WO2023007940A1 - 冷媒搬送用ホース - Google Patents
冷媒搬送用ホース Download PDFInfo
- Publication number
- WO2023007940A1 WO2023007940A1 PCT/JP2022/022108 JP2022022108W WO2023007940A1 WO 2023007940 A1 WO2023007940 A1 WO 2023007940A1 JP 2022022108 W JP2022022108 W JP 2022022108W WO 2023007940 A1 WO2023007940 A1 WO 2023007940A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hose
- thermoplastic resin
- layer
- resin composition
- less
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 title claims abstract description 57
- 239000010410 layer Substances 0.000 claims abstract description 122
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 94
- 239000011342 resin composition Substances 0.000 claims abstract description 54
- 239000000835 fiber Substances 0.000 claims abstract description 33
- 230000035699 permeability Effects 0.000 claims abstract description 29
- 229920001971 elastomer Polymers 0.000 claims abstract description 28
- 239000002344 surface layer Substances 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000806 elastomer Substances 0.000 claims abstract description 18
- 239000001301 oxygen Substances 0.000 claims abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims abstract description 15
- 230000003014 reinforcing effect Effects 0.000 claims description 27
- 230000005540 biological transmission Effects 0.000 claims description 6
- 239000004952 Polyamide Substances 0.000 claims description 5
- 229920002647 polyamide Polymers 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- 229920000297 Rayon Polymers 0.000 claims description 2
- 229920002978 Vinylon Polymers 0.000 claims description 2
- 229920006231 aramid fiber Polymers 0.000 claims description 2
- 239000002964 rayon Substances 0.000 claims description 2
- 239000004760 aramid Substances 0.000 claims 1
- 230000002787 reinforcement Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 19
- 239000013585 weight reducing agent Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005549 butyl rubber Polymers 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 5
- 229920002292 Nylon 6 Polymers 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000009954 braiding Methods 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000012466 permeate Substances 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 239000004711 α-olefin Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 3
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 3
- 229920000299 Nylon 12 Polymers 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 229920001470 polyketone Polymers 0.000 description 3
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- NSGXIBWMJZWTPY-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropane Chemical compound FC(F)(F)CC(F)(F)F NSGXIBWMJZWTPY-UHFFFAOYSA-N 0.000 description 1
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical class CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 1
- UHKPXKGJFOKCGG-UHFFFAOYSA-N 2-methylprop-1-ene;styrene Chemical compound CC(C)=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 UHKPXKGJFOKCGG-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920003189 Nylon 4,6 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 229920000577 Nylon 6/66 Polymers 0.000 description 1
- 229920000007 Nylon MXD6 Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- TZYHIGCKINZLPD-UHFFFAOYSA-N azepan-2-one;hexane-1,6-diamine;hexanedioic acid Chemical compound NCCCCCCN.O=C1CCCCCN1.OC(=O)CCCCC(O)=O TZYHIGCKINZLPD-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- ZMUCVNSKULGPQG-UHFFFAOYSA-N dodecanedioic acid;hexane-1,6-diamine Chemical compound NCCCCCCN.OC(=O)CCCCCCCCCCC(O)=O ZMUCVNSKULGPQG-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229920005555 halobutyl Polymers 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical class OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920006285 olefinic elastomer Polymers 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920006132 styrene block copolymer Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/08—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/08—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
- F16L11/081—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
- F16L11/082—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire two layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/08—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
- F16L11/085—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L2011/047—Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer
Definitions
- the present invention relates to a refrigerant-carrying hose, and more particularly to a refrigerant-carrying hose used in air conditioners mounted on automobiles.
- Air conditioners mounted on automobiles are installed in a limited narrow space, so it is desirable that the refrigerant transport hose has good flexibility and specifications that make it easy to install even in a narrow space.
- simply replacing the inner surface layer and the outer surface layer with a resin with an emphasis on permeation resistance will impair the flexibility of the hose.
- An object of the present invention is to provide a hose for transporting refrigerant which has excellent permeation resistance against the refrigerant transported by the hose and moisture outside the hose, is lightweight, has good flexibility, and is excellent in handleability.
- the hose for conveying refrigerant of the present invention comprises an inner layer and an outer layer coaxially arranged, and a reinforcing layer coaxially laminated between the inner layer and the outer layer.
- the inner layer is made of a thermoplastic resin or a thermoplastic resin composition having a sea-island structure consisting of a matrix containing a thermoplastic resin and a domain containing an elastomer
- the outer layer is made of a thermoplastic resin and a domain containing an elastomer, wherein the thermoplastic resin composition or the thermoplastic resin forming the inner layer has a temperature of 21° C.
- a relative humidity of 50 % oxygen permeability coefficient is 0.05 cm 3 ⁇ mm/(m 2 ⁇ day ⁇ mmHg) or less
- the thermoplastic resin composition forming the outer surface layer has a temperature of 60 ° C. and a relative humidity of 100%.
- the permeability coefficient is 10.0 g ⁇ mm/(m 2 ⁇ 24 h) or less
- the reinforcing layer is made of organic fibers
- the inclination angle of the organic fibers with respect to the axis of the hose is set to 49° or more and 61° or less. It is characterized by
- the inner layer is made of the thermoplastic resin composition or the thermoplastic resin
- the outer layer is made of the thermoplastic resin composition
- the reinforcing layer is made of the organic fiber. Therefore, it is advantageous to reduce the weight of the hose.
- the outer layer is formed of the thermoplastic resin composition, it is advantageous in improving the flexibility of the hose compared to the case where the outer layer is formed of a thermoplastic resin.
- thermoplastic resin composition or the thermoplastic resin forming the inner layer is within the range described above, practically sufficient permeation resistance against the refrigerant conveyed by the hose is ensured. can do. Since the water vapor permeability coefficient of the thermoplastic resin composition forming the outer surface layer is within the range described above, it is possible to secure practically sufficient permeability to moisture outside the hose.
- the reinforcing layer is made of organic fibers, it is more advantageous for reducing the weight of the hose.
- the inclination angle of the organic fibers with respect to the axis of the hose is set to 49° or more and 61° or less, dimensional change of the hose due to internal pressure is suppressed, and excellent resistance to medium permeation of the inner surface layer can be maintained.
- FIG. 1 is an explanatory view schematically showing an automobile air conditioner in which the hose for conveying refrigerant of the present invention is used.
- FIG. 2 is an explanatory diagram illustrating a partially cutaway refrigerant transport hose of the present invention.
- 3 is a cross-sectional view of the hose of FIG. 2;
- FIG. 4 is an explanatory diagram illustrating another embodiment of a refrigerant transport hose with a part cut away.
- FIG. 5 is an explanatory diagram illustrating a method for measuring the bending stiffness (flexibility) of a hose.
- a hose 1 for conveying refrigerant (hereinafter referred to as hose 1) of the present invention is used in an air conditioner 5 (hereinafter referred to as air conditioner 5) mounted on a vehicle.
- air conditioner 5 hereinafter referred to as air conditioner 5
- the hose 1 is installed between the constituent devices 5a, 5b, and 5c of the air conditioner 5, and forms a circulation path for circulating the refrigerant Rt to each of the constituent devices 5a, 5b, and 5c.
- the hose 1 Since the air conditioner 5 is installed in a limited narrow space, the hose 1 is often attached to the components 5a, 5b, and 5c in a bent state, and may be in a bent state with a small curvature. Also, the space where the air conditioner 5 is installed may be in a high temperature environment of 70° C. or higher when the engine is running.
- the working internal pressure of the hose 1 is, for example, 1.5 MPa or more and 4 MPa or less, and the inner diameter is, for example, 8 mm or more and 25 mm or less.
- refrigerant Rt examples include hydrofluorocarbons (HFC), hydrofluoroolefins (HFO), hydrocarbons, carbon dioxide, and ammonia.
- HFCs include R410A, R32, R404A, R407C, R507A, R134a, etc.
- HFOs include R1234yf, R1234ze, 1233zd, R1123, R1224yd, R1336mzz, etc.
- Hydrocarbons include methane, ethane, propane, propylene, butane, isobutane, hexafluoropropane, pentane and the like.
- the hose 1 is constructed by coaxially laminating an inner layer 2, a reinforcing layer 4, and an outer layer 3 in this order from the inner peripheral side.
- a dashed-dotted line CL in the drawing indicates the axial center of the hose 1 .
- the reinforcing layer 4 having a blade structure is employed, but a spiral structure can also be employed as in an embodiment illustrated in FIG. 4, which will be described later.
- the inner layer 2 is arranged on the innermost peripheral side of the hose 1 and is in direct contact with the coolant Rt. Therefore, an appropriate material is adopted for the inner surface layer 2 in consideration of permeation resistance to the coolant Rt, durability, and the like.
- the inner surface layer 2 is formed of a thermoplastic resin composition A having a sea-island structure consisting of a matrix containing a thermoplastic resin and domains containing an elastomer.
- the inner surface layer 2 can also be formed of the thermoplastic resin D. Even if the inner layer 2 is a single layer structure of a layer formed of the thermoplastic resin composition A or the thermoplastic resin D, the layer formed of the thermoplastic resin composition A and the thermoplastic resin D A multi-layer structure in which layers are laminated may be used.
- Thermoplastic resin composition A and thermoplastic resin D have an oxygen permeability coefficient of 0.05 cm 3 ⁇ mm/(m 2 ⁇ day ⁇ mmHg) at a temperature of 21°C and a relative humidity of 50%.
- the oxygen permeability coefficient is more preferably 0.03 cm 3 ⁇ mm/(m 2 ⁇ day ⁇ mmHg) or less, more preferably 0.02 cm 3 ⁇ mm/(m 2 ⁇ day ⁇ mmHg) or less. preferable.
- the refrigerant Rt in the hose 1 permeates the material forming the hose 1 and easily leaks out of the hose.
- This oxygen permeability coefficient is the permeation per day per 1 mm thickness per 1 m 2 area per 1 mmHg pressure under the specified temperature (21° C. in the present invention) and humidity (50% in the present invention) conditions. Defined as oxygen content.
- the layer thickness of the inner surface layer 2 is preferably 0.4 mm or more and 1.6 mm or less, for example. If this layer thickness is less than 0.4 mm, it is difficult to ensure refrigerant permeation resistance, and if it exceeds 1.6 m, it becomes difficult to ensure that the hose 1 is lightweight and flexible. In order to ensure sufficient weight reduction and flexibility of the hose 1, the layer thickness of the inner surface layer 2 is more preferably 0.8 mm or less.
- the outer surface layer 3 is formed of a thermoplastic resin composition B having a sea-island structure consisting of a matrix containing a thermoplastic resin and domains containing an elastomer.
- the water vapor permeability coefficient of the thermoplastic resin composition B at a temperature of 60° C. and a relative humidity of 100% is 10.0 g ⁇ mm/(m 2 ⁇ 24 h) or less.
- This water vapor permeability coefficient is more preferably 8.0 g ⁇ mm/(m 2 ⁇ 24 h) or less, and even more preferably 5.0 g ⁇ mm/(m 2 ⁇ 24 h) or less.
- This water vapor transmission coefficient is defined as the amount of water vapor that permeates in 24 hours with a thickness of 1 mm per 1 m 2 area under the specified temperature (60° C. in the present invention) and humidity (100% in the present invention) conditions. be done.
- the layer thickness of the outer surface layer 3 is preferably 0.2 mm or more and 1.8 mm or less, for example. If the layer thickness is less than 0.2 mm, it is difficult to ensure water permeation resistance, and if it exceeds 1.8 m, it becomes difficult to ensure the weight reduction and flexibility of the hose 1 . In order to ensure sufficient weight reduction and flexibility of the hose 1, the layer thickness of the outer layer 3 is more preferably 0.6 mm or less. In order to improve the flexibility of the hose 1, it is more effective to reduce the thickness of the outer layer 3 than to reduce the thickness of the inner layer 2. should be smaller than
- thermoplastic resin composition A and thermoplastic resin D at a temperature of 21°C and a relative humidity of 50% are preferably smaller than that of thermoplastic resin composition B. This is advantageous for minimizing the amount of leakage of the coolant Rt to the outside of the flow path, and is also advantageous for suppressing deterioration in physical properties of the material of the reinforcing layer 4 and the outer layer 3 due to the coolant Rt.
- thermoplastic resin composition B at a temperature of 60°C and a relative humidity of 100% is preferably smaller than that of thermoplastic resin composition A and thermoplastic resin D. This is advantageous for minimizing the amount of moisture from the outside of the hose entering the inside of the hose, and is also advantageous for suppressing deterioration in physical properties of the reinforcing layer 4 and the inner layer 2 due to moisture.
- thermoplastic resin constituting the matrix of the thermoplastic resin composition A and the thermoplastic resin D are not limited as long as the oxygen permeability coefficients of the thermoplastic resin composition A and the thermoplastic resin D are within the range described above, but preferably , polyamide, polyester, polyvinyl alcohol and polyketone.
- thermoplastic resin constituting the matrix of the thermoplastic resin composition B is not limited as long as the water vapor transmission coefficient of the thermoplastic resin composition B is within the range described above, but preferably polyamide, polyester, polyvinyl alcohol, polyketone and It contains at least one selected from the group consisting of polyolefins.
- Polyamides include nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 6/66 copolymer, nylon 6/12 copolymer, nylon 46, nylon 6T, nylon 9T, nylon MXD6, and the like. However, among them, nylon 6 is preferable.
- polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate, among which polybutylene terephthalate is preferred.
- Polyvinyl alcohol includes polyvinyl alcohol, ethylene-vinyl alcohol copolymer, modified ethylene-vinyl alcohol copolymer, etc. Among them, ethylene-vinyl alcohol copolymer is preferable.
- Polyketones include ketone-ethylene copolymers, ketone-ethylene-propylene terpolymers, etc., but ketone-ethylene-propylene terpolymers are preferred.
- the polyolefin may at least partially contain a modified polyolefin resin having a functional group such as maleic anhydride.
- Polyolefins may be used alone or in combination.
- Polyolefins include polypropylene, polyethylene, polybutene, polypentene, polyhexene, polyheptene, polyoctene, ethylene/ ⁇ -olefin copolymers, poly-4-methylpentene-1 resins, propylene/ ⁇ -olefin copolymers, and the like. Among them, polypropylene is preferred.
- the elastomer constituting the domains of the thermoplastic resin composition A is not limited as long as the oxygen permeability coefficient of the thermoplastic resin composition A is within the range described above, but is preferably selected from the group consisting of olefin elastomers and butyl elastomers. At least one selected is included.
- the elastomer constituting the domains of the thermoplastic resin composition B is not limited as long as the water vapor permeability coefficient of the thermoplastic resin composition B is within the range described above, but is preferably selected from the group consisting of olefinic elastomers and butyl elastomers. At least one selected is included.
- olefin elastomers examples include ethylene- ⁇ -olefin copolymers, ethylene-ethyl acrylate copolymers, maleic anhydride-modified ethylene- ⁇ -olefin copolymers, maleic anhydride-modified ethylene-ethyl acrylate copolymers, ethylene- Examples thereof include glycidyl methacrylate copolymers, among which maleic anhydride-modified ethylene- ⁇ -olefin copolymers are preferred.
- butyl-based elastomers examples include butyl rubber, halogenated butyl rubber, isobutylene-paramethylstyrene copolymer rubber, halogenated isobutylene-paramethylstyrene copolymer rubber, styrene-isobutylene-styrene block copolymer, and the like. Isobutylene-paramethylstyrene copolymer rubber is preferred.
- the thermoplastic resin composition A most preferably contains nylon 6 in the matrix and modified butyl rubber in the domains.
- a thermoplastic resin composition consisting of a matrix of nylon 6 and domains of modified butyl rubber for the inner layer 2 it is more advantageous to ensure excellent resistance to refrigerant permeation and flexibility.
- the thermoplastic resin D most preferably contains nylon 6, which is advantageous for ensuring excellent refrigerant permeation resistance.
- the thermoplastic resin composition B most preferably contains nylon 12 in the matrix and modified butyl rubber in the domains.
- Modified butyl rubber refers to halogenated isobutylene-paramethylstyrene copolymer rubber.
- the oxygen permeability coefficient changes, for example, by increasing or decreasing the type of thermoplastic resin that constitutes the matrix in the material and the content of the elastomer that constitutes the domain. Therefore, by selecting a type of thermoplastic resin having excellent refrigerant permeation resistance and controlling the content of this elastomer, the oxygen permeability coefficient can be set within the desired range described above.
- the water vapor transmission coefficient varies, for example, by increasing or decreasing the type of thermoplastic resin that forms the matrix in the material and the content of the elastomer that forms the domain. Therefore, by selecting a thermoplastic resin having excellent moisture permeability resistance and controlling the content of the elastomer, the water vapor permeability coefficient can be set within the desired range described above.
- the reinforcing layer 4 is constructed by laminating organic fibers 4f on the outer peripheral surface of the inner surface layer 2, as illustrated in FIGS.
- the inclination angle a (braiding angle a) of the organic fibers 4f with respect to the hose axis CL is set to 49° or more and 61° or less, and the reinforcing layer 4 is formed by braiding the organic fibers 4f inclined in the opposite direction. ing.
- the reinforcing layer 4 is not limited to one layer, and may be a plurality of layers. The number of laminations of the reinforcing layers 4 and the material of the organic fibers 4f are determined in consideration of the pressure resistance required for the hose 1 and the like.
- the layer thickness of the reinforcing layer 4 is preferably, for example, 0.2 mm or more and 2.0 mm or less, and more preferably 1.2 mm or less in order to ensure the weight reduction and flexibility of the hose 1 .
- the braiding angle a of the organic fibers 4f is less than 49° and more than 61°, the hose dimensions (radius and length) change significantly when the internal pressure acts on the hose 1. Along with this, the dimensions of the inner surface layer 2 also change, the thickness of the layer decreases, the refrigerant permeation resistance deteriorates, and the risk of unnecessary deformation and cracking increases. Therefore, the braid angle a is set at 49° or more and 61° or less, and more preferably set at 54° or more and 56° or less.
- organic fiber 4f for example, polyester fiber, polyamide fiber, aramid fiber, PBO fiber, vinylon fiber, or rayon fiber is used.
- the organic fiber 4f may be a monofilament or a multifilament obtained by twisting a plurality of filaments.
- the organic fibers 4f are spirally wound around the outer peripheral surface of the inner surface layer 2.
- the inclination angle a (braiding angle a) of the organic fibers 4f with respect to the hose axis CL is set to 49° or more and 61° or less.
- the reinforcing layer 4 having a spiral structure basically an even number of reinforcing layers 4 are laminated, and the organic fibers 4f of the reinforcing layers 4 laminated vertically adjacent to each other are slanted in opposite directions.
- the reinforcement layer 4 of the spiral structure has two layers.
- the 10% modulus of the thermoplastic resin compositions A and B at a temperature of 25°C is preferably 10.0 MPa or less, more preferably 6.0 MPa or less.
- a 10% modulus of 10.0 MPa or less is advantageous for ensuring the flexibility of the hose 1 .
- the 10% modulus is a value measured according to the method specified in JIS K6301 "Vulcanized rubber physical test method".
- thermoplastic resin compositions A and B having a sea-island structure instead of general thermoplastic resins.
- the 10% modulus of the thermoplastic resin compositions A and B can be controlled by changing the content of the elastomer contained in the thermoplastic resin compositions A and B (in other words, the volume ratio of domains).
- the thermoplastic resin compositions A and B preferably contain 50% by volume or more of the domain, more preferably 50% by volume or more and 80% by volume or less, and even more preferably 65% by volume or more and 75% by volume or less. When the ratio of the domains is within this range, the hose 1 can achieve excellent flexibility while maintaining excellent refrigerant permeation resistance and moisture permeation resistance.
- the bending rigidity of the inner layer 2 located closer to the bending center (neutral plane) of the hose 1 is decreased, and the outer layer located farther from the neutral plane is preferably smaller than the 10% modulus of the thermoplastic resin composition A and the thermoplastic resin D forming the inner layer 2 .
- the specification in which the inner surface layer 2 is formed from the thermoplastic resin composition A is more advantageous than the specification in which the inner layer 2 is formed from the thermoplastic resin D in improving the flexibility of the hose 1 .
- the outer layer 3 is made of the thermoplastic resin composition B, even if the inner layer 2 is made of the thermoplastic resin D, the flexibility of the hose 1 is sufficient for practical use. can be ensured. It is very effective to improve the flexibility of the hose 1 that the outer layer 3 is made of the thermoplastic resin composition B which is highly flexible (low in bending rigidity).
- the main component of the inner layer 2 is thermoplastic resin composition A or thermoplastic resin D
- the main component of the outer layer 3 is thermoplastic resin composition B.
- Other components can be included as long as they do not impair.
- the inner surface layer 2 is lightweight and is formed of the thermoplastic resin composition A or the thermoplastic resin D having an oxygen permeability coefficient within the range described above. In addition, sufficient permeation resistance can be secured.
- the outer surface layer 3 is made of the thermoplastic resin composition B, which is lightweight, has a water vapor permeability coefficient within the range described above, and is highly flexible, it has practically sufficient permeability to moisture outside the hose. can be secured. Further, since the outer layer 3 is formed of the thermoplastic resin composition B, it is advantageous in improving the flexibility of the hose 1 compared to the case where the outer layer 3 is formed of a general thermoplastic resin. Become.
- the reinforcing layer 4 is composed of the organic fibers 4f, it is more advantageous to reduce the weight of the hose 1. Furthermore, since the inclination angle of the organic fibers 4f with respect to the axis of the hose is set to 49° or more and 61° or less, even if a large internal pressure acts on the hose 1, the change in the hose dimensions is sufficiently suppressed, and the inner surface layer Good resistance to refrigerant permeation according to 2 can be maintained.
- This hose 1 has excellent permeation resistance to the refrigerant Rt and moisture outside the hose, and is lightweight and good because the inner layer 2, the outer layer 3, and the reinforcing layer 4 have all the specifications specified above. It has excellent flexibility and excellent handleability. Since the arrangement of the components 5a, 5b, and 5c is predetermined in the narrow installation space of the air conditioner 5, the flexible hose 1 facilitates handling of the hose 1, resulting in markedly improved handling. do.
- the practically sufficient permeation resistance of the hose 1 to the refrigerant Rt means that the refrigerant permeation amount of the hose 1 is 3 kg/(m 2 ⁇ year) or less, and 1.5 kg/(m 2 ⁇ year) or less is It is preferably 1.0 kg/(m 2 ⁇ year) or less. If the amount of refrigerant permeation is too large, the refrigerant Rt in the hose 1 permeates the material forming the hose 1 and easily leaks out of the hose 1 .
- the refrigerant permeation amount of the hose 1 is defined as the permeation amount of the refrigerant Rt (Freon HFO-1234yf) per 1 m 2 of the inner surface area of the hose 1 under the condition of a specified temperature (80 ⁇ 2° C.) for one year.
- the mass per 1 m 2 of the outer surface area of the hose 1 is, for example, 3000 g/m 2 or less, preferably 2000 g/m 2 or less, and more preferably 1700 g/m 2 or less. Sufficient weight reduction can be achieved by setting the mass per m 2 of the outer surface area of the hose 1 within this range.
- the practically sufficient permeation resistance to moisture outside the hose 1 means that the amount of moisture permeation of the hose 1 is 3.0 mg/(240 h ⁇ cm 2 ) or less, and 1.6 mg/(240 h ⁇ cm 2 ) or less. 2 ) It is preferably 1.0 mg/(240 h ⁇ cm 2 ) or less, more preferably 1.0 mg/(240 h ⁇ cm 2 ) or less. If the moisture permeation amount is too large, the moisture in the outside air permeates into the hose 1, causing the moisture inside the air conditioner 5 to freeze.
- the moisture permeation amount of the hose 1 is defined as the moisture permeation amount per 1 cm 2 of the internal surface area of the hose 1 for 240 hours under the specified temperature (50° C.) and humidity (95% relative humidity) conditions.
- An adhesive layer may optionally be interposed between the inner layer 2 and the reinforcing layer 4 and/or between the reinforcing layer 4 and the outer layer 3, but is preferably interposed.
- the adhesive layer can be formed from a urethane-based adhesive, an epoxy-based adhesive, an acrylic-based adhesive, a modified silicone-based adhesive, an acid-modified polyolefin-based adhesive, or the like.
- the manufacturing method of the hose 1 is not particularly limited, and a known general manufacturing method can be used.
- the inner layer 2 is formed by extruding the material of the inner layer 2 into a tubular shape
- the reinforcing layer 4 is formed by braiding the organic fibers 4 f on the outer peripheral surface of the inner layer 2 .
- the outer layer 3 is formed by extruding the material of the outer layer 3 into a tubular shape to cover the outer peripheral surface of the reinforcing layer 4 .
- test samples S of 11 types of hoses (Examples 1 to 6, Comparative Examples 1 to 5) with different specifications, the following "refrigerant permeation resistance” and “water vapor permeation resistance ”, “Flexibility”, and “Lightweight”.
- the inner diameter of each test sample S is 12 mm in common. Evaluation results are shown in Table 1.
- the material (D + A1) of the inner layer of Example 5 in Table 1 means a two-layer structure in which a layer formed of material A1 is laminated on the outer peripheral surface of a layer formed of material D, and the layer The breakdown of the thickness of 0.7 mm is that the layer formed of material D is 0.3 mm and the layer formed of material A1 is 0.4 mm.
- the material (C + rubber 1) of the inner layer of Comparative Example 1 means a two-layer structure in which a layer formed of material rubber 1 is laminated on the outer peripheral surface of a layer formed of material C.
- the breakdown of the layer thickness of 1.6 mm is that the layer formed of material C is 0.2 mm and the layer formed of material rubber 1 is 1.4 mm.
- Table 2 shows the main formulations of materials A1, A2, A3, B1, B2, B3, C, D, E, F, rubber 1 and rubber 2 in Table 1.
- Known general-purpose additives are appropriately added to these formulations as needed.
- each test sample S is fixed by a fixture such as a clamp, and a predetermined length L (120 + hose outer diameter / 2) x ⁇ [
- a spring scale is attached to the other end spaced apart by [mm] and pulled, and the test sample S is bent in a semicircular shape from the state indicated by the broken line to the state indicated by the solid line.
- a tensile force F measured by a spring scale that pulls the hose in the horizontal direction in a bent state with an inner radius R of 120 mm was used as an evaluation index. It means that the smaller the value of this tensile force F, the easier the test sample S bends and the better the flexibility. If the tensile force F is 20 N or less, it can be evaluated as having practically sufficient flexibility. In Table 1, ⁇ indicates that the tensile force F is 20N or less, and x indicates that the tensile force F exceeds 20N.
- Examples 1 to 5 have performance that meets the standards in all evaluation items of refrigerant permeation resistance, water vapor permeation resistance, flexibility, and weight reduction, and have sufficient performance for practical use. know that you have.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
ィン(HFO)、炭化水素、二酸化炭素、アンモニアなどを例示できる。HFCとしてはR410A、R32、R404A、R407C、R507A、R134aなどが挙げられ、HFOとしてはR1234yf、R1234ze、1233zd、R1123、R1224yd、R1336mzzなどが挙げられ、炭化水素としてはメタン、エタン、プロパン、プロピレン、ブタン、イソブタン、ヘキサフルオロプロパン、ペンタンなどが挙げられる。
それぞれの試験サンプルSの材料から切り出したシート状の試験片を、MOCON社製OXTRAN1/50を用いて、温度21℃および相対湿度50%の条件下で測定した。
それぞれの試験サンプルSの材料から切り出したシート状の試験片を、GTRテック株式会社製水蒸気透過試験機を用いて、温度60℃および相対湿度100%の条件下で測定した。
SAE J2064 AUG2015に準拠して測定を行った。長さ1.07mのそれぞれの試験サンプルSの中に、試験サンプルSの内容積1cm3あたり70%±3%の冷媒(HFO-1234yf)を封入した。この試験サンプルSを80℃の雰囲気下に25日放置し、25日期間中の最後の所定期間(5日間~7日間)での1日あたりの質量の減少量(冷媒透過量)[kg/day]を測定し、この減少量を試験サンプルSの内表面積で除した数値を、1年間あたりの数値に換算することで、冷媒透過量[kg/(m2・year)]を算出した。冷媒透過量の数値が小さい程、耐冷媒透過性に優れていることを意味する。この数値が3以下であれば、実用上十分な耐冷媒透過性を有していると評価できる。表1ではこの数値が3以下の場合を〇、この数値が3超の場合を×で示した。
50℃のオーブンに5時間放置したそれぞれの試験サンプルSを用い、この試験サンプルSの内容積の80%に相当する体積の乾燥剤を試験サンプルSの中に充填し、密封した。この試験サンプルSを温度50℃、相対湿度95%の雰囲気下に放置し、120時間後から360時間後の乾燥剤の質量の増加量を測定し、240時間分の質量の増加量を試験サンプルSの内表面積で除して、水分透過量[mg/(240h・cm2)]を算出した。水分透過量の数値が小さい程、耐水分透過性に優れていることを意味する。この数値が3以下であれば、実用上十分な耐水分透過性を有していると評価できる。表1ではこの数値が3以下の場合を〇、この数値が3超の場合を×で示した。
