[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023140336A1 - Carbon dioxide fixation method and fixation system, and carbonate production method - Google Patents

Carbon dioxide fixation method and fixation system, and carbonate production method Download PDF

Info

Publication number
WO2023140336A1
WO2023140336A1 PCT/JP2023/001590 JP2023001590W WO2023140336A1 WO 2023140336 A1 WO2023140336 A1 WO 2023140336A1 JP 2023001590 W JP2023001590 W JP 2023001590W WO 2023140336 A1 WO2023140336 A1 WO 2023140336A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
amine
aqueous solution
group
alkaline earth
Prior art date
Application number
PCT/JP2023/001590
Other languages
French (fr)
Japanese (ja)
Inventor
剛 安元
美奈 廣瀬
聡 勝又
植田 直幸 牟田
賢司 森安
道生 鈴木
Original Assignee
学校法人北里研究所
出光興産株式会社
国立大学法人 東京大学
株式会社日本海水
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023004107A external-priority patent/JP2023106331A/en
Application filed by 学校法人北里研究所, 出光興産株式会社, 国立大学法人 東京大学, 株式会社日本海水 filed Critical 学校法人北里研究所
Publication of WO2023140336A1 publication Critical patent/WO2023140336A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present disclosure relates to a method and system for fixing carbon dioxide, and a method for producing carbonate using the method for fixing carbon dioxide.
  • carbon dioxide carbon dioxide gas
  • carbon dioxide gas has a particularly large impact, and preventing an increase in the concentration of carbon dioxide in the atmosphere can be one means of curbing global warming. Therefore, research is being conducted on techniques for limiting the use of fossil resources and reducing the amount of carbon dioxide released into the atmosphere.
  • many countries, including Japan are actively researching technologies to absorb and fix carbon dioxide that has already been released into the atmosphere, and technologies to absorb and fix carbon dioxide from burning fossil resources without releasing it into the atmosphere or while suppressing its release into the atmosphere.
  • Patent Document 1 proposes a method of contacting a gas containing carbon dioxide with an aqueous solution obtained from water and an alkaline earth metal-containing substance (e.g., steel slag) with a weak base and a salt of a strong acid to generate an alkaline earth metal carbonate.
  • an alkaline earth metal-containing substance e.g., steel slag
  • Patent Document 1 has a problem that the carbon dioxide fixation efficiency is not sufficient.
  • the present disclosure has been made in view of such problems, and aims to provide a carbon dioxide fixation method and a fixation system that are excellent in carbon dioxide fixation efficiency, and a carbonate production method using the carbon dioxide fixation method.
  • a method for immobilizing carbon dioxide wherein an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions) is brought into contact with carbon dioxide-derived carbonate ions in the presence of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, to produce an alkaline earth metal carbonate, A step (S) of suppressing a pH increase of the group 2 element ion-containing aqueous solution (B) caused by the amine compound (A) by using a gas (C) containing carbon dioxide.
  • a step (S) of suppressing a pH increase of the group 2 element ion-containing aqueous solution (B) caused by the amine compound (A) by using a gas (C) containing carbon dioxide
  • a method for immobilizing carbon dioxide comprising: [2] A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above, Aqueous amine solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, amines artificially synthesized, and polymers containing groups derived from these amines is brought into contact with a gas (C) containing carbon dioxide to prepare an amine aqueous solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C) (P1-1);
  • the aqueous amine solution (A2) and the aqueous solution (B) containing group 2 element ions are brought into contact with each other to deposit an alkaline earth metal carbonate in a second contact part (P1-2), and a carbonate recovery part (Q) in which the alkaline earth metal carbonate is recovered.
  • a carbon dioxide fixation system comprising at least [3] A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above, At least one amine compound (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, a Group 2 element ion-containing aqueous solution (B) (wherein the Group 2 element ion-containing aqueous solution (B) contains at least alkaline earth metal ions) and a gas (C) containing carbon dioxide are brought into contact simultaneously with a carbon dioxide-containing gas (C) to deposit an alkaline earth metal carbonate, and a carbonate recovery for recovering the alkaline earth metal carbonate.
  • At least one amine compound (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines
  • a carbon dioxide fixation system comprising at least [4] A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above, A first contact part (P3-1) for preparing a mixed solution (AB) of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, and an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions); A second contact part (P3-2) for bringing the mixed solution (AB) into contact with a gas (C) containing carbon dioxide to deposit an alkaline earth metal carbonate, and a carbonate recovery part (Q) for recovering the alkaline earth metal carbonate, A carbon dioxide fixation system comprising at least [5] A method for producing a carbonate using the method for immobilizing carbon dioxide according to [1] above.
  • FIG. 1 is a schematic diagram showing an example of a carbon dioxide fixation system according to a first embodiment
  • FIG. 1 is a schematic diagram showing an example of a preferred aspect of the carbon dioxide fixation system of the first embodiment
  • FIG. 4 is a schematic diagram showing another preferred embodiment of the carbon dioxide fixation system of the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of a more preferred aspect of the carbon dioxide fixation system of the first embodiment; It is a process schematic which shows an example of the fixing method of the carbon dioxide of 2nd embodiment. It is a process schematic which shows an example of the preferable aspect of the fixing method of the carbon dioxide of 2nd embodiment.
  • FIG. 2 is a schematic diagram showing an example of a carbon dioxide fixation system according to a second embodiment;
  • FIG. 4 is a schematic diagram showing an example of a preferred aspect of the carbon dioxide fixation system of the second embodiment.
  • It is a process schematic which shows an example of the fixing method of the carbon dioxide of 3rd embodiment.
  • FIG. 3 is a schematic diagram showing an example of a carbon dioxide fixation system according to a third embodiment
  • FIG. 4 is a schematic diagram showing an example of a preferred aspect of the carbon dioxide fixation system of the third embodiment.
  • FIG. 4 is a diagram showing the results of examining calcium carbonate formation rates using seawater and various bases.
  • FIG. 4 is a graph showing changes in pH over time when examining calcium carbonate formation rates using seawater and various bases.
  • FIG. 2 is a diagram showing the results of examining the effect of base concentration on the calcium carbonate formation rate using demagnesium-free seawater produced by adding lime milk to seawater (natural seawater) and then removing the produced magnesium hydroxide slurry. [ Fig. 10] Fig.
  • FIG. 10 is a diagram showing the results of examining the influence of base species on the calcium carbonate formation rate using the demagnesium-removed seawater.
  • FIG. 4 is a graph showing changes over time in pH when the effect of basic species on the formation rate of calcium carbonate was studied using the demagnesium-free seawater.
  • Fig. 10 is a diagram showing the results of further examination of the influence of base species on the calcium carbonate formation rate using the demagnesium-removed seawater.
  • FIG. 4 is a diagram showing the results of examining calcium carbonate formation rate using brackish water.
  • FIG. 3 is a graph showing changes in pH over time when examining the rate of calcium carbonate formation using brackish water.
  • group 2 element means Be (beryllium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), and radium (Rd).
  • alkaline earth metal means Ca (calcium), Sr (strontium), and Ba (barium).
  • the carbon dioxide immobilization method of the present embodiment is a carbon dioxide immobilization method in which an alkaline earth metal carbonate is produced by contacting an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions) and carbon dioxide-derived carbonate ions in the presence of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, wherein the amine compound.
  • amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, wherein the amine compound.
  • FIG. 1 shows an example of the carbon dioxide immobilization method of the first embodiment.
  • the step (S) (hereinafter sometimes abbreviated as “step (S)”) of suppressing the pH increase of the aqueous solution (B) containing group 2 element ions caused by the amine compound (A) by using the gas (C) containing carbon dioxide (hereinafter sometimes abbreviated as “step (S)”) is an amine aqueous solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, and a gas containing carbon dioxide ( C) to prepare an aqueous amine solution (A2) containing carbonate ions derived from carbon dioxide in the gas (C) (S1-1).
  • the method for immobilizing carbon dioxide shown in FIG. 1 includes, as a step (S), a second contact step (S1-2) of contacting the amine aqueous solution (A2) with the Group 2 element ion-containing aqueous solution (B) after the step (S1-1). Furthermore, the carbon dioxide fixation method shown in FIG. 1 further includes a recovery step (T) for recovering the alkaline earth metal carbonate after the step (S).
  • FIG. 2 shows an example of a preferred mode of the method for immobilizing carbon dioxide according to the first embodiment.
  • the carbon dioxide immobilization method shown in FIG. 2 further includes an amine compound recovery/supply step (U) in which the amine compound (A) is recovered from the liquid phase after the alkaline earth metal carbonate has precipitated and is supplied as at least a part of the amine compound (A) used in the step (S).
  • FIG. 3 shows an example of a carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the first embodiment.
  • the carbon dioxide fixation system 1a shown in FIG. 3 includes at least a first contact portion (P1-1), a second contact portion (P1-2), and a carbonate recovery portion (Q).
  • an amine aqueous solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines is brought into contact with a gas (C) containing carbon dioxide to prepare an aqueous amine solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C) containing carbon dioxide.
  • the aqueous amine solution (A2) and the aqueous solution (B) containing group 2 element ions are brought into contact with each other to precipitate an alkaline earth metal carbonate.
  • the carbonate recovery section (Q) recovers carbonates of alkaline earth metals.
  • FIG. 4 shows an example of a preferred mode of a carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the first embodiment.
  • a carbon dioxide fixation system 1a′ shown in FIG. 4 includes a plurality of first contact portions. Although two first contact portions are provided in FIG. 4 (references (P1-1) and (P1-1)'), the number of first contact portions may be three or more. Further, the carbon dioxide fixation system 1a' shown in FIG. 4 includes a plurality of second contact portions. Although two second contact portions are provided in FIG. 4 (references (P1-2) and (P1-2)′), the number of second contact portions may be three or more.
  • the carbon dioxide fixation system in the first embodiment is not limited to a mode in which a plurality of both the first contact portion and the second contact portion are provided, and may be a mode in which a plurality of the first contact portions are provided and only one second contact portion is provided. Alternatively, a plurality of second contact portions may be provided and only one first contact portion may be provided.
  • FIG. 5 shows another example of a preferred embodiment of the carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the first embodiment.
  • the carbon dioxide immobilization system 1a'' shown in FIG. 5 does not include a second contact portion (P1-2), and the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are brought into contact at the first contact portion (P1-1).
  • the carbon dioxide fixation system 1a'' shown in FIG. 5 may also have a plurality of first contact portions.
  • FIG. 6 shows an example of a more preferable aspect of the carbon dioxide fixation system of the present embodiment for carrying out the carbon dioxide fixation method of the first embodiment.
  • the carbon dioxide fixation system 11a shown in FIG. 6 further includes an amine compound recovery/supply portion (R) that recovers the amine compound (A) from the liquid phase after the carbonate of the alkaline earth metal has precipitated and supplies it as at least part of the amine compound (A) used in the first contact portion (P1-1).
  • the carbon dioxide fixation system 11a shown in FIG. 6 further includes an amine compound recovery/supply unit (R) in addition to the carbon dioxide fixation system 1a shown in FIG.
  • the carbon dioxide fixation system 1a′ shown in FIG. 4 may further include an amine compound recovery/supply unit (R).
  • the carbon dioxide fixation system 1a'' shown in FIG. 5 may further include an amine compound recovery/supply unit (R).
  • A1 aqueous amine solution containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, amines artificially synthesized, and polymers containing groups derived from these amines is brought into contact with a gas (C) containing carbon dioxide to prepare an aqueous amine solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C).
  • an aqueous amine solution (A1) containing one or more amine compounds (A) selected from the group into contact with a gas (C) containing carbon dioxide, carbon dioxide in the gas (C) is efficiently absorbed by the aqueous amine solution (A1), and an aqueous amine solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C) is efficiently prepared.
  • Carbon dioxide-derived carbonate ions contained in the aqueous amine solution (A2) function as a carbonate ion source for precipitating alkaline earth metal carbonate in the second contacting step (S1-2).
  • the amine aqueous solution (A1), the carbon dioxide-containing gas (C), and the method of contacting the amine aqueous solution (A1) with the carbon dioxide-containing gas (C) will be described in detail below.
  • the aqueous amine solution (A1) contains one or more amine compounds selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines.
  • the present inventors have been conducting research on marine bacteria that form calcium carbonate granules as part of research to clarify calcium carbonate formation in marine organisms.
  • this marine bacterium When this marine bacterium is cultured in an artificial medium containing calcium, it forms dumbbell-shaped or spherical calcium carbonate (calcite) outside the cell.
  • dumbbell-shaped or spherical calcium carbonate calcite
  • the present inventors have found that amines produced by marine bacteria play a major role.
  • the dumbbells and spherical calcium carbonate granules found in the culture of marine bacteria promote the crystallization of calcium carbonate by increasing the concentration of carbonate ions in the medium due to the amines that increase in the medium as the marine bacteria proliferate.
  • amines in the culture solution of marine bacteria in which calcium carbonate granules were observed were derivatized with dansyl chloride according to the "analysis of non-volatile putrefactive amines in food" in the food hygiene inspection guidelines, and analyzed by HPLC.
  • amines such as 1,3-propanediamine, putrescine, cataverine, spermine, spermidine, norspermidine, and norspermine were detected. From the above, it was found that amines produced by marine bacteria combine with carbon dioxide in the air and are then hydrolyzed, increasing the concentration of carbonate ions in the medium and causing the precipitation of calcium carbonate.
  • Precipitation of calcium carbonate was also confirmed when amine and calcium chloride were mixed in an aqueous solution free of marine bacteria and allowed to stand. From this, it was found that precipitation of calcium carbonate occurs even in the absence of marine bacteria. In other words, it was found that amines produced by marine bacteria can efficiently produce carbonate ions by forming salts with carbon dioxide even in the absence of marine bacteria.
  • an amine aqueous solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines is brought into contact with a gas (C) containing carbon dioxide.
  • a gas (C) containing carbon dioxide As a result, carbonate ions for precipitating alkaline earth metal carbonate in the second contact step (S1-2) are efficiently generated in the aqueous amine solution (A2).
  • amines (monoamines and polyamines) synthesized in vivo (for example, in vivo of marine bacteria) can be used without particular limitation.
  • the amines 1,3-propanediamine, putrescine (butane-1,4-diamine), cataverine (pentane-1,4-diamine), spermine (1,11-diamino-4,9-diazaundecane), spermidine (1,8-diamino-4-azaoctane), norspermidine (3,3′-iminobis(propane- 1-amine)) and norspermine (3,3′-[(propane-1,3-diyl)bisimino]bis(propan-1-amine)) is preferably used.
  • artificially synthesized amines can also be used.
  • examples of artificially synthesized amines include monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), diisopropanolamine (DIPA), diglycolamine (DGA), methyldiethanolamine (MDEA), and diamines such as piperazine and ethylenediamine.
  • a polymer containing a group derived from the above amine (a polymer containing a group derived from an amine synthesized in vivo, a polymer containing a group derived from an artificially synthesized amine) may be used.
  • a polymer containing a group derived from the amine a polymer containing at least a terminal group derived from the amine is preferable.
  • Such a polymer includes, for example, a polymer having a structural unit derived from a compound having an ethylenically unsaturated double bond and a group derived from the above amine, a polyalkyleneimine, and the like, preferably a polyalkyleneimine.
  • the number of carbon atoms in the alkylene group of the polyalkyleneimine is preferably 2-4, more preferably 2-3, still more preferably 2.
  • group derived from the above amine means a monovalent or higher group excluding at least one hydrogen atom of the above amine (amine synthesized in vivo, amine synthesized artificially).
  • the group derived from ethylenediamine includes -NHCH 2 CH 2 NH 2 which is a monovalent group.
  • the number average molecular weight of the polymer containing a group derived from the amine as measured by boiling point elevation method is preferably 500 to 50,000, more preferably 500 to 40,000, still more preferably 500 to 35,000.
  • the amine compound (A) may be used alone or in combination of two or more.
  • An amine aqueous solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines is brought into contact with a gas (C) containing carbon dioxide.
  • a gas (C) containing carbon dioxide When the carbon dioxide is absorbed into the amine aqueous solution (A1), the carbon dioxide reacts with the amine compound (A) in the amine aqueous solution (A1) to produce carbonate ions in the amine aqueous solution (A1), and the amine compound (A) becomes a cation.
  • a presumed reaction formula for the case where the amine compound (A) is putrescine is shown below.
  • the content of the amine compound (A) in the amine aqueous solution (A1) is preferably 1% by mass to 50% by mass, more preferably 10% by mass to 40% by mass, and still more preferably 25% by mass to 35% by mass, based on the total amount of the amine aqueous solution (A1), from the viewpoint of facilitating efficient absorption of carbon dioxide into the amine aqueous solution (A1).
  • the pH of the aqueous amine solution (A1) before contact with the gas (C) containing carbon dioxide is determined in consideration of the amount of carbon dioxide to be absorbed and the reactivity in the second contact step (S1-2). Specifically, the pH of the amine aqueous solution (A1) before contact with the carbon dioxide-containing gas (C) is adjusted so that the pH of the amine aqueous solution (A2) containing carbon dioxide-derived carbonate ions after contact with the carbon dioxide-containing gas (C) is preferably 6 or higher, more preferably 7 or higher, and still more preferably 8 or higher.
  • the pH of the aqueous amine solution (A1) before contacting with the gas (C) containing carbon dioxide may be adjusted according to the carbonate species to be precipitated in the second contacting step (S1-2).
  • the pH of the aqueous amine solution (A2) containing carbonate ions derived from carbon dioxide after contact with the carbon dioxide-containing gas (C) is preferably 7 to 12, more preferably 7 to 9, so that the pH of the amine aqueous solution (A1) before contact with the carbon dioxide-containing gas (C) may be adjusted.
  • the pH of the aqueous amine solution (A1) before contact with the gas (C) containing carbon dioxide may be adjusted so that the pH of the mixed solution when the aqueous amine solution (A2) containing carbon dioxide-derived carbonate ions and the aqueous solution (B) containing group 2 element ions are brought into contact in the second contacting step (S1-2) is preferably 8 to 9.
  • the temperature of the amine aqueous solution (A1) when the amine aqueous solution (A1) and the carbon dioxide-containing gas (C) are brought into contact is preferably 10°C or higher, more preferably 30°C to 50°C, from the viewpoint of efficiently absorbing carbon dioxide and easily increasing the carbonate ion concentration in the amine aqueous solution (A2).
  • the temperature of the aqueous amine solution (A1) when the aqueous amine solution (A1) and the gas (C) containing carbon dioxide are brought into contact is preferably maintained at 50°C or lower.
  • the time for contacting the aqueous amine solution (A1) with the gas (C) containing carbon dioxide is appropriately set according to the contact method, the temperature of the aqueous amine solution (A1), the content of the amine compound (A) in the aqueous amine solution (A1), the temperature of the gas (C) containing carbon dioxide, the carbon dioxide concentration, the gas flow rate of carbon dioxide, and the size of the container (reaction tank). It is generally 30 minutes to 3 hours, preferably 1 hour to 24 hours.
  • Examples of the gas (C) containing carbon dioxide include air and flue gas.
  • Examples of flue gas include flue gas emitted from various factories such as steelworks, flue gas emitted from LNG-fired power plants, flue gas emitted from coal-fired power plants, and off-gases emitted from hydrogen production equipment in refineries. From the viewpoint of making it easier to improve the carbon dioxide fixation efficiency, among these, the flue gas (carbon dioxide concentration is 11 to 15% by volume) discharged from a coal-fired power plant and a refinery. Also, when the carbon dioxide concentration in the air is 0.04% by volume or more, air may be used.
  • Method of contacting amine aqueous solution (A1) with carbon dioxide-containing gas (C) is not particularly limited as long as it is a method capable of efficiently absorbing carbon dioxide into the aqueous amine solution (A1).
  • the first contacting step (S1-1) is to bring an amine aqueous solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines into contact with a gas (C) containing carbon dioxide to prepare an amine aqueous solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C).
  • An aqueous amine solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines is stored in a storage tank 21 and supplied to the first contact portion (P1-1) through a supply line 21a.
  • the gas (C) containing carbon dioxide for example, is supplied from a cylinder or equipment (for example, a coal-fired power plant, etc.) not shown, and is supplied to the first contact portion (P1-1) via the supply line 22a by the blower 22.
  • the gas (C) containing carbon dioxide is a high-temperature gas such as combustion exhaust gas
  • the combustion exhaust gas is cooled to an appropriate temperature, and then contacted with the aqueous amine solution (A1).
  • a method of cooling the flue gas includes, for example, a method using a heat exchanger.
  • the flue gas may be subjected to one or more treatments selected from denitrification, dust collection, and desulfurization, if necessary.
  • Methods of contacting the aqueous amine solution (A1) and the gas (C) containing carbon dioxide in the first contact portion (P1-1) include, for example, the following methods (1) to (4), but are not limited thereto, and various methods for dissolving the gas into a liquid may be used.
  • Aqueous amine solution (A1) is placed in a reaction tank, and gas (C) containing carbon dioxide is blown near the surface of the aqueous amine solution (A1) while stirring the aqueous amine solution (A1) with a stirring blade or the like.
  • An aqueous amine solution (A1) is placed in a reaction tank, and a gas (C) containing carbon dioxide is directly blown into the aqueous amine solution (A1).
  • a carbon dioxide-containing gas (C) is introduced from the bottom of a closed reaction tower and raised, and an amine aqueous solution (A1) is sprayed from the top of the reaction tower with a nozzle or the like to bring the carbon dioxide-containing gas (C) and the amine aqueous solution (A1) into countercurrent contact.
  • the gas (C) containing carbon dioxide is fine-bubbled and introduced into the aqueous amine solution (A1).
  • the contact between the amine aqueous solution (A1) and the carbon dioxide-containing gas (C) in the first contact portion (P1-1) is preferably carried out at 50° C. or less and under normal pressure, more preferably at normal temperature (25 ⁇ 15° C.) and under normal pressure.
  • the amine aqueous solution (A2) rich in carbonate ions derived from carbon dioxide prepared in the first contacting step (S1-1) is supplied to the second contacting step (S1-2). Since the aqueous amine solution (A2) contains a large amount of carbon dioxide-derived carbonate ions, the alkaline earth metal carbonate is likely to precipitate in the second contacting step (S1-2). In addition, since the amine aqueous solution (A2) abundantly contains carbonate ions derived from carbon dioxide, in the second contacting step (S1-2), when the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are brought into contact, a rapid increase in the pH of the mixed solution can be suppressed.
  • the alkaline earth metal carbonate can be readily precipitated easily.
  • carbon dioxide can be efficiently immobilized.
  • the aqueous amine solution (A2) contains abundant carbonate ions derived from carbon dioxide, even if the alkaline earth metal ion concentration of the group 2 element ion-containing aqueous solution (B) is low, the carbonate can be precipitated.
  • carbonate (calcium carbonate) can be precipitated even when the group 2 element ion-containing aqueous solution (B) having a calcium ion concentration of 300 mass ppm (further 400 mass ppm) is used.
  • the gas (C) containing carbon dioxide is supplied from a cylinder or equipment (for example, a coal-fired power plant, etc.) not shown, and is supplied to the first contact portion (P1-1) via the supply line 22a by the blower 22.
  • a cylinder or equipment for example, a coal-fired power plant, etc.
  • the aqueous amine solution (A1) may be stirred with a stirring blade or the like while air is brought into contact with the liquid surface of the aqueous amine solution (A1), so that carbon dioxide in the air is absorbed into the aqueous amine solution (A1).
  • the aqueous amine solution (A2) prepared in the first contacting step (S1-1) is brought into contact with the group 2 element ion-containing aqueous solution (B) (wherein the group 2 element ion-containing aqueous solution (B) contains at least alkaline earth metal ions) to precipitate an alkaline earth metal carbonate.
  • the carbonate ions in the aqueous amine solution (A2) react with the alkaline earth metal ions in the aqueous solution (B) containing Group 2 element ions, and an alkaline earth metal carbonate is precipitated. Since the carbonate ions in the amine aqueous solution (A2) are produced from the carbon dioxide in the gas (C) as a raw material, the carbon dioxide is fixed as an alkaline earth metal carbonate.
  • Group 2 element ion-containing aqueous solution (B) contains Group 2 element ions. However, the second group element ion-containing aqueous solution (B) contains at least alkaline earth metal ions.
  • group 2 element ion means beryllium ion (Be 2+ ), magnesium ion (Mg 2+ ), calcium ion (Ca 2+ ), strontium ion (Sr 2+ ), barium ion (Ba 2+ ), and radium ion (Rd 2+ ).
  • alkaline earth metal ion means calcium ion (Ca 2+ ), strontium ion (Sr 2+ ), and barium ion (Ba 2+ ).
  • the alkaline earth metal ions contained in the second group element ion-containing aqueous solution (B) are preferably calcium ions. This is because calcium carbonate produced from calcium ions has various industrial uses.
  • the Group 2 element ion-containing aqueous solution (B) may contain at least magnesium ions and calcium ions.
  • the first contacting step (S1-1) one or more selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines.
  • An aqueous amine solution (A1) containing one or more amine compounds (A) is brought into contact with a gas (C) containing carbon dioxide.
  • seawater As the Group 2 element ion-containing aqueous solution (B).
  • seawater is readily available, it contains more magnesium ions than calcium ions together with calcium ions.
  • there is a problem that the formation of calcium carbonate is inhibited as described above.
  • the carbon dioxide immobilization method of the first embodiment even when seawater is used as the group 2 element ion-containing aqueous solution (B), the inhibition of calcium carbonate production due to the formation of magnesium hydroxide is suppressed. Therefore, calcium carbonate is produced extremely efficiently even when readily available seawater is used as the group 2 element ion-containing aqueous solution (B).
  • Brine water is water containing salt such as sodium chloride, and usually contains one or more alkaline earth metal ions (especially calcium ions) selected from the group consisting of calcium ions, strontium ions, and barium ions. Therefore, by using brackish water as the Group 2 element ion-containing aqueous solution (B), it is possible to easily supply alkaline earth metal ions for producing alkaline earth metal carbonates.
  • the concentrated seawater contains alkaline earth metal ions (especially calcium ions) at a high concentration
  • alkaline earth metal ions that serve as a source of alkaline earth metal carbonate can be efficiently supplied. Therefore, the carbon dioxide fixation efficiency can be further improved, and the yield of alkaline earth metal carbonate can be improved.
  • the second contact portion (P1-2) for performing the second contact step (S1-2) can be made compact to reduce the size of the manufacturing system.
  • Salt lake brine such as the Uyuni Salt Lake and hot water brine such as the Salton Lake in the United States are also preferable because they have high concentrations of alkaline earth metal ions.
  • geothermal power generation has been actively developed as a renewable energy.
  • the calcium ion concentration is preferably 400 mass ppm or more, more preferably 600 mass ppm or more, still more preferably 800 mass ppm or more, still more preferably 1,000 mass ppm or more, still more preferably 1,500 mass ppm or more, and still more preferably 1,800 mass ppm or more.
  • group 2 element ion containing aqueous solution (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the concentrated seawater can be produced using seawater as a raw material by known methods such as ion exchange membrane method, evaporation method, and reverse osmosis method.
  • alkaline earth metal ion-containing water preferably calcium ion-containing water
  • a magnesium ion concentration of 500 mass ppm or less preferably 400 mass ppm or less, more preferably 300 mass ppm or less
  • alkaline earth metal ion-containing water having a magnesium ion concentration of 500 ppm by mass or less is produced as a by-product.
  • alkaline earth metal ion-containing water having a magnesium ion concentration of 500 ppm by mass or less is produced as a by-product.
  • a by-product has a calcium ion concentration higher than that of seawater containing alkaline earth metal ions (for example, preferably 400 mass ppm or more, more preferably 600 mass ppm or more, still more preferably 800 mass ppm or more, even more preferably 1,000 mass ppm or more, still more preferably 1,500 mass ppm or more, and still more preferably 1,800 mass ppm or more).
  • the gas (C) containing carbon dioxide into contact with the amine aqueous solution (A1), even if the alkaline earth metal ion-containing water having a higher calcium ion concentration than seawater is used as the group 2 element ion-containing aqueous solution (B), the pH increase can be suppressed and calcium carbonate can be efficiently produced.
  • the method of contacting the amine aqueous solution (A2) with the group 2 element ion-containing aqueous solution (B) is not particularly limited as long as it is a method capable of efficiently producing an alkaline earth metal carbonate.
  • the second contacting step (S1-2) is carried out in the second contacting portion (P1-2) where the amine aqueous solution (A2) and the Group 2 element ion-containing aqueous solution (B) are brought into contact with each other to precipitate an alkaline earth metal carbonate.
  • the aqueous amine solution (A2) is supplied from the first contact portion (P1-1) to the second contact portion (P1-2) through the supply line 2a.
  • the group 2 element ion-containing aqueous solution (B) is stored in the storage tank 31 and supplied to the second contact portion (P1-2) through the supply line 31a.
  • Examples of methods for contacting the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) in the second contact portion (P1-2) include the following methods (5) and (6).
  • the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are introduced into the reaction tank, and stirred and mixed using a stirring blade or the like.
  • the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are introduced into a line mixer or the like, and mixed by turbulent stirring or the like without stirring using a stirring blade or the like.
  • the reaction tank a thickener sedimentation apparatus capable of sedimenting and separating from the liquid phase the alkaline earth metal carbonate precipitated and dispersed in the liquid phase by the action of gravity.
  • the second contact portion (P1-2) can also function as a carbonate recovery portion (Q), which will be described later.
  • the temperature of each solution during contact between the aqueous amine solution (A2) and the aqueous solution containing group 2 element ions (B) in the second contact portion (P1-2) is 10°C to 45°C, preferably 25°C to 40°C.
  • the ratio of the supply amount of the aqueous amine solution (A2) to the second contact portion (P1-2) and the supply amount of the group 2 element ion-containing aqueous solution (B) is appropriately adjusted so that the molar amount of carbon dioxide (carbonate ions) and the molar amount of calcium ions in the aqueous amine solution (A2) are approximately equivalent. It should be noted that precipitation of alkaline earth metal carbonate occurs in a short period of time. In addition, since the use of the above polyamine can prevent an increase in pH, there is also an advantage that calcium carbonate can be easily precipitated while suppressing precipitation of magnesium hydroxide.
  • the first contacting step (S1-1) is preferably performed at a plurality of first contacting portions, as shown in FIG.
  • the second contacting step (S1-2) is preferably performed at a plurality of second contacting portions, as shown in FIG.
  • an amine aqueous solution (A1) is produced and brought into contact with a carbon dioxide-containing gas (C) to prepare an amine aqueous solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C).
  • the amine aqueous solution (A2) can be supplied from the second unit to the second contact portion, and the second contact step (S1-2) can be performed.
  • the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are brought into contact with each other at the first contact portion (second contact portion (P1-2)) to precipitate an alkaline earth metal carbonate.
  • the second base (second contact portion (P1-2)') can receive the aqueous amine solution (A2).
  • the alkaline earth metal carbonate can be discharged to the recovery section.
  • the first contact step (S1-1) and the second contact step (S1-2) can be performed at the first contact portion (P1-1) without providing the second contact portion (P1-2). Also in this case, by providing a plurality of first contact portions (P1-1), continuous supply of alkaline earth metal carbonate to the carbonate recovery portion (Q) becomes possible.
  • Whether the number of the first contact portion (P1-1) and the second contact portion (P1-2) is plural or singular, or whether the first contact step (S1-1) and the second contact step (S1-2) are carried out at the first contact portion can be selected according to conditions and requirements such as the target fixed amount of carbon dioxide.
  • first contact part (P1-1) is an AC contact method using a closed reaction tower
  • second contact part (P1-2) is a continuous stirred tank reactor or line mixer, so that the entire process can be made continuous.
  • ⁇ Recovery step (T)> the alkaline earth metal carbonate produced in the second contact step (S1-2) is recovered. Since the alkaline earth metal carbonate precipitates and precipitates, it can be separated and recovered by one or more solid-liquid separation treatments selected from filtration, centrifugation, and the like. The alkaline earth metal carbonate is recovered in the carbonate recovery section (Q). In the carbon dioxide fixation systems 1a, 1a′, 1a′′, and 11a shown in FIGS.
  • the carbonate recovery unit (Q) is, for example, a sub-tank, and the liquid phase containing the alkaline earth metal carbonate obtained in the second contact step (S1-2) is transferred to a sub-tank or the like, and solid-liquid separation is performed in the sub-tank to recover the alkaline earth metal carbonate.
  • the second contact portion (P1-2) can also function as the carbonate recovery portion (Q).
  • the recovered alkaline earth metal carbonate can be washed with water and dried as necessary to make a product.
  • the amine compound (A) is recovered from the liquid phase after the alkaline earth metal carbonate has precipitated, and supplied as at least part of the amine compound (A) in the aqueous amine solution (A1) used in the first contact step (S1-1).
  • the amine recovery/supply step (U) makes it possible to repeatedly use the amine compound (A) in the carbon dioxide immobilization method and system, thereby reducing the cost of the amine compound (A).
  • the amine compound (A) can be recovered from the liquid phase after the alkaline earth metal carbonate has precipitated, for example, by a method using an adsorbent, which will be described below.
  • the method described here is equivalent to the principle and method of ion exchange chromatography.
  • Recovery of the amine compound (A) may be performed using a known method, and is not limited to the method using an adsorbent. Specifically, an electrodialysis method, a dialysis membrane method, and an ultrafiltration method can be used.
  • a solid adsorbent capable of recovering the amine compound (A) is used by contacting the liquid phase after the carbonate of the alkaline earth metal has precipitated.
  • the solid adsorbent for example, one having a substituent represented by —SO 3 M (M represents a hydrogen atom or an alkali metal) is used.
  • Alkali metals that can be selected for M are lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), or francium (Fr).
  • M is preferably Na or a hydrogen atom.
  • one solid adsorbent may be used alone, or two or more solid adsorbents having different M values may be used in combination.
  • the solid adsorbent exhibits a function of collecting the amine compound (A) by binding the substituent to the carrier.
  • the carrier is not particularly limited as long as the above substituent can be bonded thereto, but examples thereof include silica gel, alumina, glass, kaolin, mica, talc, clay, hydrated alumina, wollastonite, iron powder, potassium titanate, titanium oxide, zinc oxide, silicon carbide, silicon nitride, calcium carbonate, carbon, barium sulfate, boron, ferrite, cellulose, and activated carbon.
  • One carrier may be used alone, or two or more carriers may be used in combination.
  • the shape of the solid adsorbent is not particularly limited, and may be, for example, powdery, granular, or sheet-like. It may also be a cartridge, column, funnel, or the like filled with solid adsorbent powder or particles.
  • the amine compound (A) is recovered by the solid adsorbent by bringing the liquid phase after the precipitation of the alkaline earth metal carbonate into contact with the solid adsorbent.
  • the pH of the liquid phase is preferably 1-7.
  • the temperature of the liquid phase is not particularly limited, it is preferably 20°C to 40°C.
  • the method of contacting the liquid phase after the carbonate of the alkaline earth metal precipitates with the solid adsorbent is not particularly limited, but from the viewpoint of ease of handling, it is preferable to use a cartridge, column, or funnel filled with powder or particles of the solid adsorbent, and circulate the liquid phase through this.
  • the amine compound (A) recovered by the solid adsorbent can be eluted into the eluate and recovered by bringing the eluate into contact with the solid adsorbent.
  • the eluent includes an aqueous solution containing a basic compound (including those to which an organic solvent has been added or partially substituted).
  • a basic compound that does not substantially cause a chemical reaction with the amine compound (A) to be recovered and that is soluble or miscible with water can be appropriately used.
  • Preferred basic compounds include, for example, ammonia, sodium hydroxide, ammonium hydroxide, triethylamine, pyridine, histidine, diazabicycloundecene, and mixtures thereof.
  • the concentration of the basic compound is preferably 0.5% by mass to 10% by mass based on the total 100% by mass of the basic compound and the organic solvent.
  • the organic solvent a general organic solvent that dissolves the amine compound (A) to be recovered and the basic compound can be used, but from the viewpoint of operability, etc., a low-viscosity, low-boiling organic solvent is preferred, and more preferably one that mixes uniformly with water. Examples thereof include lower alcohols having 1 to 3 carbon atoms such as methanol, ethanol and 2-propanol; acetone; acetonitrile and the like. A small amount of the organic solvent may be added or mixed to adjust the aqueous solution containing the basic compound, but the aqueous solution containing the basic compound preferably does not contain the organic solvent.
  • the temperature of the eluent when eluting the amine compound (A) into the eluate is not particularly limited, but is generally 20 to 40°C.
  • the method of eluting the amine compound (A) recovered from the solid adsorbent is not particularly limited, but from the viewpoint of ease of handling, etc., when a cartridge, column, or funnel filled with powder or particles of the solid adsorbent is used, the liquid phase after the precipitation of the alkaline earth metal carbonate is circulated through the cartridge to recover the amine, and then the eluate is circulated through the solid adsorbent in which the amine compound (A) has been recovered to elute and recover the amine compound (A) in the eluate. method.
  • the amine compound recovery means constituting the amine compound recovery/supply unit (R) includes, for example, a configuration including a cartridge, column, or funnel filled with powder or particles of a solid adsorbent for recovering the amine compound (A) by circulating the liquid phase supplied from the supply line 51a, and a supply line (not shown) for circulating the eluate through the cartridge, column, or funnel.
  • the amine compound (A) recovered in the eluate is supplied to the storage tank 21 through the supply line 51b. As a result, the amine compound (A) is recycled within the system in the carbon dioxide immobilization method and system of the first embodiment.
  • the amine compound (A) recovered in the eluate may be supplied to the storage tank 21 together with the eluate, or at least part of the eluate may be separated to concentrate the amine compound (A) and then supplied to the storage tank 21.
  • the carbon dioxide immobilization system of the first embodiment may include an ion-exchange membrane electrolysis device, a reverse osmosis membrane device, an electrodialysis device, a diffusion dialysis device, or a device provided with an ion exchange resin as the amine compound recovery/supply unit (R) for carrying out the amine compound recovery/supply step (U).
  • the amine compound may be recovered with an ultrafiltration membrane (UF membrane).
  • FIG. 7 shows an example of the carbon dioxide immobilization method of the second embodiment.
  • the method for immobilizing carbon dioxide shown in FIG. 7 includes, as step (S), a contacting step (S2) of simultaneously contacting one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions), and a gas (C) containing carbon dioxide.
  • the carbon dioxide fixation method shown in FIG. 7 includes a recovery step (T) of recovering the alkaline earth metal carbonate after the step (S).
  • the amine compound (A), the group 2 element ion-containing aqueous solution (B), and the gas containing carbon dioxide (C) are brought into contact at the same time. Therefore, an alkaline earth metal carbonate can be efficiently produced while suppressing the increase in pH of the group 2 element ion-containing aqueous solution (B) caused by the amine compound (A) by the carbon dioxide-derived carbonate ions in the gas (C) generated in the group 2 element ion-containing aqueous solution (B).
  • an amine compound recovery/supply step (U) in which the amine compound (A) is recovered from the liquid phase after the carbonate of the alkaline earth metal has precipitated and is supplied as at least part of the amine compound (A) used in the step (S).
  • FIG. 9 shows an example of a carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the second embodiment.
  • a carbon dioxide fixation system 1b shown in FIG. 9 includes at least a contact section (P2) and a carbonate recovery section (Q).
  • the contact portion (P2) one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions) and a gas (C) containing carbon dioxide are simultaneously brought into contact with each other to precipitate an alkaline earth metal carbonate.
  • the carbonate recovery section (Q) recovers carbonates of alkaline earth metals.
  • the amine compound (A) is stored in the storage tank 21 as an amine aqueous solution (A1), and the amine aqueous solution (A1) is supplied to the contact portion (P2) through the supply line 21a.
  • the group 2 element ion-containing aqueous solution (B) is stored in the storage tank 31 and supplied to the contact portion (P2) through the supply line 31a.
  • a gas (C) containing carbon dioxide is supplied from, for example, a cylinder (not shown) or equipment (for example, a coal-fired power plant, etc.), and is supplied to the contact portion (P2) via a supply line 22a by a blower 22.
  • the amine compound (A) in the amine aqueous solution (A1), the Group 2 element ion-containing aqueous solution (B), and the carbon dioxide-containing gas (C) are brought into contact at the contact portion (P2) at the same time to form an alkaline earth metal carbonate.
  • the amine compound (A) is not limited to a mode in which it is supplied to the contact portion (P2) as an aqueous amine solution (A1), and may be a mode in which the amine compound (A) is directly supplied to the contact portion (P2).
  • a plurality of contact parts may be provided.
  • FIG. 10 shows an example of a preferable mode of the carbon dioxide fixation system of the present embodiment for carrying out the carbon dioxide fixation method of the second embodiment.
  • the carbon dioxide fixation system 11b shown in FIG. 10 further includes an amine compound recovery/supply part (R) that recovers the amine compound (A) from the liquid phase after the carbonate of the alkaline earth metal precipitates and supplies it as at least a part of the amine compound (A) used in the contact part (P2).
  • R amine compound recovery/supply part
  • the amine compound (A), the amine aqueous solution (A1), the group 2 element ion-containing aqueous solution (B), and the carbon dioxide-containing gas (C) used in the second embodiment are the same as in the first embodiment, and the preferred aspects and the like are also the same as in the first embodiment.
  • the recovery step (T), the amine compound recovery/supply step (U), the carbonate recovery section (Q), and the amine compound recovery/supply section (R) are also the same as in the first embodiment, and the preferred aspects and the like are also the same as in the first embodiment.
  • FIG. 11 shows an example of the carbon dioxide immobilization method of the third embodiment.
  • the carbon dioxide immobilization method shown in FIG. 11 includes, as the step (S), a first contacting step (S3-1) in which one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines are brought into contact with the group 2 element ion-containing aqueous solution (B) to prepare a mixed solution (AB) of the amine compound (A) and the group 2 element ion-containing aqueous solution (B), and after the first contacting step (S3-1).
  • S3-1 a first contacting step in which one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines are brought into contact with the group 2 element ion-containing aqueous solution (
  • the carbon dioxide fixation method shown in FIG. 11 includes a recovery step (T) of recovering the alkaline earth metal carbonate after the step (S).
  • alkaline earth metal carbonate By bringing the gas (C) containing carbon dioxide into contact with the mixed solution (AB) of the amine compound (A) and the group 2 element ion-containing aqueous solution (B), alkaline earth metal carbonate can be efficiently produced while suppressing the pH increase of the group 2 element ion-containing aqueous solution (B) caused by the amine compound (A).
  • FIG. 13 shows an example of a carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the third embodiment.
  • a carbon dioxide fixation system 1c shown in FIG. 13 includes at least a first contact portion (P3-1), a second contact portion (P3-2), and a carbonate recovery portion (Q).
  • a mixed solution (AB) is prepared of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, and an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions).
  • the mixed liquid (AB) and the gas (C) containing carbon dioxide are brought into contact with each other to precipitate an alkaline earth metal carbonate.
  • the carbonate recovery section (Q) recovers carbonates of alkaline earth metals.
  • the amine compound (A) is stored in the storage tank 21 as an amine aqueous solution (A1), and the amine aqueous solution (A1) is supplied to the first contact portion (P3-1) through the supply line 21a.
  • a group 2 element ion-containing aqueous solution (B) is stored in a storage tank 31 and supplied to the first contact portion (P3-1) through a supply line 31a.
  • the amine compound (A) in the amine aqueous solution (A1) and the group 2 element ion-containing aqueous solution (B) are contacted and mixed at the first contact portion (P3-1) to prepare a mixed solution (AB).
  • the mixed liquid (AB) is supplied to the second contact portion (P3-2) through the supply line 2a.
  • the mixed liquid (AB) in the second contact portion (P3-2) is supplied from a cylinder or equipment (for example, a coal-fired power plant, etc.) not shown, and is brought into contact with the carbon dioxide-containing gas (C) supplied to the second contact portion (P3-2) via the supply line 22a by the blower 22 to generate an alkaline earth metal carbonate.
  • the amine compound (A) is not limited to the aspect in which it is supplied to the first contact portion (P3-1) as an amine aqueous solution (A1), and the amine compound (A) may be directly supplied to the first contact portion (P3-1).
  • one first contact part (P3-1) may be provided, or a plurality of the first contact parts (P3-1) may be provided.
  • one second contact portion (P3-2) may be provided, or a plurality thereof may be provided.
  • the carbon dioxide immobilization system 1c shown in FIG. 13 preferably does not include the second contact portion (P3-2), and the mixed liquid (AB) and the carbon dioxide-containing gas (C) are brought into contact with each other at the first contact portion (P3-1).
  • FIG. 14 shows an example of a preferable mode of the carbon dioxide fixation system of the present embodiment for carrying out the carbon dioxide fixation method of the third embodiment.
  • the carbon dioxide fixation system 11c shown in FIG. 14 further includes an amine compound recovery/supply portion (R) that recovers the amine compound (A) from the liquid phase after the carbonate of the alkaline earth metal has precipitated and supplies it as at least part of the amine compound (A) used in the first contact portion (P3-1).
  • R amine compound recovery/supply portion
  • the amine compound (A), the amine aqueous solution (A1), the group 2 element ion-containing aqueous solution (B), and the carbon dioxide-containing gas (C) used in the third embodiment are the same as in the first embodiment, and the preferred aspects and the like are also the same as in the first embodiment.
  • the recovery step (T), the amine compound recovery/supply step (U), the carbonate recovery section (Q), and the amine compound recovery/supply section (R) are also the same as in the first embodiment, and the preferred aspects and the like are also the same as in the first embodiment.
  • alkaline earth metal carbonate can be recovered. Therefore, according to the present disclosure, there is also provided a method for producing carbonate using the carbon dioxide fixation methods of the first to third embodiments.
  • Alkaline earth metal carbonates are useful in a variety of applications. For example, calcium carbonate can be used as a filler, pigment, extender, etc. in a wide range of industrial fields such as papermaking, rubber, plastics, food, and cosmetics. Strontium carbonate can also be used as a raw material for Braun tubes and ferrite magnets. Furthermore, barium carbonate can be used as a raw material for electronic materials.
  • a method for immobilizing carbon dioxide wherein an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions) is brought into contact with carbon dioxide-derived carbonate ions in the presence of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, to produce an alkaline earth metal carbonate, A step (S) of suppressing a pH increase of the group 2 element ion-containing aqueous solution (B) caused by the amine compound (A) by using a gas (C) containing carbon dioxide.
  • a step (S) of suppressing a pH increase of the group 2 element ion-containing aqueous solution (B) caused by the amine compound (A) by using a gas (C) containing carbon dioxide
  • a method for immobilizing carbon dioxide comprising: [2]
  • the step (S) is A first contact step (S1-1) of bringing an aqueous amine solution (A1) containing the amine compound (A) into contact with the gas (C) to prepare an aqueous amine solution (A2) containing carbonate ions derived from carbon dioxide in the gas (C).
  • the method for immobilizing carbon dioxide according to [1] above comprising: [3]
  • the step (S) is After the step (S1-1), A second contacting step (S1-2) of bringing the aqueous amine solution (A2) into contact with the aqueous solution (B) containing Group 2 element ions
  • the method for immobilizing carbon dioxide according to [2] above comprising: [4]
  • the step (S) is A contacting step (S2) of simultaneously contacting the amine compound (A), the group 2 element ion-containing aqueous solution (B), and the gas (C)
  • the step (S) is A first contacting step (S3-1) of contacting the amine compound (A) and the aqueous solution (B) containing group 2 element ions to prepare a mixed solution (AB) of the amine compound (A) and the aqueous solution (B) containing group 2 element ions, and a
  • the method for immobilizing carbon dioxide according to [1] above comprising: [6] The method for immobilizing carbon dioxide according to any one of [1] to [5] above, wherein the amine synthesized in vivo is one or more selected from the biogenic amine group consisting of 1,3-propanediamine, putrescine, cadaverine, spermidine, spermine, norspermidine, and norspermine.
  • [7] The method for immobilizing carbon dioxide according to any one of [1] to [6] above, wherein the artificially synthesized amine is one or more selected from the group consisting of monoethanolamine, diethanolamine, triethanolamine, diisopropanolamine, diglycolamine, methyldiethanolamine, piperazine, and ethylenediamine.
  • a carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above, A first contact part (P1-1) for preparing an aqueous amine solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C) by bringing an aqueous amine solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers of these amines into contact with a gas (C) containing carbon dioxide;
  • the aqueous amine solution (A2) and the aqueous solution (B) containing group 2 element ions are brought into contact with each other to deposit an alkaline earth metal carbonate in a second contact part (P1-2), and a carbonate recovery part (Q) in which the alkaline earth metal carbonate is recovered.
  • a carbon dioxide fixation system comprising at least [15] The carbon dioxide fixation system according to [14] above, comprising a plurality of the first contact portions (P1-1). [16] The carbon dioxide fixation system according to [14] or [15] above, comprising a plurality of second contact portions (P1-2). [17] In the carbon dioxide fixation system according to [14] or [15] above, A carbon dioxide immobilization system in which the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are brought into contact at the first contact portion (P1-1) without the second contact portion (P1-2).
  • a carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above, At least one amine compound (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers of these amines, a Group 2 element ion-containing aqueous solution (B) (wherein the Group 2 element ion-containing aqueous solution (B) contains at least alkaline earth metal ions) and a gas (C) containing carbon dioxide are simultaneously brought into contact with each other to deposit an alkaline earth metal carbonate, and a carbonate recovery unit (Q) for recovering the alkaline earth metal carbonate.
  • A At least one amine compound (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers of these amines
  • a Group 2 element ion-containing aqueous solution (B) contains at least alkaline earth metal ions
  • a carbon dioxide fixation system comprising at least [19] A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above, a first contact portion (P3-1) for preparing a mixed solution (AB) of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers of these amines, and an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions); A second contact part (P3-2) for bringing the mixed solution (AB) into contact with a gas (C) containing carbon dioxide to deposit an alkaline earth metal carbonate, and a carbonate recovery part (Q) for recovering the alkaline earth metal carbonate, A carbon dioxide fixation system comprising at least [20] An amine compound recovery/supply unit (R) that recovers the amine compound (A) from the liquid phase after the alkaline
  • Base 1 An amine aqueous solution (A2) containing carbon dioxide-derived carbonate ions, obtained by using putrescine (1,4-butanediamine) as the amine compound (A) and introducing carbon dioxide into the amine aqueous solution (A1) in which the putrescine concentration was adjusted to 30% by mass. Carbon dioxide was introduced by adding CO 2 gas (99.9%) to 20 L of the amine aqueous solution (A1) through an air stone at 1 L/min for 2 hours.
  • Base 2 An aqueous amine solution (A1) in which putrescine was used as the amine compound (A) and the concentration of putrescine was adjusted to 30% by mass.
  • Base 3 NaOH
  • Example 1-1 Base 1 (amine aqueous solution (A2)) was added to 500 mL of seawater (natural seawater). The amount of base 1 added was adjusted so that the concentration of the amine compound in the mixture of seawater and base 1 was 10 mM. Next, while keeping the mixture of seawater and base 1 at 40° C. in a water bath, air was continuously introduced at 1 L/min for 5 hours through an air stone, and the calcium ion concentration in the mixture was measured. The calcium ion concentration in the mixed liquid was measured before the introduction of air and immediately after the introduction of air (1 minute after the introduction of air was started), and then continued to be measured over time. Also, the pH was measured over time. The calcium ion concentration in the mixed solution was measured using LAQAtwin-Ca-11 manufactured by Horiba, Ltd. The pH of the mixed solution was measured using F-72 manufactured by Horiba, Ltd.
  • A2 amine aqueous solution
  • Example 1-2 The calcium ion concentration and pH in the mixed solution of seawater and base 2 were measured in the same manner as in Example 1-1, except that base 1 was changed to base 2 (amine aqueous solution (A2)).
  • Example 1-1 The calcium ion concentration and pH in the mixed solution of seawater and base 3 were measured in the same manner as in Example 1-1, except that base 1 was changed to base 3 (NaOH). The amount of base 3 added was adjusted so that the NaOH concentration of the mixture of seawater and base 3 was 10 mM.
  • FIG. 15 shows the measurement results of calcium ion concentration
  • FIG. 16 shows the measurement results of pH.
  • the results shown in FIGS. 15 and 16 reveal the following.
  • Example 1-1 when the base 1 (amine aqueous solution (A2)) was added to seawater, the calcium ion concentration immediately decreased. Also, no significant increase in pH was observed. From this, it can be seen that when base 1 (amine aqueous solution (A2)) was added to seawater, calcium carbonate precipitated immediately without a large increase in pH.
  • base 3 NaOH
  • Example 1-2 when base 2 (aqueous amine solution (A1)) was added, the calcium ion concentration did not decrease as quickly as in Example 1-1, but compared to Comparative Example 1-1, there was a clear tendency for the calcium ion concentration to decrease. From this, it can be seen that even when base 2 (aqueous amine solution (A1)) was added as in Example 1-2, calcium carbonate was produced efficiently, though not as efficiently as in Example 1-1.
  • Example 2-1 Base 1 (amine aqueous solution (A2)) was added to 500 mL of demagnesium seawater.
  • Demagnesium-free seawater was produced by adding milk of lime to seawater (natural seawater) and then removing the produced magnesium hydroxide slurry.
  • the magnesium concentration of the magnesium-free seawater is 500 ppm by mass or less.
  • the amount of base 1 to be added was adjusted so that the concentration of the amine compound in the mixed solution of Mg-free seawater and base 1 was 10 mM.
  • air was continuously introduced at 1 L/min for 1 hour through an air stone while the mixture of demagnesium-free seawater and base 1 was kept at 40° C. in a water bath, and the calcium ion concentration in the mixture was measured.
  • the calcium ion concentration in the mixed liquid was measured before introducing the air, immediately after the introduction of the air (1 minute after the introduction of the air started), and then continuously measured over time.
  • Examples 2-2 to 2-7 The amount of base 1 added was adjusted so that the amine compound concentrations in the mixture of demagnesium-free seawater and base 1 were as follows, respectively, and the calcium ion concentration in the mixture was measured in the same manner as in Example 2-1.
  • Example 3-1> The same test as in Examples 2-5 above was conducted for 180 minutes to measure changes over time in the calcium ion concentration in the mixed solution, and to measure changes over time in pH of the mixed solution.
  • Example 3-1 The same test as in Example 3-1 was performed by changing the base species from base 1 to base 3 (NaOH), and the change over time of the calcium ion concentration in the mixed solution was measured, and the change over time of the pH of the mixed solution was measured.
  • FIG. 18 shows the measurement results of calcium ion concentration
  • FIG. 19 shows the measurement results of pH.
  • the results shown in FIG. 18 reveal the following.
  • the calcium ion concentration decreased immediately after the addition of base 1 (amine aqueous solution (A2)), and thereafter the calcium ion concentration remained low.
  • the base 3 NaOH
  • Comparative Example 3-1 when the base 3 (NaOH) was added at the beginning, the calcium ion concentration gradually increased, and thereafter the calcium ion concentration gradually decreased. After 60 minutes from the start of the test, the calcium ion concentration did not change significantly and remained above 1,000 mass ppm.
  • the following things are understood from the result shown in FIG.
  • Example 3-1 the pH decreased immediately after the addition of the base 1 (amine aqueous solution (A2)), followed by a gradual increase in pH, but the pH was maintained at 8.5 or less. On the other hand, in Comparative Example 3-1, the pH was maintained at 11 or higher over the entire test period.
  • the base 1 amine aqueous solution (A2)
  • Example 4-1 Using polyethyleneimine 1 (manufactured by Nippon Shokubai Co., Ltd., product number "SP-006", molecular weight 600) as a base, the same test as in Example 3-1 was performed. Base concentration was 50 mM.
  • Example 4-2 Using polyethyleneimine 2 (manufactured by Nippon Shokubai Co., Ltd., product number “SP-018”, molecular weight 1,800) as a base, the same test as in Example 3-1 was performed. Base concentration was 50 mM.
  • Example 4-3 Polyethyleneimine 3 (manufactured by Nippon Shokubai Co., Ltd., product number "SP-200", molecular weight 10,000) was used as a base, and the same test as in Example 3-1 was performed. Base concentration was 50 mM.
  • Example 4-4 Polyethyleneimine 4 (manufactured by Nippon Shokubai Co., Ltd., product number "HM-2000", molecular weight 30,000) was used as a base, and the same test as in Example 3-1 was carried out. Base concentration was 50 mM.
  • the molecular weights of polyethyleneimines 1 to 4 are number average molecular weights determined by boiling point elevation method.
  • FIG. 20 also shows the results of Example 3-1 and Comparative Example 3-1. From the results shown in FIG. 20, it was clarified that calcium carbonate can be produced more efficiently when any of polyethyleneimine 1 to 4 is used as the base, compared to when NaOH is used as the base.
  • Base 1 (amine aqueous solution (A2)) was added to 500 mL of brine. Waste seawater (calcium ion concentration: 800 ppm by mass) from a seawater desalination apparatus was used as brackish water. The amount of base 1 added was adjusted so that the concentration of the amine compound in the mixed solution of brine and base 1 was 10 mM. Next, while keeping the mixture of brine and base 1 at 40° C. in a water bath, air was continuously introduced at 1 L/min for 1 hour through an air stone, and the calcium ion concentration in the mixture was measured. The calcium ion concentration in the mixed liquid was measured before introducing the air, immediately after the introduction of the air (1 minute after the introduction of the air started), and then continuously measured over time. Also, the pH was measured over time.
  • Examples 5-2 to 5-4> The amount of base 1 added was adjusted so that the amine compound concentrations in the mixture of brine and base 1 were as follows, respectively, and the calcium ion concentration and pH in the mixture were measured in the same manner as in Example 5-1.
  • FIG. 21 shows the measurement results of calcium ion concentration
  • FIG. 22 shows the measurement results of pH. From the results shown in FIG. 21, it was confirmed that even when brine was used, the use of Base 1 reduced the calcium ion concentration regardless of the amine compound concentration, and that the higher the amine compound concentration (particularly, when the amine compound concentration was 20 mM or more), the more pronounced the decrease in calcium ion concentration immediately after the addition of Base 1 was. Moreover, from the results shown in FIG. 22, it was found that when the concentration of the amine compound was 20 mM or higher, the pH temporarily decreased 1 minute after the start of the experiment. From the above results, it was found that even in the case of using brine, calcium carbonate can be efficiently produced by using Base 1, and the more Base 1 is added (particularly, when the amine compound concentration is 20 mM or more), the calcium carbonate formation rate increases significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Provided is a carbon dioxide fixation method in which a Group II element ion-containing aqueous solution (B) (the Group II element ion-containing aqueous solution (B) comprising at least an alkaline earth metal ion) is brought into contact with a carbon dioxide-derived carbonic acid ion in the presence of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers of the foregoing amines to generate a carbonate of an alkaline earth metal. The carbon fixation method comprises a step (S) for using a carbon dioxide-containing gas (C) to suppress the increase in pH of the Group II element ion-containing aqueous solution (B) caused by the amine compound (A).

