WO2023010970A1 - 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 - Google Patents
一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 Download PDFInfo
- Publication number
- WO2023010970A1 WO2023010970A1 PCT/CN2022/095680 CN2022095680W WO2023010970A1 WO 2023010970 A1 WO2023010970 A1 WO 2023010970A1 CN 2022095680 W CN2022095680 W CN 2022095680W WO 2023010970 A1 WO2023010970 A1 WO 2023010970A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- cobalt
- positive electrode
- nickel
- electrode material
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- VGYDTVNNDKLMHX-UHFFFAOYSA-N lithium;manganese;nickel;oxocobalt Chemical compound [Li].[Mn].[Ni].[Co]=O VGYDTVNNDKLMHX-UHFFFAOYSA-N 0.000 title abstract 4
- 239000002243 precursor Substances 0.000 claims abstract description 75
- 238000000034 method Methods 0.000 claims abstract description 53
- 238000001694 spray drying Methods 0.000 claims abstract description 29
- 238000002156 mixing Methods 0.000 claims abstract description 8
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 75
- 229910052744 lithium Inorganic materials 0.000 claims description 39
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 30
- 229910052799 carbon Inorganic materials 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 claims description 28
- 239000000843 powder Substances 0.000 claims description 28
- 239000007921 spray Substances 0.000 claims description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 22
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical group [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 20
- 239000011572 manganese Substances 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 10
- 239000008103 glucose Substances 0.000 claims description 10
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000008187 granular material Substances 0.000 claims description 10
- 230000001681 protective effect Effects 0.000 claims description 10
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical group CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 8
- 239000010406 cathode material Substances 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 235000010413 sodium alginate Nutrition 0.000 claims description 8
- 239000000661 sodium alginate Substances 0.000 claims description 8
- 229940005550 sodium alginate Drugs 0.000 claims description 8
- 238000005469 granulation Methods 0.000 claims description 7
- 230000003179 granulation Effects 0.000 claims description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 229910021645 metal ion Inorganic materials 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 239000004034 viscosity adjusting agent Substances 0.000 claims description 6
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 5
- 229940011182 cobalt acetate Drugs 0.000 claims description 5
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 5
- 229940015043 glyoxal Drugs 0.000 claims description 5
- 229940071125 manganese acetate Drugs 0.000 claims description 5
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 5
- 229940078494 nickel acetate Drugs 0.000 claims description 5
- 239000002562 thickening agent Substances 0.000 claims description 5
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- OAVRWNUUOUXDFH-UHFFFAOYSA-H 2-hydroxypropane-1,2,3-tricarboxylate;manganese(2+) Chemical compound [Mn+2].[Mn+2].[Mn+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O OAVRWNUUOUXDFH-UHFFFAOYSA-H 0.000 claims description 3
- UPPLJLAHMKABPR-UHFFFAOYSA-H 2-hydroxypropane-1,2,3-tricarboxylate;nickel(2+) Chemical compound [Ni+2].[Ni+2].[Ni+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O UPPLJLAHMKABPR-UHFFFAOYSA-H 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- SCNCIXKLOBXDQB-UHFFFAOYSA-K cobalt(3+);2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Co+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O SCNCIXKLOBXDQB-UHFFFAOYSA-K 0.000 claims description 3
- 229940071264 lithium citrate Drugs 0.000 claims description 3
- WJSIUCDMWSDDCE-UHFFFAOYSA-K lithium citrate (anhydrous) Chemical compound [Li+].[Li+].[Li+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O WJSIUCDMWSDDCE-UHFFFAOYSA-K 0.000 claims description 3
- 229940097206 manganese citrate Drugs 0.000 claims description 3
- 235000014872 manganese citrate Nutrition 0.000 claims description 3
- 239000011564 manganese citrate Substances 0.000 claims description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 claims description 2
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 claims description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 claims description 2
- DEQSCSOKTWMOKU-UHFFFAOYSA-N [O-2].[Mn+2].[Ni+2].[Mn+2].[Li+] Chemical compound [O-2].[Mn+2].[Ni+2].[Mn+2].[Li+] DEQSCSOKTWMOKU-UHFFFAOYSA-N 0.000 claims description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 claims description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 229940117916 cinnamic aldehyde Drugs 0.000 claims description 2
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 claims description 2
- 150000001868 cobalt Chemical class 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910021446 cobalt carbonate Inorganic materials 0.000 claims description 2
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 claims description 2
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 claims description 2
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 2
- 150000002696 manganese Chemical class 0.000 claims description 2
- YMKHJSXMVZVZNU-UHFFFAOYSA-N manganese(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YMKHJSXMVZVZNU-UHFFFAOYSA-N 0.000 claims description 2
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 claims description 2
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 claims description 2
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 claims description 2
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 claims 2
- 229940095076 benzaldehyde Drugs 0.000 claims 1
- 229960000587 glutaral Drugs 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 10
- 239000002245 particle Substances 0.000 abstract description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 6
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 6
- 238000003980 solgel method Methods 0.000 abstract description 6
- 238000010532 solid phase synthesis reaction Methods 0.000 abstract description 5
- 238000009776 industrial production Methods 0.000 abstract 1
- 239000000155 melt Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 15
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 8
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- 229910003481 amorphous carbon Inorganic materials 0.000 description 4
- 238000004321 preservation Methods 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229940071257 lithium acetate Drugs 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002641 lithium Chemical group 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- FRMOHNDAXZZWQI-UHFFFAOYSA-N lithium manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[Ni+2].[Li+] FRMOHNDAXZZWQI-UHFFFAOYSA-N 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- LBSANEJBGMCTBH-UHFFFAOYSA-N manganate Chemical compound [O-][Mn]([O-])(=O)=O LBSANEJBGMCTBH-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the field of lithium-ion battery materials, in particular to a high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material and a preparation method thereof.
- the commonly used lithium ion cathode materials mainly include lithium cobaltate, lithium nickelate, lithium iron phosphate, etc.
- lithium nickel cobalt manganese oxide is an improved ternary material as a single doped anion material, which can effectively make up for lithium nickelate and manganate.
- Lithium and lithium cobalt oxide have excellent electrochemical performance, stable discharge platform, wide working voltage and good safety performance.
- the existing commonly used lithium nickel manganese oxide preparation methods such as solid phase method or co-precipitation method, because the precursor raw material powder is mostly mixed by ball milling or grinding, it is difficult to achieve sufficient mixing of the components, and the dispersion and uniformity are not high.
- the final product prepared also faces the defects of uneven particle size distribution, agglomeration and low purity.
- the preparation process takes a long time and has low efficiency; although the sol-gel method or CVD method can make the raw materials mix evenly, the preparation The finished product reaches a uniform particle size distribution, but the required conditions are harsh, the requirements for the preparation equipment and the environment are high, the repeatability is low, and it is difficult to achieve large-scale production.
- the object of the present invention is to provide a method for preparing a high-performance power battery-type nickel-cobalt-lithium manganese oxide positive electrode material.
- the method combines gel method, spray drying method and high-temperature solid-phase method to prepare
- the obtained product has high stability and good uniform dispersion, which not only effectively retains the high charge-discharge efficiency of the positive electrode material, but also improves the stability of the lithium-deintercalation cycle of the overall material; the preparation method has simple operation steps and low equipment requirements, and can be Realize industrialized mass production.
- a method for preparing a high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material comprising the following steps:
- Precursor A is placed in a spray dryer and granulated by spray drying to obtain precursor powder B;
- the second lithium source is lithium acetate, and the molar ratio of lithium atoms in the second carbon source to the first carbon source is 1:1;
- the carbon source is glucose, maltose, trehalose At least one of them;
- the organic solvent of the present invention adopts a carboxylic acid with a specific carbon atom chain, which not only has the effect of a solvent and a dispersant, but also can effectively connect lithium, nickel, manganese and Cobalt atoms, which increase the tap density of the final product.
- the preparation of precursor powder by spray drying method can avoid the defect of uneven product agglomeration caused by traditional solid phase grinding method. At the same time, this method has short operation time, high repeatability and high production efficiency.
- the introduction of lithium and carbon sources through the sol-gel method can ensure that the lithium source can form a network connection with other components before sintering, compared to the direct mixing of lithium or carbon sources or re-mixing in the process of spray granulation.
- the uniformity of the product is higher, and the thickness of the coated amorphous carbon layer can be guaranteed to be uniform.
- the power battery After the power battery is prepared, it can effectively isolate the positive electrode material and the electrolyte, avoid the reaction between the two, and provide the cycle stability and thermal stability of the material. sex.
- the preparation method of the nickel-cobalt-lithium manganese oxide positive electrode material for high-performance power batteries in the present invention includes a melt-mixing method, a spray-drying method, a sol-gel method and a high-temperature solid-phase method, and the components of the precursor are uniformly combined to obtain a product
- the particle size is uniform, the electrochemical performance is excellent, and the cycle stability is high; the method has simple operation steps, low raw material cost, short time consumption, high production efficiency, and can realize industrialized large-scale production.
- the molar concentration of metal ions in the precursor A in step (1) is 3-4.5 mol/L.
- the first lithium source described in step (1) includes at least one of lithium acetate, lithium citrate, lithium carbonate, and lithium hydroxide;
- the nickel source includes nickel acetate, nickel citrate, nickel carbonate, hexahydrate At least one of nickel nitrate;
- the cobalt salt includes at least one of cobalt acetate, cobalt citrate, cobalt carbonate, cobalt nitrate hexahydrate;
- the manganese salt includes manganese acetate, manganese citrate, manganese nitrate hexahydrate at least one of .
- the precursor A in step (1) also includes a viscosity modifier, the concentration of the viscosity modifier is 2 to 3g/L, and the viscosity modifier includes glyoxal, glutaraldehyde, benzaldehyde, At least one of cinnamaldehyde.
- the viscosity of precursor A before spray granulation can be effectively adjusted to avoid nozzle clogging or discontinuous spraying.
- the feed rate of the spray dryer is 1000-2000mL/h
- the nozzle pressure is 0.4-0.6MPa
- the feed temperature is 450-550°C
- the discharge The temperature is 350-450°C.
- the particles of the obtained powder product are uniformly dispersed, the feeding process efficiency is high, and phenomena such as nozzle clogging or discontinuous spraying do not occur.
- the heating temperature in step (3) is 70-80° C., and the heating time is 1-2 hours.
- the citric acid can fully chelate the cations to form a tightly connected gel network, and at the same time, the carbon source can fully wrap the precursor and the lithium source, ensuring the uniformity of the carbon-coated positive electrode material prepared subsequently.
- the ratio can ensure that citric acid can fully chelate cations in the gel formation process, and at the same time, the added amount of carbon source can make the finally generated amorphous carbon layer take into account the specific capacity and cycle stability of the positive electrode material, avoiding The cycle stability of the material is lacking due to too thin carbon layer, or the overall theoretical capacity of the material is reduced due to too thick carbon layer.
- the precursor gel mixture C in step (3) also contains a thickener, the thickener is sodium alginate, and the mass ratio of sodium alginate to water is 1-1.5:10.
- sodium alginate As a natural substance that is easily soluble in water, sodium alginate itself has a certain viscosity. When it is introduced into the gel as a thickener, it can further fix the insoluble powder of the precursor and ensure the uniformity of the overall gel.
- the feed rate of the spray dryer is 1500-3000mL/h
- the nozzle pressure is 0.2-0.3MPa
- the feed temperature is 150-100°C
- the discharge The temperature is 80-100° C., and the spray drying and granulation process is protected by an inert atmosphere.
