[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023050307A1 - 一种ct兼容的肺部穿刺活检系统及方法 - Google Patents

一种ct兼容的肺部穿刺活检系统及方法 Download PDF

Info

Publication number
WO2023050307A1
WO2023050307A1 PCT/CN2021/122164 CN2021122164W WO2023050307A1 WO 2023050307 A1 WO2023050307 A1 WO 2023050307A1 CN 2021122164 W CN2021122164 W CN 2021122164W WO 2023050307 A1 WO2023050307 A1 WO 2023050307A1
Authority
WO
WIPO (PCT)
Prior art keywords
puncture
needle
respiratory phase
image
guide rail
Prior art date
Application number
PCT/CN2021/122164
Other languages
English (en)
French (fr)
Inventor
陈静涛
钱程
周寿军
曾泉
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2021/122164 priority Critical patent/WO2023050307A1/zh
Publication of WO2023050307A1 publication Critical patent/WO2023050307A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the invention relates to the field of medical equipment, in particular to a CT-compatible lung biopsy system and method.
  • Lung cancer is the malignant tumor with the highest morbidity and mortality.
  • Early screening, early diagnosis and early treatment of lung cancer are the most effective ways to improve the five-year survival rate of lung cancer patients.
  • the determination of the nature of pulmonary nodules is an important part of the early diagnosis and treatment of lung cancer.
  • Percutaneous lung needle biopsy is currently the main biopsy method for pulmonary nodules. In this procedure, under the guidance of ultrasound or computed tomography (CT) images, doctors use a puncture needle to puncture the target nodule, and use a biopsy gun to extract tissue samples. benign and malignant.
  • CT computed tomography
  • Intraoperative CT is the main image-guided method for percutaneous lung biopsy: during the operation, the patient lies on the CT examination bed under local anesthesia. Scan the image for puncture needle path planning. Then the puncture needle was inserted percutaneously into the target nodule for tissue sampling, and finally the puncture needle was withdrawn and the positions of the puncture needle and the nodule were confirmed by intraoperative CT scan.
  • the puncture needle is easy to cause damage to the tissue structure on the puncture path, the puncture operation has extremely high requirements for the doctor's operation accuracy; at the same time, when using CT to guide the operation, the medical staff will inevitably be exposed to the radiation environment. However, it is extremely heavy and cannot protect the face and hands, which greatly increases the radiation damage and comprehensive burden of medical personnel.
  • the master-slave robot-assisted puncture allows the doctor to remotely control the movement of the puncture needle, so that the doctor can avoid direct exposure to the radiation environment, and can effectively solve the problems of insufficient operating accuracy and fatigue of the doctor.
  • the disadvantages of the existing manual puncture technique mainly include: for the puncture operation of the lung, when CT is used for multiple scans during the operation, the doctor has been exposed to relatively large radiation for many years.
  • many existing technologies have proposed puncture assistant robots with different structures.
  • the existing puncture-assisting robots are mainly divided into two categories: one is that only provides positioning function, and the doctor manually punctures; the other is that the robot automatically completes positioning and puncture.
  • the embodiment of the present application provides a CT-compatible lung biopsy system and method to solve the technical problem of lesion displacement caused by breathing during the existing puncture process, so as to achieve accurate puncture and reduce damage caused by mispuncture. Injuries and complications in the patient's body.
  • a CT-compatible pulmonary puncture biopsy system and method including an image processing unit, a puncture path planning unit, a motion control unit, a respiratory phase detection unit, and a robot puncture for performing puncture work. mechanism;
  • the image processing unit is used to display the CT image, determine the puncture level on the CT image, and mark the puncture target point and the puncture needle entry point to form a preoperative puncture path planning;
  • the respiratory phase detection unit is used to detect the respiratory phase in real time, and transmit the detection result of the respiratory phase to the puncture path planning unit;
  • the puncture path planning unit is used to generate a puncture path under any respiratory phase, and is used to adjust the puncture posture of the robot puncture mechanism, so that the puncture needle on the robot puncture mechanism is collinear with the puncture path;
  • the motion control unit is used to control the movement of the puncture mechanism of the robot and the puncture movement of the puncture needle.
  • the image processing unit includes:
  • the preoperative path planning module is used to select the appropriate puncture level according to the preoperative CT image, and select the puncture target point and epidermal needle entry point on the CT image of the puncture level, so as to plan the puncture needle path;
  • An intraoperative CT image acquisition module is used to acquire intraoperative CT images
  • the intraoperative image registration module is used to realize the superposition and fusion of preoperative CT images and intraoperative CT images by using elastic registration, and determine the puncture level;
  • the puncture needle monitoring module is used for real-time feedback of the needle insertion process of the puncture needle.
  • the respiratory phase detection unit includes:
  • Respiration amplitude detection module used for real-time detection of respiration phase and sending out respiration phase signal
  • the respiratory phase judging module is used to receive the respiratory phase signal sent by the respiratory amplitude detection module, calculate the respiratory phase at any time in real time, and transmit the calculation result of the respiratory phase to the puncture path planning unit.
  • the puncture path planning unit includes:
  • the puncture path optimization module is used to receive the respiratory phase calculation result and generate a puncture path under any respiratory phase
  • the puncture needle posture adjustment module is configured to receive the puncture path and adjust the posture of the puncture needle so that the puncture needle can be collinear with the puncture path.
  • the motion control unit includes:
  • the actuator control module is used to control the movement of the robot puncture mechanism
  • the needle insertion mechanism control module is used to control the movement of the puncture needle.
  • the robot puncture mechanism includes:
  • an arched frame the arched frame includes set arched guide rails;
  • Arched guide rail slider the arched guide rail slider is installed on the arched rack and can slide on the arched guide rail;
  • the lifting arm can be moved up and down and installed on the arch guide rail slider;
  • the horizontal arm can be horizontally moved and installed on the lifting arm;
  • the swivel arm is rotatably installed on the horizontal arm;
  • the needle feeding mechanism is installed on the rotating arm and is used for puncturing.
  • the needle insertion mechanism includes a puncture needle, a needle holder and a needle insertion frame
  • the needle holder is movably mounted on the needle insertion frame
  • the puncture needle is installed on the needle holder.
  • the robot puncture mechanism also includes a fixed base, the fixed base is provided with a latch, the fixed end of the arched frame is rotatably installed on the fixed base, and the free end of the arched frame
  • the card lock can be freely opened and closed to lock or unlock the fixed base.
  • the technical solution adopted in the embodiment of the present application further includes: the robot puncture mechanism further includes a guide rail guide slider, and the arch guide rail slider is connected to the arch guide rail through the guide rail guide slider.
  • the robot puncture mechanism includes a lifting arm slider and a lifting arm screw motor
  • the arched guide rail slider is provided with a lifting arm screw guide rail
  • the lifting arm slider is connected to the lifting arm screw rod.
  • the lifting arm screw motor drives the lifting arm slider to move on the lifting arm screw guide rail.
  • the robot puncture mechanism includes a horizontal arm screw rod slider and a horizontal arm screw rod motor
  • the lifting arm is provided with a horizontal arm screw rod guide rail
  • the horizontal arm screw rod slider is connected to the horizontal arm screw rod.
  • the horizontal arm screw motor drives the horizontal arm screw rod slider to move on the horizontal arm screw rod guide rail.
  • the technical solution adopted in the embodiment of the present application also includes: a rotating arm motor is installed on the horizontal arm, the rotating arm is connected to the rotating arm motor, and the rotating arm motor drives the rotating arm to rotate.
  • a CT-compatible lung biopsy method comprising the following steps:
  • the CT equipment starts to scan
  • the intraoperative CT image is visualized and marked in real time, and the needle entry point and needle angle under the planned path are calculated based on the intraoperative CT image visualization mark, the registration result of the intraoperative CT image and the preoperative CT image;
  • the positioning of the actuator is completed, and the puncture needle on the actuator is controlled to perform automatic needle insertion.
  • the automatic needle feeding completed by the needle feeding mechanism on the control actuator includes:
  • the beneficial effect produced by the embodiment of the present application lies in: the CT-compatible lung biopsy system and method in the embodiment of the present application, the system includes: an image processing unit for displaying CT images, on the CT images Determine the puncture level, mark the puncture target point and the puncture needle entry point, and form the preoperative puncture path planning; the respiratory phase detection unit is used to detect the respiratory phase in real time, and transmit the respiratory phase detection results to the puncture path planning unit; The path planning unit is used to generate the puncture path under any respiratory phase, and is used to adjust the puncture posture of the robot puncture mechanism so that the puncture needle on the robot puncture mechanism is in line with the puncture path; the motion control unit is used to control the robot puncture mechanism movement, and control the puncture movement of the puncture needle.
  • the respiratory phase detection unit detects the respiratory phase of the patient during the puncture, so that an optimized puncture path can be generated according to the respiratory phase, so as to achieve accurate puncture and reduce the damage and complications in the patient's body caused by wrong puncture
  • Fig. 1 is the schematic diagram of the CT lung biopsy system of the present application
  • Fig. 2 is the structural representation of the robot puncture mechanism of the present application
  • Fig. 3 is another structural schematic diagram of the robot puncture mechanism of the present application.
  • Fig. 4 is another structural schematic diagram of the robot puncture mechanism of the present application.
  • Fig. 5 is the specific structural diagram of the puncture mechanism of the robot of the present application.
  • Fig. 6 is another specific structural diagram of the puncture mechanism of the robot of the present application.
  • Fig. 7 is the enlarged structural diagram of the puncture mechanism of the robot of the present application.
  • Fig. 8 is the internal structure diagram of the horizontal arm of the robot puncture mechanism of the present application.
  • Fig. 9 is a structural diagram of the needle insertion mechanism of the robot puncture mechanism of the present application.
  • Figure 10 is an enlarged view of the structure of the needle insertion mechanism of the robot puncture mechanism of the present application.
  • Fig. 11 is an enlarged view of another structure of the needle insertion mechanism of the robot puncture mechanism of the present application.
  • Fig. 12 is another enlarged view of the structure of the needle insertion mechanism of the robot puncture mechanism of the present application.
  • Fig. 13 is a flow chart of the CT lung biopsy method of the present application.
  • Fig. 14 is a specific flow chart of the CT lung biopsy method of the present application.
  • 101-image processing unit 101-image processing unit, 102-puncture path planning unit, 103-motion control unit, 104-robot puncture mechanism, 1041-mechanical arm, 1402-puncture mechanism, 1043-puncture needle clamping mechanism, 105-respiratory phase detection unit, 106-operation main hand;
  • a CT-compatible pulmonary puncture biopsy system is provided, as shown in FIG.
  • the image processing unit 101 is configured to display the CT image, determine the puncture level on the CT image, and identify the puncture target point and the puncture needle 2 entry point to form a preoperative puncture path planning;
  • a respiratory phase detection unit 105 configured to detect the respiratory phase in real time, and transmit the measured respiratory phase to the puncture path planning unit 102;
  • the puncture path planning unit 102 is used to generate a puncture path under any respiratory phase, and to adjust the puncture posture of the robot puncture mechanism 104, so that the puncture needle 2 on the robot puncture mechanism 104 is collinear with the puncture path;
  • the motion control unit 103 is used to control the motion of the robot puncturing mechanism 104 and the puncturing motion of the puncture needle 2 .
  • the CT-compatible lung biopsy system and method in the embodiment of the present application includes: an image processing unit 101, configured to display a CT image, determine the puncture level on the CT image, and identify the puncture target point and the puncture needle 2
  • the needle point forms the preoperative puncture path planning;
  • the respiratory phase detection unit 105 is used to detect the respiratory phase in real time, and transmits the measured respiratory phase to the puncture path planning unit 102;
  • the puncture path planning unit 102 is used to generate any respiratory phase
  • the puncture path below is used to adjust the puncture posture of the robot puncture mechanism 104, so that the puncture needle 2 on the robot puncture mechanism 104 is in line with the puncture path;
  • the motion control unit 103 is used to control the movement of the robot puncture mechanism 104, and control The puncture movement of the puncture needle 2.
  • the respiratory phase detection unit 105 detects the patient's respiratory phase during the puncture process, so that an optimized puncture path can be generated according to the respiratory phase, so as to achieve accurate puncture and reduce
  • This application aims to provide a CT-compatible lung biopsy system for lung nodule biopsy surgery, which is difficult to determine the point and angle of needle entry and needle entry angle, and difficult to locate lesions affected by breathing during the puncture process. It helps the doctor to position the puncture needle 2 before the puncture, and completes the real-time registration of the puncture path corresponding to the breathing during the puncture, so that the doctor can puncture the target area more accurately.
  • the CT compatible needle biopsy robot proposed in this application is compatible with most commonly used CT machine holes on the market, and can enter the CT machine hole with the CT machine tool as a whole.
  • the image processing unit 101 includes:
  • the preoperative path planning module is used to select a suitable puncture level according to the preoperative CT image, and select the puncture target point and epidermal needle entry point on the CT image of the puncture level, so as to plan the path of the puncture needle 2;
  • An intraoperative CT image acquisition module is used to acquire intraoperative CT images
  • the intraoperative image registration module is used to realize the superposition and fusion of preoperative CT images and intraoperative CT images by using elastic registration, and determine the puncture level;
  • the puncture needle 2 monitoring module is used to feed back the needle insertion process of the puncture needle 2 in real time.
  • the image processing unit 101 includes a preoperative path planning module, an intraoperative CT image acquisition module, an intraoperative CT image registration module, and a puncture needle 2 monitoring module.
  • the preoperative path planning module is mainly used for the preoperative doctor to select the appropriate puncture level according to the patient's CT image, and select the puncture target point and epidermal needle entry point on the CT image of the puncture level, so as to plan the path of the puncture needle 2;
  • the CT image acquisition module is mainly used to collect intraoperative CT images, and allows the operator to observe the situation inside the punctured tissue in real time;
  • the intraoperative CT image registration module mainly uses elastic registration to realize the superposition and fusion of preoperative and intraoperative CT images , and determine the puncture level.
  • the respiratory phase detection unit 105 includes:
  • Respiration amplitude detection module used for real-time detection of respiration phase and sending out respiration phase signal
  • the respiratory phase judging module is used to receive the respiratory phase signal sent by the respiratory amplitude detection module, calculate the respiratory phase at any time in real time, and transmit the calculation result of the respiratory phase to the puncture path planning unit 102 .
  • the respiratory phase detection unit 105 mainly uses the respiratory belt to detect the patient's respiratory phase in real time during the operation, and uses the output respiratory phase to select the corresponding optimal puncture path; Amplitude sensor.
  • the puncture path planning unit 102 includes:
  • the puncture path optimization module is used to receive the respiratory phase calculation result and generate a puncture path under any respiratory phase
  • the puncture needle posture adjustment module is configured to receive the puncture path and adjust the posture of the puncture needle 2 so that the puncture needle 2 can be collinear with the puncture path.
  • the dynamic puncture path optimization module mainly uses the preoperatively reconstructed movement trajectories of key organs in the full respiratory phase and the obstacle avoidance algorithm to generate the optimal puncture path in any respiratory phase;
  • the puncture needle attitude adjustment module is mainly used to adjust The posture of the puncture needle 2 is so that it can be collinear with the planned needle insertion trajectory.
  • the motion control unit 103 includes:
  • the actuator control module is used to control the movement of the robot puncture mechanism 104;
  • the needle insertion mechanism control module is used to control the movement of the puncture needle 2 .
  • the actuator control module mainly controls the six degrees of freedom of the actuator, and places the robot near the target position according to the instructions of the doctor's main terminal operation;
  • the needle insertion mechanism control module mainly controls the insertion of the puncture needle 2 into the target lesion.
  • CT compatible lung biopsy system of the present application is described in detail:
  • the application system includes: an image processing unit 101 , a puncture path planning unit, a motion control unit 103 and a respiratory phase detection unit 105 .
  • the image processing unit 101 first uses the preoperative CT image or image, and the doctor determines the puncture level through the CT image, and manually marks the puncture target point and the puncture needle 2 entry point on the CT image of the corresponding level, Form the preoperative puncture path planning; when the patient is lying on the CT examination bed and lock the puncture robot ring structure (arched guide rail 5), use the intraoperative CT image acquisition module to collect real-time intraoperative CT images; intraoperative image registration The module registers the intraoperative CT image with the preoperatively planned puncture level to determine the actual intraoperative puncture level; the results of the above modules will be input to the puncture path optimization module in the puncture path planning unit.
  • the patient is equipped with a sensor for real-time detection of respiration amplitude, and the respiration amplitude detection module in the respiration phase detection unit 105 transmits the signal to the respiration phase determination module, thereby calculating the respiration rate of the patient at any time in real time.
  • the respiratory phase determination module indicates that the respiratory phase enters the pre-scheduled respiratory gating range
  • the doctor can perform the puncture and signal the patient to hold his breath, and the puncture path planning unit
  • the puncture path optimization module in will input the corresponding puncture path to the puncture needle posture adjustment module to determine how the puncture needle 2 needs to move from the current position to the planned puncture position.
  • the mechanical arm 1041 and the needle insertion mechanism 4 in the puncture robot are controlled by the actuator control module in the motion control unit 103 to move to a specified position, so that the line where the puncture needle 2 is located is in line with The planned puncture needle 2 paths are collinear,.
  • the doctor controls and operates the main hand 106 to control the control module of the needle insertion mechanism 4, thereby pushing the puncture needle 2 into the needle or retreating.
  • the control module of the needle insertion mechanism 4 displays the position of the puncture needle 2 in the intraoperative CT image according to the distance advanced or retreated, and feeds back the image to the doctor through the healthy side module of the puncture needle 2 in the medical image processing unit 101 module.
  • the robot puncture mechanism 104 includes: the mechanical arm 1041 is a three-degree-of-freedom mechanical arm 1041, which is responsible for moving the three-degree-of-freedom puncture mechanism 1042 at the end to a specified position in space , the puncture needle clamping mechanism 1043 is responsible for clamping and disengaging the puncture needle 2 .
  • the system of the present application includes a robot puncture mechanism 104;
  • the robot puncture mechanism 104 specifically includes an arched guide rail 5, an arched guide rail slider 8, a lifting arm 9, a horizontal arm 10, a rotating arm 12 and
  • the arched guide rail 5 and the guide rail housing 11 mainly include a rack-and-pinion mechanism 23 as a drive module, and a guide rail guide slider 22 as a guide module, and the rack-and-pinion mechanism 23 is driven by a gear motor 36 .
  • the arched frame includes an arched guide rail 5; the robot puncture mechanism 104 also includes a fixed base 7, and the fixed base 7 is provided with a latch 35; the fixed end of the arched guide rail 5 is rotatably connected to the fixed base 7 by a hinge , the free end of the arched frame can be freely opened and closed through the latch 35 and locked or unlocked with the fixed base 7 .
  • the arched guide rail slider 8 is installed on the arched frame and can slide on the arched guide rail 5; the arched guide rail slider 8 is connected with the arched guide rail 5 through the guide rail guide slider 22, and can move along the guide rail to realize puncture Lateral movement of mechanism 1042.
  • the fixed base 7 is equipped with a connection point 37, and the fixed end of the arched guide rail 5 is equipped with an emergency stop button 15 for physical safety intervention.
  • Lifting arm 9 can be moved up and down and installed on the arched guide rail slider 8;
  • the robot puncture mechanism 104 includes a lifting arm slider 18 and a lifting arm screw motor 16, and the arched guide rail slider 8 is provided with a lifting arm screw guide rail 17 , the lifting arm screw motor 16 drives the lifting arm slider 18 to move on the lifting arm screw guide rail 17;
  • the lifting arm 9 is wrapped with a lifting arm shell 13, and is connected to the lifting arm screw guide rail through the lifting arm slider 18 17, it is driven by the lifting arm screw motor 16 to realize vertical lifting motion.
  • the lifting arm screw guide rail 17 is wrapped by the arched guide rail slider housing 14, and is equipped with a screw motor connection port 20, and a photoelectric switch 21 for the limit function of the slide rail.
  • Horizontal arm 10 can be installed on the lifting arm 9 that can move horizontally; Rod motor 19 drives the horizontal arm screw rod slider 24 to move on the horizontal arm screw rod guide rail 26; 26 sports.
  • the horizontal arm 10 is mainly used to provide the degree of freedom in translation of the head and feet.
  • the rotating arm motor 25 is rigidly connected to the horizontal arm 10 and performs translational movement together with the horizontal arm 10 .
  • Rotating arm 12 is rotatably installed on the horizontal arm 10; a rotating arm motor 25 is installed on the horizontal arm 10, and the rotating arm 12 is connected with the rotating arm motor 25, and the rotating arm motor 25 drives the rotating arm 12 to rotate; one end of the rotating arm 12 passes through
  • the rotating shaft is rigidly connected to the rotating arm motor 25 to realize the adjustment of the roll angle of the terminal piercing mechanism 1042 .
  • the other end of the rotating arm 12 is rigidly connected with the needle-introducing mechanism 4 through the rotating shaft and the flange 28, and the needle-introducing mechanism 4 and the rotating shaft are driven by the rotating motor 33 rigidly fixed in the rotating arm 12 to realize the pitch angle of the terminal puncture mechanism 1042 (in Fig. marked in ) movement.
  • the rotating arm 12 is provided with a locking button 6 and a development mark 34, the former is used for locking the rotational degree of freedom, and the latter is used for the development positioning under CT.
  • the needle advancing mechanism 4 is installed on the rotating arm 12 for puncturing; the needle advancing mechanism 4 includes.
  • the needle insertion mechanism 4 mainly includes the puncture needle 2, the needle holder 3, the needle insertion frame and the needle insertion screw guide rail 30, the needle holder 3 is movably installed on the needle insertion frame, and the puncture needle 2 is installed on the needle holder 3 .
  • the needle holder 3 is rigidly fixed on the slide block of the needle advance screw guide rail 30, driven by the needle advance screw motor 27 to complete the needle advance/retract movement.
  • the needle holder 3 realizes the opening and closing movement through the needle holder gear 31 and the needle holder rack 32, and is driven by the needle holder motor 29 rigidly connected to the slide block of the needle feeding screw guide rail 30.
  • the needle insertion mechanism 4 is also equipped with a developing mark 34 for showing the posture of puncturing under CT.
  • the puncture robot proposed in this application is also equipped with a touch screen 1 with function buttons on it, so that the doctor can fine-tune the position of the mechanism and lock the overall posture beside the operating table.
  • the slider 8, the lifting arm 9, the horizontal arm 10 and the rotating arm 12 quickly adjust the position and posture to complete the positioning.
  • the needle insertion mechanism 4 clamps the puncture needle 2 through the needle holder 3 and completes the coaxial needle insertion. After insertion, the needle holder 3 and The puncture needle 2 is disengaged. The doctor inserts a biopsy gun through the channel created by the coaxial needle to complete the biopsy sample.
  • the arched frame fixed on the operating bed is respectively equipped with a three-degree-of-freedom mechanical structure, which includes an arched motion mechanism (arch guide rail slider 8), a lifting motion mechanism (lifting arm 9) and a horizontal motion mechanism (horizontal arm 10) to realize the translational movement and arc motion of the mechanism, and the three-degree-of-freedom puncture mechanism 1042 (rotating arm 12 and needle insertion mechanism 4) can realize pitch and swing angle adjustment of the needle insertion mechanism 4 and needle advance/retraction, the puncture needle
  • the clamping mechanism 1043 is responsible for clamping and disengaging the puncture needle 2 .
  • the arched arm is realized by the rack and pinion guide rail
  • the lifting arm 9, the horizontal arm 10 and the needle feeding mechanism 4 are realized by the screw rod guide rail
  • the rotating arm 12 is driven by two rotating motors 33
  • the puncture needle clamping mechanism 1043 is realized by the gear teeth. article is realized.
  • the parameters of the puncture mechanism 1042 are set as follows: the pitch range of the needle insertion mechanism 4 is 45 degrees, the swing range is 360 degrees, and the movement range of the needle is 110 mm; 180 degree.
  • the puncture mechanism 1042 is also equipped with an optical marking system.
  • the arched robotic arms 1041 are respectively openable and closed, and can be fine-tuned and locked in position by the function keys on the touch screen of the mechanism during the operation to complete the initial calibration.
  • a CT lung biopsy method which can realize the CT lung biopsy method by using the features in the above system, and the method includes the following steps:
  • S105 Register the CT image scanned during the operation with the CT image with the planned path before the operation to determine the puncture section during the operation;
  • S106 Visualize and mark the intraoperative CT image in real time, and calculate the needle insertion point and needle insertion angle under the planned path based on the intraoperative CT image visualization marker, the registration result of the intraoperative CT image and the preoperative CT image;
  • the respiratory gated puncture within a certain error range is realized, and the puncture of the puncture biopsy, especially the pulmonary nodule that is greatly affected by breathing, is improved. Biopsy accuracy, efficiency and safety.
  • the present application detects the respiratory phase of the patient during the puncture process, so that an optimized puncture path can be generated according to the respiratory phase, so as to achieve precise puncture and reduce damage and complications in the patient's body caused by erroneous puncture.
  • Step 1 preoperative preparation: the free end of the arched guide rail 5 is separated from the fixed base 7, the mechanism body is opened, the patient enters the CT examination bed, and a suitable puncture position is selected according to the doctor's advice. Finally, the arched guide rail 5 is closed and the latch 35 is locked.
  • Step 2 initial adjustment of the position of the puncture mechanism 1042: the doctor manipulates and operates the main hand 106 to move the actuator (robot puncture mechanism 104) above the patient's operation area, and then the assistant controls the three-degree-of-freedom sliding device through the touch screen 1 next to the actuator.
  • the rail mechanism and the three-degree-of-freedom puncture mechanism 1042 make the puncture mechanism 1042 more efficient, and the puncture coaxial needle is installed, and finally the locking mechanism is initialized.
  • Step 3 import the preoperative planning path: the doctor imports the preoperative CT images including the entire complete respiratory phase and the corresponding puncture path planning results into the image processing unit 101 at the main control terminal, and the imported data includes the preoperative The result of the optimal puncture path under the optimal respiratory phase selected by the doctor through the human-computer interaction recognition module.
  • Step 4 intraoperative CT scanning: the doctor remotely controls the CT machine tool and the actuator to enter the CT machine hole, the patient breathes normally according to the instructions of the preoperative breathing training, and the CT machine starts scanning.
  • Step 5 respiratory phase monitoring: the image acquisition module in the image processing unit 101 collects intraoperative real-time CT data, and the doctor monitors in real time through the display screen of the main control terminal. The doctor instructed the patient to hold his breath immediately.
  • Step 6 image registration: the image processing unit 101 quickly completes the intraoperative CT image registration with the preoperative CT image with the planned path, so as to determine the intraoperative puncture section.
  • Step 7 motion planning: the motion planning unit calculates the needle insertion point and needle insertion angle under the planned path according to the imaging marker 34 under the intraoperative real-time CT and the registration result of the intraoperative CT and the preoperative CT.
  • Step 8 motion execution: the motion control unit 103 drives the actuator to complete the positioning according to the calculation result of the motion planning unit, and controls the needle insertion mechanism 4 to complete automatic needle insertion. The whole process is remotely monitored by the doctor in real time at the main control terminal.
  • Step 9 the puncture needle 2 is inserted: when the needle is inserted, the puncture needle 2 detection module of the image processing unit 101 will feed back the needle insertion process of the puncture needle 2, especially the needle insertion depth, to the doctor in real time, and the doctor will judge whether the puncture needle 2 is accurate Under the pre-established puncture path to reach the target.
  • Step ten the puncture needle 2 is separated from the mechanism: after the puncture is completed, the puncture needle clamping mechanism 1043 is separated from the puncture needle 2, the actuator is reset as a whole and away from the puncture area, and the patient resumes normal breathing.
  • Step 11 biopsy sampling: the CT machine tool and mechanism exit the CT machine as a whole, and the doctor comes to the operating table and inserts the biopsy gun through the puncture channel established by the coaxial puncture needle 2 to complete the biopsy sampling.
  • Step 12 postoperative evaluation: the doctor completes the postoperative evaluation, including the evaluation of the operation process and possible postoperative complications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本申请涉及医疗设备领域,具体涉及一种CT兼容的肺部穿刺活检系统及方法,系统包括:图像处理单元,用于显示CT图像,在CT图像上确定穿刺层面,并标识出穿刺目标点和穿刺针入针点,形成术前穿刺路径规划;呼吸相检测单元,用于实时检测呼吸相,并将呼吸相检测结果传输至穿刺路径规划单元;穿刺路径规划单元,用于生成任意呼吸相下的穿刺路径,及用于调整机器人穿刺机构的穿刺姿态,使机器人穿刺机构上的穿刺针与穿刺路径共线;运动控制单元,用于控制机器人穿刺机构的运动,及控制穿刺针的穿刺运动。通过呼吸相检测单元在穿刺过程中对患者进行呼吸相的检测,使得能依据呼吸相生成优化的穿刺路径,从而实现精准穿刺,减小因误穿而导致的患者体内损伤。

Description

一种CT兼容的肺部穿刺活检系统及方法 技术领域
本发明涉及医疗设备领域,具体而言,涉及一种CT兼容的肺部穿刺活检系统及方法。
背景技术
肺癌是发病率和死亡率最高的恶性肿瘤,肺癌的早筛查、早诊断和早治疗是提高肺癌患者五年生存率的最有效的办法。肺结节(即指肺内直径≤3cm的类圆形或不规则形病灶)的性质判定是肺癌早期诊断和治疗的重要环节。经皮肺穿刺针吸活检是目前针对肺结节的主要活检方法。在此术式中,医生在超声或计算机断层扫描(CT)图像的引导下,使用穿刺针刺入目标结节处,并利用活检枪提取组织样本,通过对组织样本的病理检查以明确病变的良恶性。术中CT是经皮肺穿刺活检的主要图像引导方法:施术时,患者在局部麻醉的状态下躺在CT检查床上,医生指示患者屏息后,对患者胸腹部进行CT扫查,并依据CT扫查图像进行穿刺针路径规划。而后将穿刺针经皮刺入直达目标结节处进行组织采样,最后退出穿刺针并通过术中CT扫描确认穿刺针和结节的位置。
由于穿刺针容易对穿刺路径上的组织结构造成损伤,穿刺手术对医生的操作精度有着极高要求;同时,当利用CT引导操作时,医务人员不可避免地暴露在辐射环境中,虽有铅衣保护,但极其沉重,且无法防护面部和双手,极大地增加了医务人员辐射损伤和综合负担。主从式机器人辅助穿刺能让医生远程 操控穿刺针的运动,使得医生能够避免直接暴露在辐射环境中,并且能够有效解决解决医生操作精度不足和操作疲劳等问题。
现有的手动穿刺技术的缺点主要为:对于肺部的穿刺手术,在术中使用CT进行多次扫查时,医生长年累月所受辐射较大。为了提高穿刺的命中率以及避免医生所受辐射,现有的许多技术提出了不同结构的穿刺辅助机器人。目前现有的穿刺辅助机器人主要分为两类:一类是只提供定位功能,由医生手动穿刺;另一类是机器人自动完成定位和穿刺。这两类机器人在一定程度上提高了穿刺精度,但是均无法克服患者呼吸所带来的病灶移位等影响,特别是受呼吸影响较大的肺结节穿刺活检手术。
发明内容
本申请实施例提供了一种CT兼容的肺部穿刺活检系统及方法,以解决现有穿刺过程中呼吸所带来的病灶移位技术问题,从而实现精准的穿刺,以减小因误穿而导致的患者体内损伤及并发症。
为了解决上述问题,本申请提供了如下技术方案:
根据本发明的一实施例,提供了一种CT兼容的肺部穿刺活检系统及方法,包括图像处理单元、穿刺路径规划单元、运动控制单元、呼吸相检测单元及用于进行穿刺工作的机器人穿刺机构;
图像处理单元,用于显示CT图像,在CT图像上确定穿刺层面,并标识出穿刺目标点和穿刺针入针点,形成术前穿刺路径规划;
呼吸相检测单元,用于实时检测呼吸相,并将呼吸相检测结果传输至穿刺 路径规划单元;
穿刺路径规划单元,用于生成任意呼吸相下的穿刺路径,及用于调整机器人穿刺机构的穿刺姿态,使机器人穿刺机构上的穿刺针与穿刺路径共线;
运动控制单元,用于控制机器人穿刺机构的运动,及控制穿刺针的穿刺运动。
本申请实施例采取的技术方案还包括:图像处理单元包括:
术前路径规划模块,用于根据术前CT图像,选择合适的穿刺层面,并在穿刺层面的CT图像上选择穿刺目标点和表皮入针点,从而规划穿刺针路径;
术中CT图像采集模块,用于采集术中的CT图像;
术中影像配准模块,用于利用弹性配准实现术前CT图像与术中CT图像的叠加融合,并确定穿刺层面;
穿刺针监测模块,用于实时将穿刺针的进针过程进行反馈。
本申请实施例采取的技术方案还包括:呼吸相检测单元包括:
呼吸幅度检测模块,用于实时检测呼吸相,并发出呼吸相信号;
呼吸相判断模块,用于接收呼吸幅度检测模块发出的呼吸相信号,实时计算出在任意时刻呼吸相,并将呼吸相计算结果传输给穿刺路径规划单元。
本申请实施例采取的技术方案还包括:穿刺路径规划单元包括:
穿刺路径优化模块,用于接收呼吸相计算结果,生成任意呼吸相下的穿刺路径;
穿刺针姿态调整模块,用于接收穿刺路径调整穿刺针姿态,使穿刺针能与穿刺路径共线。
本申请实施例采取的技术方案还包括:运动控制单元包括:
执行机构控制模块,用于控制机器人穿刺机构的运动;
进针机构控制模块,用于控制穿刺针的运动。
本申请实施例采取的技术方案还包括:机器人穿刺机构包括:
拱形机架,拱形机架包括设置的拱形导轨;
拱形导轨滑块,拱形导轨滑块安装在拱形机架上,并可在拱形导轨上滑动;
升降臂,升降臂可升降移动的安装在拱形导轨滑块上;
水平臂,水平臂可水平移动的安装在升降臂上;
旋转臂,旋转臂可旋转的安装在水平臂上;
进针机构,进针机构安装在旋转臂上,用于进行穿刺工作。
本申请实施例采取的技术方案还包括:进针机构包括穿刺针、持针器及进针框架,持针器可移动的安装在进针框架上,穿刺针安装在持针器上。
本申请实施例采取的技术方案还包括:机器人穿刺机构还包括固定底座,固定底座上设置有卡锁,拱形机架的固定端可旋转的安装在固定底座上,拱形机架的自由端通过卡锁可自由开合的与固定底座锁紧或解锁。
本申请实施例采取的技术方案还包括:机器人穿刺机构还包括导轨导向滑块,拱形导轨滑块通过导轨导向滑块与拱形导轨连接。
本申请实施例采取的技术方案还包括:机器人穿刺机构包括升降臂滑块及升降臂丝杆电机,拱形导轨滑块上设置有升降臂丝杆导轨,升降臂滑块连接在升降臂丝杆导轨上,升降臂丝杆电机驱动升降臂滑块在升降臂丝杆导轨上运动。
本申请实施例采取的技术方案还包括:机器人穿刺机构包括水平臂丝杆滑块及水平臂丝杆电机,升降臂上设置有水平臂丝杆导轨,水平臂丝杆滑块连接在水平臂丝杆导轨上,水平臂丝杆电机驱动水平臂丝杆滑块在水平臂丝杆导轨上运动。
本申请实施例采取的技术方案还包括:水平臂上安装有旋转臂电机,旋转臂与旋转臂电机连接,旋转臂电机驱动旋转臂进行旋转。
本申请实施例采取的又一技术方案为:一种CT兼容的肺部穿刺活检方法,包括以下步骤:
将进行穿刺的执行机构位置进行初始化调位处理;
导入术前规划路径;
CT设备开始进行扫描;
在扫描过程中,进行呼吸相检测;
将术中扫描到的CT影像与术前带有规划路径的CT影像配准,以确定术中穿刺截面;
实时对术中CT影像进行显影标记,基于术中CT影像的显影标记、术中CT影像与术前CT影像的配准结果计算规划路径下的进针点和进针角度;
基于进针点和进针角度,完成对执行机构的定位,控制执行机构上的穿刺针进行自动进针。
本申请实施例采取的技术方案还包括:在控制执行机构上的进针机构完成自动进针中包括:
实时显示穿刺针的进针过程。
相对于现有技术,本申请实施例产生的有益效果在于:本申请实施例中的CT兼容的肺部穿刺活检系统及方法,系统包括:图像处理单元,用于显示CT图像,在CT图像上确定穿刺层面,并标识出穿刺目标点和穿刺针入针点,形成术前穿刺路径规划;呼吸相检测单元,用于实时检测呼吸相,并将呼吸相检测结果传输至穿刺路径规划单元;穿刺路径规划单元,用于生成任意呼吸相下的穿刺路径,及用于调整机器人穿刺机构的穿刺姿态,使机器人穿刺机构上的 穿刺针与穿刺路径共线;运动控制单元,用于控制机器人穿刺机构的运动,及控制穿刺针的穿刺运动。通过呼吸相检测单元在穿刺过程中对患者进行呼吸相的检测,使得能依据呼吸相生成优化的穿刺路径,从而实现精准的穿刺,减小因误穿而导致的患者体内损伤及并发症。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本发明,并不构成对本申请的不当限定。在附图中:
图1为本申请CT肺部穿刺活检系统的原理图;
图2为本申请机器人穿刺机构的结构示意图;
图3为本申请机器人穿刺机构的另一结构示意图;
图4为本申请机器人穿刺机构的又一结构示意图;
图5为本申请机器人穿刺机构的具体结构图;
图6为本申请机器人穿刺机构的另一具体结构图;
图7为本申请机器人穿刺机构的放大结构图;
图8为本申请机器人穿刺机构的水平臂内部结构图;
图9为本申请机器人穿刺机构的进针机构结构图;
图10为本申请机器人穿刺机构的进针机构结构放大图;
图11为本申请机器人穿刺机构的进针机构另一结构放大图;
图12为本申请机器人穿刺机构的进针机构又一结构放大图;
图13为本申请CT肺部穿刺活检方法的流程图;
图14为本申请CT肺部穿刺活检方法的具体流程图。
附图标记:
101-图像处理单元、102-穿刺路径规划单元、103-运动控制单元、104-机器人穿刺机构、1041-机械臂、1402-穿刺机构、1043-穿刺针夹持机构、105-呼吸相检测单元、106-操作主手;
1-可触控屏、2-穿刺针、3-持针器、4-进针机构、5-拱形导轨、6-锁定按钮、7-固定底座、8-拱形导轨滑块、9-升降臂、10-水平臂、11-导轨外壳、12-旋转臂、13-升降臂外壳、14-拱形导轨滑块外壳、15-紧停按钮、16-升降臂丝杆电机、17-升降臂丝杆导轨、18-升降臂滑块、19-水平臂丝杆电机、20-丝杆电机接线口、21-光电开关、22-导轨导向滑块、23-齿轮齿条机构、24-水平臂丝杆滑块、25-旋转臂电机、26-水平臂丝杆导轨、27-进针丝杆电机、28-法兰盘、29-持针器电机、30-进针丝杆导轨、31-持针器齿轮、32-持针器齿条、33-旋转电机、34-显影标记、35-卡锁、36-齿轮电机、37-接线处。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请 的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本申请一实施例,提供了一种CT兼容的肺部穿刺活检系统,参见图1,包括:图像处理单元101,穿刺路径规划单元102、运动控制单元103、呼吸相检测单元105及用于进行穿刺工作的机器人穿刺机构104;
图像处理单元101,用于显示CT图像,在CT图像上确定穿刺层面,并标识出穿刺目标点和穿刺针2入针点,形成术前穿刺路径规划;
呼吸相检测单元105,用于实时检测呼吸相,并将测得的呼吸相传输至穿刺路径规划单元102;
穿刺路径规划单元102,用于生成任意呼吸相下的穿刺路径,及用于调整机器人穿刺机构104的穿刺姿态,使机器人穿刺机构104上的穿刺针2与穿刺路径共线;
运动控制单元103,用于控制机器人穿刺机构104的运动,及控制穿刺针2的穿刺运动。
本申请实施例中的CT兼容的肺部穿刺活检系统及方法,系统包括:图像处理单元101,用于显示CT图像,在CT图像上确定穿刺层面,并标识出穿刺目标点和穿刺针2入针点,形成术前穿刺路径规划;呼吸相检测单元105,用于实时检测呼吸相,并将测得的呼吸相传输至穿刺路径规划单元102;穿刺路径规划单元102,用于生成任意呼吸相下的穿刺路径,及用于调整机器人穿刺机构104的穿刺姿态,使机器人穿刺机构104上的穿刺针2与穿刺路径共线; 运动控制单元103,用于控制机器人穿刺机构104的运动,及控制穿刺针2的穿刺运动。通过呼吸相检测单元105在穿刺过程中对患者进行呼吸相的检测,使得能依据呼吸相生成优化的穿刺路径,从而实现精准的穿刺,减小误穿而导致的患者体内损伤及并发症。
本申请针对肺结节穿刺活检手术中穿刺针2入针点及入针角度难以确定、穿刺过程中受呼吸影响病灶难以定位的问题,提供一种CT兼容的肺部穿刺活检系统,用以在穿刺前帮助医生定位穿刺针2,并在穿刺时完成呼吸相对应的穿刺路径实时配准,从而使得医生更加精准地刺中目标区域。本申请提出的CT兼容穿刺活检机器人尺寸兼容市面上大多数常用的CT机孔,可整体随CT机床进入CT机孔。
实施例中,图像处理单元101包括:
术前路径规划模块,用于根据术前CT图像,选择合适的穿刺层面,并在穿刺层面的CT图像上选择穿刺目标点和表皮入针点,从而规划穿刺针2路径;
术中CT图像采集模块,用于采集术中的CT图像;
术中影像配准模块,用于利用弹性配准实现术前CT图像与术中CT图像的叠加融合,并确定穿刺层面;
穿刺针2监测模块,用于实时将穿刺针2的进针过程进行反馈。
具体地,图像处理单元101包含术前路径规划模块、术中CT图像采集模块、术中CT影像配准模块以及穿刺针2监测模块。术前路径规划模块主要用于术前医生根据病人的CT图像,选择合适的穿刺层面,并在穿刺层面的CT图像上选择穿刺目标点和表皮入针点,从而规划穿刺针2路径;术中CT图像采集模块主要用于采集术中的CT图像,并让操作者实时观察被穿刺组织内部的情况;术中CT影像配准模块主要利用弹性配准实现术前与术中CT图像的 叠加融合,并确定穿刺层面。
实施例中,呼吸相检测单元105包括:
呼吸幅度检测模块,用于实时检测呼吸相,并发出呼吸相信号;
呼吸相判断模块,用于接收呼吸幅度检测模块发出的呼吸相信号,实时计算出在任意时刻呼吸相,并将呼吸相计算结果传输给穿刺路径规划单元102。
具体地,呼吸相检测单元105主要利用呼吸带实时检测病人术中的呼吸相,并利用输出的呼吸相选择对应的最佳穿刺路径;在进行呼吸相检测时,患者身上绑有用于实时检测呼吸幅度的传感器。
实施例中,穿刺路径规划单元102包括:
穿刺路径优化模块,用于接收呼吸相计算结果,生成任意呼吸相下的穿刺路径;
穿刺针姿态调整模块,用于接收穿刺路径调整穿刺针2姿态,使穿刺针2能与穿刺路径共线。
具体地,动态穿刺路径优化模块主要利用术前重构的关键器官在全呼吸相下的运动轨迹和避障算法,生成任意呼吸相下的最佳穿刺路径;穿刺针姿态调整模块主要用于调整穿刺针2姿态,使其能与规划的入针轨迹所在直线共线。
实施例中,运动控制单元103包括:
执行机构控制模块,用于控制机器人穿刺机构104的运动;
进针机构控制模块,用于控制穿刺针2的运动。
具体地,执行机构控制模块主要控制执行机构的六个自由度,依据医生主端操作的指令将机器人放置在目标位置附近;进针机构控制模块主要控制将穿刺针2刺入目标病灶处。
下面以具体实施例,对本申请的CT兼容的肺部穿刺活检系统进行详细说 明:
本申请系统包括:图像处理单元101、穿刺路径规划单元、运动控制单元103及呼吸相检测单元105。
如图1所示,图像处理单元101首先利用术前CT图像或影像,通过CT图像由医生确定穿刺层面,并在相应层面的CT图像上手动标识出穿刺目标点和穿刺针2入针点,形成术前穿刺路径规划;当患者躺在CT检查床上,并锁上穿刺机器人环状结构(拱形导轨5)后,利用术中CT图像采集模块实时采集术中CT图像;术中影像配准模块对术中的CT图像与术前规划的穿刺层面进行配准,从而确定术中的实际穿刺层面;上述模块的结果会输入到穿刺路径规划单元中的穿刺路径优化模块。
于此同时,病人身上绑有用于实时检测呼吸幅度的传感器,并由呼吸相检测单元105中的呼吸幅度检测模块将信号传至呼吸相判定模块,从而实时计算出患者在任意时刻所处于的呼吸相,并将呼吸相计算结果传输给穿刺路径优化模块;当呼吸相判定模块指示呼吸相进入术前预定好的呼吸门控范围内时,医生可以进行穿刺,并示意患者屏息,穿刺路径规划单元中的穿刺路径优化模块会将相应的穿刺路径输入至穿刺针姿态调整模块,用以确定穿刺针2从当前位置到拟定穿刺位置需要如何动作。
如图2所示,之后由运动控制单元103中的执行机构控制模块控制穿刺机器人(机器人穿刺机构104)中的机械臂1041和进针机构4运动到指定位置,从而使得穿刺针2所在直线与规划的穿刺针2路径共线,。之后由医生控制操作主手106控制进针机构4控制模块,从而推进穿刺针2进针或者后退。进针机构4控制模块依据前进或后退的距离将穿刺针2位置显示在术中CT影像中,并通过医学图像处理单元101模块中的穿刺针2健侧模块将图像反馈给医生。 图2至图4为本申请机器人穿刺机构104的结构图,机器人穿刺机构104包括:机械臂1041为三自由度的机械臂1041,负责将末端的三自由度的穿刺机构1042运动到空间指定位置,穿刺针夹持机构1043负责穿刺针2的夹持和脱离。
图5至图12所示,本申请系统包括还机器人穿刺机构104;机器人穿刺机构104具体包括部分为拱形导轨5、拱形导轨滑块8、升降臂9、水平臂10、旋转臂12和进针机构4;拱形导轨5及导轨外壳11主要包括齿轮齿条机构23作为驱动模块、导轨导向滑块22作为导向模块,齿轮齿条机构23由齿轮电机36驱动。其中,
拱形机架包括设置的拱形导轨5;机器人穿刺机构104还包括固定底座7,固定底座7上设置有卡锁35;拱形导轨5的固定端通过铰链可旋转的连接在固定底座7上,拱形机架的自由端通过卡锁35可自由开合的与固定底座7锁紧或解锁。
拱形导轨滑块8安装在拱形机架上,并可在拱形导轨5上滑动;拱形导轨滑块8通过导轨导向滑块22与拱形导轨5连接,可沿导轨运动,实现穿刺机构1042的横向运动。固定底座7上配有接线处37,拱形导轨5固定端配有紧停按钮15,用于物理安全干预。
升降臂9可升降移动的安装在拱形导轨滑块8上;机器人穿刺机构104包括升降臂滑块18及升降臂丝杆电机16,拱形导轨滑块8上设置有升降臂丝杆导轨17,升降臂丝杆电机16驱动升降臂滑块18在升降臂丝杆导轨17上运动;另外,升降臂9外包裹有升降臂外壳13,并通过升降臂滑块18连接在升降臂丝杆导轨17上,由升降臂丝杆电机16驱动,实现纵向升降运动。升降臂丝杆导轨17由拱形导轨滑块外壳14包裹,配有丝杆电机接线口20,以及用于滑轨限位作用的光电开关21。
水平臂10可水平移动的安装在升降臂9上;机器人穿刺机构104包括水平臂丝杆滑块24及水平臂丝杆电机19,升降臂9上设置有水平臂丝杆导轨26,水平臂丝杆电机19驱动水平臂丝杆滑块24在水平臂丝杆导轨26上运动;水平臂10刚性连接在水平臂丝杆滑块24上,随水平臂丝杆滑块24在水平臂丝杆导轨26上运动。水平臂10主要用于提供头脚向平移自由度,旋转臂电机25刚性连接在水平臂10中,随水平臂10一起作平移运动。
旋转臂12可旋转的安装在水平臂10上;水平臂10上安装有旋转臂电机25,旋转臂12与旋转臂电机25连接,旋转臂电机25驱动旋转臂12进行旋转;旋转臂12一端通过转轴刚性连接旋转臂电机25,实现末端穿刺机构1042的翻滚角调整。旋转臂12另一端通过转轴和法兰盘28与进针机构4刚性连接,进针机构4和转轴由刚性固定在旋转臂12中的旋转电机33驱动,实现末端穿刺机构1042俯仰角(在图中标明)的运动。旋转臂12上配有锁定按钮6和显影标记34,前者用于锁定旋转自由度,后者用于CT下的显影定位。
进针机构4安装在旋转臂12上,用于进行穿刺工作;进针机构4包括。进针机构4主要包括穿刺针2、持针器3、进针框架及进针丝杆导轨30,持针器3可移动的安装在进针框架上,穿刺针2安装在持针器3上。持针器3刚性固定在进针丝杆导轨30的滑块上,由进针丝杆电机27驱动完成进/退针运动。持针器3通过持针器齿轮31和持针器齿条32实现开合运动,由刚性连接在进针丝杆导轨30的滑块上的持针器电机29驱动。进针机构4同样装有显影标记34,用于CT下显示穿刺的姿态。此外,本申请提出的穿刺机器人还装有可触控屏1,上有功能按键,使得医生能够在手术台旁微调机构位置和整体位姿锁定。
患者进入CT机孔后,依据术前规划信息与术中实时CT影像进行快速配 准,用以确定术中穿刺截面坐在位置,在可调呼吸门控下患者按照医嘱短暂屏息,拱形导轨滑块8、升降臂9、水平臂10和旋转臂12快速调整位姿完成定位,进针机构4通过持针器3夹持穿刺针2并完成同轴针插入,插入后持针器3与穿刺针2脱离。医生可通过同轴针建立的通道插入活检枪完成活检取样。
本申请采用了拱形结构作为穿刺机器人的基本结构,以满足CT兼容的设计要求。固定于手术床上的拱形机架分别搭载三自由度机械结构,三自由度机械结构包括拱形运动机构(拱形导轨滑块8)、升降运动机构(升降臂9)及水平运动机构(水平臂10)以实现机构的平移运动和弧线运动,三自由度穿刺机构1042(旋转臂12及进针机构4)可实现进针机构4的俯仰和摆动角度调整以及进/退针,穿刺针夹持机构1043负责夹持和脱离穿刺针2。其中,拱形臂由齿轮齿条导轨实现,升降臂9、水平臂10和进针机构4由丝杆导轨实现,旋转臂12由两个旋转电机33驱动,穿刺针夹持机构1043由齿轮齿条实现。穿刺机构1042参数设置为:进针机构4俯仰范围45度、摆动范围360度、进退针运动范围110mm;滑动机械臂1041参数设置为:平移模组运动范围166mm×123mm;弧线模组运动范围180度。此外,为使穿刺机构1042能够在CT下显影以进行坐标转换,穿刺机构1042还装有光学标记系统。拱形机械臂1041分别采用可开闭方式,并且可在术中由机构触控屏上的功能按键进行微调和锁定位置完成初始化标定。
参见图13,根据本申请的另一实施例,提供了一种CT肺部穿刺活检方法,该方法能通过使用上述系统中的特征实现CT肺部穿刺活检方法,方法包括以下步骤:
S101:将进行穿刺的穿刺执行机构位置进行初始化调位处理;
S102:导入术前规划路径;
S103:CT设备开始进行扫描;
S104:在扫描过程中,进行呼吸相检测;
S105:将术中扫描到的CT影像与术前带有规划路径的CT影像配准,以确定术中穿刺截面;
S106:实时对术中CT影像进行显影标记,基于术中CT影像的显影标记、术中CT影像与术前CT影像的配准结果计算规划路径下的进针点和进针角度;
S107:基于进针点和进针角度,完成对执行机构的定位,控制执行机构上的穿刺针进行自动进针。
本申请通过术前CT影像下的穿刺路径规划与术中实时CT扫描结果的配准,实现一定误差范围内的呼吸门控穿刺,提高了穿刺活检特别是受呼吸影响较大的肺结节穿刺活检的准确性、效率和安全性。本申请通过在穿刺过程中对患者进行呼吸相的检测,使得能依据呼吸相生成优化的穿刺路径,从而实现精准的穿刺,减小误穿而导致的患者体内损伤及并发症。
参见图1、图5、13和14,下面以具体实施例,对本申请实施的CT兼容的肺部穿刺活检方法的工作流程进行详细说明:
步骤一,术前预备:拱形导轨5自由端与固定底座7分离,机构本体打开,患者进入CT检查床,按照医嘱选择合适的穿刺体位,最后拱形导轨5关闭,卡锁35锁紧。
步骤二,穿刺机构1042位置初调:医生操控操作主手106将执行机构(机器人穿刺机构104)移动到患者手术区域上方,再由助手在执行机构旁通过可触控屏1控制三自由度滑轨机构和三自由度穿刺机构1042,使得穿刺机构1042更加,安装穿刺同轴针,最后锁定机构完成初始化。
步骤三,导入术前规划路径:医生在主控端将术前采集的包含整个完整呼 吸相的CT影像及其对应的穿刺路径规划结果导入到图像处理单元101,导入的数据中已包括术前医生通过人机交互识别模块选取的最优呼吸相下的最优穿刺路径结果。
步骤四,术中CT扫查:医生远程控制CT机床和执行机构一起进入CT机孔,患者按照术前呼吸训练的指示正常呼吸,CT机开始扫描。
步骤五,呼吸相监测:图像处理单元101中的图像采集模块采集术中实时CT数据,医生通过主控端显示屏实时监控,当患者呼吸状态处于术前预定好的呼吸门控范围内时,医生指示患者立即屏息。
步骤六,影像配准:图像处理单元101迅速完成术中CT与术前带有规划路径的CT影像配准,以确定术中穿刺截面。
步骤七,运动规划:运动规划单元按照术中实时CT下的显影标记34、术中CT与术前CT的配准结果计算规划路径下的进针点和进针角度。
步骤八,运动执行:运动控制单元103依据运动规划单元的计算结果驱动执行机构完成定位,并控制进针机构4完成自动进针,整个过程由医生在主控端远程实时监控。
步骤九,穿刺针2进针:进针时,图像处理单元101的穿刺针2检测模块实时将穿刺针2的进针过程特别是进针深度实时反馈给医生,由医生判断穿刺针2是否准确按照预先制定的穿刺路径抵达目标处。
步骤十,穿刺针2与机构分离:穿刺完成后,穿刺针夹持机构1043脱离穿刺针2,执行机构整体复位远离穿刺区域,患者恢复正常呼吸。
步骤十一,活检取样:CT机床与机构整体退出CT机,医生来到手术台前通过同轴穿刺针2建立好的穿刺通道插入活检枪,完成活检取样。
步骤十二,术后评估:医生完成术后评估,包括手术流程和术后可能并发 症的评估。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种CT兼容的肺部穿刺活检系统,其特征在于,包括:图像处理单元、穿刺路径规划单元、运动控制单元、呼吸相检测单元及用于进行穿刺工作的机器人穿刺机构;
    所述图像处理单元,用于显示CT图像,在所述CT图像上确定穿刺层面,并标识出穿刺目标点和穿刺针入针点,形成术前穿刺路径规划;
    所述呼吸相检测单元,用于实时检测呼吸相,并将测得的呼吸相数据传输至所述穿刺路径规划单元;
    所述穿刺路径规划单元,用于生成任意所述呼吸相下的穿刺路径,及用于调整所述机器人穿刺机构的穿刺姿态,使所述机器人穿刺机构上的穿刺针与穿刺路径共线;
    所述运动控制单元,用于控制所述机器人穿刺机构的运动,及控制所述穿刺针的穿刺运动。
  2. 根据权利要求1所述的CT兼容的肺部穿刺活检系统,其特征在于,所述图像处理单元包括:
    术前路径规划模块,用于根据术前CT图像,选择合适的穿刺层面,并在穿刺层面的CT图像上选择穿刺目标点和表皮入针点,从而规划穿刺针路径;
    术中CT图像采集模块,用于采集术中的CT图像;
    术中影像配准模块,用于利用弹性配准实现术前CT图像与术中CT图像的叠加融合,并确定穿刺层面;
    穿刺针监测模块,用于实时将所述穿刺针的进针过程进行反馈。
  3. 根据权利要求1所述的CT兼容的肺部穿刺活检系统,其特征在于,所述呼吸相检测单元包括:
    呼吸幅度检测模块,用于实时检测呼吸相,并发出呼吸相信号;
    呼吸相判断模块,用于接收所述呼吸幅度检测模块发出的呼吸相信号,实时计算出在任意时刻呼吸相,并将呼吸相计算结果传输给所述穿刺路径规划单元。
  4. 根据权利要求3所述的CT兼容的肺部穿刺活检系统,其特征在于,所述穿刺路径规划单元包括:
    穿刺路径优化模块,用于接收所述呼吸相计算结果,生成任意呼吸相下的穿刺路径;
    穿刺针姿态调整模块,用于接收所述穿刺路径调整穿刺针姿态,使所述穿刺针能与所述穿刺路径共线。
  5. 根据权利要求1所述的CT兼容的肺部穿刺活检系统,其特征在于,所述运动控制单元包括:
    执行机构控制模块,用于控制所述机器人穿刺机构的运动;
    进针机构控制模块,用于控制所述穿刺针的运动。
  6. 根据权利要求1所述的CT兼容的肺部穿刺活检系统,其特征在于,所述机器人穿刺机构包括:
    拱形机架,所述拱形机架包括设置的拱形导轨;
    拱形导轨滑块,所述拱形导轨滑块安装在所述拱形机架上,并可在所述拱形导轨上滑动;
    升降臂,所述升降臂可升降移动的安装在所述拱形导轨滑块上;
    水平臂,所述水平臂可水平移动的安装在所述升降臂上;
    旋转臂,所述旋转臂可旋转的安装在所述水平臂上;
    进针机构,所述进针机构安装在所述旋转臂上,用于进行穿刺工作。
  7. 根据权利要求6所述的CT兼容的肺部穿刺活检系统,其特征在于,所述 进针机构包括穿刺针、持针器及进针框架,所述持针器可移动的安装在所述进针框架上,所述穿刺针安装在所述持针器上。
  8. 根据权利要求6所述的CT兼容的肺部穿刺活检系统,其特征在于,所述机器人穿刺机构还包括固定底座,所述固定底座上设置有卡锁,所述拱形机架的固定端可旋转的安装在所述固定底座上,所述拱形机架的自由端通过所述卡锁可自由开合的与所述固定底座锁紧或解锁。
  9. 根据权利要求6所述的CT兼容的肺部穿刺活检系统,其特征在于,所述机器人穿刺机构还包括导轨导向滑块,所述拱形导轨滑块通过所述导轨导向滑块与所述拱形导轨连接。
  10. 根据权利要求6所述的CT兼容的肺部穿刺活检系统,其特征在于,所述机器人穿刺机构包括升降臂滑块及升降臂丝杆电机,所述拱形导轨滑块上设置有升降臂丝杆导轨,所述升降臂滑块连接在所述升降臂丝杆导轨上,所述升降臂丝杆电机驱动所述升降臂滑块在所述升降臂丝杆导轨上运动。
  11. 根据权利要求6所述的CT兼容的肺部穿刺活检系统,其特征在于,所述机器人穿刺机构包括水平臂丝杆滑块及水平臂丝杆电机,所述升降臂上设置有水平臂丝杆导轨,所述水平臂丝杆滑块连接在所述水平臂丝杆导轨上,所述水平臂丝杆电机驱动所述水平臂丝杆滑块在所述水平臂丝杆导轨上运动。
  12. 根据权利要求6所述的CT兼容的肺部穿刺活检系统,其特征在于,所述水平臂上安装有旋转臂电机,所述旋转臂与所述旋转臂电机连接,所述旋转臂电机驱动所述旋转臂进行旋转。
  13. 一种CT兼容的肺部穿刺活检方法,其特征在于,包括以下步骤:
    将进行穿刺的执行机构位置进行初始化调位处理;
    导入术前规划路径;
    CT设备开始进行扫描;
    在扫描过程中,进行呼吸相检测;
    将术中扫描到的CT影像与术前带有规划路径的CT影像配准,以确定术中穿刺截面;
    实时对术中CT影像进行显影标记,基于术中CT影像的所述显影标记、术中所述CT影像与术前所述CT影像的配准结果计算规划路径下的进针点和进针角度;
    基于所述进针点和进针角度,完成对所述执行机构的定位,控制所述执行机构上的穿刺针进行自动进针。
  14. 根据权利要求13所述的CT兼容的肺部穿刺活检方法,其特征在于,在所述控制所述执行机构上的进针机构完成自动进针中包括:
    实时显示所述穿刺针的进针过程。
PCT/CN2021/122164 2021-09-30 2021-09-30 一种ct兼容的肺部穿刺活检系统及方法 WO2023050307A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122164 WO2023050307A1 (zh) 2021-09-30 2021-09-30 一种ct兼容的肺部穿刺活检系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122164 WO2023050307A1 (zh) 2021-09-30 2021-09-30 一种ct兼容的肺部穿刺活检系统及方法

Publications (1)

Publication Number Publication Date
WO2023050307A1 true WO2023050307A1 (zh) 2023-04-06

Family

ID=85781134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122164 WO2023050307A1 (zh) 2021-09-30 2021-09-30 一种ct兼容的肺部穿刺活检系统及方法

Country Status (1)

Country Link
WO (1) WO2023050307A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117338422A (zh) * 2023-10-30 2024-01-05 赛诺威盛医疗科技(扬州)有限公司 空间注册及运动学解算机器人控制方法、系统及装置
CN117731376A (zh) * 2024-02-20 2024-03-22 四川省肿瘤医院 一种妇科肿瘤影像术前智能导向识别系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102755195A (zh) * 2011-04-29 2012-10-31 陈德路 肿瘤等中心多角度非共面经皮穿刺方法
CN102949240A (zh) * 2011-08-26 2013-03-06 高欣 一种影像导航肺部介入手术系统
CN109330683A (zh) * 2018-09-07 2019-02-15 天津市肿瘤医院 一种基于患者肺部4d-ct的介入穿刺路径安全性评估方法
CN110638528A (zh) * 2018-06-26 2020-01-03 上海交通大学 手持式超声引导神经阻滞机器人
WO2020064924A1 (en) * 2018-09-27 2020-04-02 Koninklijke Philips N.V. Guidance in lung intervention procedures
CN111067622A (zh) * 2019-12-09 2020-04-28 天津大学 一种面向肺部经皮穿刺的呼吸运动补偿方法
CN112286205A (zh) * 2020-11-13 2021-01-29 毕建平 一种穿刺路径规划方法、系统及机器人
CN113100935A (zh) * 2021-04-13 2021-07-13 上海大学 一种肺部穿刺手术术前穿刺路径规划方法及训练系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102755195A (zh) * 2011-04-29 2012-10-31 陈德路 肿瘤等中心多角度非共面经皮穿刺方法
CN102949240A (zh) * 2011-08-26 2013-03-06 高欣 一种影像导航肺部介入手术系统
CN110638528A (zh) * 2018-06-26 2020-01-03 上海交通大学 手持式超声引导神经阻滞机器人
CN109330683A (zh) * 2018-09-07 2019-02-15 天津市肿瘤医院 一种基于患者肺部4d-ct的介入穿刺路径安全性评估方法
WO2020064924A1 (en) * 2018-09-27 2020-04-02 Koninklijke Philips N.V. Guidance in lung intervention procedures
CN111067622A (zh) * 2019-12-09 2020-04-28 天津大学 一种面向肺部经皮穿刺的呼吸运动补偿方法
CN112286205A (zh) * 2020-11-13 2021-01-29 毕建平 一种穿刺路径规划方法、系统及机器人
CN113100935A (zh) * 2021-04-13 2021-07-13 上海大学 一种肺部穿刺手术术前穿刺路径规划方法及训练系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 1 October 2017, NORTHEASTERN UNIVERSITY, CN, article BAO, NAN: "The Key Technologies Research of Trajectory Planning and Surgery Navigation in CT Image-guide Lung Puncture", pages: 1 - 126, XP009544908 *
ANDREAS MELZER ; BERND GUTMANN ; THOMAS REMMELE ; RENATE WOLF ; ANDREAS LUKOSCHECK ; MICHAEL BOCK ; HUBERT BARDENHEUER ; HARALD FI: "INNOMOTION for Percutaneous Image-Guided Interventions", IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, vol. 27, no. 3, 1 May 2008 (2008-05-01), US , pages 66 - 73, XP011215479, ISSN: 0739-5175 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117338422A (zh) * 2023-10-30 2024-01-05 赛诺威盛医疗科技(扬州)有限公司 空间注册及运动学解算机器人控制方法、系统及装置
CN117338422B (zh) * 2023-10-30 2024-04-05 赛诺威盛医疗科技(扬州)有限公司 空间注册及运动学解算机器人控制方法、系统及装置
CN117731376A (zh) * 2024-02-20 2024-03-22 四川省肿瘤医院 一种妇科肿瘤影像术前智能导向识别系统
CN117731376B (zh) * 2024-02-20 2024-04-19 四川省肿瘤医院 一种妇科肿瘤影像术前智能导向识别系统

Similar Documents

Publication Publication Date Title
Boctor et al. Three‐dimensional ultrasound‐guided robotic needle placement: an experimental evaluation
US10010308B2 (en) System and method for CT-guided needle biopsy
CA2589569C (en) Mri biopsy device
Boctor et al. A dual-armed robotic system for intraoperative ultrasound guided hepatic ablative therapy: a prospective study
US12208220B2 (en) Active distal tip drive
WO2023050307A1 (zh) 一种ct兼容的肺部穿刺活检系统及方法
US20230329749A1 (en) Ultrasonographic device
WO2017043926A1 (ko) 의료영상을 사용하는 중재시술 가이드 방법 및 이를 위한 중재시술 시스템
WO2017050201A1 (zh) 微创医疗机器人系统
CN113558735A (zh) 一种面向胆道穿刺的机器人穿刺定位方法及装置
EP1649822A1 (en) System and method for planning treatment of tissue
CN113940733B (zh) 一种ct兼容的肺部穿刺活检系统及方法
JP2004517659A (ja) 診断撮像介入装置
CN112353461B (zh) Ct实时定位精准穿刺机器人
CN112244953B (zh) 用于自动穿刺的机器手
US20210169583A1 (en) Method for maintaining localization of distal catheter tip to target during ventilation and/or cardiac cycles
KR20220166830A (ko) 캐뉼러 조립체
US20250107820A1 (en) Image-guided robotic system and method with step-wise needle insertion
WO2023019479A1 (zh) 一种面向胆道穿刺的机器人穿刺定位方法及装置
CN116236288A (zh) 一种微型穿刺机器人、穿刺系统及穿刺控制模型
US12144602B2 (en) Six degrees of freedom from a single inductive pickup coil sensor
CN113940759B (zh) 穿刺手术主控台及穿刺机器人
US20240206862A1 (en) Intelligent articulation management for endoluminal devices
JP2002034969A (ja) 断層撮影装置
Huang et al. An ultrasound-directed robotic system for microwave ablation of liver cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21958881

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21958881

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2024)