[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023010970A1 - 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 - Google Patents

一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 Download PDF

Info

Publication number
WO2023010970A1
WO2023010970A1 PCT/CN2022/095680 CN2022095680W WO2023010970A1 WO 2023010970 A1 WO2023010970 A1 WO 2023010970A1 CN 2022095680 W CN2022095680 W CN 2022095680W WO 2023010970 A1 WO2023010970 A1 WO 2023010970A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
cobalt
positive electrode
nickel
electrode material
Prior art date
Application number
PCT/CN2022/095680
Other languages
English (en)
French (fr)
Inventor
谢英豪
余海军
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to ES202390097A priority Critical patent/ES2985643A2/es
Priority to GB2310073.8A priority patent/GB2617724A/en
Priority to DE112022000283.2T priority patent/DE112022000283T5/de
Priority to HU2400100A priority patent/HUP2400100A1/hu
Publication of WO2023010970A1 publication Critical patent/WO2023010970A1/zh
Priority to US18/230,210 priority patent/US20240018014A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium-ion battery materials, in particular to a high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material and a preparation method thereof.
  • the commonly used lithium ion cathode materials mainly include lithium cobaltate, lithium nickelate, lithium iron phosphate, etc.
  • lithium nickel cobalt manganese oxide is an improved ternary material as a single doped anion material, which can effectively make up for lithium nickelate and manganate.
  • Lithium and lithium cobalt oxide have excellent electrochemical performance, stable discharge platform, wide working voltage and good safety performance.
  • the existing commonly used lithium nickel manganese oxide preparation methods such as solid phase method or co-precipitation method, because the precursor raw material powder is mostly mixed by ball milling or grinding, it is difficult to achieve sufficient mixing of the components, and the dispersion and uniformity are not high.
  • the final product prepared also faces the defects of uneven particle size distribution, agglomeration and low purity.
  • the preparation process takes a long time and has low efficiency; although the sol-gel method or CVD method can make the raw materials mix evenly, the preparation The finished product reaches a uniform particle size distribution, but the required conditions are harsh, the requirements for the preparation equipment and the environment are high, the repeatability is low, and it is difficult to achieve large-scale production.
  • the object of the present invention is to provide a method for preparing a high-performance power battery-type nickel-cobalt-lithium manganese oxide positive electrode material.
  • the method combines gel method, spray drying method and high-temperature solid-phase method to prepare
  • the obtained product has high stability and good uniform dispersion, which not only effectively retains the high charge-discharge efficiency of the positive electrode material, but also improves the stability of the lithium-deintercalation cycle of the overall material; the preparation method has simple operation steps and low equipment requirements, and can be Realize industrialized mass production.
  • a method for preparing a high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material comprising the following steps:
  • Precursor A is placed in a spray dryer and granulated by spray drying to obtain precursor powder B;
  • the second lithium source is lithium acetate, and the molar ratio of lithium atoms in the second carbon source to the first carbon source is 1:1;
  • the carbon source is glucose, maltose, trehalose At least one of them;
  • the organic solvent of the present invention adopts a carboxylic acid with a specific carbon atom chain, which not only has the effect of a solvent and a dispersant, but also can effectively connect lithium, nickel, manganese and Cobalt atoms, which increase the tap density of the final product.
  • the preparation of precursor powder by spray drying method can avoid the defect of uneven product agglomeration caused by traditional solid phase grinding method. At the same time, this method has short operation time, high repeatability and high production efficiency.
  • the introduction of lithium and carbon sources through the sol-gel method can ensure that the lithium source can form a network connection with other components before sintering, compared to the direct mixing of lithium or carbon sources or re-mixing in the process of spray granulation.
  • the uniformity of the product is higher, and the thickness of the coated amorphous carbon layer can be guaranteed to be uniform.
  • the power battery After the power battery is prepared, it can effectively isolate the positive electrode material and the electrolyte, avoid the reaction between the two, and provide the cycle stability and thermal stability of the material. sex.
  • the preparation method of the nickel-cobalt-lithium manganese oxide positive electrode material for high-performance power batteries in the present invention includes a melt-mixing method, a spray-drying method, a sol-gel method and a high-temperature solid-phase method, and the components of the precursor are uniformly combined to obtain a product
  • the particle size is uniform, the electrochemical performance is excellent, and the cycle stability is high; the method has simple operation steps, low raw material cost, short time consumption, high production efficiency, and can realize industrialized large-scale production.
  • the molar concentration of metal ions in the precursor A in step (1) is 3-4.5 mol/L.