- step (4) Because the raw material of the spray drying process described in step (4) is the gel of mixed powder particles, specific processing operations are required to ensure that the spray granulated product is evenly dispersed and the preparation process is continuous and efficient; if the nozzle pressure is too low, it cannot be processed in time. It is inefficient to push the high-quality mixed precursor out for granulation; if the pressure is too high, it may cause clogging of the nozzle or uneven particles.
- the volume ratio of nitrogen to hydrogen in step (4) is 95:5.
- the addition of a small amount of reducing atmosphere in a specific proportion can prevent other components in the sample from being oxidized due to a small amount of oxygen or other impurities remaining in the pyrolysis process of the amorphous carbon in the sample, improving the purity and theoretical capacity of the product.
- Another object of the present invention is to provide the nickel-cobalt lithium manganese oxide cathode material prepared by the method for preparing the high-performance power battery nickel-cobalt lithium manganese oxide cathode material.
- the nickel-cobalt lithium manganese oxide positive electrode material of the present invention is prepared by a composite method, which not only has high purity but also is uniformly dispersed; after the material is modified by coating with a carbon layer, its structure when lithium is deintercalated after being prepared into a power battery is effectively improved High stability, thermal stability and cycle efficiency.
- the present invention provides a method for preparing a high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material, which combines melt-mixing method, spray-drying method, sol-gel method and high-temperature solid-phase method, The components of the precursor are uniformly combined to obtain a product with uniform particle size, excellent electrochemical performance, and high cycle stability; the method has simple operation steps, low raw material cost, short time consumption, high production efficiency, and can realize large-scale industrialization Production; the present invention also provides the nickel-cobalt-lithium-manganese-oxide cathode material prepared by the method, which has high charge-discharge specific capacity, high thermal stability and cycle stability.
- FIG. 1 is an SEM image of the nickel-cobalt-lithium-manganese-oxide cathode material prepared in Example 1 of the present invention.
- precursor A (1) Add lithium acetate, nickel acetate, cobalt acetate and manganese acetate and 6g glyoxal to 3L dodecanoic acid in a molten state and process the mixture with ultrasonic vibration for 40min to obtain precursor A;
- Precursor A is placed in a spray dryer, and the spray drying method is used to granulate at a feed rate of 1500mL/h to obtain precursor powder B; the nozzle pressure of the spray dryer is set to 0.5MPa, and the feed The temperature is set to 500°C, and the discharge temperature is set to 400°C;
- the precursor gel mixture C into a spray dryer containing an inert protective atmosphere, and use the spray drying method to granulate to obtain a precursor powder D; heat the precursor powder D to 650° C. for 12 hours, During the heat preservation period, a mixed gas of nitrogen and hydrogen is introduced as a protective atmosphere to obtain the high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material; the volume ratio of nitrogen and hydrogen is 95:5; the spray-drying method is used to produce When granulating, the feed rate of the spray dryer is 2000mL/h, the nozzle pressure is set to 0.3MPa, the feed temperature is set to 120°C, and the discharge temperature is set to 100°C.
- Lithium citrate, nickel citrate, cobalt citrate and manganese citrate and 9g glyoxal are added to 3L dodecanoic acid in molten state and the mixture is ultrasonically vibrated for 1h to obtain precursor A;
- Precursor A is placed in a spray dryer, and the spray drying method is used to granulate at a feed rate of 1000mL/h to obtain precursor powder B; the nozzle pressure of the spray dryer is set to 0.4MPa, and the feed The temperature is set to 550°C, and the discharge temperature is set to 450°C;
- the precursor gel mixture C into a spray dryer containing an inert protective atmosphere, and use the spray drying method to granulate to obtain a precursor powder D; heat the precursor powder D to 700 ° C for 10 h, During the heat preservation period, a mixed gas of nitrogen and hydrogen is introduced as a protective atmosphere to obtain the high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material; the volume ratio of nitrogen and hydrogen is 95:5; the spray-drying method is used to produce When granulating, the feed rate of the spray dryer is 1500mL/h, the nozzle pressure is set to 0.3MPa, the feed temperature is set to 100°C, and the discharge temperature is set to 80°C.