図5に例示するように、それぞれの試験サンプルSに対して、長手方向一方端部をクランプなどの固定具によって固定し、固定位置から所定長さL(120+ホース外径/2)×π[mm]だけ離間した他方端部にバネ秤を取り付けて引張り、破線で示す状態から実線で示す状態に試験サンプルSを半円弧状に屈曲させる。そして、ホース内側半径Rが120mmの屈曲状態において水平方向に引っ張っているバネ秤によって計測される引張力Fを評価指標とした。この引張力Fの値が小さい程、試験サンプルSは屈曲し易くて柔軟性に優れていることを意味する。この引張力Fが20N以下であれば、実用上十分な柔軟性を有していると評価できる。表1ではこの引張力Fが20N以下の場合を〇、この引張力Fが20N超の場合を×で示した。
比較例1の試験サンプルSの単位長さ当たりの質量を基準の100として、それぞれの試験サンプルSを指数で評価した。指数の値が小さい程、単位長さ当たりの質量が小さくて軽量化に優れていることを意味する。そして、この指数の値が75以下であれば、軽量化に優れていると評価できる。表1ではこの指数の値が75以下の場合を〇、この指数の値が75超の場合を×で示した。
耐冷媒透過性、耐水蒸気透過性、柔軟性、軽量化のすべての評価項目において基準を満たす性能を有している場合を〇、それ以外の場合を×で示した。
2 内面層
3 外面層
4(4a、4b) 補強層
4f 有機繊維
5 エアコンディショナー(エアコン)
5a、5b、5c 構成機器
Rt 冷媒
Claims (5)
- 同軸上に配置された内面層および外面層と、前記内面層と前記外面層との間に同軸上に積層された補強層とを備えた冷媒搬送用ホースにおいて、
前記内面層が、熱可塑性樹脂を含むマトリックスとエラストマーを含むドメインとからなる海島構造を有する熱可塑性樹脂組成物または熱可塑性樹脂からなり、
前記外面層が、熱可塑性樹脂を含むマトリックスとエラストマーを含むドメインとからなる海島構造を有する熱可塑性樹脂組成物からなり、
前記内面層を形成している前記熱可塑性樹脂組成物または前記熱可塑性樹脂の温度21℃および相対湿度50%における酸素透過係数が0.05cm3・mm/(m2・day・mmHg)以下であり、
前記外面層を形成している前記熱可塑性樹脂組成物の温度60℃および相対湿度100%における水蒸気透過係数が10.0g・mm/(m2・24h)以下であり、
前記補強層が有機繊維により構成されていて、前記有機繊維のホース軸心に対する傾斜角度が49°以上61°以下に設定されている冷媒搬送用ホース。 - 前記内面層が、前記熱可塑性樹脂組成物からなる請求項1に記載の冷媒搬送用ホース。
- 前記有機繊維が、ポリエステル繊維、ポリアミド繊維、アラミド繊維、PBO繊維、ビニロン繊維またはレーヨン繊維である請求項1または2に記載の冷媒搬送用ホース。
- 前記補強層が、編組構造で1層またはスパイラル構造で2層である請求項1~3のいずれかに記載の冷媒搬送用ホース。
- 前記内面層の層厚が0.4mm以上1.6mm以下、前記外面層の層厚が0.2mm以上1.8mm以下である請求項1~4のいずれかに記載の冷媒搬送用ホース。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22849019.9A EP4379247A1 (en) | 2021-07-29 | 2022-05-31 | Hose for transportation of refrigerant |
US18/576,417 US20240309974A1 (en) | 2021-07-29 | 2022-05-31 | Hose for conveying refrigerant |
CN202280050439.8A CN117651823A (zh) | 2021-07-29 | 2022-05-31 | 制冷剂输送用软管 |
JP2023538308A JP7453603B2 (ja) | 2021-07-29 | 2022-05-31 | 冷媒搬送用ホース |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-124601 | 2021-07-29 | ||
JP2021124601 | 2021-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023007940A1 true WO2023007940A1 (ja) | 2023-02-02 |
Family
ID=85086631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/022108 WO2023007940A1 (ja) | 2021-07-29 | 2022-05-31 | 冷媒搬送用ホース |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240309974A1 (ja) |
EP (1) | EP4379247A1 (ja) |
JP (1) | JP7453603B2 (ja) |
CN (1) | CN117651823A (ja) |
WO (1) | WO2023007940A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01286829A (ja) * | 1988-05-14 | 1989-11-17 | Toyoda Gosei Co Ltd | 冷媒用ホース |
JPH06294484A (ja) * | 1993-04-07 | 1994-10-21 | Bridgestone Corp | 冷媒輸送用ホース |
JPH10274362A (ja) * | 1997-03-31 | 1998-10-13 | Tokai Rubber Ind Ltd | Co2 サイクル用クーラーホース |
JP2001235068A (ja) * | 2000-02-22 | 2001-08-31 | Yokohama Rubber Co Ltd:The | 低透過ホースおよびその製造方法 |
WO2010073375A1 (ja) * | 2008-12-26 | 2010-07-01 | 横浜ゴム株式会社 | 冷媒輸送用ホース |
JP2013155793A (ja) | 2012-01-30 | 2013-08-15 | Tokai Rubber Ind Ltd | 樹脂ホースおよびその製法 |
JP2018025236A (ja) * | 2016-08-10 | 2018-02-15 | 横浜ゴム株式会社 | ホース |
WO2020137712A1 (ja) * | 2018-12-26 | 2020-07-02 | 横浜ゴム株式会社 | 冷媒輸送配管用熱可塑性樹脂組成物およびその製造方法 |
WO2021054058A1 (ja) * | 2019-09-18 | 2021-03-25 | 横浜ゴム株式会社 | 冷媒輸送配管用熱可塑性樹脂組成物および冷媒輸送配管 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0349937A (ja) * | 1989-07-18 | 1991-03-04 | Nitta Ind Corp | 冷媒用ホースの製造方法 |
JPH05254006A (ja) * | 1992-01-14 | 1993-10-05 | Dainippon Printing Co Ltd | バリアー性容器 |
JP4573015B2 (ja) * | 2001-03-29 | 2010-11-04 | 三菱瓦斯化学株式会社 | 脱酸素剤外装包装体 |
JP2004217803A (ja) * | 2003-01-15 | 2004-08-05 | Dainippon Printing Co Ltd | バリア性フィルムおよびその製造法 |
JP7529965B2 (ja) * | 2020-01-24 | 2024-08-07 | 横浜ゴム株式会社 | 冷媒輸送ホース用樹脂組成物および冷媒輸送ホース |
JP7529967B2 (ja) * | 2020-01-30 | 2024-08-07 | 横浜ゴム株式会社 | 冷媒輸送用ホース |
-
2022
- 2022-05-31 JP JP2023538308A patent/JP7453603B2/ja active Active
- 2022-05-31 WO PCT/JP2022/022108 patent/WO2023007940A1/ja active Application Filing
- 2022-05-31 US US18/576,417 patent/US20240309974A1/en active Pending
- 2022-05-31 EP EP22849019.9A patent/EP4379247A1/en active Pending
- 2022-05-31 CN CN202280050439.8A patent/CN117651823A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01286829A (ja) * | 1988-05-14 | 1989-11-17 | Toyoda Gosei Co Ltd | 冷媒用ホース |
JPH06294484A (ja) * | 1993-04-07 | 1994-10-21 | Bridgestone Corp | 冷媒輸送用ホース |
JPH10274362A (ja) * | 1997-03-31 | 1998-10-13 | Tokai Rubber Ind Ltd | Co2 サイクル用クーラーホース |
JP2001235068A (ja) * | 2000-02-22 | 2001-08-31 | Yokohama Rubber Co Ltd:The | 低透過ホースおよびその製造方法 |
WO2010073375A1 (ja) * | 2008-12-26 | 2010-07-01 | 横浜ゴム株式会社 | 冷媒輸送用ホース |
JP2013155793A (ja) | 2012-01-30 | 2013-08-15 | Tokai Rubber Ind Ltd | 樹脂ホースおよびその製法 |
JP2018025236A (ja) * | 2016-08-10 | 2018-02-15 | 横浜ゴム株式会社 | ホース |
WO2020137712A1 (ja) * | 2018-12-26 | 2020-07-02 | 横浜ゴム株式会社 | 冷媒輸送配管用熱可塑性樹脂組成物およびその製造方法 |
WO2021054058A1 (ja) * | 2019-09-18 | 2021-03-25 | 横浜ゴム株式会社 | 冷媒輸送配管用熱可塑性樹脂組成物および冷媒輸送配管 |
Also Published As
Publication number | Publication date |
---|---|
EP4379247A1 (en) | 2024-06-05 |
JP7453603B2 (ja) | 2024-03-21 |
JPWO2023007940A1 (ja) | 2023-02-02 |
CN117651823A (zh) | 2024-03-05 |
US20240309974A1 (en) | 2024-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1020673B1 (en) | Hose for transporting carbon dioxide refrigerant | |
US7849887B2 (en) | Refrigerant transportation hose | |
US20080236695A1 (en) | Low Gas-Permeable Hose | |
US20140116562A1 (en) | Refrigerant hose | |
JP7529965B2 (ja) | 冷媒輸送ホース用樹脂組成物および冷媒輸送ホース | |
JP5092724B2 (ja) | ホース内管用積層樹脂管状体及び冷媒輸送用ホース | |
AU749115B2 (en) | Air conditioning hose | |
EP1495857A1 (en) | Air conditioning hose | |
JP2005030598A (ja) | 冷媒用ホース | |
BR102015000655A2 (pt) | mangueira para bomba de meio-fio com baixa permeação | |
US20080236694A1 (en) | Hose with Joint Fitting for Conveying Carbon Dioxide Refrigerant | |
WO2023007940A1 (ja) | 冷媒搬送用ホース | |
US10837580B2 (en) | Flexible air conditioning barrier or veneer suction hose | |
US20080087350A1 (en) | Refrigerant-transporting hose | |
JP2009228753A (ja) | 可撓性ホース | |
WO2023008137A1 (ja) | 冷媒輸送用ホース | |
US20220186858A1 (en) | Coolant hose | |
EP0959285B1 (en) | Composite hose for the conveying of refrigerant | |
JP5706070B2 (ja) | 冷媒輸送用ホース | |
JP2007032725A (ja) | 冷媒輸送用ホース | |
JP2009137195A (ja) | ホース内管用積層樹脂管状体及び冷媒輸送用ホース | |
JP2004232728A (ja) | 二酸化炭素冷媒輸送用ホース | |
US20240102585A1 (en) | Hose, specifically for refrigerant applications | |
CN117642570A (zh) | 制冷剂输送用软管 | |
US20020157722A1 (en) | Refrigerant transporting hose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22849019 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023538308 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280050439.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022849019 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022849019 Country of ref document: EP Effective date: 20240229 |