[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023140300A1 - 金属インク、金属インクの製造方法、金属層の製造方法、及び金属層 - Google Patents

金属インク、金属インクの製造方法、金属層の製造方法、及び金属層 Download PDF

Info

Publication number
WO2023140300A1
WO2023140300A1 PCT/JP2023/001406 JP2023001406W WO2023140300A1 WO 2023140300 A1 WO2023140300 A1 WO 2023140300A1 JP 2023001406 W JP2023001406 W JP 2023001406W WO 2023140300 A1 WO2023140300 A1 WO 2023140300A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
solvent
ink
metal ink
particles
Prior art date
Application number
PCT/JP2023/001406
Other languages
English (en)
French (fr)
Inventor
隆二 植杉
朋彦 山口
陸 海老沢
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020247021864A priority Critical patent/KR20240136948A/ko
Priority to JP2023557430A priority patent/JP7464202B2/ja
Priority to CN202380017542.7A priority patent/CN118742615A/zh
Publication of WO2023140300A1 publication Critical patent/WO2023140300A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Definitions

  • the present invention relates to a metal ink, a method for producing a metal ink, a method for producing a metal layer, and a metal layer.
  • Patent Document 1 describes forming a solder layer on the member.
  • Patent Document 2 describes that a silver paste is used to form a metal layer.
  • Silver paste can be sintered under relatively low temperature conditions, and the melting point of the bonding layer formed after sintering is the same as that of silver. Therefore, the metal layer made of the sintered silver paste has excellent heat resistance and can be used stably even in a high-temperature environment or in a large-current application.
  • copper paste may be used as shown in Patent Document 3, for example.
  • a metal ink in which metal particles are dispersed in a liquid may be used instead of a metal paste such as a copper paste.
  • Metallic inks may be advantageous in manufacturing, for example, because they can be ejected from nozzles.
  • JP 2004-172378 A Japanese Patent No. 6531547 JP 2019-67515 A
  • the present invention has been made in view of the above, and aims to provide a metal ink that can be stored appropriately for a long period of time while suppressing aggregation of metal particles, a method for manufacturing the metal ink, a method for manufacturing a metal layer, and a metal layer.
  • the metal ink of the present disclosure contains metal particles, a solvent, an organic solvent that has a boiling point of 150°C or higher at atmospheric pressure and is miscible with water, and a polyhydric alcohol that contains two or more OH groups and is soluble in water and ethanol.
  • the polyhydric alcohol is preferably contained in a mass ratio of 0.01% or more and 20.0% or less with respect to the total amount of the metal ink.
  • the metal particles are preferably contained in a mass ratio of 1.0% or more and 50.0% or less with respect to the total amount of the metal ink.
  • the organic solvent is preferably contained in a mass ratio of 0.01% or more and 30.0% or less with respect to the total amount of the metal ink.
  • the organic solvent preferably contains at least one of a glycol ether and an aprotic polar solvent.
  • the polyhydric alcohol preferably has a melting point of 30°C or higher.
  • the solvent preferably contains water.
  • the solvent preferably contains ethanol.
  • the solvent preferably contains one or more OH groups, a boiling point of 150°C or higher, and a high boiling point solvent that is a liquid that is sparingly soluble or insoluble in water.
  • the metal particles are preferably at least one of copper and silver.
  • the metal particles are copper or silver
  • the solvent contains water
  • the organic solvent contains at least one of glycol ether and an aprotic polar solvent
  • the polyhydric alcohol contains at least one polyhydric alcohol that contains two or more OH groups, is soluble in water and ethanol, and has a melting point of 30°C or higher.
  • the method for producing a metal ink of the present disclosure mixes metal particles, a solvent, an organic solvent that has a boiling point of 150° C. or higher at atmospheric pressure and is miscible with water, and a polyhydric alcohol that contains two or more OH groups and is soluble in water and ethanol, to produce a metal ink containing the metal particles, the solvent, and the polyhydric alcohol.
  • a first metal ink that is a metal ink containing the metal particles, water, the organic solvent, and the polyhydric alcohol.
  • a second metal ink which is a metal ink containing the metal particles, water, the organic solvent, the ethanol, and the polyhydric alcohol.
  • the second metal ink with a high boiling point solvent as the solvent that contains one or more OH groups, has a boiling point of 150° C. or higher, and is a liquid that is sparingly soluble or insoluble in water to produce a third metal ink that is a metal ink containing the metal particles, water, the organic solvent, the ethanol, the high boiling point solvent, and the polyhydric alcohol.
  • a high boiling point solvent as the solvent that contains one or more OH groups, has a boiling point of 150° C. or higher, and is a liquid that is sparingly soluble or insoluble in water to produce a third metal ink that is a metal ink containing the metal particles, water, the organic solvent, the ethanol, the high boiling point solvent, and the polyhydric alcohol.
  • the metal ink is heated to form a metal layer.
  • the metal layer of the present disclosure is preferably made using the metal ink.
  • FIG. 1 is a schematic diagram of the metal ink according to this embodiment.
  • FIG. 2 is a flow chart for explaining the method for producing a metal ink according to this embodiment.
  • FIG. 3A is a table showing the contents of the components of the metal ink in each example and the evaluation results.
  • FIG. 3B is a table showing the contents of the components of the metal ink in each example and the evaluation results.
  • FIG. 3C is a table showing the contents of the components of the metal ink in each example and the evaluation results.
  • FIG. 3D is a table showing the contents of the components of the metal ink in each example and the evaluation results.
  • FIG. 3E is a table showing the contents of the components of the metal ink in each example and the evaluation results.
  • FIG. 3A is a table showing the contents of the components of the metal ink in each example and the evaluation results.
  • FIG. 3B is a table showing the contents of the components of the metal ink in each example and the evaluation results.
  • FIG. 3C is
  • FIG. 3F is a table showing the contents of the components of the metal ink in each example and the evaluation results.
  • FIG. 3G is a table showing the contents of the components of the metal ink in each example and the evaluation results.
  • FIG. 3H is a table showing the contents of the components of the metal ink in each example and the evaluation results.
  • FIG. 3I is a table showing the contents of the components of the metal ink in each example and the evaluation results.
  • FIG. 1 is a schematic diagram of the metal ink according to this embodiment.
  • the metal ink 10 according to this embodiment includes metal particles 12, a polyhydric alcohol 14, a solvent 16, and an organic solvent .
  • the metal ink 10 refers to an ink-like substance in which the metal particles 12 are not dissolved in the liquid solvent 16 and the solid metal particles 12 are present in the solvent 16 .
  • the metal particles 12 may be sedimented in the solvent 16, or the metal particles 12 may be dispersed.
  • the metal ink 10 is used for forming a metal layer on a member (for example, forming wiring). For example, after jetting and drying the metal ink 10 from a nozzle onto a base material (resin, metal film, resin, metal, ceramic, etc., or a substrate combining these), the metal particles 12 are sintered or melted by heating to remove other components, followed by cooling to form a metal layer formed of the metal components of the metal particles 12 on the base material.
  • the use of the metal ink 10 is not limited to this and may be arbitrary.
  • the conditions for producing the metal layer using the metal ink 10 may be arbitrary, but it is preferable to heat the metal ink 10 under an oxidizing gas atmosphere, an inert gas atmosphere, or a reducing gas atmosphere.
  • the metal particles 12 are metal particles.
  • the metal particles 12 are preferably copper or silver particles, and may contain both copper and silver. That is, it can be said that the metal particles 12 are preferably particles of at least one of copper and silver.
  • the metal particles 12 preferably have a particle size (Peak value of particle size distribution (number)) of 10 nm or more and 1000 nm or less.
  • the particle size of the metal particles 12 in the metal ink 10 can be obtained as the peak value of the particle size distribution (number) of the metal particles 12 using a particle size measuring device (Zetasizer Nano Series ZSP manufactured by Malvern).
  • a particle size measuring device Zetasizer Nano Series ZSP manufactured by Malvern.
  • the metal ink 10 may be diluted and dispersed about 10 to 1000 times with the main solvent (water, ethanol, or high boiling point solvent) in the metal ink 10 before measurement.
  • the particle size of the metal particles 12 is preferably in the range of 30 nm or more and 500 nm or less, and particularly preferably in the range of 30 nm or more and 300 nm or less.
  • the BET specific surface area of the metal particles 12 can be determined by measuring the amount of gas adsorbed by the metal particles 12 using nitrogen or krypton gas as the measurement gas with a specific surface area measuring device (QUANTACHROME AUTOSORB-iQ2, manufactured by Quantachrome Instruments).
  • the BET specific surface area of the metal particles 12 is preferably in the range of 2.0 m 2 /g or more and 8.0 m 2 /g or less, more preferably in the range of 3.5 m 2 /g or more and 8.0 m 2 /g or less, and particularly preferably in the range of 4.0 m 2 /g or more and 8.0 m 2 /g or less.
  • the shape of the metal particles 12 is not limited to a spherical shape, and may be a needle shape or a flat plate shape.
  • the surface of the metal particles 12 is preferably partially or wholly covered with an organic substance.
  • an organic substance By being coated with an organic substance, oxidation of the metal particles 12 is suppressed, and deterioration of sinterability due to oxidation of the metal particles 12 is even less likely to occur.
  • the organic substance coating the metal particles 12 is not formed by the polyhydric alcohol 14 or the solvent 16 and is not derived from the polyhydric alcohol 14 or the solvent 16 .
  • the organic substance covering the metal particles 12 is not a metal oxide (copper oxide or silver oxide) formed by oxidation of metal.
  • the metal particles 12 are coated with an organic substance can be confirmed by analyzing the surface of the metal particles 12 using time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the metal particles 12 preferably have a ratio of the amount of C 3 H 3 O 3 ⁇ ions detected to the amount of Cu + ions detected by analyzing the surface using time-of-flight secondary ion mass spectrometry (C 3 H 3 O 3 ⁇ /Cu + ratio) of 0.001 or more. More preferably, the C 3 H 3 O 3 ⁇ /Cu + ratio is in the range of 0.05 or more and 0.2 or less.
  • the surface of the metal particle 12 in this analysis is not the surface of the metal particle 12 when the organic matter is removed from the metal particle 12, but the surface of the metal particle 12 containing the coating organic matter (i.e., the surface of the organic matter).
  • the ratio of the amount of C 3 H 3 O 3 ⁇ ions detected to the amount of Ag + ions detected by analyzing the surface of the metal particles 12 using time-of-flight secondary ion mass spectrometry is preferably 0.001 or more, more preferably in the range of 0.05 to 0.2.
  • C 3 H 4 O 2 ⁇ ions and C 5 or higher ions may be detected by surface analysis using time-of-flight secondary ion mass spectrometry.
  • the ratio of the detected amount of C 3 H 4 O 2 ⁇ ions to the detected amount of Cu + ions is preferably 0.001 or more.
  • the ratio of the detected amount of C5 or higher ions to the detected amount of Cu + ions is preferably less than 0.005.
  • the ratio of the detected amount of C 3 H 4 O 2 ⁇ ions to the detected amount of Ag + ions is preferably 0.001 or more.
  • the ratio of the detected amount of C5 or higher ions to the detected amount of Ag + ions is preferably less than 0.005.
  • the C 3 H 3 O 3 - ions, C 3 H 4 O 2 - ions, and C 5 or higher ions detected in the time-of-flight secondary ion mass spectrometry are derived from the organic substances coating the surfaces of the metal particles 12 . Therefore, when each of the C 3 H 3 O 3 ⁇ /Cu + ratio and the C 3 H 4 O 2 ⁇ /Cu + ratio is 0.001 or more, the surfaces of the metal particles 12 are less likely to be oxidized and the metal particles 12 are less likely to agglomerate.
  • the C 3 H 3 O 3 ⁇ /Cu + ratio and the C 3 H 4 O 2 ⁇ /Cu + ratio are 0.2 or less, the oxidation and aggregation of the metal particles 12 can be suppressed without excessively deteriorating the sinterability of the metal particles 12, and the generation of decomposition gas of organic substances during heating can be suppressed, so that a bonding layer with few voids can be formed.
  • the C 3 H 3 O 3 ⁇ /Cu + ratio and the C 3 H 4 O 2 ⁇ /Cu + ratio are preferably in the range of 0.08 or more and 0.16 or less.
  • the C5 or higher ion/Cu + ratio is 0.005 times or more, a large amount of organic matter having a relatively high desorption temperature is present on the particle surface, and as a result, the sinterability is not sufficiently exhibited, making it difficult to obtain a strong bonding layer.
  • the C5 and above ions/Cu + ratio is less than 0.003.
  • the metal particles 12 are silver, the C 3 H 3 O 3 ⁇ /Ag + ratio and the C 3 H 4 O 2 ⁇ /Ag + ratio are preferably in the range of 0.08 to 0.16.
  • the C 5 or higher ion/Ag + ratio is 0.005 times or more, a large amount of organic matter having a relatively high desorption temperature is present on the particle surface. It can be said that the C 5 and above ions/Ag + ratio is preferably less than 0.003 times.
  • the organic substance that coats the metal particles 12 is preferably carboxylic acid derived from the carboxylic acid metal used when manufacturing the metal particles 12 .
  • a method for manufacturing the metal particles 12 coated with the carboxylic acid-derived organic substance will be described later.
  • the coating amount of the organic substance on the metal particles 12 is preferably in the range of 0.5% by mass to 2.0% by mass, more preferably in the range of 0.8% by mass to 1.8% by mass, and even more preferably in the range of 0.8% by mass to 1.5% by mass with respect to 100% by mass of the metal particles.
  • the coating amount of the organic substance is 0.5% by mass or more, the metal particles 12 can be uniformly coated with the organic substance, and oxidation of the metal particles 12 can be suppressed more reliably.
  • the coating amount of the organic substance when the coating amount of the organic substance is 2.0% by mass or less, it is possible to suppress the generation of voids in the sintered body (bonding layer) of the metal particles due to the gas generated by the decomposition of the organic substance due to heating.
  • the coating amount of organic matter can be measured using a commercially available device.
  • the coating amount can be measured using a differential type differential thermal balance TG8120-SL (manufactured by RIGAKU).
  • TG8120-SL manufactured by RIGAKU
  • metal particles from which moisture has been removed by freeze-drying are used as samples.
  • measurement is performed in nitrogen (G2 grade) gas, the temperature increase rate is 10 ° C./min, and the weight loss rate when heated from 250 ° C.
  • the measurement may be performed three times for each of the metal particles of the same lot, and the arithmetic average value may be taken as the coating amount.
  • Organic matter derived from carboxylic acid generates carbon dioxide gas, nitrogen gas, evaporative gas of acetone, and water vapor when decomposed.
  • Polyhydric alcohol 14 is an alcohol that contains two or more OH groups and is soluble in water and ethanol. Moreover, the polyhydric alcohol 14 preferably has a melting point of 30° C. or higher.
  • Polyhydric alcohol 14 is, for example, 2,2-dimethyl-1,3-propanediol, 2,5-dimethyl-2,5-hexanediol, 2-hydroxymethyl-2-methyl-1,3-propanediol, 1-phenyl-1,2-ethanediol, 1,1,1-tris(hydroxymethyl)propane, erythritol, pentaerythritol, ribitol, resorcinol, (pyro)catechol, 5-methylresorcinol, pyroga 1,2,3-cyclohexanetriol, and 1,3,5-cyclohexanetriol.
  • the polyhydric alcohol 14 is a non-electrolyte, and exists in the metal ink 10 in a state of being dissolved in the solvent 16 (a state in which the molecules of the polyhydric alcohol 14 are dispersed in the solvent 16).
  • the polyhydric alcohol 14 may exist in any form in the metal ink 10 , and may be in a state in which it does not dissolve in the solvent 16 .
  • the polyhydric alcohol 14 is coordinated around the metal particles 12, and aggregation of the metal particles 12 can be appropriately suppressed. That is, in the present embodiment, it can be said that the polyhydric alcohol 14 is preferably coordinated around the metal particles 12 .
  • the solvent 16 is a liquid (medium) for dispersing the metal particles 12 . Details of the solvent 16 will be described later.
  • the organic solvent 18 is an organic solvent having components different from those of the polyhydric alcohol 14 and the solvent 16 .
  • the organic solvent 18 has a boiling point of 150° C. or higher at atmospheric pressure and is miscible with water. More preferably, the organic solvent 18 has a boiling point of 200° C. or higher.
  • Miscible refers to the organic solvents 18 being miscible in water in all ratios (ie, completely soluble in each other at any concentration). In this embodiment, organic solvent 18 is preferably miscible with solvent 16 .
  • Organic solvent 18 is preferably a glycol ether or an aprotic polar solvent. Furthermore, the organic solvent 18 may contain both a glycol ether and an aprotic polar solvent, in other words, preferably contains at least one of a glycol ether and an aprotic polar solvent.
  • Glycol ethers contained in the organic solvent 18 include, for example, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether, ethylene glycol isobutyl ether, diethylene glycol monoisobutyl ether, ethylene glycol monoallyl ether, diethylene glycol monobenzyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, Diethylene glycol methyl ethyl ether and diethylene glycol diethyl ether can be mentioned.