Description

二酸化炭素の固定化方法及び固定化システム並びに炭酸塩の製造方法Carbon dioxide fixation method and fixation system, and carbonate production method
 本開示は、二酸化炭素の固定化方法及び固定化システム、並びに当該二酸化炭素の固定化方法を利用した炭酸塩の製造方法に関する。 The present disclosure relates to a method and system for fixing carbon dioxide, and a method for producing carbonate using the method for fixing carbon dioxide.
 地球温暖化の原因物質と言われている温室効果ガスの中でも、特に影響が大きいのが二酸化炭素(炭酸ガス)であり、大気中の二酸化炭素濃度の増大を防止することが地球温暖化抑制手段の1つとなりうる。そのため、化石資源の利用を制限して大気中への二酸化炭素の放出量を削減する技術についての研究が行われている。また、既に放出した大気中の二酸化炭素を吸収・固定する技術や、化石資源を燃焼した二酸化炭素を大気中に放出させることなく、あるいは大気中への放出を抑えつつ吸収・固定する技術について、日本を含む多くの国で盛んに研究されている。 Among the greenhouse gases that are said to cause global warming, carbon dioxide (carbon dioxide gas) has a particularly large impact, and preventing an increase in the concentration of carbon dioxide in the atmosphere can be one means of curbing global warming. Therefore, research is being conducted on techniques for limiting the use of fossil resources and reducing the amount of carbon dioxide released into the atmosphere. In addition, many countries, including Japan, are actively researching technologies to absorb and fix carbon dioxide that has already been released into the atmosphere, and technologies to absorb and fix carbon dioxide from burning fossil resources without releasing it into the atmosphere or while suppressing its release into the atmosphere.
 近年、二酸化炭素を吸収・固定する方法の1つとして、二酸化炭素を化学反応により炭酸塩として固定するというアイディアが提案されている。
 例えば特許文献1では、二酸化炭素を含む気体を、水とアルカリ土類金属含有物質(例えば鉄鋼スラグ)を弱塩基と強酸の塩とから得られる水溶液に接触させて、アルカリ土類金属の炭酸塩を生成する方法が提案されている。
In recent years, as one method of absorbing and fixing carbon dioxide, the idea of fixing carbon dioxide as a carbonate by a chemical reaction has been proposed.
For example, Patent Document 1 proposes a method of contacting a gas containing carbon dioxide with an aqueous solution obtained from water and an alkaline earth metal-containing substance (e.g., steel slag) with a weak base and a salt of a strong acid to generate an alkaline earth metal carbonate.
特開2005-097072号公報Japanese Patent Application Laid-Open No. 2005-097072
 しかしながら、特許文献1に記載の方法では、二酸化炭素の固定化効率が十分ではないという問題があった。 However, the method described in Patent Document 1 has a problem that the carbon dioxide fixation efficiency is not sufficient.
 本開示は、かかる問題に鑑みてなされたものであって、二酸化炭素の固定化効率に優れる二酸化炭素の固定化方法及び固定化システム、当該二酸化炭素の固定化方法を利用した炭酸塩の製造方法を提供することを課題とする。 The present disclosure has been made in view of such problems, and aims to provide a carbon dioxide fixation method and a fixation system that are excellent in carbon dioxide fixation efficiency, and a carbonate production method using the carbon dioxide fixation method.
 本開示によれば、下記[1]~[5]が提供される。
[1] 生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)の存在下で、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)と、二酸化炭素由来の炭酸イオンとを接触させて、アルカリ土類金属の炭酸塩を生成する、二酸化炭素の固定化方法であって、
 前記アミン化合物(A)に起因する前記第二族元素イオン含有水溶液(B)のpH上昇を、二酸化炭素を含む気体(C)を利用して抑制する工程(S)
を含む、二酸化炭素の固定化方法。
[2] 上記[1]に記載の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムであって、
 生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)と、二酸化炭素を含む気体(C)とを接触させて、前記気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)を調製する第一の接触部(P1-1)、
 前記アミン水溶液(A2)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)とを接触させて、アルカリ土類金属の炭酸塩を析出させる第二の接触部(P1-2)、及び
 前記アルカリ土類金属の炭酸塩を回収する炭酸塩回収部(Q)
を少なくとも備える、二酸化炭素の固定化システム。
[3] 上記[1]に記載の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムであって、
 生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)と、二酸化炭素を含む気体(C)とを同時に接触させて、アルカリ土類金属の炭酸塩を析出させる接触部(P2)、及び
 前記アルカリ土類金属の炭酸塩を回収する炭酸塩回収部(Q)
を少なくとも備える、二酸化炭素の固定化システム。
[4] 上記[1]に記載の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムであって、
 生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)との混合液(AB)を調製する第一の接触部(P3-1)、
 混合液(AB)と、二酸化炭素を含む気体(C)とを接触させて、アルカリ土類金属の炭酸塩を析出させる第二の接触部(P3-2)、及び
 前記アルカリ土類金属の炭酸塩を回収する炭酸塩回収部(Q)、
を少なくとも備える、二酸化炭素の固定化システム。
[5] 上記[1]に記載の二酸化炭素の固定化方法を用いた、炭酸塩の製造方法。
According to the present disclosure, the following [1] to [5] are provided.
[1] A method for immobilizing carbon dioxide, wherein an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions) is brought into contact with carbon dioxide-derived carbonate ions in the presence of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, to produce an alkaline earth metal carbonate,
A step (S) of suppressing a pH increase of the group 2 element ion-containing aqueous solution (B) caused by the amine compound (A) by using a gas (C) containing carbon dioxide.
A method for immobilizing carbon dioxide, comprising:
[2] A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above,
Aqueous amine solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, amines artificially synthesized, and polymers containing groups derived from these amines is brought into contact with a gas (C) containing carbon dioxide to prepare an amine aqueous solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C) (P1-1);
The aqueous amine solution (A2) and the aqueous solution (B) containing group 2 element ions (wherein the aqueous solution (B) containing group 2 element ions contains at least alkaline earth metal ions) are brought into contact with each other to deposit an alkaline earth metal carbonate in a second contact part (P1-2), and a carbonate recovery part (Q) in which the alkaline earth metal carbonate is recovered.
A carbon dioxide fixation system comprising at least
[3] A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above,
At least one amine compound (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, a Group 2 element ion-containing aqueous solution (B) (wherein the Group 2 element ion-containing aqueous solution (B) contains at least alkaline earth metal ions) and a gas (C) containing carbon dioxide are brought into contact simultaneously with a carbon dioxide-containing gas (C) to deposit an alkaline earth metal carbonate, and a carbonate recovery for recovering the alkaline earth metal carbonate. Part (Q)
A carbon dioxide fixation system comprising at least
[4] A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above,
A first contact part (P3-1) for preparing a mixed solution (AB) of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, and an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions);
A second contact part (P3-2) for bringing the mixed solution (AB) into contact with a gas (C) containing carbon dioxide to deposit an alkaline earth metal carbonate, and a carbonate recovery part (Q) for recovering the alkaline earth metal carbonate,
A carbon dioxide fixation system comprising at least
[5] A method for producing a carbonate using the method for immobilizing carbon dioxide according to [1] above.
 本開示によれば、二酸化炭素の固定化効率に優れる二酸化炭素の固定化方法及び固定化システム、当該二酸化炭素の固定化方法を利用した炭酸塩の製造方法を提供することが可能となる。 According to the present disclosure, it is possible to provide a carbon dioxide fixation method and a fixation system with excellent carbon dioxide fixation efficiency, and a carbonate production method using the carbon dioxide fixation method.
第一実施形態の二酸化炭素の固定化方法の一例を示す工程概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a process schematic which shows an example of the fixing method of the carbon dioxide of 1st embodiment. 第一実施形態の二酸化炭素の固定化方法の好ましい態様の一例を示す工程概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a process schematic which shows an example of the preferable aspect of the fixing method of the carbon dioxide of 1st embodiment. 第一実施形態の二酸化炭素の固定化システムの一例を示す概略図である。1 is a schematic diagram showing an example of a carbon dioxide fixation system according to a first embodiment; FIG. 第一実施形態の二酸化炭素の固定化システムについて、好ましい態様の一例を示す概略図である。1 is a schematic diagram showing an example of a preferred aspect of the carbon dioxide fixation system of the first embodiment; FIG. 第一実施形態の二酸化炭素の固定化システムについて、好ましい態様の他の例を示す概略図である。FIG. 4 is a schematic diagram showing another preferred embodiment of the carbon dioxide fixation system of the first embodiment. 第一実施形態の二酸化炭素の固定化システムのさらに好ましい態様の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a more preferred aspect of the carbon dioxide fixation system of the first embodiment; 第二実施形態の二酸化炭素の固定化方法の一例を示す工程概略図である。It is a process schematic which shows an example of the fixing method of the carbon dioxide of 2nd embodiment. 第二実施形態の二酸化炭素の固定化方法の好ましい態様の一例を示す工程概略図である。It is a process schematic which shows an example of the preferable aspect of the fixing method of the carbon dioxide of 2nd embodiment. 第二実施形態の二酸化炭素の固定化システムの一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a carbon dioxide fixation system according to a second embodiment; 第二実施形態の二酸化炭素の固定化システムについて、好ましい態様の一例を示す概略図である。FIG. 4 is a schematic diagram showing an example of a preferred aspect of the carbon dioxide fixation system of the second embodiment. 第三実施形態の二酸化炭素の固定化方法の一例を示す工程概略図である。It is a process schematic which shows an example of the fixing method of the carbon dioxide of 3rd embodiment. 第三実施形態の二酸化炭素の固定化方法の好ましい態様の一例を示す工程概略図である。It is a process schematic which shows an example of the preferable aspect of the fixing method of the carbon dioxide of 3rd embodiment. 第三実施形態の二酸化炭素の固定化システムの一例を示す概略図である。FIG. 3 is a schematic diagram showing an example of a carbon dioxide fixation system according to a third embodiment; 第三実施形態の二酸化炭素の固定化システムについて、好ましい態様の一例を示す概略図である。FIG. 4 is a schematic diagram showing an example of a preferred aspect of the carbon dioxide fixation system of the third embodiment. 海水と各種塩基を用いて、炭酸カルシウム形成速度を検討した結果を示す図である。FIG. 4 is a diagram showing the results of examining calcium carbonate formation rates using seawater and various bases. 海水と各種塩基を用いて、炭酸カルシウム形成速度を検討した際のpHの経時変化を示す図である。FIG. 4 is a graph showing changes in pH over time when examining calcium carbonate formation rates using seawater and various bases. 海水(天然海水)に石灰乳を添加した後、生成した水酸化マグネシウムスラリーを除去して生成した脱マグネシウム海水を用いて、炭酸カルシウム形成速度の塩基濃度の影響を検討した結果を示す図である。FIG. 2 is a diagram showing the results of examining the effect of base concentration on the calcium carbonate formation rate using demagnesium-free seawater produced by adding lime milk to seawater (natural seawater) and then removing the produced magnesium hydroxide slurry. 上記脱マグネシウム海水を用いて、炭酸カルシウム形成速度の塩基種の影響を検討した結果を示す図である。[ Fig. 10] Fig. 10 is a diagram showing the results of examining the influence of base species on the calcium carbonate formation rate using the demagnesium-removed seawater. 上記脱マグネシウム海水を用いて、炭酸カルシウム形成速度の塩基種の影響を検討した際のpHの経時変化を示す図である。FIG. 4 is a graph showing changes over time in pH when the effect of basic species on the formation rate of calcium carbonate was studied using the demagnesium-free seawater. 上記脱マグネシウム海水を用いて、炭酸カルシウム形成速度の塩基種の影響をさらに検討した結果を示す図である。[ Fig. 10] Fig. 10 is a diagram showing the results of further examination of the influence of base species on the calcium carbonate formation rate using the demagnesium-removed seawater. かん水を用いて、炭酸カルシウム形成速度を検討した結果を示す図である。FIG. 4 is a diagram showing the results of examining calcium carbonate formation rate using brackish water. かん水を用いて、炭酸カルシウム形成速度を検討した際のpHの経時変化を示す図である。FIG. 3 is a graph showing changes in pH over time when examining the rate of calcium carbonate formation using brackish water.
 本明細書に記載された数値範囲の上限値および下限値は任意に組み合わせることができる。例えば、数値範囲として「A~B」及び「C~D」が記載されている場合、「A~D」及び「C~B」の数値範囲も、本開示の範囲に含まれる。
 また、本明細書に記載された数値範囲「下限値~上限値」は、特に断りのない限り、下限値以上、上限値以下であることを意味する。
 さらに、本明細書に記載された「アミン」及び「ポリアミン」は、特に断りのない限り、生体内で合成されるアミン及び人工的に合成されるアミンから選択されるアミンを意味する。
The upper and lower limits of the numerical ranges described herein can be arbitrarily combined. For example, if "A to B" and "C to D" are described as numerical ranges, the numerical ranges "A to D" and "C to B" are also included in the scope of this disclosure.
In addition, the numerical range "lower limit to upper limit" described in this specification means from the lower limit to the upper limit, unless otherwise specified.
Further, "amines" and "polyamines" as used herein, unless otherwise specified, refer to amines selected from amines synthesized in vivo and artificially synthesized amines.
 本明細書において、「第二族元素」は、Be(ベリリウム)、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、及びラジウム(Rd)を意味する。
 また、本明細書において、「アルカリ土類金属」とは、Ca(カルシウム)、Sr(ストロンチウム)、及びBa(バリウム)を意味する。
As used herein, "group 2 element" means Be (beryllium), Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), and radium (Rd).
Moreover, in this specification, "alkaline earth metal" means Ca (calcium), Sr (strontium), and Ba (barium).
[二酸化炭素の固定化方法]
 本実施形態の二酸化炭素の固定化方法は、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)の存在下で、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)と、二酸化炭素由来の炭酸イオンとを接触させて、アルカリ土類金属の炭酸塩を生成する、二酸化炭素の固定化方法であって、前記アミン化合物(A)に起因する前記第二族元素イオン含有水溶液(B)のpH上昇を、二酸化炭素を含む気体(C)を利用して抑制する工程(S)を含む。
 以下、本実施形態の二酸化炭素の固定化方法の具体例として、第一実施形態から第三実施形態について、以下に詳細に説明する。
[Fixation method of carbon dioxide]
The carbon dioxide immobilization method of the present embodiment is a carbon dioxide immobilization method in which an alkaline earth metal carbonate is produced by contacting an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions) and carbon dioxide-derived carbonate ions in the presence of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, wherein the amine compound. A step (S) of suppressing the pH increase of the group 2 element ion-containing aqueous solution (B) caused by (A) by using a gas (C) containing carbon dioxide.
Hereinafter, as specific examples of the method for immobilizing carbon dioxide according to the present embodiment, the first embodiment to the third embodiment will be described in detail below.
[第一実施形態]
 第一実施形態の二酸化炭素の固定化方法の一例を図1に示す。
 図1に示す二酸化炭素の固定化方法は、アミン化合物(A)に起因する前記第二族元素イオン含有水溶液(B)のpH上昇を、二酸化炭素を含む気体(C)を利用して抑制する工程(S)(以下、「工程(S)」と略記することもある。)として、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)と、二酸化炭素を含む気体(C)とを接触させて、気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)を調製する第一の接触工程(S1-1)を含む。
 また、図1に示す二酸化炭素の固定化方法は、工程(S)として、工程(S1-1)の後に、アミン水溶液(A2)と、第二族元素イオン含有水溶液(B)とを接触させる第二の接触工程(S1-2)を含む。
 さらに、図1に示す二酸化炭素の固定化方法は、工程(S)の後に、アルカリ土類金属の炭酸塩を回収する回収工程(T)をさらに含む。
[First embodiment]
FIG. 1 shows an example of the carbon dioxide immobilization method of the first embodiment.
In the method for immobilizing carbon dioxide shown in FIG. 1, the step (S) (hereinafter sometimes abbreviated as “step (S)”) of suppressing the pH increase of the aqueous solution (B) containing group 2 element ions caused by the amine compound (A) by using the gas (C) containing carbon dioxide (hereinafter sometimes abbreviated as “step (S)”) is an amine aqueous solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, and a gas containing carbon dioxide ( C) to prepare an aqueous amine solution (A2) containing carbonate ions derived from carbon dioxide in the gas (C) (S1-1).
In addition, the method for immobilizing carbon dioxide shown in FIG. 1 includes, as a step (S), a second contact step (S1-2) of contacting the amine aqueous solution (A2) with the Group 2 element ion-containing aqueous solution (B) after the step (S1-1).
Furthermore, the carbon dioxide fixation method shown in FIG. 1 further includes a recovery step (T) for recovering the alkaline earth metal carbonate after the step (S).
 また、第一実施形態の二酸化炭素の固定化方法の好ましい態様の一例を図2に示す。
 図2に示す二酸化炭素の固定化方法は、工程(S)及び回収工程(T)に加え、アルカリ土類金属の炭酸塩が析出した後の液相からアミン化合物(A)を回収し、工程(S)において用いるアミン化合物(A)の少なくとも一部として供給するアミン化合物回収・供給工程(U)をさらに含む。
FIG. 2 shows an example of a preferred mode of the method for immobilizing carbon dioxide according to the first embodiment.
In addition to the step (S) and the recovery step (T), the carbon dioxide immobilization method shown in FIG. 2 further includes an amine compound recovery/supply step (U) in which the amine compound (A) is recovered from the liquid phase after the alkaline earth metal carbonate has precipitated and is supplied as at least a part of the amine compound (A) used in the step (S).
 次に、第一実施形態の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムの一例を図3に示す。
 図3に示す二酸化炭素の固定化システム1aは、第一の接触部(P1-1)、第二の接触部(P1-2)、及び炭酸塩回収部(Q)を少なくとも備える。
 第一の接触部(P1-1)では、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)と、二酸化炭素を含む気体(C)とを接触させて、二酸化炭素を含む気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)を調製する。
 第二の接触部(P1-2)では、アミン水溶液(A2)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)とを接触させて、アルカリ土類金属の炭酸塩を析出させる。
 炭酸塩回収部(Q)では、アルカリ土類金属の炭酸塩を回収する。
Next, FIG. 3 shows an example of a carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the first embodiment.
The carbon dioxide fixation system 1a shown in FIG. 3 includes at least a first contact portion (P1-1), a second contact portion (P1-2), and a carbonate recovery portion (Q).
In the first contact part (P1-1), an amine aqueous solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines is brought into contact with a gas (C) containing carbon dioxide to prepare an aqueous amine solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C) containing carbon dioxide.
In the second contact portion (P1-2), the aqueous amine solution (A2) and the aqueous solution (B) containing group 2 element ions (wherein the aqueous solution (B) containing group 2 element ions contains at least alkaline earth metal ions) are brought into contact with each other to precipitate an alkaline earth metal carbonate.
The carbonate recovery section (Q) recovers carbonates of alkaline earth metals.
 また、第一実施形態の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムの好ましい態様の一例を図4に示す。
 図4に示す二酸化炭素の固定化システム1a’は、第一の接触部を複数備える。図4では、第一の接触部が2つ備えられているが(符号(P1-1)、(P1-1)’)、第一の接触部は3つ以上であってもよい。
 また、図4に示す二酸化炭素の固定化システム1a’は、第二の接触部を複数備える。図4では、第二の接触部が2つ備えられているが(符号(P1-2)、(P1-2)’)、第二の接触部は3つ以上であってもよい。
 なお、第一実施形態における二酸化炭素の固定化システムは、第一の接触部と第二の接触部の双方が複数備えられる態様には限定されず、第一の接触部を複数備え、第二の接触部は1つだけ備えられる態様であってもよい。また、第二の接触部を複数備え、第一の接触部は1つだけ備えられる態様であってもよい。
FIG. 4 shows an example of a preferred mode of a carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the first embodiment.
A carbon dioxide fixation system 1a′ shown in FIG. 4 includes a plurality of first contact portions. Although two first contact portions are provided in FIG. 4 (references (P1-1) and (P1-1)'), the number of first contact portions may be three or more.
Further, the carbon dioxide fixation system 1a' shown in FIG. 4 includes a plurality of second contact portions. Although two second contact portions are provided in FIG. 4 (references (P1-2) and (P1-2)′), the number of second contact portions may be three or more.
Note that the carbon dioxide fixation system in the first embodiment is not limited to a mode in which a plurality of both the first contact portion and the second contact portion are provided, and may be a mode in which a plurality of the first contact portions are provided and only one second contact portion is provided. Alternatively, a plurality of second contact portions may be provided and only one first contact portion may be provided.
 さらに、第一実施形態の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムの好ましい態様の他の例を図5に示す。
 図5に示す二酸化炭素の固定化システム1a’’は、第二の接触部(P1-2)を備えることなく、第一の接触部(P1-1)においてアミン水溶液(A2)と第二族元素イオン含有水溶液(B)とを接触させるようにしている。
 なお、図示省略しているが、図5に示す二酸化炭素の固定化システム1a’’においても、第一の接触部は複数備えるようにしてもよい。
Furthermore, FIG. 5 shows another example of a preferred embodiment of the carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the first embodiment.
The carbon dioxide immobilization system 1a'' shown in FIG. 5 does not include a second contact portion (P1-2), and the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are brought into contact at the first contact portion (P1-1).
Although not shown, the carbon dioxide fixation system 1a'' shown in FIG. 5 may also have a plurality of first contact portions.
 また、第一実施形態の二酸化炭素の固定化方法を実施するための本実施形態の二酸化炭素の固定化システムのさらに好ましい態様の一例を図6に示す。
 図6に示す二酸化炭素の固定化システム11aは、第一の接触部(P1-1)、第二の接触部(P1-2)、及び炭酸塩回収部(Q)に加えて、アルカリ土類金属の炭酸塩が析出した後の液相からアミン化合物(A)を回収し、第一の接触部(P1-1)において使用するアミン化合物(A)の少なくとも一部として供給するアミン化合物回収・供給部(R)をさらに備える。
 なお、図6に示す二酸化炭素の固定化システム11aは、図3に二酸化炭素の固定化システム1aに、アミン化合物回収・供給部(R)をさらに備えるものとしているが、このような態様には必ずしも限定されない。
 例えば、図4に示す二酸化炭素の固定化システム1a’において、アミン化合物回収・供給部(R)をさらに備えるようにしてもよい。また、図5に示す二酸化炭素の固定化システム1a’’において、アミン化合物回収・供給部(R)をさらに備えるようにしてもよい。
FIG. 6 shows an example of a more preferable aspect of the carbon dioxide fixation system of the present embodiment for carrying out the carbon dioxide fixation method of the first embodiment.
In addition to the first contact portion (P1-1), the second contact portion (P1-2), and the carbonate recovery portion (Q), the carbon dioxide fixation system 11a shown in FIG. 6 further includes an amine compound recovery/supply portion (R) that recovers the amine compound (A) from the liquid phase after the carbonate of the alkaline earth metal has precipitated and supplies it as at least part of the amine compound (A) used in the first contact portion (P1-1).
Although the carbon dioxide fixation system 11a shown in FIG. 6 further includes an amine compound recovery/supply unit (R) in addition to the carbon dioxide fixation system 1a shown in FIG. 3, it is not necessarily limited to such an aspect.
For example, the carbon dioxide fixation system 1a′ shown in FIG. 4 may further include an amine compound recovery/supply unit (R). In addition, the carbon dioxide fixation system 1a'' shown in FIG. 5 may further include an amine compound recovery/supply unit (R).
 以下、第一実施形態の二酸化炭素の固定化方法について、当該方法を実施するための二酸化炭素の固定化システムの構成を説明しながら、詳細に説明する。 Hereinafter, the carbon dioxide fixation method of the first embodiment will be described in detail while explaining the configuration of the carbon dioxide fixation system for carrying out the method.
<第一の接触工程(S1-1)>
 第一の接触工程(S1-1)では、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)と、二酸化炭素を含む気体(C)とを接触させて、気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)を調製する
 生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)と、二酸化炭素を含む気体(C)とを接触させることで、気体(C)中の二酸化炭素がアミン水溶液(A1)に効率よく吸収され、気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)が効率よく調製される。アミン水溶液(A2)に含まれる二酸化炭素由来の炭酸イオンは、第二の接触工程(S1-2)において、アルカリ土類金属の炭酸塩を析出させるための炭酸イオン源として機能する。
<First contact step (S1-1)>
In the first contact step (S1-1), an aqueous amine solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, amines artificially synthesized, and polymers containing groups derived from these amines is brought into contact with a gas (C) containing carbon dioxide to prepare an aqueous amine solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C). By bringing an aqueous amine solution (A1) containing one or more amine compounds (A) selected from the group into contact with a gas (C) containing carbon dioxide, carbon dioxide in the gas (C) is efficiently absorbed by the aqueous amine solution (A1), and an aqueous amine solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C) is efficiently prepared. Carbon dioxide-derived carbonate ions contained in the aqueous amine solution (A2) function as a carbonate ion source for precipitating alkaline earth metal carbonate in the second contacting step (S1-2).
 以下、アミン水溶液(A1)、二酸化炭素を含む気体(C)、及びアミン水溶液(A1)と二酸化炭素を含む気体(C)との接触方法について、詳細に説明する。 The amine aqueous solution (A1), the carbon dioxide-containing gas (C), and the method of contacting the amine aqueous solution (A1) with the carbon dioxide-containing gas (C) will be described in detail below.
(アミン水溶液(A1))
 アミン水溶液(A1)は、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物を含む。
(Amine aqueous solution (A1))
The aqueous amine solution (A1) contains one or more amine compounds selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines.
 本開示者らは、海洋生物の炭酸カルシウム形成解明研究の一環として、炭酸カルシウムの顆粒を形成する海洋細菌の研究を行っていた。この海洋細菌は、カルシウムを含む人工培地で培養すると、菌体外にダンベル状や球状の形をした炭酸カルシウム(カルサイト)を形成する。本開示者らは、このメカニズムを研究する過程で、海洋細菌が産生するアミンが大きな働きをしていることを究明した。
 つまり、海洋細菌の培養中にみられるダンベルや球状の炭酸カルシウム顆粒は、海洋細菌の増殖に伴い培地中に増えたアミンが、培地中の炭酸イオン濃度を高めることで、炭酸カルシウムの結晶化を促すことがわかった。
 炭酸カルシウムの顆粒形成が見られた海洋細菌の培養液のアミンを食品衛生検査指針における「食品中の不揮発性腐敗アミンの分析」に準じて、ダンシルクロライドで蛍光誘導化し、HPLCにより分析した結果、1,3-プロパンジアミン、プトレシン、カタベリン、スペルミン、スペルミジン、ノルスペルミジン、及びノルスペルミン等のアミン類が検出された。
 以上のことから、海洋細菌が産生するアミンが空気中の二酸化炭素と結合し、その後加水分解されることで、培地中の炭酸イオン濃度が上昇し、炭酸カルシウムが析出するということがわかった。なお、炭酸カルシウムの析出は、海洋細菌が存在しない水溶液中にアミンと塩化カルシウムとを混合して静置した場合にも確認された。このことから、炭酸カルシウムの析出は、海洋細菌の不存在下でも起こることがわかった。つまり、海洋細菌が産生するアミンは、海洋細菌の不存在下においても、二酸化炭素と塩を形成することで、炭酸イオンを効率よく生成し得ることがわかった。
The present inventors have been conducting research on marine bacteria that form calcium carbonate granules as part of research to clarify calcium carbonate formation in marine organisms. When this marine bacterium is cultured in an artificial medium containing calcium, it forms dumbbell-shaped or spherical calcium carbonate (calcite) outside the cell. In the process of researching this mechanism, the present inventors have found that amines produced by marine bacteria play a major role.
In other words, the dumbbells and spherical calcium carbonate granules found in the culture of marine bacteria promote the crystallization of calcium carbonate by increasing the concentration of carbonate ions in the medium due to the amines that increase in the medium as the marine bacteria proliferate.
The amines in the culture solution of marine bacteria in which calcium carbonate granules were observed were derivatized with dansyl chloride according to the "analysis of non-volatile putrefactive amines in food" in the food hygiene inspection guidelines, and analyzed by HPLC. As a result, amines such as 1,3-propanediamine, putrescine, cataverine, spermine, spermidine, norspermidine, and norspermine were detected.
From the above, it was found that amines produced by marine bacteria combine with carbon dioxide in the air and are then hydrolyzed, increasing the concentration of carbonate ions in the medium and causing the precipitation of calcium carbonate. Precipitation of calcium carbonate was also confirmed when amine and calcium chloride were mixed in an aqueous solution free of marine bacteria and allowed to stand. From this, it was found that precipitation of calcium carbonate occurs even in the absence of marine bacteria. In other words, it was found that amines produced by marine bacteria can efficiently produce carbonate ions by forming salts with carbon dioxide even in the absence of marine bacteria.
 しかしながら、本開示者らがさらに鋭意検討した結果、ポリアミン等のアミン類を海水と混合した場合、炭酸カルシウムを十分に効率よく生成することができないことがわかった。この理由は、海水にアミン類を添加すると、海水のpHが一時的に上昇し、海水中にカルシウムイオンの3倍量存在するマグネシウムイオンが水酸化マグネシウムとなり、これが炭酸カルシウムの生成を阻害するためと推察された。 However, as a result of further intensive studies by the present disclosure persons, it was found that when amines such as polyamines are mixed with seawater, calcium carbonate cannot be generated sufficiently efficiently. It is speculated that the reason for this is that when amines are added to seawater, the pH of seawater temporarily rises, and magnesium ions present in seawater in an amount three times as large as calcium ions become magnesium hydroxide, which inhibits the formation of calcium carbonate.
 そこで、第一実施形態の二酸化炭素の固定化方法では、第一の接触工程(S1-1)において、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)と、二酸化炭素を含む気体(C)とを接触させるようにしている。これにより、第二の接触工程(S1-2)においてアルカリ土類金属の炭酸塩を析出させるための炭酸イオンが、アミン水溶液(A2)中に効率よく生成される。しかも、アルカリ土類金属の炭酸塩を析出させるための炭酸イオンが、アミン水溶液(A2)に効率よく生成されることで、アミン水溶液(A2)のpHの上昇も抑えられる。そのため、アミン水溶液(A2)を第二族元素イオン含有水溶液(B)と接触させた際に、第二族元素イオン含有水溶液(B)のpH(アミン水溶液(A2)と第二族元素イオン含有水溶液(B)との混合液のpH)の上昇も抑えられる。したがって、第二族元素イオン含有水溶液(B)にマグネシウムイオンが含まれていたとしても、水酸化マグネシウムの生成に起因する炭酸カルシウムの生成阻害も抑制される。よって、第二の接触工程(S1-2)において、炭酸カルシウムが極めて効率よく生成される。 Therefore, in the carbon dioxide immobilization method of the first embodiment, in the first contacting step (S1-1), an amine aqueous solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines is brought into contact with a gas (C) containing carbon dioxide. As a result, carbonate ions for precipitating alkaline earth metal carbonate in the second contact step (S1-2) are efficiently generated in the aqueous amine solution (A2). Moreover, since carbonate ions for precipitating carbonates of alkaline earth metals are efficiently generated in the aqueous amine solution (A2), an increase in the pH of the aqueous amine solution (A2) can be suppressed. Therefore, when the amine aqueous solution (A2) is brought into contact with the group 2 element ion-containing aqueous solution (B), the increase in the pH of the group 2 element ion-containing aqueous solution (B) (the pH of the mixture of the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B)) is also suppressed. Therefore, even if magnesium ions are contained in the Group 2 element ion-containing aqueous solution (B), the inhibition of calcium carbonate formation due to the formation of magnesium hydroxide is also suppressed. Therefore, in the second contacting step (S1-2), calcium carbonate is produced very efficiently.
 アミン化合物(A)としては、生体内(例えば、海洋細菌の生体内)で合成されるアミン(モノアミン及びポリアミン)を特に制限なく用いることができる。当該アミンの中でも、アミン水溶液(A2)中の炭酸イオンを増大させやすくする観点から、1,3-プロパンジアミン、プトレシン(ブタン-1,4-ジアミン)、カタベリン(ペンタン-1,4-ジアミン)、スペルミン(1,11-ジアミノ-4,9-ジアザウンデカン)、スペルミジン(1,8-ジアミノ-4-アザオクタン)、ノルスペルミジン(3,3’-イミノビス(プロパン-1-アミン))、及びノルスペルミン(3,3’-[(プロパン-1,3-ジイル)ビスイミノ]ビス(プロパン-1-アミン))からなる群から選択される1種以上のポリアミンを用いることが好ましい。
 また、本発明者らの実験によると、アミン化合物(A)として、人工的に合成されるアミンを用いた場合にも、生体内で合成されるアミンと同様の効果が奏され得ることが確認されている。したがって、人工的に合成されるアミンを用いることもできる。人工的に合成されるアミンとしては、例えば、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、トリエタノールアミン(TEA)、ジイソプロパノールアミン(DIPA)、ジグリコールアミン(DGA)、メチルジエタノールアミン(MDEA)、並びにピペラジン及びエチレンジアミンなどのジアミン等が挙げられる。
 また、アミン化合物(A)としては、上記アミンから誘導される基を含むポリマー(生体内で合成されるアミンから誘導される基を含むポリマー、人工的に合成されるアミンから誘導される基を含むポリマー)を用いてもよい。
 上記アミンから誘導される基を含むポリマーとしては、上記アミンから誘導される基を少なくとも末端に含むポリマーが好ましい。このようなポリマーとしては、例えば、上記アミンから誘導される基とエチレン性不飽和二重結合とを有する化合物由来の構成単位を有するポリマー、ポリアルキレンイミン等が挙げられ、好ましくはポリアルキレンイミンである。
 ポリアルキレンイミンのアルキレン基の炭素数は、好ましくは2~4、より好ましくは2~3、更に好ましくは2である。 なお、「上記アミンから誘導される基」とは、上記アミン(生体内で合成されるアミン、人工的に合成されるアミン)の水素原子の少なくとも1つを除いた1価以上の基を意味する。例えば、エチレンジアミンから誘導される基としては、1価基である-NHCHCHNH等が挙げられる。
 また、上記アミンから誘導される基を含むポリマーの、沸点上昇法により測定される数平均分子量は、好ましくは500~50,000、より好ましくは500~40,000、更に好ましくは500~35,000である。
 アミン化合物(A)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the amine compound (A), amines (monoamines and polyamines) synthesized in vivo (for example, in vivo of marine bacteria) can be used without particular limitation. Among the amines, 1,3-propanediamine, putrescine (butane-1,4-diamine), cataverine (pentane-1,4-diamine), spermine (1,11-diamino-4,9-diazaundecane), spermidine (1,8-diamino-4-azaoctane), norspermidine (3,3′-iminobis(propane- 1-amine)) and norspermine (3,3′-[(propane-1,3-diyl)bisimino]bis(propan-1-amine)) is preferably used.
Further, according to experiments by the present inventors, it has been confirmed that even when an artificially synthesized amine is used as the amine compound (A), the same effects as those of an amine synthesized in vivo can be obtained. Therefore, artificially synthesized amines can also be used. Examples of artificially synthesized amines include monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), diisopropanolamine (DIPA), diglycolamine (DGA), methyldiethanolamine (MDEA), and diamines such as piperazine and ethylenediamine.
Further, as the amine compound (A), a polymer containing a group derived from the above amine (a polymer containing a group derived from an amine synthesized in vivo, a polymer containing a group derived from an artificially synthesized amine) may be used.
As the polymer containing a group derived from the amine, a polymer containing at least a terminal group derived from the amine is preferable. Such a polymer includes, for example, a polymer having a structural unit derived from a compound having an ethylenically unsaturated double bond and a group derived from the above amine, a polyalkyleneimine, and the like, preferably a polyalkyleneimine.
The number of carbon atoms in the alkylene group of the polyalkyleneimine is preferably 2-4, more preferably 2-3, still more preferably 2. The term “group derived from the above amine” means a monovalent or higher group excluding at least one hydrogen atom of the above amine (amine synthesized in vivo, amine synthesized artificially). For example, the group derived from ethylenediamine includes -NHCH 2 CH 2 NH 2 which is a monovalent group.
The number average molecular weight of the polymer containing a group derived from the amine as measured by boiling point elevation method is preferably 500 to 50,000, more preferably 500 to 40,000, still more preferably 500 to 35,000.
The amine compound (A) may be used alone or in combination of two or more.
 なお、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)と、二酸化炭素を含む気体(C)とを接触させて、二酸化炭素がアミン水溶液(A1)に吸収されると、当該二酸化炭素がアミン水溶液(A1)中のアミン化合物(A)と反応して、アミン水溶液(A1)中で炭酸イオンを生じ、アミン化合物(A)はカチオンになるものと推測される。
 アミン化合物(A)がプトレシンである場合について推測される反応式を以下に示す。
Figure JPOXMLDOC01-appb-C000001
An amine aqueous solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines is brought into contact with a gas (C) containing carbon dioxide. When the carbon dioxide is absorbed into the amine aqueous solution (A1), the carbon dioxide reacts with the amine compound (A) in the amine aqueous solution (A1) to produce carbonate ions in the amine aqueous solution (A1), and the amine compound (A) becomes a cation.
A presumed reaction formula for the case where the amine compound (A) is putrescine is shown below.
Figure JPOXMLDOC01-appb-C000001
 アミン水溶液(A1)中のアミン化合物(A)の含有量は、アミン水溶液(A1)中に二酸化炭素を効率よく吸収させやすくする観点から、アミン水溶液(A1)の全量基準で、好ましくは1質量%~50質量%、より好ましくは10質量%~40質量%、更に好ましくは25質量%~35質量%である。 The content of the amine compound (A) in the amine aqueous solution (A1) is preferably 1% by mass to 50% by mass, more preferably 10% by mass to 40% by mass, and still more preferably 25% by mass to 35% by mass, based on the total amount of the amine aqueous solution (A1), from the viewpoint of facilitating efficient absorption of carbon dioxide into the amine aqueous solution (A1).
 二酸化炭素を含む気体(C)と接触させる前のアミン水溶液(A1)のpHは、吸収する二酸化炭素の量を考慮するとともに、第二の接触工程(S1-2)における反応性を考慮して決定される。具体的には、二酸化炭素を含む気体(C)と接触させた後の、二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)のpHが、好ましくは6以上に、より好ましくは7以上に、さらに好ましくは8以上になるように、二酸化炭素を含む気体(C)と接触させる前のアミン水溶液(A1)のpHが調整される。
 また、二酸化炭素を含む気体(C)と接触させる前のアミン水溶液(A1)のpHは、第二の接触工程(S1-2)において析出させる炭酸塩種に応じて調整されてもよい。例えば、炭酸カルシウムを析出させやすくする観点から、二酸化炭素を含む気体(C)と接触させた後の、二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)のpHが、好ましくは7~12、より好ましくは7~9になるように、二酸化炭素を含む気体(C)と接触させる前のアミン水溶液(A1)のpHが調整されてもよい。また、炭酸カルシウムを析出させやすくする観点から、第二の接触工程(S1-2)において、二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)と第二族元素イオン含有水溶液(B)とを接触させた際のこれらの混合液のpHが、好ましくは8~9になるように、二酸化炭素を含む気体(C)と接触させる前のアミン水溶液(A1)のpHが調整されてもよい。
The pH of the aqueous amine solution (A1) before contact with the gas (C) containing carbon dioxide is determined in consideration of the amount of carbon dioxide to be absorbed and the reactivity in the second contact step (S1-2). Specifically, the pH of the amine aqueous solution (A1) before contact with the carbon dioxide-containing gas (C) is adjusted so that the pH of the amine aqueous solution (A2) containing carbon dioxide-derived carbonate ions after contact with the carbon dioxide-containing gas (C) is preferably 6 or higher, more preferably 7 or higher, and still more preferably 8 or higher.
Further, the pH of the aqueous amine solution (A1) before contacting with the gas (C) containing carbon dioxide may be adjusted according to the carbonate species to be precipitated in the second contacting step (S1-2). For example, from the viewpoint of facilitating the precipitation of calcium carbonate, the pH of the aqueous amine solution (A2) containing carbonate ions derived from carbon dioxide after contact with the carbon dioxide-containing gas (C) is preferably 7 to 12, more preferably 7 to 9, so that the pH of the amine aqueous solution (A1) before contact with the carbon dioxide-containing gas (C) may be adjusted. Further, from the viewpoint of facilitating precipitation of calcium carbonate, the pH of the aqueous amine solution (A1) before contact with the gas (C) containing carbon dioxide may be adjusted so that the pH of the mixed solution when the aqueous amine solution (A2) containing carbon dioxide-derived carbonate ions and the aqueous solution (B) containing group 2 element ions are brought into contact in the second contacting step (S1-2) is preferably 8 to 9.
 アミン水溶液(A1)と二酸化炭素を含む気体(C)とを接触させる際のアミン水溶液(A1)の温度は、二酸化炭素を効率よく吸収して、アミン水溶液(A2)中の炭酸イオン濃度を増大させやすくする観点から、好ましくは10℃以上、より好ましくは30℃~50℃である。本工程ではアミンと二酸化炭素の結合が失われることを抑制するため、アミン水溶液(A1)と二酸化炭素を含む気体(C)とを接触させる際のアミン水溶液(A1)の温度は、50℃以下に維持することが好ましい。 The temperature of the amine aqueous solution (A1) when the amine aqueous solution (A1) and the carbon dioxide-containing gas (C) are brought into contact is preferably 10°C or higher, more preferably 30°C to 50°C, from the viewpoint of efficiently absorbing carbon dioxide and easily increasing the carbonate ion concentration in the amine aqueous solution (A2). In order to suppress the loss of the bond between the amine and carbon dioxide in this step, the temperature of the aqueous amine solution (A1) when the aqueous amine solution (A1) and the gas (C) containing carbon dioxide are brought into contact is preferably maintained at 50°C or lower.
 アミン水溶液(A1)と二酸化炭素を含む気体(C)とを接触させる時間は、接触方式、アミン水溶液(A1)の温度、アミン水溶液(A1)中のアミン化合物(A)の含有量、及び二酸化炭素を含む気体(C)の温度、二酸化炭素濃度、二酸化炭素のガス流量、並びに容器(反応槽)の大きさ等に応じて適宜設定される。一般には30分~3時間であり、好ましくは1時間~24時間である。 The time for contacting the aqueous amine solution (A1) with the gas (C) containing carbon dioxide is appropriately set according to the contact method, the temperature of the aqueous amine solution (A1), the content of the amine compound (A) in the aqueous amine solution (A1), the temperature of the gas (C) containing carbon dioxide, the carbon dioxide concentration, the gas flow rate of carbon dioxide, and the size of the container (reaction tank). It is generally 30 minutes to 3 hours, preferably 1 hour to 24 hours.
(二酸化炭素を含む気体(C))
 二酸化炭素を含む気体(C)としては、例えば、空気、燃焼排ガス等が挙げられる。
 燃焼排ガスとしては、例えば、製鉄所等の各種工場から排出される燃焼排ガス、LNG火力発電所から排出される燃焼排ガス、石炭火力発電所から排出される燃焼排ガス、製油所の水素製造装置から排出されるオフガスが挙げられる。二酸化炭素の固定化効率をより向上させやすくする観点から、これらの中でも、二酸化炭素濃度が高い、石炭火力発電所から排出される燃焼排ガス(二酸化炭素濃度は、11~15体積%)や製油所の水素製造装置から排出されるオフガス(二酸化炭素濃度は、40~60体積%)が好適である。また、空気中の二酸化炭素濃度が0.04体積%以上の場合には空気を用いることとしても良い。
(Gas (C) containing carbon dioxide)
Examples of the gas (C) containing carbon dioxide include air and flue gas.
Examples of flue gas include flue gas emitted from various factories such as steelworks, flue gas emitted from LNG-fired power plants, flue gas emitted from coal-fired power plants, and off-gases emitted from hydrogen production equipment in refineries. From the viewpoint of making it easier to improve the carbon dioxide fixation efficiency, among these, the flue gas (carbon dioxide concentration is 11 to 15% by volume) discharged from a coal-fired power plant and a refinery. Also, when the carbon dioxide concentration in the air is 0.04% by volume or more, air may be used.
(アミン水溶液(A1)と二酸化炭素を含む気体(C)との接触方法)
 アミン水溶液(A1)と二酸化炭素を含む気体(C)との接触方法は、アミン水溶液(A1)中に二酸化炭素を効率よく吸収できる方法であれば特に制限されない。
(Method of contacting amine aqueous solution (A1) with carbon dioxide-containing gas (C))
The method of contacting the aqueous amine solution (A1) with the gas (C) containing carbon dioxide is not particularly limited as long as it is a method capable of efficiently absorbing carbon dioxide into the aqueous amine solution (A1).
 ここで、アミン水溶液(A1)と二酸化炭素を含む気体(C)との接触方法の一例について、第一実施形態における二酸化炭素の固定化システムに基づいて説明する。
 第一実施形態の二酸化炭素の固定化システム1a,1a’、1a’’、及び11aにおいて、第一の接触工程(S1-1)は、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)と、二酸化炭素を含む気体(C)とを接触させて、気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)を調製する第一の接触部(P1-1)において実施される。
 生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)は、貯留タンク21に収容され、供給ライン21aを介して、第一の接触部(P1-1)に供給される。
 一方、二酸化炭素を含む気体(C)は、例えば、図示省略するボンベ又は設備(例えば石炭火力発電所等)から供給され、ブロア22により、供給ライン22aを介して第一の接触部(P1-1)に供給される。
 ここで、二酸化炭素を含む気体(C)が、燃焼排ガスのように高温のガスである場合、燃焼排ガスを冷却して適切な温度に低下させた後、アミン水溶液(A1)と接触させることが好ましい。燃焼排ガスの冷却方法としては、例えば熱交換器を用いた方法等が挙げられる。
 また、燃焼排ガスは、必要に応じて、脱硝、集塵、及び脱硫から選択される1種以上の処理を施してもよい。
Here, an example of a method for contacting the amine aqueous solution (A1) and the carbon dioxide-containing gas (C) will be described based on the carbon dioxide immobilization system in the first embodiment.
In the carbon dioxide fixation systems 1a, 1a′, 1a″, and 11a of the first embodiment, the first contacting step (S1-1) is to bring an amine aqueous solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines into contact with a gas (C) containing carbon dioxide to prepare an amine aqueous solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C). It is performed at the first contact (P1-1).
An aqueous amine solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines is stored in a storage tank 21 and supplied to the first contact portion (P1-1) through a supply line 21a.
On the other hand, the gas (C) containing carbon dioxide, for example, is supplied from a cylinder or equipment (for example, a coal-fired power plant, etc.) not shown, and is supplied to the first contact portion (P1-1) via the supply line 22a by the blower 22.
Here, when the gas (C) containing carbon dioxide is a high-temperature gas such as combustion exhaust gas, the combustion exhaust gas is cooled to an appropriate temperature, and then contacted with the aqueous amine solution (A1). A method of cooling the flue gas includes, for example, a method using a heat exchanger.
In addition, the flue gas may be subjected to one or more treatments selected from denitrification, dust collection, and desulfurization, if necessary.
 第一の接触部(P1-1)におけるアミン水溶液(A1)と二酸化炭素を含む気体(C)との接触方法としては、例えば、下記(1)~(4)の方法等が挙げられるが、これらに限定されるものではなく、気体を液体に溶かすことを目的とした各種方法を使ってもよい。
(1)反応槽にアミン水溶液(A1)を収容してアミン水溶液(A1)を撹拌翼等で撹拌しつつ、アミン水溶液(A1)の液面近傍に二酸化炭素を含む気体(C)を吹き付ける。
(2)反応槽にアミン水溶液(A1)を収容し、アミン水溶液(A1)中に二酸化炭素を含む気体(C)を直接吹き込む。
(3)密閉された反応塔の下部から二酸化炭素を含む気体(C)を導入して上昇させるとともに、反応塔の上部からアミン水溶液(A1)をノズル等で噴霧し、二酸化炭素を含む気体(C)とアミン水溶液(A1)とを向流接触させる。
(4)二酸化炭素を含む気体(C)をファインバブル化してアミン水溶液(A1)中に導入する。これにより、アミン水溶液(A1)と二酸化炭素を含む気体(C)との接触面積を向上させて、より効率よく二酸化炭素をアミン水溶液(A1)中に吸収させることができる。
 なお、第一の接触部(P1-1)におけるアミン水溶液(A1)と二酸化炭素を含む気体(C)との接触は、好ましくは50℃以下でかつ常圧下、より好ましくは常温(25±15℃)でかつ常圧下で行われる。
Methods of contacting the aqueous amine solution (A1) and the gas (C) containing carbon dioxide in the first contact portion (P1-1) include, for example, the following methods (1) to (4), but are not limited thereto, and various methods for dissolving the gas into a liquid may be used.
(1) Aqueous amine solution (A1) is placed in a reaction tank, and gas (C) containing carbon dioxide is blown near the surface of the aqueous amine solution (A1) while stirring the aqueous amine solution (A1) with a stirring blade or the like.
(2) An aqueous amine solution (A1) is placed in a reaction tank, and a gas (C) containing carbon dioxide is directly blown into the aqueous amine solution (A1).
(3) A carbon dioxide-containing gas (C) is introduced from the bottom of a closed reaction tower and raised, and an amine aqueous solution (A1) is sprayed from the top of the reaction tower with a nozzle or the like to bring the carbon dioxide-containing gas (C) and the amine aqueous solution (A1) into countercurrent contact.
(4) The gas (C) containing carbon dioxide is fine-bubbled and introduced into the aqueous amine solution (A1). Thereby, the contact area between the aqueous amine solution (A1) and the gas (C) containing carbon dioxide can be increased, and carbon dioxide can be more efficiently absorbed into the aqueous amine solution (A1).
The contact between the amine aqueous solution (A1) and the carbon dioxide-containing gas (C) in the first contact portion (P1-1) is preferably carried out at 50° C. or less and under normal pressure, more preferably at normal temperature (25±15° C.) and under normal pressure.
 第一の接触工程(S1-1)で調製された、二酸化炭素に由来する炭酸イオンを豊富に含むアミン水溶液(A2)は、第二の接触工程(S1-2)に供給される。
 アミン水溶液(A2)が二酸化炭素に由来する炭酸イオンを豊富に含むことで、第二の接触工程(S1-2)において、アルカリ土類金属の炭酸塩が析出しやすくなる。また、アミン水溶液(A2)が二酸化炭素に由来する炭酸イオンを豊富に含むことで、第二の接触工程(S1-2)において、アミン水溶液(A2)と第二族元素イオン含有水溶液(B)とを接触させた際に、これらの混合液の急激なpH上昇が抑えられる。したがって、第二の接触工程(S1-2)において、アミン水溶液(A2)と第二族元素イオン含有水溶液(B)とを接触させた際に、アルカリ土類金属の炭酸塩を直ちに析出させやすくすることができる。換言すれば、二酸化炭素を効率よく固定化することができる。
 また、アミン水溶液(A2)が二酸化炭素に由来する炭酸イオンを豊富に含むことで、第二族元素イオン含有水溶液(B)のアルカリ土類金属イオン濃度が低濃度であっても、炭酸塩を析出させることが可能になる。例えば、カルシウムイオン濃度が300質量ppm(さらには400質量ppm)である第二族元素イオン含有水溶液(B)を用いた場合にも、炭酸塩(炭酸カルシウム)を析出させることが可能である。
The amine aqueous solution (A2) rich in carbonate ions derived from carbon dioxide prepared in the first contacting step (S1-1) is supplied to the second contacting step (S1-2).
Since the aqueous amine solution (A2) contains a large amount of carbon dioxide-derived carbonate ions, the alkaline earth metal carbonate is likely to precipitate in the second contacting step (S1-2). In addition, since the amine aqueous solution (A2) abundantly contains carbonate ions derived from carbon dioxide, in the second contacting step (S1-2), when the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are brought into contact, a rapid increase in the pH of the mixed solution can be suppressed. Therefore, in the second contacting step (S1-2), when the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are brought into contact with each other, the alkaline earth metal carbonate can be readily precipitated easily. In other words, carbon dioxide can be efficiently immobilized.
In addition, since the aqueous amine solution (A2) contains abundant carbonate ions derived from carbon dioxide, even if the alkaline earth metal ion concentration of the group 2 element ion-containing aqueous solution (B) is low, the carbonate can be precipitated. For example, carbonate (calcium carbonate) can be precipitated even when the group 2 element ion-containing aqueous solution (B) having a calcium ion concentration of 300 mass ppm (further 400 mass ppm) is used.
 なお、上述の方法では、二酸化炭素を含む気体(C)は、図示省略するボンベ又は設備(例えば石炭火力発電所等)から供給され、ブロア22により、供給ライン22aを介して第一の接触部(P1-1)に供給されるものとしたが、これらを省略し、アミン水溶液(A1)の液面に空気を接触させながら、アミン水溶液(A1)を撹拌翼等で撹拌し、アミン水溶液(A1)中に空気中の二酸化炭素を吸収させるようにしてもよい。 In the above-described method, the gas (C) containing carbon dioxide is supplied from a cylinder or equipment (for example, a coal-fired power plant, etc.) not shown, and is supplied to the first contact portion (P1-1) via the supply line 22a by the blower 22. However, these may be omitted, and the aqueous amine solution (A1) may be stirred with a stirring blade or the like while air is brought into contact with the liquid surface of the aqueous amine solution (A1), so that carbon dioxide in the air is absorbed into the aqueous amine solution (A1).
<第二の接触工程(S1-2)>
 第二の接触工程(S1-2)では、第一の接触工程(S1-1)で調製されたアミン水溶液(A2)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)とを接触させて、アルカリ土類金属の炭酸塩を析出させる。
 第一の接触工程(S1-1)で調製されたアミン水溶液(A2)と、第二族元素イオン含有水溶液(B)とを接触させることで、アミン水溶液(A2)中の炭酸イオンと第二族元素イオン含有水溶液(B)中のアルカリ土類金属イオンとが反応し、アルカリ土類金属の炭酸塩が析出する。アミン水溶液(A2)中の炭酸イオンは、気体(C)中の二酸化炭素を原料として生成されているため、二酸化炭素がアルカリ土類金属の炭酸塩として固定されることになる。
<Second contact step (S1-2)>
In the second contacting step (S1-2), the aqueous amine solution (A2) prepared in the first contacting step (S1-1) is brought into contact with the group 2 element ion-containing aqueous solution (B) (wherein the group 2 element ion-containing aqueous solution (B) contains at least alkaline earth metal ions) to precipitate an alkaline earth metal carbonate.
By bringing the aqueous amine solution (A2) prepared in the first contact step (S1-1) into contact with the aqueous solution (B) containing Group 2 element ions, the carbonate ions in the aqueous amine solution (A2) react with the alkaline earth metal ions in the aqueous solution (B) containing Group 2 element ions, and an alkaline earth metal carbonate is precipitated. Since the carbonate ions in the amine aqueous solution (A2) are produced from the carbon dioxide in the gas (C) as a raw material, the carbon dioxide is fixed as an alkaline earth metal carbonate.
 以下、第二の接触工程(S1-2)で用いる第二族元素イオン含有水溶液(B)、及びアミン水溶液(A2)と第二族元素イオン含有水溶液(B)との接触方法について、詳細に説明する。 The method of contacting the group 2 element ion-containing aqueous solution (B) and the amine aqueous solution (A2) used in the second contact step (S1-2) with the group 2 element ion-containing aqueous solution (B) will be described in detail below.
(第二族元素イオン含有水溶液(B))
 第二族元素イオン含有水溶液(B)は、第二族元素イオンを含む。但し、第二族元素イオン含有水溶液(B)は、少なくともアルカリ土類金属イオンを含む。
 本明細書において、「第二族元素イオン」とは、ベリリウムイオン(Be2+)、マグネシウムイオン(Mg2+)、カルシウムイオン(Ca2+)、ストロンチウムイオン(Sr2+)、バリウムイオン(Ba2+)、及びラジウムイオン(Rd2+)を意味する。
 また、本明細書において、「アルカリ土類金属イオン」とは、カルシウムイオン(Ca2+)、ストロンチウムイオン(Sr2+)、及びバリウムイオン(Ba2+)を意味する。
 第二族元素イオン含有水溶液(B)に含まれるアルカリ土類金属イオンは、これらの中でも、カルシウムイオンが好ましい。カルシウムイオンから製造される炭酸カルシウムには、各種産業上の用途があるためである。
(Group 2 element ion-containing aqueous solution (B))
The Group 2 element ion-containing aqueous solution (B) contains Group 2 element ions. However, the second group element ion-containing aqueous solution (B) contains at least alkaline earth metal ions.
As used herein, “group 2 element ion” means beryllium ion (Be 2+ ), magnesium ion (Mg 2+ ), calcium ion (Ca 2+ ), strontium ion (Sr 2+ ), barium ion (Ba 2+ ), and radium ion (Rd 2+ ).
In addition, the term "alkaline earth metal ion" as used herein means calcium ion (Ca 2+ ), strontium ion (Sr 2+ ), and barium ion (Ba 2+ ).
Among these, the alkaline earth metal ions contained in the second group element ion-containing aqueous solution (B) are preferably calcium ions. This is because calcium carbonate produced from calcium ions has various industrial uses.
 ここで、第二族元素イオン含有水溶液(B)は、マグネシウムイオン及びカルシウムイオンを少なくとも含んでいてもよい。
 第一実施形態では、第一の接触工程(S1-1)において、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)と、二酸化炭素を含む気体(C)とを接触させるようにしている。これにより、気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)のpHの上昇が抑えられるため、アミン水溶液(A2)を第二族元素イオン含有水溶液(B)と接触させた際に、アミン水溶液(A)と第二族元素イオン含有水溶液(B)との混合液のpHの上昇も抑えられる。そのため、第二族元素イオン含有水溶液(B)にマグネシウムイオンが含まれていたとしても、水酸化マグネシウムの生成に起因する炭酸カルシウムの生成阻害も抑制される。したがって、第二の接触工程(S1-2)において、炭酸カルシウムが極めて効率よく生成される。
Here, the Group 2 element ion-containing aqueous solution (B) may contain at least magnesium ions and calcium ions.
In the first embodiment, in the first contacting step (S1-1), one or more selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines. An aqueous amine solution (A1) containing one or more amine compounds (A) is brought into contact with a gas (C) containing carbon dioxide. As a result, an increase in the pH of the aqueous amine solution (A2) containing carbonate ions derived from carbon dioxide in the gas (C) is suppressed, so that when the aqueous amine solution (A2) is brought into contact with the aqueous solution containing Group 2 element ions (B), the increase in pH of the mixture of the aqueous amine solution (A) and the aqueous solution containing Group 2 element ions (B) is also suppressed. Therefore, even if magnesium ions are contained in the Group 2 element ion-containing aqueous solution (B), the inhibition of calcium carbonate formation due to the formation of magnesium hydroxide is also suppressed. Therefore, calcium carbonate is produced very efficiently in the second contacting step (S1-2).
 よって、第二族元素イオン含有水溶液(B)としては、海水を用いることが好ましい。海水は入手容易である反面、カルシウムイオンとともに、マグネシウムイオンがカルシウムイオンよりも多く含まれている。そのため、既述のように炭酸カルシウムの生成阻害が生じる問題がある。しかし、第一実施形態の二酸化炭素の固定化方法によれば、第二族元素イオン含有水溶液(B)として海水を用いた場合であっても、水酸化マグネシウムの生成に起因する炭酸カルシウムの生成阻害が抑制されるため、入手容易である海水を第二族元素イオン含有水溶液(B)として用いても、炭酸カルシウムが極めて効率よく生成される。 Therefore, it is preferable to use seawater as the Group 2 element ion-containing aqueous solution (B). Although seawater is readily available, it contains more magnesium ions than calcium ions together with calcium ions. As a result, there is a problem that the formation of calcium carbonate is inhibited as described above. However, according to the carbon dioxide immobilization method of the first embodiment, even when seawater is used as the group 2 element ion-containing aqueous solution (B), the inhibition of calcium carbonate production due to the formation of magnesium hydroxide is suppressed. Therefore, calcium carbonate is produced extremely efficiently even when readily available seawater is used as the group 2 element ion-containing aqueous solution (B).
 また、第二族元素イオン含有水溶液(B)としては、海水以外にも、例えば、海水を淡水化した際に得られる廃海水;塩やにがりを製造した際に生じる濃縮海水;塩湖かん水;地下かん水;及び汽水等のかん水を用いることができる。
 なお、かん水とは、塩化ナトリウムなどの塩分を含んだ水であり、通常、カルシウムイオン、ストロンチウムイオン、及びバリウムイオンからなる群から選択される1種以上のアルカリ土類金属イオン(特に、カルシウムイオン)を含んでいる。したがって、第二族元素イオン含有水溶液(B)として、かん水を利用することで、アルカリ土類金属の炭酸塩を生成するためのアルカリ土類金属イオンを簡易に供給することが可能である。
 ここで、濃縮海水には、アルカリ土類金属イオン(特に、カルシウムイオン)が高濃度に含まれているため、第二の接触工程(S1-2)において、アルカリ土類金属の炭酸塩の生成源となるアルカリ土類金属イオンを効率よく供給することができる。したがって、二酸化炭素の固定化効率をより向上させることができ、アルカリ土類金属の炭酸塩の収量の向上を図ることが可能となる。また、第二の接触工程(S1-2)を行う第二の接触部(P1-2)をコンパクト化して製造システムの小型化を図ることもできる。また、ウユニ塩湖に代表される塩湖かん水、米国ソルトンレイクに代表される温水かん水なども、同様に、アルカリ土類金属イオン濃度が高いため、好ましい。近年、再生可能エネルギーとして地熱発電の開発が盛んに行われている。これらの地下温水かん水も同様に、好ましい。
 したがって、第二族元素イオン含有水溶液(B)としては、カルシウムイオン濃度が好ましくは400質量ppm以上のもの、より好ましくは600質量ppm以上のもの、更に好ましくは800質量ppm以上のもの、より更に好ましくは1,000質量ppm以上のもの、更になお好ましくは1,500質量ppm以上のもの、一層好ましくは1,800質量%ppm以上のものを用いることができる。
 なお、第二族元素イオン含有水溶液(B)として例示したものは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the group 2 element ion-containing aqueous solution (B), in addition to seawater, for example, waste seawater obtained when seawater is desalinated; concentrated seawater generated when salt or bittern is produced; salt lake brine; underground brine; and brine such as brackish water can be used.
Brine water is water containing salt such as sodium chloride, and usually contains one or more alkaline earth metal ions (especially calcium ions) selected from the group consisting of calcium ions, strontium ions, and barium ions. Therefore, by using brackish water as the Group 2 element ion-containing aqueous solution (B), it is possible to easily supply alkaline earth metal ions for producing alkaline earth metal carbonates.
Here, since the concentrated seawater contains alkaline earth metal ions (especially calcium ions) at a high concentration, in the second contacting step (S1-2), alkaline earth metal ions that serve as a source of alkaline earth metal carbonate can be efficiently supplied. Therefore, the carbon dioxide fixation efficiency can be further improved, and the yield of alkaline earth metal carbonate can be improved. Also, the second contact portion (P1-2) for performing the second contact step (S1-2) can be made compact to reduce the size of the manufacturing system. Salt lake brine such as the Uyuni Salt Lake and hot water brine such as the Salton Lake in the United States are also preferable because they have high concentrations of alkaline earth metal ions. In recent years, geothermal power generation has been actively developed as a renewable energy. These underground hot water brines are preferred as well.
Therefore, as the Group 2 element ion-containing aqueous solution (B), the calcium ion concentration is preferably 400 mass ppm or more, more preferably 600 mass ppm or more, still more preferably 800 mass ppm or more, still more preferably 1,000 mass ppm or more, still more preferably 1,500 mass ppm or more, and still more preferably 1,800 mass ppm or more.
In addition, what was illustrated as group 2 element ion containing aqueous solution (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
 なお、濃縮海水は、海水を原料として、イオン交換膜法、蒸発法、及び逆浸透法等の公知の方法により製造することができる。 The concentrated seawater can be produced using seawater as a raw material by known methods such as ion exchange membrane method, evaporation method, and reverse osmosis method.
 また、第二族元素イオン含有水溶液(B)として、マグネシウムイオン濃度が500質量ppm以下(好ましくは400質量ppm以下、より好ましくは300質量ppm以下)であるアルカリ土類金属イオン含有水(好ましくはカルシウムイオン含有水)を用いてもよい。
 例えば、海水からの工業的な水酸化マグネシウム製造工程では、副生成物としてマグネシウムイオン濃度が500質量ppm以下であるアルカリ土類金属イオン含有水が生じる。第一実施形態では、このような副生成物の有効利用を図ることもできる。
 また、海水からの工業的な水酸化マグネシウム製造工程では、海水に石灰乳を添加することで、生成した水酸化マグネシウムスラリーを抜き出した後に、副生成物としてマグネシウムイオン濃度が500質量ppm以下であるアルカリ土類金属イオン含有水が生じる。このような副生成物には、海水に石灰乳を添加することによって、副生成物であるアルカリ土類金属イオン含有水のカルシウムイオン濃度が、海水よりも高まる(例えば、好ましくは400質量ppm以上、より好ましくは600質量ppm以上、更に好ましくは800質量ppm以上、より更に好ましくは1,000質量ppm以上、更になお好ましくは1,500質量ppm以上、一層好ましくは1,800質量%ppm以上)。そのため、副生成物であるアルカリ土類金属イオン含有水からカルシウムイオンを全量回収するためには、アミン水溶液(A1)のアミン化合物濃度を高める必要がある。アミン水溶液(A1)のアミン化合物(A)の濃度を高めると、アミン水溶液(A1)のpHが上昇するため、炭酸カルシウムの生成反応が進行し難くなる。しかし、第一実施形態では、アミン水溶液(A1)に二酸化炭素を含む気体(C)を接触させることで、カルシウムイオン濃度が海水よりも高いアルカリ土類金属イオン含有水を第二族元素イオン含有水溶液(B)として用いても、pH上昇を抑えて、炭酸カルシウムを効率よく生成することができる。
Further, as the Group 2 element ion-containing aqueous solution (B), alkaline earth metal ion-containing water (preferably calcium ion-containing water) having a magnesium ion concentration of 500 mass ppm or less (preferably 400 mass ppm or less, more preferably 300 mass ppm or less) may be used.
For example, in an industrial process for producing magnesium hydroxide from seawater, alkaline earth metal ion-containing water having a magnesium ion concentration of 500 ppm by mass or less is produced as a by-product. In the first embodiment, it is also possible to effectively utilize such by-products.
Further, in an industrial magnesium hydroxide production process from seawater, by adding lime milk to seawater, after extracting the produced magnesium hydroxide slurry, alkaline earth metal ion-containing water having a magnesium ion concentration of 500 ppm by mass or less is produced as a by-product. By adding milk of lime to seawater, such a by-product has a calcium ion concentration higher than that of seawater containing alkaline earth metal ions (for example, preferably 400 mass ppm or more, more preferably 600 mass ppm or more, still more preferably 800 mass ppm or more, even more preferably 1,000 mass ppm or more, still more preferably 1,500 mass ppm or more, and still more preferably 1,800 mass ppm or more). Therefore, in order to recover all the calcium ions from the by-product alkaline earth metal ion-containing water, it is necessary to increase the concentration of the amine compound in the aqueous amine solution (A1). When the concentration of the amine compound (A) in the aqueous amine solution (A1) is increased, the pH of the aqueous amine solution (A1) increases, making it difficult for the reaction to generate calcium carbonate to proceed. However, in the first embodiment, by bringing the gas (C) containing carbon dioxide into contact with the amine aqueous solution (A1), even if the alkaline earth metal ion-containing water having a higher calcium ion concentration than seawater is used as the group 2 element ion-containing aqueous solution (B), the pH increase can be suppressed and calcium carbonate can be efficiently produced.
(アミン水溶液(A2)と第二族元素イオン含有水溶液(B)との接触方法)
 アミン水溶液(A2)と第二族元素イオン含有水溶液(B)との接触方法は、アルカリ土類金属の炭酸塩が効率よく生成できる方法であれば特に制限されない。
(Method of Contacting Amine Aqueous Solution (A2) and Group 2 Element Ion-Containing Aqueous Solution (B))
The method of contacting the amine aqueous solution (A2) with the group 2 element ion-containing aqueous solution (B) is not particularly limited as long as it is a method capable of efficiently producing an alkaline earth metal carbonate.
 ここで、アミン水溶液(A2)と第二族元素イオン含有水溶液(B)との接触方法の一例について、第一実施形態における二酸化炭素の固定化システムに基づいて説明する。
 第一実施形態における二酸化炭素の固定化システム1a,1a’、及び11aにおいて、第二の接触工程(S1-2)は、アミン水溶液(A2)と、第二族元素イオン含有水溶液(B)とを接触させて、アルカリ土類金属の炭酸塩を析出させる第二の接触部(P1-2)において実施される。
 アミン水溶液(A2)は、第一の接触部(P1-1)から、供給ライン2aを介して、第二の接触部(P1-2)に供給される。
 一方、第二族元素イオン含有水溶液(B)は、貯留タンク31に収容されており、供給ライン31aを介して、第二の接触部(P1-2)に供給される。
Here, an example of a method for contacting the amine aqueous solution (A2) and the Group 2 element ion-containing aqueous solution (B) will be described based on the carbon dioxide immobilization system in the first embodiment.
In the carbon dioxide fixation systems 1a, 1a′, and 11a of the first embodiment, the second contacting step (S1-2) is carried out in the second contacting portion (P1-2) where the amine aqueous solution (A2) and the Group 2 element ion-containing aqueous solution (B) are brought into contact with each other to precipitate an alkaline earth metal carbonate.
The aqueous amine solution (A2) is supplied from the first contact portion (P1-1) to the second contact portion (P1-2) through the supply line 2a.
On the other hand, the group 2 element ion-containing aqueous solution (B) is stored in the storage tank 31 and supplied to the second contact portion (P1-2) through the supply line 31a.
 第二の接触部(P1-2)におけるアミン水溶液(A2)と第二族元素イオン含有水溶液(B)の接触方法としては、例えば、下記(5)及び(6)の方法等が挙げられる。
(5)反応槽内にアミン水溶液(A2)と第二族元素イオン含有水溶液(B)とを導入し、撹拌翼等を用いて撹拌し混合する。
(6)アミン水溶液(A2)と第二族元素イオン含有水溶液(B)とをラインミキサー等に導入し、撹拌翼等を用いた撹拌を行うことなく、乱流撹拌等により混合する。
 ここで、(5)の方法において、反応槽として、液相中に析出して分散混合されるアルカリ土類金属の炭酸塩を、重力の作用で沈降させて液相から分離することができる、シックナー沈降分離装置を用いることが好ましい。この場合、第二の接触部(P1-2)は、後述する炭酸塩回収部(Q)の機能を兼ね備えることができる。
 第二の接触部(P1-2)におけるアミン水溶液(A2)と第二族元素イオン含有水溶液(B)との接触の際の各溶液の温度は、10℃~45℃、好ましくは25℃~40℃である。
 また、第二の接触部(P1-2)へのアミン水溶液(A2)の供給量と第二族元素イオン含有水溶液(B)の供給量との比率は、アミン水溶液(A2)の二酸化炭素(炭酸イオン)モル量と、カルシウムイオンモル量とが、当量程度となるように適宜調整される。
 なお、アルカリ土類金属の炭酸塩の析出は短時間で起こる。また、上記ポリアミンを用いることで高pH化を防ぐことができるため、水酸化マグネシウムの析出を抑えつつ、炭酸カルシウムを析出させやすいという利点もある。
Examples of methods for contacting the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) in the second contact portion (P1-2) include the following methods (5) and (6).
(5) The amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are introduced into the reaction tank, and stirred and mixed using a stirring blade or the like.
(6) The amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are introduced into a line mixer or the like, and mixed by turbulent stirring or the like without stirring using a stirring blade or the like.
Here, in the method (5), it is preferable to use, as the reaction tank, a thickener sedimentation apparatus capable of sedimenting and separating from the liquid phase the alkaline earth metal carbonate precipitated and dispersed in the liquid phase by the action of gravity. In this case, the second contact portion (P1-2) can also function as a carbonate recovery portion (Q), which will be described later.
The temperature of each solution during contact between the aqueous amine solution (A2) and the aqueous solution containing group 2 element ions (B) in the second contact portion (P1-2) is 10°C to 45°C, preferably 25°C to 40°C.
In addition, the ratio of the supply amount of the aqueous amine solution (A2) to the second contact portion (P1-2) and the supply amount of the group 2 element ion-containing aqueous solution (B) is appropriately adjusted so that the molar amount of carbon dioxide (carbonate ions) and the molar amount of calcium ions in the aqueous amine solution (A2) are approximately equivalent.
It should be noted that precipitation of alkaline earth metal carbonate occurs in a short period of time. In addition, since the use of the above polyamine can prevent an increase in pH, there is also an advantage that calcium carbonate can be easily precipitated while suppressing precipitation of magnesium hydroxide.
<第一の接触工程(S1-1)と第二の接触工程(S1-2)の好ましい態様>
 第一の接触工程(S1-1)は、図4に示すように、複数の第一の接触部において実施されることが好ましい。
 また、第二の接触工程(S1-2)も、図4に示すように、複数の第二の接触部において実施されることが好ましい。
 具体的には、1基目(第一の接触部(P1-1))ではアミン水溶液(A1)を製造し、二酸化炭素を含む気体(C)を接触させて、気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)を調製する。そして、2基目(第一の接触部(P1-1)’)には既に調製されたアミン水溶液(A2)を準備しておくことで、1基目においてアミン水溶液(A2)を調製している間に、2基目から第二の接触部にアミン水溶液(A2)を供給し、第二の接触工程(S1-2)を実施することができる。
 第二の接触部においても同様に、1基目(第二の接触部(P1-2))でアミン水溶液(A2)と第二族元素イオン含有水溶液(B)とを接触させてアルカリ土類金属の炭酸塩を析出させる。その間、2基目(第二の接触部(P1-2)’)では、アミン水溶液(A2)を受け入れることができる。または、アルカリ土類金属の炭酸塩の回収部への払い出しを行うことができる。
<Preferred Embodiments of First Contacting Step (S1-1) and Second Contacting Step (S1-2)>
The first contacting step (S1-1) is preferably performed at a plurality of first contacting portions, as shown in FIG.
Also, the second contacting step (S1-2) is preferably performed at a plurality of second contacting portions, as shown in FIG.
Specifically, in the first unit (first contact portion (P1-1)), an amine aqueous solution (A1) is produced and brought into contact with a carbon dioxide-containing gas (C) to prepare an amine aqueous solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C). Then, by preparing the already prepared amine aqueous solution (A2) in the second unit (first contact portion (P1-1)′), while the amine aqueous solution (A2) is being prepared in the first unit, the amine aqueous solution (A2) can be supplied from the second unit to the second contact portion, and the second contact step (S1-2) can be performed.
Similarly, in the second contact portion, the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are brought into contact with each other at the first contact portion (second contact portion (P1-2)) to precipitate an alkaline earth metal carbonate. In the meantime, the second base (second contact portion (P1-2)') can receive the aqueous amine solution (A2). Alternatively, the alkaline earth metal carbonate can be discharged to the recovery section.
 また、図5に示すように、第二の接触部(P1-2)を備えることなく、第一の接触部(P1-1)にて、第一の接触工程(S1-1)及び第二の接触工程(S1-2)を行うことも可能である。この場合にも、第一の接触部(P1-1)を複数備えることで、炭酸塩回収部(Q)へのアルカリ土類金属の炭酸塩の連続供給が可能となる。 Also, as shown in FIG. 5, the first contact step (S1-1) and the second contact step (S1-2) can be performed at the first contact portion (P1-1) without providing the second contact portion (P1-2). Also in this case, by providing a plurality of first contact portions (P1-1), continuous supply of alkaline earth metal carbonate to the carbonate recovery portion (Q) becomes possible.
 第一の接触部(P1-1)と第二の接触部(P1-2)を、複数とするか単数とするか、あるいは第一の接触部にて第一の接触工程(S1-1)及び第二の接触工程(S1-2)を実施するかは、目的とする二酸化炭素の固定量等の条件・要求に応じて選択することができる。 Whether the number of the first contact portion (P1-1) and the second contact portion (P1-2) is plural or singular, or whether the first contact step (S1-1) and the second contact step (S1-2) are carried out at the first contact portion can be selected according to conditions and requirements such as the target fixed amount of carbon dioxide.
 また、第一の接触部(P1-1)を密閉された反応塔を用いた交流接触方式とし、第二の接触部(P1-2)を連続式撹拌槽型反応器やラインミキサーとすることで、プロセス全体を連続式とすることができる。 In addition, the first contact part (P1-1) is an AC contact method using a closed reaction tower, and the second contact part (P1-2) is a continuous stirred tank reactor or line mixer, so that the entire process can be made continuous.
<回収工程(T)>
 回収工程(T)では、第二の接触工程(S1-2)において生成したアルカリ土類金属の炭酸塩を回収する。
 アルカリ土類金属の炭酸塩は、析出して沈殿するので、濾過及び遠心分離等から選択される1種以上の固液分離処理により、分離して回収することができる。
 アルカリ土類金属の炭酸塩は、炭酸塩回収部(Q)において回収される。図3~図6に示す二酸化炭素の固定化システム1a、1a’、1a’’、及び11aにおいて、炭酸塩回収部(Q)は、例えばサブタンクであり、第二の接触工程(S1-2)で得られたアルカリ土類金属の炭酸塩を含む液相をサブタンク等に移送し、サブタンク内で固液分離処理が行われて、アルカリ土類金属の炭酸塩が回収される。
 なお、既述のように、第二の接触部(P1-2)において、反応槽としてシックナー沈降分離装置を用いた場合には、第二の接触部(P1-2)は、炭酸塩回収部(Q)の機能を兼ね備えることができる。
<Recovery step (T)>
In the recovery step (T), the alkaline earth metal carbonate produced in the second contact step (S1-2) is recovered.
Since the alkaline earth metal carbonate precipitates and precipitates, it can be separated and recovered by one or more solid-liquid separation treatments selected from filtration, centrifugation, and the like.
The alkaline earth metal carbonate is recovered in the carbonate recovery section (Q). In the carbon dioxide fixation systems 1a, 1a′, 1a″, and 11a shown in FIGS. 3 to 6, the carbonate recovery unit (Q) is, for example, a sub-tank, and the liquid phase containing the alkaline earth metal carbonate obtained in the second contact step (S1-2) is transferred to a sub-tank or the like, and solid-liquid separation is performed in the sub-tank to recover the alkaline earth metal carbonate.
As described above, when a thickener sedimentation separation device is used as a reaction tank in the second contact portion (P1-2), the second contact portion (P1-2) can also function as the carbonate recovery portion (Q).
 回収したアルカリ土類金属の炭酸塩は、必要に応じて水洗し、さらに乾燥して、製品とすることができる。 The recovered alkaline earth metal carbonate can be washed with water and dried as necessary to make a product.
<アミン化合物回収・供給工程(U)>
 アミン化合物回収工程(U)では、アルカリ土類金属の炭酸塩が析出した後の液相からアミン化合物(A)を回収し、第一の接触工程(S1-1)において用いるアミン水溶液(A1)中のアミン化合物(A)の少なくとも一部として供給する。
 アミン回収・供給工程(U)により、アミン化合物(A)を二酸化炭素の固定化方法及び固定化システムの系内で繰り返し利用することが可能となり、アミン化合物(A)にかかるコスト等を抑えることができる。
<Amine compound recovery/supply step (U)>
In the amine compound recovery step (U), the amine compound (A) is recovered from the liquid phase after the alkaline earth metal carbonate has precipitated, and supplied as at least part of the amine compound (A) in the aqueous amine solution (A1) used in the first contact step (S1-1).
The amine recovery/supply step (U) makes it possible to repeatedly use the amine compound (A) in the carbon dioxide immobilization method and system, thereby reducing the cost of the amine compound (A).
 以下、アミン化合物回収・供給工程(U)において行われる、アミン化合物(A)の回収方法及び回収したアミン化合物(A)の供給方法について、詳細に説明する。 The method for collecting the amine compound (A) and the method for supplying the collected amine compound (A), which are performed in the amine compound collection/supply step (U), will be described in detail below.
(アミン化合物の回収方法)
 アルカリ土類金属の炭酸塩が析出した後の液相からのアミン化合物(A)の回収は、例えば、以下に説明する、吸着剤を利用した方法により行うことができる。ここで説明する方法は、イオン交換クロマトグラフィーの原理と方法と同等である。アミン化合物(A)の回収は、既知の方法を利用すれば良く、吸着剤を利用した方法に限定されるものではい。具体的には電気透析法、透析膜法、限界濾過法を用いることができる。
(Method for recovering amine compound)
The amine compound (A) can be recovered from the liquid phase after the alkaline earth metal carbonate has precipitated, for example, by a method using an adsorbent, which will be described below. The method described here is equivalent to the principle and method of ion exchange chromatography. Recovery of the amine compound (A) may be performed using a known method, and is not limited to the method using an adsorbent. Specifically, an electrodialysis method, a dialysis membrane method, and an ultrafiltration method can be used.
-吸着剤-
 吸着剤は、アルカリ土類金属の炭酸塩が析出した後の液相を接触させることで、アミン化合物(A)を回収することができる固体状の吸着剤が用いられる。
 固体状の吸着剤としては、例えば、-SOM(Mは、水素原子又はアルカリ金属を示す)で表される置換基を有するものが用いられる。
 Mとして選択し得るアルカリ金属は、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、又はフランシウム(Fr)である。
 水溶性及び操作性の観点から、Mは、Na又は水素原子であることが好ましい。
 なお、固体状の吸着剤は、1種を単独で用いてもよいし、Mが異なる2種以上の固体状の吸着剤を組み合わせて用いてもよい。
-adsorbent-
As the adsorbent, a solid adsorbent capable of recovering the amine compound (A) is used by contacting the liquid phase after the carbonate of the alkaline earth metal has precipitated.
As the solid adsorbent, for example, one having a substituent represented by —SO 3 M (M represents a hydrogen atom or an alkali metal) is used.
Alkali metals that can be selected for M are lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), or francium (Fr).
From the viewpoint of water solubility and operability, M is preferably Na or a hydrogen atom.
In addition, one solid adsorbent may be used alone, or two or more solid adsorbents having different M values may be used in combination.
 固体状の吸着剤は、担体に上記置換基が結合することで、アミン化合物(A)の回収機能を発揮する。担体としては、上記置換基が結合可能であれば特に限定されないが、例えば、シリカゲル、アルミナ、ガラス、カオリン、マイカ、タルク、クレイ、水和アルミナ、ウォラストナイト、鉄粉、チタン酸カリウム、酸化チタン、酸化亜鉛、炭化珪素、窒化珪素、炭酸カルシウム、炭素、硫酸バリウム、ボロン、フェライト、セルロース、及び活性炭等が挙げられる。
 担体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The solid adsorbent exhibits a function of collecting the amine compound (A) by binding the substituent to the carrier. The carrier is not particularly limited as long as the above substituent can be bonded thereto, but examples thereof include silica gel, alumina, glass, kaolin, mica, talc, clay, hydrated alumina, wollastonite, iron powder, potassium titanate, titanium oxide, zinc oxide, silicon carbide, silicon nitride, calcium carbonate, carbon, barium sulfate, boron, ferrite, cellulose, and activated carbon.
One carrier may be used alone, or two or more carriers may be used in combination.
 固体状の吸着剤の形状は特に限定されず、例えば、粉末状、粒状、シート状であってもよい。また、固体状の吸着剤の粉末や粒子を充填したカートリッジ、カラム、又は漏斗等であってもよい。 The shape of the solid adsorbent is not particularly limited, and may be, for example, powdery, granular, or sheet-like. It may also be a cartridge, column, funnel, or the like filled with solid adsorbent powder or particles.
-液相と固体状の吸着剤との接触-
 アルカリ土類金属の炭酸塩が析出した後の液相と固体状の吸着剤とを接触させることで、アミン化合物(A)が固体状の吸着剤に回収される。この際、液相のpHは1~7であることが好ましい。また、液相の温度は特に限定されないが、好ましくは20℃~40℃である。
-Contact between liquid phase and solid adsorbent-
The amine compound (A) is recovered by the solid adsorbent by bringing the liquid phase after the precipitation of the alkaline earth metal carbonate into contact with the solid adsorbent. At this time, the pH of the liquid phase is preferably 1-7. Although the temperature of the liquid phase is not particularly limited, it is preferably 20°C to 40°C.
 アルカリ土類金属の炭酸塩が析出した後の液相と固体状の吸着剤とを接触方法は、特に制限されないが、取り扱いの容易性等の観点から、固体状の吸着剤の粉末や粒子を充填したカートリッジ、カラム、又は漏斗を用い、これに液相を流通させることが好ましい。 The method of contacting the liquid phase after the carbonate of the alkaline earth metal precipitates with the solid adsorbent is not particularly limited, but from the viewpoint of ease of handling, it is preferable to use a cartridge, column, or funnel filled with powder or particles of the solid adsorbent, and circulate the liquid phase through this.
-アミン化合物(A)の溶出-
 固体状の吸着剤に回収されたアミン化合物(A)は、固体状の吸着剤に溶出液を接触させることで、溶出液中に溶出させて回収することができる。
 溶出液としては、塩基性化合物を含有する水溶液(有機溶媒を添加もしくは一部を置換したものを含む)が挙げられる。
 塩基性化合物は、回収対象であるアミン化合物(A)との間で化学的反応を実質的に生じないものであって、水に溶解ないし混和可能なものを適宜用いることができる。好ましい塩基性化合物としては、例えばアンモニア、水酸化ナトリウム、水酸化アンモニウム、トリエチルアミン、ピリジン、ヒスチジン、ジアザビシクロウンデセン、及びこれらの混合物などが挙げられる。
-Elution of amine compound (A)-
The amine compound (A) recovered by the solid adsorbent can be eluted into the eluate and recovered by bringing the eluate into contact with the solid adsorbent.
The eluent includes an aqueous solution containing a basic compound (including those to which an organic solvent has been added or partially substituted).
A basic compound that does not substantially cause a chemical reaction with the amine compound (A) to be recovered and that is soluble or miscible with water can be appropriately used. Preferred basic compounds include, for example, ammonia, sodium hydroxide, ammonium hydroxide, triethylamine, pyridine, histidine, diazabicycloundecene, and mixtures thereof.
 塩基性化合物の濃度は、アミン化合物(A)の溶出効率向上の観点から、塩基性化合物と有機溶媒との合計100質量%を基準として、0.5質量%~10質量%が好ましい。 From the viewpoint of improving the elution efficiency of the amine compound (A), the concentration of the basic compound is preferably 0.5% by mass to 10% by mass based on the total 100% by mass of the basic compound and the organic solvent.
 有機溶媒は、回収対象であるアミン化合物(A)と塩基性化合物とを溶解する一般的な有機溶媒を用いることができるが、操作性等の観点から、低粘性、低沸点の有機溶媒が好ましく、更には水と均一に混合するものが好ましい。例えば、メタノール、エタノール、及び2-プロパノール等の炭素数1~3の低級アルコール;アセトン;アセトニトリル等が挙げられる。
 なお、有機溶媒は、塩基性化合物を含有する水溶液の調整のために少量添加または混合してもよいが、塩基性化合物を含有する水溶液は、有機溶媒を含まないことが好ましい。
As the organic solvent, a general organic solvent that dissolves the amine compound (A) to be recovered and the basic compound can be used, but from the viewpoint of operability, etc., a low-viscosity, low-boiling organic solvent is preferred, and more preferably one that mixes uniformly with water. Examples thereof include lower alcohols having 1 to 3 carbon atoms such as methanol, ethanol and 2-propanol; acetone; acetonitrile and the like.
A small amount of the organic solvent may be added or mixed to adjust the aqueous solution containing the basic compound, but the aqueous solution containing the basic compound preferably does not contain the organic solvent.
 アミン化合物(A)を溶出液に溶出させる際の溶出液の温度は特に限定されないが、一般には、20~40℃である。 The temperature of the eluent when eluting the amine compound (A) into the eluate is not particularly limited, but is generally 20 to 40°C.
 固体状の吸着剤に回収されたアミン化合物(A)を溶出させる方法は、特に制限されないが、取り扱いの容易性等の観点から、固体状の吸着剤の粉末や粒子を充填したカートリッジ、カラム、又は漏斗を用いる場合には、これにアルカリ土類金属の炭酸塩が析出した後の液相を流通させてアミンを回収した後、アミン化合物(A)が回収された固体状の吸着剤に溶出液を流通させて、当該溶出液中にアミン化合物(A)を溶出させて回収する方法が挙げられる。
 したがって、アミン化合物回収・供給部(R)を構成するアミン化合物回収手段としては、例えば、供給ライン51aから供給される液相を流通させて、アミン化合物(A)を回収するための、固体状の吸着剤の粉末や粒子を充填したカートリッジ、カラム、又は漏斗と、当該カートリッジ、カラム、又は漏斗に溶出液を流通させる供給ライン(不図示)とを備える構成が挙げられる。
The method of eluting the amine compound (A) recovered from the solid adsorbent is not particularly limited, but from the viewpoint of ease of handling, etc., when a cartridge, column, or funnel filled with powder or particles of the solid adsorbent is used, the liquid phase after the precipitation of the alkaline earth metal carbonate is circulated through the cartridge to recover the amine, and then the eluate is circulated through the solid adsorbent in which the amine compound (A) has been recovered to elute and recover the amine compound (A) in the eluate. method.
Therefore, the amine compound recovery means constituting the amine compound recovery/supply unit (R) includes, for example, a configuration including a cartridge, column, or funnel filled with powder or particles of a solid adsorbent for recovering the amine compound (A) by circulating the liquid phase supplied from the supply line 51a, and a supply line (not shown) for circulating the eluate through the cartridge, column, or funnel.
(アミン化合物(A)の供給方法)
 溶出液中に回収されたアミン化合物(A)は、供給ライン51bを介して、貯留タンク21に供給される。これにより、第一実施形態の二酸化炭素の固定化方法及び固定化システムにおいて、アミン化合物(A)が系内で循環利用される。
 なお、溶出液中に回収されたアミン化合物(A)は、溶出液ごと貯留タンク21に供給してもよいし、溶出液の少なくとも一部を分離してアミン化合物(A)を濃縮した後、貯留タンク21に供給してもよい。
(Method for supplying amine compound (A))
The amine compound (A) recovered in the eluate is supplied to the storage tank 21 through the supply line 51b. As a result, the amine compound (A) is recycled within the system in the carbon dioxide immobilization method and system of the first embodiment.
The amine compound (A) recovered in the eluate may be supplied to the storage tank 21 together with the eluate, or at least part of the eluate may be separated to concentrate the amine compound (A) and then supplied to the storage tank 21.
 なお、上述したアミン化合物回収・供給工程(U)では、固体状の吸着剤を用いてアミン化合物(A)を回収する例を説明したが、アミン化合物(A)の回収は、この方法には限定されず、例えば、イオン交換膜電解装置、逆浸透膜装置、電気透析装置、拡散透析装置、イオン交換樹脂を備える装置等を用いて行うようにしてもよい。
 したがって、第一実施形態の二酸化炭素の固定化システムは、アミン化合物回収・供給工程(U)を実施するためのアミン化合物回収・供給部(R)として、イオン交換膜電解装置、逆浸透膜装置、電気透析装置、拡散透析装置、又はイオン交換樹脂を備える装置を備えていてもよい。
 また、アミン化合物(A)として、生体アミンから誘導される基を含むポリマーや人工アミンから誘導される基を含むポリマーを用いる場合、アミン化合物を、限界濾過膜(UF膜)で回収するようにしてもよい。
In the amine compound recovery/supply step (U) described above, an example of recovering the amine compound (A) using a solid adsorbent has been described, but the recovery of the amine compound (A) is not limited to this method.
Therefore, the carbon dioxide immobilization system of the first embodiment may include an ion-exchange membrane electrolysis device, a reverse osmosis membrane device, an electrodialysis device, a diffusion dialysis device, or a device provided with an ion exchange resin as the amine compound recovery/supply unit (R) for carrying out the amine compound recovery/supply step (U).
When a polymer containing a group derived from a biogenic amine or a polymer containing a group derived from an artificial amine is used as the amine compound (A), the amine compound may be recovered with an ultrafiltration membrane (UF membrane).
[第二実施形態]
 第二実施形態の二酸化炭素の固定化方法の一例を図7に示す。
 図7に示す二酸化炭素の固定化方法は、工程(S)として、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)と、二酸化炭素を含む気体(C)とを同時に接触させる接触工程(S2)を含む。
 さらに、図7に示す二酸化炭素の固定化方法は、工程(S)の後に、アルカリ土類金属の炭酸塩を回収する回収工程(T)を含む。
[Second embodiment]
FIG. 7 shows an example of the carbon dioxide immobilization method of the second embodiment.
The method for immobilizing carbon dioxide shown in FIG. 7 includes, as step (S), a contacting step (S2) of simultaneously contacting one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions), and a gas (C) containing carbon dioxide.
Furthermore, the carbon dioxide fixation method shown in FIG. 7 includes a recovery step (T) of recovering the alkaline earth metal carbonate after the step (S).
 第二実施形態の二酸化炭素の固定化方法では、接触工程(S2)において、アミン化合物(A)と、第二族元素イオン含有水溶液(B)と、二酸化炭素を含む気体(C)とを、同時に接触するようにしている。したがって、アミン化合物(A)に起因する第二族元素イオン含有水溶液(B)のpH上昇を、第二族元素イオン含有水溶液(B)中に生成した、気体(C)中の二酸化炭素由来の炭酸イオンによって抑えながら、アルカリ土類金属の炭酸塩を効率よく生成することができる。 In the carbon dioxide immobilization method of the second embodiment, in the contacting step (S2), the amine compound (A), the group 2 element ion-containing aqueous solution (B), and the gas containing carbon dioxide (C) are brought into contact at the same time. Therefore, an alkaline earth metal carbonate can be efficiently produced while suppressing the increase in pH of the group 2 element ion-containing aqueous solution (B) caused by the amine compound (A) by the carbon dioxide-derived carbonate ions in the gas (C) generated in the group 2 element ion-containing aqueous solution (B).
 また、第二実施形態の二酸化炭素の固定化方法においても、図8に示すように、アルカリ土類金属の炭酸塩が析出した後の液相からアミン化合物(A)を回収し、工程(S)において用いるアミン化合物(A)の少なくとも一部として供給するアミン化合物回収・供給工程(U)をさらに含むことが好ましい。 Also, in the carbon dioxide immobilization method of the second embodiment, as shown in FIG. 8, it is preferable to further include an amine compound recovery/supply step (U) in which the amine compound (A) is recovered from the liquid phase after the carbonate of the alkaline earth metal has precipitated and is supplied as at least part of the amine compound (A) used in the step (S).
 次に、第二実施形態の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムの一例を図9に示す。
 図9に示す二酸化炭素の固定化システム1bは、接触部(P2)及び炭酸塩回収部(Q)を少なくとも備える。
 接触部(P2)では、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)と、二酸化炭素を含む気体(C)とを同時に接触させて、アルカリ土類金属の炭酸塩を析出させる。
 炭酸塩回収部(Q)では、アルカリ土類金属の炭酸塩を回収する。
Next, FIG. 9 shows an example of a carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the second embodiment.
A carbon dioxide fixation system 1b shown in FIG. 9 includes at least a contact section (P2) and a carbonate recovery section (Q).
In the contact portion (P2), one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions) and a gas (C) containing carbon dioxide are simultaneously brought into contact with each other to precipitate an alkaline earth metal carbonate.
The carbonate recovery section (Q) recovers carbonates of alkaline earth metals.
 図9に示す二酸化炭素の固定化システム1bでは、アミン化合物(A)は、アミン水溶液(A1)として、貯留タンク21に収容され、アミン水溶液(A1)が供給ライン21aを介して、接触部(P2)に供給される。
 第二族元素イオン含有水溶液(B)は、貯留タンク31に収容され、供給ライン31aを介して、接触部(P2)に供給される。
 二酸化炭素を含む気体(C)は、例えば、図示省略するボンベ又は設備(例えば石炭火力発電所等)から供給され、ブロア22により、供給ライン22aを介して接触部(P2)に供給される。
 アミン水溶液(A1)中のアミン化合物(A)と、第二族元素イオン含有水溶液(B)と、二酸化炭素を含む気体(C)とは、接触部(P2)にて同時に接触し、アルカリ土類金属の炭酸塩が生成する。
 なお、アミン化合物(A)は、アミン水溶液(A1)として接触部(P2)に供給される態様には限定されず、アミン化合物(A)を接触部(P2)に直接供給する態様であってもよい。
In the carbon dioxide fixation system 1b shown in FIG. 9, the amine compound (A) is stored in the storage tank 21 as an amine aqueous solution (A1), and the amine aqueous solution (A1) is supplied to the contact portion (P2) through the supply line 21a.
The group 2 element ion-containing aqueous solution (B) is stored in the storage tank 31 and supplied to the contact portion (P2) through the supply line 31a.
A gas (C) containing carbon dioxide is supplied from, for example, a cylinder (not shown) or equipment (for example, a coal-fired power plant, etc.), and is supplied to the contact portion (P2) via a supply line 22a by a blower 22.
The amine compound (A) in the amine aqueous solution (A1), the Group 2 element ion-containing aqueous solution (B), and the carbon dioxide-containing gas (C) are brought into contact at the contact portion (P2) at the same time to form an alkaline earth metal carbonate.
In addition, the amine compound (A) is not limited to a mode in which it is supplied to the contact portion (P2) as an aqueous amine solution (A1), and may be a mode in which the amine compound (A) is directly supplied to the contact portion (P2).
 なお、図示省略するが、第二実施形態の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムにおいて、接触部(P2)は、複数備えられていてもよい。 Although illustration is omitted, in the carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the second embodiment, a plurality of contact parts (P2) may be provided.
 また、第二実施形態の二酸化炭素の固定化方法を実施するための本実施形態の二酸化炭素の固定化システムの好ましい態様の一例を図10に示す。
 図10に示す二酸化炭素の固定化システム11bは、接触部(P2)及び炭酸塩回収部Qに加えて、アルカリ土類金属の炭酸塩が析出した後の液相からアミン化合物(A)を回収し、接触部(P2)において使用するアミン化合物(A)の少なくとも一部として供給するアミン化合物回収・供給部(R)をさらに備える。
FIG. 10 shows an example of a preferable mode of the carbon dioxide fixation system of the present embodiment for carrying out the carbon dioxide fixation method of the second embodiment.
In addition to the contact part (P2) and the carbonate recovery part Q, the carbon dioxide fixation system 11b shown in FIG. 10 further includes an amine compound recovery/supply part (R) that recovers the amine compound (A) from the liquid phase after the carbonate of the alkaline earth metal precipitates and supplies it as at least a part of the amine compound (A) used in the contact part (P2).
 なお、第二実施形態において、第一実施形態と共通する態様及び構成については、好適な態様及び構成も第一実施形態と同様であり説明は省略する。
 例えば、第二実施形態で用いられるアミン化合物(A)、アミン水溶液(A1)、第二族元素イオン含有水溶液(B)、及び二酸化炭素を含む気体(C)は、第一実施形態と同様であり、好適態様等も第一実施形態と同様である。
 また、回収工程(T)、アミン化合物回収・供給工程(U)、炭酸塩回収部(Q)、及びアミン化合物回収・供給部(R)も、第一実施形態と同様であり、好適態様等も第一実施形態と同様である。
In addition, in the second embodiment, regarding aspects and configurations common to the first embodiment, preferred aspects and configurations are also the same as in the first embodiment, and description thereof is omitted.
For example, the amine compound (A), the amine aqueous solution (A1), the group 2 element ion-containing aqueous solution (B), and the carbon dioxide-containing gas (C) used in the second embodiment are the same as in the first embodiment, and the preferred aspects and the like are also the same as in the first embodiment.
The recovery step (T), the amine compound recovery/supply step (U), the carbonate recovery section (Q), and the amine compound recovery/supply section (R) are also the same as in the first embodiment, and the preferred aspects and the like are also the same as in the first embodiment.
[第三実施形態]
 第三実施形態の二酸化炭素の固定化方法の一例を図11に示す。
 図11に示す二酸化炭素の固定化方法は、工程(S)として、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)と、第二族元素イオン含有水溶液(B)とを接触させて、アミン化合物(A)と第二族元素イオン含有水溶液(B)との混合液(AB)を調製する第一の接触工程(S3-1)、及び第一の接触工程(S3-1)の後に、混合液(AB)と、二酸化炭素を含む気体(C)とを接触させる第二の接触工程(S3-2)を含む。
 さらに、図11に示す二酸化炭素の固定化方法は、工程(S)の後に、アルカリ土類金属の炭酸塩を回収する回収工程(T)を含む。
[Third embodiment]
FIG. 11 shows an example of the carbon dioxide immobilization method of the third embodiment.
The carbon dioxide immobilization method shown in FIG. 11 includes, as the step (S), a first contacting step (S3-1) in which one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines are brought into contact with the group 2 element ion-containing aqueous solution (B) to prepare a mixed solution (AB) of the amine compound (A) and the group 2 element ion-containing aqueous solution (B), and after the first contacting step (S3-1). 2 includes a second contacting step (S3-2) of contacting the mixture (AB) with the gas (C) containing carbon dioxide.
Furthermore, the carbon dioxide fixation method shown in FIG. 11 includes a recovery step (T) of recovering the alkaline earth metal carbonate after the step (S).
 アミン化合物(A)と第二族元素イオン含有水溶液(B)との混合液(AB)に、二酸化炭素を含む気体(C)を接触させることでも、アミン化合物(A)に起因する第二族元素イオン含有水溶液(B)のpH上昇を抑えながら、アルカリ土類金属の炭酸塩を効率よく生成することができる。
 但し、pH上昇をより抑制しやすくして、アルカリ土類金属の炭酸塩をより効率よく生成する観点から、混合液(AB)の調製後、できる限り速やかに、二酸化炭素を含む気体(C)を接触させることが好ましい。
By bringing the gas (C) containing carbon dioxide into contact with the mixed solution (AB) of the amine compound (A) and the group 2 element ion-containing aqueous solution (B), alkaline earth metal carbonate can be efficiently produced while suppressing the pH increase of the group 2 element ion-containing aqueous solution (B) caused by the amine compound (A).
However, from the viewpoint of making it easier to suppress the pH increase and more efficiently producing alkaline earth metal carbonates, it is preferable to bring the mixture (AB) into contact with the gas (C) containing carbon dioxide as soon as possible after preparation.
 また、第三実施形態の二酸化炭素の固定化方法においても、図12に示すように、アルカリ土類金属の炭酸塩が析出した後の液相からアミン化合物(A)を回収し、第一の接触工程(S3-1)において用いるアミン化合物(A)の少なくとも一部として供給するアミン化合物回収・供給工程(U)をさらに含むことが好ましい。 Also, in the carbon dioxide immobilization method of the third embodiment, as shown in FIG. 12, it is preferable to further include an amine compound recovery/supply step (U) of recovering the amine compound (A) from the liquid phase after the precipitation of the alkaline earth metal carbonate and supplying the amine compound (A) as at least part of the amine compound (A) used in the first contact step (S3-1).
 次に、第三実施形態の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムの一例を図13に示す。
 図13に示す二酸化炭素の固定化システム1cは、第一の接触部(P3-1)、第二の接触部(P3-2)、及び炭酸塩回収部(Q)を少なくとも備える。
 第一の接触部(P3-1)では、生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)との混合液(AB)を調製する。
 第二の接触部(P3-2)では、混合液(AB)と、二酸化炭素を含む気体(C)とを接触させて、アルカリ土類金属の炭酸塩を析出させる。
 炭酸塩回収部(Q)では、アルカリ土類金属の炭酸塩を回収する。
Next, FIG. 13 shows an example of a carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the third embodiment.
A carbon dioxide fixation system 1c shown in FIG. 13 includes at least a first contact portion (P3-1), a second contact portion (P3-2), and a carbonate recovery portion (Q).
In the first contact part (P3-1), a mixed solution (AB) is prepared of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, and an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions).
In the second contact portion (P3-2), the mixed liquid (AB) and the gas (C) containing carbon dioxide are brought into contact with each other to precipitate an alkaline earth metal carbonate.
The carbonate recovery section (Q) recovers carbonates of alkaline earth metals.
 図13に示す二酸化炭素の固定化システム1cでは、アミン化合物(A)は、アミン水溶液(A1)として、貯留タンク21に収容され、アミン水溶液(A1)が供給ライン21aを介して、第一の接触部(P3-1)に供給される。
 第二族元素イオン含有水溶液(B)は、貯留タンク31に収容され、供給ライン31aを介して、第一の接触部(P3-1)に供給される。
 アミン水溶液(A1)中のアミン化合物(A)と、第二族元素イオン含有水溶液(B)とは、第一の接触部(P3-1)で接触して混合され、混合液(AB)が調製される。
 混合液(AB)は、供給ライン2aを介して第二の接触部(P3-2)に供給される。第二の接触部(P3-2)中の混合液(AB)は、図示省略するボンベ又は設備(例えば石炭火力発電所等)から供給され、ブロア22により、供給ライン22aを介して第二の接触部(P3-2)に供給される、二酸化炭素を含む気体(C)と接触し、アルカリ土類金属の炭酸塩が生成する。
 なお、アミン化合物(A)は、アミン水溶液(A1)として第一の接触部(P3-1)に供給される態様には限定されず、アミン化合物(A)を第一の接触部(P3-1)に直接供給する態様であってもよい。
In the carbon dioxide fixation system 1c shown in FIG. 13, the amine compound (A) is stored in the storage tank 21 as an amine aqueous solution (A1), and the amine aqueous solution (A1) is supplied to the first contact portion (P3-1) through the supply line 21a.
A group 2 element ion-containing aqueous solution (B) is stored in a storage tank 31 and supplied to the first contact portion (P3-1) through a supply line 31a.
The amine compound (A) in the amine aqueous solution (A1) and the group 2 element ion-containing aqueous solution (B) are contacted and mixed at the first contact portion (P3-1) to prepare a mixed solution (AB).
The mixed liquid (AB) is supplied to the second contact portion (P3-2) through the supply line 2a. The mixed liquid (AB) in the second contact portion (P3-2) is supplied from a cylinder or equipment (for example, a coal-fired power plant, etc.) not shown, and is brought into contact with the carbon dioxide-containing gas (C) supplied to the second contact portion (P3-2) via the supply line 22a by the blower 22 to generate an alkaline earth metal carbonate.
In addition, the amine compound (A) is not limited to the aspect in which it is supplied to the first contact portion (P3-1) as an amine aqueous solution (A1), and the amine compound (A) may be directly supplied to the first contact portion (P3-1).
 また、図示省略するが、第二実施形態の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムにおいて、第一の接触部(P3-1)は、1つ備えられていてもよく、複数備えられていてもよい。また、第二の接触部(P3-2)は1つ備えられていてもよく、複数備えられていてもよい。
 また、図示省略するが、図13に示す二酸化炭素の固定化システム1cは、第二の接触部(P3-2)を備えることなく、第一の接触部(P3-1)において混合液(AB)と、二酸化炭素を含む気体(C)とを接触させるようにすることが好ましい。このような構成を採用することで、第一の接触部(P3-1)において混合液(AB)を調製した後、速やかに二酸化炭素を含む気体(C)を接触させやすく、アルカリ土類金属の炭酸塩の生成効率をより向上させやすい。
Further, although not shown, in the carbon dioxide fixation system for carrying out the carbon dioxide fixation method of the second embodiment, one first contact part (P3-1) may be provided, or a plurality of the first contact parts (P3-1) may be provided. In addition, one second contact portion (P3-2) may be provided, or a plurality thereof may be provided.
Further, although not shown, the carbon dioxide immobilization system 1c shown in FIG. 13 preferably does not include the second contact portion (P3-2), and the mixed liquid (AB) and the carbon dioxide-containing gas (C) are brought into contact with each other at the first contact portion (P3-1). By adopting such a configuration, after the mixed liquid (AB) is prepared in the first contact portion (P3-1), it is easy to quickly contact the gas (C) containing carbon dioxide, and the production efficiency of the alkaline earth metal carbonate is easily improved.
 また、第三実施形態の二酸化炭素の固定化方法を実施するための本実施形態の二酸化炭素の固定化システムの好ましい態様の一例を図14に示す。
 図14に示す二酸化炭素の固定化システム11cは、第一の接触部(P3-1)、第二の接触部(P3-2)、及び炭酸塩回収部(Q)に加えて、アルカリ土類金属の炭酸塩が析出した後の液相からアミン化合物(A)を回収し、第一の接触部(P3-1)において使用するアミン化合物(A)の少なくとも一部として供給するアミン化合物回収・供給部(R)をさらに備える。
FIG. 14 shows an example of a preferable mode of the carbon dioxide fixation system of the present embodiment for carrying out the carbon dioxide fixation method of the third embodiment.
In addition to the first contact portion (P3-1), the second contact portion (P3-2), and the carbonate recovery portion (Q), the carbon dioxide fixation system 11c shown in FIG. 14 further includes an amine compound recovery/supply portion (R) that recovers the amine compound (A) from the liquid phase after the carbonate of the alkaline earth metal has precipitated and supplies it as at least part of the amine compound (A) used in the first contact portion (P3-1).
 なお、第三実施形態において、第一実施形態と共通する態様及び構成については、好適な態様及び構成も第一実施形態と同様であり説明は省略する。
 例えば、第三実施形態で用いられるアミン化合物(A)、アミン水溶液(A1)、第二族元素イオン含有水溶液(B)、及び二酸化炭素を含む気体(C)は、第一実施形態と同様であり、好適態様等も第一実施形態と同様である。
 また、回収工程(T)、アミン化合物回収・供給工程(U)、炭酸塩回収部(Q)、及びアミン化合物回収・供給部(R)も、第一実施形態と同様であり、好適態様等も第一実施形態と同様である。
In addition, in the third embodiment, regarding aspects and configurations common to the first embodiment, preferred aspects and configurations are also the same as those in the first embodiment, and description thereof will be omitted.
For example, the amine compound (A), the amine aqueous solution (A1), the group 2 element ion-containing aqueous solution (B), and the carbon dioxide-containing gas (C) used in the third embodiment are the same as in the first embodiment, and the preferred aspects and the like are also the same as in the first embodiment.
The recovery step (T), the amine compound recovery/supply step (U), the carbonate recovery section (Q), and the amine compound recovery/supply section (R) are also the same as in the first embodiment, and the preferred aspects and the like are also the same as in the first embodiment.
[炭酸塩の製造方法]
 既述のように、第一実施形態から第三実施形態の二酸化炭素の固定化方法によれば、アルカリ土類金属の炭酸塩を回収することができる。したがって、本開示によれば、第一実施形態から第三実施形態の二酸化炭素の固定化方法を用いた、炭酸塩の製造方法も提供される。
 アルカリ土類金属の炭酸塩は、各種用途として有用である。
 例えば、炭酸カルシウムは、製紙、ゴム、プラスチック、食品、及び化粧品等の広範囲な工業分野で、充填剤、顔料、及び増量剤などとして利用することができる。
 また、炭酸ストロンチウムは、ブラウン管及びフェライト磁石の原料等として利用することができる。
 さらに、炭酸バリウムは、電子材料用の原料等として利用することができる。
[Method for producing carbonate]
As described above, according to the carbon dioxide immobilization methods of the first to third embodiments, alkaline earth metal carbonate can be recovered. Therefore, according to the present disclosure, there is also provided a method for producing carbonate using the carbon dioxide fixation methods of the first to third embodiments.
Alkaline earth metal carbonates are useful in a variety of applications.
For example, calcium carbonate can be used as a filler, pigment, extender, etc. in a wide range of industrial fields such as papermaking, rubber, plastics, food, and cosmetics.
Strontium carbonate can also be used as a raw material for Braun tubes and ferrite magnets.
Furthermore, barium carbonate can be used as a raw material for electronic materials.
[提供される本開示の一態様]
 本開示の一態様によれば、下記[1]~[21]が提供される。
[1] 生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)の存在下で、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)と、二酸化炭素由来の炭酸イオンとを接触させて、アルカリ土類金属の炭酸塩を生成する、二酸化炭素の固定化方法であって、
 前記アミン化合物(A)に起因する前記第二族元素イオン含有水溶液(B)のpH上昇を、二酸化炭素を含む気体(C)を利用して抑制する工程(S)
を含む、二酸化炭素の固定化方法。
[2] 前記工程(S)は、
 前記アミン化合物(A)を含むアミン水溶液(A1)と、前記気体(C)とを接触させて、前記気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)を調製する第一の接触工程(S1-1)
を含む、上記[1]に記載の二酸化炭素の固定化方法。
[3] 前記工程(S)は、
 前記工程(S1-1)の後に、
 前記アミン水溶液(A2)と、前記第二族元素イオン含有水溶液(B)とを接触させる第二の接触工程(S1-2)
を含む、上記[2]に記載の二酸化炭素の固定化方法。
[4] 前記工程(S)は、
 前記アミン化合物(A)と、前記第二族元素イオン含有水溶液(B)と、前記気体(C)とを同時に接触させる接触工程(S2)
を含む、上記[1]に記載の二酸化炭素の固定化方法。
[5] 前記工程(S)は、
 前記アミン化合物(A)と、前記第二族元素イオン含有水溶液(B)とを接触させて、前記アミン化合物(A)と前記第二族元素イオン含有水溶液(B)との混合液(AB)を調製する第一の接触工程(S3-1)、及び
 前記第一の接触工程(S3-1)の後に、前記混合液(AB)と、前記気体(C)とを接触させる第二の接触工程(S3-2)
を含む、上記[1]に記載の二酸化炭素の固定化方法。
[6] 前記生体内で合成されるアミンが、1,3-プロパンジアミン、プトレシン、カダベリン、スペルミジン、スペルミン、ノルスペルミジン、及びノルスペルミンからなる生体アミン群から選択される1種以上である、上記[1]~[5]のいずれかに記載の二酸化炭素の固定化方法。
[7] 前記人工的に合成されるアミンが、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、ジグリコールアミン、メチルジエタノールアミン、ピペラジン、及びエチレンジアミンからなる群から選択される1種以上である、上記[1]~[6]のいずれかに記載の二酸化炭素の固定化方法。
[8] 前記第二族元素イオン含有水溶液(B)が、マグネシウムイオン及びカルシウムイオンを少なくとも含む、上記[1]~[7]のいずれかに記載の二酸化炭素の固定化方法。
[9] 前記第二族元素イオン含有水溶液(B)が、海水である、上記[1]~[8]のいずれかに記載の二酸化炭素の固定化方法。
[10] 前記第二族元素イオン含有水溶液(B)は、カルシウムイオン濃度が400質量ppm以上である、上記[1]~[8]のいずれかに記載の二酸化炭素の固定化方法。
[11] 前記第二族元素イオン含有水溶液(B)は、マグネシウムイオン濃度が500質量ppm以下である、上記[1]~[8]及び[10]のいずれかに記載の二酸化炭素の固定化方法。
[12] 前記工程(S)の後に、前記アルカリ土類金属の炭酸塩を回収する回収工程(T)をさらに含む、上記[1]~[11]のいずれかにに記載の二酸化炭素の固定化方法。
[13] アルカリ土類金属の炭酸塩が析出した後の液相から前記アミン化合物(A)を回収し、前記工程(S)において用いる前記アミン化合物(A)の少なくとも一部として供給するアミン化合物回収・供給工程(U)をさらに含む、上記[1]~[12]のいずれかに記載の二酸化炭素の固定化方法。
[14] 上記[1]に記載の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムであって、
 生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンのポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)と、二酸化炭素を含む気体(C)とを接触させて、前記気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)を調製する第一の接触部(P1-1)、
 前記アミン水溶液(A2)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)とを接触させて、アルカリ土類金属の炭酸塩を析出させる第二の接触部(P1-2)、及び
 前記アルカリ土類金属の炭酸塩を回収する炭酸塩回収部(Q)
を少なくとも備える、二酸化炭素の固定化システム。
[15] 前記第一の接触部(P1-1)を複数備える、上記[14]に記載の二酸化炭素の固定化システム。
[16] 前記第二の接触部(P1-2)を複数備える、上記[14]又は[15]に記載の二酸化炭素の固定化システム。
[17] 上記[14]又は[15]に記載の二酸化炭素の固定化システムにおいて、
 前記第二の接触部(P1-2)を備えることなく、前記第一の接触部(P1-1)において前記アミン水溶液(A2)と前記第二族元素イオン含有水溶液(B)とを接触させる、二酸化炭素の固定化システム。
[18] 上記[1]に記載の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムであって、
 生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンのポリマーからなる群から選択される1種以上のアミン化合物(A)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)と、二酸化炭素を含む気体(C)とを同時に接触させて、アルカリ土類金属の炭酸塩を析出させる接触部(P2)、及び
 前記アルカリ土類金属の炭酸塩を回収する炭酸塩回収部(Q)
を少なくとも備える、二酸化炭素の固定化システム。
[19] 上記[1]に記載の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムであって、
 生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンのポリマーからなる群から選択される1種以上のアミン化合物(A)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)との混合液(AB)を調製する第一の接触部(P3-1)、
 混合液(AB)と、二酸化炭素を含む気体(C)とを接触させて、アルカリ土類金属の炭酸塩を析出させる第二の接触部(P3-2)、及び
 前記アルカリ土類金属の炭酸塩を回収する炭酸塩回収部(Q)、
を少なくとも備える、二酸化炭素の固定化システム。
[20] 前記アルカリ土類金属の炭酸塩が析出した後の液相から前記アミン化合物(A)を回収し、前記第一の接触部(P1-1)、前記接触部(P2)、又は前記第一の接触部(P3-1)において使用する前記アミン化合物(A)の少なくとも一部として供給するアミン化合物回収・供給部(R)、
をさらに備える、上記[14]~[19]のいずれかに記載の二酸化炭素の固定化システム。
[21] 上記[1]~[13]のいずれかに記載の二酸化炭素の固定化方法を用いた、炭酸塩の製造方法。
[One aspect of the present disclosure provided]
According to one aspect of the present disclosure, the following [1] to [21] are provided.
[1] A method for immobilizing carbon dioxide, wherein an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions) is brought into contact with carbon dioxide-derived carbonate ions in the presence of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, to produce an alkaline earth metal carbonate,
A step (S) of suppressing a pH increase of the group 2 element ion-containing aqueous solution (B) caused by the amine compound (A) by using a gas (C) containing carbon dioxide.
A method for immobilizing carbon dioxide, comprising:
[2] The step (S) is
A first contact step (S1-1) of bringing an aqueous amine solution (A1) containing the amine compound (A) into contact with the gas (C) to prepare an aqueous amine solution (A2) containing carbonate ions derived from carbon dioxide in the gas (C).
The method for immobilizing carbon dioxide according to [1] above, comprising:
[3] The step (S) is
After the step (S1-1),
A second contacting step (S1-2) of bringing the aqueous amine solution (A2) into contact with the aqueous solution (B) containing Group 2 element ions
The method for immobilizing carbon dioxide according to [2] above, comprising:
[4] The step (S) is
A contacting step (S2) of simultaneously contacting the amine compound (A), the group 2 element ion-containing aqueous solution (B), and the gas (C)
The method for immobilizing carbon dioxide according to [1] above, comprising:
[5] The step (S) is
A first contacting step (S3-1) of contacting the amine compound (A) and the aqueous solution (B) containing group 2 element ions to prepare a mixed solution (AB) of the amine compound (A) and the aqueous solution (B) containing group 2 element ions, and a second contacting step (S3-2) of contacting the mixed solution (AB) with the gas (C) after the first contacting step (S3-1).
The method for immobilizing carbon dioxide according to [1] above, comprising:
[6] The method for immobilizing carbon dioxide according to any one of [1] to [5] above, wherein the amine synthesized in vivo is one or more selected from the biogenic amine group consisting of 1,3-propanediamine, putrescine, cadaverine, spermidine, spermine, norspermidine, and norspermine.
[7] The method for immobilizing carbon dioxide according to any one of [1] to [6] above, wherein the artificially synthesized amine is one or more selected from the group consisting of monoethanolamine, diethanolamine, triethanolamine, diisopropanolamine, diglycolamine, methyldiethanolamine, piperazine, and ethylenediamine.
[8] The method for immobilizing carbon dioxide according to any one of [1] to [7] above, wherein the Group 2 element ion-containing aqueous solution (B) contains at least magnesium ions and calcium ions.
[9] The method for immobilizing carbon dioxide according to any one of the above [1] to [8], wherein the Group 2 element ion-containing aqueous solution (B) is seawater.
[10] The method for immobilizing carbon dioxide according to any one of [1] to [8] above, wherein the Group 2 element ion-containing aqueous solution (B) has a calcium ion concentration of 400 ppm by mass or more.
[11] The method for immobilizing carbon dioxide according to any one of [1] to [8] and [10] above, wherein the Group 2 element ion-containing aqueous solution (B) has a magnesium ion concentration of 500 ppm by mass or less.
[12] The carbon dioxide fixation method according to any one of [1] to [11] above, further comprising a recovery step (T) of recovering the alkaline earth metal carbonate after the step (S).
[13] The method for immobilizing carbon dioxide according to any one of the above [1] to [12], further comprising an amine compound recovery/supply step (U) of recovering the amine compound (A) from the liquid phase after the alkaline earth metal carbonate has precipitated and supplying it as at least part of the amine compound (A) used in the step (S).
[14] A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above,
A first contact part (P1-1) for preparing an aqueous amine solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C) by bringing an aqueous amine solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers of these amines into contact with a gas (C) containing carbon dioxide;
The aqueous amine solution (A2) and the aqueous solution (B) containing group 2 element ions (wherein the aqueous solution (B) containing group 2 element ions contains at least alkaline earth metal ions) are brought into contact with each other to deposit an alkaline earth metal carbonate in a second contact part (P1-2), and a carbonate recovery part (Q) in which the alkaline earth metal carbonate is recovered.
A carbon dioxide fixation system comprising at least
[15] The carbon dioxide fixation system according to [14] above, comprising a plurality of the first contact portions (P1-1).
[16] The carbon dioxide fixation system according to [14] or [15] above, comprising a plurality of second contact portions (P1-2).
[17] In the carbon dioxide fixation system according to [14] or [15] above,
A carbon dioxide immobilization system in which the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are brought into contact at the first contact portion (P1-1) without the second contact portion (P1-2).
[18] A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above,
At least one amine compound (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers of these amines, a Group 2 element ion-containing aqueous solution (B) (wherein the Group 2 element ion-containing aqueous solution (B) contains at least alkaline earth metal ions) and a gas (C) containing carbon dioxide are simultaneously brought into contact with each other to deposit an alkaline earth metal carbonate, and a carbonate recovery unit (Q) for recovering the alkaline earth metal carbonate.
A carbon dioxide fixation system comprising at least
[19] A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to [1] above,
a first contact portion (P3-1) for preparing a mixed solution (AB) of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers of these amines, and an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions);
A second contact part (P3-2) for bringing the mixed solution (AB) into contact with a gas (C) containing carbon dioxide to deposit an alkaline earth metal carbonate, and a carbonate recovery part (Q) for recovering the alkaline earth metal carbonate,
A carbon dioxide fixation system comprising at least
[20] An amine compound recovery/supply unit (R) that recovers the amine compound (A) from the liquid phase after the alkaline earth metal carbonate has precipitated and supplies it as at least part of the amine compound (A) used in the first contact portion (P1-1), the contact portion (P2), or the first contact portion (P3-1);
The carbon dioxide fixation system according to any one of [14] to [19] above, further comprising:
[21] A method for producing a carbonate, using the method for immobilizing carbon dioxide according to any one of [1] to [13] above.
[海水と各種塩基を用いた炭酸カルシウム形成速度の検討]
 海水と各種塩基を用い、炭酸カルシウム形成速度について検討した。
[Examination of calcium carbonate formation rate using seawater and various bases]
Using seawater and various bases, calcium carbonate formation rate was investigated.
<使用した塩基>
・「塩基1」:アミン化合物(A)としてプトレシン(1,4-ブタンジアミン)を用い、プトレシン濃度を30質量%に調整したアミン水溶液(A1)に、二酸化炭素を導入した、二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)。
 なお、二酸化炭素の導入は、20Lのアミン水溶液(A1)に対し、エアストーンを介して1L/minでCOガス(99.9%)を2時間添加することにより行った。
・「塩基2」:アミン化合物(A)としてプトレシンを用い、プトレシン濃度を30質量%に調整したアミン水溶液(A1)。
・「塩基3」:NaOH
<Base used>
"Base 1": An amine aqueous solution (A2) containing carbon dioxide-derived carbonate ions, obtained by using putrescine (1,4-butanediamine) as the amine compound (A) and introducing carbon dioxide into the amine aqueous solution (A1) in which the putrescine concentration was adjusted to 30% by mass.
Carbon dioxide was introduced by adding CO 2 gas (99.9%) to 20 L of the amine aqueous solution (A1) through an air stone at 1 L/min for 2 hours.
- "Base 2": An aqueous amine solution (A1) in which putrescine was used as the amine compound (A) and the concentration of putrescine was adjusted to 30% by mass.
・ "Base 3": NaOH
<実施例1-1>
 海水(天然海水)500mLに、塩基1(アミン水溶液(A2))を添加した。
 塩基1の添加量は、海水と塩基1との混合液のアミン化合物濃度が10mMとなるように調整した。
 次いで、海水と塩基1との混合液をウォーターバスで40℃に保温しながら、空気を、エアストーンを介して1L/minで5時間導入し続け、混合液中のカルシウムイオン濃度を測定した。混合液中のカルシウムイオン濃度は、空気を導入し始める前と、空気を導入し始めた直後(空気の導入開始から1分後)に測定した後、さらに経時的に測定し続けた。
 また、pHも経時的に測定した。
 混合液中のカルシウムイオン濃度は、株式会社堀場製作所製のLAQAtwin-Ca-11を用いて測定した。
 混合液中のpHは、株式会社堀場製作所製のF-72を用いて測定した。
<Example 1-1>
Base 1 (amine aqueous solution (A2)) was added to 500 mL of seawater (natural seawater).
The amount of base 1 added was adjusted so that the concentration of the amine compound in the mixture of seawater and base 1 was 10 mM.
Next, while keeping the mixture of seawater and base 1 at 40° C. in a water bath, air was continuously introduced at 1 L/min for 5 hours through an air stone, and the calcium ion concentration in the mixture was measured. The calcium ion concentration in the mixed liquid was measured before the introduction of air and immediately after the introduction of air (1 minute after the introduction of air was started), and then continued to be measured over time.
Also, the pH was measured over time.
The calcium ion concentration in the mixed solution was measured using LAQAtwin-Ca-11 manufactured by Horiba, Ltd.
The pH of the mixed solution was measured using F-72 manufactured by Horiba, Ltd.
<実施例1-2>
 塩基1を塩基2(アミン水溶液(A2))に変更し、実施例1-1と同様の方法により、海水と塩基2との混合液中のカルシウムイオン濃度とpHとを測定した。
<Example 1-2>
The calcium ion concentration and pH in the mixed solution of seawater and base 2 were measured in the same manner as in Example 1-1, except that base 1 was changed to base 2 (amine aqueous solution (A2)).
<比較例1-1>
 塩基1を塩基3(NaOH)に変更し、実施例1-1と同様の方法により、海水と塩基3との混合液中のカルシウムイオン濃度とpHとを測定した。
 塩基3の添加量は、海水と塩基3との混合液のNaOH濃度が10mMとなるように調整した。
<Comparative Example 1-1>
The calcium ion concentration and pH in the mixed solution of seawater and base 3 were measured in the same manner as in Example 1-1, except that base 1 was changed to base 3 (NaOH).
The amount of base 3 added was adjusted so that the NaOH concentration of the mixture of seawater and base 3 was 10 mM.
 カルシウムイオン濃度の測定結果を図15に示し、pHの測定結果を図16に示す。
 図15及び図16に示す結果から、以下のことがわかる。
 実施例1-1では、海水に塩基1(アミン水溶液(A2))を添加すると、直ちにカルシウムイオン濃度が減少した。また、pHの大幅な上昇は見られなかった。このことから、海水に塩基1(アミン水溶液(A2))を添加すると、pHが大きく上昇することなく、直ちに炭酸カルシウムが沈殿したことがわかる。
 これに対し、比較例1-1のように、海水に塩基3(NaOH)を添加すると、混合液の白濁が見られた。また、pHの大幅な上昇が見られた。このことから、海水への塩基3の添加によって海水のpHを上昇させると、海水中にカルシウムイオンの3倍量存在するマグネシウムイオンが、水酸化マグネシウムとなり、炭酸カルシウムの形成が阻害されたものと考えられる。
 また、実施例1-2のように、塩基2(アミン水溶液(A1))を添加した場合、実施例1-1ほどはカルシウムイオン濃度が直ちには減少しないものの、比較例1-1と比較して、明らかにカルシウムイオン濃度が低下しやすい傾向がみられた。このことから、実施例1-2のように、塩基2(アミン水溶液(A1))を添加した場合にも、実施例1-1ほどではないにせよ、炭酸カルシウムが効率よく生成されたことがわかる。
FIG. 15 shows the measurement results of calcium ion concentration, and FIG. 16 shows the measurement results of pH.
The results shown in FIGS. 15 and 16 reveal the following.
In Example 1-1, when the base 1 (amine aqueous solution (A2)) was added to seawater, the calcium ion concentration immediately decreased. Also, no significant increase in pH was observed. From this, it can be seen that when base 1 (amine aqueous solution (A2)) was added to seawater, calcium carbonate precipitated immediately without a large increase in pH.
In contrast, as in Comparative Example 1-1, when base 3 (NaOH) was added to seawater, cloudiness of the mixed liquid was observed. Also, a significant increase in pH was observed. From this, it is considered that when the pH of seawater was raised by adding Base 3 to seawater, the magnesium ions present in the seawater in an amount three times as large as the calcium ions became magnesium hydroxide, inhibiting the formation of calcium carbonate.
In addition, as in Example 1-2, when base 2 (aqueous amine solution (A1)) was added, the calcium ion concentration did not decrease as quickly as in Example 1-1, but compared to Comparative Example 1-1, there was a clear tendency for the calcium ion concentration to decrease. From this, it can be seen that even when base 2 (aqueous amine solution (A1)) was added as in Example 1-2, calcium carbonate was produced efficiently, though not as efficiently as in Example 1-1.
 以上の結果から、実施例1-1のように、塩基1(アミン水溶液(A2))を用いることで、最も効率よく炭酸カルシウムを製造できることが明らかとなった。
 また、実施例1-2のように、塩基2(アミン水溶液(A1))を用いることでも、効率よく炭酸カルシウムを製造できることが明らかとなった。
 なお、カルシウムイオン濃度の初期(0分)~終了時(300分)の減少率は、図15に示すように、実施例1-1で86.2%、実施例1-2で78.8%、比較例1-1で50.9%であった。
From the above results, it became clear that calcium carbonate can be produced most efficiently by using base 1 (amine aqueous solution (A2)) as in Example 1-1.
It was also found that calcium carbonate can be efficiently produced by using base 2 (aqueous amine solution (A1)) as in Example 1-2.
The rate of decrease of the calcium ion concentration from the initial period (0 minutes) to the end period (300 minutes) is, as shown in FIG. 15, 86.2% in Example 1-1, 78.8% in Example 1-2, and 50.9% in Comparative Example 1-1.
[脱マグネシウム海水を用いた、炭酸カルシウム形成速度の塩基濃度の影響の検討]
 脱マグネシウム海水と塩基1を用い、炭酸カルシウム形成速度の塩基濃度の影響について検討した。
[Investigation of influence of base concentration on calcium carbonate formation rate using demagnesium seawater]
Using demagnesium seawater and base 1, the influence of base concentration on calcium carbonate formation rate was investigated.
<実施例2-1>
 脱マグネシウム海水500mLに、塩基1(アミン水溶液(A2))を添加した。
 脱マグネシウム海水は、海水(天然海水)に石灰乳を添加した後、生成した水酸化マグネシウムスラリーを除去して生成した。脱マグネシウム海水のマグネシウム濃度は、500質量ppm以下である。
 塩基1の添加量は、脱Mg海水と塩基1との混合液のアミン化合物濃度が10mMとなるように調整した。
 次いで、脱マグネシウム海水と塩基1との混合液をウォーターバスで40℃に保温しながら、空気を、エアストーンを介して1L/minで1時間導入し続け、混合液中のカルシウムイオン濃度を測定した。混合液中のカルシウムイオン濃度は、空気を導入する前と、空気を導入し始めた直後(空気の導入開始から1分後)に測定した後、さらに経時的に測定し続けた。
<Example 2-1>
Base 1 (amine aqueous solution (A2)) was added to 500 mL of demagnesium seawater.
Demagnesium-free seawater was produced by adding milk of lime to seawater (natural seawater) and then removing the produced magnesium hydroxide slurry. The magnesium concentration of the magnesium-free seawater is 500 ppm by mass or less.
The amount of base 1 to be added was adjusted so that the concentration of the amine compound in the mixed solution of Mg-free seawater and base 1 was 10 mM.
Next, air was continuously introduced at 1 L/min for 1 hour through an air stone while the mixture of demagnesium-free seawater and base 1 was kept at 40° C. in a water bath, and the calcium ion concentration in the mixture was measured. The calcium ion concentration in the mixed liquid was measured before introducing the air, immediately after the introduction of the air (1 minute after the introduction of the air started), and then continuously measured over time.
<実施例2-2~実施例2-7>
 塩基1の添加量を、脱マグネシウム海水と塩基1との混合液のアミン化合物濃度がそれぞれ以下の濃度となるように調整し、実施例2-1と同様の方法で混合液中のカルシウムイオン濃度を測定した。
・実施例2-2:20mM
・実施例2-3:30mM
・実施例2-4:40mM
・実施例2-5:50mM
・実施例2-6:60mM
・実施例2-7:70mM
<Examples 2-2 to 2-7>
The amount of base 1 added was adjusted so that the amine compound concentrations in the mixture of demagnesium-free seawater and base 1 were as follows, respectively, and the calcium ion concentration in the mixture was measured in the same manner as in Example 2-1.
・Example 2-2: 20 mM
・Example 2-3: 30 mM
・Example 2-4: 40 mM
・Example 2-5: 50 mM
・Example 2-6: 60 mM
・Example 2-7: 70 mM
 結果を図17に示す。
 図17に示す結果から、以下のことがわかる。
 実施例2-1~実施例2-7のいずれにおいても、塩基1(アミン水溶液(A2))を添加した直後にカルシウムイオン濃度は減少した。また、塩基1の添加量が多いほどカルシウムイオン濃度の減少速度が大きいことが確認された。
 なお、実施例2-1~実施例2-7のいずれにおいても、塩基1を添加した直後にカルシウムイオン濃度が大きく減少した後は、カルシウムイオン濃度はあまり変化しなかった。
The results are shown in FIG.
The results shown in FIG. 17 reveal the following.
In any of Examples 2-1 to 2-7, the calcium ion concentration decreased immediately after adding base 1 (amine aqueous solution (A2)). Moreover, it was confirmed that the rate of decrease in calcium ion concentration increased as the amount of base 1 added increased.
In addition, in any of Examples 2-1 to 2-7, the calcium ion concentration did not change much after the calcium ion concentration greatly decreased immediately after the addition of Base 1.
[脱マグネシウム海水を用いた、炭酸カルシウム形成速度の塩基種の影響の検討1]
 脱マグネシウム海水と塩基1又は3を用い、炭酸カルシウム形成速度の塩基種の影響について検討した。
[Examination of the influence of base species on calcium carbonate formation rate using demagnesium seawater 1]
Using demagnesium seawater and base 1 or 3, the effect of base species on the rate of calcium carbonate formation was investigated.
<実施例3-1>
 上記実施例2-5と同様の試験を180分間実施し、混合液中のカルシウムイオン濃度の経時変化を測定するとともに、混合液のpHの経時変化を測定した。
<Example 3-1>
The same test as in Examples 2-5 above was conducted for 180 minutes to measure changes over time in the calcium ion concentration in the mixed solution, and to measure changes over time in pH of the mixed solution.
<比較例3-1>
 塩基種を塩基1から塩基3(NaOH)に変更して実施例3-1と同様の試験を実施し、混合液中のカルシウムイオン濃度の経時変化を測定するとともに、混合液のpHの経時変化を測定した。
<Comparative Example 3-1>
The same test as in Example 3-1 was performed by changing the base species from base 1 to base 3 (NaOH), and the change over time of the calcium ion concentration in the mixed solution was measured, and the change over time of the pH of the mixed solution was measured.
 カルシウムイオン濃度の測定結果を図18に示し、pHの測定結果を図19に示す。
 図18に示す結果から、以下のことがわかる。
 実施例3-1では、塩基1(アミン水溶液(A2))を添加した直後にカルシウムイオン濃度は減少し、その後カルシウムイオン濃度が低濃度である状態を維持した。
 これに対し、比較例3-1では、初期に塩基3(NaOH)を添加すると徐々にカルシウムイオン濃度の上昇がみられ、その後徐々にカルシウムイオン濃度が低下した。そして、試験開始60分後以降は、カルシウムイオン濃度の大幅な変動はみられず、1,000質量ppmを超える値を維持した。
 また、図19に示す結果から、以下のことがわかる。
 実施例3-1では、塩基1(アミン水溶液(A2))を添加した直後にpHが低下し、その後徐々にpHの上昇がみられたものの、pHは8.5以下の状態を維持しつつけた。
 これに対し、比較例3-1では、全試験期間にわたってpHが11以上である状態を維持し続けた。
FIG. 18 shows the measurement results of calcium ion concentration, and FIG. 19 shows the measurement results of pH.
The results shown in FIG. 18 reveal the following.
In Example 3-1, the calcium ion concentration decreased immediately after the addition of base 1 (amine aqueous solution (A2)), and thereafter the calcium ion concentration remained low.
On the other hand, in Comparative Example 3-1, when the base 3 (NaOH) was added at the beginning, the calcium ion concentration gradually increased, and thereafter the calcium ion concentration gradually decreased. After 60 minutes from the start of the test, the calcium ion concentration did not change significantly and remained above 1,000 mass ppm.
Moreover, the following things are understood from the result shown in FIG.
In Example 3-1, the pH decreased immediately after the addition of the base 1 (amine aqueous solution (A2)), followed by a gradual increase in pH, but the pH was maintained at 8.5 or less.
On the other hand, in Comparative Example 3-1, the pH was maintained at 11 or higher over the entire test period.
 以上の結果から、実施例3-1のように塩基1(アミン水溶液(A2))を用いることで、比較例3-1のように塩基3(NaOH)を用いた場合と比較して、圧倒的に効率よく炭酸カルシウムを製造できることが明らかとなった。 From the above results, it became clear that calcium carbonate can be produced overwhelmingly more efficiently by using base 1 (amine aqueous solution (A2)) as in Example 3-1 than using base 3 (NaOH) as in Comparative Example 3-1.
[脱マグネシウム海水を用いた、炭酸カルシウム形成速度の塩基種の影響の検討2]
 塩基種として、ポリエチレンイミンを用い、炭酸カルシウム形成速度について検討した。
[Examination of the influence of base species on the calcium carbonate formation rate using demagnesium seawater 2]
Using polyethylenimine as a base species, the rate of formation of calcium carbonate was investigated.
<実施例4-1>
 塩基としてポリエチレンイミン1(株式会社日本触媒製、品番「SP-006」、分子量600)を用い、実施例3-1と同様の試験を実施した。塩基濃度は50mMとした。
<Example 4-1>
Using polyethyleneimine 1 (manufactured by Nippon Shokubai Co., Ltd., product number "SP-006", molecular weight 600) as a base, the same test as in Example 3-1 was performed. Base concentration was 50 mM.
<実施例4-2>
 塩基としてポリエチレンイミン2(株式会社日本触媒製、品番「SP-018」、分子量1,800)を用い、実施例3-1と同様の試験を実施した。塩基濃度は50mMとした。
<Example 4-2>
Using polyethyleneimine 2 (manufactured by Nippon Shokubai Co., Ltd., product number “SP-018”, molecular weight 1,800) as a base, the same test as in Example 3-1 was performed. Base concentration was 50 mM.
<実施例4-3>
 塩基としてポリエチレンイミン3(株式会社日本触媒製、品番「SP-200」、分子量10,000)を用い、実施例3-1と同様の試験を実施した。塩基濃度は50mMとした。
<Example 4-3>
Polyethyleneimine 3 (manufactured by Nippon Shokubai Co., Ltd., product number "SP-200", molecular weight 10,000) was used as a base, and the same test as in Example 3-1 was performed. Base concentration was 50 mM.
<実施例4-4>
 塩基としてポリエチレンイミン4(株式会社日本触媒製、品番「HM-2000」、分子量30,000)を用い、実施例3-1と同様の試験を実施した。塩基濃度は50mMとした。
<Example 4-4>
Polyethyleneimine 4 (manufactured by Nippon Shokubai Co., Ltd., product number "HM-2000", molecular weight 30,000) was used as a base, and the same test as in Example 3-1 was carried out. Base concentration was 50 mM.
 なお、ポリエチレンイミン1~4の分子量は、沸点上昇法による数平均分子量である。 The molecular weights of polyethyleneimines 1 to 4 are number average molecular weights determined by boiling point elevation method.
 結果を図20に示す。
 なお、図20には、実施例3-1及び比較例3-1の結果も掲載した。
 図20に示す結果から、塩基としてポリエチレンイミン1~4のいずれを用いた場合にも、塩基としてNaOHを用いた場合と比較して、効率よく炭酸カルシウムを製造できることが明らかとなった。
The results are shown in FIG.
FIG. 20 also shows the results of Example 3-1 and Comparative Example 3-1.
From the results shown in FIG. 20, it was clarified that calcium carbonate can be produced more efficiently when any of polyethyleneimine 1 to 4 is used as the base, compared to when NaOH is used as the base.
[かん水を用いた、炭酸カルシウム形成速度の検討]
 かん水と塩基1を用い、炭酸カルシウム形成速度について検討した。
[Examination of calcium carbonate formation rate using brackish water]
Using brackish water and base 1, the rate of calcium carbonate formation was investigated.
<実施例5-1>
 かん水500mLに、塩基1(アミン水溶液(A2))を添加した。
 かん水は、海水淡水化装置の廃海水(カルシウムイオン濃度:800質量ppm)を用いた。
 塩基1の添加量は、かん水と塩基1との混合液のアミン化合物濃度が10mMとなるように調整した。
 次いで、かん水と塩基1との混合液をウォーターバスで40℃に保温しながら、空気を、エアストーンを介して1L/minで1時間導入し続け、混合液中のカルシウムイオン濃度を測定した。混合液中のカルシウムイオン濃度は、空気を導入する前と、空気を導入し始めた直後(空気の導入開始から1分後)に測定した後、さらに経時的に測定し続けた。
 また、pHも経時的に測定した。
<Example 5-1>
Base 1 (amine aqueous solution (A2)) was added to 500 mL of brine.
Waste seawater (calcium ion concentration: 800 ppm by mass) from a seawater desalination apparatus was used as brackish water.
The amount of base 1 added was adjusted so that the concentration of the amine compound in the mixed solution of brine and base 1 was 10 mM.
Next, while keeping the mixture of brine and base 1 at 40° C. in a water bath, air was continuously introduced at 1 L/min for 1 hour through an air stone, and the calcium ion concentration in the mixture was measured. The calcium ion concentration in the mixed liquid was measured before introducing the air, immediately after the introduction of the air (1 minute after the introduction of the air started), and then continuously measured over time.
Also, the pH was measured over time.
<実施例5-2~5-4>
 塩基1の添加量を、かん水と塩基1との混合液のアミン化合物濃度がそれぞれ以下の濃度となるように調整し、実施例5-1と同様の方法で混合液中のカルシウムイオン濃度及びpHを測定した。
・実施例5-2:20mM
・実施例5-3:50mM
・実施例5-4:100mM
<Examples 5-2 to 5-4>
The amount of base 1 added was adjusted so that the amine compound concentrations in the mixture of brine and base 1 were as follows, respectively, and the calcium ion concentration and pH in the mixture were measured in the same manner as in Example 5-1.
・Example 5-2: 20 mM
・Example 5-3: 50 mM
・Example 5-4: 100 mM
 カルシウムイオン濃度の測定結果を図21に示し、pHの測定結果を図22に示す。
 図21に示す結果から、かん水を用いた場合においても、塩基1を用いることで、アミン化合物濃度がいずれの場合においてもカルシウムイオン濃度が減少し、アミン化合物濃度が高まる程(特に、アミン化合物濃度が20mM以上になると)、塩基1を添加した直後のカルシウムイオン濃度の減少が顕著であることが確認された。
 また、図22に示す結果から、アミン化合物の濃度が20mM以上になると、実験開始1分後にpHが一時的に低下することが明らかとなった。
 以上の結果から、かん水を用いた場合においても、塩基1を用いることで、効率よく炭酸カルシウムを製造でき、塩基1を多く添加する程(特に、アミン化合物濃度が20mM以上になると)、炭酸カルシウム形成速度が顕著に大きくなることがわかった。
 
FIG. 21 shows the measurement results of calcium ion concentration, and FIG. 22 shows the measurement results of pH.
From the results shown in FIG. 21, it was confirmed that even when brine was used, the use of Base 1 reduced the calcium ion concentration regardless of the amine compound concentration, and that the higher the amine compound concentration (particularly, when the amine compound concentration was 20 mM or more), the more pronounced the decrease in calcium ion concentration immediately after the addition of Base 1 was.
Moreover, from the results shown in FIG. 22, it was found that when the concentration of the amine compound was 20 mM or higher, the pH temporarily decreased 1 minute after the start of the experiment.
From the above results, it was found that even in the case of using brine, calcium carbonate can be efficiently produced by using Base 1, and the more Base 1 is added (particularly, when the amine compound concentration is 20 mM or more), the calcium carbonate formation rate increases significantly.
1a、1a’、1a’’、11a   (第一実施形態における)二酸化炭素の固定システム
1b、11b   (第二実施形態における)二酸化炭素の固定システム
1c、11c   (第三実施形態における)二酸化炭素の固定システム
(P1-1)、(P1-1)’   (第一実施形態における)第一の接触部
(P2)   (第二実施形態における)接触部
(P3-1)   (第三実施形態における)第一の接触部
2a   (第一の接触部から第二の接触部への)供給ライン
21   (アミン水溶液(A1)の)貯留タンク
21a   (アミン水溶液(A1)の)供給ライン
22   ブロア
22a   (二酸化炭素を含む空気(C)の)供給ライン
(P1-2)、(P1-2)’   (第一実施形態における)第二の接触部
(P3-2)   (第三実施形態における)第二の接触部
31   (第二族元素イオン含有水溶液(B)の)貯留タンク
31a   (第二族元素イオン含有水溶液(B)の)供給ライン
(Q)   炭酸塩回収部
(R)   アミン化合物回収・供給部
51a   (炭酸塩回収部からアミン化合物回収・供給部への)供給ライン
51b   (アミン化合物回収・供給部からアミン水溶液(A1)の貯留タンクへの)供給ライン
 
1a, 1a′, 1a″, 11a Carbon dioxide fixation systems 1b, 11b (in the second embodiment) Carbon dioxide fixation systems 1c, 11c (In the third embodiment) Carbon dioxide fixation systems (P1-1), (P1-1)′ (In the third embodiment) First contact portion (P2) (In the second embodiment) Contact portion (P3-1 in the second embodiment) First contact portion 2a (From the first contact portion to the second contact portion in the third embodiment) of) supply line 21 (of amine aqueous solution (A1)) storage tank 21a (of amine aqueous solution (A1)) supply line 22 blower 22a (of air (C) containing carbon dioxide) supply line (P1-2), (P1-2)' (in the first embodiment) second contact portion (P3-2) (in the third embodiment) second contact portion 31 (of group 2 element ion-containing aqueous solution (B)) storage tank 31a (of group 2 element ion-containing aqueous solution (B)) ) supply line (Q) carbonate recovery unit (R) amine compound recovery/supply unit 51a (from carbonate recovery unit to amine compound recovery/supply unit) supply line 51b (from amine compound recovery/supply unit to storage tank for amine aqueous solution (A1)) supply line

Claims (21)

  1.  生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンから誘導される基を含むポリマーからなる群から選択される1種以上のアミン化合物(A)の存在下で、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)と、二酸化炭素由来の炭酸イオンとを接触させて、アルカリ土類金属の炭酸塩を生成する、二酸化炭素の固定化方法であって、
     前記アミン化合物(A)に起因する前記第二族元素イオン含有水溶液(B)のpH上昇を、二酸化炭素を含む気体(C)を利用して抑制する工程(S)
    を含む、二酸化炭素の固定化方法。
    In the presence of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers containing groups derived from these amines, a group 2 element ion-containing aqueous solution (B) (wherein the group 2 element ion-containing aqueous solution (B) contains at least alkaline earth metal ions) is brought into contact with carbon dioxide-derived carbonate ions to form an alkaline earth metal carbonate.
    A step (S) of suppressing a pH increase of the group 2 element ion-containing aqueous solution (B) caused by the amine compound (A) by using a gas (C) containing carbon dioxide.
    A method for immobilizing carbon dioxide, comprising:
  2.  前記工程(S)は、
     前記アミン化合物(A)を含むアミン水溶液(A1)と、前記気体(C)とを接触させて、前記気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)を調製する第一の接触工程(S1-1)
    を含む、請求項1に記載の二酸化炭素の固定化方法。
    The step (S) is
    A first contact step (S1-1) of bringing an aqueous amine solution (A1) containing the amine compound (A) into contact with the gas (C) to prepare an aqueous amine solution (A2) containing carbonate ions derived from carbon dioxide in the gas (C).
    The method for immobilizing carbon dioxide according to claim 1, comprising:
  3.  前記工程(S)は、
     前記工程(S1-1)の後に、
     前記アミン水溶液(A2)と、前記第二族元素イオン含有水溶液(B)とを接触させる第二の接触工程(S1-2)
    を含む、請求項2に記載の二酸化炭素の固定化方法。
    The step (S) is
    After the step (S1-1),
    A second contacting step (S1-2) of bringing the aqueous amine solution (A2) into contact with the aqueous solution (B) containing Group 2 element ions
    The method for immobilizing carbon dioxide according to claim 2, comprising:
  4.  前記工程(S)は、
     前記アミン化合物(A)と、前記第二族元素イオン含有水溶液(B)と、前記気体(C)とを同時に接触させる接触工程(S2)
    を含む、請求項1に記載の二酸化炭素の固定化方法。
    The step (S) is
    A contacting step (S2) of simultaneously contacting the amine compound (A), the group 2 element ion-containing aqueous solution (B), and the gas (C)
    The method for immobilizing carbon dioxide according to claim 1, comprising:
  5.  前記工程(S)は、
     前記アミン化合物(A)と、前記第二族元素イオン含有水溶液(B)とを接触させて、前記アミン化合物(A)と前記第二族元素イオン含有水溶液(B)との混合液(AB)を調製する第一の接触工程(S3-1)、及び
     前記第一の接触工程(S3-1)の後に、前記混合液(AB)と、前記気体(C)とを接触させる第二の接触工程(S3-2)
    を含む、請求項1に記載の二酸化炭素の固定化方法。
    The step (S) is
    A first contacting step (S3-1) of contacting the amine compound (A) and the aqueous solution (B) containing group 2 element ions to prepare a mixed solution (AB) of the amine compound (A) and the aqueous solution (B) containing group 2 element ions, and a second contacting step (S3-2) of contacting the mixed solution (AB) with the gas (C) after the first contacting step (S3-1).
    The method for immobilizing carbon dioxide according to claim 1, comprising:
  6.  前記生体内で合成されるアミンが、1,3-プロパンジアミン、プトレシン、カダベリン、スペルミジン、スペルミン、ノルスペルミジン、及びノルスペルミンからなる生体アミン群から選択される1種以上である、請求項1~5のいずれか1項に記載の二酸化炭素の固定化方法。 The carbon dioxide immobilization method according to any one of claims 1 to 5, wherein the amine synthesized in vivo is one or more selected from the biogenic amine group consisting of 1,3-propanediamine, putrescine, cadaverine, spermidine, spermine, norspermidine, and norspermine.
  7.  前記人工的に合成されるアミンが、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、ジグリコールアミン、メチルジエタノールアミン、ピペラジン、及びエチレンジアミンからなる群から選択される1種以上である、請求項1~6のいずれか1項に記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to any one of claims 1 to 6, wherein the artificially synthesized amine is one or more selected from the group consisting of monoethanolamine, diethanolamine, triethanolamine, diisopropanolamine, diglycolamine, methyldiethanolamine, piperazine, and ethylenediamine.
  8.  前記第二族元素イオン含有水溶液(B)が、マグネシウムイオン及びカルシウムイオンを少なくとも含む、請求項1~7のいずれか1項の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to any one of claims 1 to 7, wherein the group 2 element ion-containing aqueous solution (B) contains at least magnesium ions and calcium ions.
  9.  前記第二族元素イオン含有水溶液(B)が、海水である、請求項1~8のいずれか1項に記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to any one of claims 1 to 8, wherein the aqueous solution (B) containing group 2 element ions is seawater.
  10.  前記第二族元素イオン含有水溶液(B)は、カルシウムイオン濃度が400質量ppm以上である、請求項1~8のいずれか1項に記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to any one of claims 1 to 8, wherein the second group element ion-containing aqueous solution (B) has a calcium ion concentration of 400 ppm by mass or more.
  11.  前記第二族元素イオン含有水溶液(B)は、マグネシウムイオン濃度が500質量ppm以下である、請求項1~8及び10のいずれか1項に記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to any one of claims 1 to 8 and 10, wherein the group 2 element ion-containing aqueous solution (B) has a magnesium ion concentration of 500 ppm by mass or less.
  12.  前記工程(S)の後に、前記アルカリ土類金属の炭酸塩を回収する回収工程(T)をさらに含む、請求項1~11のいずれか1項に記載の二酸化炭素の固定化方法。 The method for immobilizing carbon dioxide according to any one of claims 1 to 11, further comprising a recovery step (T) of recovering the alkaline earth metal carbonate after the step (S).
  13.  アルカリ土類金属の炭酸塩が析出した後の液相から前記アミン化合物(A)を回収し、前記工程(S)において用いる前記アミン化合物(A)の少なくとも一部として供給するアミン化合物回収・供給工程(U)をさらに含む、請求項1~12のいずれか1項に記載の二酸化炭素の固定化方法。 The carbon dioxide fixation method according to any one of claims 1 to 12, further comprising an amine compound recovery/supply step (U) of recovering the amine compound (A) from the liquid phase after the alkaline earth metal carbonate has precipitated and supplying it as at least part of the amine compound (A) used in the step (S).
  14.  請求項1に記載の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムであって、
     生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンのポリマーからなる群から選択される1種以上のアミン化合物(A)を含むアミン水溶液(A1)と、二酸化炭素を含む気体(C)とを接触させて、前記気体(C)中の二酸化炭素由来の炭酸イオンを含むアミン水溶液(A2)を調製する第一の接触部(P1-1)、
     前記アミン水溶液(A2)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)とを接触させて、アルカリ土類金属の炭酸塩を析出させる第二の接触部(P1-2)、及び
     前記アルカリ土類金属の炭酸塩を回収する炭酸塩回収部(Q)
    を少なくとも備える、二酸化炭素の固定化システム。
    A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to claim 1,
    A first contact part (P1-1) for preparing an aqueous amine solution (A2) containing carbon dioxide-derived carbonate ions in the gas (C) by bringing an aqueous amine solution (A1) containing one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers of these amines into contact with a gas (C) containing carbon dioxide;
    The aqueous amine solution (A2) and the aqueous solution (B) containing group 2 element ions (wherein the aqueous solution (B) containing group 2 element ions contains at least alkaline earth metal ions) are brought into contact with each other to deposit an alkaline earth metal carbonate in a second contact part (P1-2), and a carbonate recovery part (Q) in which the alkaline earth metal carbonate is recovered.
    A carbon dioxide fixation system comprising at least
  15.  前記第一の接触部(P1-1)を複数備える、請求項14に記載の二酸化炭素の固定化システム。 The carbon dioxide fixation system according to claim 14, comprising a plurality of said first contact portions (P1-1).
  16.  前記第二の接触部(P1-2)を複数備える、請求項14又は15に記載の二酸化炭素の固定化システム。 The carbon dioxide fixation system according to claim 14 or 15, comprising a plurality of said second contact parts (P1-2).
  17.  請求項14又は15に記載の二酸化炭素の固定化システムにおいて、
     前記第二の接触部(P1-2)を備えることなく、前記第一の接触部(P1-1)において前記アミン水溶液(A2)と前記第二族元素イオン含有水溶液(B)とを接触させる、二酸化炭素の固定化システム。
    In the carbon dioxide fixation system according to claim 14 or 15,
    A carbon dioxide immobilization system in which the amine aqueous solution (A2) and the group 2 element ion-containing aqueous solution (B) are brought into contact at the first contact portion (P1-1) without the second contact portion (P1-2).
  18.  請求項1に記載の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムであって、
     生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンのポリマーからなる群から選択される1種以上のアミン化合物(A)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)と、二酸化炭素を含む気体(C)とを同時に接触させて、アルカリ土類金属の炭酸塩を析出させる接触部(P2)、及び
     前記アルカリ土類金属の炭酸塩を回収する炭酸塩回収部(Q)
    を少なくとも備える、二酸化炭素の固定化システム。
    A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to claim 1,
    At least one amine compound (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers of these amines, a Group 2 element ion-containing aqueous solution (B) (wherein the Group 2 element ion-containing aqueous solution (B) contains at least alkaline earth metal ions) and a gas (C) containing carbon dioxide are simultaneously brought into contact with each other to deposit an alkaline earth metal carbonate, and a carbonate recovery unit (Q) for recovering the alkaline earth metal carbonate.
    A carbon dioxide fixation system comprising at least
  19.  請求項1に記載の二酸化炭素の固定化方法を実施するための二酸化炭素の固定化システムであって、
     生体内で合成されるアミン、人工的に合成されるアミン、及びこれらアミンのポリマーからなる群から選択される1種以上のアミン化合物(A)と、第二族元素イオン含有水溶液(B)(但し、該第二族元素イオン含有水溶液(B)は少なくともアルカリ土類金属イオンを含む)との混合液(AB)を調製する第一の接触部(P3-1)、
     混合液(AB)と、二酸化炭素を含む気体(C)とを接触させて、アルカリ土類金属の炭酸塩を析出させる第二の接触部(P3-2)、及び
     前記アルカリ土類金属の炭酸塩を回収する炭酸塩回収部(Q)、
    を少なくとも備える、二酸化炭素の固定化システム。
    A carbon dioxide fixation system for carrying out the carbon dioxide fixation method according to claim 1,
    a first contact portion (P3-1) for preparing a mixed solution (AB) of one or more amine compounds (A) selected from the group consisting of amines synthesized in vivo, artificially synthesized amines, and polymers of these amines, and an aqueous solution (B) containing Group 2 element ions (wherein the aqueous solution (B) containing Group 2 element ions contains at least alkaline earth metal ions);
    A second contact part (P3-2) for bringing the mixed solution (AB) into contact with a gas (C) containing carbon dioxide to deposit an alkaline earth metal carbonate, and a carbonate recovery part (Q) for recovering the alkaline earth metal carbonate,
    A carbon dioxide fixation system comprising at least
  20.  前記アルカリ土類金属の炭酸塩が析出した後の液相から前記アミン化合物(A)を回収し、前記第一の接触部(P1-1)、前記接触部(P2)、又は前記第一の接触部(P3-1)において使用する前記アミン化合物(A)の少なくとも一部として供給するアミン化合物回収・供給部(R)、
    をさらに備える、請求項14~19のいずれか1項に記載の二酸化炭素の固定化システム。
    An amine compound recovery/supply unit (R) that recovers the amine compound (A) from the liquid phase after the alkaline earth metal carbonate has precipitated and supplies it as at least a part of the amine compound (A) used in the first contact portion (P1-1), the contact portion (P2), or the first contact portion (P3-1);
    The carbon dioxide fixation system according to any one of claims 14 to 19, further comprising:
  21.  請求項1~13のいずれか1項に記載の二酸化炭素の固定化方法を用いた、炭酸塩の製造方法。 

     
    A method for producing a carbonate using the method for immobilizing carbon dioxide according to any one of claims 1 to 13.

PCT/JP2023/001590 2022-01-20 2023-01-19 Carbon dioxide fixation method and fixation system, and carbonate production method WO2023140336A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022007350 2022-01-20
JP2022-007350 2022-01-20
JP2023004107A JP2023106331A (en) 2022-01-20 2023-01-13 Fixing method and fixing system for carbon dioxide and production method of carbonate
JP2023-004107 2023-01-13

Publications (1)

Publication Number Publication Date
WO2023140336A1 true WO2023140336A1 (en) 2023-07-27

Family

ID=87348397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001590 WO2023140336A1 (en) 2022-01-20 2023-01-19 Carbon dioxide fixation method and fixation system, and carbonate production method

Country Status (1)

Country Link
WO (1) WO2023140336A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267634A (en) * 1994-03-25 1995-10-17 Yusaku Takita Method for producing plate-like calcium carbonate
JP2013047173A (en) * 2011-07-28 2013-03-07 Kitasato Institute Method for producing alkaline earth metal carbonate using carbon dioxide in air and use of the same
JP2017513806A (en) * 2014-04-28 2017-06-01 リクシヴィア・インコーポレイテッドLixivia, Inc. Method for producing alkaline earth carbonate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267634A (en) * 1994-03-25 1995-10-17 Yusaku Takita Method for producing plate-like calcium carbonate
JP2013047173A (en) * 2011-07-28 2013-03-07 Kitasato Institute Method for producing alkaline earth metal carbonate using carbon dioxide in air and use of the same
JP2017513806A (en) * 2014-04-28 2017-06-01 リクシヴィア・インコーポレイテッドLixivia, Inc. Method for producing alkaline earth carbonate

Similar Documents

Publication Publication Date Title
CN102725053B (en) Forward osmosis separating technology
AU2008270034B2 (en) Desalination methods and systems that include carbonate compound precipitation
US20120211421A1 (en) Systems and methods for processing co2
EP1899043A1 (en) Preparation and use of cationic halides, sequestration of carbon dioxide
CN103221114A (en) Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream
BR112018003086B1 (en) PROCESS FOR CAPTURING CARBON DIOXIDE AND DESALINATION
JP2023106331A (en) Fixing method and fixing system for carbon dioxide and production method of carbonate
JP6044015B2 (en) Production method of alkaline earth metal carbonate using carbon dioxide in air and its utilization
WO2017205043A1 (en) Chemical extraction from an aqueous solution and power generator cooling
WO2023140336A1 (en) Carbon dioxide fixation method and fixation system, and carbonate production method
CN100513324C (en) Pre-treatment method for sea salt water
Moon et al. Comparison of reactions with different calcium sources for CaCO3 production using carbonic anhydrase
KR20220063429A (en) CARBON UTILIZATION BASED ON POST-TREATMENT OF DESALINATED REJECT BRINE AND EFFECT OF STRUCTURAL PROPERTIES OF AMINES FOR CaCO3 POLYMORPHS CONTROL
JP2024106903A (en) Desulfurization method and desulfurization system circulating and using carbon dioxide
Lee et al. Total Resource Circulation of Desalination Brine: A Review
JP2024128978A (en) Carbon dioxide fixation method and fixation system, and calcium carbonate manufacturing method
US20220081737A1 (en) Pond reactor for recovery of metals
CN112387256A (en) Preparation method and application of pyridylamine-based composite hydrogel adsorbent
JP2024106904A (en) Calcium ion elution method, carbon dioxide fixing method, and calcium carbonate production method
CN113024753B (en) Preparation method and application of double-rare-earth covalent organic framework hybrid material
KR102222526B1 (en) Method of recovering lithium on an aluminum substrate in a aqueous solution
WO2024080132A1 (en) Method for fixing carbon dioxide
WO2022084996A1 (en) A method for the production of ammonia
KR20240132751A (en) Method of fabricating free-standing Lithium Aluminum Layered Double Hydroxide membrane by using aluminum in aqueous solution
WO2023187778A1 (en) Method for removing carbon dioxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE