%、V:0.01~0.20%及びAl:0.0005%から0.05%未満を含み、残部がFe及び不純物から成り、不純物中のP及びSがそれぞれ0.03%以下及び0.01%以下で、組織に占めるオーステナイトの割合が0.3~1.3%、且つ円周方向の圧縮残留応力の絶対値が1.0MPa以下であるマルテンサイト系ステンレス鋼管が開示されている。
[1] 質量%で、
C :0.015%以下、 Si:0.05~0.50%、
Mn:0.04~1.80%、 P :0.030%以下、
S :0.005%以下、 Cr:11.0~14.0%、
Ni:2.0%超5.0%以下、 Mo:0.5%以上1.8%未満、
Al:0.005~0.10%、 V :0.005~0.20%、
Nb:0.005~0.05%、 N :0.015%未満、
O :0.010%以下
を含有し、
かつ、(2)式で表される値をNeffとするとき、Cr、Ni、MoおよびCが(1)式を満たすとともに、Cr、Mo、Si、C、Mn、Ni、CuおよびNが(3)式を満たし、
残部がFeおよび不可避的不純物からなる成分組成を有し、
析出Nb量と析出V量の合計が(4)式を満たし、
降伏強さが758MPa以上であり、
-60℃における吸収エネルギーvE-60が20J以上であり、
腐食速度が0.125mm/y以下である、油井用高強度ステンレス継目無鋼管。
Cr+0.2×Ni+0.25×Mo-20×C -3.7×Neff ≧13.25 ‥‥(1)
Neff = N- 14×(V/50.94+Nb/92.91) ‥‥(2)
Cr+Mo+0.3×Si-43.3×C-0.4×Mn-Ni-0.3×Cu-9×N ≦ 11.0 ‥‥(3)
析出Nb量+ 析出V量 ≧ 0.002 ‥‥(4)
ここで、(1)式~(3)式におけるCr、Ni、Mo、Cu、C、Si、Mn、N、VおよびNbは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
また、(4)式における析出Nb量、および析出V量は、析出物として析出したNbおよびVの合計析出量(質量%)である。
ただし、(2)式においてNeffが負の値のときには、(1)式のNeffをゼロとする。
[2] 前記成分組成に加えて、質量%で、以下のA群およびB群のうちから選ばれた1群または2群を含有する、[1]に記載の油井用高強度ステンレス継目無鋼管。
A群:Cu:3.0%以下、W:3.0%以下、Co:0.3%以下のうちから選ばれた1種または2種以上
B群:Zr:0.20%以下、B:0.01%以下、REM:0.01%以下、Ca:0.0100%以下、Sn:0.20%以下、Ta:0.10%以下、Mg:0.01%以下、Sb:0.50%以下のうちから選ばれた1種または2種以上
Cは、Cr炭化物を形成し、耐炭酸ガス腐食性を低下させる。そのため、C含有量は0.015%以下とすることが必要である。C含有量に下限は設けないが、C含有量を0.003%未満に低下させるためには製造コストの高騰を招く。そのため、本発明では、C含有量は0.003%以上とすることが好ましい。C含有量は、好ましくは0.012%以下とし、より好ましくは0.010%以下とする。
Siは、脱酸剤として作用する元素である。この効果は0.05%以上のSiの含有で得られる。一方、0.50%を超えるSiの含有は、熱間加工性が低下するとともに、耐炭酸ガス腐食性が低下する。このため、Si含有量は0.05~0.50%とする。Si含有量は、好ましくは0.10%以上とし、より好ましくは0.15%以上とする。Si含有量は、好ましくは0.40%以下とし、より好ましくは0.30%以下とする。
Mnは、熱間加工時のδフェライト生成を抑制し、熱間加工性を向上させる元素であり、本発明では0.04%以上のMnの含有を必要とする。一方、Mnは過剰に含有すると、低温靭性や耐SSC性に悪影響を及ぼす。このため、Mn含有量は0.04~1.80%とする。Mn含有量は、好ましくは0.05%以上とし、より好ましくは0.10%以上とする。Mn含有量は、好ましくは0.80%以下とし、より好ましくは0.50%以下とし、さらに好ましくは0.26%以下とする。
Pは、耐炭酸ガス腐食性、耐孔食性をともに低下させる元素である。本発明では、できるだけ低減することが好ましいが、極端な低減は製造コストの高騰を招く。このため、特性の極端な低下を招くことなく、工業的に比較的安価に実施可能な範囲として、P含有量は0.030%以下とする。好ましくは、P含有量は0.020%以下である。なお、P含有量の下限は特に限定されない。ただし、上述のように過度の低減は製造コストの増加を招くため、P含有量は好ましくは0.005%以上とする。
Sは、熱間加工性を著しく低下させ、また、旧オーステナイト粒界への偏析によって低温靭性を悪化させるため、できるだけ低減することが好ましい。S含有量は0.005%以下であれば、旧オーステナイト粒界へのSの偏析を抑制し、本発明で目的とする低温靭性を得ることができる。このようなことから、S含有量は0.005%以下とする。好ましくは、S含有量は0.0015%以下である。ただし、過度の低減は製造コストの増加を招くため、S含有量は好ましくは0.0005%以上とする。
Crは、保護皮膜を形成して耐炭酸ガス腐食性向上に寄与する元素であり、高温での耐炭酸ガス腐食性を確保するために、本発明では11.0%以上のCrの含有を必要とする。一方、14.0%を超えるCrの含有は、マルテンサイト変態させずに、残留オーステナイトを生じやすくすることで、マルテンサイト相の安定性が低下し、本発明で目的とする強度が得られなくなる。このため、Cr含有量は11.0~14.0%とする。Cr含有量は、好ましくは11.5%以上とし、より好ましくは12.0%以上とする。Cr含有量は、好ましくは13.5%以下とし、より好ましくは13.0%以下とする。
Niは、保護皮膜を強固にして耐炭酸ガス腐食性を向上させる作用を有する元素である。また、Niは、固溶して鋼の強度を増加させるとともに低温靭性を大きく向上させる。このような効果は2.0%を超えるNiの含有で得られる。また、高温におけるフェライト相の生成を抑制し、熱間加工性を改善する。一方、5.0%を超えるNiの含有は、マルテンサイト変態させずに、残留オーステイトを生じやすくすることで、マルテンサイト相の安定性が低下し、強度が低下する。これとともに、コストが増大する。このため、Ni含有量は2.0%超5.0%以下とする。Ni含有量は、好ましくは3.0%以上とする。Ni含有量は、好ましくは4.9%以下とし、より好ましくは4.8%以下とする。
Moは、Cl-や低pHによる孔食に対する抵抗性を増加させる元素であり、本発明では0.5%以上のMoの含有を必要とする。0.5%未満のMoの含有では、苛酷な腐食環境下での耐炭酸ガス腐食性を低下させる。一方、1.8%以上のMoの含有は、δフェライトを発生させて、熱間加工性の低下を招くうえ、コストが増大する。このため、Mo含有量は0.5%以上1.8%未満とする。Mo含有量は、好ましくは0.7%以上とし、より好ましくは0.8%以上とする。Mo含有量は、好ましくは1.6%以下とし、より好ましくは1.4%以下とし、さらに好ましくは1.3%以下とする。
Alは、脱酸剤として作用する元素である。この効果は、0.005%以上のAlを含有することで得られる。一方、0.10%を超えてAlを含有すると、酸化物量が多くなりすぎて、低温靭性に悪影響を及ぼす。このため、Al含有量は0.005~0.10%とする。Al含有量は、好ましくは0.010%以上とし、好ましくは0.03%以下とする。
Vは、固溶強化および析出強化により鋼の強度を向上させる元素である。また、耐炭酸ガス腐食性を低下させるNを析出物(V析出物)として固定し、耐炭酸ガス腐食性を向上させる効果もある。この効果は、Vを0.005%以上含有することで得られる。一方、0.20%を超えてVを含有しても、強度が過剰に高くなり、その結果、低温靭性が低下する。このため、V含有量は0.005~0.20%とする。V含有量は、好ましくは0.05%以上とし、より好ましくは0.07%以上とする。V含有量は、好ましくは0.15%以下とし、より好ましくは0.13%以下とする。
Nbは、固溶強化および析出強化により鋼の強度を向上させる元素である。また、耐炭酸ガス腐食性を低下させるNを析出物(Nb析出物)として固定し、耐炭酸ガス腐食性を向上させる効果もある。このような効果は、0.005%以上のNbを含有することで得られる。一方、0.05%を超えてNbを含有しても、強度が過剰に高くなり、その結果、低温靭性が低下する。このため、Nb含有量は0.005~0.05%とする。Nb含有量は、好ましくは0.010%以上とし、より好ましくは0.02%以上とする。Nb含有量は、より好ましくは0.04%以下とする。
Nは、Cr窒化物を生成し、耐炭酸ガス腐食性を低下させる。このため、N含有量は0.015%未満とする。N含有量の下限は特に設けないが、N含有量を0.003%未満とすると、著しい製造コストの上昇を招く。したがって、N含有量は、好ましくは0.003%以上とし、より好ましくは0.005%以上とする。N含有量は、好ましくは0.013%以下とし、より好ましくは0.012%以下とし、さらに好ましくは0.010%以下とする。
O(酸素)は、鋼中では酸化物として存在し、各種特性に悪影響を及ぼす。このため、Oはできるだけ低減することが望ましい。特に、O含有量が0.010%を超えると、熱間加工性、低温靭性がともに著しく低下する。このため、O含有量は0.010%以下とする。O含有量は、好ましくは0.006%以下であり、より好ましくは0.004%以下である。過度の低減は製造コストの増加を招くため、好ましくは0.0005%以上とする。
Cr+0.2×Ni+0.25×Mo-20×C -3.7×Neff ≧ 13.25 ‥‥(1)
Neff = N- 14×(V/50.94+Nb/92.91) ‥‥(2)
ここで、(1)式および(2)式におけるCr、Ni、Mo、C、N、VおよびNbは各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。ただし、(2)式においてNeffが負の値のときには、(1)式のNeffをゼロとする。