  • the first lithium source described in step (1) includes at least one of lithium acetate, lithium citrate, lithium carbonate, and lithium hydroxide;
  • the nickel source includes nickel acetate, nickel citrate, nickel carbonate, hexahydrate At least one of nickel nitrate;
  • the cobalt salt includes at least one of cobalt acetate, cobalt citrate, cobalt carbonate, cobalt nitrate hexahydrate;
  • the manganese salt includes manganese acetate, manganese citrate, manganese nitrate hexahydrate at least one of .
  • the precursor A in step (1) also includes a viscosity modifier, the concentration of the viscosity modifier is 2 to 3g/L, and the viscosity modifier includes glyoxal, glutaraldehyde, benzaldehyde, At least one of cinnamaldehyde.
  • the viscosity of precursor A before spray granulation can be effectively adjusted to avoid nozzle clogging or discontinuous spraying.
  • the feed rate of the spray dryer is 1000-2000mL/h
  • the nozzle pressure is 0.4-0.6MPa
  • the feed temperature is 450-550°C
  • the discharge The temperature is 350-450°C.
  • the particles of the obtained powder product are uniformly dispersed, the feeding process efficiency is high, and phenomena such as nozzle clogging or discontinuous spraying do not occur.
  • the heating temperature in step (3) is 70-80° C., and the heating time is 1-2 hours.
  • the citric acid can fully chelate the cations to form a tightly connected gel network, and at the same time, the carbon source can fully wrap the precursor and the lithium source, ensuring the uniformity of the carbon-coated positive electrode material prepared subsequently.
  • the ratio can ensure that citric acid can fully chelate cations in the gel formation process, and at the same time, the added amount of carbon source can make the finally generated amorphous carbon layer take into account the specific capacity and cycle stability of the positive electrode material, avoiding The cycle stability of the material is lacking due to too thin carbon layer, or the overall theoretical capacity of the material is reduced due to too thick carbon layer.
  • the precursor gel mixture C in step (3) also contains a thickener, the thickener is sodium alginate, and the mass ratio of sodium alginate to water is 1-1.5:10.
  • sodium alginate As a natural substance that is easily soluble in water, sodium alginate itself has a certain viscosity. When it is introduced into the gel as a thickener, it can further fix the insoluble powder of the precursor and ensure the uniformity of the overall gel.
  • the feed rate of the spray dryer is 1500-3000mL/h
  • the nozzle pressure is 0.2-0.3MPa
  • the feed temperature is 150-100°C
  • the discharge The temperature is 80-100° C., and the spray drying and granulation process is protected by an inert atmosphere.
  • step (4) Because the raw material of the spray drying process described in step (4) is the gel of mixed powder particles, specific processing operations are required to ensure that the spray granulated product is evenly dispersed and the preparation process is continuous and efficient; if the nozzle pressure is too low, it cannot be processed in time. It is inefficient to push the high-quality mixed precursor out for granulation; if the pressure is too high, it may cause clogging of the nozzle or uneven particles.
  • the volume ratio of nitrogen to hydrogen in step (4) is 95:5.
  • the addition of a small amount of reducing atmosphere in a specific proportion can prevent other components in the sample from being oxidized due to a small amount of oxygen or other impurities remaining in the pyrolysis process of the amorphous carbon in the sample, improving the purity and theoretical capacity of the product.
  • Another object of the present invention is to provide the nickel-cobalt lithium manganese oxide cathode material prepared by the method for preparing the high-performance power battery nickel-cobalt lithium manganese oxide cathode material.
  • the nickel-cobalt lithium manganese oxide positive electrode material of the present invention is prepared by a composite method, which not only has high purity but also is uniformly dispersed; after the material is modified by coating with a carbon layer, its structure when lithium is deintercalated after being prepared into a power battery is effectively improved High stability, thermal stability and cycle efficiency.
  • the present invention provides a method for preparing a high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material, which combines melt-mixing method, spray-drying method, sol-gel method and high-temperature solid-phase method, The components of the precursor are uniformly combined to obtain a product with uniform particle size, excellent electrochemical performance, and high cycle stability; the method has simple operation steps, low raw material cost, short time consumption, high production efficiency, and can realize large-scale industrialization Production; the present invention also provides the nickel-cobalt-lithium-manganese-oxide cathode material prepared by the method, which has high charge-discharge specific capacity, high thermal stability and cycle stability.
  • FIG. 1 is an SEM image of the nickel-cobalt-lithium-manganese-oxide cathode material prepared in Example 1 of the present invention.
  • precursor A (1) Add lithium acetate, nickel acetate, cobalt acetate and manganese acetate and 6g glyoxal to 3L dodecanoic acid in a molten state and process the mixture with ultrasonic vibration for 40min to obtain precursor A;
  • Precursor A is placed in a spray dryer, and the spray drying method is used to granulate at a feed rate of 1500mL/h to obtain precursor powder B; the nozzle pressure of the spray dryer is set to 0.5MPa, and the feed The temperature is set to 500°C, and the discharge temperature is set to 400°C;
  • the precursor gel mixture C into a spray dryer containing an inert protective atmosphere, and use the spray drying method to granulate to obtain a precursor powder D; heat the precursor powder D to 650° C. for 12 hours, During the heat preservation period, a mixed gas of nitrogen and hydrogen is introduced as a protective atmosphere to obtain the high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material; the volume ratio of nitrogen and hydrogen is 95:5; the spray-drying method is used to produce When granulating, the feed rate of the spray dryer is 2000mL/h, the nozzle pressure is set to 0.3MPa, the feed temperature is set to 120°C, and the discharge temperature is set to 100°C.
  • Lithium citrate, nickel citrate, cobalt citrate and manganese citrate and 9g glyoxal are added to 3L dodecanoic acid in molten state and the mixture is ultrasonically vibrated for 1h to obtain precursor A;
  • Precursor A is placed in a spray dryer, and the spray drying method is used to granulate at a feed rate of 1000mL/h to obtain precursor powder B; the nozzle pressure of the spray dryer is set to 0.4MPa, and the feed The temperature is set to 550°C, and the discharge temperature is set to 450°C;
  • the precursor gel mixture C into a spray dryer containing an inert protective atmosphere, and use the spray drying method to granulate to obtain a precursor powder D; heat the precursor powder D to 700 ° C for 10 h, During the heat preservation period, a mixed gas of nitrogen and hydrogen is introduced as a protective atmosphere to obtain the high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material; the volume ratio of nitrogen and hydrogen is 95:5; the spray-drying method is used to produce When granulating, the feed rate of the spray dryer is 1500mL/h, the nozzle pressure is set to 0.3MPa, the feed temperature is set to 100°C, and the discharge temperature is set to 80°C.
  • precursor A Li, Ni, Co .
  • Precursor A is placed in a spray dryer, and the spray drying method is used to granulate at a feed rate of 1500mL/h to obtain precursor powder B; the nozzle pressure of the spray dryer is set to 0.5MPa, and the feed The temperature is set to 500°C, and the discharge temperature is set to 400°C;
  • the precursor gel mixture C into a spray dryer containing an inert protective atmosphere, and use the spray drying method to granulate to obtain a precursor powder D; heat the precursor powder D to 600° C. for 15 hours, During the heat preservation period, a mixed gas of nitrogen and hydrogen is introduced as a protective atmosphere to obtain the high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material; the volume ratio of nitrogen and hydrogen is 95:5; the spray-drying method is used to produce When granulating, the feed rate of the spray dryer is 2000mL/h, the nozzle pressure is set to 0.3MPa, the feed temperature is set to 120°C, and the discharge temperature is set to 100°C.
  • a comparative example of the preparation method of the high-performance power battery lithium manganese nickel manganese oxide cathode material of the present invention comprises the following steps:
  • precursor A (1) Add lithium acetate, nickel acetate, cobalt acetate and manganese acetate and 6g glyoxal to 3L dodecanoic acid in a molten state and process the mixture with ultrasonic vibration for 40min to obtain precursor A;
  • Precursor A is placed in a spray dryer, and the spray drying method is used to granulate at a feed rate of 1500mL/h to obtain precursor powder B; the nozzle pressure of the spray dryer is set to 0.5MPa, and the feed The temperature is set to 500°C, and the discharge temperature is set to 400°C;
  • the precursor gel mixture C into a spray dryer containing an inert protective atmosphere, and use the spray drying method to granulate to obtain a precursor powder D; heat the precursor powder D to 650° C. for 12 hours, During the heat preservation period, a mixed gas of nitrogen and hydrogen is introduced as a protective atmosphere to obtain the high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material; the volume ratio of nitrogen and hydrogen is 95:5; the spray-drying method is used to produce When granulating, the feed rate of the spray dryer is 3000mL/h, the nozzle pressure is set to 0.3MPa, the feed temperature is set to 100°C, and the discharge temperature is set to 800°C.
  • the only difference between this comparative example and Example 1 is that the time for the ultrasonic vibration treatment in step (3) is 5 hours.
  • the products obtained in Examples 1 to 3 have higher cycle stability and discharge specific capacity than the comparative products, and the discharge specific capacity of the products obtained in Example 1 can still reach 142mAh/g after 200 cycles. It was observed under a scanning electron microscope, as shown in Figure 1, the material was uniformly dispersed without agglomeration.
  • the product obtained in Comparative Example 1 did not introduce the sol-gel method, and the subsequent preparation product did not have the protection of amorphous carbon, and the cycle stability of the product was poor; the carbon source addition ratio of the product obtained in Comparative Example 2 and 3 was not appropriate, and the product could not take into account the high
  • the discharge specific capacity and cycle stability of the product obtained in Comparative Example 4 were insufficient in the dispersibility of the components due to the short ultrasonic dispersion time during the preparation of the precursor, which also affected the final cycle stability of the product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种高性能动力电池镍钴锰酸锂正极材料及其制备方法,属于锂离子电池材料技术领域。本发明所述镍钴锰酸锂正极材料的制备方法结合融溶混合法、喷雾干燥法、溶胶凝胶法以及高温固相法,将前驱体各组分结合均匀,制得产品粒径均一且电化学性能优异,循环稳定性高;所述方法操作步骤简单,原料成本低,耗时短,生产效率高,可实现工业化大规模生产。本发明还提供了所述方法制备的镍钴锰酸锂正极材料,该材料充放电比容量高,热稳定性及循环稳定性高。

Description

一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 技术领域
本发明涉及锂离子电池材料领域,具体涉及一种高性能动力电池镍钴锰酸锂正极材料及其制备方法。
背景技术
新能源汽车,尤其是电动汽车因其节能环保的优点,现已被广泛推广并有望在本世纪以前全面代替传统燃油汽车。电动汽车的发展关键在于电池,而在汽车动力电池中,锂离子电池因安全性好、比容量高、充放电循环寿命长等优势被认为是最有前途的动力电池之一,而锂离子电池性能的关键性因素则在于其正极材料的选择。
目前常用的锂离子正极材料主要包括钴酸锂、镍酸锂、磷酸铁锂等,其中镍钴锰酸锂作为单一掺杂阴离子材料的改进型三元材料,可有效弥补镍酸锂、锰酸锂和钴酸锂的不足,具有优异的电化学性能,且放电平台平稳,工作电压宽,安全性能好。然而,现有常用镍锰酸锂制备方法中,诸如固相法或共沉淀法等,由于前驱原料粉末多使用球磨或研磨混合,各组分很难达到充分混合,分散性及均匀性不高,制备的最终产品也面临粒度分布不均,存在团聚现象及纯度较低的缺陷,同时制备流程耗时较长,效率较低;如溶胶凝胶法或者CVD法虽然可使原料混合均匀,制备成品达到均一粒度分布,然而所需条件苛刻,对制备设备及环境要求较高,可重复性低,难以实现规模生产。
发明内容
基于现有技术存在的缺陷,本发明的目的在于提供了一种高性能动力电池型镍钴锰酸锂正极材料的制备方法,该方法融合凝胶法、喷雾干燥法及高温固相法,制得产品稳定性高且均匀分散性好,不仅有效保留了正极材料的高充放电效率,同时提高了整体材料的脱嵌锂循环稳定性;所述制备方法操作步骤简单,对设备要求低,可实现工业化大规模生产。
为了达到上述目的,本发明采取的技术方案为:
一种高性能动力电池镍钴锰酸锂正极材料的制备方法,包括以下步骤:
(1)将第一锂源、镍源、钴源和锰源加入熔融状态下的直链羧酸中混合并将得到的混合物超声振动处理0.5~1h,得前驱体A;
(2)将前驱体A置入喷雾干燥器中,采用喷雾干燥法造粒,得前驱体粉末B;
(3)将第二锂源、柠檬酸、碳源和水混合均匀,调节溶液至pH=6.5~7.5,加热溶液至澄清透明后,加入前驱体粉末B并超声振动处理12~24h,得前驱体凝胶混合液C;所述第二锂源为醋酸锂,所述第二碳源与第一碳源中锂原子的摩尔比为1:1;所述碳源为葡萄糖、麦芽糖、海藻糖中的至少一种;所述第二锂源、柠檬酸、碳源和水的质量比为m 第二锂源:m 柠檬酸:m 碳源:m =1~2:10~15:1~3:30~35;
(4)将前驱体凝胶混合液C置入喷雾干燥器中,采用喷雾干燥法造粒,得前驱体粉末D;将所述前驱体粉末D加热至600~700℃保温10~15h,保温期间通入氮气与氢气的混合气作为保护气氛,即得所述高性能动力电池镍钴锰酸锂正极材料;所述氮气与氢气的体积比为90~95:5~10。
本发明所述有机溶剂采用特定碳原子链的羧酸,其不仅具有溶剂及分散剂的功效,同时由于羧酸分子容易形成分子间氢键,可有效连接前驱体中的锂、镍、锰和钴原子,提高最终产品的振实密度。
采用喷雾干燥法制备前驱体粉末,可避免传统固相研磨法带来的产品团聚不均匀的缺陷,同时该方法操作时间短,可重复性高,生产效率高。
通过溶胶凝胶法引入锂源及碳源,可保障锂源在烧结前便可与其他成分形成网络连接,相比于将锂源或碳源直接混合或者在喷雾造粒的过程中再混合制备的产品均匀性更高,且可保障形成的包覆无定型碳层厚度均匀,在制备成动力电池后可有效隔绝正极材料及电解质,避免两者发生反应,提供材料的循环稳定性和热稳定性。
本发明所述高性能动力电池镍钴锰酸锂正极材料的制备方法包含融溶混合法、喷雾干燥法、溶胶凝胶法以及高温固相法,将前驱体各组分结合均匀,制得产品粒径均一且电化学性能优异,循环稳定性高;所述方法操作步骤简单,原料成本低,耗时短,生产效率高,可实现工业化大规模生产。
优选地,步骤(1)所述前驱体A中Li、Ni、Co、Mn的原子摩尔比为Li:Ni:Co:Mn=0.5:a:b:(1-a-b),其中a=0.2~0.4,b=0.2~0.4;所述直链羧酸的碳原子数为10~13。
优选地,步骤(1)所述前驱体A中金属离子的摩尔浓度为3~4.5mol/L。
优选地,步骤(1)所述第一锂源包括醋酸锂、柠檬酸锂、碳酸锂、氢氧化锂中的至少一种;所述镍源包括醋酸镍、柠檬酸镍、碳酸镍、六水合硝酸镍中的至少一种;所述钴盐包括醋酸钴、柠檬酸钴、碳酸钴、六水合硝酸钴中的至少一种;所述锰盐包括醋酸锰、柠檬酸锰、六水合硝酸锰中的至少一种。
优选地,步骤(1)所述前驱体A中还包括黏度调节剂,所述黏度调节剂的浓度为2~3g/L,所述黏度调节剂包括乙二醛、戊二醛、苯甲醛、肉桂醛中的至少一种。
通过加入适量的黏度调节剂可有效调节前驱体A在喷雾造粒前的黏度,避免发生喷头堵塞或者喷雾不连续的情况。
优选地,步骤(2)所述采用喷雾干燥法造粒时,喷雾干燥器的进料速度为1000~2000mL/h,喷头压力为0.4~0.6MPa,进料温度为450~550℃,出料温度为350~450℃。
通过所述条件下进行喷雾干燥,得到的粉末产品颗粒均匀分散,进料过程效率高,不会发生喷头堵塞或喷雾不连续等现象。
优选地,步骤(3)所述加热的温度为70~80℃,加热的时间为1~2h。
所述温度及时间下柠檬酸可充分螯合阳离子,形成紧密连接的胶凝网络,同时也可使碳源充分包裹前驱体及锂源,保障后续制备的碳包覆正极材料的均匀性。
优选地,步骤(3)所述第二锂源、柠檬酸、碳源和水的质量比为m 第二锂源:m 柠檬酸:m 碳源:m =1.6:12:1.5:35。
所述配比下既可保障柠檬酸在凝胶形成过程中可充分螯合阳离子,同时所述碳源添加量可令最终生成的无定型碳层兼顾正极材料的比容量及循环稳定性,避免因碳层过薄导致材料循环稳定性欠缺,或碳层过厚导致材料整体理论容量降低。
优选地,步骤(3)所述前驱体凝胶混合液C中还含有增稠剂,所述增稠剂为海藻酸钠,所述海藻酸钠与水的质量比为1~1.5:10。
海藻酸钠作为易溶于水的天然物质,其本身具有一定的粘性,当将其作为增稠剂引入凝胶中,可进一步固定前驱体不溶粉末,保障整体凝胶的均匀性。
优选地,步骤(4)所述采用喷雾干燥法造粒时,喷雾干燥器的进料速度为1500~3000mL/h,喷头压力为0.2~0.3MPa,进料温度为150~100℃,出料温度为80~100℃,所述喷雾干燥造粒过程采用惰性气氛保护。
由于步骤(4)所述喷雾干燥过程的原料为混合粉末颗粒的凝胶,因此需要特定的处理操作,才能保证喷雾造粒的产品均匀分散,制备过程连续高效;若喷头压力过低,无法及时将质量较高混合前驱体推出造粒,效率低下;若压力过高,可能造成喷头堵塞或颗粒不均的现象。
优选地,步骤(4)所述氮气与氢气的体积比为95:5。
通过特定比例少量还原气氛的添加可使样品中无定型碳在热解生成过程中其他成分不会因本身残留的少量氧气或其他杂质而发生氧化,提高产品的纯度及理论容量。
本发明的另一目的还在于提供所述高性能动力电池镍钴锰酸锂正极材料的制备方法制备的镍钴锰酸锂正极材料。
本发明所述镍钴锰酸锂正极材料采用复合方法制备,不仅纯度高且分散均匀;所述材料 通过碳层包覆改性后有效提高了其在制备成动力电池后锂脱嵌时的结构稳定性,热稳定性及循环效率高。
本发明的有益效果在于,本发明提供了一种高性能动力电池镍钴锰酸锂正极材料的制备方法,该方法结合融溶混合法、喷雾干燥法、溶胶凝胶法以及高温固相法,将前驱体各组分结合均匀,制得产品粒径均一且电化学性能优异,循环稳定性高;所述方法操作步骤简单,原料成本低,耗时短,生产效率高,可实现工业化大规模生产;本发明还提供了所述方法制备的镍钴锰酸锂正极材料,该材料充放电比容量高,热稳定性及循环稳定性高。
附图说明
图1为本发明实施例1制得的镍钴锰酸锂正极材料的SEM图。
具体实施方式
为了更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例及对比例对本发明作进一步说明,其目的在于详细地理解本发明的内容,而不是对本发明的限制。本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。本发明实施所设计的实验试剂及仪器,除非特别说明,均为常用的普通试剂及仪器。
实施例1
本发明所述高性能动力电池镍钴锰酸锂正极材料的制备方法的一种实施例,包括以下步骤:
(1)将醋酸锂、醋酸镍、醋酸钴和醋酸锰以及6g乙二醛加入熔融状态下的3L十二烷酸中并将混合物超声振动处理40min,得前驱体A;所述前驱体A中Li、Ni、Co、Mn的原子摩尔比为Li:Ni:Co:Mn=0.5:0.3:0.3:0.4;所述前驱体A中金属离子的摩尔浓度为3.5mol/L;
(2)将前驱体A置入喷雾干燥器中,采用喷雾干燥法以1500mL/h的进料速度造粒,得前驱体粉末B;所述喷雾干燥器的喷头压力设置为0.5MPa,进料温度设置为500℃,出料温度设置为400℃;
(3)将醋酸锂、柠檬酸、葡萄糖和水混合均匀,调节溶液至pH=7,加热至75℃至1h,待溶液至澄清透明后,加入前驱体粉末B并超声振动处理24h,得前驱体凝胶混合液C;所述醋酸锂与前驱体A中锂原子的摩尔比为1:1;所述醋酸锂、柠檬酸、葡萄糖和水的质量比为m 第二锂源:m 柠檬酸:m 碳源:m =1.6:12:1.5:35;
(4)将前驱体凝胶混合液C置入含惰性保护气氛的喷雾干燥器中,采用喷雾干燥法造粒,得前驱体粉末D;将所述前驱体粉末D加热至650℃保温12h,保温期间通入氮气与氢气的混合气作为保护气氛,即得所述高性能动力电池镍钴锰酸锂正极材料;所述氮气与氢气 的体积比为95:5;所述采用喷雾干燥法造粒时,喷雾干燥器的进料速度为2000mL/h,喷头压力设置为0.3MPa,进料温度设置为120℃,出料温度设置为100℃。
实施例2
本发明所述高性能动力电池镍钴锰酸锂正极材料的制备方法的一种实施例,包括以下步骤:
(1)将柠檬锂、柠檬酸镍、柠檬酸钴和柠檬酸锰以及9g乙二醛加入熔融状态下的3L十二烷酸中并将混合物超声振动处理1h,得前驱体A;所述前驱体A中Li、Ni、Co、Mn的原子摩尔比为Li:Ni:Co:Mn=0.5:0.35:0.35:0.3;所述前驱体A中金属离子的摩尔浓度为3mol/L;
(2)将前驱体A置入喷雾干燥器中,采用喷雾干燥法以1000mL/h的进料速度造粒,得前驱体粉末B;所述喷雾干燥器的喷头压力设置为0.4MPa,进料温度设置为550℃,出料温度设置为450℃;
(3)将醋酸锂、柠檬酸、葡萄糖和水混合均匀,调节溶液至pH=7,加热至80℃至1h,待溶液至澄清透明后,加入前驱体粉末B并超声振动处理18h,得前驱体凝胶混合液C;所述醋酸锂与前驱体A中锂原子的摩尔比为1:1;所述醋酸锂、柠檬酸、葡萄糖和水的质量比为m 第二锂源:m 柠檬酸:m 碳源:m =1:15:1.5:35;
(4)将前驱体凝胶混合液C置入含惰性保护气氛的喷雾干燥器中,采用喷雾干燥法造粒,得前驱体粉末D;将所述前驱体粉末D加热至700℃保温10h,保温期间通入氮气与氢气的混合气作为保护气氛,即得所述高性能动力电池镍钴锰酸锂正极材料;所述氮气与氢气的体积比为95:5;所述采用喷雾干燥法造粒时,喷雾干燥器的进料速度为1500mL/h,喷头压力设置为0.3MPa,进料温度设置为100℃,出料温度设置为80℃。
实施例3
本发明所述高性能动力电池镍钴锰酸锂正极材料的制备方法的一种实施例,包括以下步骤:
(1)将醋酸锂、醋酸镍、醋酸钴和醋酸锰加入熔融状态下的3L十二烷酸中并将混合物超声振动处理40min,得前驱体A;所述前驱体A中Li、Ni、Co、Mn的原子摩尔比为Li:Ni:Co:Mn=0.5:0.3:0.3:0.4;所述前驱体A中金属离子的摩尔浓度为4.5mol/L;
(2)将前驱体A置入喷雾干燥器中,采用喷雾干燥法以1500mL/h的进料速度造粒,得前驱体粉末B;所述喷雾干燥器的喷头压力设置为0.5MPa,进料温度设置为500℃,出料温度设置为400℃;
(3)将醋酸锂、柠檬酸、葡萄糖、海藻酸钠和水混合均匀,调节溶液至pH=7,加热至75℃至1h,待溶液至澄清透明后,加入前驱体粉末B并超声振动处理24h,得前驱体凝胶混 合液C;所述醋酸锂与前驱体A中锂原子的摩尔比为1:1;所述醋酸锂、柠檬酸、海藻酸钠、葡萄糖和水的质量比为m 第二锂源:m 柠檬酸:m 碳源:m :m 海藻酸钠=1:15:1.5:35:3.5;
(4)将前驱体凝胶混合液C置入含惰性保护气氛的喷雾干燥器中,采用喷雾干燥法造粒,得前驱体粉末D;将所述前驱体粉末D加热至600℃保温15h,保温期间通入氮气与氢气的混合气作为保护气氛,即得所述高性能动力电池镍钴锰酸锂正极材料;所述氮气与氢气的体积比为95:5;所述采用喷雾干燥法造粒时,喷雾干燥器的进料速度为2000mL/h,喷头压力设置为0.3MPa,进料温度设置为120℃,出料温度设置为100℃。
对比例1
本发明所述高性能动力电池镍钴锰酸锂正极材料的制备方法的一种对比例,包括以下步骤:
(1)将醋酸锂、醋酸镍、醋酸钴和醋酸锰以及6g乙二醛加入熔融状态下的3L十二烷酸中并将混合物超声振动处理40min,得前驱体A;所述前驱体A中Li、Ni、Co、Mn的原子摩尔比为Li:Ni:Co:Mn=0.5:0.3:0.3:0.4;所述前驱体A中金属离子的摩尔浓度为3.5mol/L;
(2)将前驱体A置入喷雾干燥器中,采用喷雾干燥法以1500mL/h的进料速度造粒,得前驱体粉末B;所述喷雾干燥器的喷头压力设置为0.5MPa,进料温度设置为500℃,出料温度设置为400℃;
(3)将醋酸锂、水混合均匀,加入前驱体粉末B并超声振动处理24h,得前驱体混合液C;所述醋酸锂与前驱体A中锂原子的摩尔比为1:1;所述醋酸锂、和水的质量比为m 第二锂源:m =1.6:35;
(4)将前驱体凝胶混合液C置入含惰性保护气氛的喷雾干燥器中,采用喷雾干燥法造粒,得前驱体粉末D;将所述前驱体粉末D加热至650℃保温12h,保温期间通入氮气与氢气的混合气作为保护气氛,即得所述高性能动力电池镍钴锰酸锂正极材料;所述氮气与氢气的体积比为95:5;所述采用喷雾干燥法造粒时,喷雾干燥器的进料速度为3000mL/h,喷头压力设置为0.3MPa,进料温度设置为100℃,出料温度设置为800℃。
对比例2
本对比例与实施例1的差别仅在于,步骤(3)所述醋酸锂、柠檬酸、葡萄糖和水的质量比为m 第二锂源:m 柠檬酸:m 碳源:m =1.6:12:10:35。
对比例3
本对比例与实施例1的差别仅在于,步骤(3)所述醋酸锂、柠檬酸、葡萄糖和水的质量比为m 第二锂源:m 柠檬酸:m 碳源:m =1.6:12:0.1:35。
对比例4
本对比例与实施例1的差别仅在于,步骤(3)所述超声振动处理的时间为5h。
效果例1
将实施例1~3所得产品及对比例1~4所得产品作为正极,以金属锂作为负极组装制备锂离子半电池在4.5~1.8V电压区间、1C倍率下进行首次放电测试,随后进行200次充放电循环测试,测试结果如表1所示。
表1
Figure PCTCN2022095680-appb-000001
从表1可知,实施例1~3所得产品相比对比例产品具有更高的循环稳定性及放电比容量,其中实施例1所得产品在200次循环后放电比容量依然可达142mAh/g,将其置入扫描电镜下观察,如图1所示,材料分散均匀无团聚。对比例1所得产品没有引入溶胶凝胶法,后续制备产品也没有无定型碳的保护,其产品的循环稳定性较差;对比例2及3所得产品碳源添加比例不当,产品无法兼顾较高的放电比容量及循环稳定性;对比例4所得产品在前驱体制备时各组分因超声分散时间较少而导致分散性不足,同样影响产品最终的循环稳定性。
将实施例1~3及对比例1~4所得产品进行倍率测试:先在1C倍率下循环5次,随后在5C倍率下循环10次,最后恢复至1C倍率下循环,取各倍率最后一次循环数据记录,测试性能如表2所示。
表2
Figure PCTCN2022095680-appb-000002
从表2可知,实施例1~3由于产品特殊的包覆改性结果,其倍率性能优异,经过不同的电流密度测试下其容量恢复率可达97%以上。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,包括以下步骤:
    (1)将第一锂源、镍源、钴源和锰源加入熔融状态下的直链羧酸中混合并将得到的混合物超声振动处理0.5~1h,得前驱体A;
    (2)将前驱体A置入喷雾干燥器中,采用喷雾干燥法造粒,得前驱体粉末B;
    (3)将第二锂源、柠檬酸、碳源和水混合均匀,调节溶液至pH=6.5~7.5,加热溶液至澄清透明后,加入前驱体粉末B并超声振动处理12~24h,得前驱体凝胶混合液C;所述第二锂源为醋酸锂,所述第二碳源与第一碳源中锂原子的摩尔比为1:1;所述碳源为葡萄糖、麦芽糖、海藻糖中的至少一种;所述第二锂源、柠檬酸、碳源和水的质量比为m 第二锂源:m 柠檬酸:m 碳源:m =1~2:10~15:1~3:30~35;
    (4)将前驱体凝胶混合液C置入喷雾干燥器中,采用喷雾干燥法造粒,得前驱体粉末D;将所述前驱体粉末D加热至600~700℃保温10~15h,保温期间通入氮气与氢气的混合气作为保护气氛,即得所述高性能动力电池镍钴锰酸锂正极材料;所述氮气与氢气的体积比为90~95:5~10。
  2. 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(1)所述前驱体A中Li、Ni、Co、Mn的原子摩尔比为Li:Ni:Co:Mn=0.5:a:b:(1-a-b),其中a=0.2~0.4,b=0.2~0.4;所述直链羧酸的碳原子数为10~13;所述前驱体A中金属离子的摩尔浓度为3~4.5mol/L。
  3. 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(1)所述第一锂源包括醋酸锂、柠檬酸锂、碳酸锂、氢氧化锂中的至少一种;所述镍源包括醋酸镍、柠檬酸镍、碳酸镍、六水合硝酸镍中的至少一种;所述钴盐包括醋酸钴、柠檬酸钴、碳酸钴、六水合硝酸钴中的至少一种;所述锰盐包括醋酸锰、柠檬酸锰、六水合硝酸锰中的至少一种。
  4. 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(1)所述前驱体A中还包括黏度调节剂,所述黏度调节剂的浓度为2~3g/L,所述黏度调节剂包括乙二醛、戊二醛、苯甲醛、肉桂醛中的至少一种。
  5. 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(2)所述采用喷雾干燥法造粒时,喷雾干燥器的进料速度为1000~2000mL/h,喷头压力为0.4~0.6MPa,进料温度为450~550℃,出料温度为350~450℃。
  6. 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步 骤(3)所述加热的温度为70~80℃,加热的时间为1~2h。
  7. 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(3)所述第二锂源、柠檬酸、碳源和水的质量比为m 第二锂源:m 柠檬酸:m 碳源:m =1.6:12:1.5:35。
  8. 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(3)所述前驱体凝胶混合液C中还含有增稠剂,所述增稠剂为海藻酸钠,所述海藻酸钠与水的质量比为1~1.5:10。
  9. 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(4)所述采用喷雾干燥法造粒时,喷雾干燥器的进料速度为1500~3000mL/h,喷头压力为0.2~0.3MPa,进料温度为150~100℃,出料温度为80~100℃,所述喷雾干燥造粒过程采用惰性气氛保护。
  10. 如权利要求1~9任一项所述高性能动力电池镍钴锰酸锂正极材料的制备方法制备的镍钴锰酸锂正极材料。
PCT/CN2022/095680 2021-08-03 2022-05-27 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 WO2023010970A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES202390097A ES2985643A2 (es) 2021-08-03 2022-05-27 Material de catodo de oxido de litio-niquel-manganeso-cobalto (lnmco) de alto rendimiento para baterias electricas y metodo de preparacion del mismo
GB2310073.8A GB2617724A (en) 2021-08-03 2022-05-27 Lithium nickel manganese cobalt oxide positive electrode material of high-performance power battery and preparation method therefor
DE112022000283.2T DE112022000283T5 (de) 2021-08-03 2022-05-27 Hochleistungs-Lithium-Nickel-Mangan-Cobalt-Oxid(LMNCO)-Kathodenmaterial für Leistungsbatterien und Herstellungsverfahren dafür
HU2400100A HUP2400100A1 (hu) 2021-08-03 2022-05-27 Nagy teljesítményû lítium-nikkel-mangán-kobalt-oxid (LNMCO) katódanyag nagy áramú akkumulátorokhoz és elõállítási eljárása
US18/230,210 US20240018014A1 (en) 2021-08-03 2023-08-04 High-performance lithium-nickel-manganese-cobalt oxide (lnmco) cathode material for power batteries and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110885776.6A CN113809319B (zh) 2021-08-03 2021-08-03 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法
CN202110885776.6 2021-08-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/230,210 Continuation US20240018014A1 (en) 2021-08-03 2023-08-04 High-performance lithium-nickel-manganese-cobalt oxide (lnmco) cathode material for power batteries and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2023010970A1 true WO2023010970A1 (zh) 2023-02-09

Family

ID=78942697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095680 WO2023010970A1 (zh) 2021-08-03 2022-05-27 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法

Country Status (7)

Country Link
US (1) US20240018014A1 (zh)
CN (1) CN113809319B (zh)
DE (1) DE112022000283T5 (zh)
ES (1) ES2985643A2 (zh)
GB (1) GB2617724A (zh)
HU (1) HUP2400100A1 (zh)
WO (1) WO2023010970A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809319B (zh) * 2021-08-03 2022-11-15 广东邦普循环科技有限公司 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法
CN116605924A (zh) * 2023-06-08 2023-08-18 蜂巢能源科技股份有限公司 一种三元正极材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904319A (zh) * 2014-03-04 2014-07-02 广东邦普循环科技有限公司 一种动力型镍钴锰酸锂正极材料的制备方法
CN104051724A (zh) * 2014-06-06 2014-09-17 奇瑞汽车股份有限公司 一种碳包覆镍钴锰酸锂正极材料及其制备方法
US20170084907A1 (en) * 2014-03-04 2017-03-23 Guangdong Brunp Recycling Technology Co., Ltd. Power-type nickel cobalt lithium manganese oxide material, and preparation method therefor and uses thereof
CN108878862A (zh) * 2018-05-24 2018-11-23 江苏大学 一种锂离子电池富锂锰基正极材料及其喷雾干燥制备方法
CN113809319A (zh) * 2021-08-03 2021-12-17 广东邦普循环科技有限公司 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673820A (zh) * 2009-09-25 2010-03-17 清华大学 一种固液结合制备磷酸锰锂/碳复合材料的方法
CN102790213A (zh) * 2012-07-30 2012-11-21 广东电网公司电力科学研究院 一种球形锂离子电池正极材料磷酸锰锂/碳的制备方法
CN103178267A (zh) * 2013-04-01 2013-06-26 广西大学 一种纳/微结构磷酸锰锂/碳复合正极材料的制备方法
CN105609721A (zh) * 2015-12-30 2016-05-25 中南大学 一种三维碳网包覆的硼酸锰锂复合正极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904319A (zh) * 2014-03-04 2014-07-02 广东邦普循环科技有限公司 一种动力型镍钴锰酸锂正极材料的制备方法
US20170084907A1 (en) * 2014-03-04 2017-03-23 Guangdong Brunp Recycling Technology Co., Ltd. Power-type nickel cobalt lithium manganese oxide material, and preparation method therefor and uses thereof
CN104051724A (zh) * 2014-06-06 2014-09-17 奇瑞汽车股份有限公司 一种碳包覆镍钴锰酸锂正极材料及其制备方法
CN108878862A (zh) * 2018-05-24 2018-11-23 江苏大学 一种锂离子电池富锂锰基正极材料及其喷雾干燥制备方法
CN113809319A (zh) * 2021-08-03 2021-12-17 广东邦普循环科技有限公司 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法

Also Published As

Publication number Publication date
US20240018014A1 (en) 2024-01-18
ES2985643A2 (es) 2024-11-06
HUP2400100A1 (hu) 2024-06-28
GB202310073D0 (en) 2023-08-16
DE112022000283T5 (de) 2023-09-07
GB2617724A (en) 2023-10-18
CN113809319A (zh) 2021-12-17
CN113809319B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
US10916767B2 (en) Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery
EP3557668A1 (en) Ternary material and preparation method therefor, battery slurry, positive electrode, and lithium battery
US20140106223A1 (en) METHODS FOR SURFACE COATING OF CATHODE MATERIAL LiNi0.5-XMn1.5MXO4 FOR LITHIUM-ION BATTERIES
CN111018006A (zh) 一种核壳结构高镍三元正极材料的制备方法
WO2023010970A1 (zh) 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法
CN108390035A (zh) 石墨烯/三元复合材料的制备方法
CN112018377B (zh) 一种固态电池用原位包覆正极材料及其制备方法
WO2024046508A1 (zh) 一种钴梯度高镍三元正极材料及其制备方法、锂离子电池
JP2024516477A (ja) フェロボロン合金被覆リン酸鉄リチウムの製造方法
CN114772572A (zh) 一种纳米金属离子包覆磷酸铁锂正极材料及其制备方法
CN114497694A (zh) 一种制造锂离子电池用的补锂剂及其制备方法
CN112744872A (zh) 一种高镍正极材料的液相法磷元素掺杂改性制备方法
CN110504447A (zh) 一种氟掺杂的镍钴锰前驱体及其制备方法与应用
CN114645314B (zh) 一种单晶形貌三元正极材料的制备方法
CN114005972B (zh) 一种llto/纳米片状钴酸锂复合正极材料及其制备方法
CN112678883B (zh) 一种表面富钴型低钴正极材料的制备方法
CN114105117B (zh) 一种前驱体及磷酸镍铁锂正极材料的制备方法
CN112582587A (zh) 一种以单晶为核的核壳结构高镍正极材料及其制备方法
CN113213448A (zh) 一种高比容量的磷酸铁锂电极材料及其制备方法
CN113044890A (zh) 一种正极材料及其制备方法和锂离子电池
CN108023079B (zh) 一种混合过渡金属硼酸盐负极材料及其制备方法
CN114956193B (zh) 一种正极活性材料的制备方法及其应用
CN102263248B (zh) 一种制备碳包覆的纳米磷酸亚铁锂的方法
CN112002878A (zh) 一种表层富锰的三元梯度材料的制备方法
CN116387476A (zh) 一种磷酸锰铁锂复合材料及其制备与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202310073

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220527

WWE Wipo information: entry into national phase

Ref document number: P2400100

Country of ref document: HU

122 Ep: pct application non-entry in european phase

Ref document number: 22851686

Country of ref document: EP

Kind code of ref document: A1