[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023026370A1 - Sludge incineration system and sludge incineration method - Google Patents

Sludge incineration system and sludge incineration method Download PDF

Info

Publication number
WO2023026370A1
WO2023026370A1 PCT/JP2021/031023 JP2021031023W WO2023026370A1 WO 2023026370 A1 WO2023026370 A1 WO 2023026370A1 JP 2021031023 W JP2021031023 W JP 2021031023W WO 2023026370 A1 WO2023026370 A1 WO 2023026370A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
gas
circulating gas
temperature
dryer
Prior art date
Application number
PCT/JP2021/031023
Other languages
French (fr)
Japanese (ja)
Inventor
鉄也 西場
克己 佐々木
祐輝 浅岡
Original Assignee
月島機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 月島機械株式会社 filed Critical 月島機械株式会社
Priority to CN202180100437.0A priority Critical patent/CN117651831A/en
Priority to KR1020247000953A priority patent/KR20240054959A/en
Priority to PCT/JP2021/031023 priority patent/WO2023026370A1/en
Priority to TW111125303A priority patent/TW202309444A/en
Publication of WO2023026370A1 publication Critical patent/WO2023026370A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/04Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/10Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/12Sludge, slurries or mixtures of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the sewage treatment method that is usually used in sewage projects is to collect sewage generated by people's lives and businesses into sewage pipes and treat it with activated sludge at sewage treatment plants.
  • sewage sludge such as raw sludge and surplus sludge is generated, and an incineration facility is provided to treat this sewage sludge.
  • Incineration plants treat sewage sludge by various incineration systems and methods.
  • Patent Document 1 discloses a technology related to a sludge incineration system, and the problem to be solved is that tar is present in a supply means for supplying dry exhaust gas from a removal means for removing a predetermined substance from gas generated during drying of sludge to other equipment. It is supposed to suppress the stagnation of dry exhaust gas supply due to adhesion.
  • Patent Document 1 shows a dryer as one element of the solution, but this dryer obtains a heat source from a heat exchanger for drying, and this heat source is based on the incineration exhaust gas generated in the incinerator. It's becoming
  • the incineration exhaust gas passes through the flow path in the heat exchanger, so dust and tar contained in the incineration exhaust gas pose a problem. Dust and tar may cause clogging or erosion if they adhere or accumulate in the flow paths in the heat exchanger.
  • the problem to be solved by the present invention is to provide a sludge incineration system and a sludge incineration method that are less likely to clog or erode the flow path of the heat exchanger.
  • a sludge incineration system that incinerates sludge, a circulating gas flowing through the circulating path; a dryer that dries the first dehydrated sludge with the heat of the circulating gas to obtain dried sludge; a separator for separating the dried sludge and the circulating gas; an air preheater that exchanges the heat of the air supplied from the outside with the high-temperature incineration exhaust gas generated by incinerating the sludge and converts it into preheated air; a circulating gas heater that heats the circulating gas by exchanging heat with the preheated air to produce a high-temperature circulating gas, The circulating gas is discharged from the dryer together with the dried sludge, passes through the separator, reaches the circulating gas heater, is heated, and is supplied to the dryer again for circulation, The dryer dries and pulverizes the first dewatered sludge into powder
  • the circulating gas supplied to the dryer obtains a heat source through heat exchange with the incineration exhaust gas.
  • the circulating gas derives its heat source from the circulating gas heater.
  • the circulating gas heater has a channel through which preheated air, which is clean air, flows and a channel through which circulating gas flows. Heat is exchanged between these channels. Since tar does not flow in, clogging or erosion of the flow path due to dust or tar is unlikely to occur.
  • the preheated air is supplied from the outside, and the heat source used for preheating is obtained from the air preheater through which the incineration exhaust gas flows.
  • the temperature and flow rate of the circulating gas can be flexibly adjusted according to the operating conditions of the sludge incineration system.
  • the dryer is A pipe extending in an annular shape, a sludge introduction part into which the first dewatered sludge is introduced into the pipe, a gas supply part into which high temperature circulation gas is supplied into the pipe, and a circulation gas containing dried sludge is supplied to the pipe. a gas discharge part discharged from the pipe, The high-temperature circulating gas supplied from the gas supply unit circulates at high speed in the pipe and collides with the first dehydrated sludge introduced from the sludge introduction unit.
  • a sludge incineration system of the first aspect is
  • One example of a method for treating the first dewatered sludge is to reduce the water content to a concentration that can be put into the incinerator, and then incinerate it in the incinerator.
  • the high-temperature circulating gas circulates in the pipe at high speed and continues to collide with the first dehydrated sludge, so that the first dehydrated sludge is pulverized into powdery dried sludge. Powdery dry sludge is discharged from the gas discharge part while being contained in the circulating gas.
  • the dried sludge is transported together with the circulating gas, so there is no need to install separate transportation facilities or equipment, and the dried sludge can be easily transported. .
  • a white smoke prevention preheater that exchanges heat with the incineration exhaust gas that has passed through the air preheater to convert the air supply gas supplied from the white smoke prevention fan into high-temperature supply air; a bleed gas heater that heat-exchanges the bleed gas bled from the circulating gas with the high-temperature supply gas to produce a high-temperature bleed gas,
  • the bleed gas is dehumidified by bleed from a circulation path connecting the separator and the circulating gas heater,
  • the high temperature extraction gas is supplied to an incinerator for incinerating sludge, A sludge incineration system of the first aspect.
  • the dehumidified extraction gas is heat-exchanged with the high-temperature supply gas to obtain high-temperature extraction gas, thereby suppressing adhesion and solidification of tar to the extraction gas pipe.
  • the sludge odor in the circulation path can be reduced by supplying the extraction gas to the incinerator.
  • an incinerator for incinerating sludge; Equipped with a sludge input machine for inputting sludge into the incinerator, The dried sludge separated by the separator is discharged to the sludge input machine, The sludge feeder feeds the dried sludge and the first dehydrated sludge into the incinerator.
  • the sludge combustion in the furnace will become unstable depending on the water content and amount of the first dehydrated sludge.
  • dried sludge since dried sludge is put into the incinerator in addition to the first dewatered sludge, the moisture content of the entire sludge to be incinerated is lowered, and sludge combustion is stabilized.
  • the first dehydrated sludge and dried sludge are fed into the incinerator from a single feeding line, there is a risk of triggering a dust explosion inside the furnace.
  • the second dehydrated sludge is additionally put into the incinerator, dust explosion is suppressed.
  • the flow rate of the circulating gas flowing through the circulation path fluctuates depending on the operation status of the incinerator and the sludge incineration equipment including this.
  • the circulating gas heater enters a so-called dry-heating state if the preheated air continues to flow quantitatively through the flow path, which may cause wear and damage.
  • the rest of the preheated air does not flow into the circulating gas heater, so that the circulating gas heater is less likely to run dry.
  • the temperature of the circulating gas supplied to the dryer is measured to obtain the measured temperature, the target temperature of the circulating gas supplied to the dryer is calculated based on the measured temperature, and the temperature of the circulating gas is the target Having a control device that controls to increase or decrease the flow rate of the air supplied from the outside so as to approach the temperature, A sludge incineration system of the first aspect.
  • the temperature of the circulating gas supplied to the dryer can be kept within a predetermined temperature, various facilities are less likely to be damaged or worn out early, and the running cost can be kept low. .
  • the first dehydrated sludge When drying the first dehydrated sludge, if it is a conventional dryer, it may be difficult to dry depending on the organic content concentration and water content, or it may take a long time to dry. It was mixed with sludge and dried as a mixture. On the other hand, in the dryer of the second aspect, even if the dried sludge is not mixed with the first dehydrated sludge, drying and pulverization can be easily achieved by introducing the first dewatered sludge alone into the dryer. The inventors are aware of this. Although the mechanism is not clear, it is probably due to the high-temperature circulating gas continuously colliding with the first dehydrated sludge, which is the object to be treated, at high speed.
  • a circulation step in which the circulation gas flows through the circulation path;
  • a drying step of drying the first dehydrated sludge with the heat of the circulating gas to obtain dry sludge in a dryer;
  • a separation step of separating dry sludge and circulating gas in a separator;
  • a preheated air acquisition step of exchanging heat of air supplied from the outside with high-temperature exhaust gas generated by incinerating sludge in a circulating gas heater to obtain preheated air;
  • the circulating gas is discharged from the dryer together with the dried sludge, passes through the separator, reaches the circulating gas heater, is heated, and is supplied to the dryer again for circulation,
  • the first dewatered sludge is dried and pulverized into powdery
  • a sludge incineration system and a sludge incineration method that are unlikely to cause clogging or erosion of the flow path of the heat exchanger.
  • the sludge incineration system of this embodiment includes a circulating gas flowing through the circulating paths (G1, G2, G3, G4, G5), a dryer 100 that dries the first dehydrated sludge 5 with the heat of the circulating gas to obtain dried sludge, A separator 10 for separating dry sludge and circulating gas, an air preheater 40 for exchanging heat with high-temperature exhaust gas generated by incinerating the sludge to preheat the air supplied from the outside, and circulating gas. , and a circulating gas heater 30 that exchanges heat with the preheated air to heat it into a high-temperature circulating gas, and the circulating gas is discharged from the dryer 100 together with dried sludge and passes through the separator 10. Then, the circulating gas heater 30 reaches the circulating gas heater 30 to be heated, and is supplied again to the dryer 100 for circulation. It is characterized by being made into sludge.
  • One embodiment of the present invention will be described below with reference to FIG.
  • Each of the dampers V1 to V7 shown below has an opening/closing function that increases or decreases the flow rate of gas or air flowing through the pipes in which they are installed.
  • the first dewatered sludge 5 brought in from outside the system is fed into a fixed feeder 80, cut out in an appropriate amount, flows through the sludge pipe 6, is introduced into the sludge feeder 19, and is fed into the incinerator 20.
  • the first dewatered sludge may be introduced directly into the sludge input device 19 (or the incinerator 20) without providing the sludge pipe 6 in particular.
  • the quantitative feeder 80 can be exemplified by having two discharge parts, the first discharge part being connected to the sludge pipe 6 extending to the sludge input machine 19, and the second discharge part being a hopper. It is connected to the sludge pipe 7 extending to 90 .
  • the first dehydrated sludge 5 is introduced from a constant feeder 80 into the incinerator 20 and the dryer 100 respectively.
  • the first dewatered sludge 5 is not particularly limited, it is made by dehydrating a mixture of raw sludge and surplus sludge generated in a sewage treatment plant, and has a water content of 40 to 85%.
  • the sludge pipe 6 is provided with a flow sensor F1 that measures the flow rate of the first dehydrated sludge flowing in the sludge pipe 6, and the arithmetic device 110 receives the data of the measured value of the flow sensor F1. should be constructed.
  • the sludge feeder 19 is a device that feeds the sludge introduced by the sludge feeder 19 into the sludge feeder 21 of the incinerator 20.
  • the sludge is conveyed to the sludge feeder 21 by gravity, a belt conveyor, a constant feeder, or the like. It is something to do.
  • the sludge to be conveyed include the first dehydrated sludge 5 and dried sludge.
  • the sludge conveyed by the sludge loading machine 19 is loaded into the incinerator 20 from the sludge loading section 21 .
  • the incinerator 20 is equipment for incinerating the sludge that has been introduced.
  • the incinerator 20 is not particularly limited, but examples thereof include a fluidized bed incinerator, a circulating fluidized bed incinerator, a stoker furnace, etc., and a supercharged fluidized bed incinerator is particularly preferable.
  • a supercharged fluidized bed incinerator for example, sludge is supplied to a pressurized fluidized bed furnace and combusted, and the combustion exhaust gas discharged from the fluidized bed incinerator rotates a supercharger to generate compressed air. Combustion is promoted by supplying compressed air to the fluidized bed incinerator.
  • the fluidized bed incinerator is a combustion furnace in which solid particles such as fluidized sand having a predetermined particle size are filled in the lower part of the furnace as a fluidizing medium. While maintaining the state, the sludge fed from the sludge feeding section 21 and the auxiliary fuel supplied as necessary are burned.
  • an auxiliary fuel combustion device (not shown) is arranged to heat the fluidized sand with a particle size of about 400 to 600 ⁇ m filled inside the fluidized bed incinerator, and in the vicinity of the upper side of the auxiliary fuel combustion device.
  • a starting burner (not shown) for heating the fluidized sand at the time of starting
  • a sludge input section 21 is provided above the starting burner.
  • An air supply pipe 22 is installed below the fluidized bed incinerator to supply preheated air that provides oxygen necessary for combustion and kinetic energy for maintaining the fluidized state of the fluidized bed.
  • a distribution pipe in which a plurality of pipes having a plurality of openings are arranged, a distribution plate in which a plurality of openings are provided in a plate-like iron plate, or the like can be used.
  • high-temperature extraction gas that has passed through a extraction gas heater 70 which will be described later, may be supplied from the air supply pipe 22 into the furnace.
  • the high temperature bleed gas is supplied into the furnace through, for example, a bleed gas pipe G8 connecting the bleed gas heater 70 and the air supply pipe 22 .
  • incineration exhaust gas means combustion gas generated when sludge is burned, or gas in which combustion gas and water vapor are mixed.
  • the incinerated exhaust gas generated in the incinerator 20 is discharged from the incinerator 20 at 800 to 900° C., flows through the incinerated exhaust gas pipe 39 connecting the exhaust gas discharge part of the incinerator 20 and the air preheater 40, and flows to the air preheater 40. influx.
  • the air preheater 40 has a channel through which incinerated waste gas flows and a channel through which air supplied from the outside flows, and heat is exchanged indirectly between the two channels.
  • the method of heat exchange used in the air preheater 40 is not particularly limited, but a tube type is preferable, and for example, a double tube type, a shell and tube type, or a spiral type can be used.
  • the air supplied from the outside is supplied from the outside air under the room temperature or the outside temperature by the blower B2, and the air that connects the blower B2 and the base end of the flow path in the air preheater 40 through which the air supplied from the outside flows. It flows into the air preheater 40 through the pipe A1.
  • the air pipe A1 can be provided with a damper V2 for adjusting the amount of air supplied.
  • the air supplied from the outside is preheated by the air preheater 40, flows out from the air preheater 40 as preheated air of 80 to 700° C., and flows through the air pipe A2 connecting the circulating gas heater 30 and the air preheater 40. and flows into the circulating gas heater 30 .
  • the combustion exhaust gas discharged from the air preheater 40 at 550 to 700° C. flows through the combustion exhaust gas pipe 49 connecting the white smoke prevention preheater 50 and the air preheater 40 and flows into the white smoke prevention preheater 50 .
  • the white smoke prevention preheater 50 is for preventing the condensation and visualization of water vapor contained in the incineration exhaust gas, which occurs in the process of the incineration exhaust gas discharged from the chimney of the incineration facility diffusing in the atmosphere.
  • the white-smoke prevention preheater 50 has a passage through which the supply gas, which is the air supplied from the outside to the white-smoke prevention preheater 50, flows, and a passage through which the combustion exhaust gas flows, and heat is exchanged indirectly between the two passages.
  • the method of heat exchange used in the air preheater 40 is not particularly limited, but a tube type is preferable, and for example, a double tube type, a shell and tube type, or a spiral type can be used.
  • the air supply gas is supplied to the white smoke prevention fan B3 and the white smoke prevention preheater by a fan (also referred to as “white smoke prevention fan B3") that sends outside air under room temperature or outside temperature to the white smoke prevention preheater 50 (also referred to as “white smoke prevention fan B3"). It flows through the air pipe A7 connecting the base end of the flow path through which the air supply gas flows in the device 50 and flows into the white smoke prevention preheater 50 .
  • the supplied air gas passes through the white smoke prevention preheater 50 and exchanges heat with the incineration exhaust gas to obtain heat to become a high temperature supply gas of 200 to 400° C., and flows out of the white smoke prevention preheater 50 .
  • the high temperature supply gas flows through the air pipe A8 that connects the white smoke prevention preheater 50 and the bleed gas heater 70 and flows into the bleed gas heater 70 .
  • the incinerated exhaust gas which has passed through the white smoke prevention preheater 50 and has been reduced in temperature (cooled) to 200 to 600° C., flows through the incinerated exhaust gas pipe 59 and is sent to the incinerated exhaust gas treatment equipment 120 .
  • the high-temperature supply gas that has passed through the white smoke prevention preheater 50 flows through the air pipe A8 that connects the bleed gas heater 70 and the white smoke prevention preheater 50 , and flows into the bleed gas heater 70 .
  • the bleed gas heater 70 heat-exchanges the bleed gas bled from the circulation path with the high temperature supply gas to obtain the high temperature bleed gas.
  • a damper V6 can be provided in the air line A8 for adjusting the flow rate of the high temperature charge gas flowing to the bleed gas heater 70.
  • the bleed gas heater 70 has a channel through which the high-temperature supply gas flows and a channel through which the bleed gas flows, and heat is exchanged indirectly between the two channels.
  • the bleed gas is a part of the circulating gas, which is bleed from the circulation path.
  • the circulation gas flowing through the circulation path contains tar and odor, and for the purpose of removing these, it is advisable to bleed some of the circulation gas. Since the extracted gas is led to the incinerator 20 and incinerated, the moisture-reduced gas (that is, dehumidified extracted gas) is more suitable for incineration. Further, since it is preferable that the extraction gas is heated by exchanging heat with the high-temperature supply gas in the extraction gas heater 70, the extraction gas is extracted from the section from the separator 10 to the circulation gas heater 30 in the circulation path. Good stuff. If it is the circulating gas in the section, the dry sludge has been removed and the temperature is relatively low, so there is an advantage that a suitable bleed gas can be bleed.
  • the bleed gas extracted from the circulation path flows through the bleed gas pipes G6 and G7 that connect the bleed gas heater 70 and the circulation path, and flows into the bleed gas heater 70 . Since the bleed gas flowing into the bleed gas heater 70 should be dehumidified, a condenser 60 for dehumidifying the bleed gas may be interposed, for example, between the bleed gas pipes G6 and G7.
  • the high temperature extraction gas preferably flows out from the extraction gas heater 70 at a temperature of 80° C. or higher, more preferably 120 to 210° C., flows through the extraction gas pipe G8 extending from the extraction gas heater 70 to the incinerator 20, and flows into the incinerator. 20 and incinerated along with the sludge as air fuel. If the temperature of the bleed gas flowing out of the bleed gas heater 70 is less than 350° C., the tar contained in the bleed gas may liquefy and adhere to the piping, causing clogging. Therefore, the liquefaction of tar is suppressed by raising the temperature of the extraction gas. In addition, the extracted gas contains tar and odor, which adversely affects various facilities, but incineration can eliminate these adverse effects as much as possible.
  • the high-temperature supply gas flows through the flow path through which the high-temperature supply gas flows, is deprived of heat by the extraction gas, and flows out from the extraction gas heater 70 at 150 to 500° C., connecting the extraction gas heater 70 and the chimney 130. It flows through the air pipe A9 and is led to the chimney 130.
  • the bleed gas heater 70 becomes hot when the high-temperature supply gas continues to flow when the amount of bleed gas inflow is small, resulting in a so-called dry-heating state.
  • a bypass air pipe A10 for releasing the hot supply gas from the air pipe A8 to the air pipe A9 and a damper V7 installed in the bypass air pipe A10.
  • the bypass air pipe A10 is preferably provided at a position upstream of the damper V6 in the air pipe A8.
  • Bleeding means extracting part of the circulation gas flowing through the circulation path.
  • the preheated air obtained by exchanging heat from the incineration exhaust gas in the air preheater 40 flows out of the air preheater 40, and at 200 to 700° C., the air connecting the circulating gas heater 30 and the air preheater 40. It flows through the pipes A2 and A3 and flows into the circulating gas heater 30 .
  • the circulating gas heater 30 has a channel through which the circulating gas flows and a channel through which the preheated air flows, and heat is exchanged indirectly between the two channels.
  • the method of heat exchange used in the circulating gas heater 30 is not particularly limited, but a tube type is preferable. And tube heat exchangers are preferred.
  • the air pipe A2 and the air pipe A3 are connected and integrated, and are configured so that the preheated air flows continuously between the two pipes.
  • a damper V1 should be installed in the air pipes A2 and A3. By opening and closing the damper V1, the flow rate of the preheated air can be increased or decreased, the amount of heat obtained by the circulating gas can be adjusted by the circulating gas heater 30, and the temperature of the circulating gas can be controlled.
  • an air pipe A4 can be provided that is branched from the air pipes A2 and A3 to flow preheated air to the air supply pipe 22 of the incinerator 20. It is preferable that the branch point be upstream of the installation position of the damper V1 in the air pipes A2 and A3.
  • a damper V3 capable of adjusting the flow rate of the preheated air can be provided in the air pipe A4. With this configuration, part of the preheated air passes through the circulating gas heater and is supplied to the incinerator, and the remaining part is supplied to the incinerator without passing through the circulating gas heater. can be
  • the preheated air flowing out of the circulating gas heater 30 flows through the air pipe A5 connecting the incinerator 20 (the air supply pipe 22 if the air supply pipe 22 is provided) and the circulating gas heater 30, and flows into the incinerator 20. .
  • the circulating gas heater 30 of the present embodiment has a channel through which preheated air, which is clean air, flows and a channel through which circulating gas flows, and heat is exchanged between these channels. Since the preheated air is preheated air supplied from the outside of the sludge incineration system, the preheated air does not contain dust or tar and is clean. Therefore, since dust and tar do not flow into the flow path through which the preheated air flows, clogging or erosion of the flow path due to dust or tar is unlikely to occur.
  • the circulation paths (G1, G2, G3, G4, G5) are paths through which the circulation gas flows. and a channel G3 to which the circulating gas heater 30 and the dryer 100 are connected.
  • a blower B1 can be provided in the circulation path so that the circulation gas flows.
  • the blower B1 is preferably installed in a channel where the circulating gas is not at a high temperature and contains as little dried sludge as possible. is preferred.
  • the flow path G5, the flow path G1, and the flow path G2 are connected so that the circulating gas flows.
  • the flow rate of the circulating gas is partially reduced by bleeding, and it is preferable to introduce outside air to make up for the decrease.
  • an outside air introduction pipe G9 is connected upstream of the installation position of the blower B1 in the flow path (G5, G1, G2) so that the outside air flows through the outside air introduction pipe G9 and is introduced into the circulation path. do.
  • a bleed gas pipe G6 can be provided in the flow path (G5, G1, G2) so that the bleed gas flows to the bleed gas heater 70.
  • the connection point of the extraction gas pipe G6 in the flow path (G5, G1, G2) is not particularly limited, and may be connected upstream of the outside air introduction pipe G9 or downstream of the blower B1. good too.
  • a damper V5 can be provided in the extraction gas pipe G6. By opening and closing the damper V5, it is possible to adjust the flow rate of the extraction gas in accordance with the flow rate of the high-temperature supply gas flowing through the extraction gas heater 70, which is preferable.
  • outside air introduced from the outside air introduction pipe G9 flows through the flow paths (G5, G1, G2) as circulating gas, passes through the circulating gas heater 30, obtains heat, and heats the circulating gas heater at 300 to 500 ° C. outflow from 30.
  • the outflowing circulating gas (high-temperature circulating gas) flows through the flow path G3 and flows into the dryer 100 .
  • the circulating gas contains dried sludge generated in the dryer 100 and flows out from the dryer 100 at 100 to 400°C, flows through the flow path G4, and flows into the separator 10.
  • the circulating gas that has flowed into the separator 10 has dried sludge separated by the separator 10, and the residue flows out at 100 to 400°C, reaches the flow path (G5, G1, G2) again, and circulates.
  • the flow rate of the circulating gas can be adjusted by the blower B1 installed in the circulation path.
  • a damper V4 for adjusting the flow rate of the circulating gas can be provided in the flow path G2.
  • the dryer 100 brings the first dehydrated sludge fed from the hopper 90 into contact with the high-temperature circulating gas flowing from the circulation path, and dries and pulverizes the first dehydrated sludge into powdery dried sludge.
  • the dryer 100 includes: (1) a spray dryer, a flash dryer, a fluidized bed dryer, a rotary dryer, etc., in which the first dehydrated sludge is dispersed and dried in a high-temperature circulating gas; (2) The first dewatered sludge is transferred while still standing, such as a ventilation band dryer, tunnel dryer (parallel flow band dryer), jet flow dryer, etc., and the first dewatered sludge is transferred during the transfer process. (3) mechanically stirring the first dehydrated sludge, such as a stirring dryer, and bringing the first dehydrated sludge into contact with the high temperature circulation gas; A dried form can be exemplified.
  • a flash dryer is shown as the dryer 100 in FIGS.
  • This flash dryer includes a pipe 100B extending in an annular shape, a sludge introduction section 100E into which the first dehydrated sludge is introduced into the pipe 100B, and a gas supply section into which high-temperature circulation gas is supplied into the pipe 100B.
  • the pipe 100B includes a pipe portion 100Ba connected to the gas supply portion 100A and extending horizontally, a pipe portion 100Bb extending while curving upward from the pipe portion 100Ba, and a direction (pipe It is composed of a pipe portion 100Bc that curves and extends in a direction parallel to the portion 100Ba, and a pipe portion 100Bd that curves and extends downward from the pipe portion 100Bc. Further, the pipe portion 100Bd is provided with a tip portion 100C which is joined to the tip portion 100D of the gas supply portion 100A and receives the supply of the high-temperature circulating gas flowing through the gas supply portion 100A. Also, a sludge introduction section 100E is provided in the pipe 100B, particularly the pipe section 100Ba, and a gas discharge section 100F is provided in the pipe 100B.
  • the high-temperature circulating gas is supplied to the gas supply section 100A through the flow path G3.
  • the first dehydrated sludge introduced into the pipe 100B from the sludge introduction portion 100E through the sludge pipe 4 is introduced into the high-temperature circulating gas circulating in the pipe portion 100Ba, continuously collides with the high-temperature circulating gas, and enters the pipe 100B. It is blown away inside, dispersed and dried to become powdery dry sludge. At this time, the large sludge particles of the first dehydrated sludge collide with the high-temperature, high-speed circulating gas, breaking into a plurality of small sludge particles, and the water contained therein rapidly evaporates.
  • the powdery sludge particles that have been dispersed and dried to a particle size below a certain level are discharged from the gas discharge part 100F as dry sludge to the outside of the flash dryer while being included in the flow of the circulating gas.
  • relatively large sludge grains that are not sufficiently dispersed and dried are not discharged from the gas discharge section 100F, and are repeatedly circulated in the pipe 100B until sufficiently dispersed and dried. Therefore, the flash dryer mainly discharges well-dispersed and dried powdery and dried sludge.
  • the high-temperature circulating gas is supplied from the gas supply unit 100A to the pipe 100B, and circulates with the sludge particles through the pipe section 100Ba, the pipe section 100Bb, the pipe section 100Bc, the pipe section 100Bd, and the pipe section 100Ba. It is discharged out of the dryer 100 from the gas discharge part 100F.
  • the high-temperature circulating gas that has not been exhausted joins and mixes with the high-temperature circulating gas newly sent from the gas supply section 100A, and flows through the pipe section 100Ba, the pipe section 100Bb, the pipe section 100Bc, and the pipe section 100Bd. is exhausted to the outside of the dryer 100 from the gas exhaust portion 100F.
  • part of the high-temperature circulating gas is discharged from the gas discharge section 100F, and the remaining high-temperature circulating gas circulates through the pipe 100B.
  • the first dehydrated sludge newly introduced and the first dehydrated sludge circulating in the pipe 100B are mixed in the pipe, dried and pulverized through circulation.
  • the flow velocity of the high-temperature circulating gas flowing through the gas supply part 100A of the flash dryer is 20 m/s or more and 60 m/s or less, and the flow velocity in the pipe 100B is 15 m/s or more and 45 m/s or less. It is preferable to If the flow velocity of the gas supply part 100A and the pipe 100B is lower than the above value, the sludge particles are difficult to circulate in the flash dryer, which may hinder the drying process and discharge to the outside of the circulator. Moreover, the flow velocity in the pipe 100B is more preferably 15 m/s or more so that the sludge particles can circulate smoothly.
  • the flow velocity of the gas supply section 100A faster than the flow velocity of the pipe 100B.
  • the newly supplied high-temperature circulation gas continuously collides with the circulating sludge particles, thereby promoting the dispersion of the sludge particles.
  • the temperature of the high-temperature circulating gas circulating in the dryer 100 is preferably 300 to 500°C, more preferably 350 to 450°C, and even more preferably 400°C. If the temperature of the hot circulating gas is below this range, it will take a long time to dry. On the other hand, there is little merit in setting the temperature higher than this range, and while a lot of energy is consumed to raise the temperature, there is a demerit that the cost-effectiveness of facility management is reduced.
  • the circulating gas containing the dried sludge that has flowed out of the dryer 100 is deprived of heat by the drying of the first dehydrated sludge in the dryer 100 and reaches 100 to 400°C.
  • the dried sludge generated in the dryer 100 is transported to the separator 10. If transported to the separator 10 together with the circulating gas, for example, it is preferable that no separate equipment is required for transport.
  • the circulating gas containing dried sludge flows through a flow path G4 that connects the gas discharge portion 100F of the dryer 100 and the circulating gas inlet portion of the separator 10 and is supplied to the separator 10 .
  • the dry sludge discharged from the dryer 100 has a water content of 1 to 40%.
  • the separator 10 gas-solid separates the circulating gas containing dried sludge supplied from the flow path G4, removes the dried sludge, and discharges the residue to the flow path G5.
  • the separator 10 includes a sludge supply section that receives supply of circulation gas containing dried sludge, a sludge discharge section 11 that discharges the separated dry sludge, and a residue of the circulation gas from which the dried sludge has been separated.
  • the separated dry sludge is discharged from the separator 10 to, for example, a sludge input machine 19, which is provided with a gas discharge section to be discharged to the path G5.
  • the separated dried sludge may fall naturally from the sludge discharge unit 11 and be supplied to the sludge input device 19, or a sludge pipe 3 connecting the sludge discharge unit 11 and the sludge input device 19 is provided, and the sludge pipe 3 to the sludge input machine 19.
  • Examples of the separator 10 include a gravity sedimentation chamber that collects dust by gravity, a mist separator that collects dust by inertia, a cyclone that collects dust by centrifugal force, a venturi scrubber that collects dust by washing, and a filter cloth that collects dust. a bag filter that performs dust collection, a moving particle layer air filter that collects dust with a packed layer, an electric dust collector that collects dust with electricity, and the like.
  • the separator 10 can be provided directly above the sludge input device 19, and the separated dry sludge can be discharged from the sludge discharge part 11 of the separator 10 to the sludge input device 19. Since the dried sludge is light in weight and accompanied by a strong sludge odor, it scatters when the transport route is long, and the sludge odor wafts around. Therefore, if the dried sludge is discharged from the sludge discharge part of the separator to the sludge input machine directly below, it is quickly input to the incinerator, so that the scattering of the dried sludge and the emission of its odor can be suppressed as much as possible. .
  • the first dewatered sludge 5 is temporarily stored in the quantitative feeder 80, and an appropriate amount of it flows through the sludge pipe 7 connecting the hopper 90 and the quantitative feeder 80, flows into the hopper 90, and is stored.
  • the sludge stored in the hopper 90 flows through the sludge pipe 4 connecting the sludge introduction part 100E of the dryer 100 and the hopper 90 and is introduced into the dryer 100 .
  • the hopper 90 may receive the dried sludge separated by the separator 10 in addition to receiving the first dehydrated sludge.
  • the dried sludge separated by the separator 10 may be manually transported to the hopper 90 and put into it, or a sludge pipe 9 connecting the hopper 90 and the separator 10 is provided, and the sludge pipe 9 is flown into the hopper. You can put it in 90.
  • the first dewatered sludge and the dried sludge are mixed within the hopper 90 .
  • the first dehydrated sludge may be difficult to dry or may take a long time to dry depending on the concentration of organic matter and water content.
  • control In order to control the operation of the sludge incineration system of this embodiment, a control device using the arithmetic device 110 can be provided. Temperature sensors and flow rate sensors are installed in various places in the sludge incineration system to perform this control. Details are given below.
  • a temperature sensor T1 that measures the temperature of the incinerated exhaust gas flowing through the incinerated exhaust gas pipe 39
  • a temperature sensor T2 that measures the temperature inside the incinerator 20, and a temperature of the circulating gas flowing through the flow paths G1 and G2.
  • a temperature sensor T4 for measuring the temperature of the circulating gas flowing through the flow path G4
  • a temperature sensor T5 for measuring the temperature of the high-temperature circulating gas flowing through the flow path G3.
  • the temperature data measured by the temperature sensors T1 to T5 and the flow rate data measured by the flow sensors F1 to F3 are transmitted to the computing device 110 by wire or wirelessly.
  • the computing device 110 computes the output values of the openings of the dampers V1 to V7 by using a computational expression provided in advance based on the received input values of the measured temperature data and the measured flow rate data.
  • Arithmetic device 110 transmits the output values to dampers V1 to V7.
  • the dampers V1 to V7 operate their respective actuators, and open or close the valves to change the flow rate so that the degree of opening up to that point becomes the degree of opening corresponding to the received output value.
  • the arithmetic expression is not particularly limited, but is constructed from past measured temperature data, measured flow data, and opening data, for example, by least square method control, PI control, PDI control, neural network control, and manual input method. can do.
  • the temperature of the circulation gas supplied to the dryer 100 is measured to obtain the measured temperature
  • the target temperature of the circulation gas supplied to the dryer 100 is calculated based on the measured temperature
  • the flow rate of the air supplied from the outside is controlled so that the temperature of the circulating gas approaches the target temperature.
  • control to increase or decrease the flow rate of the air supplied from the outside means, for example, when the sludge incineration system is operating with the damper V2 at a specific opening (actual opening), the measured temperature is As an input value, the target opening of the damper V2 is obtained as an output value by inputting it into a pre-provided arithmetic expression, and by bringing the actual opening of the damper V2 close to the target opening obtained as the output value, it is supplied from the outside. It refers to control that increases or decreases the flow rate of the air that is applied. This control increases or decreases the flow rate of the preheated air flowing into the circulating gas heater 30 and increases or decreases the temperature of the circulating gas that undergoes heat exchange.
  • the flow rate of the circulating gas flowing through the flow path G2 is measured to obtain the measured flow rate
  • the target flow rate of the circulating gas flowing through the flow path G2 is calculated based on the measured flow rate
  • the circulation gas flow rate is calculated.
  • the flow rate of the circulating gas is controlled to increase or decrease so that the flow rate of the gas approaches the target flow rate.
  • the control to increase or decrease the flow rate of the circulating gas is, for example, when the sludge incineration system is operating with the damper V5 at a specific opening (actual opening), the measured flow rate is used as an input value, and The target opening of the damper V5 is obtained as an output value by inputting it into the provided arithmetic expression, and by bringing the actual opening of the damper V5 closer to the target opening obtained as the output value, the flow rate of the circulating gas is increased or decreased. That's what I mean.
  • This control increases or decreases the flow rate of the circulating gas passing through the circulating gas heater 30 and increases or decreases the temperature of the circulating gas flowing into the dryer 100 .
  • the target introduction amount of the first dehydrated sludge to the dryer 100, and the first to the incinerator 20 1 A device can be used in which a target input amount of dehydrated sludge is calculated, and the discharge amount of dewatered sludge in the constant feeder 80 is controlled so as to achieve the target introduction amount and the target input amount.
  • FIG. 3 is a system diagram without the sludge pipe 9 shown in FIG.
  • dried sludge is introduced together with the first dewatered sludge, but in the dryer characterized by this embodiment, high-temperature circulation gas circulates in the dryer and the dried sludge is not actively introduced.
  • the first dewatered sludge is easily dried. Therefore, there is no need to provide a pipe or the like for guiding the dried sludge to the dryer, and there is an advantage that the form of the entire sludge incineration system can be made compact.
  • the sludge incineration system of the first aspect further includes an incinerator 20 for incinerating sludge, and in addition to the first dewatered sludge, the second dehydrated sludge is introduced into the incinerator 20.
  • Sludge incineration System Sludge incineration System.
  • the second dewatered sludge 1 brought in from outside the system is put into the sludge hopper 140 .
  • a sludge discharger is provided in the sludge hopper 140 , and the sludge discharger and the sludge feeder 19 are connected by a sludge pipe 2 .
  • the second dewatered sludge 1 discharged from the sludge discharging section flows through the sludge pipe 2 into the sludge input machine 19 .
  • examples of the sludge conveyed by the sludge feeder 19 include the first dehydrated sludge 5, the second dehydrated sludge, dried sludge, and the like. Both the second dehydrated sludge 1 and the first dehydrated sludge 5 are dehydrated sludge, and are put into the incinerator 20 as separate bodies. The whole amount of the second dehydrated sludge 1 is put into the incinerator 20 .
  • the incinerator 20 In the incineration of only the first dehydrated sludge 5, self-combustion by the incinerator 20 may become unstable depending on the properties, organic content concentration, and water content of the first dehydrated sludge 5, and in addition to the dried sludge, the second dehydrated sludge By introducing , the incinerator 20 will continue to burn stably.
  • the white smoke prevention preheater 50 heat-exchanges the air supply gas supplied from the white smoke prevention fan B3 with the incineration exhaust gas that has passed through the air preheater 40 to produce a high temperature supply gas
  • the circulating gas A bleed gas heater 70 is provided for heat-exchanging the bleed gas with the high-temperature supply gas to make the high-temperature bleed gas, and the bleed gas is connected to the separator 10 and the circulating gas heater 30.
  • a sludge incineration system can be provided in which the high-temperature extracted gas is dehumidified by extraction from the circulation paths (G5, G1, G2) and is supplied to an incinerator 20 for incinerating sludge.
  • This sludge incineration system is preferable because it suppresses adhesion and solidification of tar to the extraction gas pipe.
  • the extraction gas is supplied to the incinerator 20, the sludge odor in the circulation path can be reduced.
  • the sludge incineration method for incinerating sludge is (1) a circulation step in which the circulation gas flows through the circulation paths (G1, G2, G3, G4, G5); (2) a drying step of drying the first dehydrated sludge 5 with the heat of the circulating gas to obtain dry sludge in the dryer 100; (3) a separation step of separating dry sludge and circulating gas in a separator 10; (4) In the circulating gas heater 30, the air supplied from the outside is heat-exchanged with the high-temperature exhaust gas generated by incinerating the sludge to obtain preheated air; (5) obtaining a high-temperature circulating gas by exchanging heat with the preheated air to heat the circulating gas to obtain a high-temperature circulating gas; The circulating gas is discharged from the dryer 100 together with dried sludge, passes through the separator 10, reaches the circulating gas heater 30, is
  • Granular dry sludge is difficult to define strictly, but for example, dry sludge with a size that can be smoothly flowed with the flow of air when air is flowed through a pipe at a flow rate of 20 m / sec. say.
  • the pipes through which circulating gas and extraction gas flow are solid lines
  • the pipes through which combustion exhaust gas flows are thick solid lines
  • the pipes through which the first dehydrated sludge, dried sludge, and second dehydrated sludge flow are one point.
  • Chain lines indicate piping through which externally supplied air, preheated air, supply gas, and high-temperature supply gas flow
  • dashed lines indicate the transmission/reception network between the temperature sensor, flow rate sensor, damper, and the arithmetic unit.
  • the present invention can be used as a sludge incineration system and a sludge incineration method.
  • Second dehydrated sludge 5 First dehydrated sludge 10 Separator 30 Circulating gas heater 40 Air preheater 100 Dryer G1 Circulation path G2 Circulation path G3 Circulation path G4 Circulation path G5 Circulation path

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Sludge (AREA)

Abstract

[Problem] A problem is to provide a sludge incineration system and a sludge incineration method in which a flow path of a heat exchanger is less likely to be clogged or eroded. [Solution] The problem is solved by a sludge incineration system including circulating gas flowing in a circulation path, a dryer that dries a first dehydrated sludge with the heat of the circulating gas to obtain dried sludge, a separator that separates the dried sludge and the circulating gas, an air preheater that exchanges heat between the air supplied from the outside and high-temperature incineration exhaust gas generated by incinerating the sludge to obtain preheated air, and a circulating gas heater that heats the circulating gas by heat exchange with the preheated air to obtain high-temperature circulating gas, the sludge incineration system being characterized in that the circulating gas is circulated by being discharged from the dryer together with the dried sludge, passing through the separator, reaching the circulating gas heater to be heated therein, and being resupplied to the dryer, and the dryer dries and pulverizes the first dehydrated sludge into powdery dry sludge. The problem is also solved by the corresponding sludge incineration method.

Description

汚泥焼却システム及び汚泥焼却方法Sludge incineration system and sludge incineration method
 下水事業で通常行われる下水の処理方式は、人々の生活や事業場により発生した下水を下水管に集水して、下水終末処理場等で活性汚泥により処理する方式を採用している。この方式では、生汚泥や余剰汚泥等の下水汚泥が発生し、この下水汚泥を処理するため、焼却施設が設けられている。焼却施設では、種々の焼却システム及び焼却方法により下水汚泥の処理を行っている。 The sewage treatment method that is usually used in sewage projects is to collect sewage generated by people's lives and businesses into sewage pipes and treat it with activated sludge at sewage treatment plants. In this system, sewage sludge such as raw sludge and surplus sludge is generated, and an incineration facility is provided to treat this sewage sludge. Incineration plants treat sewage sludge by various incineration systems and methods.
 特許文献1は、汚泥焼却システムに関する技術を開示し、解決課題を、汚泥の乾燥時に生じるガスから所定の物質を除去する除去手段から他の設備に乾燥排ガスを供給するための供給手段にタールが付着して乾燥排ガスの供給が停滞するのを抑制すること、としている。特許文献1は、解決手段の一要素に乾燥機を示しているが、この乾燥機は乾燥用熱交換器から熱源を得るものであり、この熱源は焼却炉で発生した焼却排ガスに基づくものとなっている。 Patent Document 1 discloses a technology related to a sludge incineration system, and the problem to be solved is that tar is present in a supply means for supplying dry exhaust gas from a removal means for removing a predetermined substance from gas generated during drying of sludge to other equipment. It is supposed to suppress the stagnation of dry exhaust gas supply due to adhesion. Patent Document 1 shows a dryer as one element of the solution, but this dryer obtains a heat source from a heat exchanger for drying, and this heat source is based on the incineration exhaust gas generated in the incinerator. It's becoming
特開2014-074538号公報JP 2014-074538 A
 しかしながら、当該熱交換器の形態では、焼却排ガスが当該熱交換器内の流路を通過するので、焼却排ガス中に含まれるダストやタールが問題となる。ダストやタールは、熱交換器内の流路に付着・堆積すると閉塞や浸食を引き起こすおそれがある。 However, in the form of the heat exchanger, the incineration exhaust gas passes through the flow path in the heat exchanger, so dust and tar contained in the incineration exhaust gas pose a problem. Dust and tar may cause clogging or erosion if they adhere or accumulate in the flow paths in the heat exchanger.
 そこで、本発明が解決しようとする課題は、熱交換器の流路の閉塞や浸食を引き起こしにくい汚泥焼却システム及び汚泥焼却方法を提供することにある。 Therefore, the problem to be solved by the present invention is to provide a sludge incineration system and a sludge incineration method that are less likely to clog or erode the flow path of the heat exchanger.
 上記課題を解決するための手段の一態様は、次に示すものである。
(第1の態様)
 汚泥を焼却する汚泥焼却システムにおいて、
 循環路を流れる循環ガスと、
 第1脱水汚泥を循環ガスの熱で乾燥させて乾燥汚泥とする乾燥機と、
 乾燥汚泥と循環ガスを分離する分離器と、
 外部から供給される空気を、汚泥を焼却して発生した高温の焼却排ガスと熱交換して予熱空気とする空気予熱器と、
 循環ガスを、前記予熱空気と熱交換して加熱し、高温循環ガスとする循環ガス加熱器とを備え、
 前記循環ガスは、前記乾燥機から乾燥汚泥とともに排出されて、前記分離器を経由して、前記循環ガス加熱器に至り加熱されて、前記乾燥機に再度供給されて循環するものであり、
 前記乾燥機は、第1脱水汚泥を乾燥しつつ粉砕して粉粒状の乾燥汚泥にするものである、
 ことを特徴とする汚泥焼却システム。
One aspect of the means for solving the above problems is as follows.
(First aspect)
In a sludge incineration system that incinerates sludge,
a circulating gas flowing through the circulating path;
a dryer that dries the first dehydrated sludge with the heat of the circulating gas to obtain dried sludge;
a separator for separating the dried sludge and the circulating gas;
an air preheater that exchanges the heat of the air supplied from the outside with the high-temperature incineration exhaust gas generated by incinerating the sludge and converts it into preheated air;
a circulating gas heater that heats the circulating gas by exchanging heat with the preheated air to produce a high-temperature circulating gas,
The circulating gas is discharged from the dryer together with the dried sludge, passes through the separator, reaches the circulating gas heater, is heated, and is supplied to the dryer again for circulation,
The dryer dries and pulverizes the first dewatered sludge into powdery dried sludge.
A sludge incineration system characterized by:
 特許文献1に開示される従来型の汚泥焼却システムでは、乾燥機に供給する循環ガスは、焼却排ガスとの熱交換により熱源を得るものである。他方本発明の態様では、循環ガスは循環ガス加熱器から熱源を得るものとなっている。循環ガス加熱器は、クリーンな空気である予熱空気が流れる流路と、循環ガスが流れる流路を有し、これらの流路間で熱交換が行われ、予熱空気が流れる流路にダストやタールが流れ込まないので、ダストやタールに起因する流路の閉塞や浸食等が発生しづらいものとなっている。 In the conventional sludge incineration system disclosed in Patent Document 1, the circulating gas supplied to the dryer obtains a heat source through heat exchange with the incineration exhaust gas. On the other hand, in an aspect of the invention, the circulating gas derives its heat source from the circulating gas heater. The circulating gas heater has a channel through which preheated air, which is clean air, flows and a channel through which circulating gas flows. Heat is exchanged between these channels. Since tar does not flow in, clogging or erosion of the flow path due to dust or tar is unlikely to occur.
 また、予熱空気が外部から供給されるものとなっており、予熱に用いる熱源を、焼却排ガスが流れる空気予熱器から得ているので、外部空気の供給量を増減できる構成を付加することで、循環ガスの温度や流量を汚泥焼却システムの稼働状況に応じて柔軟に調節することができる。 In addition, the preheated air is supplied from the outside, and the heat source used for preheating is obtained from the air preheater through which the incineration exhaust gas flows. The temperature and flow rate of the circulating gas can be flexibly adjusted according to the operating conditions of the sludge incineration system.
(第2の態様)
 前記乾燥機は、
 円環状に延在するパイプと、前記パイプ内に第1脱水汚泥が導入される汚泥導入部と、前記パイプ内に高温循環ガスが供給されるガス供給部と、乾燥汚泥を含む循環ガスが前記パイプから排出されるガス排出部とを備え、
 前記ガス供給部から供給された高温循環ガスが、前記パイプ内を高速で循環し、前記汚泥導入部から導入された第1脱水汚泥と衝突するように構成されたものである、
 第1の態様の汚泥焼却システム。
(Second aspect)
The dryer is
A pipe extending in an annular shape, a sludge introduction part into which the first dewatered sludge is introduced into the pipe, a gas supply part into which high temperature circulation gas is supplied into the pipe, and a circulation gas containing dried sludge is supplied to the pipe. a gas discharge part discharged from the pipe,
The high-temperature circulating gas supplied from the gas supply unit circulates at high speed in the pipe and collides with the first dehydrated sludge introduced from the sludge introduction unit.
A sludge incineration system of the first aspect.
 第1脱水汚泥の処理方法としては、一例に含水率を焼却炉に投入できる濃度にまで低下させ、その後焼却炉で焼却する方法を挙げることができる。本態様の乾燥機は、高温循環ガスがパイプ内を高速で循環し、第1脱水汚泥と衝突し続けるので、第1脱水汚泥が粉砕されて粉粒状の乾燥汚泥になる。粉粒状の乾燥汚泥は循環ガスに含まれつつ、ガス排出部から排出される。 One example of a method for treating the first dewatered sludge is to reduce the water content to a concentration that can be put into the incinerator, and then incinerate it in the incinerator. In the dryer of this aspect, the high-temperature circulating gas circulates in the pipe at high speed and continues to collide with the first dehydrated sludge, so that the first dehydrated sludge is pulverized into powdery dried sludge. Powdery dry sludge is discharged from the gas discharge part while being contained in the circulating gas.
(第3の態様)
 前記乾燥機で発生した乾燥汚泥が循環ガスとともに前記分離器まで輸送される、
 第1の態様の汚泥焼却システム。
(Third aspect)
Dried sludge generated in the dryer is transported to the separator together with the circulating gas,
A sludge incineration system of the first aspect.
 乾燥汚泥を焼却炉まで輸送する手法は種々考えられるが、本態様では、乾燥汚泥が循環ガスとともに輸送されるので、別途輸送する設備や機器を設ける必要がなく、簡便に乾燥汚泥の輸送ができる。 Various methods of transporting the dried sludge to the incinerator are conceivable, but in this embodiment, the dried sludge is transported together with the circulating gas, so there is no need to install separate transportation facilities or equipment, and the dried sludge can be easily transported. .
(第4の態様)
 白煙防止用ファンから供給される給気ガスを、前記空気予熱器を通過した焼却排ガスと熱交換して高温給気ガスとする白煙防止予熱器と、
 前記循環ガスから抽気された抽気ガスを、前記高温給気ガスと熱交換して高温抽気ガスとする抽気ガス加熱器とを備え、
 前記抽気ガスは、前記分離器と循環ガス加熱器とが接続された循環路から抽気して減湿されたものであり、
 前記高温抽気ガスが汚泥を焼却する焼却炉に供給されるものである、
 第1の態様の汚泥焼却システム。
(Fourth aspect)
a white smoke prevention preheater that exchanges heat with the incineration exhaust gas that has passed through the air preheater to convert the air supply gas supplied from the white smoke prevention fan into high-temperature supply air;
a bleed gas heater that heat-exchanges the bleed gas bled from the circulating gas with the high-temperature supply gas to produce a high-temperature bleed gas,
The bleed gas is dehumidified by bleed from a circulation path connecting the separator and the circulating gas heater,
The high temperature extraction gas is supplied to an incinerator for incinerating sludge,
A sludge incineration system of the first aspect.
 循環ガスの一部を抽気することは、プロセス上必要であるが、従来からその処理(具体的には臭気やタールの除去)には困難が伴う。本形態では、減湿された抽気ガスを高温給気ガスと熱交換して高温抽気ガスとすることで、抽気ガス配管へのタールの付着・固化が抑制されるものとなっている。また、焼却炉へ抽気ガスを供給する構成としていることで、循環路内の汚泥臭気の低減化を図ることができる。  It is necessary for the process to bleed a part of the circulating gas, but its treatment (specifically, the removal of odor and tar) has traditionally been difficult. In this embodiment, the dehumidified extraction gas is heat-exchanged with the high-temperature supply gas to obtain high-temperature extraction gas, thereby suppressing adhesion and solidification of tar to the extraction gas pipe. In addition, the sludge odor in the circulation path can be reduced by supplying the extraction gas to the incinerator.
(第5の態様)
 汚泥を焼却する焼却炉と、
 汚泥を前記焼却炉に投入する汚泥投入機を備え、
 前記分離器で分離された乾燥汚泥が前記汚泥投入機に排出され、
 前記汚泥投入機が、前記乾燥汚泥と第1脱水汚泥を前記焼却炉に投入するものである、
 第1の態様の汚泥焼却システム。
(Fifth aspect)
an incinerator for incinerating sludge;
Equipped with a sludge input machine for inputting sludge into the incinerator,
The dried sludge separated by the separator is discharged to the sludge input machine,
The sludge feeder feeds the dried sludge and the first dehydrated sludge into the incinerator.
A sludge incineration system of the first aspect.
 焼却炉に投入される汚泥が第1脱水汚泥のみだと、第1脱水汚泥の含水率や投入量によっては、炉内の汚泥燃焼が不安定になる。本態様であれば、第1脱水汚泥のほか、乾燥汚泥が焼却炉に投入されるので、焼却される汚泥全体の含水率が下がり、汚泥燃焼の安定化が図られる。 If the sludge that is put into the incinerator is only the first dehydrated sludge, the sludge combustion in the furnace will become unstable depending on the water content and amount of the first dehydrated sludge. In this aspect, since dried sludge is put into the incinerator in addition to the first dewatered sludge, the moisture content of the entire sludge to be incinerated is lowered, and sludge combustion is stabilized.
(第6の態様)
 さらに第2脱水汚泥が前記焼却炉に投入されるものである、
 第5の態様の汚泥焼却システム。
(Sixth aspect)
Furthermore, the second dehydrated sludge is put into the incinerator,
A sludge incineration system of the fifth aspect.
 第1脱水汚泥と乾燥汚泥を単一の投入ラインから焼却炉に投入すると、炉内で粉塵爆発が誘発されるおそれがある。本態様では、第2脱水汚泥を追加的に焼却炉に投入するものとなっているので、紛塵爆発が抑制される。 If the first dehydrated sludge and dried sludge are fed into the incinerator from a single feeding line, there is a risk of triggering a dust explosion inside the furnace. In this aspect, since the second dehydrated sludge is additionally put into the incinerator, dust explosion is suppressed.
(第7の態様)
 汚泥を焼却する焼却炉を備え、
 前記予熱空気は、その一部が前記循環ガス加熱器を通過して前記焼却炉に供給され、残部が前記循環ガス加熱器を通過せずに前記焼却炉に供給されるものである、
 第1の態様の汚泥焼却システム。
(Seventh aspect)
Equipped with an incinerator to incinerate sludge,
Part of the preheated air passes through the circulating gas heater and is supplied to the incinerator, and the remaining part is supplied to the incinerator without passing through the circulating gas heater.
A sludge incineration system of the first aspect.
 焼却炉やこれを含めた汚泥焼却設備の稼働状況により、循環路を流れる循環ガスの流量は変動する。循環ガス加熱器は、循環ガスの流量が少ないとき、予熱空気が定量的に流路に流れ続けるといわゆる空焚き状態になり、摩耗や破損の要因となり得る。本形態であれば、予熱空気の残部が循環ガス加熱器に流入しないので、循環ガス加熱器が空焚き状態になりにくいものとなっている。  The flow rate of the circulating gas flowing through the circulation path fluctuates depending on the operation status of the incinerator and the sludge incineration equipment including this. When the flow rate of the circulating gas is small, the circulating gas heater enters a so-called dry-heating state if the preheated air continues to flow quantitatively through the flow path, which may cause wear and damage. In this embodiment, the rest of the preheated air does not flow into the circulating gas heater, so that the circulating gas heater is less likely to run dry.
(第8の態様)
 前記乾燥機に供給される循環ガスの温度を測定して測定温度を得て、当該測定温度に基づき前記乾燥機に供給される循環ガスの目標温度を演算し、前記循環ガスの温度が前記目標温度に近づくように、前記外部から供給される空気の流量を増減する制御を行う制御装置を有する、
 第1の態様の汚泥焼却システム。
(Eighth aspect)
The temperature of the circulating gas supplied to the dryer is measured to obtain the measured temperature, the target temperature of the circulating gas supplied to the dryer is calculated based on the measured temperature, and the temperature of the circulating gas is the target Having a control device that controls to increase or decrease the flow rate of the air supplied from the outside so as to approach the temperature,
A sludge incineration system of the first aspect.
 本態様の制御装置が備わっていれば、乾燥機に供給される循環ガスの温度が所定温度に収まり、諸設備が早期に損傷したり摩耗したりしにくく、ランニングコストも低廉に抑えることができる。 If the control device of this aspect is provided, the temperature of the circulating gas supplied to the dryer can be kept within a predetermined temperature, various facilities are less likely to be damaged or worn out early, and the running cost can be kept low. .
(第9の態様)
 乾燥汚泥を前記乾燥機に導入しない、
 第2の態様の汚泥焼却システム。
(Ninth aspect)
not introducing dried sludge into the dryer;
A sludge incineration system of the second aspect.
 第1脱水汚泥を乾燥させる場合、従来の乾燥機であれば、有機分濃度や含水率によっては乾燥しにくいか又は乾燥するまでに多くの時間を要する場合があるため、乾燥汚泥を第1脱水汚泥に混ぜて混合物として乾燥処理を行っていた。他方第2の態様の乾燥機であれば、第1脱水汚泥に乾燥汚泥を混ぜなくても、第1脱水汚泥を単独で乾燥機に導入することで乾燥・粉粒化が容易になされることを発明者等は知見している。このメカニズムは明らかではないがおそらく、高温の循環ガスが被処理物である第1脱水汚泥に連続的に高速で衝突することによるものと考えられる。 When drying the first dehydrated sludge, if it is a conventional dryer, it may be difficult to dry depending on the organic content concentration and water content, or it may take a long time to dry. It was mixed with sludge and dried as a mixture. On the other hand, in the dryer of the second aspect, even if the dried sludge is not mixed with the first dehydrated sludge, drying and pulverization can be easily achieved by introducing the first dewatered sludge alone into the dryer. The inventors are aware of this. Although the mechanism is not clear, it is probably due to the high-temperature circulating gas continuously colliding with the first dehydrated sludge, which is the object to be treated, at high speed.
(第10の態様)
 汚泥を焼却する汚泥焼却方法において、
 循環ガスが循環路を流れる循環ステップと、
 乾燥機で、第1脱水汚泥を循環ガスの熱で乾燥させて乾燥汚泥とする乾燥ステップと、
 分離器で、乾燥汚泥と循環ガスを分離する分離ステップと、
 循環ガス加熱器で、外部から供給される空気を、汚泥を焼却して発生した高温の焼却排ガスと熱交換して予熱空気とする予熱空気取得ステップと、
 循環ガスを、前記予熱空気と熱交換して加熱して高温循環ガスとする高温循環ガス取得ステップとを備え、
 前記循環ガスは、前記乾燥機から乾燥汚泥とともに排出されて、前記分離器を経由して、前記循環ガス加熱器に至り加熱されて、前記乾燥機に再度供給されて循環するものであり、
 前記乾燥ステップは、第1脱水汚泥を乾燥しつつ粉砕して粉粒状の乾燥汚泥にするものである、
 ことを特徴とする汚泥焼却方法。
(Tenth aspect)
In the sludge incineration method for incinerating sludge,
a circulation step in which the circulation gas flows through the circulation path;
A drying step of drying the first dehydrated sludge with the heat of the circulating gas to obtain dry sludge in a dryer;
A separation step of separating dry sludge and circulating gas in a separator;
A preheated air acquisition step of exchanging heat of air supplied from the outside with high-temperature exhaust gas generated by incinerating sludge in a circulating gas heater to obtain preheated air;
a high-temperature circulating gas obtaining step of heat-exchanging the circulating gas with the preheated air to heat it into a high-temperature circulating gas,
The circulating gas is discharged from the dryer together with the dried sludge, passes through the separator, reaches the circulating gas heater, is heated, and is supplied to the dryer again for circulation,
In the drying step, the first dewatered sludge is dried and pulverized into powdery dried sludge.
A sludge incineration method characterized by:
 第1の態様と同様の作用効果が期待できる。 The same effects as in the first aspect can be expected.
 本発明によると、熱交換器の流路の閉塞や浸食を引き起こしにくい汚泥焼却システム及び汚泥焼却方法となる。 According to the present invention, a sludge incineration system and a sludge incineration method that are unlikely to cause clogging or erosion of the flow path of the heat exchanger.
本件発明の一実施形態を表す図である。It is a figure showing one embodiment of the present invention. 乾燥機の詳細を表す図である。It is a figure showing the detail of a dryer. 本件発明の一実施形態を表す図である。It is a figure showing one embodiment of the present invention. 本件発明の一実施形態を表す図である。It is a figure showing one embodiment of the present invention.
<第1実施形態>
 次に、発明を実施するための形態を説明する。なお、本実施の形態は、本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。
<First Embodiment>
Next, a mode for carrying out the invention will be described. Note that this embodiment is an example of the present invention. The scope of the present invention is not limited to the scope of this embodiment.
 本形態の汚泥焼却システムは、循環路(G1,G2,G3,G4,G5)を流れる循環ガスと、第1脱水汚泥5を循環ガスの熱で乾燥させて乾燥汚泥とする乾燥機100と、乾燥汚泥と循環ガスを分離する分離器10と、外部から供給される空気を、汚泥を焼却して発生した高温の焼却排ガスと熱交換して予熱空気とする空気予熱器40と、循環ガスを、前記予熱空気と熱交換して加熱して高温循環ガスとする循環ガス加熱器30とを備え、前記循環ガスは、前記乾燥機100から乾燥汚泥とともに排出されて、前記分離器10を経由して、前記循環ガス加熱器30に至り加熱されて、前記乾燥機100に再度供給されて循環するものであり、前記乾燥機100は、第1脱水汚泥を乾燥しつつ粉砕して粉粒状の乾燥汚泥にするものである、ことを特徴とする。以下、図1を参照しつつ、本件発明の一実施態様を説明する。 The sludge incineration system of this embodiment includes a circulating gas flowing through the circulating paths (G1, G2, G3, G4, G5), a dryer 100 that dries the first dehydrated sludge 5 with the heat of the circulating gas to obtain dried sludge, A separator 10 for separating dry sludge and circulating gas, an air preheater 40 for exchanging heat with high-temperature exhaust gas generated by incinerating the sludge to preheat the air supplied from the outside, and circulating gas. , and a circulating gas heater 30 that exchanges heat with the preheated air to heat it into a high-temperature circulating gas, and the circulating gas is discharged from the dryer 100 together with dried sludge and passes through the separator 10. Then, the circulating gas heater 30 reaches the circulating gas heater 30 to be heated, and is supplied again to the dryer 100 for circulation. It is characterized by being made into sludge. One embodiment of the present invention will be described below with reference to FIG.
 なお、以下に示すダンパV1~V7の各々は、各々が設置されている配管に流れるガスや空気の流量を増減する開閉機能が備わる。 Each of the dampers V1 to V7 shown below has an opening/closing function that increases or decreases the flow rate of gas or air flowing through the pipes in which they are installed.
 系外から搬入された第1脱水汚泥5は、定量フィーダ80に投入され、適量が切り出され汚泥配管6を流れて汚泥投入機19に導入され焼却炉20に投入される。また、特段汚泥配管6を設けなくても、第1脱水汚泥は直接、汚泥投入機19(又は焼却炉20)に導入される構成としてもよい。定量フィーダ80は、排出部が2つ備わるものを例示でき、1つ目の排出部が汚泥投入機19へ延在する汚泥配管6に接続されるものであり、2つ目の排出部がホッパー90へ延在する汚泥配管7に接続されるものである。第1脱水汚泥5は、定量フィーダ80から焼却炉20と乾燥機100にそれぞれ導入される。なお、第1脱水汚泥5は、特に限定されないが、例えば下水処理場で発生した生汚泥や余剰汚泥等の混合物が脱水処理されたものからなり、含水率が40~85%のものをいう。 The first dewatered sludge 5 brought in from outside the system is fed into a fixed feeder 80, cut out in an appropriate amount, flows through the sludge pipe 6, is introduced into the sludge feeder 19, and is fed into the incinerator 20. Alternatively, the first dewatered sludge may be introduced directly into the sludge input device 19 (or the incinerator 20) without providing the sludge pipe 6 in particular. The quantitative feeder 80 can be exemplified by having two discharge parts, the first discharge part being connected to the sludge pipe 6 extending to the sludge input machine 19, and the second discharge part being a hopper. It is connected to the sludge pipe 7 extending to 90 . The first dehydrated sludge 5 is introduced from a constant feeder 80 into the incinerator 20 and the dryer 100 respectively. Although the first dewatered sludge 5 is not particularly limited, it is made by dehydrating a mixture of raw sludge and surplus sludge generated in a sewage treatment plant, and has a water content of 40 to 85%.
 詳細は後述するが汚泥配管6には、汚泥配管6内を流れる第1脱水汚泥の流量を測定する流量センサーF1を設けて、当該流量センサーF1の測定値のデータを演算装置110が受信する構成を構築するとよい。 Although details will be described later, the sludge pipe 6 is provided with a flow sensor F1 that measures the flow rate of the first dehydrated sludge flowing in the sludge pipe 6, and the arithmetic device 110 receives the data of the measured value of the flow sensor F1. should be constructed.
 汚泥投入機19は、汚泥投入機19に導入された汚泥を焼却炉20の汚泥投入部21に投入する装置であり、例えば汚泥を自然流下やベルトコンベヤー、定量フィーダー等で汚泥投入部21まで搬送するものである。搬送する汚泥としては、第1脱水汚泥5、乾燥汚泥等を例示できる。 The sludge feeder 19 is a device that feeds the sludge introduced by the sludge feeder 19 into the sludge feeder 21 of the incinerator 20. For example, the sludge is conveyed to the sludge feeder 21 by gravity, a belt conveyor, a constant feeder, or the like. It is something to do. Examples of the sludge to be conveyed include the first dehydrated sludge 5 and dried sludge.
(焼却炉)
 汚泥投入機19によって搬送された汚泥は、汚泥投入部21から焼却炉20内に投入される。焼却炉20は、投入された汚泥を焼却する設備である。焼却炉20は特に限定されないが、流動焼却炉や循環流動炉、ストーカー炉等を例示でき、特に過給式流動焼却炉が好ましい。過給式の流動焼却炉は、例えば汚泥を加圧流動床炉に供給して燃焼させ、流動焼却炉から排出される焼却排ガスによって過給機を回転駆動することで圧縮空気を生成し、この圧縮空気を流動焼却炉に供給して燃焼を促進させるものである。また、流動焼却炉は、流動媒体として所定の粒径を有する、流動砂等の固体粒子が炉内の下部に充填された燃焼炉であり、炉内に供給される燃焼空気によって流動層の流動状態を維持しつつ、汚泥投入部21から投入される汚泥、及び必要に応じて供給される補助燃料を燃焼させるものである。側壁の下部には、流動焼却炉の内部に充填された粒径約400~600μmの流動砂を加熱する補助燃料燃焼装置(図示せず)が配置され、補助燃料燃焼装置の上側近傍の部位には、始動時に流動砂を加熱する始動用バーナ(図示せず)が配置され、始動用バーナの上側の部位に、汚泥投入部21が設けられている。また、流動焼却炉の下方には、炉内に燃焼に必要な酸素と流動層の流動状態を維持するための運動エネルギーとを与える予熱空気を供給する空気供給管22が設置される。この空気供給管22は、複数の開孔を有する配管を複数配列した分散管や板状の鉄板等に複数の開口を設けた分散板等を用いることが可能である。さらに、後述する抽気ガス加熱器70を通過した高温抽気ガスを空気供給管22から炉内に供給するようにしてもよい。この場合、高温抽気ガスは、例えば、抽気ガス加熱器70と空気供給管22を接続する抽気ガス配管G8を通って炉内に供給される。なお、焼却排ガスとは、汚泥を燃焼させたときに発生する燃焼ガス、又は燃焼ガスと水蒸気が混合したガスをいう。
(Incinerator)
The sludge conveyed by the sludge loading machine 19 is loaded into the incinerator 20 from the sludge loading section 21 . The incinerator 20 is equipment for incinerating the sludge that has been introduced. The incinerator 20 is not particularly limited, but examples thereof include a fluidized bed incinerator, a circulating fluidized bed incinerator, a stoker furnace, etc., and a supercharged fluidized bed incinerator is particularly preferable. In a supercharged fluidized bed incinerator, for example, sludge is supplied to a pressurized fluidized bed furnace and combusted, and the combustion exhaust gas discharged from the fluidized bed incinerator rotates a supercharger to generate compressed air. Combustion is promoted by supplying compressed air to the fluidized bed incinerator. In addition, the fluidized bed incinerator is a combustion furnace in which solid particles such as fluidized sand having a predetermined particle size are filled in the lower part of the furnace as a fluidizing medium. While maintaining the state, the sludge fed from the sludge feeding section 21 and the auxiliary fuel supplied as necessary are burned. At the bottom of the side wall, an auxiliary fuel combustion device (not shown) is arranged to heat the fluidized sand with a particle size of about 400 to 600 μm filled inside the fluidized bed incinerator, and in the vicinity of the upper side of the auxiliary fuel combustion device. is provided with a starting burner (not shown) for heating the fluidized sand at the time of starting, and a sludge input section 21 is provided above the starting burner. An air supply pipe 22 is installed below the fluidized bed incinerator to supply preheated air that provides oxygen necessary for combustion and kinetic energy for maintaining the fluidized state of the fluidized bed. As the air supply pipe 22, a distribution pipe in which a plurality of pipes having a plurality of openings are arranged, a distribution plate in which a plurality of openings are provided in a plate-like iron plate, or the like can be used. Furthermore, high-temperature extraction gas that has passed through a extraction gas heater 70, which will be described later, may be supplied from the air supply pipe 22 into the furnace. In this case, the high temperature bleed gas is supplied into the furnace through, for example, a bleed gas pipe G8 connecting the bleed gas heater 70 and the air supply pipe 22 . In addition, incineration exhaust gas means combustion gas generated when sludge is burned, or gas in which combustion gas and water vapor are mixed.
(空気予熱器)
 焼却炉20で発生した焼却排ガスは、800~900℃で焼却炉20から排出され、焼却炉20の排ガス排出部と空気予熱器40とを接続する焼却排ガス配管39を流れ、空気予熱器40に流入する。空気予熱器40は、焼却排ガスが流れる流路と外部から供給される空気が流れる流路を有し、両流路間で間接に熱交換がなされるものとなっている。空気予熱器40に用いる熱交換の方式としては、特に限定されないが、チューブ式がよく、例えば二重管式、シェルアンドチューブ式、スパイラル式を用いることができる。外部から供給される空気は、ブロワB2によって室温下や外気温下にある外気から供給され、ブロワB2と空気予熱器40における外部から供給される空気が流れる流路の基端とを接続する空気配管A1を流れ空気予熱器40に流れ込む。当該空気配管A1には空気の供給量を調節するためのダンパV2を備えることができる。外部から供給される空気は、空気予熱器40で予熱され80~700℃の予熱空気として空気予熱器40から流出し、循環ガス加熱器30と空気予熱器40とを接続する空気配管A2を流れて、循環ガス加熱器30に流れ込む。
(Air preheater)
The incinerated exhaust gas generated in the incinerator 20 is discharged from the incinerator 20 at 800 to 900° C., flows through the incinerated exhaust gas pipe 39 connecting the exhaust gas discharge part of the incinerator 20 and the air preheater 40, and flows to the air preheater 40. influx. The air preheater 40 has a channel through which incinerated waste gas flows and a channel through which air supplied from the outside flows, and heat is exchanged indirectly between the two channels. The method of heat exchange used in the air preheater 40 is not particularly limited, but a tube type is preferable, and for example, a double tube type, a shell and tube type, or a spiral type can be used. The air supplied from the outside is supplied from the outside air under the room temperature or the outside temperature by the blower B2, and the air that connects the blower B2 and the base end of the flow path in the air preheater 40 through which the air supplied from the outside flows. It flows into the air preheater 40 through the pipe A1. The air pipe A1 can be provided with a damper V2 for adjusting the amount of air supplied. The air supplied from the outside is preheated by the air preheater 40, flows out from the air preheater 40 as preheated air of 80 to 700° C., and flows through the air pipe A2 connecting the circulating gas heater 30 and the air preheater 40. and flows into the circulating gas heater 30 .
(白煙防止予熱器)
 空気予熱器40から550~700℃で排出された焼却排ガスは、白煙防止予熱器50と空気予熱器40とを接続する焼却排ガス配管49を流れ、白煙防止予熱器50に流入する。白煙防止予熱器50は、焼却処理施設の煙突から排出された焼却排ガスが大気中で拡散する過程において生じる、焼却排ガス中に含まれる水蒸気の凝縮、可視化を防止するためのものである。白煙防止予熱器50は、白煙防止予熱器50に外部から供給される空気である給気ガスが流れる流路と焼却排ガスが流れる流路とを備え、両流路間で間接に熱交換がなされる熱交換器の一種である。空気予熱器40に用いる熱交換の方式としては、特に限定されないが、チューブ式がよく、例えば二重管式、シェルアンドチューブ式、スパイラル式を用いることができる。給気ガスは、室温下や外気温下の外気を白煙防止予熱器50へ送るファン(「白煙防止用ファンB3」ともいう。)によって、白煙防止用ファンB3と、白煙防止予熱器50における給気ガスが流れる流路の基端とを接続する空気配管A7を流れ、白煙防止予熱器50に流入する。給気ガスは、白煙防止予熱器50を通過するとともに、焼却排ガスと熱交換して、熱を得て200~400℃の高温給気ガスとなり、白煙防止予熱器50から流出する。高温給気ガスは、白煙防止予熱器50と抽気ガス加熱器70とを接続する空気配管A8を流れて、抽気ガス加熱器70に流入する。
(white smoke prevention preheater)
The combustion exhaust gas discharged from the air preheater 40 at 550 to 700° C. flows through the combustion exhaust gas pipe 49 connecting the white smoke prevention preheater 50 and the air preheater 40 and flows into the white smoke prevention preheater 50 . The white smoke prevention preheater 50 is for preventing the condensation and visualization of water vapor contained in the incineration exhaust gas, which occurs in the process of the incineration exhaust gas discharged from the chimney of the incineration facility diffusing in the atmosphere. The white-smoke prevention preheater 50 has a passage through which the supply gas, which is the air supplied from the outside to the white-smoke prevention preheater 50, flows, and a passage through which the combustion exhaust gas flows, and heat is exchanged indirectly between the two passages. is a type of heat exchanger in which The method of heat exchange used in the air preheater 40 is not particularly limited, but a tube type is preferable, and for example, a double tube type, a shell and tube type, or a spiral type can be used. The air supply gas is supplied to the white smoke prevention fan B3 and the white smoke prevention preheater by a fan (also referred to as "white smoke prevention fan B3") that sends outside air under room temperature or outside temperature to the white smoke prevention preheater 50 (also referred to as "white smoke prevention fan B3"). It flows through the air pipe A7 connecting the base end of the flow path through which the air supply gas flows in the device 50 and flows into the white smoke prevention preheater 50 . The supplied air gas passes through the white smoke prevention preheater 50 and exchanges heat with the incineration exhaust gas to obtain heat to become a high temperature supply gas of 200 to 400° C., and flows out of the white smoke prevention preheater 50 . The high temperature supply gas flows through the air pipe A8 that connects the white smoke prevention preheater 50 and the bleed gas heater 70 and flows into the bleed gas heater 70 .
 他方、白煙防止予熱器50を通過するとともに、200~600℃に減温(冷却)された焼却排ガスは、焼却排ガス配管59を流れて焼却排ガスの処理設備120へ送られる。 On the other hand, the incinerated exhaust gas, which has passed through the white smoke prevention preheater 50 and has been reduced in temperature (cooled) to 200 to 600° C., flows through the incinerated exhaust gas pipe 59 and is sent to the incinerated exhaust gas treatment equipment 120 .
(抽気ガス加熱器)
 白煙防止予熱器50を通過した高温給気ガスは、抽気ガス加熱器70と白煙防止予熱器50とを接続する空気配管A8を流れ、抽気ガス加熱器70に流入する。抽気ガス加熱器70は、循環路から抽気された抽気ガスを高温給気ガスと熱交換して高温抽気ガスを得るものである。空気配管A8に抽気ガス加熱器70に流す高温給気ガスの流量を調節するためのダンパV6を設けることができる。抽気ガス加熱器70は、高温給気ガスが流れる流路と抽気ガスが流れる流路を有し、両流路間で間接に熱交換がなされるものとなっている。なお、抽気ガスとは、循環ガスの一部であり、循環路から抽気されたものである。
(Bleeding gas heater)
The high-temperature supply gas that has passed through the white smoke prevention preheater 50 flows through the air pipe A8 that connects the bleed gas heater 70 and the white smoke prevention preheater 50 , and flows into the bleed gas heater 70 . The bleed gas heater 70 heat-exchanges the bleed gas bled from the circulation path with the high temperature supply gas to obtain the high temperature bleed gas. A damper V6 can be provided in the air line A8 for adjusting the flow rate of the high temperature charge gas flowing to the bleed gas heater 70. As shown in FIG. The bleed gas heater 70 has a channel through which the high-temperature supply gas flows and a channel through which the bleed gas flows, and heat is exchanged indirectly between the two channels. The bleed gas is a part of the circulating gas, which is bleed from the circulation path.
 循環路を流れる循環ガスはタールや臭気を含み、これらを除去する目的で、循環ガスの一部を抽気するとよい。抽気ガスは、焼却炉20へ導いて焼却処理されるので、水分を減じたもの(すなわち、減湿された抽気ガス)の方が焼却に適する。また、抽気ガスは、抽気ガス加熱器70で高温給気ガスと熱交換して加熱された方が好ましいことから、循環路のうちの分離器10から循環ガス加熱器30までの区間から抽気されたものがよい。当該区間の循環ガスであれば、乾燥汚泥が取り除かれており、相対的に低温であるから好適な抽気ガスを抽気できるメリットがある。  The circulation gas flowing through the circulation path contains tar and odor, and for the purpose of removing these, it is advisable to bleed some of the circulation gas. Since the extracted gas is led to the incinerator 20 and incinerated, the moisture-reduced gas (that is, dehumidified extracted gas) is more suitable for incineration. Further, since it is preferable that the extraction gas is heated by exchanging heat with the high-temperature supply gas in the extraction gas heater 70, the extraction gas is extracted from the section from the separator 10 to the circulation gas heater 30 in the circulation path. Good stuff. If it is the circulating gas in the section, the dry sludge has been removed and the temperature is relatively low, so there is an advantage that a suitable bleed gas can be bleed.
 循環路から抽気された抽気ガスは、抽気ガス加熱器70と循環路とを接続する抽気ガス配管G6,G7を流れて、抽気ガス加熱器70へ流入する。抽気ガス加熱器70へ流入する抽気ガスは減湿されていた方がよいので、例えば抽気ガス配管G6,G7の間に、抽気ガスを減湿するためのコンデンサ60を介在させておくとよい。 The bleed gas extracted from the circulation path flows through the bleed gas pipes G6 and G7 that connect the bleed gas heater 70 and the circulation path, and flows into the bleed gas heater 70 . Since the bleed gas flowing into the bleed gas heater 70 should be dehumidified, a condenser 60 for dehumidifying the bleed gas may be interposed, for example, between the bleed gas pipes G6 and G7.
 高温抽気ガスは、好ましくは80℃以上、より好ましくは120~210℃で抽気ガス加熱器70から流出し、抽気ガス加熱器70から焼却炉20まで延在する抽気ガス配管G8を流れ、焼却炉20に送られ、空気燃料として汚泥とともに焼却される。抽気ガス加熱器70から流出した抽気ガスが350℃未満だと、抽気ガスに含まれるタールが液化して配管に固着し閉塞を引き起こすおそれがある。そのため、抽気ガスの温度を高めておくことで、タールの液化が抑制される。また、抽気ガスはタールや臭気を有し諸設備に悪影響をもたらすが、焼却処理することでこれらによる悪影響をできる限り排除することができる。 The high temperature extraction gas preferably flows out from the extraction gas heater 70 at a temperature of 80° C. or higher, more preferably 120 to 210° C., flows through the extraction gas pipe G8 extending from the extraction gas heater 70 to the incinerator 20, and flows into the incinerator. 20 and incinerated along with the sludge as air fuel. If the temperature of the bleed gas flowing out of the bleed gas heater 70 is less than 350° C., the tar contained in the bleed gas may liquefy and adhere to the piping, causing clogging. Therefore, the liquefaction of tar is suppressed by raising the temperature of the extraction gas. In addition, the extracted gas contains tar and odor, which adversely affects various facilities, but incineration can eliminate these adverse effects as much as possible.
 高温給気ガスは、高温給気ガスが流れる流路を流れるとともに抽気ガスによって熱を奪われて、150~500℃で抽気ガス加熱器70から流出し、抽気ガス加熱器70と煙突130を接続する空気配管A9を流れて煙突130へ導かれる。 The high-temperature supply gas flows through the flow path through which the high-temperature supply gas flows, is deprived of heat by the extraction gas, and flows out from the extraction gas heater 70 at 150 to 500° C., connecting the extraction gas heater 70 and the chimney 130. It flows through the air pipe A9 and is led to the chimney 130.
 抽気ガス加熱器70は、抽気ガスの流入量が少ない場合に高温給気ガスが流入し続けると高熱になり、いわゆる空焚きの状態になる。これを回避するために空気配管A8から空気配管A9へ高温給気ガスを逃がすバイパス空気配管A10とバイパス空気配管A10に設置するダンパV7を設けることができる。バイパス空気配管A10は、空気配管A8のうち、ダンパV6よりも上流側の位置に設けるとよい。バイパス空気配管A10を設けることで白煙防止予熱器50に流す給気ガスの量を十分なものとしながら、高温給気ガスの一部を空気配管A9に逃がしつつ、残部を抽気ガス加熱器70へ供給することができる。そうすることで、抽気ガス加熱器70に流れる抽気ガスの流量に対応させて、抽気ガス加熱器70に流入させる高温給気ガスの流量を調節できるようになる。 The bleed gas heater 70 becomes hot when the high-temperature supply gas continues to flow when the amount of bleed gas inflow is small, resulting in a so-called dry-heating state. In order to avoid this, it is possible to provide a bypass air pipe A10 for releasing the hot supply gas from the air pipe A8 to the air pipe A9 and a damper V7 installed in the bypass air pipe A10. The bypass air pipe A10 is preferably provided at a position upstream of the damper V6 in the air pipe A8. By providing the bypass air pipe A10, the amount of supply gas flowing to the white smoke prevention preheater 50 is made sufficient, while part of the high temperature supply gas is released to the air pipe A9, and the remaining part is released to the extraction gas heater 70. can be supplied to By doing so, it becomes possible to adjust the flow rate of the high-temperature supply gas flowing into the extraction gas heater 70 in accordance with the flow rate of the extraction gas flowing into the extraction gas heater 70 .
 なお、抽気とは、循環路を流れる循環ガスの一部を抽出することをいう。 Bleeding means extracting part of the circulation gas flowing through the circulation path.
(循環ガス加熱器)
 空気予熱器40で焼却排ガスからの熱交換により予熱され得られた予熱空気は、空気予熱器40から流出し、200~700℃で、循環ガス加熱器30と空気予熱器40とを接続する空気配管A2,A3を流れ、循環ガス加熱器30に流入する。循環ガス加熱器30は、循環ガスが流れる流路と予熱空気が流れる流路を有し、両流路間で間接に熱交換がなされるものとなっている。循環ガス加熱器30に用いる熱交換の方式としては、特に限定されないが、チューブ式がよく、例えば二重管式、シェルアンドチューブ式、スパイラル式の熱交換器を用いることができ、その中でもシェルアンドチューブ式熱交換器が好適である。シェルアンドチューブ式熱交換器を用いた場合、循環ガスは、ダストを含むのでダストが堆積しにくい伝熱チューブに流し、予熱空気はシェルに流すのが好ましい。なお、空気配管A2と空気配管A3は連結されて一体となっており、両配管の間において予熱空気が連続して流れるように構成されている。
(circulating gas heater)
The preheated air obtained by exchanging heat from the incineration exhaust gas in the air preheater 40 flows out of the air preheater 40, and at 200 to 700° C., the air connecting the circulating gas heater 30 and the air preheater 40. It flows through the pipes A2 and A3 and flows into the circulating gas heater 30 . The circulating gas heater 30 has a channel through which the circulating gas flows and a channel through which the preheated air flows, and heat is exchanged indirectly between the two channels. The method of heat exchange used in the circulating gas heater 30 is not particularly limited, but a tube type is preferable. And tube heat exchangers are preferred. When a shell-and-tube heat exchanger is used, it is preferable to flow the circulating gas through the heat transfer tubes where dust is less likely to accumulate because the circulating gas contains dust, and to flow the preheated air through the shell. In addition, the air pipe A2 and the air pipe A3 are connected and integrated, and are configured so that the preheated air flows continuously between the two pipes.
 空気配管A2,A3にはダンパV1を設けるとよい。ダンパV1による開閉操作で予熱空気の流量を増減させることができ、循環ガス加熱器30で循環ガスが得る熱量を調節でき、循環ガスの温度管理が可能となる。 A damper V1 should be installed in the air pipes A2 and A3. By opening and closing the damper V1, the flow rate of the preheated air can be increased or decreased, the amount of heat obtained by the circulating gas can be adjusted by the circulating gas heater 30, and the temperature of the circulating gas can be controlled.
 また、空気配管A2,A3から分岐させて、焼却炉20の空気供給管22に予熱空気を流す空気配管A4を設けることができる。分岐箇所は空気配管A2,A3におけるダンパV1の設置位置よりも上流側とするとよい。そして、空気配管A4には予熱空気の流量を調節可能なダンパV3を設けることができる。この構成とすることで、予熱空気が、その一部が前記循環ガス加熱器を通過して前記焼却炉に供給され、残部が前記循環ガス加熱器を通過せずに前記焼却炉に供給されるものとすることができる。 Also, an air pipe A4 can be provided that is branched from the air pipes A2 and A3 to flow preheated air to the air supply pipe 22 of the incinerator 20. It is preferable that the branch point be upstream of the installation position of the damper V1 in the air pipes A2 and A3. A damper V3 capable of adjusting the flow rate of the preheated air can be provided in the air pipe A4. With this configuration, part of the preheated air passes through the circulating gas heater and is supplied to the incinerator, and the remaining part is supplied to the incinerator without passing through the circulating gas heater. can be
 循環ガス加熱器30から流出した予熱空気は、焼却炉20(空気供給管22が備わる場合は空気供給管22)と循環ガス加熱器30とを接続する空気配管A5を流れ、焼却炉20に流れ込む。 The preheated air flowing out of the circulating gas heater 30 flows through the air pipe A5 connecting the incinerator 20 (the air supply pipe 22 if the air supply pipe 22 is provided) and the circulating gas heater 30, and flows into the incinerator 20. .
 本実施形態の循環ガス加熱器30は、クリーンな空気である予熱空気が流れる流路と、循環ガスが流れる流路を有し、これらの流路間で熱交換が行われる。予熱空気は汚泥焼却システムの外部から供給された空気が予熱されたものであるから、もちろんダストやタールが含まれることはなく、クリーンなものである。したがって、予熱空気が流れる流路は、ダストやタールが流れ込まないので、ダストやタールに起因する流路の閉塞や浸食等が発生しづらいものとなっている。 The circulating gas heater 30 of the present embodiment has a channel through which preheated air, which is clean air, flows and a channel through which circulating gas flows, and heat is exchanged between these channels. Since the preheated air is preheated air supplied from the outside of the sludge incineration system, the preheated air does not contain dust or tar and is clean. Therefore, since dust and tar do not flow into the flow path through which the preheated air flows, clogging or erosion of the flow path due to dust or tar is unlikely to occur.
(循環路)
 循環路(G1,G2,G3,G4,G5)は、循環ガスが流れる流路であり、乾燥機100と分離器10とが接続された流路G4と、分離器10と循環ガス加熱器30とが接続された流路(G5,G1,G2)と、循環ガス加熱器30と乾燥機100とが接続された流路G3とを有するものである。循環路には、循環ガスが流れるようにブロワB1を設けることができる。ブロワB1の設置個所としては、循環ガスが高温ではなく、乾燥汚泥をできる限り含まない流路がよく、例えば分離器10と循環ガス加熱器30とを接続する流路(G5,G1,G2)が好ましい。なお、流路G5、流路G1、流路G2はそれぞれ循環ガスが流れるように連結されている。
(Circulation path)
The circulation paths (G1, G2, G3, G4, G5) are paths through which the circulation gas flows. and a channel G3 to which the circulating gas heater 30 and the dryer 100 are connected. A blower B1 can be provided in the circulation path so that the circulation gas flows. The blower B1 is preferably installed in a channel where the circulating gas is not at a high temperature and contains as little dried sludge as possible. is preferred. In addition, the flow path G5, the flow path G1, and the flow path G2 are connected so that the circulating gas flows.
 循環ガスは、抽気によってその流量一部が減少し、その分を補うため外気を導入するように構成するとよい。例えば、流路(G5,G1,G2)のうちのブロワB1の設置位置よりも上流側に外気導入管G9を連結し、外気が外気導入管G9を流れて循環路に導入されるように構成する。  The flow rate of the circulating gas is partially reduced by bleeding, and it is preferable to introduce outside air to make up for the decrease. For example, an outside air introduction pipe G9 is connected upstream of the installation position of the blower B1 in the flow path (G5, G1, G2) so that the outside air flows through the outside air introduction pipe G9 and is introduced into the circulation path. do.
 流路(G5,G1,G2)には、抽気された抽気ガスが抽気ガス加熱器70へ流れるように抽気ガス配管G6を設けることができる。流路(G5,G1,G2)における抽気ガス配管G6の接続箇所は、特に限定されず、外気導入管G9よりも上流側に接続してもよいし、ブロワB1よりも下流側に接続してもよい。 A bleed gas pipe G6 can be provided in the flow path (G5, G1, G2) so that the bleed gas flows to the bleed gas heater 70. The connection point of the extraction gas pipe G6 in the flow path (G5, G1, G2) is not particularly limited, and may be connected upstream of the outside air introduction pipe G9 or downstream of the blower B1. good too.
 抽気ガス配管G6には、ダンパV5を設けることができる。ダンパV5を開閉させることで、抽気ガス加熱器70を流れる高温給気ガスの流量に対応させて、抽気ガスの流量を調節することができ好ましい。 A damper V5 can be provided in the extraction gas pipe G6. By opening and closing the damper V5, it is possible to adjust the flow rate of the extraction gas in accordance with the flow rate of the high-temperature supply gas flowing through the extraction gas heater 70, which is preferable.
(循環ガス)
 循環ガスの具体的な流れを以下に説明する。なお、以下に示す循環ガスの温度は一例である。外気導入管G9から導入された外気は、循環ガスとして、流路(G5,G1,G2)を流れ、循環ガス加熱器30を通過して、熱を得て300~500℃で循環ガス加熱器30から流出する。流出した循環ガス(高温循環ガス)は、流路G3を流れ、乾燥機100に流入する。
(circulating gas)
A specific flow of the circulating gas will be described below. In addition, the temperature of the circulation gas shown below is an example. Outside air introduced from the outside air introduction pipe G9 flows through the flow paths (G5, G1, G2) as circulating gas, passes through the circulating gas heater 30, obtains heat, and heats the circulating gas heater at 300 to 500 ° C. outflow from 30. The outflowing circulating gas (high-temperature circulating gas) flows through the flow path G3 and flows into the dryer 100 .
 循環ガスは、乾燥機100で発生した乾燥汚泥を含んで乾燥機100から100~400℃で流出し、流路G4を流れ、分離器10に流入する。 The circulating gas contains dried sludge generated in the dryer 100 and flows out from the dryer 100 at 100 to 400°C, flows through the flow path G4, and flows into the separator 10.
 分離器10に流入した循環ガスは、分離器10で乾燥汚泥が分離され、残分が100~400℃で流出し、再び流路(G5,G1,G2)に達し、循環する。 The circulating gas that has flowed into the separator 10 has dried sludge separated by the separator 10, and the residue flows out at 100 to 400°C, reaches the flow path (G5, G1, G2) again, and circulates.
 循環ガスは、循環路に設置されたブロワB1によって流量の調節をすることができ、少なくとも、乾燥汚泥が、循環路に堆積しない程度の流量で循環していればよい。 The flow rate of the circulating gas can be adjusted by the blower B1 installed in the circulation path.
 流路G2には、循環ガスの流量を調節するためのダンパV4を設けることができる。 A damper V4 for adjusting the flow rate of the circulating gas can be provided in the flow path G2.
(乾燥機)
 乾燥機100は、ホッパー90から投入された第1脱水汚泥と、循環路から流入した高温循環ガスとを接触させ、第1脱水汚泥を乾燥しつつ粉砕して粉粒状の乾燥汚泥にする。
(Dryer)
The dryer 100 brings the first dehydrated sludge fed from the hopper 90 into contact with the high-temperature circulating gas flowing from the circulation path, and dries and pulverizes the first dehydrated sludge into powdery dried sludge.
 この乾燥機100としては、(1)噴霧乾燥機、気流乾燥機、流動層乾燥機、回転乾燥機などのように、高温循環ガス中に第1脱水汚泥を分散させて乾燥させる形態のもの、(2)通気バンド乾燥機、トンネル乾燥機(並行流バンド乾燥機)、噴出流乾燥機などのように、第1脱水汚泥を静置した状態のまま移送し、その移送過程で第1脱水汚泥に高温循環ガスを接触させて乾燥させる形態のもの、(3)撹拌乾燥機などのように、第1脱水汚泥を機械的に攪拌しながら、その第1脱水汚泥に高温循環ガスを接触させて乾燥させる形態のものを例示することができる。 The dryer 100 includes: (1) a spray dryer, a flash dryer, a fluidized bed dryer, a rotary dryer, etc., in which the first dehydrated sludge is dispersed and dried in a high-temperature circulating gas; (2) The first dewatered sludge is transferred while still standing, such as a ventilation band dryer, tunnel dryer (parallel flow band dryer), jet flow dryer, etc., and the first dewatered sludge is transferred during the transfer process. (3) mechanically stirring the first dehydrated sludge, such as a stirring dryer, and bringing the first dehydrated sludge into contact with the high temperature circulation gas; A dried form can be exemplified.
 前記気流乾燥機にも様々な種類があるが、第1脱水汚泥を解砕せずに投入する解砕機無しの気流乾燥機を採用することができる。 Although there are various types of the above-mentioned flash dryers, it is possible to adopt a flash dryer without a crusher, in which the first dewatered sludge is put in without being crushed.
 図1、図2には乾燥機100として、気流乾燥機を示した。この気流乾燥機は、円環状に延在するパイプ100Bと、前記パイプ100B内に第1脱水汚泥が導入される汚泥導入部100Eと、前記パイプ100B内に高温循環ガスが供給されるガス供給部100Aと、乾燥汚泥を含む循環ガスが前記パイプ100Bから排出されるガス排出部100Fとを備え、前記ガス供給部100Aから供給された高温循環ガスが、前記パイプ100B内を高速で循環し、前記汚泥導入部100Eから導入された第1脱水汚泥と衝突するように構成されたものである。このパイプ100Bは、ガス供給部100Aと連結して水平に延在するパイプ部位100Baと、前記パイプ部位100Baから上方へ湾曲しつつ延在するパイプ部位100Bbと、前記パイプ部位100Bbから引き返す方向(パイプ部位100Baと平行になる方向)へ湾曲して延在するパイプ部位100Bcと、前記パイプ部位100Bcから下方へ湾曲して延在するパイプ部位100Bdとからなる。また、パイプ部位100Bdには、ガス供給部100Aの先端部100Dと接合し、ガス供給部100Aを流れる高温循環ガスの供給を受ける先端部100Cが設けられている。また、汚泥導入部100Eがパイプ100B、特にパイプ部位100Baに設けられ、ガス排出部100Fがパイプ100Bにそれぞれ備わる。 A flash dryer is shown as the dryer 100 in FIGS. This flash dryer includes a pipe 100B extending in an annular shape, a sludge introduction section 100E into which the first dehydrated sludge is introduced into the pipe 100B, and a gas supply section into which high-temperature circulation gas is supplied into the pipe 100B. 100A and a gas discharge section 100F for discharging circulating gas containing dried sludge from the pipe 100B, and the high-temperature circulating gas supplied from the gas supply section 100A circulates at high speed in the pipe 100B, It is configured to collide with the first dewatered sludge introduced from the sludge introduction section 100E. The pipe 100B includes a pipe portion 100Ba connected to the gas supply portion 100A and extending horizontally, a pipe portion 100Bb extending while curving upward from the pipe portion 100Ba, and a direction (pipe It is composed of a pipe portion 100Bc that curves and extends in a direction parallel to the portion 100Ba, and a pipe portion 100Bd that curves and extends downward from the pipe portion 100Bc. Further, the pipe portion 100Bd is provided with a tip portion 100C which is joined to the tip portion 100D of the gas supply portion 100A and receives the supply of the high-temperature circulating gas flowing through the gas supply portion 100A. Also, a sludge introduction section 100E is provided in the pipe 100B, particularly the pipe section 100Ba, and a gas discharge section 100F is provided in the pipe 100B.
 高温循環ガスは、流路G3を通じてガス供給部100Aに供給される。汚泥配管4を通じて汚泥導入部100Eからパイプ100B内に導入された第1脱水汚泥は、パイプ部位100Ba内を循環する高温循環ガスの中に導入され、高温循環ガスと連続的に衝突し、パイプ100B内で吹き飛ばされ、分散・乾燥し、粉粒状の乾燥汚泥になる。このとき、第1脱水汚泥の大きな汚泥粒子に高温・高速の循環ガスが衝突することで、複数の小さな汚泥粒子に割れ、その内部に含まれていた水分が急速に蒸発する。 The high-temperature circulating gas is supplied to the gas supply section 100A through the flow path G3. The first dehydrated sludge introduced into the pipe 100B from the sludge introduction portion 100E through the sludge pipe 4 is introduced into the high-temperature circulating gas circulating in the pipe portion 100Ba, continuously collides with the high-temperature circulating gas, and enters the pipe 100B. It is blown away inside, dispersed and dried to become powdery dry sludge. At this time, the large sludge particles of the first dehydrated sludge collide with the high-temperature, high-speed circulating gas, breaking into a plurality of small sludge particles, and the water contained therein rapidly evaporates.
 ある程度以下の粒度まで分散・乾燥した粉粒状の汚泥粒子は、ガス排出部100Fから循環ガスの流れの中に含まれながら、気流乾燥機の外部に乾燥汚泥として排出される。他方、分散・乾燥程度が十分でなく、比較的粒度の大きな汚泥粒は、ガス排出部100Fから排出されず、十分に分散・乾燥するまで繰り返しパイプ100B内を循環する。従って、気流乾燥機は、十分に分散・乾燥した粉粒状の乾燥した汚泥を主に排出する。詳しくは、高温循環ガスは、ガス供給部100Aからパイプ100Bに供給され、汚泥粒子とともにパイプ部位100Ba、パイプ部位100Bb、パイプ部位100Bc、パイプ部位100Bd、パイプ部位100Baと循環しつつ、その一部がガス排出部100Fから乾燥機100外へ排出される。他方、排気されなかった高温循環ガスは、新しくガス供給部100Aから送られてきた高温循環ガスと合流し混ざり、パイプ部位100Ba、パイプ部位100Bb、パイプ部位100Bc、パイプ部位100Bdと流れ、その一部がガス排出部100Fから乾燥機100外へ排気される。以上のように、高温循環ガスの一部はガス排出部100Fから排出され、残部の高温循環ガスはパイプ100B内を循環することになる。このように、新しく投入された第1脱水汚泥とパイプ100B内を循環する第1脱水汚泥は、管内で混合されて、循環を経て乾燥し粉砕される。 The powdery sludge particles that have been dispersed and dried to a particle size below a certain level are discharged from the gas discharge part 100F as dry sludge to the outside of the flash dryer while being included in the flow of the circulating gas. On the other hand, relatively large sludge grains that are not sufficiently dispersed and dried are not discharged from the gas discharge section 100F, and are repeatedly circulated in the pipe 100B until sufficiently dispersed and dried. Therefore, the flash dryer mainly discharges well-dispersed and dried powdery and dried sludge. Specifically, the high-temperature circulating gas is supplied from the gas supply unit 100A to the pipe 100B, and circulates with the sludge particles through the pipe section 100Ba, the pipe section 100Bb, the pipe section 100Bc, the pipe section 100Bd, and the pipe section 100Ba. It is discharged out of the dryer 100 from the gas discharge part 100F. On the other hand, the high-temperature circulating gas that has not been exhausted joins and mixes with the high-temperature circulating gas newly sent from the gas supply section 100A, and flows through the pipe section 100Ba, the pipe section 100Bb, the pipe section 100Bc, and the pipe section 100Bd. is exhausted to the outside of the dryer 100 from the gas exhaust portion 100F. As described above, part of the high-temperature circulating gas is discharged from the gas discharge section 100F, and the remaining high-temperature circulating gas circulates through the pipe 100B. In this way, the first dehydrated sludge newly introduced and the first dehydrated sludge circulating in the pipe 100B are mixed in the pipe, dried and pulverized through circulation.
 気流乾燥機の運転においては、気流乾燥機のガス供給部100Aを流れる高温循環ガスの流速を20m/s以上、60m/s以下とし、パイプ100B内の流速を15m/s以上、45m/s以下にすることが好ましい。ガス供給部100Aやパイプ100Bの流速が前記値よりも低い場合は、気流乾燥機内で汚泥粒子が循環し難く乾燥処理や循環器外への排出に支障をきたすおそれがある。また、前記パイプ100B内の流速は、汚泥粒子が円滑に循環するため、15m/s以上にすることがより好ましい。
In the operation of the flash dryer, the flow velocity of the high-temperature circulating gas flowing through the gas supply part 100A of the flash dryer is 20 m/s or more and 60 m/s or less, and the flow velocity in the pipe 100B is 15 m/s or more and 45 m/s or less. It is preferable to If the flow velocity of the gas supply part 100A and the pipe 100B is lower than the above value, the sludge particles are difficult to circulate in the flash dryer, which may hinder the drying process and discharge to the outside of the circulator. Moreover, the flow velocity in the pipe 100B is more preferably 15 m/s or more so that the sludge particles can circulate smoothly.
 特にガス供給部100Aの流速をパイプ100Bの流速よりも速くすることが好ましい。速度差を設けることで、循環する汚泥粒子に新たに供給された高温循環ガスが連続的に衝突するので、汚泥粒子の分散が促進される。 In particular, it is preferable to make the flow velocity of the gas supply section 100A faster than the flow velocity of the pipe 100B. By providing a speed difference, the newly supplied high-temperature circulation gas continuously collides with the circulating sludge particles, thereby promoting the dispersion of the sludge particles.
 また、乾燥機100内を循環する高温循環ガスは、好ましくは300~500℃、より好ましくは350~450℃、さらに好ましくは400℃にすると良い。高温循環ガスの温度がこの範囲よりも低い場合は、乾燥に多くの時間を費やすことになる。他方、当該温度がこの範囲よりも高く設定するメリットは少なく、高温にするために多くのエネルギーが消費される反面、施設運営の費用対効果が減じてしまうデメリットがある。 Also, the temperature of the high-temperature circulating gas circulating in the dryer 100 is preferably 300 to 500°C, more preferably 350 to 450°C, and even more preferably 400°C. If the temperature of the hot circulating gas is below this range, it will take a long time to dry. On the other hand, there is little merit in setting the temperature higher than this range, and while a lot of energy is consumed to raise the temperature, there is a demerit that the cost-effectiveness of facility management is reduced.
 また、上記に示した気流乾燥機以外のものとして、補機類の容量が大きくなるとともに、定期的なメンテナンスや解砕機の交換が必要になるが、解砕機付きの気流乾燥機を設けても、上記気流乾燥機と同様の効果を得ることができる。 In addition to the flash dryer shown above, as the capacity of auxiliary equipment increases, periodic maintenance and replacement of the crusher are required, but even if a flash dryer with a crusher is installed , the same effect as the flash dryer can be obtained.
 乾燥機100から流出した乾燥汚泥を含む循環ガスは、乾燥機100内で第1脱水汚泥の乾燥化に熱を奪われ、100~400℃となる。乾燥機100で発生した乾燥汚泥は、分離器10に輸送されるが、例えば循環ガスとともに分離器10まで輸送されるものとすると、輸送のために別途機器を備えなくてもよく好ましい。乾燥汚泥を含む循環ガスは、乾燥機100のガス排出部100Fと、分離器10における循環ガスの流入部とを接続する流路G4を流れて分離器10に供給される。 The circulating gas containing the dried sludge that has flowed out of the dryer 100 is deprived of heat by the drying of the first dehydrated sludge in the dryer 100 and reaches 100 to 400°C. The dried sludge generated in the dryer 100 is transported to the separator 10. If transported to the separator 10 together with the circulating gas, for example, it is preferable that no separate equipment is required for transport. The circulating gas containing dried sludge flows through a flow path G4 that connects the gas discharge portion 100F of the dryer 100 and the circulating gas inlet portion of the separator 10 and is supplied to the separator 10 .
 乾燥機100から排出された乾燥汚泥は、含水率が1~40%になっている。 The dry sludge discharged from the dryer 100 has a water content of 1 to 40%.
(分離器)
 分離器10は、流路G4から供給された乾燥汚泥が含まれる循環ガスを気固分離して、乾燥汚泥を取り除き、残分を流路G5に排出するものである。分離器10は、乾燥汚泥が含まれる循環ガスの供給を受ける汚泥供給部と、分離された乾燥汚泥を排出する汚泥排出部11と、循環ガスのうちの乾燥汚泥が分離された残分が流路G5に排出されるガス排出部を備え、分離された乾燥汚泥が分離器10から、例えば汚泥投入機19に排出される。分離された乾燥汚泥は、汚泥排出部11から自然落下して汚泥投入機19に供給されてもよいし、汚泥排出部11と汚泥投入機19とを接続する汚泥配管3を設け、当該汚泥配管3を通じて汚泥投入機19に供給されてもよい。
(Separator)
The separator 10 gas-solid separates the circulating gas containing dried sludge supplied from the flow path G4, removes the dried sludge, and discharges the residue to the flow path G5. The separator 10 includes a sludge supply section that receives supply of circulation gas containing dried sludge, a sludge discharge section 11 that discharges the separated dry sludge, and a residue of the circulation gas from which the dried sludge has been separated. The separated dry sludge is discharged from the separator 10 to, for example, a sludge input machine 19, which is provided with a gas discharge section to be discharged to the path G5. The separated dried sludge may fall naturally from the sludge discharge unit 11 and be supplied to the sludge input device 19, or a sludge pipe 3 connecting the sludge discharge unit 11 and the sludge input device 19 is provided, and the sludge pipe 3 to the sludge input machine 19.
 分離器10の例としては、重力により集塵を行う重力沈降室、慣性により集塵を行うミストセパレーター、遠心力により集塵を行うサイクロン、洗浄により集塵を行うベンチュリースクラバー、濾布により集塵を行うバグフィルター、充てん層により集塵を行う移動粒子層エアフィルター、電気により集塵を行う電気集塵機等を挙げることができる。 Examples of the separator 10 include a gravity sedimentation chamber that collects dust by gravity, a mist separator that collects dust by inertia, a cyclone that collects dust by centrifugal force, a venturi scrubber that collects dust by washing, and a filter cloth that collects dust. a bag filter that performs dust collection, a moving particle layer air filter that collects dust with a packed layer, an electric dust collector that collects dust with electricity, and the like.
 分離器10は、汚泥投入機19の直上に設けられ、分離された乾燥汚泥が当該分離器10の汚泥排出部11から前記汚泥投入機19に排出されるものとすることができる。乾燥汚泥は重量が軽くかつ強い汚泥臭を伴うので、搬送経路が長距離だと飛散し、及び周囲に汚泥臭を漂わせる。そこで、乾燥汚泥が分離器の汚泥排出部から直下にある汚泥投入機に排出される形態とすれば、速やかに焼却炉に投入されるので、乾燥汚泥の飛散やその臭いの発散を極力抑制できる。 The separator 10 can be provided directly above the sludge input device 19, and the separated dry sludge can be discharged from the sludge discharge part 11 of the separator 10 to the sludge input device 19. Since the dried sludge is light in weight and accompanied by a strong sludge odor, it scatters when the transport route is long, and the sludge odor wafts around. Therefore, if the dried sludge is discharged from the sludge discharge part of the separator to the sludge input machine directly below, it is quickly input to the incinerator, so that the scattering of the dried sludge and the emission of its odor can be suppressed as much as possible. .
(第1脱水汚泥)
 第1脱水汚泥5は、定量フィーダ80に一時的に貯留され、その適量がホッパー90と定量フィーダ80とを接続する汚泥配管7を流れ、ホッパー90に流入して貯留される。ホッパー90に貯留された汚泥は、乾燥機100の汚泥導入部100Eとホッパー90とを接続する汚泥配管4を流れ、乾燥機100へ導入される。
(First dehydrated sludge)
The first dewatered sludge 5 is temporarily stored in the quantitative feeder 80, and an appropriate amount of it flows through the sludge pipe 7 connecting the hopper 90 and the quantitative feeder 80, flows into the hopper 90, and is stored. The sludge stored in the hopper 90 flows through the sludge pipe 4 connecting the sludge introduction part 100E of the dryer 100 and the hopper 90 and is introduced into the dryer 100 .
 ホッパー90は、第1脱水汚泥を受け入れるほか、分離器10で分離された乾燥汚泥を受け入れてもよい。分離器10で分離された乾燥汚泥は、手動でホッパー90に輸送して投入してもよいし、ホッパー90と分離器10とを接続する汚泥配管9を設け、当該汚泥配管9に流してホッパー90に投入してもよい。これにより、ホッパー90内で第1脱水汚泥と乾燥汚泥が混合される。第1脱水汚泥は、有機分濃度や含水率によっては、乾燥しにくいか又は乾燥するまでに多くの時間を要する場合がある。第1脱水汚泥と乾燥汚泥の混合物が乾燥機100に導入されることで、混合物は、乾燥が促進され、粉砕され易くなる。 The hopper 90 may receive the dried sludge separated by the separator 10 in addition to receiving the first dehydrated sludge. The dried sludge separated by the separator 10 may be manually transported to the hopper 90 and put into it, or a sludge pipe 9 connecting the hopper 90 and the separator 10 is provided, and the sludge pipe 9 is flown into the hopper. You can put it in 90. Thereby, the first dewatered sludge and the dried sludge are mixed within the hopper 90 . The first dehydrated sludge may be difficult to dry or may take a long time to dry depending on the concentration of organic matter and water content. By introducing the mixture of the first dewatered sludge and the dried sludge into the dryer 100, drying of the mixture is accelerated and pulverization is facilitated.
(制御)
 本形態の汚泥焼却システムの稼働を制御するために、演算装置110を用いた制御装置を設けることができる。当該制御を行うため汚泥焼却システムに温度センサーと流量センサーを各所に設ける。以下に詳細を記載する。
(control)
In order to control the operation of the sludge incineration system of this embodiment, a control device using the arithmetic device 110 can be provided. Temperature sensors and flow rate sensors are installed in various places in the sludge incineration system to perform this control. Details are given below.
 温度センサーについては、一例として、焼却排ガス配管39を流れる焼却排ガスの温度を測定する温度センサーT1、焼却炉20の炉内温度を測定する温度センサーT2、流路G1,G2を流れる循環ガスの温度を測定する温度センサーT3、流路G4を流れる循環ガスの温度を測定する温度センサーT4、流路G3を流れる高温循環ガスの温度を測定する温度センサーT5をそれぞれ設けることができる。 As for the temperature sensors, as an example, a temperature sensor T1 that measures the temperature of the incinerated exhaust gas flowing through the incinerated exhaust gas pipe 39, a temperature sensor T2 that measures the temperature inside the incinerator 20, and a temperature of the circulating gas flowing through the flow paths G1 and G2. , a temperature sensor T4 for measuring the temperature of the circulating gas flowing through the flow path G4, and a temperature sensor T5 for measuring the temperature of the high-temperature circulating gas flowing through the flow path G3.
 流量センサーについては、一例として、後述する汚泥配管6を流れる第1脱水汚泥の流量を測定する流量センサーF1、汚泥配管7を流れる第1脱水汚泥の流量を測定する流量センサーF2、流路G1,G2を流れる循環ガスの流量を測定する流量センサーF3をそれぞれ設けることができる。 As for the flow rate sensor, as an example, a flow rate sensor F1 for measuring the flow rate of the first dehydrated sludge flowing through the sludge pipe 6 described later, a flow rate sensor F2 for measuring the flow rate of the first dehydrated sludge flowing through the sludge pipe 7, the flow path G1, A flow sensor F3 may each be provided to measure the flow rate of the circulating gas through G2.
 温度センサーT1~T5それぞれの測定温度のデータ、及び流量センサーF1~F3それぞれの測定流量のデータは、有線又は無線で演算装置110に送信される。演算装置110は受信した、測定温度の各データ及び測定流量の各データの入力値を元に、予め備わる演算式を用いて、ダンパV1~V7それぞれの開度の出力値を演算する。演算装置110は当該出力値をダンパV1~V7に送信する。ダンパV1~V7は、それぞれに備わるアクチュエーターが作動し、それまでの開度を、受信した当該出力値の開度になるように、弁を開け又は閉じて流量を変更する。演算式は、特に限定されないが、過去の測定温度のデータと測定流量のデータ、開度のデータから例えば、最小二乗法制御、PI制御、PDI制御、ニューラルネットワーク制御、手動による入力による手法で構築することができる。 The temperature data measured by the temperature sensors T1 to T5 and the flow rate data measured by the flow sensors F1 to F3 are transmitted to the computing device 110 by wire or wirelessly. The computing device 110 computes the output values of the openings of the dampers V1 to V7 by using a computational expression provided in advance based on the received input values of the measured temperature data and the measured flow rate data. Arithmetic device 110 transmits the output values to dampers V1 to V7. The dampers V1 to V7 operate their respective actuators, and open or close the valves to change the flow rate so that the degree of opening up to that point becomes the degree of opening corresponding to the received output value. The arithmetic expression is not particularly limited, but is constructed from past measured temperature data, measured flow data, and opening data, for example, by least square method control, PI control, PDI control, neural network control, and manual input method. can do.
 制御装置としては、例えば乾燥機100に供給される循環ガスの温度を測定して測定温度を得て、当該測定温度に基づき前記乾燥機100に供給される循環ガスの目標温度を演算し、前記循環ガスの温度が目標温度に近づくように、外部から供給される空気の流量を増減する制御を行うものを挙げることができる。ここで、外部から供給される空気の流量を増減する制御とは、例えば、ダンパV2が特定の開度(実際開度)の状態で汚泥焼却システムが稼働している場合に、前記測定温度を入力値として、予め備わる演算式に入力してダンパV2の目標開度を出力値として得て、出力値として得られた目標開度に、ダンパV2の実際開度を近づけることで、外部から供給される空気の流量が増減する制御のことをいう。この制御により、循環ガス加熱器30に流れ込む予熱空気の流量が増減するとともに、熱交換を受ける循環ガスの温度が上昇又は降下することになる。 As a control device, for example, the temperature of the circulation gas supplied to the dryer 100 is measured to obtain the measured temperature, the target temperature of the circulation gas supplied to the dryer 100 is calculated based on the measured temperature, and the For example, the flow rate of the air supplied from the outside is controlled so that the temperature of the circulating gas approaches the target temperature. Here, the control to increase or decrease the flow rate of the air supplied from the outside means, for example, when the sludge incineration system is operating with the damper V2 at a specific opening (actual opening), the measured temperature is As an input value, the target opening of the damper V2 is obtained as an output value by inputting it into a pre-provided arithmetic expression, and by bringing the actual opening of the damper V2 close to the target opening obtained as the output value, it is supplied from the outside. It refers to control that increases or decreases the flow rate of the air that is applied. This control increases or decreases the flow rate of the preheated air flowing into the circulating gas heater 30 and increases or decreases the temperature of the circulating gas that undergoes heat exchange.
 また、別の制御装置としては、例えば流路G2を流れる循環ガスの流量を測定して測定流量を得て、当該測定流量に基づき流路G2を流れる循環ガスの目標流量を演算し、前記循環ガスの流量が目標流量に近づくように、循環ガスの流量を増減する制御を行うものを挙げることができる。ここで、循環ガスの流量を増減する制御とは、例えばダンパV5が特定の開度(実際開度)の状態で汚泥焼却システムが稼働している場合に、前記測定流量を入力値として、予め備わる演算式に入力してダンパV5の目標開度を出力値として得て、出力値として得られた目標開度に、ダンパV5の実際開度を近づけることで、循環ガスの流量が増減する制御のことをいう。この制御により、循環ガス加熱器30を通過する循環ガスの流量が増減するとともに、乾燥機100に流れ込む循環ガスの温度が上昇又は降下することになる。 Further, as another control device, for example, the flow rate of the circulating gas flowing through the flow path G2 is measured to obtain the measured flow rate, the target flow rate of the circulating gas flowing through the flow path G2 is calculated based on the measured flow rate, and the circulation gas flow rate is calculated. For example, the flow rate of the circulating gas is controlled to increase or decrease so that the flow rate of the gas approaches the target flow rate. Here, the control to increase or decrease the flow rate of the circulating gas is, for example, when the sludge incineration system is operating with the damper V5 at a specific opening (actual opening), the measured flow rate is used as an input value, and The target opening of the damper V5 is obtained as an output value by inputting it into the provided arithmetic expression, and by bringing the actual opening of the damper V5 closer to the target opening obtained as the output value, the flow rate of the circulating gas is increased or decreased. That's what I mean. This control increases or decreases the flow rate of the circulating gas passing through the circulating gas heater 30 and increases or decreases the temperature of the circulating gas flowing into the dryer 100 .
 さらに、温度センサーT1~T5それぞれの測定温度のデータ、及び流量センサーF1~F3それぞれの測定流量のデータに基づき、乾燥機100への第1脱水汚泥の目標導入量、及び焼却炉20への第1脱水汚泥の目標投入量が演算され、目標導入量及び目標投入量になるように定量フィーダ80における脱水汚泥の排出量が制御される装置とすることができる。 Furthermore, based on the data of the measured temperature of each of the temperature sensors T1 to T5 and the data of the measured flow rate of each of the flow sensors F1 to F3, the target introduction amount of the first dehydrated sludge to the dryer 100, and the first to the incinerator 20 1 A device can be used in which a target input amount of dehydrated sludge is calculated, and the discharge amount of dewatered sludge in the constant feeder 80 is controlled so as to achieve the target introduction amount and the target input amount.
<第2実施形態>
 以上、本発明の実施形態について説明したが、図3に示すように当該実施形態を基本としつつ次の第2の実施形態、具体的には、前記第2の態様の汚泥焼却システムに、乾燥汚泥を前記乾燥機に導入しないものであるという特徴を付加した汚泥焼却システムも望ましい態様である。図3は、図1に記載される汚泥配管9を設けていないシステム図となっている。従来の乾燥機では、第1脱水汚泥とともに乾燥汚泥も導入していたが、本形態の特徴ある乾燥機は、高温循環ガスが乾燥機内を循環して、乾燥汚泥を積極的に導入しなくても第1脱水汚泥が容易に乾燥する構成になっている。よって、乾燥汚泥を乾燥機に導く配管等を設けなくてよく、汚泥焼却システム全体の形態がコンパクトになるというメリットがある。
<Second embodiment>
Although the embodiment of the present invention has been described above, as shown in FIG. A sludge incineration system with the added feature of not introducing sludge into the dryer is also a desirable embodiment. FIG. 3 is a system diagram without the sludge pipe 9 shown in FIG. In conventional dryers, dried sludge is introduced together with the first dewatered sludge, but in the dryer characterized by this embodiment, high-temperature circulation gas circulates in the dryer and the dried sludge is not actively introduced. Also, the first dewatered sludge is easily dried. Therefore, there is no need to provide a pipe or the like for guiding the dried sludge to the dryer, and there is an advantage that the form of the entire sludge incineration system can be made compact.
<第3実施形態>
 また、図4に示すように次の第3の実施形態も好ましい。具体的には、第1の態様の汚泥焼却システムに、さらに汚泥を焼却する焼却炉20を備え、第1脱水汚泥に加えて、さらに第2脱水汚泥が前記焼却炉20に導入される汚泥焼却システムである。
<Third Embodiment>
The following third embodiment is also preferable as shown in FIG. Specifically, the sludge incineration system of the first aspect further includes an incinerator 20 for incinerating sludge, and in addition to the first dewatered sludge, the second dehydrated sludge is introduced into the incinerator 20. Sludge incineration System.
 系外から搬入された第2脱水汚泥1は、汚泥ホッパー140に投入される。汚泥ホッパー140には汚泥排出部が設けられ、汚泥排出部と汚泥投入機19が汚泥配管2で接続されている。汚泥排出部から排出された第2脱水汚泥1が汚泥配管2を通って汚泥投入機19に流れ込む。 The second dewatered sludge 1 brought in from outside the system is put into the sludge hopper 140 . A sludge discharger is provided in the sludge hopper 140 , and the sludge discharger and the sludge feeder 19 are connected by a sludge pipe 2 . The second dewatered sludge 1 discharged from the sludge discharging section flows through the sludge pipe 2 into the sludge input machine 19 .
 この形態において、汚泥投入機19で搬送される汚泥としては、第1脱水汚泥5、第2脱水汚泥、乾燥汚泥等を例示できる。第2脱水汚泥1と第1脱水汚泥5は、どちらも脱水汚泥であり、別体として焼却炉20に投入される。第2脱水汚泥1はその全量が焼却炉20に投入されるものである。第1脱水汚泥5のみの焼却では、第1脱水汚泥5の性状、有機分濃度や含水率によっては、焼却炉20による自燃が不安定になる場合があり、乾燥汚泥に加え、第2脱水汚泥を導入することによって、焼却炉20が安定的に燃え続けるようになる。 In this embodiment, examples of the sludge conveyed by the sludge feeder 19 include the first dehydrated sludge 5, the second dehydrated sludge, dried sludge, and the like. Both the second dehydrated sludge 1 and the first dehydrated sludge 5 are dehydrated sludge, and are put into the incinerator 20 as separate bodies. The whole amount of the second dehydrated sludge 1 is put into the incinerator 20 . In the incineration of only the first dehydrated sludge 5, self-combustion by the incinerator 20 may become unstable depending on the properties, organic content concentration, and water content of the first dehydrated sludge 5, and in addition to the dried sludge, the second dehydrated sludge By introducing , the incinerator 20 will continue to burn stably.
 以上に示す第1実施形態~第3実施形態に基づき、次の態様の汚泥焼却システムも好ましい形態である。例えば、白煙防止用ファンB3から供給される給気ガスを、前記空気予熱器40を通過した焼却排ガスと熱交換して高温給気ガスとする白煙防止予熱器50と、前記循環ガスから抽気された抽気ガスを、前記高温給気ガスと熱交換して高温抽気ガスとする抽気ガス加熱器70とを備え、前記抽気ガスは、前記分離器10と循環ガス加熱器30とが接続された循環路(G5,G1,G2)から抽気して減湿されたものであり、前記高温抽気ガスが汚泥を焼却する焼却炉20に供給されるものである汚泥焼却システムとすることができる。この汚泥焼却システムであれば、抽気ガス配管へのタールの付着・固化が抑制され、好ましい。また、焼却炉20へ抽気ガスを供給する構成としていることで、循環路内の汚泥臭気の低減化を図ることができる。 Based on the first to third embodiments described above, the following sludge incineration system is also a preferred form. For example, the white smoke prevention preheater 50 heat-exchanges the air supply gas supplied from the white smoke prevention fan B3 with the incineration exhaust gas that has passed through the air preheater 40 to produce a high temperature supply gas, and the circulating gas A bleed gas heater 70 is provided for heat-exchanging the bleed gas with the high-temperature supply gas to make the high-temperature bleed gas, and the bleed gas is connected to the separator 10 and the circulating gas heater 30. A sludge incineration system can be provided in which the high-temperature extracted gas is dehumidified by extraction from the circulation paths (G5, G1, G2) and is supplied to an incinerator 20 for incinerating sludge. This sludge incineration system is preferable because it suppresses adhesion and solidification of tar to the extraction gas pipe. In addition, since the extraction gas is supplied to the incinerator 20, the sludge odor in the circulation path can be reduced.
 また、以上に示す実施形態を用いて行う汚泥焼却方法としては、次に示すものを例示できる。
 汚泥を焼却する汚泥焼却方法は、
(1)循環ガスが循環路(G1,G2,G3,G4,G5)を流れる循環ステップと、
(2)乾燥機100で、第1脱水汚泥5を循環ガスの熱で乾燥させて乾燥汚泥とする乾燥ステップと、
(3)分離器10で、乾燥汚泥と循環ガスを分離する分離ステップと、
(4)循環ガス加熱器30で、外部から供給される空気を、汚泥を焼却して発生した高温の焼却排ガスと熱交換して予熱空気とする予熱空気取得ステップと、
(5)循環ガスを、前記予熱空気と熱交換して加熱して高温循環ガスとする高温循環ガス取得ステップとを備え、
 前記循環ガスは、前記乾燥機100から乾燥汚泥とともに排出されて、前記分離器10を経由して、前記循環ガス加熱器30に至り加熱されて、前記乾燥機100に再度供給されて循環するものであり、前記乾燥ステップは、第1脱水汚泥を乾燥しつつ粉砕して粉粒状の乾燥汚泥にするものである、ことを特徴とする。
Moreover, as a sludge incineration method performed using the embodiment shown above, the following can be illustrated.
The sludge incineration method for incinerating sludge is
(1) a circulation step in which the circulation gas flows through the circulation paths (G1, G2, G3, G4, G5);
(2) a drying step of drying the first dehydrated sludge 5 with the heat of the circulating gas to obtain dry sludge in the dryer 100;
(3) a separation step of separating dry sludge and circulating gas in a separator 10;
(4) In the circulating gas heater 30, the air supplied from the outside is heat-exchanged with the high-temperature exhaust gas generated by incinerating the sludge to obtain preheated air;
(5) obtaining a high-temperature circulating gas by exchanging heat with the preheated air to heat the circulating gas to obtain a high-temperature circulating gas;
The circulating gas is discharged from the dryer 100 together with dried sludge, passes through the separator 10, reaches the circulating gas heater 30, is heated, and is supplied to the dryer 100 again for circulation. and the drying step is characterized in that the first dehydrated sludge is dried and pulverized into powdery dried sludge.
(その他)
 粉粒状の乾燥汚泥とは、厳密に定義することは難しいが、例えば、流速20m/秒の空気を配管に流したときに、当該空気の流れとともに円滑に流される程度の大きさの乾燥汚泥をいう。
 図中に記載された主な線について、循環ガス及び抽気ガスが流れる配管は実線で、焼却排ガスが流れる配管は太い実線で、第1脱水汚泥・乾燥汚泥・第2脱水汚泥が流れる配管は一点鎖線で、外部から供給される空気・予熱空気・給気ガス・高温給気ガスが流れる配管は破線で、温度センサー・流量センサー・ダンパと演算装置との送受信網は点線でそれぞれ示した。
(others)
Granular dry sludge is difficult to define strictly, but for example, dry sludge with a size that can be smoothly flowed with the flow of air when air is flowed through a pipe at a flow rate of 20 m / sec. say.
Regarding the main lines shown in the figure, the pipes through which circulating gas and extraction gas flow are solid lines, the pipes through which combustion exhaust gas flows are thick solid lines, and the pipes through which the first dehydrated sludge, dried sludge, and second dehydrated sludge flow are one point. Chain lines indicate piping through which externally supplied air, preheated air, supply gas, and high-temperature supply gas flow, and dashed lines indicate the transmission/reception network between the temperature sensor, flow rate sensor, damper, and the arithmetic unit.
 本発明は、汚泥焼却システム及び汚泥焼却方法として利用可能である。 The present invention can be used as a sludge incineration system and a sludge incineration method.
1    第2脱水汚泥
5    第1脱水汚泥
10   分離器
30   循環ガス加熱器
40   空気予熱器
100  乾燥機
G1   循環路
G2   循環路
G3   循環路
G4   循環路
G5   循環路
1 Second dehydrated sludge 5 First dehydrated sludge 10 Separator 30 Circulating gas heater 40 Air preheater 100 Dryer G1 Circulation path G2 Circulation path G3 Circulation path G4 Circulation path G5 Circulation path

Claims (10)

  1.  汚泥を焼却する汚泥焼却システムにおいて、
     循環路を流れる循環ガスと、
     第1脱水汚泥を循環ガスの熱で乾燥させて乾燥汚泥とする乾燥機と、
     乾燥汚泥と循環ガスを分離する分離器と、
     外部から供給される空気を、汚泥を焼却して発生した高温の焼却排ガスと熱交換して予熱空気とする空気予熱器と、
     循環ガスを、前記予熱空気と熱交換して加熱し、高温循環ガスとする循環ガス加熱器とを備え、
     前記循環ガスは、前記乾燥機から乾燥汚泥とともに排出されて、前記分離器を経由して、前記循環ガス加熱器に至り加熱されて、前記乾燥機に再度供給されて循環するものであり、
     前記乾燥機は、第1脱水汚泥を乾燥しつつ粉砕して粉粒状の乾燥汚泥にするものである、
     ことを特徴とする汚泥焼却システム。
    In a sludge incineration system that incinerates sludge,
    a circulating gas flowing through the circulating path;
    a dryer that dries the first dehydrated sludge with the heat of the circulating gas to obtain dried sludge;
    a separator for separating the dried sludge and the circulating gas;
    an air preheater that exchanges the heat of the air supplied from the outside with the high-temperature incineration exhaust gas generated by incinerating the sludge and converts it into preheated air;
    a circulating gas heater that heats the circulating gas by exchanging heat with the preheated air to produce a high-temperature circulating gas,
    The circulating gas is discharged from the dryer together with the dried sludge, passes through the separator, reaches the circulating gas heater, is heated, and is supplied to the dryer again for circulation,
    The dryer dries and pulverizes the first dewatered sludge into powdery dried sludge.
    A sludge incineration system characterized by:
  2.  前記乾燥機は、
     円環状に延在するパイプと、前記パイプ内に第1脱水汚泥が導入される汚泥導入部と、前記パイプ内に高温循環ガスが供給されるガス供給部と、乾燥汚泥を含む循環ガスが前記パイプから排出されるガス排出部とを備え、
     前記ガス供給部から供給された高温循環ガスが、前記パイプ内を高速で循環し、前記汚泥導入部から導入された第1脱水汚泥と衝突するように構成されたものである、
     請求項1に記載の汚泥焼却システム。
    The dryer is
    A pipe extending in an annular shape, a sludge introduction part into which the first dewatered sludge is introduced into the pipe, a gas supply part into which high temperature circulation gas is supplied into the pipe, and a circulation gas containing dried sludge is supplied to the pipe. a gas discharge part discharged from the pipe,
    The high-temperature circulating gas supplied from the gas supply unit circulates at high speed in the pipe and collides with the first dehydrated sludge introduced from the sludge introduction unit.
    The sludge incineration system according to claim 1.
  3.  前記乾燥機で発生した乾燥汚泥が循環ガスとともに前記分離器まで輸送される、
     請求項1に記載の汚泥焼却システム。
    Dried sludge generated in the dryer is transported to the separator together with the circulating gas,
    The sludge incineration system according to claim 1.
  4.  白煙防止用ファンから供給される給気ガスを、前記空気予熱器を通過した焼却排ガスと熱交換して高温給気ガスとする白煙防止予熱器と、
     前記循環ガスから抽気された抽気ガスを、前記高温給気ガスと熱交換して高温抽気ガスとする抽気ガス加熱器とを備え、
     前記抽気ガスは、前記分離器と循環ガス加熱器とが接続された循環路から抽気して減湿されたものであり、
     前記高温抽気ガスが汚泥を焼却する焼却炉に供給されるものである、
     請求項1に記載の汚泥焼却システム。
    a white smoke prevention preheater that exchanges heat with the incineration exhaust gas that has passed through the air preheater to convert the air supply gas supplied from the white smoke prevention fan into high-temperature supply air;
    a bleed gas heater that heat-exchanges the bleed gas bled from the circulating gas with the high-temperature supply gas to produce a high-temperature bleed gas,
    The bleed gas is dehumidified by bleed from a circulation path connecting the separator and the circulating gas heater,
    The high temperature extraction gas is supplied to an incinerator for incinerating sludge,
    The sludge incineration system according to claim 1.
  5.  汚泥を焼却する焼却炉と、
     汚泥を前記焼却炉に投入する汚泥投入機を備え、
     前記分離器で分離された乾燥汚泥が前記汚泥投入機に排出され、
     前記汚泥投入機が、前記乾燥汚泥と第1脱水汚泥を前記焼却炉に投入するものである、
     請求項1に記載の汚泥焼却システム。
    an incinerator for incinerating sludge;
    Equipped with a sludge input machine for inputting sludge into the incinerator,
    The dried sludge separated by the separator is discharged to the sludge input machine,
    The sludge feeder feeds the dried sludge and the first dehydrated sludge into the incinerator.
    The sludge incineration system according to claim 1.
  6.  さらに第2脱水汚泥が前記焼却炉に投入されるものである、
     請求項5に記載の汚泥焼却システム。
    Furthermore, the second dehydrated sludge is put into the incinerator,
    The sludge incineration system according to claim 5.
  7.  汚泥を焼却する焼却炉を備え、
     前記予熱空気は、その一部が前記循環ガス加熱器を通過して前記焼却炉に供給され、残部が前記循環ガス加熱器を通過せずに前記焼却炉に供給されるものである、
     請求項1に記載の汚泥焼却システム。
    Equipped with an incinerator to incinerate sludge,
    Part of the preheated air passes through the circulating gas heater and is supplied to the incinerator, and the remaining part is supplied to the incinerator without passing through the circulating gas heater.
    The sludge incineration system according to claim 1.
  8.  前記乾燥機に供給される循環ガスの温度を測定して測定温度を得て、当該測定温度に基づき前記乾燥機に供給される循環ガスの目標温度を演算し、前記循環ガスの温度が前記目標温度に近づくように、前記外部から供給される空気の流量を増減する制御を行う制御装置を有する、
     請求項1に記載の汚泥焼却システム。
    The temperature of the circulating gas supplied to the dryer is measured to obtain the measured temperature, the target temperature of the circulating gas supplied to the dryer is calculated based on the measured temperature, and the temperature of the circulating gas is the target Having a control device that controls to increase or decrease the flow rate of the air supplied from the outside so as to approach the temperature,
    The sludge incineration system according to claim 1.
  9.  乾燥汚泥を前記乾燥機に導入しない、
     請求項2に記載の汚泥焼却システム。
    not introducing dried sludge into the dryer;
    The sludge incineration system according to claim 2.
  10.  汚泥を焼却する汚泥焼却方法において、
     循環ガスが循環路を流れる循環ステップと、
     乾燥機で、第1脱水汚泥を循環ガスの熱で乾燥させて乾燥汚泥とする乾燥ステップと、
     分離器で、乾燥汚泥と循環ガスを分離する分離ステップと、
     循環ガス加熱器で、外部から供給される空気を、汚泥を焼却して発生した高温の焼却排ガスと熱交換して予熱空気とする予熱空気取得ステップと、
     循環ガスを、前記予熱空気と熱交換して加熱して高温循環ガスとする高温循環ガス取得ステップとを備え、
     前記循環ガスは、前記乾燥機から乾燥汚泥とともに排出されて、前記分離器を経由して、前記循環ガス加熱器に至り加熱されて、前記乾燥機に再度供給されて循環するものであり、
     前記乾燥ステップは、第1脱水汚泥を乾燥しつつ粉砕して粉粒状の乾燥汚泥にするものである、
     ことを特徴とする汚泥焼却方法。
    In the sludge incineration method for incinerating sludge,
    a circulation step in which the circulation gas flows through the circulation path;
    A drying step of drying the first dehydrated sludge with the heat of the circulating gas to obtain dry sludge in a dryer;
    A separation step of separating dry sludge and circulating gas in a separator;
    A preheated air acquisition step of exchanging heat of air supplied from the outside with high-temperature exhaust gas generated by incinerating sludge in a circulating gas heater to obtain preheated air;
    a high-temperature circulating gas obtaining step of heat-exchanging the circulating gas with the preheated air to heat it into a high-temperature circulating gas,
    The circulating gas is discharged from the dryer together with the dried sludge, passes through the separator, reaches the circulating gas heater, is heated, and is supplied to the dryer again for circulation,
    In the drying step, the first dewatered sludge is dried and pulverized into powdery dried sludge.
    A sludge incineration method characterized by:
PCT/JP2021/031023 2021-08-24 2021-08-24 Sludge incineration system and sludge incineration method WO2023026370A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180100437.0A CN117651831A (en) 2021-08-24 2021-08-24 Sludge incineration system and sludge incineration method
KR1020247000953A KR20240054959A (en) 2021-08-24 2021-08-24 Sludge incineration system and sludge incineration method
PCT/JP2021/031023 WO2023026370A1 (en) 2021-08-24 2021-08-24 Sludge incineration system and sludge incineration method
TW111125303A TW202309444A (en) 2021-08-24 2022-07-06 Sludge incineration system and sludge incineration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031023 WO2023026370A1 (en) 2021-08-24 2021-08-24 Sludge incineration system and sludge incineration method

Publications (1)

Publication Number Publication Date
WO2023026370A1 true WO2023026370A1 (en) 2023-03-02

Family

ID=85321876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031023 WO2023026370A1 (en) 2021-08-24 2021-08-24 Sludge incineration system and sludge incineration method

Country Status (4)

Country Link
KR (1) KR20240054959A (en)
CN (1) CN117651831A (en)
TW (1) TW202309444A (en)
WO (1) WO2023026370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118426427A (en) * 2024-07-03 2024-08-02 山东智奇环境技术有限公司 Monitoring system and method for municipal industrial sludge recycling treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428483A (en) * 1977-08-03 1979-03-03 Kubota Ltd Drying incineration treatment device of sludge, etc.
JPS61153407A (en) * 1984-12-27 1986-07-12 Mitsubishi Heavy Ind Ltd Incinerating method of sludge
JPS61209099A (en) * 1985-03-09 1986-09-17 Kawasaki Heavy Ind Ltd Method and apparatus for drying and incinerating sludge
JP2013185797A (en) * 2012-03-09 2013-09-19 Metawater Co Ltd Drying treatment apparatus for sludge incinerator
WO2019053855A1 (en) * 2017-09-14 2019-03-21 月島機械株式会社 Organic waste treatment device and treatment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5969348B2 (en) 2012-10-04 2016-08-17 メタウォーター株式会社 Sludge incineration system and dry exhaust gas heating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428483A (en) * 1977-08-03 1979-03-03 Kubota Ltd Drying incineration treatment device of sludge, etc.
JPS61153407A (en) * 1984-12-27 1986-07-12 Mitsubishi Heavy Ind Ltd Incinerating method of sludge
JPS61209099A (en) * 1985-03-09 1986-09-17 Kawasaki Heavy Ind Ltd Method and apparatus for drying and incinerating sludge
JP2013185797A (en) * 2012-03-09 2013-09-19 Metawater Co Ltd Drying treatment apparatus for sludge incinerator
WO2019053855A1 (en) * 2017-09-14 2019-03-21 月島機械株式会社 Organic waste treatment device and treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118426427A (en) * 2024-07-03 2024-08-02 山东智奇环境技术有限公司 Monitoring system and method for municipal industrial sludge recycling treatment

Also Published As

Publication number Publication date
KR20240054959A (en) 2024-04-26
CN117651831A (en) 2024-03-05
TW202309444A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP6018458B2 (en) Sludge treatment equipment and treatment method
KR20100014491A (en) Plant and method for dry extracting / cooling heavy ashes and for controlling the combustion of high unburnt content residues
CZ125399A3 (en) Process and apparatus for combustion solid substances in the form of particles
EA014862B1 (en) Cooling system for the dry extraction of heavy ashes from boilers
CA2733018C (en) Apparatus and method for reducing emissions resulting from raw meal grinding
EP0580571B1 (en) Method and apparatus for drying waste materials
JP2011167649A (en) Carbonization treatment facility of sludge
EA015721B1 (en) Extraction and air/water cooling system for large quantities of heavy ashes
JP6840271B2 (en) Sludge treatment method and cement manufacturing system
CN102575847A (en) Method and apparatus for the conveyance, cooling and energy recuperation of hot material
WO2023026370A1 (en) Sludge incineration system and sludge incineration method
JP6565097B2 (en) Organic waste processing apparatus and processing method
WO2006109629A1 (en) Wet raw material drier and method of drying
CN101641553B (en) Improved direct sorbent preparation/feed apparatus and method for circulating fluidized bed boiler systems
JP2017006824A5 (en)
ITRM20080662A1 (en) EXTRACTION AND COOLING SYSTEM FOR LARGE RANGE OF HEAVY ASHES WITH EFFICIENCY INCREASE.
JP7064499B2 (en) Organic waste treatment equipment and treatment method
JP4432047B2 (en) Waste treatment furnace and waste treatment equipment that treats dust and sludge together
US6412188B1 (en) Method and apparatus for drying wood strands
WO2023218717A1 (en) Power generation facility, exhaust gas treatment system, and exhaust gas treatment method
CN104154554A (en) Slack clean coal drying system dust processing technology and device
CN104507878B (en) Sludge treatment device and processing method
CN113454388A (en) Hybrid boiler dryer and method
JP2020159632A (en) Pulverized fuel combustion boiler
CS248362B1 (en) Method of fuel preparation and transportation for fluidized fireplaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954985

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100437.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21954985

Country of ref document: EP

Kind code of ref document: A1