Cr+Mo+0.3×Si-43.3×C-0.4×Mn-Ni-0.3×Cu-9×N ≦ 11.0 ‥‥(3)
ここで、(3)式におけるCr、Mo、Si、C、Mn、Ni、Cu、およびNは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
析出Nb量+ 析出V量 ≧ 0.002 ‥‥(4)
ここで、(4)式における析出Nb量、析出V量は後述の実施例に記載の電解抽出残渣法により求めた、鋼中に析出物として析出したNbおよびVの合計析出量(質量%)である。なお、析出しない元素は析出量をゼロとする。
Cu:3.0%以下
Cuは、保護皮膜を強固にして、耐炭酸ガス腐食性を高める元素であり、必要に応じて含有できる。このような効果は、0.05%以上のCuを含有することで得られる。一方、3.0%を超えるCuの含有は、CuSの粒界析出を招き熱間加工性が低下する。このため、Cuを含有する場合には、Cu含有量は3.0%以下とすることが好ましい。Cu含有量は、好ましくは0.05%以上とし、より好ましくは0.5%以上とし、さらに好ましくは0.7%以上とする。Cu含有量は、より好ましくは2.5%以下とし、さらに好ましくは1.5%以下とする。
Wは、強度増加に寄与する元素であり、必要に応じて含有できる。このような効果は、0.05%以上のWを含有することで得られる。一方、3.0%を超えてWを含有しても、効果は飽和する。このため、Wを含有する場合には、W含有量は3.0%以下とすることが好ましい。W含有量は、好ましくは0.05%以上とし、より好ましくは0.5%以上とする。W含有量は、より好ましくは1.5%以下とする。
Coは、Ms点を上昇させることで残留オーステナイト分率を低減し、強度および耐SSC性を向上させる元素である。このような効果は0.01%以上のCoを含有することで得られる。一方、0.3%を超えてCoを含有すると低温靭性値が低下する。このため、Coを含有する場合には、Co含有量は0.3%以下とすることが好ましい。Co含有量は、好ましくは0.01%以上とし、より好ましくは0.05%以上とし、さらに好ましくは0.07%以上とする。Co含有量は、より好ましくは0.15%以下とし、さらに好ましくは0.09%以下とする。
Zr:0.20%以下
Zrは、強度の増加に寄与する元素であり、必要に応じて含有できる。このような効果は、0.01%以上のZrを含有することで得られる。一方、0.20%を超えてZrを含有しても、効果は飽和する。このため、Zrを含有する場合には、Zr含有量は0.20%以下とすることが好ましい。Zr含有量は、好ましくは0.01%以上とし、より好ましくは0.03%以上とする。Zr含有量は、より好ましくは0.10%以下とし、さらに好ましくは0.05%以下とする。
Bは、強度の増加に寄与する元素であり、必要に応じて含有できる。このような効果は、0.0005%以上のBを含有することで得られる。一方、0.01%を超えてBを含有すると、熱間加工性が低下する。このため、Bを含有する場合には、B含有量は0.01%以下とすることが好ましい。B含有量は、好ましくは0.0005%以上とし、より好ましくは0.0007%以上とする。B含有量は、より好ましくは0.005%以下とする。
REM(希土類金属)は、熱間加工性や耐炭酸ガス腐食性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.0005%以上のREMを含有することで得られる。一方、0.01%を超えてREMを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、REMを含有する場合には、REM含有量は0.01%以下とすることが好ましい。REM含有量は、好ましくは0.0005%以上とし、より好ましくは0.001%以上とする。REM含有量は、より好ましくは0.005%以下とする。
Caは、熱間加工性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.0005%以上のCaを含有することで得られる。一方、0.0100%を超えてCaを含有すると、粗大なCa系介在物の数密度が増加し、所望の低温靭性を得ることができなくなる。このため、Caを含有する場合には、Ca含有量は0.0100%以下とすることが好ましい。Ca含有量は、好ましくは0.0005%以上とし、より好ましくは0.0010%以上とする。Ca含有量は、より好ましくは0.0040%以下とする。
Snは、耐炭酸ガス腐食性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.02%以上のSnを含有することで得られる。一方、0.20%を超えてSnを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Snを含有する場合には、Sn含有量は0.20%以下とすることが好ましい。Sn含有量は、好ましくは0.02%以上とし、より好ましくは0.04%以上とする。Sn含有量は、より好ましくは0.15%以下とする。