- precursor A Li, Ni, Co .
- Precursor A is placed in a spray dryer, and the spray drying method is used to granulate at a feed rate of 1500mL/h to obtain precursor powder B; the nozzle pressure of the spray dryer is set to 0.5MPa, and the feed The temperature is set to 500°C, and the discharge temperature is set to 400°C;
- the precursor gel mixture C into a spray dryer containing an inert protective atmosphere, and use the spray drying method to granulate to obtain a precursor powder D; heat the precursor powder D to 600° C. for 15 hours, During the heat preservation period, a mixed gas of nitrogen and hydrogen is introduced as a protective atmosphere to obtain the high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material; the volume ratio of nitrogen and hydrogen is 95:5; the spray-drying method is used to produce When granulating, the feed rate of the spray dryer is 2000mL/h, the nozzle pressure is set to 0.3MPa, the feed temperature is set to 120°C, and the discharge temperature is set to 100°C.
- a comparative example of the preparation method of the high-performance power battery lithium manganese nickel manganese oxide cathode material of the present invention comprises the following steps:
- precursor A (1) Add lithium acetate, nickel acetate, cobalt acetate and manganese acetate and 6g glyoxal to 3L dodecanoic acid in a molten state and process the mixture with ultrasonic vibration for 40min to obtain precursor A;
- Precursor A is placed in a spray dryer, and the spray drying method is used to granulate at a feed rate of 1500mL/h to obtain precursor powder B; the nozzle pressure of the spray dryer is set to 0.5MPa, and the feed The temperature is set to 500°C, and the discharge temperature is set to 400°C;
- the precursor gel mixture C into a spray dryer containing an inert protective atmosphere, and use the spray drying method to granulate to obtain a precursor powder D; heat the precursor powder D to 650° C. for 12 hours, During the heat preservation period, a mixed gas of nitrogen and hydrogen is introduced as a protective atmosphere to obtain the high-performance power battery nickel-cobalt-lithium manganese oxide positive electrode material; the volume ratio of nitrogen and hydrogen is 95:5; the spray-drying method is used to produce When granulating, the feed rate of the spray dryer is 3000mL/h, the nozzle pressure is set to 0.3MPa, the feed temperature is set to 100°C, and the discharge temperature is set to 800°C.
- the only difference between this comparative example and Example 1 is that the time for the ultrasonic vibration treatment in step (3) is 5 hours.
- the products obtained in Examples 1 to 3 have higher cycle stability and discharge specific capacity than the comparative products, and the discharge specific capacity of the products obtained in Example 1 can still reach 142mAh/g after 200 cycles. It was observed under a scanning electron microscope, as shown in Figure 1, the material was uniformly dispersed without agglomeration.
- the product obtained in Comparative Example 1 did not introduce the sol-gel method, and the subsequent preparation product did not have the protection of amorphous carbon, and the cycle stability of the product was poor; the carbon source addition ratio of the product obtained in Comparative Example 2 and 3 was not appropriate, and the product could not take into account the high
- the discharge specific capacity and cycle stability of the product obtained in Comparative Example 4 were insufficient in the dispersibility of the components due to the short ultrasonic dispersion time during the preparation of the precursor, which also affected the final cycle stability of the product.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
Claims (10)
- 一种高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,包括以下步骤:(1)将第一锂源、镍源、钴源和锰源加入熔融状态下的直链羧酸中混合并将得到的混合物超声振动处理0.5~1h,得前驱体A;(2)将前驱体A置入喷雾干燥器中,采用喷雾干燥法造粒,得前驱体粉末B;(3)将第二锂源、柠檬酸、碳源和水混合均匀,调节溶液至pH=6.5~7.5,加热溶液至澄清透明后,加入前驱体粉末B并超声振动处理12~24h,得前驱体凝胶混合液C;所述第二锂源为醋酸锂,所述第二碳源与第一碳源中锂原子的摩尔比为1:1;所述碳源为葡萄糖、麦芽糖、海藻糖中的至少一种;所述第二锂源、柠檬酸、碳源和水的质量比为m 第二锂源:m 柠檬酸:m 碳源:m 水=1~2:10~15:1~3:30~35;(4)将前驱体凝胶混合液C置入喷雾干燥器中,采用喷雾干燥法造粒,得前驱体粉末D;将所述前驱体粉末D加热至600~700℃保温10~15h,保温期间通入氮气与氢气的混合气作为保护气氛,即得所述高性能动力电池镍钴锰酸锂正极材料;所述氮气与氢气的体积比为90~95:5~10。
- 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(1)所述前驱体A中Li、Ni、Co、Mn的原子摩尔比为Li:Ni:Co:Mn=0.5:a:b:(1-a-b),其中a=0.2~0.4,b=0.2~0.4;所述直链羧酸的碳原子数为10~13;所述前驱体A中金属离子的摩尔浓度为3~4.5mol/L。
- 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(1)所述第一锂源包括醋酸锂、柠檬酸锂、碳酸锂、氢氧化锂中的至少一种;所述镍源包括醋酸镍、柠檬酸镍、碳酸镍、六水合硝酸镍中的至少一种;所述钴盐包括醋酸钴、柠檬酸钴、碳酸钴、六水合硝酸钴中的至少一种;所述锰盐包括醋酸锰、柠檬酸锰、六水合硝酸锰中的至少一种。
- 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(1)所述前驱体A中还包括黏度调节剂,所述黏度调节剂的浓度为2~3g/L,所述黏度调节剂包括乙二醛、戊二醛、苯甲醛、肉桂醛中的至少一种。
- 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(2)所述采用喷雾干燥法造粒时,喷雾干燥器的进料速度为1000~2000mL/h,喷头压力为0.4~0.6MPa,进料温度为450~550℃,出料温度为350~450℃。
- 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步 骤(3)所述加热的温度为70~80℃,加热的时间为1~2h。
- 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(3)所述第二锂源、柠檬酸、碳源和水的质量比为m 第二锂源:m 柠檬酸:m 碳源:m 水=1.6:12:1.5:35。
- 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(3)所述前驱体凝胶混合液C中还含有增稠剂,所述增稠剂为海藻酸钠,所述海藻酸钠与水的质量比为1~1.5:10。
- 如权利要求1所述高性能动力电池镍钴锰酸锂正极材料的制备方法,其特征在于,步骤(4)所述采用喷雾干燥法造粒时,喷雾干燥器的进料速度为1500~3000mL/h,喷头压力为0.2~0.3MPa,进料温度为150~100℃,出料温度为80~100℃,所述喷雾干燥造粒过程采用惰性气氛保护。
- 如权利要求1~9任一项所述高性能动力电池镍钴锰酸锂正极材料的制备方法制备的镍钴锰酸锂正极材料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES202390097A ES2985643A2 (es) | 2021-08-03 | 2022-05-27 | Material de catodo de oxido de litio-niquel-manganeso-cobalto (lnmco) de alto rendimiento para baterias electricas y metodo de preparacion del mismo |
GB2310073.8A GB2617724A (en) | 2021-08-03 | 2022-05-27 | Lithium nickel manganese cobalt oxide positive electrode material of high-performance power battery and preparation method therefor |
DE112022000283.2T DE112022000283T5 (de) | 2021-08-03 | 2022-05-27 | Hochleistungs-Lithium-Nickel-Mangan-Cobalt-Oxid(LMNCO)-Kathodenmaterial für Leistungsbatterien und Herstellungsverfahren dafür |
HU2400100A HUP2400100A1 (hu) | 2021-08-03 | 2022-05-27 | Nagy teljesítményû lítium-nikkel-mangán-kobalt-oxid (LNMCO) katódanyag nagy áramú akkumulátorokhoz és elõállítási eljárása |
US18/230,210 US20240018014A1 (en) | 2021-08-03 | 2023-08-04 | High-performance lithium-nickel-manganese-cobalt oxide (lnmco) cathode material for power batteries and preparation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110885776.6A CN113809319B (zh) | 2021-08-03 | 2021-08-03 | 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 |
CN202110885776.6 | 2021-08-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/230,210 Continuation US20240018014A1 (en) | 2021-08-03 | 2023-08-04 | High-performance lithium-nickel-manganese-cobalt oxide (lnmco) cathode material for power batteries and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023010970A1 true WO2023010970A1 (zh) | 2023-02-09 |
Family
ID=78942697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/095680 WO2023010970A1 (zh) | 2021-08-03 | 2022-05-27 | 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240018014A1 (zh) |
CN (1) | CN113809319B (zh) |
DE (1) | DE112022000283T5 (zh) |
ES (1) | ES2985643A2 (zh) |
GB (1) | GB2617724A (zh) |
HU (1) | HUP2400100A1 (zh) |
WO (1) | WO2023010970A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113809319B (zh) * | 2021-08-03 | 2022-11-15 | 广东邦普循环科技有限公司 | 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 |
CN116605924A (zh) * | 2023-06-08 | 2023-08-18 | 蜂巢能源科技股份有限公司 | 一种三元正极材料及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103904319A (zh) * | 2014-03-04 | 2014-07-02 | 广东邦普循环科技有限公司 | 一种动力型镍钴锰酸锂正极材料的制备方法 |
CN104051724A (zh) * | 2014-06-06 | 2014-09-17 | 奇瑞汽车股份有限公司 | 一种碳包覆镍钴锰酸锂正极材料及其制备方法 |
US20170084907A1 (en) * | 2014-03-04 | 2017-03-23 | Guangdong Brunp Recycling Technology Co., Ltd. | Power-type nickel cobalt lithium manganese oxide material, and preparation method therefor and uses thereof |
CN108878862A (zh) * | 2018-05-24 | 2018-11-23 | 江苏大学 | 一种锂离子电池富锂锰基正极材料及其喷雾干燥制备方法 |
CN113809319A (zh) * | 2021-08-03 | 2021-12-17 | 广东邦普循环科技有限公司 | 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101673820A (zh) * | 2009-09-25 | 2010-03-17 | 清华大学 | 一种固液结合制备磷酸锰锂/碳复合材料的方法 |
CN102790213A (zh) * | 2012-07-30 | 2012-11-21 | 广东电网公司电力科学研究院 | 一种球形锂离子电池正极材料磷酸锰锂/碳的制备方法 |
CN103178267A (zh) * | 2013-04-01 | 2013-06-26 | 广西大学 | 一种纳/微结构磷酸锰锂/碳复合正极材料的制备方法 |
CN105609721A (zh) * | 2015-12-30 | 2016-05-25 | 中南大学 | 一种三维碳网包覆的硼酸锰锂复合正极材料的制备方法 |
-
2021
- 2021-08-03 CN CN202110885776.6A patent/CN113809319B/zh active Active
-
2022
- 2022-05-27 ES ES202390097A patent/ES2985643A2/es active Pending
- 2022-05-27 DE DE112022000283.2T patent/DE112022000283T5/de active Pending
- 2022-05-27 GB GB2310073.8A patent/GB2617724A/en active Pending
- 2022-05-27 WO PCT/CN2022/095680 patent/WO2023010970A1/zh active Application Filing
- 2022-05-27 HU HU2400100A patent/HUP2400100A1/hu unknown
-
2023
- 2023-08-04 US US18/230,210 patent/US20240018014A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103904319A (zh) * | 2014-03-04 | 2014-07-02 | 广东邦普循环科技有限公司 | 一种动力型镍钴锰酸锂正极材料的制备方法 |
US20170084907A1 (en) * | 2014-03-04 | 2017-03-23 | Guangdong Brunp Recycling Technology Co., Ltd. | Power-type nickel cobalt lithium manganese oxide material, and preparation method therefor and uses thereof |
CN104051724A (zh) * | 2014-06-06 | 2014-09-17 | 奇瑞汽车股份有限公司 | 一种碳包覆镍钴锰酸锂正极材料及其制备方法 |
CN108878862A (zh) * | 2018-05-24 | 2018-11-23 | 江苏大学 | 一种锂离子电池富锂锰基正极材料及其喷雾干燥制备方法 |
CN113809319A (zh) * | 2021-08-03 | 2021-12-17 | 广东邦普循环科技有限公司 | 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240018014A1 (en) | 2024-01-18 |
ES2985643A2 (es) | 2024-11-06 |
HUP2400100A1 (hu) | 2024-06-28 |
GB202310073D0 (en) | 2023-08-16 |
DE112022000283T5 (de) | 2023-09-07 |
GB2617724A (en) | 2023-10-18 |
CN113809319A (zh) | 2021-12-17 |
CN113809319B (zh) | 2022-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10916767B2 (en) | Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery | |
EP3557668A1 (en) | Ternary material and preparation method therefor, battery slurry, positive electrode, and lithium battery | |
US20140106223A1 (en) | METHODS FOR SURFACE COATING OF CATHODE MATERIAL LiNi0.5-XMn1.5MXO4 FOR LITHIUM-ION BATTERIES | |
CN111018006A (zh) | 一种核壳结构高镍三元正极材料的制备方法 | |
WO2023010970A1 (zh) | 一种高性能动力电池镍钴锰酸锂正极材料及其制备方法 | |
CN108390035A (zh) | 石墨烯/三元复合材料的制备方法 | |
CN112018377B (zh) | 一种固态电池用原位包覆正极材料及其制备方法 | |
WO2024046508A1 (zh) | 一种钴梯度高镍三元正极材料及其制备方法、锂离子电池 | |
JP2024516477A (ja) | フェロボロン合金被覆リン酸鉄リチウムの製造方法 | |
CN114772572A (zh) | 一种纳米金属离子包覆磷酸铁锂正极材料及其制备方法 | |
CN114497694A (zh) | 一种制造锂离子电池用的补锂剂及其制备方法 | |
CN112744872A (zh) | 一种高镍正极材料的液相法磷元素掺杂改性制备方法 | |
CN110504447A (zh) | 一种氟掺杂的镍钴锰前驱体及其制备方法与应用 | |
CN114645314B (zh) | 一种单晶形貌三元正极材料的制备方法 | |
CN114005972B (zh) | 一种llto/纳米片状钴酸锂复合正极材料及其制备方法 | |
CN112678883B (zh) | 一种表面富钴型低钴正极材料的制备方法 | |
CN114105117B (zh) | 一种前驱体及磷酸镍铁锂正极材料的制备方法 | |
CN112582587A (zh) | 一种以单晶为核的核壳结构高镍正极材料及其制备方法 | |
CN113213448A (zh) | 一种高比容量的磷酸铁锂电极材料及其制备方法 | |
CN113044890A (zh) | 一种正极材料及其制备方法和锂离子电池 | |
CN108023079B (zh) | 一种混合过渡金属硼酸盐负极材料及其制备方法 | |
CN114956193B (zh) | 一种正极活性材料的制备方法及其应用 | |
CN102263248B (zh) | 一种制备碳包覆的纳米磷酸亚铁锂的方法 | |
CN112002878A (zh) | 一种表层富锰的三元梯度材料的制备方法 | |
CN116387476A (zh) | 一种磷酸锰铁锂复合材料及其制备与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22851686 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 202310073 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20220527 |
|
WWE | Wipo information: entry into national phase |
Ref document number: P2400100 Country of ref document: HU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22851686 Country of ref document: EP Kind code of ref document: A1 |