WO2023019479A1 - 一种面向胆道穿刺的机器人穿刺定位方法及装置 - Google Patents
一种面向胆道穿刺的机器人穿刺定位方法及装置 Download PDFInfo
- Publication number
- WO2023019479A1 WO2023019479A1 PCT/CN2021/113314 CN2021113314W WO2023019479A1 WO 2023019479 A1 WO2023019479 A1 WO 2023019479A1 CN 2021113314 W CN2021113314 W CN 2021113314W WO 2023019479 A1 WO2023019479 A1 WO 2023019479A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- puncture
- needle
- positioning
- needle insertion
- image
- Prior art date
Links
- 210000003445 biliary tract Anatomy 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000004888 barrier function Effects 0.000 claims abstract description 15
- 238000003780 insertion Methods 0.000 claims description 112
- 230000037431 insertion Effects 0.000 claims description 112
- 238000002604 ultrasonography Methods 0.000 claims description 72
- 239000000523 sample Substances 0.000 claims description 64
- 230000007246 mechanism Effects 0.000 claims description 40
- 238000001514 detection method Methods 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 8
- 238000005452 bending Methods 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 210000004204 blood vessel Anatomy 0.000 description 12
- 230000003993 interaction Effects 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 210000000779 thoracic wall Anatomy 0.000 description 3
- 206010049816 Muscle tightness Diseases 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000013170 computed tomography imaging Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013189 cholangiography Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
Definitions
- the application belongs to the technical field of intelligent medical equipment, and in particular relates to a robot puncture positioning method and device for biliary tract puncture.
- Biliary interventional surgery is an important procedure in the treatment of biliary-related diseases such as cholangiography, internal and external biliary drainage, and malignant biliary obstruction. Whether the puncture operation can successfully penetrate into a specific part of the biliary tract is crucial to the entire treatment. Accurately hitting the planning target in the biliary tract means the smooth establishment of the interventional channel, and subsequent treatment methods including balloon dilatation catheters, dilatable stents, and radioactive particle stents can be carried out smoothly. Before the puncture operation, the doctor will plan the level of the puncture needle based on the patient's CT or MRI images. During puncture surgery, doctors need to use image-guided equipment to clarify the target position of puncture. Ultrasound can realize real-time image guidance without radiation, and its Doppler image can be used to distinguish the biliary tract from other cavity structures with fast fluid flow, so it is widely used in biliary puncture surgery.
- Ultrasound can realize real-time image guidance without radiation,
- the walking plane of the puncture needle When the walking plane of the puncture needle is consistent with the preoperative image scanning level, it is coplanar puncture.
- the planning of the coplanar puncture needle path, the avoidance of important tissue structures, and the selection of the sampling area are all relatively easy to control. Therefore, after the target area for biliary puncture is determined by ultrasound or CT, the puncture should be performed at the imaging level first. However, this level may be blocked by bony structures, chest wall vessels, internal thoracic vessels, or other normal tissue structures, and is limited by the operator’s experience and techniques, the influence of the patient’s soft tissue deformation (passive), and the change of the patient’s muscle tension (active).
- non-coplanar puncture techniques are often required, that is, after determining the cross-section of the human body where the target is located, select the head side or foot side offset, find a suitable needle entry point, and plan Needle path.
- the doctor can observe the relative relationship between the biliary target area and the puncture needle in real time under the guidance of ultrasound images.
- the needle body and needle tip are invisible, and the puncture needle is prone to detachment, puncture of blood vessels, and complications.
- Existing manual puncture mainly depends on the doctor's experience and the puncture frame to determine the needle insertion point, needle insertion angle and needle insertion depth.
- CT imaging the intraoperative radiation is large, so it is difficult to apply real-time guidance technology in non-coplanar puncture.
- Ultrasound can be used for real-time puncture guidance, but its scanning plane needs to be consistent with the running plane of the puncture needle to ensure real-time detection of the walking path of the puncture needle.
- the existing puncture stand fixes the ultrasound probe and the puncture needle on a plane, so as to ensure that no important blood vessels and lesion areas will be punctured in the walking path of the puncture needle.
- the puncture frame can be used to adjust the needle entry angle of the puncture needle, but the adjustment range still depends on the clinician's experience.
- the present invention aims to use the proposed mechanical structure and control mechanism to automatically adjust the needle entry point and needle entry angle of the puncture needle positioning channel and to control the autonomous scanning of the ultrasonic probe to track the puncture needle tip.
- the doctor punctures the positioning channel and inserts the puncture needle into the patient's body, so as to achieve precise puncture and reduce the damage and complications caused by mispuncture.
- the present application provides a robot puncture positioning method and device for biliary tract puncture to at least solve the technical problem of low puncture positioning accuracy for biliary tract puncture.
- a robot puncture positioning method for biliary tract puncture comprising the following steps:
- the ultrasonic image is collected during scanning, and a one-to-one correspondence relationship is established between the ultrasonic image and the spatial position when the ultrasonic image is collected;
- the technical solution adopted in the embodiment of the present application also includes: after displaying the ultrasound image on the display terminal to define the ultrasound image in the ultrasound image that best matches the planned image layer as the puncture level:
- the needle insertion positioning channel is adjusted to be collinear with the planned needle insertion trajectory, and the positioning of the needle insertion positioning channel is completed.
- the technical solution adopted in the embodiment of the present application also includes: after the positioning of the needle insertion positioning channel, it also includes:
- the puncture and needle insertion operation is performed with the puncture and needle insertion trajectory, which is the needle insertion trajectory after the positioning of the needle insertion positioning channel is completed;
- the technical solution adopted in the embodiment of the present application also includes: before transmitting the ultrasound image to the display terminal for display, so as to define the ultrasound image in the ultrasound image that is most consistent with the planned image layer as the puncture level:
- Pre-plan a planning image layer for comparison with the puncture slice.
- the technical solution adopted in the embodiment of the present application also includes: after completing the positioning of the needle insertion positioning channel, it also includes:
- the planned needle entry trajectory is detected to determine whether there is an interference object in the planned needle entry trajectory.
- a robot puncture positioning device for biliary tract puncture including: a manipulator, an image acquisition module, a target recognition module, a state calculation module and a motion control module;
- the motion control module is used to control the movement of the manipulator with six degrees of freedom, and controls the manipulator to scan the scanning target based on receiving the scanning request, and the scanning request carries at least a scanning signal;
- the image acquisition module is used to collect ultrasonic images when scanning based on the scanning signal, and establish a one-to-one correspondence between the ultrasonic images and the spatial positions when acquiring the ultrasonic images;
- the target recognition module is used to transmit the ultrasound image to the display terminal for display, so as to define the ultrasound image in the ultrasound image that is most consistent with the planning image layer as the puncture level;
- the state calculation module is used to calculate the position information that the needle insertion positioning channel needs to move when the needle insertion positioning channel is not collinear with the planned needle insertion trajectory, and adjust the needle insertion positioning channel to be collinear with the planned needle insertion trajectory based on the position information , to complete the positioning of the needle positioning channel; wherein, the planned needle trajectory is selected from the puncture level;
- the manipulator is used for scanning the scanning target and performing puncture work, so that the image processing module collects ultrasonic images through scanning.
- the device also includes:
- the puncture needle detection module is used for real-time monitoring of the working status of the puncture needle on the puncture needle trajectory, and monitors the position of the needle head of the puncture needle when the puncture needle bends.
- the device also includes:
- the collision detection module is used to detect the planned needle insertion trajectory to determine whether there is an interference object in the planned needle insertion trajectory.
- the technical solution adopted in the embodiment of the present application further includes: the manipulator includes a manipulator and a probe positioning mechanism installed on the manipulator.
- the probe positioning mechanism includes a needle insertion angle adjustment mechanism and a first flange plate, a second flange plate, a servo motor, a probe fixing frame, and an ultrasonic probe connected in sequence;
- the first flange is rotatably connected to the mechanical arm, and the needle insertion angle adjustment mechanism is connected to the first flange;
- the first flange and the second flange are rotatably connected to each other.
- the needle insertion angle adjustment mechanism includes a steering gear fixing part, a servo steering gear, a steering gear, a slider fixing part, a slider, a rack, a slide rail and a needle guide;
- the steering gear fixing part is connected with the first flange, the servo steering gear is installed on the steering gear fixing part, and the steering gear is installed on the servo steering gear;
- the slider is connected with the fixing part of the steering gear, the slide rail is connected with the slider, and steel balls are arranged in the slider so that the slider can move in the slide rail;
- the rack is installed on the slide rail, the gear of the steering gear meshes with the rack, the servo motor drives the gear of the steering gear to rotate, and the gear of the steering gear drives the rack to move;
- the needle guide is installed on the rack, and the movement of the rack drives the needle guide to adjust the angle of the needle guide.
- the needle insertion angle adjustment mechanism further includes a guide frame, the guide frame is mounted on the rack, and the needle guide is detachably mounted on the guide frame.
- the motion control module includes:
- the robotic arm control sub-module is used to control the movement of the robotic arm in different directions, so as to realize the scanning of the target by the ultrasonic probe;
- the motor control sub-module is used to control the rotation of the servo motor and the servo steering gear.
- the robot puncture positioning method and device for biliary tract puncture in the embodiment of the present invention includes: receiving a scanning request, scanning the scanning target; acquiring an ultrasonic image during scanning, and comparing the ultrasonic image with the spatial position when the ultrasonic image is acquired Establish a one-to-one correspondence relationship; define the ultrasound image in the ultrasound image that is most consistent with the planned image layer as the puncture level; if there is no barrier on the puncture level, use the closest point between the scanning target and the puncture target point as the needle entry point, The line connecting the needle entry point and the puncture target point is the planned needle entry trajectory; then, when the needle entry positioning channel is not collinear with the planned needle entry trajectory, adjust the needle entry positioning channel to the planned needle entry trajectory Collinear to complete the positioning of the needle positioning channel.
- the invention is used for the positioning of the puncture channel, improves the precision of the puncture positioning, and reduces the number of needle punctures.
- FIG. 1 is a flow chart of a robot puncture positioning method for biliary tract puncture according to an embodiment of the present application
- Fig. 2 is a schematic diagram of a robotic puncture positioning device for biliary tract puncture according to an embodiment of the present application
- Fig. 3 is the structure of the manipulator of the embodiment of the present application.
- Fig. 4 is a structural diagram of the probe positioning mechanism of the embodiment of the present application.
- Fig. 5 is another structural diagram of the probe positioning mechanism of the embodiment of the present application.
- a robot puncture positioning method for biliary tract puncture is provided, see Fig. 1 and Fig. 2 , including the following steps:
- S101 Receive a scan request, and scan the scan target, where the scan request at least carries a scan signal;
- S102 Based on the scan signal, acquire an ultrasound image during scanning, and establish a one-to-one correspondence between the ultrasound image and the spatial position when the ultrasound image is acquired;
- S103 Transmitting the ultrasound image to the display terminal for display, so as to define the ultrasound image in the ultrasound image that is most consistent with the planned image layer as the puncture level;
- S104 Mark the puncture target point on the puncture layer. If there is no barrier on the puncture layer, use the closest point between the scanning target and the puncture target point as the needle entry point, wherein the connection line between the needle entry point and the puncture target point That is, the planned needle trajectory;
- S105 Calculate the position information that the needle insertion positioning channel needs to move when the needle insertion positioning channel is not collinear with the planned needle insertion trajectory, adjust the needle insertion positioning channel to be collinear with the planned needle insertion trajectory based on the position information, and complete the needle insertion The positioning of the positioning channel.
- the robot puncture positioning method and device for biliary tract puncture in the embodiment of the present invention includes: receiving a scanning request, scanning the scanning target; acquiring an ultrasonic image during scanning, and comparing the ultrasonic image with the spatial position when the ultrasonic image is acquired Establish a one-to-one correspondence relationship; define the ultrasound image in the ultrasound image that is most consistent with the planned image layer as the puncture level; if there is no barrier on the puncture level, use the closest point between the scanning target and the puncture target point as the needle entry point, The line connecting the needle entry point and the puncture target point is the planned needle entry trajectory; then, when the needle entry positioning channel is not collinear with the planned needle entry trajectory, adjust the needle entry positioning channel to the planned needle entry trajectory Collinear to complete the positioning of the needle positioning channel.
- the invention is used for the positioning of the puncture channel, improves the precision of the puncture positioning, and reduces the number of needle punctures.
- the present invention can realize multi-degree-of-freedom ultrasonic scanning and real-time positioning.
- the present invention is used for puncture, if the coplanar puncture is difficult, such as rib obstruction, the ultrasonic probe 5 and puncture positioning
- the device can rotate independently to achieve non-coplanar puncture, and if the puncture needle is bent out of plane, the ultrasonic probe 5 can move independently and detect the position of the puncture needle tip, so as to more accurately evaluate the distance between the puncture needle tip and the puncture target.
- the present invention also adds an image processing unit and a collision detection function, which can be used to provide doctors with multiple decision-making information during the process of determining the lesion and locating the puncture channel, improving positioning accuracy and reducing the number of needle punctures.
- Step 1 Move the robotic arm 800 positioned for puncture to the area above the punctured target, press the autonomous scanning switch, and then the motion control module controls the ultrasonic probe 5 on the robotic arm 800 to move downward, so that the ultrasonic probe 5 touches the scanning target scan the skin.
- Step 2 The contact force between the ultrasonic probe 5 and the scanning target skin is stabilized at a fixed value, and the ultrasonic image is collected through the image acquisition module 200, and a clear image is displayed on the human-computer interaction target recognition module 300, allowing the operator to observe the target in real time.
- the condition inside the punctured tissue The human-computer interaction target recognition module 300 is mainly used for the doctor to mark the puncture target point and the straight line where the needle insertion trajectory is located on the computer screen.
- the biliary tract and other surrounding blood vessels appear as black cavity structures on ultrasound images, and the flow of fluid in the biliary tract is very slow compared to the blood flow in the blood vessels. Therefore, on the Doppler image, the biliary tract will still appear black, while the surrounding The vascular structure will appear red or blue, and doctors can identify the biliary tract.
- Step 3 The ultrasonic probe 5 scans within a cuboid region containing the target point, moves at a fixed speed, and scans while moving.
- the image acquisition module 200 collects the ultrasonic image of the region of interest, and records the position of the end of the robotic arm 800 at the same time, so as to establish a one-to-one correspondence between the ultrasonic image level and the spatial position.
- the robotic arm 800 controls the ultrasonic probe 5 to scan in a fixed direction close to the skin until the boundary of the region of interest.
- Step 4 After the scan is completed, the doctor uses the human-computer interaction target recognition function to view the ultrasound image formed by the scan, and selects the ultrasound image that is most consistent with the preoperatively planned puncture level, and defines this imaging plane as the punctured target The level at which it is located is the puncture level.
- Step 5 Mark the puncture target on the ultrasound image at the puncture level. At this time, it is necessary to confirm whether to use coplanar puncture or non-coplanar puncture; check whether there are barriers such as ribs on the level of the ultrasound image where the puncture target is located; if not For barriers, use coplanar puncture, and if there is a barrier, use non-coplanar puncture.
- the distribution of ribs and great vessels in the scan level where the punctured target is located can be known. If there are no ribs and large blood vessels at the puncture level, coplanar puncture can be performed;
- Step 1 If there is no barrier at the puncture level, the point on the body surface closest to the puncture target is the needle entry point; among them, the line connecting the needle entry point and the target point is the needle entry trajectory.
- Step 2 The collision detection module 400 detects the safety of the needle insertion trajectory.
- the human-computer interaction function of the target recognition module 300 uses the human-computer interaction function of the target recognition module 300 to drag a straight line and define it as the insertion path of the puncture needle. This path is submitted to the collision detection module 400 for collision detection, so as to find out whether the planned puncture path interferes with important blood vessels.
- the motion control module controls the mechanical arm 800 to move to the corresponding position.
- the ultrasonic probe 5 is positioned at the puncture level, the left and right sides of the human body are moved in the plane, and a scan is performed to determine whether the needle entry point is safe.
- Step 3 The state calculation function in the motion planning unit 102 will calculate when the central axis of the puncture needle positioning channel on the end of the mechanical arm 800 is collinear with the planned puncture needle trajectory, the mechanical arm 800 and the mechanical The servo steering gear 7 on the arm 800 needs to rotate the angle, and install the calculated results so that the axis of the puncture needle positioning channel is collinear with the planned needle trajectory.
- the servo steering gear 7 is controlled by the motion control module.
- the servo steering gear 7 drives the gear to rotate, and the gear drives the rack 11 to rotate, thereby adjusting the puncture needle positioning channel to the designated position. After the puncture positioning is completed, the doctor holds the puncture needle and starts puncture.
- Step 4 During the puncture process, if the puncture needle bends, the needle tip and part of the needle body will disappear. While the puncture needle is being inserted, the puncture needle detection module 100 detects or monitors the puncture needle in real time, and segments its shape to calculate the curvature. If the puncture needle bends in the puncture plane, the computer will extract the outline of the puncture needle and prompt the operator in the direction of the puncture needle bend. If the puncture needle bends to the left and right sides of the puncture plane, the motion control module controls the servo motor 3 to rotate and drives the ultrasonic probe 5 to rotate so as to detect the position of the needle tip.
- the ultrasound image on the display terminal after displaying the ultrasound image on the display terminal to define the ultrasound image in the ultrasound image that is most consistent with the planned image layer as the puncture level, it further includes:
- the needle insertion positioning channel is adjusted to be collinear with the planned needle insertion trajectory, and the positioning of the needle insertion positioning channel is completed.
- the present invention can aim at coplanar puncture, but when the puncture level may be obstructed by bony structures, chest wall vessels, internal thoracic vessels or other normal tissue structures, non-coplanar puncture is usually sampled; in addition, due to the limitation of the operator’s experience and techniques , the influence of the patient's soft tissue deformation (passive), the change of the patient's muscle tension (active), and the interference of respiratory movement (active), it is often necessary to use non-coplanar puncture techniques, that is, to determine the cross-section of the human body where the target is located. Finally, select the head-side or foot-side offset, find a suitable needle insertion point, and plan the needle insertion path.
- the distribution of ribs and great vessels in the scan level where the punctured target is located can be known. If there are barriers such as ribs and large blood vessels at the puncture level, or if the needle insertion trajectory cannot avoid passing through large blood vessels, non-coplanar puncture is used.
- Step 1 the ultrasonic probe 5 is controlled by the motion control module to move the mechanical arm 800 to the cross section of the human body where the target is selected by the doctor. Afterwards, the center axis of the ultrasonic probe 5 itself is used as the center line of rotation to conduct a rotational scan to determine the walking plane of the puncture needle during non-coplanar puncture.
- the image acquisition module 200 in the image processing unit acquires ultrasound images in real time, and records the spatial position of the ultrasound images.
- Step 2 display in the human-computer interaction target recognition module 300 in a three-dimensional graphic mode, and select the target and the puncture level.
- the selected puncture level is handed over to the motion control module to control the rotation of the servo motor 3 at the end of the mechanical arm 800 to drive the ultrasonic probe 5 to the selected puncture level.
- Step 3 Select the puncture target point and the trajectory of the puncture needle at the puncture level. It should be noted that, in order to avoid the inaccuracy of the selected needle insertion trajectory, during the real-time imaging of the ultrasonic probe 5, the scanning target (the person to be punctured, or the patient, or the patient) is required to hold his breath, so as to prevent the puncture target from moving due to physiological movement. while moving.
- the scanning target the person to be punctured, or the patient, or the patient
- Step 4 The generated needle insertion trajectory will be directly transmitted to the motion control module, and the servo steering gear 7 is controlled to drive the slide rail 12, so that the axis of the needle insertion positioning channel of the puncture needle coincides with the needle insertion trajectory.
- Step 5 The doctor holds the puncture needle, inserts the puncture needle into the needle positioning channel, and penetrates into the scanning target.
- Step 6 If the puncture needle is bent in or out of the ultrasonic plane, then refer to the detection of coplanar puncture, and the puncture needle detection module 100 detects the position of the needle tip.
- the needle positioning channel after the positioning of the needle positioning channel, it also includes:
- the puncture and needle insertion operation is performed with the puncture and needle insertion trajectory, which is the needle insertion trajectory after the positioning of the needle insertion positioning channel is completed;
- the puncturing work is performed after the positioning of the needle insertion positioning channel.
- the coplanar puncturing work and the non-coplanar puncturing work have been described in detail above, and will not be repeated here.
- the ultrasound image in the ultrasound image that is most consistent with the planned image layer is defined as the puncture level:
- Pre-plan a planning image layer for comparison with the puncture slice.
- the needle positioning channel after completing the positioning of the needle positioning channel, it also includes:
- the planned needle entry trajectory is detected to determine whether there is an interference object in the planned needle entry trajectory.
- the safety of the needle insertion trajectory is detected by the collision detection module 400 .
- use the human-computer interaction function to view the ultrasound image, drag a straight line, and define it as the insertion path of the puncture needle.
- This path is submitted to the motion planning module for collision detection, so as to find out whether there is interference with important blood vessels in the planned puncture path.
- a robot puncture positioning device for biliary tract puncture including: manipulator, image acquisition module 200, target recognition module 300, collision detection module 400, state calculation Module 500 and motion control module;
- the motion control module is used to control the movement of the manipulator with six degrees of freedom, and controls the manipulator to scan the scanning target based on receiving the scanning request, and the scanning request carries at least a scanning signal;
- the image acquisition module 200 is configured to acquire an ultrasonic image during scanning based on the scanning signal, and establish a one-to-one correspondence between the ultrasonic image and the spatial position when the ultrasonic image is acquired;
- the target recognition module 300 is configured to transmit the ultrasound image to the display terminal for display, so as to define the ultrasound image in the ultrasound image that is most consistent with the planned image layer as the puncture level;
- the state calculation module 500 is used to calculate the position information that the needle insertion positioning channel needs to move when the needle insertion positioning channel is not collinear with the planned needle insertion trajectory, and adjust the needle insertion positioning channel to be in line with the planned needle insertion trajectory based on the position information. line to complete the positioning of the needle positioning channel; wherein, the planned needle trajectory is selected from the puncture level;
- the manipulator is used for scanning the scanning target and performing puncture work, so that the image processing module collects ultrasonic images through scanning.
- the robot puncture positioning method and device for biliary tract puncture in the embodiment of the present invention includes: receiving a scanning request, scanning the scanning target; acquiring an ultrasonic image during scanning, and comparing the ultrasonic image with the spatial position when the ultrasonic image is acquired Establish a one-to-one correspondence relationship; define the ultrasound image in the ultrasound image that is most consistent with the planned image layer as the puncture level; if there is no barrier on the puncture level, use the closest point between the scanning target and the puncture target point as the needle entry point, The line connecting the needle entry point and the puncture target point is the planned needle entry trajectory; then, when the needle entry positioning channel is not collinear with the planned needle entry trajectory, adjust the needle entry positioning channel to the planned needle entry trajectory Collinear to complete the positioning of the needle positioning channel.
- the invention is used for the positioning of the puncture channel, improves the precision of the puncture positioning, and reduces the number of needle punctures.
- this application can realize multi-degree-of-freedom ultrasonic scanning and real-time positioning.
- the ultrasonic probe 5 and the puncture positioning device can rotate independently to realize non-coplanar puncture. surface puncture, and if the puncture needle is bent out of plane, the ultrasonic probe 5 can move independently and detect the position of the puncture needle tip, thereby more accurately evaluating the relative position of the puncture needle tip and the puncture target; the present invention also increases
- the image processing unit and the collision detection function can be used to provide doctors with multiple decision-making information in the process of determining the lesion and locating the puncture channel, improving the positioning accuracy and reducing the number of needle punctures.
- the biliary tract puncture positioning device mainly includes an image processing unit, a motion planning unit, and a motion control module; the mechanical structure part mainly includes: a six-degree-of-freedom mechanical arm 800, a six-degree-of-freedom main control end, a rotating motor, Needle-entry angle adjustment mechanism, ultrasonic probe clamping mechanism, needle-entry positioning channel of puncture needle.
- the image processing unit includes an ultrasonic image acquisition module 200, a human-computer interaction target recognition module 300 and a puncture needle detection module 100.
- Image acquisition module 200 mainly used to acquire intraoperative ultrasound images, and allow the operator to observe the situation inside the punctured tissue in real time;
- Target recognition module 300 mainly used for marking the target point to be punctured and the straight line where the needle insertion trajectory is located on the computer screen.
- the biliary tract and other surrounding blood vessels appear as black cavity structures on ultrasound images, and the flow of fluid in the biliary tract is very slow compared to the blood flow in the blood vessels. Therefore, on the Doppler image, the biliary tract will still appear black, while the surrounding The vascular structure will appear red or blue so doctors can identify the biliary tract.
- the motion planning unit includes a collision detection module 400 and a puncture needle state calculation module 500 .
- Collision detection module 400 mainly used to detect whether there is interference between the planned needle insertion trajectory and vital organs;
- State calculation module 500 mainly used to adjust the posture of the puncture needle so that it can be collinear with the planned straight line of the needle insertion trajectory.
- the motion control module mainly includes a robotic arm control sub-module 600 and a motor control sub-module.
- Robotic arm control sub-module 600 mainly controls the movement of the mechanical arm 800 and the ultrasonic probe 5 mounted on it in different directions in space, realizes stable contact between the ultrasonic probe 5 and the patient's skin, and enables the ultrasonic probe 5 to scan the target , in order to obtain a stable ultrasound image;
- Motor control sub-module mainly used to control the movement of the servo motor 3 and the servo steering gear 7 installed on the probe positioning mechanism 900 at the end of the mechanical arm 800, and move the puncture needle positioning channel to a predetermined position, so that the doctor can use the The puncture needle accurately penetrates the human body along the puncture needle positioning channel.
- the manipulator is installed on the mobile machine platform, and is mainly responsible for fixing the whole mechanism relative to the ground.
- the six-degree-of-freedom robotic arm 800 is connected to the mobile platform, and the doctor remotely controls the robotic arm 800 by manipulating the mobile platform device, so as to move the ultrasound probe 5 above the scanning target disease.
- the servo motor 3 is responsible for rotating the ultrasonic probe clamping device directly connected with it, so as to realize the rotation of the ultrasonic scanning surface.
- the probe positioning mechanism 900 on the six-degree-of-freedom robotic arm 800 can spin around its central axis.
- the servo motor 3 does not rotate, so that the ultrasonic probe 5 and the probe positioning mechanism 900 rotate together with the rotary joint at the end of the mechanical arm 800 to ensure that the scanning plane of the ultrasonic probe 5 and the needle insertion positioning channel of the puncture needle are located be consistent.
- the probe positioning mechanism 900 at the end of the mechanical arm 800 rotates around its own axis, so that the walking plane of the puncture needle positioning channel rotates to achieve the purpose of changing the puncture path.
- the servo motor 3 rotates in the opposite direction, so as to keep the ultrasonic probe 5 still relative to the scanning target.
- the needle insertion angle adjustment mechanism of the puncture needle is used for adjusting the angle at which the puncture needle penetrates into the human body.
- the ultrasonic probe 5 clamping mechanism is used to fix the ultrasonic probe 5 at the end of the mechanical arm 800 .
- the puncture needle insertion positioning channel is used to ensure that the extension line of the puncture needle is on the same straight line as the planned puncture needle insertion trajectory.
- the device also includes:
- the puncture needle detection module 100 is used to monitor the working state of the puncture needle on the puncture needle trajectory in real time, and monitor the position of the needle head of the puncture needle when the puncture needle bends.
- the puncture needle detection module 100 detects or monitors the puncture needle in real time, and segments its shape to calculate the curvature. If the puncture needle bends in the puncture plane, the computer will extract the outline of the puncture needle and prompt the operator in the direction of the puncture needle bend. If the puncture needle bends to the left and right sides of the puncture plane, the motion control module controls the servo motor 3 to rotate and drives the ultrasonic probe 5 to rotate so as to detect the position of the needle tip.
- the manipulator includes a manipulator 800 and a probe positioning mechanism 900 installed on the manipulator 800 .
- the movement of the mechanical arm 800 is controlled by the mechanical control sub-module to move the probe positioning mechanism 900 at the end of the mechanical arm 800 to a specified position in space for scanning and puncturing.
- the probe positioning mechanism 900 includes a needle angle adjustment mechanism and a first flange 1, a second flange 2, a servo motor 3, a probe holder 4, and an ultrasonic probe 5 connected in sequence;
- the first flange 1 is rotatably connected to the mechanical arm 800, and the first flange 1 is fixedly connected with a needle insertion angle adjustment mechanism;
- the first flange 1 and the second flange 2 are rotatably connected to each other.
- the probe positioning mechanism 900 mainly includes a servo motor 3, a probe fixing bracket, a servo steering gear 7, a rack and pinion 11 movement mechanism composed of a steering gear 8 and a rack 11, and a positioning sheath composed of a needle guide 13 and a guide frame.
- the puncture probe positioning mechanism 900 is compatible with ultrasound medical image information; wherein, the probe fixing bracket is used to fix the ultrasound probe 5; while completing the ultrasound scan, the human-computer interaction target recognition module 300 of the robot visualization completes the scan according to the scan result Target positioning, providing puncture path planning information, determining the puncture point and needle insertion angle, and then the probe positioning mechanism 900 completes the pose adjustment, and establishes an extracorporeal channel for needle insertion from the needle positioning channel.
- the problem of multiple and repeated needle insertion improves the accuracy of puncture.
- the needle insertion angle adjustment mechanism includes a steering gear fixing part 6, a servo steering gear 7, a steering gear 8, a slider 10, a fixing part 9, a slider 10, a rack 11, a slide rail 12 and a needle guide 13;
- the steering gear fixing part 6 is connected with the first flange 1, the servo steering gear 7 is installed on the steering gear fixing part 6, and the steering gear 8 is installed on the servo steering gear 7;
- the slide block 10 is connected with the steering gear fixing part 6, and the slide rail 12 is connected with the slide block 10, and steel balls are arranged in the slide block 10, so that the slide block 10 moves in the slide rail 12;
- the rack 11 is installed on the slide rail 12, the steering gear 8 meshes with the rack 11, the servo motor 3 drives the steering gear 8 to rotate, and the steering gear 8 drives the rack 11 to move;
- the needle guide 13 is installed on the rack 11 , and the needle guide 13 is driven by the movement of the rack 11 to adjust the angle of the needle guide 13 .
- the needle insertion angle adjustment mechanism further includes a guide frame 14 , the guide frame 14 is mounted on the rack 11 , and the needle guide 13 is detachably mounted on the guide frame 14 .
- the probe positioning mechanism 900 and the steering gear fixing part 6 are connected to the mechanical arm 800 through the first flange 1; wherein, the first flange 1 and the end of the mechanical arm 800 are connected by threaded bolts, and the first flange
- the disc 1 is rigidly connected to the steering gear fixing part 6, and this connection enables the entire needle insertion angle adjustment mechanism to rotate 360 degrees with the end of the mechanical arm 800, realizing multi-plane non-coplanar puncture.
- the second flange 2 connects the first flange 1 and the servo motor 3 through threaded bolts, and then indirectly connects the servo motor 3 to the rotary joint at the end of the mechanical arm 800; the probe fixing bracket is connected to the servo motor 3 through threaded bolts, and the ultrasonic probe 5 Rigidly fixed on the probe fixed bracket.
- the servo motor 3 can offset the rotational movement in the opposite direction to ensure that the scanning plane of the ultrasonic probe 5 remains unchanged.
- the servo steering gear 7 is rigidly fixed in the steering gear fixing part 6, the steering gear 8 is connected to the servo steering gear 7, and is driven by the servo steering gear 7;
- the slider 10 is connected with the steering gear fixing part 6 Rigidly connected by threaded bolts, the slide rail 12 is non-rigidly connected to the slide block 10.
- There is a ball structure in the slide block 10 so that the slide rail 12 and the slide block 10 can move relative to each other, while the rack 11 is rigidly fixed on the slide rail 12;
- the rack and pinion 11 kinematic pair can be driven by the servo steering gear 7 to realize the movement of the rack 11 and the slide rail 12;
- the needle guide 13 is connected to the guide frame 14 by a detachable pin connection, and the guide frame 14 is rigidly fixed on the rack 11. When the motion pair of the rack and pinion 11 moves, the needle guide 13 can complete the needle insertion.
- Channel angle adjustment the angle adjustment range is 0°-90°.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Robotics (AREA)
- Pathology (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
一种面向胆道穿刺的机器人穿刺定位方法及装置,方法包括:接收扫描请求,对扫描目标进行扫描;在进行扫描时采集超声图像,并将超声图像与采集超声图像时的空间位置建立一一对应的关系;将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面;若穿刺层面上没有阻隔物,则将扫描目标与穿刺目标点距离最近的一点作为入针点,入针点与穿刺目标点之间的连线即为规划入针轨迹;然后,计算出当入针定位通道与规划入针轨迹不共线时,将入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定位。面向胆道穿刺的机器人穿刺定位方法及装置用于穿刺通道的定位,提高穿刺定位的精度,以减少穿针次数。
Description
本申请属于智能化医疗设备技术领域,特别涉及一种面向胆道穿刺的机器人穿刺定位方法及装置。
胆道介入手术是胆道造影、胆道内外引流术和胆道恶性梗阻等胆道相关疾病治疗的重要术式,而穿刺手术是否能成功刺入胆道特定部位对整个治疗至关重要。精准命中胆道内规划目标意味着介入通道的顺利建立,则后续包括球囊扩张导管、扩张支架、放射性粒子支架等治疗手段则可顺利进行。穿刺手术前,医生会根据病人的CT或者MRI图像规划穿刺针走行层面。穿刺手术中,医生需要借助影像引导设备明确穿刺的靶向位置。超声可以实现无辐射的实时影像引导,同时其多普勒图像可用于将胆道与其他有液体快速流动的空腔结构区别开来,因而在胆道穿刺手术中得到广泛的应用。
当穿刺针的行走平面与术前影像扫描层面一致,为共面穿刺。共面穿刺进针路径的规划、重要组织结构的规避以及取材区域的选取都相对容易掌控。因此利用超声或CT确定穿刺胆道目标区域后,优先在成像层面进行穿刺。但该层面可能由于骨性结构、胸壁血管、胸内血管或其他正常组织结构的阻隔,且受术者经验手法的限制、患者软组织形变的影响(被动)、患者肌肉紧张度的变化(主动)以及呼吸运动的干扰(主动)等因素的作用,往往需要非共面穿刺技术,即在确定目标所在人体横断面后,选取向头侧或脚侧偏移,寻找合适的入针点,并规划入针路径。
在共面及非共面穿刺中,医生在超声图像的引导下,可实时观察到胆道目 标区域与穿刺针的相对关系。但仅凭借二维超声图像难以判断穿刺路径与周围组织的关系,且手部抖动或者穿刺针弯曲都容易造成穿刺针超出成像平面,从而跟丢穿刺针,加大穿刺难度,增加病人损伤。在非共面穿刺过程中,针体和针尖不可见,容易发生穿刺针脱离及刺破血管,并造成并发症等问题。再者,上述两种穿刺场景中,在确定穿刺针入针点及入针角度时,都是医生依据经验确定,对于穿刺路径中的胸壁及胸内血管分布不能及时掌握,因此穿刺的精准性及风险都难以把控,带来了较大的隐患。
现有的手动穿刺主要是依靠医生的经验及穿刺架来确定入针点、入针角度及进针深度。采用CT成像时,术中辐射较大,因此很难应用于非共面穿刺中的实时引导技术。超声可用于实时穿刺引导,但其扫描平面需要与穿刺针走行平面一致才能保证实时检测穿刺针走行路径。为保持穿刺针走行平面与超声扫查平面一致,现有的穿刺架将超声探头和穿刺针固定在一个平面,从而保证穿刺针走行路径中没有重要的血管和病灶区域会被穿刺。穿刺架可用于调整穿刺针的进针角度,但调整的幅度仍然取决于临床医生的经验。除使用穿刺架之外,也有结合CT成像使用的3D打印个性化模板辅助穿刺,但一旦穿刺靶向位置与术前不一致,也会增加穿刺的误差。
因此,针对上述情况,现有技术还存在缺陷,而有待于改进和发展。
本发明旨在利用提出的机械结构和控制机构自动调整穿刺针定位通道的入针点、进针角度以及控制超声探头的自主扫查以跟踪穿刺针针尖。医生通过穿刺定位通道,将穿刺针刺入病人体内,从而实现精准的穿刺,减小误穿而导致的损伤及并发症。
发明内容
本申请提供了一种面向胆道穿刺的机器人穿刺定位方法及装置,以至少解决现有面向胆道穿刺的穿刺定位精度低的技术问题。
为了解决上述问题,本申请提供了如下技术方案:
一种面向胆道穿刺的机器人穿刺定位方法,包括以下步骤:
接收扫描请求,对扫描目标进行扫描,扫描请求至少携带有扫描信号;
基于扫描信号,在进行扫描时采集超声图像,并将超声图像与采集超声图像时的空间位置建立一一对应的关系;
将超声图像传输至显示终端进行显示,以将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面;
在穿刺层面中标出穿刺目标点,若穿刺层面上没有阻隔物,则将扫描目标与穿刺目标点距离最近的一点作为入针点,其中,入针点与穿刺目标点之间的连线即为规划入针轨迹;
计算出当入针定位通道与规划入针轨迹不共线时,入针定位通道需要移动的位置信息,基于位置信息将入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定位。
本申请实施例采取的技术方案还包括:在将超声图像在显示终端进行显示,以将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面之后还包括:
在穿刺层面中标出穿刺目标点,若目标图像层上存在有阻隔物,则将扫描区域移动到选定区域;
在选定区域进行原位旋转扫描,实时采集超声图像,并记录采集的超声图像的空间位置;
将超声图像以三维图像的模式在显示终端进行显示;
从三维图像模式显示的超声图像中,选择穿刺层面及穿刺目标点;
基于穿刺层面及穿刺目标点选择规划入针轨迹;
计算出当入针定位通过与规划入针轨迹不共线时,将入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定位。
本申请实施例采取的技术方案还包括:在入针定位通道的定位之后还包括:
以穿刺入针轨迹进行穿刺针入针操作,穿刺入针轨迹为入针定位通道完成定位后的入针轨迹;
实时监测穿刺针在穿刺入针轨迹的工作状态;
当穿刺针在穿刺层面内发生了弯曲,则计算出穿刺针的弯曲的方向;
当穿刺针在穿刺层面的左右方向发生了弯曲,则进行扫描旋转,以检测穿刺针的针头位置。
本申请实施例采取的技术方案还包括:在将超声图像传输至显示终端进行显示,以将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面之前还包括:
预先规划一个用于与穿刺层面对比的规划图像层。
本申请实施例采取的技术方案还包括:在完成入针定位通道的定位之后还包括:
对规划入针轨迹进行检测,以确定规划入针轨迹中是否存在干涉物。
本申请实施例采取的又一技术方案为:一种面向胆道穿刺的机器人穿刺定位装置,包括:机械手、图像采集模块、目标识别模块、状态计算模块及运动控制模块;
运动控制模块,用于控制机械手六自由度的运动,基于接收扫描请求,控制机械手对扫描目标进行扫描,扫描请求至少携带有扫描信号;
图像采集模块,用于基于扫描信号,在进行扫描时采集超声图像,并将超 声图像与采集超声图像时的空间位置建立一一对应的关系;
目标识别模块,用于将超声图像传输至显示终端进行显示,以将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面;
状态计算模块,用于计算出当入针定位通道与规划入针轨迹不共线时,入针定位通道需要移动的位置信息,基于位置信息将入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定位;其中,规划入针轨迹为在穿刺层面中选出;
机械手,用于对扫描目标进行扫描及用于进行穿刺工作,通过扫描以便图像处理模块采集超声图像。
本申请实施例采取的技术方案还包括:装置还包括:
穿刺针检测模块,用于实时监测穿刺针在穿刺入针轨迹的工作状态,当穿刺针发生弯曲时监测出穿刺针的针头位置。
本申请实施例采取的技术方案还包括:装置还包括:
碰撞检测模块,用于对规划入针轨迹进行检测,以确定规划入针轨迹中是否存在干涉物。
本申请实施例采取的技术方案还包括:机械手包括机械臂及安装在机械臂上的探头定位机构。
本申请实施例采取的技术方案还包括:探头定位机构包括进针角度调整机构及依次连接的第一法兰盘、第二法兰盘、伺服电机、探头固定架、超声探头;
第一法兰盘可旋转的与机械臂连接,进针角度调整机构连接在第一法兰盘上;
第一法兰盘和第二法兰盘之间可相互旋转的连接。
本申请实施例采取的技术方案还包括:进针角度调节机构包括舵机固定 件、伺服舵机、舵机齿轮、滑块固定件、滑块、齿条、滑轨及针导向器;
舵机固定件与第一法兰盘连接,伺服舵机安装在舵机固定件上,舵机齿轮安装在伺服舵机上;
滑块与舵机固定件连接,滑轨与滑块连接,滑块内设置有钢珠,以便滑块在滑轨内运动;
齿条安装在滑轨上,舵机齿轮与齿条啮合,伺服电机驱动舵机齿轮转动,舵机齿轮带动齿条运动;
针导向器安装在齿条上,通过齿条的运动带动针导向器,以调整针导向器的角度。
本申请实施例采取的技术方案还包括:进针角度调节机构还包括导向器架,导向器架安装在齿条上,针导向器可拆卸的安装在导向器架上。
本申请实施例采取的技术方案还包括:运动控制模块包括:
机械臂控制子模块,用于控制机械臂不同方向的运动,以实现超声探头对目标进行扫描;
电机控制子模块,用于控制伺服电机及伺服舵机的转动。
相对于现有技术,本申请实施例产生的有益效果在于:
本发明实施例中的面向胆道穿刺的机器人穿刺定位方法及装置,方法包括:接收扫描请求,对扫描目标进行扫描;在进行扫描时采集超声图像,并将超声图像与采集超声图像时的空间位置建立一一对应的关系;将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面;若穿刺层面上没有阻隔物,则将扫描目标与穿刺目标点距离最近的一点作为入针点,入针点与穿刺目标点之间的连线即为规划入针轨迹;然后,计算出当入针定位通道与规划入针轨迹不共线时,将入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定 位。本发明用于穿刺通道的定位,提高穿刺定位的精度,以减少穿针次数。
图1是本申请实施例的面向胆道穿刺的机器人穿刺定位方法的流程图;
图2是本申请实施例的面向胆道穿刺的机器人穿刺定位装置的原理图;
图3是本申请实施例的机械手的结构;
图4是本申请实施例的探头定位机构的结构图;
图5是本申请实施例的探头定位机构的另一结构图。
附图标记:1-第一法兰盘、2-第二法兰盘、3-伺服电机、4-探头固定加、5-超声探头、6-舵机固定件、7-伺服舵机、8-舵机齿轮、9-滑块固定件、10-滑块、11-齿条、12-滑轨、13-针导向器、14-导向器架、100-穿刺针检测模块、200-图像采集模块、300-目标识别模块、400-碰撞检测模块、500-状态计算模块、600-机械臂控制子模块、700-电机控制子模块、800-机械臂、900-探头定位机构。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
实施例1
根据本发明一实施例,提供了一种面向胆道穿刺的机器人穿刺定位方法,参见图1和图2,包括以下步骤:
S101:接收扫描请求,对扫描目标进行扫描,扫描请求至少携带有扫描信号;
S102:基于扫描信号,在进行扫描时采集超声图像,并将超声图像与采集超声图像时的空间位置建立一一对应的关系;
S103:将超声图像传输至显示终端进行显示,以将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面;
S104:在穿刺层面中标出穿刺目标点,若穿刺层面上没有阻隔物,则将扫描目标与穿刺目标点距离最近的一点作为入针点,其中,入针点与穿刺目标点之间的连线即为规划入针轨迹;
S105:计算出当入针定位通道与规划入针轨迹不共线时,入针定位通道需要移动的位置信息,基于位置信息将入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定位。
本发明实施例中的面向胆道穿刺的机器人穿刺定位方法及装置,方法包括:接收扫描请求,对扫描目标进行扫描;在进行扫描时采集超声图像,并将超声图像与采集超声图像时的空间位置建立一一对应的关系;将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面;若穿刺层面上没有阻隔物,则将扫描目标与穿刺目标点距离最近的一点作为入针点,入针点与穿刺目标点之间的连线即为规划入针轨迹;然后,计算出当入针定位通道与规划入针轨迹不共线时,将入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定位。本发明用于穿刺通道的定位,提高穿刺定位的精度,以减少穿针次数。