Taは、強度を増加させる元素である。また、Taは、Nbと同様の効果をもたらす元素であり、Nbの一部をTaに置き換えることができる。このような効果は、0.01%以上のTaを含有することで得られる。一方、0.10%を超えてTaを含有すると、低温靭性が低下する。このため、Taを含有する場合には、Ta含有量は0.10%以下とすることが好ましい。Ta含有量は、好ましくは0.01%以上とし、より好ましくは0.03%以上とする。Ta含有量は、より好ましくは0.08%以下とする。
Mgは、耐炭酸ガス腐食性を向上させる元素であり、必要に応じて含有できる。このような効果は、0.002%以上のMgを含有することで得られる。一方、0.01%を超えてMgを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、Mgを含有する場合には、Mg含有量は0.01%以下とすることが好ましい。Mg含有量は、好ましくは0.002%以上とし、より好ましくは0.004%以上とする。Mg含有量は、より好ましくは0.008%以下とする。
Sbは、耐炭酸ガス腐食性の改善に寄与する元素であり、必要に応じて含有できる。このような効果は、0.02%以上のSbを含有することで得られる。一方、0.50%を超えてSbを含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Sbを含有する場合には、Sb含有量は0.50%以下とすることが好ましい。Sb含有量は、好ましくは0.02%以上とし、より好ましくは0.04%以上とする。Sb含有量は、より好ましくは0.3%以下とする。
本発明で目的とする強度、耐炭酸ガス腐食性を確保するために、鋼管組織はマルテンサイト(すなわち、焼戻マルテンサイト)を主相とする。ここで、「主相」とは、鋼管全体に対する体積率で70%以上を占める組織のことを指す。マルテンサイトの体積率は、好ましくは80%以上とし、より好ましくは90%以上とする。マルテンサイトの体積率は100%であってもよい。マルテンサイトの体積率は、好ましくは95%以下とする。
まず、組織観察用試験片を管軸方向に直交する断面の肉厚の中央部から採取し、ビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(倍率:1000倍)で組織を撮像し、画像解析装置を用いて、フェライトの組織分率(面積%)を算出し、この面積率を体積率%として扱う。
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値である。
なお、以下の製造方法の説明において、温度(℃)は、特に断らない限り鋼管素材および鋼管(造管後の継目無鋼管)の表面温度とする。これらの表面温度は、放射温度計等で測定することができる。
なお、焼入れ処理の加熱温度(すなわち、再加熱温度)は、組織の粗大化を防止する観点から、800~950℃とすることが好ましい。また、均熱性確保の観点からは、上記の再加熱温度で5分間以上保持することが好ましい。保持時間は、好ましくは30分以下とする。
焼戻処理では、鋼管を、500℃以上Ac1変態点未満の温度(すなわち、焼戻温度)に加熱し、所定時間保持した後、空冷する。なお、空冷の全部または一部にかえて、水冷、油冷、ミスト冷却等の他の冷却を行ってもよい。
なお、表1中の「-」は、意図的に元素を添加しないことを表しており、元素を含有しない(0%)場合だけでなく、不可避的に含有する場合も含むものとした。上記の(2)式で求めたNeffの値が負の値の場合には、表1中の「Neff」にゼロを示した。
焼入れ処理および焼戻処理を施された試験片素材から、JIS(Japanese IndustrialStandards)14A号引張試験片(Φ6.0mm)を採取し、JIS Z2241:2011の規定に準拠して引張試験を実施し、引張特性(降伏強さ(YS)、引張強さ(TS))を求めた。ここでは、降伏強さ(YS)が758MPa以上のものを合格とし、降伏強さが758MPa未満のものを不合格とした。
焼入れ処理および焼戻処理を施された試験片素材から、厚さ:3mm、幅:30mm、長さ:40mmとなる寸法の腐食試験片を機械加工によって作製し、腐食試験を実施した。
熱間加工性の評価には、鋳片から採取した平行部径10mmの丸棒形状の丸棒試験片を用い、グリーブル試験機にて1250℃に加熱し、加熱温度で100秒間保持し、1℃/secで1000℃まで冷却し、1000℃で10秒間保持した後に、破断するまで引っ張り、断面減少率(%)を測定した。ここでは、断面減少率が70%以上の場合を、優れた熱間加工性を有するとみなして合格とした。一方、断面減少率が70%未満の場合を不合格とした。
シャルピー衝撃試験には、JIS Z 2242:2018の規定に準拠して、試験片長手方向が圧延方向となるように採取した、Vノッチ試験片(5mm厚)を用いた。試験温度は-60℃とし、-60℃における吸収エネルギーvE-60を求め、低温靭性を評価した。なお、上記試験片は各3本とし、得られた値の算術平均を吸収エネルギー(J)とした。ここでは、-60℃における吸収エネルギーvE-60が20J以上の場合を、優れた低温靭性を有するとみなして合格とした。一方、-60℃における吸収エネルギーvE-60が20J未満の場合を、不合格とした。