  • organic solvent 18 When organic solvent 18 comprises a glycol ether, it may comprise at least one selected from these enumerations.
  • Aprotic polar solvents included in organic solvent 18 include, for example, N-methylpyrrolidone, dimethylformamide, 2-pyrrolidone, and propylene carbonate.
  • organic solvent 18 When organic solvent 18 comprises an aprotic polar solvent, it may comprise at least one selected from these enumerations.
  • the metal ink 10 may contain unavoidable impurities in addition to the components listed above.
  • unavoidable impurities include substances generated by the above-mentioned components reacting with the components themselves or other components, oxygen, etc. due to light, heat, etc., such as decomposition, polymerization, addition, oxidation, and reduction.
  • the content of the polyhydric alcohol 14 in the metal ink 10 is preferably 0.01% or more and 20.0% or less in mass ratio with respect to the entire metal ink 10 . By setting the content of the polyhydric alcohol 14 within this range, it is possible to prevent the concentration of the metal particles 12 from becoming too low while properly dispersing the metal particles 12 .
  • the content of the metal particles 12 in the metal ink 10 is preferably 1.0% or more and 50.0% or less, more preferably 5.0% or more and 50.0% or less, and even more preferably 5.0% or more and 30.0% or less, relative to the entire metal ink 10.
  • the content of the metal particles 12 is within this range, it is possible to suppress the deterioration of the fluidity of the metal ink 10 while maintaining a sufficient concentration of the metal particles 12, which is advantageous in terms of manufacturing, such as improving the jettability of the nozzle.
  • the content of the solvent 16 in the metal ink 10 is preferably 50.0% or more and 99.0% or less, more preferably 50.0% or more and 95.0% or less, and even more preferably 60.0% or more and 95.0% or less, relative to the entire metal ink 10.
  • the content of the solvent 16 is within this range, it is possible to suppress the deterioration of the fluidity of the metal ink 10 while maintaining a sufficient concentration of the metal particles 12, which is advantageous in terms of manufacturing, such as improving the jettability of the nozzle.
  • the content of the organic solvent 18 in the metal ink 10 is preferably 0.01% or more and 30.0% or less, more preferably 0.1% or more and 30.0% or less, relative to the entire metal ink 10.
  • the content of the organic solvent 18 is within this range, even when the metal ink 10 is left for a long period of time, the antifungal property is sufficient, and it can be properly stored for a long period of time.
  • the metal ink 10 may contain ionized metal particles 12 (metal ions forming the metal particles 12). That is, the liquid component of the metal ink 10 may contain the ionized metal particles 12 . It can be said that the ionized metal particles 12 may be at least one of silver ions and copper ions.
  • the metal ink 10 described above can have variations in the components of the solvent 16 .
  • Each metal ink 10 having different components of the solvent 16 will be described below.
  • first metal ink 10A One of the metal inks 10 having different components of the solvent 16 is referred to as a first metal ink 10A.
  • the solvent 16 of the first metal ink 10A is water.
  • the first metal ink 10 ⁇ /b>A is obtained by dissolving the polyhydric alcohol 14 and the organic solvent 18 in water, which is the solvent 16 , and mixing the metal particles 12 . That is, the first metal ink 10A contains the metal particles 12 in the aqueous solution of the polyhydric alcohol 14 and the organic solvent 18 .
  • the content of the polyhydric alcohol 14 in the first metal ink 10A is preferably 0.01% or more and 20.0% or less, more preferably 0.5% or more and 20.0% or less, and even more preferably 1.0% or more and 20.0% or less, relative to the entire first metal ink 10A. By setting the content of the polyhydric alcohol 14 within this range, it is possible to prevent the concentration of the metal particles 12 from becoming too low while properly dispersing the metal particles 12 .
  • the content of the metal particles 12 in the first metal ink 10A is preferably 1.0% or more and 50.0% or less, more preferably 5.0% or more and 50.0% or less, and even more preferably 5.0% or more and 30.0% or less, relative to the entire first metal ink 10A.
  • the content of the metal particles 12 is within this range, it is possible to suppress a decrease in the fluidity of the first metal ink 10A while maintaining a sufficient concentration of the metal particles 12, which is advantageous in terms of manufacturing, such as improving jettability through nozzles.
  • the content of the organic solvent 18 in the first metal ink 10A is preferably 0.01% or more and 30.0% or less, more preferably 1.0% or more and 30.0% or less, and even more preferably 2.0% or more and 30.0% or less, relative to the entire first metal ink 10A. When the content of the organic solvent 18 is within this range, it can be properly stored for a long period of time.
  • the first metal ink 10A preferably does not contain substances other than the metal particles 12, the polyhydric alcohol 14, the solvent 16 that is water, and the organic solvent 18, except for inevitable impurities.
  • the first metal ink 10A is not limited thereto, and the first metal ink 10A may contain metal particles 12, polyhydric alcohol 14, solvent 16 which is water, and additives other than organic solvent 18 (dispersant, adhesion imparting agent, rheology modifier, rust inhibitor, anti-settling agent, etc.).
  • the second metal ink 10B contains ethanol as the solvent 16, and more specifically, the main solvent, which is the main component of the solvent 16, is ethanol.
  • the main solvent as used herein refers to a solvent whose content is higher than 50% by mass in the entire solvent 16 .
  • the second metal ink 10B may contain, as the solvent 16, a solvent other than ethanol, which is the main solvent, and may contain water in this embodiment.
  • the second metal ink 10B is obtained by dissolving the polyhydric alcohol 14 and the organic solvent 18 in the solvent 16 and mixing the metal particles 12 . That is, for example, the second metal ink 10B contains the metal particles 12 in an aqueous solution of the polyhydric alcohol 14, the organic solvent 18, and ethanol.
  • the content of the polyhydric alcohol 14 is preferably 0.01% or more and 10.0% or less, more preferably 0.1% or more and 10.0% or less, and even more preferably 0.1% or more and 5.0% or less, relative to the entire second metal ink 10B.
  • the content of the metal particles 12 is preferably 1.0% or more and 50.0% or less, more preferably 5.0% or more and 50.0% or less, and even more preferably 5.0% or more and 30.0% or less, relative to the entire second metal ink 10B.
  • the content of the metal particles 12 is within this range, it is possible to suppress the deterioration of the fluidity of the second metal ink 10B while maintaining a sufficient concentration of the metal particles 12, which is advantageous in terms of manufacturing, such as improving the jettability of the nozzle.
  • the content of ethanol in the second metal ink 10B is preferably more than 50.0% and 99.0% or less, more preferably more than 50.0% and 95.0% or less, and even more preferably 60.0% or more and 95.0% or less, relative to the entire second metal ink 10B.
  • the content of ethanol falls within this range, it is possible to suppress a decrease in the fluidity of the second metal ink 10B while maintaining a sufficient concentration of the metal particles 12, which is advantageous in terms of manufacturing, such as improving the jettability of the nozzle.
  • the content of the organic solvent 18 in the second metal ink 10B is preferably 0.01% or more and 30.0% or less, more preferably 0.1% or more and 20.0% or less, and even more preferably 0.5% or more and 20.0% or less, relative to the entire second metal ink 10B. When the content of the organic solvent 18 is within this range, it can be properly stored for a long period of time.
  • the second metal ink 10B preferably does not contain substances other than the metal particles 12, the polyhydric alcohol 14, the solvent 16 (here, water and ethanol), and the organic solvent 18, except for inevitable impurities.
  • the second metal ink 10B is not limited thereto, and the second metal ink 10B may contain additives other than the metal particles 12, the polyhydric alcohol 14, the solvent 16, and the organic solvent 18 (dispersant, adhesion imparting agent, rheology modifier, rust inhibitor, anti-settling agent, etc.).
  • the second metal ink 10B is mixed with the polyhydric alcohol 14, so that the polyhydric alcohol 14 is coordinated around the metal particles 12, for example, and the aggregation of the metal particles 12 can be suppressed.
  • the third metal ink 10C contains a high boiling point solvent as the solvent 16, and more specifically, the main solvent, which is the main component of the solvent 16, is the high boiling point solvent.
  • the third metal ink 10 ⁇ /b>C contains the metal particles 12 while the polyhydric alcohol 14 and the organic solvent 18 are dissolved in the solvent 16 .
  • the third metal ink 10C may contain, as the solvent 16, a solvent other than the high-boiling-point solvent that is the main solvent.
  • the third metal ink 10C may contain at least one of water and ethanol, and contains both water and ethanol in this embodiment.
  • a high-boiling solvent is a liquid that contains one or more OH groups, has a boiling point of 150°C or higher, and is sparingly soluble or insoluble in water.
  • the high-boiling-point solvent that is sparingly soluble or insoluble in water is preferably a solvent that is classified as a water-insoluble liquid in Table 3 of the Cabinet Order Concerning the Regulation of Hazardous Substances under the Fire Service Act.
  • the high-boiling solvent is preferably a so-called organic solvent and may be, for example, at least one of ⁇ -terpineol and 2-ethyl-1,3-hexanediol. Any solvent may contain isomers.
  • the content of the polyhydric alcohol 14 in the third metal ink 10C is preferably 0.01% or more and 5.0% or less, more preferably 0.01% or more and 5.0% or less, and even more preferably 0.01% or more and 3.0% or less, relative to the entire third metal ink 10C.
  • the content of the metal particles 12 is preferably 1.0% or more and 50.0% or less, more preferably 5.0% or more and 50.0% or less, and even more preferably 5.0% or more and 30.0% or less, relative to the total mass of the third metal ink 10C.
  • the content of the metal particles 12 is within this range, it is possible to suppress the deterioration of the fluidity of the second metal ink 10B while maintaining a sufficient concentration of the metal particles 12, which is advantageous in terms of manufacturing, such as improving the jettability of the nozzle.
  • the content of the high boiling point solvent in the third metal ink 10C is preferably more than 50.0% and 99.0% or less, more preferably more than 50.0% and 95.0% or less, and even more preferably 60.0% or more and 95.0% or less, relative to the total mass of the third metal ink 10C.
  • the content of the high-boiling-point solvent falls within this range, it is possible to suppress a decrease in the fluidity of the third metal ink 10C while maintaining a sufficient concentration of the metal particles 12. This is advantageous in terms of manufacturing, such as improving jettability through nozzles, for example.
  • the content of the organic solvent 18 in the third metal ink 10C is preferably 0.01% or more and 30.0% or less, more preferably 0.01% or more and 10.0% or less, and even more preferably 0.1% or more and 10.0% or less, relative to the total mass of the third metal ink 10C.
  • the content of the organic solvent 18 is within this range, it can be properly stored for a long period of time.
  • the third metal ink 10C preferably contains a dispersant that is a component other than the metal particles 12, the polyhydric alcohol 14, the solvent 16 and the organic solvent 18.
  • the dispersant include cationic dispersants, anionic dispersants, nonionic dispersants, and amphoteric dispersants.
  • anionic dispersants include carboxylic acid dispersants, sulfonic acid dispersants, and phosphoric acid dispersants. Phosphate ester compounds are particularly preferred as phosphoric acid dispersants.
  • the molecular weight of the phosphate ester compound used as the dispersant is preferably 200 or more and 2000 or less, more preferably 200 or more and 1500 or less, and even more preferably 200 or more and 1000 or less.
  • the content of the dispersant in the third metal ink 10C is preferably 0.01% or more and 5.0% or less, more preferably 0.1% or more and 5.0% or less, and even more preferably 0.1% or more and 3.0% or less, relative to the total mass of the third metal ink 10C. Aggregation of the metal particles 12 can be appropriately suppressed by setting the content of the dispersant within this range.
  • the third metal ink 10C preferably does not contain substances other than the metal particles 12, the polyhydric alcohol 14, the solvent 16 (here, water, ethanol, and a high boiling point solvent), the organic solvent 18, and the dispersant, except for inevitable impurities.
  • the third metal ink 10C may not contain a dispersant, or may contain additives other than the metal particles 12, the polyhydric alcohol 14, the solvent 16, the organic solvent 18, and the dispersant (adhesion imparting agent, rheology modifier, rust inhibitor, anti-settling agent, etc.).
  • a metal ink containing a high boiling point solvent as a main solvent may cause aggregation of the metal particles 12 due to the high boiling point solvent.
  • the polyhydric alcohol 14 is mixed in the third metal ink 10 ⁇ /b>C, so that the polyhydric alcohol 14 is coordinated around the metal particles 12 , for example, and the aggregation of the metal particles 12 can be suppressed.
  • FIG. 2 is a flow chart for explaining the method for producing a metal ink according to this embodiment.
  • the metal carboxylate aqueous dispersion and the reducing agent are mixed to form the metal particles 12 (step S10).
  • a metal carboxylate for example, copper carboxylate
  • a pH adjuster is added to the aqueous metal carboxylate dispersion to adjust the pH to 2.0 or more and 7.5 or less.
  • 1.0 to 1.2 equivalents of a hydrazine compound capable of reducing metal ions is added and mixed as a reducing agent to the pH-adjusted aqueous metal carboxylate dispersion in an inert gas atmosphere.
  • Carboxylic acid used herein includes glycolic acid, citric acid, malic acid, maleic acid, malonic acid, fumaric acid, succinic acid, tartaric acid, oxalic acid, phthalic acid, benzoic acid and salts thereof.
  • a hydrazine compound was used as a reducing agent, it is not limited to this, and hydrazine, ascorbic acid, oxalic acid, formic acid, salts thereof, and the like may be used.
  • the aqueous dispersion of copper carboxylate can be prepared by adding powdered metal carboxylate to pure water such as distilled water or ion-exchanged water so that the concentration is 25% by mass or more and 40% by mass or less, and stirring with a stirring blade to uniformly disperse.
  • pH adjusters include triammonium citrate, ammonium hydrogen citrate, and citric acid. Of these, triammonium citrate is preferred because it facilitates mild pH adjustment.
  • the reason why the pH of the copper carboxylate aqueous dispersion is set to 2.0 or more is to increase the elution rate of copper ions eluted from the carboxylate copper, thereby rapidly promoting the production of copper particles and obtaining the target fine copper particles.
  • the reason why the pH is set to 7.5 or less is to suppress the eluted metal ions from becoming copper (II) hydroxide, thereby increasing the yield of copper particles.
  • by setting the pH to 7.5 or less it is possible to prevent the reducing power of the hydrazine compound from becoming excessively high, making it easier to obtain the target copper particles. It is preferable to adjust the pH of the copper carboxylate aqueous dispersion in the range of 4 or more and 6 or less.
  • a hydrazine compound has advantages such as not producing a residue after a reduction reaction when reducing copper carboxylate under an acidic condition, relatively high safety, and easy handling.
  • the hydrazine compound includes hydrazine monohydrate, anhydrous hydrazine, hydrazine hydrochloride, hydrazine sulfate, and the like. Among these hydrazine compounds, preferred are hydrazine monohydrate and anhydrous hydrazine, which do not contain impurities such as sulfur and chlorine.
  • a hydrazine compound which is a reducing agent, is added to and mixed with an acid solution having a pH of less than 7, and copper particles are generated in the resulting mixed solution. Therefore, the carboxylic acid-derived component generated from the carboxylic acid copper rapidly coats the surfaces of the copper particles, thereby suppressing the dissolution of the copper particles.
  • the aqueous dispersion of copper carboxylate after adjusting the pH is preferably kept at a temperature of 50° C. or higher and 70° C. or lower to facilitate the progress of the reduction reaction.
  • the reason why the mixed liquid containing the hydrazine compound is heated to a temperature of 60°C or higher and 80°C or lower in an inert gas atmosphere and held for 1.5 hours or longer and 2.5 hours or shorter is to generate copper particles and to form and coat the surface of the generated copper particles with an organic substance.
  • the purpose of heating and holding in an inert gas atmosphere is to prevent the generated copper particles from being oxidized.
  • Carboxylic acid copper which is a starting material, usually contains about 35% by mass of a copper component.
  • a hydrazine compound as a reducing agent to a carboxylic acid aqueous dispersion containing such a copper component, heating to the above temperature, and maintaining for the above time, the generation of copper particles and the generation of organic substances on the surface of the copper particles proceed in a well-balanced manner. If the heating temperature is less than 60° C. and the holding time is less than 1.5 hours, the metal carboxylate is not completely reduced, and the production rate of copper particles becomes too slow, which may result in an excessive amount of organic matter covering the copper particles. On the other hand, if the heating temperature exceeds 80° C. and the holding time exceeds 2.5 hours, the production rate of the copper particles may become too fast and the amount of the organic substance covering the copper particles may become too small.
  • a preferred heating temperature is 65° C. or higher and 75° C. or lower, and a preferred holding time is 2 hours or longer and 2.5 hours or shorter.
  • the copper particles generated in the mixed solution may be washed, desalted, etc. from the mixed solution using pure water or the like under an inert gas atmosphere. Furthermore, for example, by dehydrating using a centrifuge, an aqueous slurry containing metal particles 12 having a fixed solid-liquid ratio (for example, solid-liquid ratio: 50/50 [mass %]) can be obtained. In some cases, solid-liquid separation is performed, and the copper particles whose surface is coated with an organic substance can be obtained by drying by a freeze-drying method or a vacuum drying method. Since the surface of the copper particles is coated with an organic substance, the copper particles are less likely to be oxidized even when stored in the air.
  • Metal particles production of silver particles
  • an aqueous silver salt solution and an aqueous carboxylate solution are simultaneously dropped into water to prepare a silver carboxylate slurry.
  • the silver salt in the silver salt aqueous solution specifically, for example, one or more compounds selected from the group consisting of silver nitrate, silver chlorate, silver phosphate, and salts thereof are preferable.
  • the carboxylic acid in the carboxylic acid salt aqueous solution is preferably one or more compounds selected from the group consisting of glycolic acid, citric acid, malic acid, maleic acid, malonic acid, fumaric acid, succinic acid, tartaric acid, and salts thereof.
  • water examples include ion-exchanged water and distilled water. It is particularly preferable to use ion-exchanged water because it does not contain ions that may adversely affect synthesis and because the production cost is lower than that of distilled water.
  • the predetermined heat treatment may be, for example, a heat treatment in which the temperature is raised to a predetermined temperature (maximum temperature) in the range of 20 to 90° C. at a rate of temperature increase of 15° C./hour or less in water, held at the maximum temperature for 1 to 5 hours, and then cooled to 30° C. or less over a period of 30 minutes or less.
  • a predetermined temperature maximum temperature
  • the predetermined heat treatment described above by setting the heating rate to 15° C./hour or less, it is possible to prevent the silver particles from becoming coarse particles.
  • the maximum temperature to 20° C.
  • the silver carboxylate is easily reduced, and the particle size of the silver particles can be increased. Further, by setting the maximum temperature to 90° C. or less, it is possible to prevent the silver particles from becoming coarse particles.
  • the predetermined heat treatment by setting the holding time at the maximum temperature to 1 hour or more, the silver carboxylate is easily reduced, and the particle size of the silver particles can be increased. Further, by setting the holding time to 5 hours or less, it is possible to prevent the silver particles from becoming coarse particles.
  • the predetermined heat treatment by setting the temperature down to 30° C. for 30 minutes or less, it is possible to prevent the silver particles from becoming coarse particles.
  • each of the silver carboxylate slurry and the reducing agent aqueous solution it is preferable to keep the temperature of each of the silver carboxylate slurry and the reducing agent aqueous solution at a predetermined temperature within the range of 20 to 90°C.
  • the temperature of each liquid By maintaining the temperature of each liquid at a predetermined temperature of 20° C. or higher, the silver carboxylate is easily reduced, and the particle size of the silver powder can be increased. Further, by maintaining the temperature of each liquid at a predetermined temperature of 90° C. or less, it is possible to prevent the silver powder from becoming coarse particles.
  • the reducing agent in the reducing agent aqueous solution is preferably one or more compounds selected from the group consisting of hydrazine, ascorbic acid, oxalic acid, formic acid, and salts thereof.
  • the silver particle slurry is centrifuged to remove the liquid layer in the silver powder slurry, the silver particle slurry is dehydrated and desalted, and an aqueous slurry containing silver particles having a certain solid-liquid ratio (for example, solid-liquid ratio: 50/50 [mass %]) can be obtained.
  • solid-liquid ratio for example, solid-liquid ratio: 50/50 [mass %]
  • silver particles can be obtained by drying the silver particle slurry.
  • a method for drying the silver particle slurry is not particularly limited, but specific examples thereof include a freeze drying method, a reduced pressure drying method, a heat drying method, and the like.
  • the freeze-drying method the silver particle slurry is placed in a closed container and frozen, and the inside of the closed container is decompressed with a vacuum pump to lower the boiling point of the material to be dried, and the water content of the material to be dried is sublimated at a low temperature.
  • the reduced-pressure drying method is a method of drying an object to be dried under reduced pressure.
  • the heat drying method is a method of drying an object to be dried by heating.
  • step S12 the metal particles 12, the polyhydric alcohol 14, the organic solvent 18, and water as the solvent 16 are mixed to form the first metal ink 10A (step S12).
  • an aqueous slurry containing the metal particles 12 may be mixed with an aqueous solution containing the polyhydric alcohol 14 and the organic solvent 18, or an aqueous solution of the polyhydric alcohol 14 and the organic solvent 18, or an aqueous solution containing the polyhydric alcohol 14 and the organic solvent 18, or an aqueous solution of the polyhydric alcohol 14 and the organic solvent 18 may be mixed with the metal particles 12 containing no water.
  • filtering may be performed with a filter or the like having a predetermined mesh size. Note that such filtration may be performed at any stage of the subsequent manufacturing process of the metal ink.
  • the first metal ink 10A and ethanol as the solvent 16 are mixed to generate the second metal ink 10B (step S14).
  • the second metal ink 10B is preferably produced by mixing the first metal ink 10A and ethanol so that the contents of the metal particles 12, the polyhydric alcohol 14, ethanol, and the organic solvent 18 are within the numerical ranges described above. Any method can be used to mix the first metal ink 10A and ethanol.
  • step S12 After the first metal ink 10A obtained in step S12 is allowed to stand still for a predetermined time (for example, about one day) or centrifuged under predetermined conditions, part of the supernatant may be removed, and ethanol may be added to the first metal ink 10A from which the supernatant has been removed.
  • a predetermined time for example, about one day
  • ethanol may be added to the first metal ink 10A from which the supernatant has been removed.
  • the second metal ink 10B, a high boiling point solvent as the solvent 16, and a dispersant are mixed to form the third metal ink 10C (step S16).
  • the third metal ink 10C is preferably produced by mixing the second metal ink 10B, the high boiling point solvent, and the dispersant so that the contents of the metal particles 12, the polyhydric alcohol 14, the high boiling point solvent, the dispersant, and the organic solvent 18 are within the numerical ranges described above. Any method can be used to mix the second metal ink 10B, the high boiling point solvent, and the dispersant.
  • step S14 After the second metal ink 10B obtained in step S14 is allowed to stand still for a predetermined time (for example, about one day) or centrifuged under predetermined conditions, part of the supernatant may be removed, and a high boiling point solvent may be added to the second metal ink 10B from which the supernatant has been removed. Also, the addition of a dispersant is not essential. Further, from the third metal ink 10C, a solvent (water, ethanol, high boiling point solvent, etc.) or an organic solvent may be removed or added so as to fall within the numerical range described above.
  • a solvent water, ethanol, high boiling point solvent, etc.
  • the third metal ink 10C thus generated is used as the metal ink 10.
  • the first metal ink 10A is used to generate the second metal ink 10B
  • the second metal ink 10B is used to generate the third metal ink 10C. That is, the first metal ink 10A and the second metal ink 10B were intermediate substances for producing the third metal ink 10C.
  • the first metal ink 10A and the second metal ink 10B are not limited to intermediate substances, and the first metal ink 10A and the second metal ink 10B themselves may be used as the metal ink 10.
  • the method for producing the metal particles 12 and the metal ink 10 described above is merely an example, and the metal particles 12 and the metal ink 10 may be produced by any method.
  • the metal ink 10 according to the present embodiment includes the metal particles 12, the solvent 16, the organic solvent 18 that has a boiling point of 150° C. or higher at atmospheric pressure and is miscible with water, and the polyhydric alcohol 14 that contains two or more OH groups and is soluble in water and ethanol.
  • the metal particles may aggregate. Agglomeration of the metal particles may lead to deterioration of the properties of the product, such as deterioration of the denseness of the metal layer.
  • the metal ink 10 according to the present embodiment contains the polyhydric alcohol 14 , the polyhydric alcohol 14 can suppress aggregation of the metal particles 12 .
  • the metal ink 10 According to the metal ink 10 according to the present embodiment, aggregation of the metal particles 12 can be suppressed, so deterioration of the characteristics of the product can be suppressed. Further, for example, when the metal ink 10 is ejected from a nozzle, by suppressing aggregation of the metal particles 12, manufacturing defects such as clogging of the nozzle can be suppressed. In addition, since the metal ink 10 according to the present embodiment contains the organic solvent 18, it has sufficient antifungal properties even when left for a long period of time, and can be properly stored for a long period of time.
  • the metal particles 12 are copper or silver, the solvent 16 contains water, the organic solvent 18 contains at least one of glycol ether and an aprotic polar solvent, and the polyhydric alcohol 14 preferably contains at least one polyhydric alcohol that contains two or more OH groups, is soluble in water and ethanol, and has a melting point of 30°C or higher.
  • the metal particles 12, the solvent 16, the organic solvent 18 that has a boiling point of 150°C or higher at atmospheric pressure and is miscible with water, and the polyhydric alcohol 14 that contains two or more OH groups and is soluble in water and ethanol are mixed to produce the metal ink 10 containing the metal particles 12, the solvent 16, the polyhydric alcohol 14, and the organic solvent 18.
  • the polyhydric alcohol 14 since the polyhydric alcohol 14 is added, aggregation of the metal particles 12 can be suppressed, and the addition of the organic solvent 18 enables proper storage for a long time.
  • 3A to 3I are tables showing the contents of the components of the metal ink in each example and the evaluation results.
  • Example 1 copper phthalate was prepared as the starting copper carboxylate. Copper phthalate was added to deionized water at room temperature and stirred with a stirring blade to prepare an aqueous dispersion of copper phthalate with a concentration of 30% by mass. Next, an aqueous solution of ammonium phthalate was added as a pH adjuster to the aqueous dispersion of copper phthalate to adjust the pH of the aqueous dispersion to 3.
  • the pH-adjusted liquid was brought to a temperature of 50° C., and an aqueous solution of hydrazine monohydrate (2-fold diluted) having an oxidation-reduction potential of ⁇ 0.5 V, which is 1.2 equivalents capable of reducing copper ions, was added as a reducing agent to the pH-adjusted liquid in a nitrogen gas atmosphere at once, and mixed uniformly using a stirring blade. Furthermore, in order to synthesize the target copper particles (metal particles), the mixture of the aqueous dispersion and the reducing agent was heated to a holding temperature of 70°C under a nitrogen gas atmosphere and held at 70°C for 2 hours. Furthermore, an aqueous slurry of copper particles (copper powder concentration: 50% by mass) was obtained by dehydration and desalting using a centrifuge.
  • Example 1 18 g of the resulting aqueous slurry of copper particles (metal particles) (concentration of copper powder: 50% by mass), 36 g of an aqueous solution of 2.2-dimethyl-1,3-propanediol (concentration: 5% by mass) as a polyhydric alcohol, and 18 g of water were mixed, and 18 g of 2-pyrrolidone was added as an organic solvent to obtain 90 g of copper ink (metal ink) in which the main solvent was water.
  • the content ratio of each component in the copper ink of Example 1 was as shown in FIG. 3A.
  • the copper ink in Example 1 is an example of the first metal ink 10A of this embodiment.
  • Example 2-136 metal inks were produced by changing the added components from Example 1 as shown in FIGS. 3A to 3G.
  • a substance with a content ratio value of “0.0” indicates that the substance is not included.
  • the metallic inks of Examples 1-136 are It contains metal particles (at least one of copper and silver), a solvent (at least one of water, ethanol, and a high boiling point solvent), an organic solvent that has a boiling point at atmospheric pressure of 150 ° C. or higher and is miscible with water, and a polyhydric alcohol that contains two or more OH groups and is soluble in water and ethanol.
  • the metallic inks of Examples 21-56, 77-136 contain ethanol as the solvent.
  • the metal inks of Examples 33 to 56 and 89 to 136 contain, as a solvent, a high-boiling solvent that is a liquid that contains one or more OH groups, has a boiling point of 150° C. or higher, and is sparingly soluble or insoluble in water.
  • the high boiling point solvent dipropylene glycol monomethyl ether contained in the metal inks of Examples 57 to 64 contains one or more OH groups and has a boiling point of 150° C. or higher, but does not satisfy the condition of poor solubility or insolubility in water. Not satisfying the condition of being poorly soluble or insoluble in water means that it is not classified as a water-insoluble liquid in Appendix 3 of the Cabinet Order Concerning the Regulation of Hazardous Substances under the Fire Service Act.
  • Comparative Example 1-38 metal inks were produced by changing the added components from Comparative Example 1 as shown in FIGS. 3G to 3I. Comparative Examples 1-38 do not contain at least one of an organic solvent and a polyhydric alcohol. In addition, in the components in FIGS. 3G to 3I, a substance with a content ratio value of “0.0” indicates that the substance is not included.
  • the dispersibility of the metal inks obtained in Examples and Comparative Examples was evaluated. After sufficiently dispersing the metal ink obtained above with an ultrasonic cleaner or the like, 10 g of the metal ink was collected in a glass sample container having a capacity of 20 ml and left overnight in a refrigerator. After standing overnight, when the height from the bottom of the sample container to the liquid surface of the metal ink is set to 100, the interface of sedimentation and separation of the metal particles in the metal ink was evaluated as excellent when the height from the bottom of the container was 50 or more, and as poor when less than 50. Also, the long-term storage stability of the metal inks obtained in Examples and Comparative Examples was evaluated.
  • antifungal property evaluation was performed according to the method of "6. Coating test” described in Japanese Industrial Standards (JIS Z 2911).
  • JIS Z 2911 Japanese Industrial Standards
  • a metallic ink was used as a sample, and the test was performed by inserting it into a hollowed out portion having a diameter of 30 mm at the center of the culture medium.
  • a sample with no growth of hyphae was rated as excellent "A”
  • a sample with growth of hyphae was rated as unsatisfactory "C”.
  • the metal ink whose dispersibility was “A” in the example was applied to the center of a polyimide film having a thickness of 100 ⁇ m and a size of 50 mm ⁇ 50 mm with an inkjet device to a size of 10 mm ⁇ 10 mm and dried. After that, it was heated at 200° C. for 30 seconds in a nitrogen atmosphere to obtain a fired film of metal ink having a thickness of about 1 to 3 ⁇ m. The sinterability was evaluated by observing the cross section of the obtained fired film with an SEM.
  • Comparative Example 1-38 which does not contain at least one of the polyhydric alcohol and the organic solvent, at least one of the evaluations of dispersibility, sinterability, and long-term storage is "C", and it can be seen that it is possible to fire while suppressing the aggregation of metal particles, and that it cannot satisfy all of the long-term storage properties.
  • Comparative Examples 2 and 21 contained a polyhydric alcohol but did not contain an organic solvent, so the dispersibility and sinterability were "A”, but the long-term storage stability was "C”. The comparative examples with the dispersibility of "C” were not evaluated for sinterability and long-term storage because they were difficult to use as an ink, and therefore were indicated as "-".
  • the embodiment of the present invention has been described above, the embodiment is not limited by the content of this embodiment.
  • the components described above include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those within the so-called equivalent range.
  • the components described above can be combined as appropriate.
  • various omissions, replacements, or modifications of components can be made without departing from the gist of the above-described embodiments.
  • metal ink 10 metal particles 14 polyhydric alcohol 16 solvent 18 organic solvent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

金属粒子の凝集を抑制しつつ、長期間適切に保存可能にする。金属インク(10)は、金属粒子(12)と、溶媒(16)と、大気圧における沸点が150℃以上であり、水と混和可能な有機溶媒(18)と、OH基を2つ以上含み、水及びエタノールに溶解可能な多価アルコール(14)と、を含む。

Description

金属インク、金属インクの製造方法、金属層の製造方法、及び金属層
 本発明は、金属インク、金属インクの製造方法、金属層の製造方法、及び金属層に関する。
 部材に金属層を形成する例として、特許文献1には、部材にはんだ層を形成する旨が記載されている。また例えば特許文献2には、銀ペーストが用いて金属層を形成する旨が記載されている。銀ペーストは、比較的低温条件で焼結することができ、かつ、焼結後に形成される接合層の融点は銀と同等となる。このため、この銀ペーストの焼結体からなる金属層は、耐熱性に優れており、高温環境下や大電流用途においても安定して使用することが可能となる。一方で材料コストの観点から、例えば特許文献3に示すように、銅ペーストが用いられる場合もある。
 また、このように金属層を形成する場合においては、銅ペーストなどの金属ペーストではなく、金属粒子が液体中に分散した金属インクが用いられることもある。金属インクは、例えばノズルから噴射させることができるため、製造面で有利となる場合がある。
特開2004-172378号公報 特許第6531547号公報 特開2019-67515号公報
 このような金属インクは、金属粒子が凝集することにより、金属層の緻密性の低下など、製造物の特性の低下を招くおそれがある。また、金属インクを長期間適切に保存することも求められている。従って、金属粒子の凝集を抑制しつつ、長期間適切に保存可能とすることが求められている。
 本発明は、上記に鑑みてなされたものであって、金属粒子の凝集を抑制しつつ、長期間適切に保存可能な金属インク、金属インクの製造方法、金属層の製造方法、及び金属層を提供することを目的とする。
 上記の課題を解決するために、本開示の金属インクは、金属粒子と、溶媒と、大気圧における沸点が150℃以上であり、水と混和可能な有機溶媒と、OH基を2つ以上含み、水及びエタノールに溶解可能な多価アルコールと、を含む。
 前記多価アルコールは、前記金属インクの全量に対して、質量比で0.01%以上20.0%以下含まれることが好ましい。
 前記金属粒子は、前記金属インクの全量に対して、質量比で1.0%以上50.0%以下含まれることが好ましい。
 前記有機溶媒は、前記金属インクの全量に対して、質量比で0.01%以上30.0%以下含まれることが好ましい。
 前記有機溶媒は、グリコールエーテル及び非プロトン性極性溶媒の少なくとも1つを含むことが好ましい。
 前記多価アルコールは、融点が30℃以上であることが好ましい。
 前記溶媒は、水を含むことが好ましい。
 前記溶媒は、エタノールを含むことが好ましい。
 前記溶媒は、OH基を1つ以上含み、沸点が150℃以上であり、水に難溶又は不溶な液体である高沸点溶媒を含むことが好ましい。
 前記金属粒子は、銅及び銀の少なくとも1つであることが好ましい。
 前記金属粒子は、銅または銀であり、前記溶媒は、水を含み、前記有機溶媒は、グリコールエーテル及び非プロトン性極性溶媒の少なくとも1つを含み、前記多価アルコールは、OH基を2つ以上含み、水及びエタノールに溶解可能であって、且つ、融点が30℃以上である多価アルコールの少なくとも1つを含むことが好ましい。
 上記の課題を解決するために、本開示の金属インクの製造方法は、金属粒子と、溶媒と、大気圧における沸点が150℃以上であり水と混和可能な有機溶媒と、OH基を2つ以上含み、水及びエタノールに溶解可能な多価アルコールとを混合して、前記金属粒子と前記溶媒と前記多価アルコールを含む金属インクを製造する。
 前記金属粒子と、前記溶媒としての水と、前記多価アルコールと、前記有機溶媒とを混合して、前記金属粒子と水と前記有機溶媒と前記多価アルコールとを含む金属インクである第1金属インクを製造することが好ましい。
 前記第1金属インクと、前記溶媒としてのエタノールとを混合して、前記金属粒子と水と前記有機溶媒と前記エタノールと前記多価アルコールとを含む金属インクである第2金属インクを製造することが好ましい。
 前記第2金属インクと、OH基を1つ以上含み、沸点が150℃以上であり、水に難溶又は不溶な液体である前記溶媒としての高沸点溶媒とを混合して、前記金属粒子と水と前記有機溶媒と前記エタノールと前記高沸点溶媒と前記多価アルコールとを含む金属インクである第3金属インクを製造することが好ましい。
 本開示の金属層の製造方法は、前記金属インクを加熱して金属層を形成する。
 本開示の金属層は、前記金属インクを用いて作られることが好ましい。
 本発明によれば、金属粒子の凝集を抑制しつつ、長期間適切に保存することが可能となる。
図1は、本実施形態に係る金属インクの模式図である。 図2は、本実施形態に係る金属インクの製造方法を説明するフローチャートである。 図3Aは、各例における金属インクの成分の含有量と、評価結果とを示す表である。 図3Bは、各例における金属インクの成分の含有量と、評価結果とを示す表である。 図3Cは、各例における金属インクの成分の含有量と、評価結果とを示す表である。 図3Dは、各例における金属インクの成分の含有量と、評価結果とを示す表である。 図3Eは、各例における金属インクの成分の含有量と、評価結果とを示す表である。 図3Fは、各例における金属インクの成分の含有量と、評価結果とを示す表である。 図3Gは、各例における金属インクの成分の含有量と、評価結果とを示す表である。 図3Hは、各例における金属インクの成分の含有量と、評価結果とを示す表である。 図3Iは、各例における金属インクの成分の含有量と、評価結果とを示す表である。
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための形態(以下、実施形態という)により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。また、数値については四捨五入の範囲が含まれる。
 図1は、本実施形態に係る金属インクの模式図である。図1に示すように、本実施形態に係る金属インク10は、金属粒子12と、多価アルコール14と、溶媒16と、有機溶媒18とを含む。金属インク10は、液体である溶媒16中に金属粒子12が溶解せずに、固体状の金属粒子12が溶媒16中に存在しているインク状の物質を指す。金属インク10においては、溶媒16中に金属粒子12が沈降していてもよいし、金属粒子12が分散していてもよい。
 金属インク10は、部材への金属層の形成(例えば配線の形成)に用いられる。例えば、金属インク10をノズルから基材(樹脂、金属等のフィルムや樹脂、金属、セラミック等もしくはこれら複合された基板)へ噴射・乾燥後、更に、加熱することで、金属粒子12を焼結もしくは溶融させつつ他の成分を除去し、その後冷却することで、金属粒子12の金属成分で形成される金属層が基材上に形成される。ただし、金属インク10の用途はこれに限られず任意であってよい。
 なお、金属インク10による金属層の製造条件は任意であってよいが、金属インク10を、酸化性ガス雰囲気、不活性ガス雰囲気もしくは還元性ガス雰囲気の下で、加熱することが好ましい。
 (金属粒子)
 金属粒子12は、金属の粒子である。本実施形態では、金属粒子12は、銅又は銀の粒子であることが好ましく、銅及び銀の両方を含むものであってよい。すなわち、金属粒子12は、銅及び銀の少なくとも一方の粒子であることが好ましいといえる。
 金属粒子12は、粒径(粒度分布(個数)のPeak値)が10nm以上1000nm以下であることが好ましい。金属インク10中の金属粒子12の粒径は、粒子径測定装置(マルバーン社製、ゼータサイザーナノシリーズ ZSP)を用いて、金属粒子12の粒度分布(個数)のPeak値として求めることができる。尚、粒度分布の測定において、金属インク10中の金属粒子12の濃度が高いことにより、十分な測定品質が得られない場合は、金属インク10中の主な溶媒(水、エタノールや高沸点溶媒)で10~1000倍程度に希釈・分散させた後に測定してもよい。
 粒径が10nm以下であると、粒径に反比例して比表面積が大きくなるため、表面酸化の影響が大きくなり、金属粒子12を用いて得られた塗膜の焼結性が低下する恐れがある。一方、金属粒子12の粒径が1000nm以上であると、粒径が大きくなりすぎるため、溶媒中に分散したインクにおいて、金属粒子12が沈降分離し易くなる恐れがある。金属粒子12の粒径は、30nm以上500nm以下の範囲内にあることが好ましく、30nm以上300nm以下の範囲内にあることが特に好ましい。
 金属粒子12のBET比表面積は、比表面積測定装置(カンタクローム・インスツルメンツ社製、QUANTACHROME AUTOSORB-iQ2)にて、測定ガスとして窒素又はクリプトンガスを用いて、金属粒子12のガスの吸着量を測定することにより求めることができる。金属粒子12のBET比表面積は、2.0m/g以上8.0m/g以下の範囲内にあることが好ましく、3.5m/g以上8.0m/g以下の範囲内にあることがより好ましく、4.0m/g以上8.0m/g以下の範囲内にあることが特に好ましい。また、金属粒子12の形状は、球状に限らず、針状、扁平な板状でもよい。
 金属粒子12は、表面が、有機物で一部または全面を被覆されていることが好ましい。有機物で被覆されていることにより、金属粒子12の酸化が抑制され、金属粒子12の酸化による焼結性の低下がさらに起こりにくくなる。なお、金属粒子12を被覆する有機物は、多価アルコール14や溶媒16によって形成されるものでなく、多価アルコール14や溶媒16由来のものでないといえる。また、金属粒子12を被覆する有機物は、金属の酸化により形成される酸化金属(酸化銅や酸化銀)ではないともいえる。
 金属粒子12が有機物で被覆されていることは、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いて、金属粒子12の表面を分析することに確認することができる。例えば金属粒子12が銅の場合、金属粒子12は、飛行時間型二次イオン質量分析法を用いて、表面を分析することによって検出されるCuイオンの検出量に対するC イオンの検出量の比(C /Cu比)が0.001以上であることが好ましい。C /Cu比は、0.05以上0.2以下の範囲内にあることがさらに好ましい。なお、本分析における金属粒子12の表面とは、金属粒子12から有機物を除去した際の金属粒子12の表面でなく、被覆している有機物を含んだ金属粒子12の表面(すなわち有機物の表面)を指す。なお、金属粒子12が銀の場合、金属粒子12は、飛行時間型二次イオン質量分析法を用いて、表面を分析することによって検出されるAgイオンの検出量に対するC イオンの検出量の比(C /Ag比)が、0.001以上であることが好ましく、0.05以上0.2以下の範囲内にあることがさらに好ましい。
 金属粒子12は、銅である場合、飛行時間型二次イオン質量分析法を用いて、表面を分析することによってC イオンやC以上のイオンが検出されてもよい。Cuイオンの検出量に対するC イオンの検出量の比(C /Cu比)は0.001以上であることが好ましい。また、Cuイオンの検出量に対するC以上のイオンの検出量の比(C以上のイオン/Cu比)は0.005未満であることが好ましい。なお、金属粒子12が銀である場合、Agイオンの検出量に対するC イオンの検出量の比(C /Ag比)は0.001以上であることが好ましい。また、Agイオンの検出量に対するC以上のイオンの検出量の比(C以上のイオン/Ag比)は0.005未満であることが好ましいといえる。
 飛行時間型二次イオン質量分析法において検出されるC イオンとC イオンとC以上のイオンは、金属粒子12の表面を被覆している有機物に由来する。このためC /Cu比とC /Cu比のそれぞれが0.001以上であると、金属粒子12の表面が酸化しにくくなり、かつ金属粒子12が凝集しにくくなる。また、C /Cu比及びC /Cu比が0.2以下であると、金属粒子12の焼結性を過度に低下させずに金属粒子12の酸化と凝集を抑制でき、さらに加熱時における有機物の分解ガスの発生を抑えることができるので、ボイドが少ない接合層を形成することができる。金属粒子12の保存中の耐酸化性をより一層向上し、かつ低温度での焼結性をより一層向上させるために、C /Cu比及びC /Cu比は0.08以上0.16以下の範囲内にあることが好ましい。また、C以上のイオン/Cu比が0.005倍以上であると、粒子表面に脱離温度が比較的高い有機物が多く存在するため、結果として焼結性が十分に発現せず強固な接合層が得られにくい。C以上のイオン/Cu比は0.003倍未満であることが好ましい。なお、金属粒子12が銀である場合、C /Ag比及びC /Ag比は0.08以上0.16以下の範囲内にあることが好ましい。また、C以上のイオン/Ag比が0.005倍以上であると、粒子表面に脱離温度が比較的高い有機物が多く存在するため、結果として焼結性が十分に発現せず強固な接合層が得られにくい。C以上のイオン/Ag比は0.003倍未満であることが好ましいといえる。
 金属粒子12を被覆する有機物は、金属粒子12を製造する時に用いられるカルボン酸金属に由来するカルボン酸であることが好ましい。カルボン酸由来の有機物で被覆された金属粒子12の製造方法は後述する。金属粒子12の有機物の被覆量は、金属粒子100質量%に対して0.5質量%以上2.0質量%以下の範囲内にあることが好ましく、0.8質量%以上1.8質量%以下の範囲内にあることがより好ましく、0.8質量%以上1.5質量%以下の範囲内にあることがさらに好ましい。有機物の被覆量が0.5質量%以上であることによって、金属粒子12を有機物により均一に被覆することができ、金属粒子12の酸化をより確実に抑制することができる。また、有機物の被覆量が2.0質量%以下であることによって、加熱による有機物の分解によって発生するガスにより、金属粒子の焼結体(接合層)にボイドが発生することを抑制することができる。有機物の被覆量は、市販の装置を用いて測定することができる。例えば、差動型示差熱天秤TG8120-SL(RIGAKU社製)を用いて、被覆量を測定できる。この場合例えば、試料は、凍結乾燥により水分を除去した金属粒子を用いる。金属粒子の酸化を抑制するため窒素(G2グレード)ガス中で測定し、昇温速度は10℃/minとし、250℃から300℃まで加熱したときの重量減少率を、有機物の被覆量と定義できる。すなわち、被覆量=(測定後の試料重量)/(測定前の試料重量)×100(wt%)である。測定は同一ロットの金属粒子で各々3回行い、相加平均値を被覆量としてよい。
 金属粒子12は、アルゴンガスなどの不活性ガス雰囲気下、300℃の温度で30分加熱したときに、有機物の50質量%以上が分解することが好ましい。カルボン酸由来の有機物は、分解時に二酸化炭素ガス、窒素ガス、アセトンの蒸発ガス及び水蒸気を発生する。
 (多価アルコール)
 多価アルコール14は、OH基を2つ以上含み、水及びエタノールに溶解可能なアルコールである。また、多価アルコール14は、融点が30℃以上であることが好ましい。
 多価アルコール14は、例えば、2,2-ジメチル-1,3-プロパンジオール、2,5-ジメチル-2,5-ヘキサンジオール、2-ヒドロキシメチル-2-メチル-1,3-プロパンジオール、1-フェニル-1,2-エタンジオール、1,1,1-トリス(ヒドロキシメチル)プロパン、エリトリトール、ペンタエリトリトール、リビトール、レソルシノール、(ピロ)カテコール、5-メチルレソルシノール、ピロガロール、1,2,3-シクロヘキサントリオール、及び1,3,5-シクロヘキサントリオールのうちの、少なくとも1つであってよい。
 多価アルコール14は、非電解質であり、溶媒16に溶解した状態で(多価アルコール14の分子が溶媒16中に分散した状態で)、金属インク10中に存在している。ただし、多価アルコール14の金属インク10中での存在形態は任意であり、溶媒16に溶解しない状態であってもよい。
 多価アルコール14が金属インク10に含まれることで、金属粒子12の周囲に多価アルコール14が配位して、金属粒子12の凝集を適切に抑制できる。すなわち、本実施形態においては、多価アルコール14が、金属粒子12の周囲に配位していることが好ましいといえる。
 (溶媒)
 溶媒16は、金属粒子12を分散させるための液体(媒体)である。溶媒16の詳細については後述する。
 (有機溶媒)
 有機溶媒18は、多価アルコール14及び溶媒16とは異なる成分の有機溶媒である。有機溶媒18は、大気圧における沸点が150℃以上であり、水と混和可能な有機溶媒である。有機溶媒18は、沸点が200℃以上であることがより好ましい。ここでの混和可能とは、有機溶媒18が、あらゆる比率で水に混ぜ合せ可能(すなわち、お互い任意の濃度で完全に溶解可能)であることを指している。本実施形態では、有機溶媒18は、溶媒16と混和可能であることが好ましい。
 有機溶媒18は、グリコールエーテル又は非プロトン性極性溶媒であることが好ましい。さらに言えば、有機溶媒18は、グリコールエーテル及び非プロトン性極性溶媒の両方を含んでいてよく、言い換えれば、グリコールエーテル及び非プロトン性極性溶媒の少なくとも1つを含むことが好ましいといえる。
 有機溶媒18が含むグリコールエーテルとしては、例えば、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールイソブチルエーテル、ジエチレングリコールモノイソブチルエーテル、エチレングリコールモノアリルエーテル、ジエチレングリコールモノベンジルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、及びジエチレングリコールジエチルエーテルが挙げられる。有機溶媒18がグリコールエーテルを含む場合には、これらの列挙したものから選択された少なくとも1つを含んでよい。
 有機溶媒18が含む非プロトン性極性溶媒としては、例えば、N-メチルピロリドン、ジメチルホルムアミド、2-ピロリドン、及び炭酸プロピレンが挙げられる。有機溶媒18が非プロトン性極性溶媒を含む場合には、これらの列挙したものから選択された少なくとも1つを含んでよい。
 (不純物)
 金属インク10は、以上で挙げた成分以外に、不可避的不純物を含んでいてもよい。不可避的不純物としては、例えば、以上で挙げた成分が、光や熱などによって成分自身もしくは他の成分や酸素などと、分解・重合・付加や酸化・還元などの反応を生じることで、生成した物質などが挙げられる。
 (金属インク)
 金属インク10は、多価アルコール14の含有量が、金属インク10の全体に対して、質量比で、0.01%以上20.0%以下であることが好ましい。多価アルコール14の含有量がこの範囲となることで、金属粒子12を適切に分散させつつ、金属粒子12の濃度が低くなり過ぎることを抑制できる。
 金属インク10は、金属粒子12の含有量が、金属インク10の全体に対して、質量比で、1.0%以上50.0%以下であることが好ましく、5.0%以上50.0%以下であることがより好ましく、5.0%以上30.0%以下であることがさらに好ましい。金属粒子12の含有量がこの範囲となることで、金属粒子12の濃度を十分に保ちつつ、金属インク10の流動性の低下を抑制できるため、例えばノズルによる噴射性を向上させるなど、製造面でも有利となる。
 金属インク10は、溶媒16の含有量が、金属インク10の全体に対して、質量比で、50.0%以上99.0%以下であることが好ましく、50.0%以上95.0%以下であることがより好ましく、60.0%以上95.0%以下であることがさらに好ましい。溶媒16の含有量がこの範囲となることで、金属粒子12の濃度を十分に保ちつつ、金属インク10の流動性の低下を抑制できるため、例えばノズルによる噴射性を向上させるなど、製造面でも有利となる。
 金属インク10は、有機溶媒18の含有量が、金属インク10の全体に対して、質量比で、0.01%以上30.0%以下であることが好ましく、0.1%以上30.0%以下であることがさらに好ましい。有機溶媒18の含有量がこの範囲となることで、金属インク10を長期間放置した場合でも、防黴性が十分となり、長期間適切に保存できる。
 金属インク10は、イオン化した金属粒子12(金属粒子12を構成する金属のイオン)を含んでよい。すなわち、金属インク10の液体成分中に、イオン化した金属粒子12が含まれていてもよい。イオン化した金属粒子12は、銀イオン、及び銅イオンの少なくとも一方であってよいといえる。
 以上説明した金属インク10は、溶媒16の成分にバリエーションを持たせることができる。以下、溶媒16の成分が異なるそれぞれの金属インク10について説明する。
 (第1金属インク)
 溶媒16の成分が異なるそれぞれの金属インク10のうちの1つを、第1金属インク10Aとする。第1金属インク10Aは、溶媒16が水である。第1金属インク10Aは、溶媒16である水に多価アルコール14及び有機溶媒18が溶解しつつ、金属粒子12が混合されたものとなる。すなわち、第1金属インク10Aは、多価アルコール14及び有機溶媒18の水溶液に、金属粒子12が含まれたものとなる。
 第1金属インク10Aは、多価アルコール14の含有量が、第1金属インク10Aの全体に対して、質量比で、0.01%以上20.0%以下であることが好ましく、0.5%以上20.0%以下であることがより好ましく、1.0%以上20.0%以下であることがさらに好ましい。多価アルコール14の含有量がこの範囲となることで、金属粒子12を適切に分散させつつ、金属粒子12の濃度が低くなり過ぎることを抑制できる。
 第1金属インク10Aは、金属粒子12の含有量が、第1金属インク10Aの全体に対して、質量比で、1.0%以上50.0%以下であることが好ましく、5.0%以上50.0%以下であることがより好ましく、5.0%以上30.0%以下であることがさらに好ましい。金属粒子12の含有量がこの範囲となることで、金属粒子12の濃度を十分に保ちつつ、第1金属インク10Aの流動性の低下を抑制できるため、例えばノズルによる噴射性を向上させるなど、製造面でも有利となる。
 第1金属インク10Aは、有機溶媒18の含有量が、第1金属インク10Aの全体に対して、質量比で、0.01%以上30.0%以下であることが好ましく、1.0%以上30.0%以下であることがより好ましく、2.0%以上30.0%以下であることがさらに好ましい。有機溶媒18の含有量がこの範囲となることで、長期間適切に保存できる。
 本実施形態では、第1金属インク10Aは、不可避的不純物を除き、金属粒子12、多価アルコール14、水である溶媒16、及び有機溶媒18以外の物質を含まないことが好ましい。ただしそれに限られず、第1金属インク10Aは、金属粒子12、多価アルコール14、水である溶媒16及び有機溶媒18以外の添加剤(分散剤、密着性付与剤、レオロジー調整剤、防錆剤、沈降防止剤等)を含むものであってもよい。
 (第2金属インク)
 溶媒16の成分が異なるそれぞれの金属インク10のうちの1つを、第2金属インク10Bとする。第2金属インク10Bは、溶媒16としてエタノールを含み、さらに言えば、溶媒16のうちの主要成分である主溶媒がエタノールである。ここでの主溶媒は、溶媒16の全体のうちで、含有量が質量比で50%より高いものを指す。第2金属インク10Bは、溶媒16として、主溶媒であるエタノール以外を含んでもよく、本実施形態では、水を含んでよい。第2金属インク10Bは、溶媒16に多価アルコール14及び有機溶媒18が溶解しつつ、金属粒子12が混合されたものとなる。すなわち例えば、第2金属インク10Bは、多価アルコール14、有機溶媒18及びエタノールの水溶液に、金属粒子12が含まれたものとなる。
 第2金属インク10Bは、多価アルコール14の含有量が、第2金属インク10Bの全体に対して、質量比で、0.01%以上10.0%以下であることが好ましく、0.1%以上10.0%以下であることがより好ましく、0.1%以上5.0%以下であることがさらに好ましい。多価アルコール14の含有量がこの範囲となることで、金属粒子12を適切に分散させつつ、金属粒子12の濃度が低くなり過ぎることを抑制できる。
 第2金属インク10Bは、金属粒子12の含有量が、第2金属インク10Bの全体に対して、質量比で、1.0%以上50.0%以下であることが好ましく、5.0%以上50.0%以下であることがより好ましく、5.0%以上30.0%以下であることがさらに好ましい。金属粒子12の含有量がこの範囲となることで、金属粒子12の濃度を十分に保ちつつ、第2金属インク10Bの流動性の低下を抑制できるため、例えばノズルによる噴射性を向上させるなど、製造面でも有利となる。
 第2金属インク10Bは、エタノールの含有量が、第2金属インク10Bの全体に対して、質量比で、50.0%を超えて99.0%以下であることが好ましく、50.0%を超えて95.0%以下であることがより好ましく、60.0%以上95.0%以下であることがさらに好ましい。エタノールの含有量がこの範囲となることで、金属粒子12の濃度を十分に保ちつつ、第2金属インク10Bの流動性の低下を抑制できるため、例えばノズルによる噴射性を向上させるなど、製造面でも有利となる。
 第2金属インク10Bは、有機溶媒18の含有量が、第2金属インク10Bの全体に対して、質量比で、0.01%以上30.0%以下であることが好ましく、0.1%以上20.0%以下であることがより好ましく、0.5%以上20.0%以下であることがさらに好ましい。有機溶媒18の含有量がこの範囲となることで、長期間適切に保存できる。
 本実施形態では、第2金属インク10Bは、不可避的不純物を除き、金属粒子12、多価アルコール14、溶媒16(ここでは水及びエタノール)、及び有機溶媒18以外の物質を含まないことが好ましい。ただしそれに限られず、第2金属インク10Bは、金属粒子12、多価アルコール14、溶媒16、及び有機溶媒18以外の添加剤(分散剤、密着性付与剤、レオロジー調整剤、防錆剤、沈降防止剤等)を含むものであってもよい。
 エタノールを主溶媒とする金属インクは、エタノールにより金属粒子が凝集するおそれがある。それに対し、第2金属インク10Bは、多価アルコール14が混合されることで、例えば金属粒子12の周囲に多価アルコール14が配位して、金属粒子12同士の凝集を抑制できる。
 (第3金属インク)
 溶媒16の成分が異なるそれぞれの金属インク10のうちの1つを、第3金属インク10Cとする。第3金属インク10Cは、溶媒16として高沸点溶媒を含み、さらに言えば、溶媒16のうちの主要成分である主溶媒が高沸点溶媒である。例えば、第3金属インク10Cは、溶媒16に多価アルコール14及び有機溶媒18が溶解しつつ、金属粒子12が含まれたものとなる。なお、第3金属インク10Cは、溶媒16として、主溶媒である高沸点溶媒以外を含んでもよい。第3金属インク10Cは、水及びエタノールの少なくとも1つを含んでよく、本実施形態では水及びエタノールの両方を含む。
 高沸点溶媒は、OH基を1つ以上含み、沸点が150℃以上であり、水に難溶又は不溶な液体である。水に難溶又は不溶な高沸点溶媒とは、消防法における危険物の規制に関する政令、別表3において、非水溶性液体に分類される溶媒であることが好ましい。高沸点溶媒は、いわゆる有機溶媒であることが好ましく、例えば、α-テルピネオール、及び、2-エチル-1,3-ヘキサンジオールのうちの、少なくとも1つであってよい。なお、いずれの溶媒も、異性体を含んでよい。
 第3金属インク10Cは、多価アルコール14の含有量が、第3金属インク10Cの全体に対して、質量比で、0.01%以上5.0%以下であることが好ましく、0.01%以上5.0%以下であることがより好ましく、0.01%以上3.0%以下であることがさらに好ましい。多価アルコール14の含有量がこの範囲となることで、金属粒子12を適切に分散させつつ、金属粒子12の濃度が低くなり過ぎることを抑制できる。
 第3金属インク10Cは、金属粒子12の含有量が、第3金属インク10Cの全体に対して、質量比で、1.0%以上50.0%以下であることが好ましく、5.0%以上50.0%以下であることがより好ましく、5.0%以上30.0%以下であることがさらに好ましい。金属粒子12の含有量がこの範囲となることで、金属粒子12の濃度を十分に保ちつつ、第2金属インク10Bの流動性の低下を抑制できるため、例えばノズルによる噴射性を向上させるなど、製造面でも有利となる。
 第3金属インク10Cは、高沸点溶媒の含有量が、第3金属インク10Cの全体に対して、質量比で、50.0%を超えて99.0%以下であることが好ましく、50.0%を超えて95.0%以下であることがより好ましく、60.0%以上95.0%以下であることがさらに好ましい。高沸点溶媒の含有量がこの範囲となることで、金属粒子12の濃度を十分に保ちつつ、第3金属インク10Cの流動性の低下を抑制できるため、例えばノズルによる噴射性を向上させるなど、製造面でも有利となる。
 第3金属インク10Cは、有機溶媒18の含有量が、第3金属インク10Cの全体に対して、質量比で、0.01%以上30.0%以下であることが好ましく、0.01%以上10.0%以下であることがより好ましく、0.1%以上10.0%以下であることがさらに好ましい。有機溶媒18の含有量がこの範囲となることで、長期間適切に保存できる。
 第3金属インク10Cは、金属粒子12、多価アルコール14、溶媒16及び有機溶媒18以外の成分である分散剤を含むことが好ましい。分散剤としては、例えば、カチオン系分散剤、アニオン系分散剤、ノニオン系分散剤、両性分散剤等が挙げられ、中でも、アニオン系分散剤として、カルボン酸系分散剤、スルホン酸系分散剤、リン酸系分散剤が挙げられ、特にリン酸系分散剤として、リン酸エステル化合物が好適に用いられる。分散剤として用いるリン酸エステル化合物の分子量としては、200以上2000以下であることが好ましく、200以上1500以下であることがより好ましく、200以上1000以下であることがさらに好ましい。分子量が200以上となることで十分な疎水性が得られるため、高沸点溶媒中への金属粒子の良好な分散性が得られ、分子量が2000以下となることで狙いの加熱温度(200~350℃程度)での分解、反応が可能となるため、金属粒子同士の焼結等を妨げる恐れがない。分散剤に用いるリン酸エステル化合物は任意のものであってよいが、例えば、ポリオキシエチレンアルキルエーテルリン酸エステルとして、ラウレス-nリン酸、オレス-nリン酸、ステアレス-nリン酸(n=2~10)などやアルキルリン酸エステルなどが挙げられる。分散剤として、これらのうちの1種を用いてよいし、2種以上を用いてもよい。
 第3金属インク10Cは、分散剤の含有量が、第3金属インク10Cの全体に対して、質量比で、0.01%以上5.0%以下であることが好ましく、0.1%以上5.0%以下であることがより好ましく、0.1%以上3.0%以下であることがさらに好ましい。分散剤の含有量がこの範囲となることで、金属粒子12の凝集を適切に抑制できる。
 本実施形態では、第3金属インク10Cは、不可避的不純物を除き、金属粒子12、多価アルコール14、溶媒16(ここでは水、エタノール及び高沸点溶媒)、有機溶媒18及び分散剤以外の物質を含まないことが好ましい。ただしそれに限られず、第3金属インク10Cは、分散剤を含まなくてもよいし、金属粒子12、多価アルコール14、溶媒16、有機溶媒18及び分散剤以外の添加剤(密着性付与剤、レオロジー調整剤、防錆剤、沈降防止剤等)を含むものであってもよい。
 高沸点溶媒を主溶媒とする金属インクは、高沸点溶媒により、金属粒子12が凝集するおそれがある。それに対し、第3金属インク10Cは、多価アルコール14が混合されることで、例えば金属粒子12の周囲に多価アルコール14が配位して、金属粒子12同士の凝集を抑制できる。
 (金属インクの製造方法)
 次に、以上説明した金属インク10の製造方法について説明する。図2は、本実施形態に係る金属インクの製造方法を説明するフローチャートである。
 (金属粒子の製造)
 図2に示すように、本製造方法においては、カルボン酸金属水分散液と還元剤とを混合して、金属粒子12を生成する(ステップS10)。具体的には、先ず、カルボン酸金属(例えばカルボン酸銅)の水分散液を用意し、このカルボン酸金属水分散液にpH調整剤を加えてpHを2.0以上7.5以下に調整する。次に、不活性ガス雰囲気下でこのpH調整したカルボン酸金属水分散液に、還元剤として、金属イオンを還元できる1.0倍当量分以上1.2倍当量分以下のヒドラジン化合物を添加して混合する。得られた混合液を、不活性ガス雰囲気下で、得られた混合液を60℃以上80℃以下の温度に加熱し1.5時間以上2.5時間以下保持する。これにより、カルボン酸金属から溶出した金属イオンを還元して金属粒子12を生成させると共に、この金属粒子12の表面に金属酸由来の有機物を形成させる。なお、ここでのカルボン酸としては、グリコール酸、クエン酸、リンゴ酸、マレイン酸、マロン酸、フマル酸、コハク酸、酒石酸、シュウ酸、フタル酸、安息香酸およびこれらの塩などが用いられる。また、還元剤としては、ヒドラジン化合物を用いたが、それに限られず、ヒドラジン、アスコルビン酸、シュウ酸、ギ酸及びこれらの塩などを用いてよい。
 (金属粒子:銅粒子の製造)
 以下では、金属粒子12が銅粒子である場合の金属粒子12の製造方法について説明する。カルボン酸銅の水分散液は、蒸留水、イオン交換水のような純水に、粉末状のカルボン酸金属を25質量%以上40質量%以下の濃度となるように添加し、撹拌羽を用いて撹拌し、均一に分散させることによって調製できる。pH調整剤としては、クエン酸三アンモニウム、クエン酸水素アンモニウム、クエン酸などが挙げられる。この中でマイルドにpH調整しやすいことからクエン酸三アンモニウムが好ましい。カルボン酸銅水分散液のpHを2.0以上とするのは、カルボン酸銅から溶出した銅イオンの溶出速度を速くして、銅粒子の生成を速やかに進行させ、目標とする微細な銅粒子を得られるようにするためである。また、pHを7.5以下とするのは、溶出した金属イオンが水酸化銅(II)となることを抑制して、銅粒子の収率を高くするためである。また、pHを7.5以下とすることによって、ヒドラジン化合物の還元力が過度に高くなることを抑制でき、目標とする銅粒子が得られやすくなる。カルボン酸銅水分散液のpHは4以上6以下の範囲内に調整することが好ましい。
 ヒドラジン化合物によるカルボン酸銅の還元は不活性ガス雰囲気下で行われる。液中に溶出した銅イオンの酸化を防止するためである。不活性ガスの例としては、窒素ガス、アルゴンガスなどが挙げられる。ヒドラジン化合物は、酸性下でカルボン酸銅を還元するときに、還元反応後に残渣を生じないこと、安全性が比較的高いこと及び取扱いが容易であることなどの利点がある。このヒドラジン化合物としては、ヒドラジン一水和物、無水ヒドラジン、塩酸ヒドラジン、硫酸ヒドラジンなどが挙げられる。これらのヒドラジン化合物の中では、硫黄や塩素といった不純物となり得る成分を含まないヒドラジン一水和物、無水ヒドラジンが好ましい。
 一般的にpH7未満の酸性液中で生成した銅は溶解してしまう。しかし本実施形態では、pH7未満の酸性液に還元剤であるヒドラジン化合物を添加混合し、得られた混合液中に銅粒子を生成させる。このため、カルボン酸銅から生成したカルボン酸由来の成分が銅粒子の表面を速やかに被覆するので、銅粒の溶解が抑制される。pHを調整した後のカルボン酸銅の水分散液は、温度50℃以上70℃以下にして、還元反応を進行しやすくすることが好ましい。
 不活性ガス雰囲気下でヒドラジン化合物を混合した混合液を60℃以上80℃以下の温度に加熱し1.5時間以上2.5時間以下保持するのは、銅粒子を生成させると共に、生成した銅粒子の表面に有機物を形成し被覆するためである。不活性ガス雰囲気下で加熱保持するのは、生成した銅粒子の酸化を防止するためである。出発原料であるカルボン酸銅は通常35質量%程度の銅成分を含む。この程度の銅成分を含むカルボン酸水分散液に還元剤であるヒドラジン化合物を添加して、上記の温度で昇温加熱し、上記の時間で保持することにより、銅粒子の生成と、銅粒子の表面での有機物の生成とがバランスよく進行するので、銅粒子100質量%に対して、有機物の被覆量が0.5質量%以上2.0質量%以下の範囲内にある銅粒子を得ることができる。加熱温度が60℃未満で保持時間が1.5時間未満では、カルボン酸金属が完全に還元せずに、銅粒子の生成速度が遅くなりすぎて、銅粒子を被覆する有機物の量が過剰となるおそれがある。また加熱温度が80℃を超えかつ保持時間が2.5時間を超えると、銅粒子の生成速度が速くなりすぎて、銅粒子を被覆する有機物の量が少なりすぎるおそれがある。好ましい加熱温度は65℃以上75℃以下であり、好ましい保持時間は2時間以上2.5時間以下である。
 混合液で生成された銅粒子を、不活性ガス雰囲気下で混合液から、純水等を用いて洗浄、脱塩等を行ってもよい。さらに、例えば遠心分離機を用いて、脱水することにより一定の割合の固液比(例えば、固液比:50/50[質量%])とした金属粒子12を含む水スラリーを得ることが出来る。また、場合によっては固液分離して、凍結乾燥法、減圧乾燥法で乾燥することにより、表面が有機物で被覆された銅粒子を得ることができる。この銅粒子は、表面が有機物で被覆されているため、大気中に保存しても酸化しにくくなる。
 (金属粒子:銀粒子の製造)
 次に、金属粒子12が銀粒子である場合の金属粒子12の製造方法について説明する。
 先ず、銀塩水溶液とカルボン酸塩水溶液とを水中に同時に滴下してカルボン酸銀スラリーを調製する。
 ここで、カルボン酸銀スラリーを調製する際は、銀塩水溶液、カルボン酸塩水溶液、水、そしてカルボン酸銀スラリーの各液の温度を20~90℃の範囲内の所定温度に保持することが好ましい。各液の温度を20℃以上の所定温度に保持することにより、カルボン酸銀が生成しやすくなり、銀粒子の粒径を大きくすることができる。また、各液の温度を90℃以下の所定温度に保持することにより、銀粒子が粗大粒子となるのを防止することができる。また、水中に銀塩水溶液とカルボン酸塩水溶液を同時に滴下している間、水を撹拌していることが好ましい。
 銀塩水溶液中の銀塩としては、具体的には、例えば、硝酸銀、塩素酸銀、リン酸銀、及びこれらの塩類からなる群より選ばれた1種又は2種以上の化合物が好ましい。
 カルボン酸塩水溶液中のカルボン酸としては、グリコール酸、クエン酸、リンゴ酸、マレイン酸、マロン酸、フマル酸、コハク酸、酒石酸、及びこれらの塩類からなる群より選ばれた1種又は2種以上の化合物が好ましい。
 水としては、イオン交換水、蒸留水等が挙げられる。合成に悪影響を与えるおそれのあるイオンが含まれないことや、蒸留水と比べて製造コストが低いことからイオン交換水を用いることが特に好ましい。
 次に、カルボン酸銀スラリーに還元剤水溶液を滴下した後に所定の熱処理を行って銀粒子スラリーを調製する。ここで、所定の熱処理としては、具体的には、例えば、水中で、15℃/時間以下の昇温速度で20~90℃の範囲内の所定温度(最高温度)まで昇温し、この最高温度に1~5時間保持した後に、30分以下の時間をかけて30℃以下まで降温する熱処理であってもよい。
 上記所定の熱処理において、昇温速度を15℃/時間以下とすることにより、銀粒子が粗大粒子となるのを防止することができる。
 また、上記所定の熱処理において、最高温度を20℃以上とすることにより、カルボン酸銀が還元されやすくなり、銀粒子の粒径を大きくすることができる。また、最高温度を90℃以下とすることにより、銀粒子が粗大粒子となるのを防止することができる。
 また、上記所定の熱処理において、最高温度での保持時間を1時間以上とすることにより、カルボン酸銀が還元されやすくなり、銀粒子の粒径を大きくすることができる。また、保持時間を5時間以下にすることにより、銀粒子が粗大粒子となるのを防止することができる。
 また、上記所定の熱処理において、30℃まで降温する時間を30分以下にすることにより、銀粒子が粗大粒子となるのを防止することができる。
 銀粒子スラリーを調製する際は、カルボン酸銀スラリーと還元剤水溶液の各液の温度を20~90℃の範囲内の所定温度に保持することが好ましい。各液の温度を20℃以上の所定温度に保持することにより、カルボン酸銀が還元されやすくなり、銀粉末の粒径を大きくすることができる。また、各液の温度を90℃以下の所定温度に保持することにより、銀粉末が粗大粒子となるのを防止することができる。
 還元剤水溶液中の還元剤としては、ヒドラジン、アスコルビン酸、シュウ酸、ギ酸、及びこれらの塩類からなる群より選ばれた1種又は2種以上の化合物が好ましい。
 ここで、銀粒子スラリーを遠心分離機で銀粉末スラリー中の液層を除去し、銀粒子スラリーを脱水及び脱塩すると共に、一定の割合の固液比(例えば、固液比:50/50[質量%])とした銀粒子を含む水スラリーを得ることが出来る。
 また、場合によっては銀粒子スラリーを乾燥して銀粒子を得ることが出来る。銀粒子スラリーの乾燥方法としては、特に限定されないが、具体的には、例えば、凍結乾燥法、減圧乾燥法、加熱乾燥法等が挙げられる。凍結乾燥法は、銀粒子スラリーを密閉容器に入れて凍結し、密閉容器内を真空ポンプで減圧して被乾燥物の沸点を下げ、低い温度で被乾燥物の水分を昇華させて乾燥させる方法である。減圧乾燥法は、減圧して被乾燥物を乾燥させる方法である。加熱乾燥法は、加熱して被乾燥物を乾燥させる方法である。
 (第1金属インクの製造)
 次に、金属粒子12と、多価アルコール14と、有機溶媒18と、溶媒16としての水とを混合して、第1金属インク10Aを生成する(ステップS12)。ここでは、金属粒子12や多価アルコール14や有機溶媒18の含有量が、上述で説明した数値範囲となるように、金属粒子12と多価アルコール14と有機溶媒18と水とを混合して、第1金属インク10Aを製造することが好ましい。なお、金属粒子12と多価アルコール14と有機溶媒18と水との混合方法は任意である。例えば、金属粒子12を含む水スラリーに、多価アルコール14と有機溶媒18とを含む水溶液、または、多価アルコール14の水溶液及び有機溶媒18の水溶液を混合してもよいし、水が含まれない金属粒子12に、多価アルコール14と有機溶媒18を含む水溶液、または、多価アルコール14の水溶液及び有機溶媒18の水溶液を混合してもよい。また、必要に応じて、異物や金属粒子12の凝集した粒子を除去するために、所定の目開きのフィルター等でろ過してもよい。なお、このようなろ過は、この後の金属インクの製造工程のいずれ段階で行ってもよい。
 (第2金属インクの製造)
 次に、第1金属インク10Aと溶媒16としてのエタノールとを混合して、第2金属インク10Bを生成する(ステップS14)。ここでは、金属粒子12や多価アルコール14やエタノールや有機溶媒18の含有量が、上述で説明した数値範囲となるように、第1金属インク10Aとエタノールとを混合して、第2金属インク10Bを製造することが好ましい。なお、第1金属インク10Aとエタノールの混合方法は任意である。例えば、ステップS12で得られた第1金属インク10Aを所定時間(例えば1日程度)静置もしくは所定の条件で遠心分離した後、一部の上澄み液を除去して、上澄み液が除去された第1金属インク10Aに対して、エタノールを添加してよい。
 (第3金属インクの製造)
 次に、第2金属インク10Bと溶媒16としての高沸点溶媒と分散剤とを混合して、第3金属インク10Cを生成する(ステップS16)。ここでは、金属粒子12や多価アルコール14や高沸点溶媒や分散剤や有機溶媒18の含有量が、上述で説明した数値範囲となるように、第2金属インク10Bと高沸点溶媒と分散剤とを混合して、第3金属インク10Cを製造することが好ましい。なお、第2金属インク10Bと高沸点溶媒と分散剤の混合方法は任意である。例えば、ステップS14で得られた第2金属インク10Bを所定時間(例えば1日程度)静置もしくは所定の条件で遠心分離した後、一部の上澄み液を除去して、上澄み液が除去された第2金属インク10Bに対して、高沸点溶媒を添加してもよい。また、分散剤の添加は必須ではない。
 また、第3金属インク10Cから、更に、上述で説明した数値範囲となるように、溶媒(水、エタノール、高沸点溶媒等)や有機溶媒を除去もしくは添加してもよい。
 このようにして生成された第3金属インク10Cは、金属インク10として使用される。なお、以上の説明では、第1金属インク10Aを用いて第2金属インク10Bを生成し、第2金属インク10Bを用いて第3金属インク10Cを生成していた。すなわち、第1金属インク10A及び第2金属インク10Bは、第3金属インク10Cを製造するための中間物質であった。ただし、第1金属インク10A及び第2金属インク10Bは、中間物質であることに限られず、第1金属インク10A及び第2金属インク10Bそのものを、金属インク10として使用してもよい。
 なお、以上説明した金属粒子12及び金属インク10の製造方法は、一例であり、任意の方法で、金属粒子12や金属インク10を製造してよい。
 (効果)
 以上説明したように、本実施形態に係る金属インク10は、金属粒子12と、溶媒16と、大気圧における沸点が150℃以上であり水と混和可能な有機溶媒18と、OH基を2つ以上含み、水及びエタノールに溶解可能な多価アルコール14と、を含む。ここで、金属粒子が溶媒中に分散する金属インクは、金属粒子が凝集するおそれがある。金属粒子が凝集した場合、金属層の緻密性の低下など、製造物の特性の低下を招くおそれがある。それに対し、本実施形態に係る金属インク10は、多価アルコール14を含有するため、多価アルコール14により、金属粒子12の凝集を抑制することができる。本実施形態に係る金属インク10によると、金属粒子12の凝集を抑制できるため、製造物の特性の低下を抑制できる。また例えば、金属インク10をノズルで噴射する場合には、金属粒子12の凝集を抑制することで、ノズルの詰まりなどの製造不具合についても抑制できる。また、本実施形態に係る金属インク10は、有機溶媒18を含むため、長期間放置した場合でも、防黴性が十分となり、長期間適切に保存できる。
 金属粒子12は、銅または銀であり、溶媒16は、水を含み、有機溶媒18は、グリコールエーテル及び非プロトン性極性溶媒の少なくとも1つを含み、多価アルコール14は、OH基を2つ以上含み、水及びエタノールに溶解可能であって、且つ、融点が30℃以上である多価アルコールの少なくとも1つを含むことが好ましい。金属インク10の成分をこれらのようにすることで、金属粒子12の凝集を抑制しつつ、長期間適切に保存できる。
 本実施形態に係る金属インク10の製造方法は、金属粒子12と、溶媒16と、大気圧における沸点が150℃以上であり水と混和可能な有機溶媒18と、OH基を2つ以上含み、水及びエタノールに溶解可能な多価アルコール14とを混合して、金属粒子12と溶媒16と多価アルコール14と有機溶媒18とを含む金属インク10を製造する。本製造方法によると、多価アルコール14を添加するため、金属粒子12の凝集を抑制することができ、有機溶媒18を添加することで長期間適切に保存できる。
 (実施例)
 次に、実施例について説明する。図3A-図3Iは、各例における金属インクの成分の含有量と、評価結果とを示す表である。
 (実施例1)
 実施例1においては、出発原料であるカルボン酸銅として、フタル酸銅を用意した。フタル酸銅を室温のイオン交換水に入れ、撹拌羽根を用いて撹拌し、濃度30質量%のフタル酸銅の水分散液を調製した。次いで、このフタル酸銅の水分散液にpH調整剤としてのフタル酸アンモニウム水溶液を加えて、上記水分散液のpHが3になるように調整した。次に、pH調整した液を50℃の温度にし、窒素ガス雰囲気下で、pH調整した液に還元剤として、銅イオンを還元できる1.2倍当量分である酸化還元電位が-0.5Vのヒドラジン一水和物水溶液(2倍希釈)を一気に添加し、撹拌羽を用いて均一に混合した。更に、目標とする銅粒子(金属粒子)を合成するために、上記水分散液と上記還元剤との混合液を窒素ガス雰囲気下で保持温度の70℃まで昇温し、70℃で2時間保持した。更に、遠心分離機を用いて、脱水及び脱塩することにより銅粒子の水スラリー(銅粉末濃度:50質量%)を得た。
 得られた銅粒子(金属粒子)の水スラリー(銅粉末濃度:50質量%)18gと、多価アルコールとしての2.2-ジメチル-1,3-プロパンジオール水溶液(濃度:5質量%)36gと、水18gを混合し、さらに、有機溶媒として、2-ピロリドン18gを添加することにより、主溶媒が水の銅インク(金属インク)90gを得た。実施例1の銅インクの各成分の含有比率は、図3Aに示したものとなった。実施例1における銅インクは、本実施形態の第1金属インク10Aの一例である。
 (実施例2-136)
 実施例2-136においては、実施例1に対して、添加した成分を図3A-図3Gのように変更して、金属インクを生成した。尚、図3A-図3G中の成分において、含有比率の数値が「0.0」である物質については当該物質を含んでいないことを示す。
 実施例1-136の金属インクは、
 金属粒子(銅及び銀の少なくとも1つ)と、溶媒(水、エタノール及び高沸点溶媒の少なく1つ)と、大気圧における沸点が150℃以上であり水と混和可能な有機溶媒と、OH基を2つ以上含み水及びエタノールに溶解可能な多価アルコールと、を含むものである。 
 実施例21-56、77-136の金属インクは、溶媒としてエタノールを含む。
 実施例33-56、89-136の金属インクは、溶媒として、OH基を1つ以上含み、沸点が150℃以上であり、水に難溶又は不溶な液体である高沸点溶媒を含む。なお、実施例57-64の金属インクに含まれる高沸点溶媒であるジプロピレングリコールモノメチルエーテルは、OH基を1つ以上含み、かつ沸点が150℃以上であるが、水に難溶又は不溶という条件を満たさない。なお、水に難溶又は不溶という条件を満たさないとは、消防法における危険物の規制に関する政令、別表3において、非水溶性液体に分類されないことを指す。
 (比較例1-38)
 比較例1-38においては、比較例1に対して、添加した成分を図3G-図3Iのように変更して、金属インクを生成した。比較例1-38は、有機溶媒及び多価アルコールの少なくとも一方を含まない。尚、図3G-図3I中の成分において、含有比率の数値が「0.0」である物質については当該物質を含んでいないことを示す。
 (評価方法)
 実施例、比較例で得られた金属インクの分散性について評価した。上記、得られた金属インクを超音波洗浄器等で十分に分散させた後、金属インクの内10gを、容量20mlのガラス製サンプル容器に採取し、冷蔵庫内にて1晩放置した。1晩放置後、サンプル容器の底から金属インクの液面までの高さを100としたとき、金属インク中の金属粒子の沈降・分離の界面について、容器の底から高さが50以上であった場合を優「A」とし、50未満の場合を不可「C」とした。
 また、実施例、比較例で得られた金属インクの長期保存性について評価した。分散性が「A」であった金属インクについて、日本工業規格(JIS Z 2911)に記載の「6.塗料の試験」の方法に従って防黴性評価(黴抵抗性試験)を行った。このとき、試験片の代わりに、金属インクを試料として、培地中心を直径30mmにくりぬいたところに入れ試験した。試料に菌糸の発育が認められないものを優「A」、試料に菌糸の発育が認められたものを不可「C」とした。
 また、実施例で分散性が「A」であった金属インクについて、厚さが100μm、サイズが50mm×50mmのポリイミドフィルムの上の中央部に、インクジェット装置にてサイズが10mm×10mmに塗布・乾燥した。その後、窒素雰囲気中、200℃×30秒間加熱し、厚みが1~3μm程度の金属インクの焼成膜を得た。得られた焼成膜の断面のSEMの観察により焼結性を評価した。断面SEM画像において、膜中の空隙の割合が20%以下の場合を焼結性が優「A」とし、20%を超えて30%以下の場合を良「B」とし、30%を超える場合を不可「C」とした。
 (評価結果)
 評価としては、分散性と焼結性と長期保存性の評価を行った。金属粒子及び溶媒に加えて、OH基を2つ以上含み、水及びエタノールに溶解可能な多価アルコールと、大気圧における沸点が150℃以上であり、水と混和可能な有機溶媒とを含む実施例1-112は、いずれも分散性、焼結性及び長期保存性の評価がいずれも「A」であるため、金属粒子の凝集を抑制しつつ、焼結可能であり、且つ、適切に長期保存可能であることが可能となることが分かる。高沸点溶媒として、OH基を1つ以上含み、沸点が150℃以上であり、水に難溶又は不溶な液体ではない溶媒を使用したことにより、実施例113-136については、分散性と長期保存性については「A」であったが、焼結性については若干低下し、評価が「B」となったが、「C」の評価を含まず、金属粒子の凝集を抑制しつつ、焼結可能であり、且つ、適切に長期保存可能であることが可能となることが分かる。一方、多価アルコール及び有機溶媒の少なくとも一方を含まない比較例1-38では、分散性、焼結性及び長期保存性の評価の少なくとも1つが「C」となり、金属粒子の凝集抑制しつつ、焼成可能であり、且つ、長期保存性があることをすべて満たすことができないことが分かる。比較例2及び比較例21では、多価アルコールを含んではいるが、有機溶媒を含まないことにより、分散性と焼結性は「A」となったが、長期保存性については「C」となった。なお、分散性が「C」となった比較例については、インクとしての使用が困難であることから、焼結性及び長期保存性の評価は実施しなかったため、「-」とした。
 以上、本発明の実施形態を説明したが、この実施形態の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
 10 金属インク
 12 金属粒子
 14 多価アルコール
 16 溶媒
 18 有機溶媒

Claims (17)

  1.  金属粒子と、
     溶媒と、
     大気圧における沸点が150℃以上であり、水と混和可能な有機溶媒と、
     OH基を2つ以上含み、水及びエタノールに溶解可能な多価アルコールと、
     を含む、
     金属インク。
  2.  前記多価アルコールは、前記金属インクの全量に対して、質量比で0.01%以上20.0%以下含まれる、請求項1に記載の金属インク。
  3.  前記金属粒子は、前記金属インクの全量に対して、質量比で1.0%以上50.0%以下含まれる、請求項1又は請求項2に記載の金属インク。
  4.  前記有機溶媒は、前記金属インクの全量に対して、質量比で0.01%以上30.0%以下含まれる、請求項1から請求項3のいずれか1項に記載の金属インク。
  5.  前記有機溶媒は、グリコールエーテル及び非プロトン性極性溶媒の少なくとも1つを含む、請求項1から請求項4のいずれか1項に記載の金属インク。
  6.  前記多価アルコールは、融点が30℃以上である、請求項1から請求項5のいずれか1項に記載の金属インク。
  7.  前記溶媒は、水を含む、請求項1から請求項6のいずれか1項に記載の金属インク。
  8.  前記溶媒は、エタノールを含む、請求項1から請求項7のいずれか1項に記載の金属インク。
  9.  前記溶媒は、OH基を1つ以上含み、沸点が150℃以上であり、水に難溶又は不溶な液体である高沸点溶媒を含む、請求項1から請求項8のいずれか1項に記載の金属インク。
  10.  前記金属粒子は、銅及び銀の少なくとも1つである、請求項1から請求項9のいずれか1項に記載の金属インク。
  11.  前記金属粒子は、銅または銀であり、前記溶媒は、水を含み、前記有機溶媒は、グリコールエーテル及び非プロトン性極性溶媒の少なくとも1つを含み、前記多価アルコールは、OH基を2つ以上含み、水及びエタノールに溶解可能であって、且つ、融点が30℃以上である多価アルコールの少なくとも1つを含む、請求項1から請求項10のいずれか1項に記載の金属インク。
  12.  金属粒子と、溶媒と、大気圧における沸点が150℃以上であり水と混和可能な有機溶媒と、OH基を2つ以上含み、水及びエタノールに溶解可能な多価アルコールとを混合して、前記金属粒子と前記溶媒と前記多価アルコールを含む金属インクを製造する、
     金属インクの製造方法。
  13.  前記金属粒子と、前記溶媒としての水と、前記多価アルコールと、前記有機溶媒とを混合して、前記金属粒子と水と前記有機溶媒と前記多価アルコールとを含む金属インクである第1金属インクを製造する、請求項12に記載の金属インクの製造方法。
  14.  前記第1金属インクと、前記溶媒としてのエタノールとを混合して、前記金属粒子と水と前記エタノールと前記多価アルコールと前記有機溶媒とを含む金属インクである第2金属インクを製造する、請求項13に記載の金属インクの製造方法。
  15.  前記第2金属インクと、OH基を1つ以上含み、沸点が150℃以上であり、水に難溶又は不溶な液体である前記溶媒としての高沸点溶媒とを混合して、前記金属粒子と水と前記エタノールと前記高沸点溶媒と前記多価アルコールと前記有機溶媒とを含む金属インクである第3金属インクを製造する、請求項14に記載の金属インクの製造方法。
  16.  請求項1から請求項11のいずれか1項に記載の金属インクを加熱して金属層を形成する、
     金属層の製造方法。
  17.  請求項1から請求項11のいずれか1項に記載の金属インクを用いて作られた、金属層。
PCT/JP2023/001406 2022-01-19 2023-01-18 金属インク、金属インクの製造方法、金属層の製造方法、及び金属層 WO2023140300A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247021864A KR20240136948A (ko) 2022-01-19 2023-01-18 금속 잉크, 금속 잉크의 제조 방법, 금속층의 제조 방법, 및 금속층
JP2023557430A JP7464202B2 (ja) 2022-01-19 2023-01-18 金属インク、金属インクの製造方法、金属層の製造方法、及び金属層
CN202380017542.7A CN118742615A (zh) 2022-01-19 2023-01-18 金属油墨、金属油墨的制造方法、金属层的制造方法及金属层

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022006776 2022-01-19
JP2022-006776 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023140300A1 true WO2023140300A1 (ja) 2023-07-27

Family

ID=87348275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001406 WO2023140300A1 (ja) 2022-01-19 2023-01-18 金属インク、金属インクの製造方法、金属層の製造方法、及び金属層

Country Status (5)

Country Link
JP (1) JP7464202B2 (ja)
KR (1) KR20240136948A (ja)
CN (1) CN118742615A (ja)
TW (1) TW202342652A (ja)
WO (1) WO2023140300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024157989A1 (ja) * 2023-01-23 2024-08-02 三菱マテリアル株式会社 金属インク、金属インクの製造方法、焼結体の製造方法、焼結体、及び洗浄液

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172378A (ja) 2002-11-20 2004-06-17 Mitsubishi Materials Corp パワーモジュール用基板の製造方法並びにパワーモジュール用基板及びパワーモジュール
JP2007332347A (ja) * 2006-06-14 2007-12-27 Samsung Electro-Mechanics Co Ltd インクジェット用伝導性インク組成物
US20080041269A1 (en) * 2006-08-16 2008-02-21 Rahel Bekru Bogale Silver ink containing humectant mixture for inkjet printing
JP2015004121A (ja) * 2013-05-22 2015-01-08 株式会社豊田中央研究所 金属ナノ粒子ペースト、それを含有する接合材料、及びそれを用いた半導体装置
WO2016125581A1 (ja) * 2015-02-06 2016-08-11 国立大学法人北海道大学 複合微粒子及び分散液並びにそれらの製造方法及び用途
JP2018111856A (ja) * 2017-01-11 2018-07-19 日立化成株式会社 接合用銅ペースト、焼結体、接合体、半導体装置及びそれらの製造方法
WO2019049867A1 (ja) * 2017-09-06 2019-03-14 日産化学株式会社 インク組成物
JP2019067515A (ja) 2017-09-28 2019-04-25 日立化成株式会社 導体形成用組成物、並びに接合体及びその製造方法
JP6531547B2 (ja) 2015-07-31 2019-06-19 三菱マテリアル株式会社 接合材及び接合体の製造方法
JP2019189717A (ja) * 2018-04-23 2019-10-31 バンドー化学株式会社 銀ナノ粒子インク
WO2022034730A1 (ja) * 2020-08-13 2022-02-17 花王株式会社 金属微粒子分散体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071913B2 (ja) 2014-01-30 2017-02-01 富士フイルム株式会社 インクジェット用導電インク組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172378A (ja) 2002-11-20 2004-06-17 Mitsubishi Materials Corp パワーモジュール用基板の製造方法並びにパワーモジュール用基板及びパワーモジュール
JP2007332347A (ja) * 2006-06-14 2007-12-27 Samsung Electro-Mechanics Co Ltd インクジェット用伝導性インク組成物
US20080041269A1 (en) * 2006-08-16 2008-02-21 Rahel Bekru Bogale Silver ink containing humectant mixture for inkjet printing
JP2015004121A (ja) * 2013-05-22 2015-01-08 株式会社豊田中央研究所 金属ナノ粒子ペースト、それを含有する接合材料、及びそれを用いた半導体装置
WO2016125581A1 (ja) * 2015-02-06 2016-08-11 国立大学法人北海道大学 複合微粒子及び分散液並びにそれらの製造方法及び用途
JP6531547B2 (ja) 2015-07-31 2019-06-19 三菱マテリアル株式会社 接合材及び接合体の製造方法
JP2018111856A (ja) * 2017-01-11 2018-07-19 日立化成株式会社 接合用銅ペースト、焼結体、接合体、半導体装置及びそれらの製造方法
WO2019049867A1 (ja) * 2017-09-06 2019-03-14 日産化学株式会社 インク組成物
JP2019067515A (ja) 2017-09-28 2019-04-25 日立化成株式会社 導体形成用組成物、並びに接合体及びその製造方法
JP2019189717A (ja) * 2018-04-23 2019-10-31 バンドー化学株式会社 銀ナノ粒子インク
WO2022034730A1 (ja) * 2020-08-13 2022-02-17 花王株式会社 金属微粒子分散体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024157989A1 (ja) * 2023-01-23 2024-08-02 三菱マテリアル株式会社 金属インク、金属インクの製造方法、焼結体の製造方法、焼結体、及び洗浄液

Also Published As

Publication number Publication date
JP7464202B2 (ja) 2024-04-09
TW202342652A (zh) 2023-11-01
KR20240136948A (ko) 2024-09-19
JPWO2023140300A1 (ja) 2023-07-27
CN118742615A (zh) 2024-10-01

Similar Documents

Publication Publication Date Title
JP5898400B2 (ja) 銅微粒子とその製造方法及び銅微粒子分散液
CN109789482B (zh) 接合材料及使用该接合材料的接合方法
EP3150306B1 (en) Coated copper particles and method for manufacturing same
US20090116998A1 (en) Highly crystalline silver powder and production method of highly crystalline silver powder
JP4428085B2 (ja) 銅微粒子の製造方法
WO2023140300A1 (ja) 金属インク、金属インクの製造方法、金属層の製造方法、及び金属層
JP7042372B2 (ja) ニッケル粉及びその製造方法、ニッケルペースト
JP4638825B2 (ja) 多成分系金属粒子スラリー及びそのスラリーを用いた導電性インク又は導電性ペースト
JP2014224296A (ja) 接合用金属ペースト
US20060185474A1 (en) Copper powder
US6743409B2 (en) Alkali metal fluorozincate and method for producing it
WO2023013572A1 (ja) 金属インク、金属インクの製造方法、及び金属層の製造方法
WO2024157989A1 (ja) 金属インク、金属インクの製造方法、焼結体の製造方法、焼結体、及び洗浄液
KR20070015427A (ko) 산화칼슘 분산액 및 이의 제조 방법
JP2024104271A (ja) 金属インク、金属インクの製造方法、焼結体の製造方法、焼結体、及び洗浄液
JP2009052146A (ja) 銅粉およびその製造法
WO2024090555A1 (ja) 亜酸化銅の製造方法及び亜酸化銅膜
KR100567234B1 (ko) 유리 입자, 유리 입자 집합체 및 유리 입자의 제조방법
WO2024185600A1 (ja) ガリウム含有銀粉及びガリウム含有銀粉の製造方法、並びに導電性ペースト
JP2006124264A (ja) 酸化カルシウム分散液およびその製造方法
JP2021188132A (ja) 銅粉の製造方法
WO2023167302A1 (ja) リン含有銀被覆銅粒子の製造方法、及びリン含有銀被覆銅粒子
JP2023126100A (ja) 負熱膨張材、その製造方法及び複合材料
JP2008063574A (ja) ユーロピウム賦活酸化イットリウム及びその製造方法
JP2023021925A (ja) 電極活物質被覆用リチウム含有酸化物前駆体溶液とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743293

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557430

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202380017542.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023743293

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023743293

Country of ref document: EP

Effective date: 20240819