进一步地,与现有技术相比,本发明可实现多自由度超声扫查和实时定位,采用本发明进行穿刺时,若共面穿刺难度较大,例如存在肋骨阻碍,超声探头5和穿刺定位装置可独立旋转运动实现非共面穿刺,且如果穿刺针发生了平面外的弯曲,则超声探头5可以独立运动,并检测穿刺针针尖所在位置,从而更加准确的评估穿刺针针尖与穿刺目标的相对位置;本发明亦增加了图像处理单 元和碰撞检测功能,可用于在确定病灶和定位穿刺通道的过程中给医生提供多元决策信息,提高定位精度,减少穿针次数。
下面以具体实施例,对本发明的面向胆道穿刺的机器人定位方法进行详细说明:
步骤一:通过操控穿刺定位的机械臂800移动到被穿刺目标的区域上方,按下自主扫描开关,然后运动控制模块控制机械臂800上的超声探头5往下移动,使超声探头5接触扫描目标的皮肤进行扫描。
步骤二:超声探头5与扫描目标皮肤接触力稳定在一个固定值,通过图像采集模块200采集超声图像,并通过在人机交互的目标识别模块300上显示清晰的图像,让操作者实时观察被穿刺组织内部的情况。人机交互目标识别模块300主要用于医生在计算机屏幕上标定被穿刺目标点和入针轨迹所在直线。
胆道与周围其他血管在超声图像上表现为黑色的空腔结构,而胆道内液体的流动相对血管内的血流十分缓慢,因此在多普勒图像上,胆道会依然呈现黑色,而其周围的血管结构会呈现出红色或蓝色,医生可以识别出胆道。
步骤三:超声探头5在一个包含目标点的长方体区域内进行扫查,以固定的速度移动,边移动边扫查。
在扫查过程中,由图像采集模块200对感兴趣区域所成超声图像进行采集,并同时记录机械臂800末端的位置,以此建立超声图像层面与空间位置的一一对应关系。机械臂800控制超声探头5向固定方向紧贴皮肤扫查,直至感兴趣区域的边界。
步骤四:扫查完成后,医生利用人机交互目标识别功能查看扫查形成的超声图像,并选出与术前规划的穿刺层面最吻合的超声图像,并以此成像平面定义为被穿刺目标所在层面,即为穿刺层面。
步骤五:在穿刺层面的超声图像上标出穿刺目标,此时需要确认是采用共面穿刺还是非共面穿刺;查看穿刺目标所在超声图像层面上是否有,例如肋骨类的阻隔物;若没有阻隔物,采用共面穿刺,若有阻隔物,则采用非共面穿刺。
下面以具体实施例,对本发明的共面穿刺进行详细说明:
基于病人术前CT扫查可以获知被穿刺目标所在扫查层面内的肋骨及大血管分布情况。如该穿刺层面没有肋骨及大血管,则可以行共面穿刺;
第一步:若穿刺层面没有阻隔物,则体表上与穿刺目标距离最近的一点即为入针点;其中吗,入针点与目标点所在的连线为入针轨迹。
第二步:碰撞检测模块400检测入针轨迹安全性。
具体地,利用目标识别模块300的人机交互功能,拖动一条直线,并定义为穿刺针进针路径。此路径交由碰撞检测模块400进行碰撞检测,以便发现规划的穿刺路径中与重要的血管是否发生干涉。
具体地,医生选定好进针平面后,根据先前图像采集模块200中记录的每张超声图像的空间位置,由运动控制模块控制机械臂800移动到对应位置。超声探头5定位到穿刺层面后,做平面内的人体左右侧运动,并进行扫查,以确定入针点处是否安全。
第三步:运动规划单元102中的状态计算功能将计算出将机械臂800末端上的穿刺入针定位通道中心轴线与所规划的穿刺入针轨迹所在直线共线时,机械臂800的以及机械臂800上的伺服舵机7需要转动的角度,安装计算结果,使穿刺入针定位通道的轴线与规划入针轨迹共线。
具体地,由运动控制模块控制伺服舵机7,伺服舵机7带动齿轮转动,齿轮带动齿条11转动,从而将穿刺入针定位通道调整到指定位置,穿刺定位完成,医生手持穿刺针开始进行穿刺。
第四步:在穿刺的过程当中,如果穿刺针出现弯曲,则针尖和部分针体将会消失。在穿刺针进针的同时,穿刺针检测模块100实时检测或监测穿刺针,并将其形状分割出来,计算出曲率。如果穿刺针在穿刺平面内发生了弯曲,则计算机会将穿刺针轮廓提取出来,并提示操作者穿刺针弯曲的方向。如果穿刺针向穿刺平面左右两侧弯曲,则运动控制模块控制伺服电机3进行转动,并带动超声探头5进行旋转,以便检测针尖所在位置。
实施例中,在将超声图像在显示终端进行显示,以将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面之后还包括:
在穿刺层面中标出穿刺目标点,若目标图像层上存在有阻隔物,则将扫描区域移动到选定区域;
在选定区域进行原位旋转扫描,实时采集超声图像,并记录采集的超声图像的空间位置;
将超声图像以三维图像的模式在显示终端进行显示;
从三维图像模式显示的超声图像中,选择穿刺层面及穿刺目标点;
基于穿刺层面及穿刺目标点选择规划入针轨迹;
计算出当入针定位通过与规划入针轨迹不共线时,将入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定位。
本发明能针对共面穿刺,但穿刺层面可能由于骨性结构、胸壁血管、胸内血管或其他正常组织结构的阻隔物时,则通常采样非共面穿刺;另外,因术者经验手法的限制、患者软组织形变的影响(被动)、患者肌肉紧张度的变化(主动)以及呼吸运动的干扰(主动)等因素的作用,往往也需要采用非共面穿刺技术,即在确定目标所在人体横断面后,选取向头侧或脚侧偏移,寻找合适的入针点,并规划入针路径。
下面以具体实施例,对本发明的非共面穿刺进行详细说明:
基于病人术前CT扫查可以获知被穿刺目标所在扫查层面内的肋骨及大血管分布情况。如该穿刺层面存在有肋骨及大血管等阻隔物,或者入针轨迹难以避免穿过大血管,则采用非共面穿刺。
第一步:超声探头5由运动控制模块控制机械臂800移动到医生选定的目标所在人体横切面。之后,以超声探头5自身中心轴线为旋转中心线进行旋转扫查,确定非共面穿刺时穿刺针的行走平面。图像处理单元中的图像采集模块200实时采集超声图像,并记录超声图像所在的空间位置。
第二步:以三维图形的模式在人机交互目标识别模块300中进行展示,并由选取目标以及穿刺层面。所选穿刺层面交由运动控制模块控制机械臂800末端的伺服电机3转动,以带动超声探头5转至所的选穿刺层面。
第三步:在穿刺层面选择穿刺目标点以及穿刺针入针轨迹。需要说明的是,为避免选取的入针轨迹不精确,在超声探头5的实时成像时,要求扫描目标(被进行穿刺者,或病人,或患者)屏住呼吸,以防止穿刺目标因生理运动而移动。
第四步:生成的入针轨迹会直接传给运动控制模块,并控制伺服舵机7驱动滑轨12,从而将穿刺针入针定位通道的轴线与入针轨迹重合。
第五步:由医生手持穿刺针,将穿刺针插入入针定位通道中,并刺入扫描目标。
第六步:如果穿刺针在超声平面内或者平面外发生了弯曲,则参照共面穿刺的情况检测,由穿刺针检测模块100检测其针尖位置所在。
实施例中,在入针定位通道的定位之后还包括:
以穿刺入针轨迹进行穿刺针入针操作,穿刺入针轨迹为入针定位通道完成定位后的入针轨迹;
实时监测穿刺针在穿刺入针轨迹的工作状态;
当穿刺针在穿刺层面内发生了弯曲,则计算出穿刺针的弯曲的方向;
当穿刺针在穿刺层面的左右方向发生了弯曲,则进行扫描旋转,以检测穿刺针的针头位置。
在入针定位通道的定位之后进行穿刺工作,共面穿刺工作和非共面穿刺工作上述已进行了详细说明,此处不再赘述。
实施例中,在将超声图像传输至显示终端进行显示,以将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面之前还包括:
预先规划一个用于与穿刺层面对比的规划图像层。
扫查完成后,使用人机交互的目标识别功能查看扫查形成的超声图像,并选出与术前规划的穿刺层面最吻合的超声图像,并以此成像平面定义为被穿刺目标所在层面。
实施例中,在完成入针定位通道的定位之后还包括:
对规划入针轨迹进行检测,以确定规划入针轨迹中是否存在干涉物。
通过碰撞检测模块400检测入针轨迹安全性。具体为,利用人机交互功能查看超声图像,拖动一条直线,并定义为穿刺针进针路径。此路径交由运动规划模块进行碰撞检测,以便发现规划的穿刺路径中与重要的血管是否发生干涉。
实施例2
根据本发明的另一实施例,提供了一种面向胆道穿刺的机器人穿刺定位装置,参见图2至图5,包括:机械手、图像采集模块200、目标识别模块300、碰撞检测模块400、状态计算模块500及运动控制模块;
运动控制模块,用于控制机械手六自由度的运动,基于接收扫描请求,控 制机械手对扫描目标进行扫描,扫描请求至少携带有扫描信号;
图像采集模块200,用于基于扫描信号,在进行扫描时采集超声图像,并将超声图像与采集超声图像时的空间位置建立一一对应的关系;
目标识别模块300,用于将超声图像传输至显示终端进行显示,以将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面;
状态计算模块500,用于计算出当入针定位通道与规划入针轨迹不共线时,入针定位通道需要移动的位置信息,基于位置信息将入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定位;其中,规划入针轨迹为在穿刺层面中选出;
机械手,用于对扫描目标进行扫描及用于进行穿刺工作,通过扫描以便图像处理模块采集超声图像。
本发明实施例中的面向胆道穿刺的机器人穿刺定位方法及装置,方法包括:接收扫描请求,对扫描目标进行扫描;在进行扫描时采集超声图像,并将超声图像与采集超声图像时的空间位置建立一一对应的关系;将超声图像中与规划图像层最吻合的超声图像定义为穿刺层面;若穿刺层面上没有阻隔物,则将扫描目标与穿刺目标点距离最近的一点作为入针点,入针点与穿刺目标点之间的连线即为规划入针轨迹;然后,计算出当入针定位通道与规划入针轨迹不共线时,将入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定位。本发明用于穿刺通道的定位,提高穿刺定位的精度,以减少穿针次数。
本申请与现有技术相比,可实现多自由度超声扫查和实时定位,采用本发明进行穿刺时,若共面穿刺难度较大,超声探头5和穿刺定位装置可独立旋转运动实现非共面穿刺,且如果穿刺针发生了平面外的弯曲,则超声探头5可以独立运动,并检测穿刺针针尖所在位置,从而更加准确的评估穿刺针针尖与穿 刺目标的相对位置;本发明亦增加了图像处理单元和碰撞检测功能,可用于在确定病灶和定位穿刺通道的过程中给医生提供多元决策信息,提高定位精度,减少穿针次数。
具体地,本发明提供的胆道穿刺定位装置,主要包括图像处理单元、运动规划单元、运动控制模块;机械结构部分主要包括:六自由度的机械臂800、六自由度主操控端、旋转电机、进针角度调整机构,超声探头夹持机构,穿刺针的入针定位通道。
图像处理单元包括超声图像采集模块200,人机交互目标识别模块300以及穿刺针检测模块100。
图像采集模块200:主要用于采集术中的超声图像,并让操作者实时观察被穿刺组织内部的情况;
目标识别模块300:主要用于在计算机屏幕上标定被穿刺目标点和入针轨迹所在直线。胆道与周围其他血管在超声图像上表现为黑色的空腔结构,而胆道内液体的流动相对血管内的血流十分缓慢,因此在多普勒图像上,胆道会依然呈现黑色,而其周围的血管结构会呈现出红色或蓝色,因此医生可以识别出胆道。
运动规划单元包含碰撞检测模块400和穿刺针状态计算模块500。
碰撞检测模块400:主要用于检测规划的入针轨迹与重要器官是否有干涉物;
状态计算模块500:主要用于调整穿刺针姿态,使其能与规划的入针轨迹所在直线共线。
运动控制模块主要包括机械臂控制子模块600和电机控制子模块。
机械臂控制子模块600:主要控制机械臂800及其上搭载的超声探头5在 空间中的不同方向的运动,实现超声探头5与患者皮肤之间的稳定接触,使超声探头5对目标进行扫描,以便获得稳定的超声图像;
电机控制子模块:主要用于控制安装在机械臂800末端的探头定位机构900上的伺服电机3及伺服舵机7的运动,将穿刺针入针定位通道运动到预定位置,从而使得医生可以用穿刺针沿着穿刺入针定位通道准确的刺入人体。
机械结构方面,机械手安装在移动机台上,主要负责将整个机构与地面相对固定。六自由度的机械臂800连接在移动机台上,医生通过操控该移动台设备,远程控制机械臂800,从而将超声探头5移动到扫描目标病的上方。伺服电机3负责旋转与其直接连接的超声探头夹持装置,从而实现超声扫查面的旋转。六自由度机械臂800上的探头定位机构900可以绕其中心轴线自旋。
若是共面穿刺,则伺服电机3不转,从而超声探头5与探头定位机构900一同随机械臂800末端的旋转关节旋转,保证超声探头5扫查的平面和穿刺针的入针定位通道所在平面保持一致。
若是非共面穿刺,机械臂800末端的探头定位机构900绕自身轴线旋转,使得穿刺入针定位通道行走平面发生旋转,以达到变换穿刺路径的目的。与此同时,伺服电机3则朝相反方向旋转,从而维持超声探头5相对扫描目标不动。穿刺针进针角度调整机构用于调整穿刺针刺入人体的角度。超声探头5夹持机构用于将超声探头5固定在机械臂800末端。穿刺针入针定位通道用于保证穿刺针的延长线与规划的穿刺针入针轨迹处于同一直线上。
实施例中,装置还包括:
穿刺针检测模块100,用于实时监测穿刺针在穿刺入针轨迹的工作状态,当穿刺针发生弯曲时监测出穿刺针的针头位置。
在穿刺的过程当中,如果穿刺针出现弯曲,则针尖和部分针体将会消失。 在穿刺针进针的同时,穿刺针检测模块100实时检测或监测穿刺针,并将其形状分割出来,计算出曲率。如果穿刺针在穿刺平面内发生了弯曲,则计算机会将穿刺针轮廓提取出来,并提示操作者穿刺针弯曲的方向。如果穿刺针向穿刺平面左右两侧弯曲,则运动控制模块控制伺服电机3进行转动,并带动超声探头5进行旋转,以便检测针尖所在位置。
如图4和图5所示,实施例中,机械手包括机械臂800及安装在机械臂800上的探头定位机构900。
通过机械控制子模块控制机械臂800的运动,以将机械臂800末端的探头定位机构900移动到空间指定位置,进行扫描和穿刺工作。
实施例中,所探头定位机构900包括针角度调整机构及依次连接的第一法兰盘1、第二法兰盘2、伺服电机3、探头固定架4、超声探头5;
第一法兰盘1可旋转的与机械臂800连接,第一法兰盘1上固定连接有进针角度调整机构;
第一法兰盘1和第二法兰盘2之间可相互旋转的连接。
探头定位机构900主要包括伺服电机3、探头固定支架、伺服舵机7、由舵机齿轮8和齿条11组成的齿轮齿条11运动机构、由针导向器13和导向器架组成的定位鞘。该穿刺的探头定位机构900能够兼容超声医学影像信息;其中,探头固定支架用于固定超声探头5;在完成超声扫查的同时,机器人可视化的人机交互目标识别模块300依据扫查结果完成扫描目标定位,提供穿刺路径规划信息,确定穿刺点和进针角度,再由探头定位机构900完成位姿调整,建立体外通道以便从入针定位通道进针,该方案可减少由于定位不准确导致的多次、重复进针问题,提高了穿刺准确度。
实施例中,进针角度调节机构包括舵机固定件6、伺服舵机7、舵机齿轮 8、滑块10固定件9、滑块10、齿条11、滑轨12及针导向器13;
舵机固定件6与第一法兰盘1连接,伺服舵机7安装在舵机固定件6上,舵机齿轮8安装在伺服舵机7上;
滑块10与舵机固定件6连接,滑轨12与滑块10连接,滑块10内设置有钢珠,以便滑块10在滑轨12内运动;
齿条11安装在滑轨12上,舵机齿轮8与齿条11啮合,伺服电机3驱动舵机齿轮8转动,舵机齿轮8带动齿条11运动;
针导向器13安装在齿条11上,通过齿条11的运动带动针导向器13,以调整针导向器13的角度。
实施例中,进针角度调节机构还包括导向器架14,导向器架14安装在齿条11上,针导向器13可拆卸的安装在导向器架14上。
具体地,通过第一法兰盘1使得探头定位机构900和舵机固定件6与机械臂800进行连接;其中,第一法兰盘1与机械臂800末端为螺纹螺栓连接,第一法兰盘1与舵机固定件6为刚性连接,该连接方式使得整个进针角度调节机构能够随机械臂800末端的进行360度的旋转,实现多平面非共面穿刺。
第二法兰盘2通过螺纹螺栓连接第一法兰盘1和伺服电机3,进而将伺服电机3与机械臂800末端旋转关节间接连接;探头固定支架通过螺纹螺栓与伺服电机3连接,超声探头5刚性固定在探头固定支架上。当机械臂800末端旋转关节带动进针角度调节机构旋转时,伺服电机3可提供相反方向的旋转运动抵消,以保证超声探头5扫查平面保持不变。
在进针角度调节机构中,伺服舵机7刚性固定在舵机固定件6中,舵机齿轮8连接在伺服舵机7上,由伺服舵机7驱动;滑块10与舵机固定件6通过螺纹螺栓刚性连接,滑轨12非刚性连接在滑块10上,滑块10内有滚珠结构 以便滑轨12与滑块10实现相对运动,而齿条11则刚性固定在滑轨12上;当舵机齿轮8和齿条11啮合后,齿轮齿条11运动副能够由伺服舵机7驱动,实现齿条11和滑轨12的运动;
针导向器13采用可拆卸的销连接方式连接在导向器架14上,导向器架14刚性固定在齿条11上,当齿轮齿条11运动副产生运动时,针导向器13可完成进针通道的角度调整,角度调整范围为0度-90度。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (13)
- 一种面向胆道穿刺的机器人穿刺定位方法,其特征在于,包括以下步骤:接收扫描请求,对扫描目标进行扫描,所述扫描请求至少携带有扫描信号;基于所述扫描信号,在进行扫描时采集超声图像,并将所述超声图像与采集所述超声图像时的空间位置建立一一对应的关系;将所述超声图像传输至显示终端进行显示,以将所述超声图像中与规划图像层最吻合的超声图像定义为穿刺层面;在所述穿刺层面中标出穿刺目标点,若所述穿刺层面上没有阻隔物,则将所述扫描目标与所述穿刺目标点距离最近的一点作为入针点,其中,所述入针点与所述穿刺目标点之间的连线即为规划入针轨迹;计算出当入针定位通道与所述规划入针轨迹不共线时,所述入针定位通道需要移动的位置信息,基于所述位置信息将所述入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定位。
- 根据权利要求1所述的面向胆道穿刺的机器人穿刺定位方法,其特征在于,在将所述超声图像在显示终端进行显示,以将所述超声图像中与规划图像层最吻合的超声图像定义为穿刺层面之后还包括:在所述穿刺层面中标出穿刺目标点,若所述目标图像层上存在有阻隔物,则将所述扫描区域移动到选定区域;在所述选定区域进行原位旋转扫描,实时采集超声图像,并记录采集的所述超声图像的空间位置;将所述超声图像以三维图像的模式在显示终端进行显示;从所述三维图像模式显示的所述超声图像中,选择穿刺层面及穿刺目标点;基于所述穿刺层面及穿刺目标点选择规划入针轨迹;计算出当入针定位通过与所述规划入针轨迹不共线时,将所述入针定位通 道调整至与规划入针轨迹共线,完成入针定位通道的定位。
- 根据权利要求1或2所述的面向胆道穿刺的机器人穿刺定位方法,其特征在于,在所述入针定位通道的定位之后还包括:以穿刺入针轨迹进行穿刺针入针操作,所述穿刺入针轨迹为所述入针定位通道完成定位后的入针轨迹;实时监测所述穿刺针在所述穿刺入针轨迹的工作状态;当所述穿刺针在所述穿刺层面内发生了弯曲,则计算出所述穿刺针的弯曲的方向;当所述穿刺针在所述穿刺层面的左右方向发生了弯曲,则进行扫描旋转,以检测所述穿刺针的针头位置。
- 根据权利要求3所述的面向胆道穿刺的机器人穿刺定位方法,其特征在于,在将所述超声图像传输至显示终端进行显示,以将所述超声图像中与规划图像层最吻合的超声图像定义为穿刺层面之前还包括:预先规划一个用于与穿刺层面对比的规划图像层。
- 根据权利要求1所述的面向胆道穿刺的机器人穿刺定位方法,其特征在于,在所述完成入针定位通道的定位之后还包括:对所述规划入针轨迹进行检测,以确定所述规划入针轨迹中是否存在干涉物。
- 一种面向胆道穿刺的机器人穿刺定位装置,其特征在于,包括:机械手、图像采集模块、目标识别模块、状态计算模块及运动控制模块;所述运动控制模块,用于控制所述机械手六自由度的运动,基于接收扫描请求,控制所述机械手对扫描目标进行扫描,所述扫描请求至少携带有扫描信号;所述图像采集模块,用于基于所述扫描信号,在进行扫描时采集超声图像,并将所述超声图像与采集所述超声图像时的空间位置建立一一对应的关系;所述目标识别模块,用于将所述超声图像传输至显示终端进行显示,以将 所述超声图像中与规划图像层最吻合的超声图像定义为穿刺层面;状态计算模块,用于计算出当入针定位通道与所述规划入针轨迹不共线时,所述入针定位通道需要移动的位置信息,基于所述位置信息将所述入针定位通道调整至与规划入针轨迹共线,完成入针定位通道的定位;其中,所述规划入针轨迹为在所述穿刺层面中选出;所述机械手,用于对扫描目标进行扫描及用于进行穿刺工作,通过扫描以便所述图像处理模块采集所述超声图像。
- 根据权利要求6所述的面向胆道穿刺的机器人穿刺定位装置,其特征在于,所述装置还包括:穿刺针检测模块,用于实时监测所述穿刺针在所述穿刺入针轨迹的工作状态,当所述穿刺针发生弯曲时监测出所述穿刺针的针头位置。
- 根据权利要求6所述的面向胆道穿刺的机器人穿刺定位装置,其特征在于,所述装置还包括:碰撞检测模块,用于对所述规划入针轨迹进行检测,以确定所述规划入针轨迹中是否存在干涉物。
- 根据权利要求6所述的面向胆道穿刺的机器人穿刺定位装置,其特征在于,所述机械手包括机械臂及安装在所述机械臂上的探头定位机构。
- 根据权利要求9所述的面向胆道穿刺的机器人穿刺定位装置,其特征在于,所述探头定位机构包括进针角度调整机构及依次连接的第一法兰盘、第二法兰盘、伺服电机、探头固定架、超声探头;所述第一法兰盘可旋转的与所述机械臂连接,所述进针角度调整机构连接在所述第一法兰盘上;所述第一法兰盘和所述第二法兰盘之间可相互旋转的连接。
- 根据权利要求10所述的面向胆道穿刺的机器人穿刺定位装置,其特征在于,所述进针角度调节机构包括舵机固定件、伺服舵机、舵机齿轮、滑块固定件、滑块、齿条、滑轨及针导向器;所述舵机固定件与所述第一法兰盘连接,所述伺服舵机安装在所述舵机固定件上,所述舵机齿轮安装在所述伺服舵机上;所述滑块与所述舵机固定件连接,所述滑轨与所述滑块连接,所述滑块内设置有钢珠,以便所述滑块在所述滑轨内运动;所述齿条安装在滑轨上,所述舵机齿轮与所述齿条啮合,所述伺服电机驱动所述舵机齿轮转动,所述舵机齿轮带动所述齿条运动;所述针导向器安装在所述齿条上,通过所述齿条的运动带动所述针导向器,以调整所述针导向器的角度。
- 根据权利要求11所述的面向胆道穿刺的机器人穿刺定位装置,其特征在于,所述进针角度调节机构还包括导向器架,所述导向器架安装在所述齿条上,所述针导向器可拆卸的安装在所述导向器架上。
- 根据权利要求10所述的面向胆道穿刺的机器人穿刺定位装置,其特征在于,所述运动控制模块包括:机械臂控制子模块,用于控制所述机械臂不同方向的运动,以实现所述超声探头对所述目标进行扫描;电机控制子模块,用于控制所述伺服电机及伺服舵机的转动。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/113314 WO2023019479A1 (zh) | 2021-08-18 | 2021-08-18 | 一种面向胆道穿刺的机器人穿刺定位方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/113314 WO2023019479A1 (zh) | 2021-08-18 | 2021-08-18 | 一种面向胆道穿刺的机器人穿刺定位方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023019479A1 true WO2023019479A1 (zh) | 2023-02-23 |
Family
ID=85239341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/113314 WO2023019479A1 (zh) | 2021-08-18 | 2021-08-18 | 一种面向胆道穿刺的机器人穿刺定位方法及装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023019479A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116725640A (zh) * | 2023-06-20 | 2023-09-12 | 山东卓业医疗科技有限公司 | 一种身体穿刺打印模板的构建方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050033160A1 (en) * | 2003-06-27 | 2005-02-10 | Kabushiki Kaisha Toshiba | Image processing/displaying apparatus and method of controlling the same |
CN1636520A (zh) * | 2003-08-19 | 2005-07-13 | 株式会社东芝 | 超声波诊断装置 |
US20110166451A1 (en) * | 2010-01-07 | 2011-07-07 | Verathon Inc. | Blood vessel access devices, systems, and methods |
CN102413772A (zh) * | 2009-04-28 | 2012-04-11 | 皇家飞利浦电子股份有限公司 | 具有超声换能器的活检引导系统及其使用方法 |
CN105105826A (zh) * | 2015-07-31 | 2015-12-02 | 中国人民解放军兰州军区兰州总医院 | 超声引导外周神经阻滞麻醉定向穿刺装置 |
CN106562816A (zh) * | 2016-11-10 | 2017-04-19 | 李利 | 通用型超声引导支架及将其装配到超声探头的方法 |
CN107260269A (zh) * | 2017-07-11 | 2017-10-20 | 哈尔滨理工大学 | 一种超声引导下前列腺穿刺活检机器人 |
CN110638528A (zh) * | 2018-06-26 | 2020-01-03 | 上海交通大学 | 手持式超声引导神经阻滞机器人 |
CN111434316A (zh) * | 2019-01-15 | 2020-07-21 | 北京理工大学 | 超声平面外血管穿刺辅助机器人 |
CN111437011A (zh) * | 2020-03-30 | 2020-07-24 | 中国科学院深圳先进技术研究院 | 一种穿刺手术机器人系统 |
CN211131316U (zh) * | 2019-11-13 | 2020-07-31 | 威朋(苏州)医疗器械有限公司 | 超声共面穿刺辅助导轨 |
CN112155687A (zh) * | 2019-11-29 | 2021-01-01 | 深圳市奥昇医疗科技有限责任公司 | 一种超声检查装置 |
-
2021
- 2021-08-18 WO PCT/CN2021/113314 patent/WO2023019479A1/zh active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050033160A1 (en) * | 2003-06-27 | 2005-02-10 | Kabushiki Kaisha Toshiba | Image processing/displaying apparatus and method of controlling the same |
CN1636520A (zh) * | 2003-08-19 | 2005-07-13 | 株式会社东芝 | 超声波诊断装置 |
CN102413772A (zh) * | 2009-04-28 | 2012-04-11 | 皇家飞利浦电子股份有限公司 | 具有超声换能器的活检引导系统及其使用方法 |
US20110166451A1 (en) * | 2010-01-07 | 2011-07-07 | Verathon Inc. | Blood vessel access devices, systems, and methods |
CN105105826A (zh) * | 2015-07-31 | 2015-12-02 | 中国人民解放军兰州军区兰州总医院 | 超声引导外周神经阻滞麻醉定向穿刺装置 |
CN106562816A (zh) * | 2016-11-10 | 2017-04-19 | 李利 | 通用型超声引导支架及将其装配到超声探头的方法 |
CN107260269A (zh) * | 2017-07-11 | 2017-10-20 | 哈尔滨理工大学 | 一种超声引导下前列腺穿刺活检机器人 |
CN110638528A (zh) * | 2018-06-26 | 2020-01-03 | 上海交通大学 | 手持式超声引导神经阻滞机器人 |
CN111434316A (zh) * | 2019-01-15 | 2020-07-21 | 北京理工大学 | 超声平面外血管穿刺辅助机器人 |
CN211131316U (zh) * | 2019-11-13 | 2020-07-31 | 威朋(苏州)医疗器械有限公司 | 超声共面穿刺辅助导轨 |
CN112155687A (zh) * | 2019-11-29 | 2021-01-01 | 深圳市奥昇医疗科技有限责任公司 | 一种超声检查装置 |
CN111437011A (zh) * | 2020-03-30 | 2020-07-24 | 中国科学院深圳先进技术研究院 | 一种穿刺手术机器人系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116725640A (zh) * | 2023-06-20 | 2023-09-12 | 山东卓业医疗科技有限公司 | 一种身体穿刺打印模板的构建方法 |
CN116725640B (zh) * | 2023-06-20 | 2024-02-27 | 山东卓业医疗科技有限公司 | 一种身体穿刺打印模板的构建方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102018575B (zh) | 机器人辅助柔性针穿刺软组织实时操控系统及方法 | |
WO2020000963A1 (zh) | 针的超声引导辅助装置及系统 | |
Boctor et al. | Three‐dimensional ultrasound‐guided robotic needle placement: an experimental evaluation | |
CN112220557B (zh) | 用于颅脑穿刺的手术导航及机器臂装置及定位方法 | |
CN107970060A (zh) | 手术机器人系统及其控制方法 | |
US11576746B2 (en) | Light and shadow guided needle positioning system and method | |
CN113558735A (zh) | 一种面向胆道穿刺的机器人穿刺定位方法及装置 | |
US20090082784A1 (en) | Interventional medical system | |
KR101758741B1 (ko) | 의료영상을 사용하는 중재시술 가이드 방법 및 이를 위한 중재시술 시스템 | |
WO2017050201A1 (zh) | 微创医疗机器人系统 | |
WO2008081438A1 (en) | Vascular access system and method | |
JP2000197630A (ja) | 断層撮影装置 | |
KR102348720B1 (ko) | 니들 가이드 및 이를 포함하는 생검 시술 장치 | |
US11701492B2 (en) | Active distal tip drive | |
CN208573801U (zh) | 手术机器人系统 | |
KR101758740B1 (ko) | 의료영상을 사용하는 중재시술 가이드 방법 및 이를 위한 중재시술 시스템 | |
CN102090932A (zh) | Ct引导肺穿刺定位仪 | |
EP4267228A2 (en) | Dual articulating catheter | |
WO2023019479A1 (zh) | 一种面向胆道穿刺的机器人穿刺定位方法及装置 | |
CN113940733B (zh) | 一种ct兼容的肺部穿刺活检系统及方法 | |
CN215874870U (zh) | 一种面向胆道穿刺的机器人穿刺定位装置 | |
WO2023050307A1 (zh) | 一种ct兼容的肺部穿刺活检系统及方法 | |
WO2022143980A1 (en) | Device and method for brain biopsy | |
US20140343407A1 (en) | Methods for the assisted manipulation of an instrument, and associated assistive assembly | |
JP2551582Y2 (ja) | 医用案内針の刺入指示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21953726 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21953726 Country of ref document: EP Kind code of ref document: A1 |