焼入れ処理および焼戻処理を施された試験片素材から組織観察用試験片を作製し、各組織の測定を行った。組織の観察面は、圧延方向に直交する断面(C断面)とした。まず、組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(倍率:1000倍)で組織を撮像し、画像解析装置を用いて、フェライトの組織分率(体積%)を算出した。
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値とした。
焼入れ処理および焼戻処理を施された試験片素材から、電解抽出用試験片を採取した。採取した電解抽出用試験片を用いて、10%AA(10%アセチルアセトン-1%塩化テトラメチルアンモニウム-メタノール)溶液中で電解抽出し、0.2μmのフィルターメッシュを透過させて残った残渣(電解残渣)を得た。得られた電解残渣に含まれるNb量、V量をICP測定により求め、試料中に含まれる析出Nb量、析出V量とした。なお、表3の「析出物量」の欄には、測定された析出Nb量および析出V量の合計量を示した。
Claims (2)
- 質量%で、
C :0.015%以下、
Si:0.05~0.50%、
Mn:0.04~1.80%、
P :0.030%以下、
S :0.005%以下、
Cr:11.0~14.0%、
Ni:2.0%超5.0%以下、
Mo:0.5%以上1.8%未満、
Al:0.005~0.10%、
V :0.005~0.20%、
Nb:0.005~0.05%、
N :0.015%未満、および
O :0.010%以下
を含有し、
かつ、(2)式で表される値をNeffとするとき、Cr、Ni、MoおよびCが(1)式を満たすとともに、Cr、Mo、Si、C、Mn、Ni、CuおよびNが(3)式を満たし、
残部がFeおよび不可避的不純物からなる成分組成を有し、
析出Nb量と析出V量の合計が(4)式を満たし、
降伏強さが758MPa以上であり、
-60℃における吸収エネルギーvE-60が20J以上であり、
腐食速度が0.125mm/y以下である、油井用高強度ステンレス継目無鋼管。
Cr+0.2×Ni+0.25×Mo-20×C -3.7×Neff ≧ 13.25 ‥‥(1)
Neff = N- 14×(V/50.94+Nb/92.91) ‥‥(2)
Cr+Mo+0.3×Si-43.3×C-0.4×Mn-Ni-0.3×Cu-9×N ≦ 11.0 ‥‥(3)
析出Nb量+ 析出V量 ≧ 0.002 ‥‥(4)
ここで、(1)式~(3)式におけるCr、Ni、Mo、Cu、C、Si、Mn、N、VおよびNbは、各元素の含有量(質量%)であり、含有しない元素は含有量をゼロとする。
また、(4)式における析出Nb量、および析出V量は、析出物として析出したNbおよびVの合計析出量(質量%)である。
ただし、(2)式においてNeffが負の値のときには、(1)式のNeffをゼロとする。 - 前記成分組成に加えて、質量%で、以下のA群およびB群のうちから選ばれた1群または2群を含有する、請求項1に記載の油井用高強度ステンレス継目無鋼管。
A群:Cu:3.0%以下、W:3.0%以下、Co:0.3%以下のうちから選ばれた1種または2種以上
B群:Zr:0.20%以下、B:0.01%以下、REM:0.01%以下、Ca:0.0100%以下、Sn:0.20%以下、Ta:0.10%以下、Mg:0.01%以下、Sb:0.50%以下のうちから選ばれた1種または2種以上
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2024006585A MX2024006585A (es) | 2022-01-31 | 2022-12-23 | Tuberia de acero inoxidable sin soldadura de alta resistencia para pozos petroliferos. |
EP22924193.0A EP4414463A1 (en) | 2022-01-31 | 2022-12-23 | High-strength seamless stainless steel pipe for oil wells |
JP2023516199A JP7347714B1 (ja) | 2022-01-31 | 2022-12-23 | 油井用高強度ステンレス継目無鋼管 |
CN202280078178.0A CN118318055A (zh) | 2022-01-31 | 2022-12-23 | 油井用高强度不锈钢无缝钢管 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-013270 | 2022-01-31 | ||
JP2022013270 | 2022-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023145346A1 true WO2023145346A1 (ja) | 2023-08-03 |
Family
ID=87471696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/047592 WO2023145346A1 (ja) | 2022-01-31 | 2022-12-23 | 油井用高強度ステンレス継目無鋼管 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP4414463A1 (ja) |
JP (1) | JP7347714B1 (ja) |
CN (1) | CN118318055A (ja) |
AR (1) | AR128378A1 (ja) |
MX (1) | MX2024006585A (ja) |
WO (1) | WO2023145346A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000226642A (ja) * | 1999-02-02 | 2000-08-15 | Kawasaki Steel Corp | ラインパイプ用高Cr鋼管 |
JP2010168646A (ja) * | 2008-09-04 | 2010-08-05 | Jfe Steel Corp | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
JP2014025145A (ja) * | 2012-06-21 | 2014-02-06 | Jfe Steel Corp | 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法 |
WO2017168874A1 (ja) * | 2016-03-29 | 2017-10-05 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管 |
WO2021206080A1 (ja) * | 2020-04-07 | 2021-10-14 | 日本製鉄株式会社 | マルテンサイト系ステンレス継目無鋼管 |
WO2021210564A1 (ja) * | 2020-04-13 | 2021-10-21 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法 |
-
2022
- 2022-12-23 JP JP2023516199A patent/JP7347714B1/ja active Active
- 2022-12-23 WO PCT/JP2022/047592 patent/WO2023145346A1/ja active Application Filing
- 2022-12-23 CN CN202280078178.0A patent/CN118318055A/zh active Pending
- 2022-12-23 EP EP22924193.0A patent/EP4414463A1/en active Pending
- 2022-12-23 MX MX2024006585A patent/MX2024006585A/es unknown
-
2023
- 2023-01-30 AR ARP230100206A patent/AR128378A1/es unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000226642A (ja) * | 1999-02-02 | 2000-08-15 | Kawasaki Steel Corp | ラインパイプ用高Cr鋼管 |
JP2010168646A (ja) * | 2008-09-04 | 2010-08-05 | Jfe Steel Corp | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
JP2014025145A (ja) * | 2012-06-21 | 2014-02-06 | Jfe Steel Corp | 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法 |
WO2017168874A1 (ja) * | 2016-03-29 | 2017-10-05 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管 |
WO2021206080A1 (ja) * | 2020-04-07 | 2021-10-14 | 日本製鉄株式会社 | マルテンサイト系ステンレス継目無鋼管 |
WO2021210564A1 (ja) * | 2020-04-13 | 2021-10-21 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
AR128378A1 (es) | 2024-04-24 |
EP4414463A1 (en) | 2024-08-14 |
MX2024006585A (es) | 2024-06-11 |
CN118318055A (zh) | 2024-07-09 |
JPWO2023145346A1 (ja) | 2023-08-03 |
JP7347714B1 (ja) | 2023-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3670693B1 (en) | High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same | |
JP6226081B2 (ja) | 高強度ステンレス継目無鋼管およびその製造方法 | |
JP6399259B1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6384636B1 (ja) | 高強度ステンレス継目無鋼管およびその製造方法 | |
WO2017138050A1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP6156609B1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
WO2020067247A1 (ja) | マルテンサイトステンレス鋼材 | |
JP2005336595A (ja) | 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法 | |
WO2014097628A1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP7315097B2 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
WO2014112353A1 (ja) | 油井用ステンレス継目無鋼管およびその製造方法 | |
JP7156536B2 (ja) | ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法 | |
WO2013190834A1 (ja) | 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法 | |
JP7201094B2 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP7226675B1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP7156537B2 (ja) | ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法 | |
WO2016079920A1 (ja) | 油井用高強度ステンレス継目無鋼管 | |
JP4470617B2 (ja) | 耐炭酸ガス腐食性に優れる油井用高強度ステンレス鋼管 | |
CN114450430A (zh) | 不锈钢无缝钢管及其制造方法 | |
WO2023053743A1 (ja) | 油井用高強度ステンレス継目無鋼管およびその製造方法 | |
JP7226571B2 (ja) | ステンレス継目無鋼管およびその製造方法 | |
JP7347714B1 (ja) | 油井用高強度ステンレス継目無鋼管 | |
CN114450428A (zh) | 不锈钢无缝钢管及其制造方法 | |
JP7279863B2 (ja) | ステンレス鋼管およびその製造方法 | |
JPH06299301A (ja) | 110Ksi グレードの高強度耐食性マルテンサイト系ステンレス鋼管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023516199 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22924193 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022924193 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022924193 Country of ref document: EP Effective date: 20240508 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18712826 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280078178.0 Country of ref document: CN |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024010353 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112024010353 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240523 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |