[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023000902A1 - 加热组件和气溶胶产生装置 - Google Patents

加热组件和气溶胶产生装置 Download PDF

Info

Publication number
WO2023000902A1
WO2023000902A1 PCT/CN2022/100154 CN2022100154W WO2023000902A1 WO 2023000902 A1 WO2023000902 A1 WO 2023000902A1 CN 2022100154 W CN2022100154 W CN 2022100154W WO 2023000902 A1 WO2023000902 A1 WO 2023000902A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
sub
electrode
extension
heating element
Prior art date
Application number
PCT/CN2022/100154
Other languages
English (en)
French (fr)
Inventor
刘小力
梁峰
郭玉
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Priority to JP2024501251A priority Critical patent/JP2024525680A/ja
Priority to EP22845067.2A priority patent/EP4374722A1/en
Publication of WO2023000902A1 publication Critical patent/WO2023000902A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/04Waterproof or air-tight seals for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/007Heaters using a particular layout for the resistive material or resistive elements using multiple electrically connected resistive elements or resistive zones
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the invention relates to the technical field of electronic atomization devices, in particular to a heating assembly and an aerosol generating device.
  • Heat-not-burn aerosol generators have attracted more and more attention and favor because of their advantages of safety, convenience, health, and environmental protection.
  • Existing heat-not-burn aerosol generating devices generally include a heating component to heat and atomize the aerosol generating substrate when the heating component is energized; specifically, the heating component is provided with a first electrode and a second electrode, wherein , the first electrode is used to connect to the electrode lead, the second electrode is used to connect to the negative lead, and then communicates with the power supply through the positive lead and the negative lead, so that the power supply supplies power to the heating assembly.
  • the wiring path of the positive electrode wire and/or the negative electrode wire is relatively complicated, and the manufacturing cost is relatively high, which is relatively difficult.
  • the heating assembly and the aerosol generating device provided by the present invention can solve the problems of the existing heating assembly, the wiring path of the positive electrode wire and/or the negative electrode wire is relatively complicated, the production cost is high, and the difficulty is great.
  • a technical solution adopted by the present application is to provide a heating assembly, which includes a heating element, a conductive first electrode and a conductive second electrode.
  • the heating element is used to accommodate and heat the aerosol-generating substrate when energized;
  • the first electrode is arranged on the inner surface of the heating element, and the first electrode has a first connection part;
  • the second electrode and the first electrode are arranged at intervals inside the heating element side, and the second electrode has a second connection part, wherein the first connection part and the second connection part are located at the same end of the heating body and are used to connect to the power supply assembly.
  • the heating body includes a base body and an infrared heating layer.
  • the base body has a storage cavity with an opening at one end, and the storage cavity is used to store the aerosol generating substrate from the opening, and the first electrode and the second electrode are both arranged on the inner side of the storage cavity; the infrared heating layer is arranged on the inner side of the base body, and respectively The first electrode is connected to the second electrode, and the infrared heating layer is used to generate infrared waves to heat the aerosol generating substrate when electrified.
  • the heating assembly further includes an infrared reflective layer, which is arranged on the outer surface of the base body and is used to reflect infrared rays emitted by the infrared heating layer.
  • the heating body includes a plurality of sub-heating bodies, and the inner surface of each sub-heating body is provided with a first sub-connection part and/or a second sub-connection part, and the first sub-connection parts on the plurality of sub-heating bodies form a first connection part , the second sub-connecting parts on the plurality of sub-heating bodies form the second connecting part.
  • each sub-heating body is provided with a first sub-connection part and a second sub-connection part, and the first sub-connection part and the second sub-connection part of the same sub-heating body pass through the extension part and the infrared light of the sub-heating body respectively.
  • the heating layers are electrically connected, so that the infrared heating layers of each sub-heating body can work independently.
  • the heating body includes a first sub-heating body and a second sub-heating body, and the inner surface of the first sub-heating body and the inner side of the second sub-heating body are provided with a first sub-connecting part, a second sub-connecting part, a second An extension part and two second sub-extension parts, the two second sub-extension parts oppositely arranged on the first sub-heating body and the second sub-heating body form the second extension part, the adjacent first extension part and the second sub-extension part
  • a heating zone is formed between the sub-extending parts, so that both the first sub-heating body and the second sub-heating body can heat the aerosol-generating substrate when electrified.
  • the inner surface of the first sub-heating body and the inner side of the second sub-heating body are both provided with a third sub-connecting part, and the third sub-connecting part connects two second sub-extending parts of the same sub-heating body.
  • the heating assembly further includes a first conductive elastic piece and a second conductive elastic piece.
  • the first conductive elastic piece is arranged on the inner side of the heating body, and is electrically connected with the first sub-connection part on each sub-heating body; and/or, the second conductive elastic piece is arranged on the inner side of the heating body, and is connected to each sub-heating body
  • the second sub-connection part on the heating element is electrically connected.
  • the heating assembly further includes a fixing mechanism, which is sheathed on the outer wall of the heating element, and is used for fixing a plurality of sub-heating elements to form the heating element.
  • the fixing mechanism includes a first fixing piece and a second fixing piece, the first fixing piece is sleeved on the first ends of the plurality of heating elements, and is used to fix the first ends of the plurality of sub-heating elements; the second fixing piece covers It is arranged at the second ends of the multiple sub-heating bodies, and is used for fixing the second ends of the multiple sub-heating bodies.
  • the first connecting portion extends along the circumferential direction of the heating element and has a gap. .
  • the second connecting part is located at the position of the notch, and has the same height as the first connecting part in the axial direction of the heating element.
  • the heating element has opposite first end and second end, and the first connecting part and the second connecting part are both arranged on the first end of the heating element;
  • the first electrode also includes at least one first connecting part connected with the first An extension part, the first extension part extends from the first connection part toward the second end of the heating element;
  • the second electrode further includes at least one second extension part connected to the second connection part, the second extension part extends from the second connection part toward The second end of the heating element is extended, and a heating area is formed between adjacent first and second extensions.
  • first extension portion and/or the second extension portion extend along the axial direction of the heating element and are linear.
  • one first extension part and one second extension part are arranged at intervals or a plurality of first extension parts are arranged at intervals with a plurality of second extension parts alternately, so as to divide the heating body to form an even number of heating regions.
  • first extension part the distance between any adjacent first extension part and second extension part is the same.
  • first extension part and the second extension part extend along the circumferential direction of the heating body and are in a spiral shape; the heat generation area is located between one first extension part and one second extension part and forms a spiral heat generation area.
  • the extending directions of the first extending portion and the second extending portion are consistent.
  • the second electrode further includes a third connecting portion for connecting to the negative electrode lead, the third connecting portion is disposed at the second end of the heating element and connected to at least one second extension portion.
  • both the first connecting portion and the second connecting portion are spaced apart from the infrared heating layer of the heating element.
  • first connecting portion, the second connecting portion and the third connecting portion are all arranged at intervals from the infrared heating layer of the heating element.
  • the heating element also includes a limiting member, the limiting member is arranged on the substrate, and the limiting member is used to limit the position of the aerosol generating substrate, so that there is a gap between the outer surface of the aerosol generating substrate and the inner surface of the receiving cavity.
  • the gap; the limiting member forms a limiting opening, which communicates with the storage cavity, and the diameter of the limiting opening is smaller than the inner diameter of the storage cavity; the aerosol-generating substrate is stored in the storage cavity through the limiting opening.
  • an aerosol generating device including a heating component and a power supply component.
  • the heating component is used to heat the aerosol-generating substrate after being energized; the heating component is any one of the above-mentioned heating components; the power supply component is electrically connected to the heating component, and is used to supply power to the heating component.
  • the heating assembly sets the first connecting portion for connecting to the positive lead and the second connecting portion for connecting to the negative lead at the same end of the side of the heating body, so that the positive electrode
  • the lead wire and the negative electrode can be connected at the same end of the heating element, and there is no need for the positive electrode wire or the negative electrode wire to be further routed to the other end to connect with the corresponding electrode.
  • the routing path of the wire is greatly simplified, the length of the wire is reduced, and the manufacturing cost and difficulty are effectively reduced.
  • FIG. 1 is a schematic diagram of the overall structure of the heating assembly provided in the first embodiment of the present application
  • Fig. 2 is a schematic cross-sectional structural diagram of the heating assembly shown in Fig. 1 along the A-A direction provided by an embodiment of the present application;
  • Fig. 3 is a schematic structural view of the outer wall of the heating assembly shown in Fig. 1 developed along its axial direction provided by an embodiment of the present application;
  • Fig. 4 is a schematic diagram of the overall structure of the heating assembly provided in the second embodiment of the present application.
  • Fig. 5 is a schematic cross-sectional structural diagram of the heating assembly shown in Fig. 4 along the B-B direction provided by an embodiment of the present application;
  • Fig. 6 is a schematic structural view of the outer wall of the heating assembly shown in Fig. 4 developed along its axial direction provided by an embodiment of the present application;
  • Fig. 7 is a schematic cross-sectional structure diagram of an aerosol generating device inserted into a heating element provided by an embodiment of the present application;
  • Fig. 8 is a schematic structural view of the outer wall of the heating assembly developed along its axial direction according to the third embodiment of the present application;
  • Fig. 9 is a schematic structural view of the outer wall of the heating assembly developed along its axial direction according to the fourth embodiment of the present application.
  • Fig. 10 is a schematic structural view of the outer wall of the heating assembly developed along its axial direction according to the fifth embodiment of the present application;
  • Fig. 11 is a schematic structural view of the outer wall of the heating assembly developed along its axial direction according to the sixth embodiment of the present application;
  • Fig. 12 is a schematic diagram of the overall structure of the sub-heating body and the circuit on the sub-heating body provided by an embodiment of the present application;
  • Fig. 13 is a schematic structural view of the outer wall of the heating assembly developed along its axial direction according to the seventh embodiment of the present application;
  • Fig. 14 is a schematic diagram of the overall structure of the heating assembly provided by the eighth embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of an aerosol generating device provided by an embodiment of the present application.
  • first”, “second”, and “third” in the present invention are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second” and “third” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present invention are only used to explain the relative positional relationship between the components in a certain posture (as shown in the accompanying drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • Figure 1 provides a schematic structural view of the heating assembly 100 in the first embodiment
  • Figure 2 is a schematic cross-sectional structural view of the heating assembly 100 in Figure 1 along the A-A direction
  • Figure 3 is The structural schematic diagram of the outer wall of the heating assembly 100 in FIG. 1 expanded along its axial direction.
  • the present application provides a heating assembly 100, which is used to heat the aerosol-forming substrate contained in the heating assembly 100 when energized; wherein, the aerosol-forming substrate can specifically be a plant grass-like substrate or a paste-like substrate etc., and the plant grass leaf base can further add aroma components.
  • the aerosol-forming substrate can be wrapped inside aluminum foil or paper, etc., and used together.
  • the heating assembly 100 includes a heating element 110 , a first electrode 120 and a second electrode 130 .
  • the heating element 110 is used for accommodating the aerosol-forming substrate, and the heating element 110 includes a heating material.
  • the heating element 110 can not only support the aerosol-forming substrate contained therein, but also generate heat when energized, and heat the aerosol-forming substrate contained therein, thereby forming an aerosol for users.
  • the first electrode 120 is used to connect to the positive wire, and the second electrode 130 is used to connect to the negative wire, so that the heating element can receive the power provided by the external power supply, so that the heating element 110 can be energized to generate heat.
  • the heating element 110 has an outer surface 110a and an inner surface 110b.
  • the conductive first electrode 120 and the conductive second electrode 130 are arranged on the inner surface 110b of the heating element 110 at intervals, and are electrically connected through a conductive infrared heating layer.
  • the first electrode 120 and the second electrode 130 may also be disposed on the outer surface 110 a of the heating element 110 , and are not limited to only being disposed on the inner surface 110 b of the heating element 110 .
  • the first electrode 120 has a first connection portion 121 for connecting to the positive wire; the second electrode 130 has a second connection portion 131 for connecting to the negative wire.
  • the first connecting portion 121 and the second connecting portion 131 are disposed at the same end of the heating element 110 at intervals.
  • the same end of the heating element 110 refers to the first end of the heating element 110 or the second end of the heating element 110; specifically, the direction perpendicular to the axial direction of the heating element 110 and passing through the heating element 110 along its axis
  • the plane where the central point of the direction is located is the boundary, the part of the heating element 110 located on one side of the plane is the first end 110c of the heating element 110, and the part of the heating element 110 located on the other side of the plane is the second end 110d of the heating element 110 .
  • the heating element 110 is hollow columnar and has a first end 110c and a second end 110d opposite to each other.
  • the first connecting portion 121 and the second connecting portion 131 are arranged at intervals on the first end 110c of the heating element 110 . Therefore, both the positive lead and the negative lead can be connected to the first connection part 121 and the second connection part 131 at the same end of the heating element 110, respectively. In other embodiments, it is also possible that the first connecting portion 121 is connected to the negative lead wire, and the second connecting portion 131 is connected to the positive lead wire.
  • the first electrode 120 and the second electrode 130 can be a conductive coating coated on the inner surface 110b of the heating element 110.
  • the conductive coating can be a metal coating, a conductive silver paste or a conductive tape, etc., or it can be provided on the heating element.
  • the heating assembly 100 arranges the first connecting portion 121 for connecting to the positive lead and the second connecting portion 131 for connecting to the negative lead on the same end of the inner surface 110b of the heating element 110, so that the positive lead and the negative can be connected to each other.
  • the same end of the heating element 110 is wired, and there is no need for the positive or negative wires to be further routed to the other end to communicate with the corresponding electrodes.
  • the first connecting portion 121 and the second connecting portion 131 are arranged at the opposite ends of the heating element 110, so that the positive and negative wires need to be connected at both ends, it not only greatly simplifies the wiring path of the wires, but also reduces the The length of the wire is reduced, and the manufacturing cost and difficulty are effectively reduced.
  • the heating element 110 can be entirely made of conductive materials, such as conductive ceramics, and can also include an insulating base and a conductive infrared heating layer disposed on the surface of the insulating base.
  • the heating element 110 includes a base 111 and an infrared heating layer 112 .
  • the base body 111 has a receiving chamber 1111 with an opening 11111 at one end, and the receiving chamber 1111 is used for receiving the aerosol generating substrate through the opening 11111 .
  • the diameter of the opening 11111 may be larger than or correspond to the outer diameter of the aerosol-generating substrate, and the inner diameter of the receiving cavity 1111 is also larger than or corresponding to the outer diameter of the aerosol-generating substrate, so that the aerosol-generating substrate can be inserted through the opening 11111 Or withdraw from the inside of the receiving cavity 1111 .
  • the diameter of the opening 11111 can be consistent with the inner diameter of the receiving chamber 1111;
  • the central axis coincides, so that when the aerosol-generating matrix is accommodated in the housing chamber 1111 through the opening 11111, the aerosol-generating matrix and the inner wall surface of the housing chamber 1111 are arranged at intervals, so as to avoid the aerosol-generating matrix being located on the inner wall surface of the housing chamber 1111 damage to the first electrode 120 and/or the second electrode 130 on it.
  • the base body 111 may be in the shape of a hollow tube. Furthermore, in the first embodiment, the base body 111 is a hollow cylinder, and the accommodating cavity 1111 is in the shape of a cylinder. In addition, the thickness of the side wall of the substrate 111 is a fixed value, so that the heating element 110 can evenly heat the aerosol-generating substrate. Both the first connecting portion 121 and the second connecting portion 131 are arc-shaped along the circumferential extension of the base body 111 . same height.
  • the first electrode 120 and the second electrode 130 are arranged on the inner surface 110b of the base body 111, the base body 111 has a first end 110c and a second end 110d opposite to each other, and the first connecting portion 121 and the second connecting portion 131 are spaced apart in the receiving cavity 1111 The same end of the inner side 110b.
  • the substrate 111 can be a high temperature resistant insulating material such as quartz glass, ceramics or mica, so as to prevent the short circuit between the first electrode 120 and the second electrode 130. When the substrate is quartz glass, it can be quartz glass with a transparency of more than 80%.
  • the infrared heating layer 112 can generate infrared waves when electrified to heat the aerosol generating substrate.
  • the infrared heating layer 112 can be arranged around the inner surface 110b of the housing cavity 1111 and connected to the first electrode 120 and the second electrode 130 respectively; Current passes through the infrared heating layer 112 between the second electrode 130 and infrared waves are generated.
  • the infrared heating layer 112 can be a metal layer, a conductive ceramic layer or a conductive carbon layer.
  • the shape of the infrared heating layer 112 can be a continuous film, a porous mesh or a strip. Wherein, the material, shape and size of the infrared heating layer 112 can be set as required.
  • the infrared heating layer 112 is arranged on the inner surface 110b of the base body 111. Compared with the scheme in which the infrared heating layer 112 is arranged on the outer side surface 110a of the base body 111, the distance between the infrared heating layer 112 and the aerosol-generating substrate is closer, and the infrared heating layer 112 is closer to the aerosol-generating substrate.
  • the infrared wave generated by the heat generating layer 112 can directly heat the aerosol generating substrate without being conducted through the side wall of the substrate 111, thereby effectively avoiding the problem of heat loss caused by the conduction of the infrared wave through the side wall of the substrate 111, thereby effectively improving the The heat transfer efficiency of the infrared heating layer 112 to the aerosol generating substrate.
  • the infrared heating layer 112 may be an infrared heating film, and the infrared heating film radiates infrared rays when electrified to heat the aerosol-generating substrate in the storage cavity 1111 .
  • the infrared heating film when the infrared heating film is energized, the infrared rays emitted by the infrared heating film can directly heat the aerosol-generating substrate in the storage cavity 1111 without passing through the side wall of the substrate 111, thereby improving the efficiency of infrared radiation.
  • the wavelength of infrared heating is 2.5um-20um. According to the characteristics of heating aerosol to form a matrix, the heating temperature usually needs to be above 350°C, and the energy radiation extreme value is mainly in the 3-5um band.
  • the heating assembly 100 also includes an infrared reflective layer 140 .
  • the infrared reflective layer 140 is arranged on the outer surface 110a of the base body 111, and is used to reflect the infrared rays emitted by the infrared heating film; specifically, the infrared reflective layer 140 is used to reflect the infrared rays emitted by the infrared heating film towards the outside of the base body 111, so that the part Infrared rays can be reflected back to the inside of the substrate 111, and the aerosol-generating substrate is heated by infrared radiation, thereby effectively improving the heating efficiency of the infrared heating film.
  • the infrared reflective layer 140 can be arranged on the entire outer surface 110a of the base body 111, and can also be arranged on part of the outer side surface 110a of the base body 111; in a specific embodiment, at least part of the infrared reflective layer 140 and The relative position of the infrared heating film is to reflect the infrared rays emitted by the infrared heating film.
  • the infrared reflection layer 140 may be a high temperature resistant infrared reflection film, and the infrared reflection film is coated on the outer surface 110 a of the base 111 .
  • Figure 4 provides a schematic structural view of the heating assembly 100 in the second embodiment
  • Figure 5 is a schematic cross-sectional structural view of the heating assembly 100 in Figure 4 along the B-B direction
  • Figure 6 is FIG. 4 is a schematic structural view of the outer wall of the heating assembly 100 deployed along its axial direction.
  • the heating element 110 may further include a limiting member 113, which is arranged on the substrate 111, and is used to limit the radial displacement of the aerosol-generating substrate, so that the aerosol-generating substrate During the process of inserting the receiving chamber 1111, there is a gap between the outer surface 110a of the aerosol-generating substrate and the inner surface 110b of the receiving chamber 1111, thereby forming an air passage between the aerosol-generating substrate and the receiving chamber 1111, which facilitates the adjustment of the aerosol. Generates the suction resistance of the matrix.
  • the limiting member 113 can be set at one end of the base body 111 with the opening 11111, and defines a limiting opening 1131; the limiting opening 1131 is in communication with the receiving cavity 1111, and the diameter of the limiting opening 1131 is smaller than that of the receiving cavity 1111
  • the inner diameter of the aerosol generating substrate is specifically accommodated in the receiving chamber 1111 through the limiting opening 1131, so that when the aerosol generating substrate is restricted in the receiving chamber 1111 through the restricting opening 1131, the outer surface 110a of the aerosol generating substrate and the receiving chamber 1111 There is a gap between the inner surfaces 110b of the aerosol-generating substrate, thereby forming an air passage between the aerosol-generating substrate and the receiving chamber 1111, so as to facilitate adjustment of the suction resistance of the aerosol-generating substrate.
  • the diameter of the limiting opening 1131 may be larger than the outer diameter of the aerosol-generating substrate, so that the aerosol-generating substrate can be smoothly inserted into or withdrawn from the receiving cavity 1111 through the limiting opening 1131 .
  • the limiting member 113 can be made of the same material as the base body 111 and integrally formed, so as to simplify the manufacturing process of the heating element 110 .
  • the limiting member 113 and the base body 111 can also be made of different materials.
  • the center of the limiting opening 1131 and the central axis of the housing cavity 1111 are located on the same straight line, so that when the limiting opening 1131 limits the radial direction of the aerosol-generating substrate in the housing cavity 1111,
  • the distance between the outer wall of the aerosol-generating substrate and the inner wall of the receiving cavity 1111 is equal everywhere. Therefore, the infrared heating layer 112 on the inner wall of the receiving chamber 1111 heats the aerosol generating substrate evenly in the circumferential direction, which is beneficial to the uniform heat distribution during the heating process of the aerosol generating substrate.
  • FIG. 7 is a schematic cross-sectional structure diagram of an aerosol-generating substrate inserted into a heating assembly 100 .
  • the limiting member 113 is provided on the end face of the base body 111 with the opening 11111; in this embodiment, the limiting opening 1131 defined by the limiting member 113 is different from the opening 11111 of the receiving cavity 1111 and can be located at the opening 11111 of the receiving cavity 1111 During the process of inserting the aerosol-generating substrate into the receiving chamber 1111, the aerosol-generating substrate enters the receiving chamber 1111 sequentially through the limiting opening 1131 and the opening 11111 of the receiving chamber 1111.
  • the limiting member 113 can also extend obliquely toward the receiving cavity 1111 to define and form a limiting opening 1131 at the opening 11111 of the receiving cavity. It can be understood that, in this embodiment, the limiting The opening 1131 is the opening of the receiving chamber 1111 .
  • the limiting member 113 may be arranged on the inner surface 110b of the receiving cavity 1111 and located at the end of the receiving cavity 1111; specifically, in this embodiment, the limiting member The upper end surface of 113 can be flush with the upper end surface of the side wall of the base body 111, and defines the opening 11111 forming the receiving cavity 1111; it can be understood that in this embodiment, the opening 11111 and the limiting opening 1131 are located on the same plane, The limiting opening 1131 defined by the limiting member 113 is the opening 11111 of the receiving chamber 1111 .
  • the limiting member 113 can be a protruding ring extending along the circumference of the receiving cavity 1111; referring to FIG. ;
  • the hollow area of the inner wall surface of the convex ring away from the receiving cavity 1111 is formed as a limiting opening 1131 .
  • the limiting member 113 may include a plurality of protrusions arranged at intervals along the circumferential direction of the receiving cavity 1111; preferably, the plurality of protrusions may be arranged on the base at equal intervals along the circumferential direction of the receiving cavity 1111 111, so that the limiting member 113 can effectively limit multiple radial directions of the aerosol-generating substrate. Further, the heights of the protrusions in the axial direction of the receiving cavity 1111 are equal, so as to form the limiting opening 1131 at the same axial height of the receiving cavity 1111 .
  • the shape of the above-mentioned limiting member 113 may be a ring shape, an arc shape, a dot shape, a block shape, a strip shape, and the like.
  • two arc-shaped bars can be arranged at equal intervals on the inner surface 110b of the receiving cavity 1111; or, three block-shaped structures can be arranged at equal intervals on the end surface of the first end 110c of the base body 111, and on the base body
  • the first end 110c of 111 forms a limiting opening 1131 .
  • the quantity, shape, structure and arrangement position of the limiting member 113 are not limited to the above-mentioned several ways.
  • multiple limiters 113 can be set at one end of the base 111 at the same time, or can be respectively set at opposite ends of the base 111, or multiple limiters 113 They may be distributed inside the housing cavity 1111 along the axial direction.
  • the quantity of the limiter 113 can be two, wherein one limiter 113 is arranged at the first end 110c of the base 111, and the other limiter 113 is arranged at the second end 110d of the base 111, so that the base 111
  • Two limiting openings 1131 are formed at both ends, so that the opposite ends of the aerosol generating substrate can be limited by the limiting member 113 .
  • FIG. 8 is a schematic structural view of the outer wall of the heating assembly 100 in the third embodiment deployed along its axial direction.
  • the first connecting portion 121 is annular, extends along the circumferential direction of the heating element 110 and has a gap 1211 , that is, the first connecting portion 121 does not form a closed loop in the circumferential direction.
  • the second connecting portion 131 is located at a position away from the end surface of the first end 110c of the first connecting portion 121, so that the negative lead wire can be connected to the second connecting portion 131 through the gap 1211.
  • the first connection part 121 forms a notch 1211, which can prevent the negative electrode wire from contacting the first connection part 121 and connect to the second connection part 131, prevent the negative electrode wire from contacting the first connection part 121 and short circuit, and facilitate wiring.
  • FIG. 8 shows three longitudinal positional relationships between the first connecting portion 121 and the second connecting portion 131 .
  • the second connecting portion 131 is completely misaligned with the notch 1211 along the axial direction of the heating element 110; Directly opposite to each other in the axial direction; when the second electrode 130130 is at position c, the second connecting part 131 is partially displaced from the notch 1211 along the axial direction of the heating element 110 .
  • the wire is more easily connected to the second connection portion 131 through the gap 1211 , and the wiring path of the wire is simpler.
  • both the first connecting portion 121 and the second connecting portion 131 can be regarded as circular rings with gaps, wherein the first connecting portion 121 and the second connecting portion 131 One is set at the gap of the other.
  • all of the second connecting portion 131 is exposed through the notch 1211 along the axial direction of the heating element 110, and the second connecting portion 131 is located at the position of the notch 1211, and is connected to the first connecting portion 121 in the axial direction of the heating element 110.
  • the first connecting portion 121 and the second connecting portion 131 are flush with the end surface of the first end 110 c of the heating element 110 .
  • the positive lead and the negative lead can be directly connected to the first connecting portion 121 and the second connecting portion 131 , and the routing path of the wire is simpler, which simplifies the routing of the heating assembly 100 .
  • the first electrode 120 further includes at least one first extension portion 122 , one end of the first extension portion 122 is connected to the first connection portion 121 , and the other end faces from the first connection portion 121
  • the second end 110d of the heating element 110 extends.
  • the second electrode 130 further includes at least one second extension portion 132 , one end of the second extension portion 132 is connected to the second connection portion 131 , and the other end extends from the second connection portion 131 toward the second end 110 d of the heating element 110 .
  • the first extension portion 122 and the second extension portion 132 may extend to a position close to the second end 110d, or may extend to an end surface of the second end 110d.
  • first extension part 122 and the second extension part 132 are used to form or define at least one heating area on the infrared heating layer 112 .
  • the first extension 122 and the second extension 132 are spaced apart, and the infrared heating layer 112 between adjacent first extensions 122 and second extensions 132 forms a heating area.
  • a current flows through the heating area between the first extension part 122 and the second extension part 132, and the heating area generates heat and heats the aerosol generating substrate.
  • the first connecting portion 121 and the first extending portion 122 may be made of the same material, and are formed by printing or depositing once.
  • the second connecting portion 131 and the second extending portion 132 may be made of the same material, and are formed by printing or depositing once.
  • the difference between the connection part and the extension part is that the size of the connection part may be larger than that of the extension part, which is convenient for welding or bonding with the external wire.
  • the extending paths of the first extending portion 122 and the second extending portion 132 can be linear, broken line, curved or irregular; the extending direction of the first extending portion 122 and the second extending portion 132 can be along the axial direction It can also extend in any angle direction with the axial direction, or extend helically in the circumferential direction.
  • first extension part 122 and the second extension part 132 are parallel, both extend along the axial direction of the heating element 110, and both are linear, so that the first extension part 122 and the second extension part 132
  • the regular shape of the heating zones in between is beneficial to make the current distribution between the first extension part 122 and the second extension part 132 uniform, so that each heating zone can evenly heat the aerosol-generating substrate.
  • the first connecting portion 121 and the second connecting portion 131 are evenly distributed on the first end 110c of the base body 111 in the circumferential direction.
  • the number of the first extension part 122 and the second extension part 132 can be one.
  • One end of the first extension portion 122 is disposed at the middle of the first connecting portion 121 , and the other end extends to the end surface of the second end 110 d of the base body 111 .
  • One end of the second extension portion 132 is disposed at the middle of the second connecting portion 131, and the other end extends to the end surface of the second end 110d of the base body 111.
  • the first extension portion 122 and the second extension portion 132 are arranged at opposite ends of the same diameter of the cylindrical base 111 at intervals, both extend along the axial direction of the heating element 110, and both can be linear; of course, in other embodiments In the present application, the first extension part 122 and/or the second extension part 132 may also be in a curved shape, as long as the two do not intersect; specifically, the first extension part 122 and the second extension part
  • the parts 132 are uniformly distributed along the circumferential direction, and divide the infrared heating layer 112 into two heating regions with the same shape and size, so that the two heating regions can evenly heat the aerosol-generating substrate.
  • the current flows from the first extension part 122 to the second extension part 132 in two opposite directions.
  • Substrate heating The circuit distribution of the heating component is simple, and the wiring mode of the same end is realized, so that the wiring path of the heating component is relatively simple, and the manufacturing cost and difficulty are reduced.
  • FIG. 9 provides a schematic structural view of the outer wall of the heating assembly 100 in the fourth embodiment deployed along its axial direction.
  • the second electrode 130 also includes a third connection portion 133 for connecting with a negative lead.
  • the third connection portion 133 is disposed on the second end 110 d of the heating element 110 and connected to the second extension portion 132 .
  • the third connecting portion 133 may extend circumferentially along the second end 110d of the heating element 110 to form a closed loop, a loop with a gap, or an arc.
  • the positive wire is connected to the first connection portion 121 of the first end 110c, and the negative wire can be connected to the second connection portion 131 of the first end 110c or to the third connection portion 133 of the second end 110d. . Therefore, setting the third connection portion 133 can enable the heating assembly 100 to realize both single-side wiring and double-side wiring. Way.
  • the first electrode 120 includes a third connection portion 133, and the third connection portion 133 is used to connect with the positive electrode wire, and also realize the function that the heating element can be connected on one side or on both sides. .
  • At least one of the first connecting portion 121 , the second connecting portion 131 and the third connecting portion 133 is spaced apart from the infrared heating layer 112 of the heating element 110 .
  • the infrared heating layer 112 is connected to at least one of the first connection part 121, the second connection part 131 and the third connection part 133, part of the current will flow from the first connection part 121 to the second extension part 132, or from The first extending portion 122 flows to the second connecting portion 131 , or flows from the first extending portion 122 to the third connecting portion 133 , so that the current in the heating area flows irregularly, and the heating area generates unevenly.
  • the first connecting portion 121, the second connecting portion 131 and the third connecting portion 133 are all spaced apart from the infrared heating layer 112 of the heating element 110, so that the current flow direction of the heating area is defined as the circumferential direction, so that the current in the heating area
  • the regularity of the trend makes the heating of the heating area more uniform, and the heating of the aerosol-generating substrate is more uniform.
  • the edge of the infrared heating layer 112 is flush with the end of the first extension 122 near the second end 110d, and the first extension 122 completely separates the infrared heating layer 112 into two spaced heating areas with the same shape and area. , so that the trend of the current in the heating area is more regular.
  • both the first connecting portion 121 and the second connecting portion 131 are spaced apart from the infrared heating layer 112 of the heating element 110 , and have the same distance from the infrared heating layer 112 of the heating element 110 .
  • FIG. 10 provides a schematic structural view of the outer side wall of the heating assembly 100 in the fifth embodiment along its axial direction.
  • the first electrode 120 includes a plurality of first extensions 122 connected to the first connection part 121
  • the second electrode 130 includes a plurality of second extensions 132 connected to the second connection part 131 .
  • Adjacent first extension parts 122 and second extension parts 132 are arranged at intervals, and a heating area is formed between adjacent first extension parts 122 and second extension parts 132 .
  • the plurality of first extensions 122 and the plurality of second extensions 132 are alternately arranged to separate the infrared heating layer 112 in the circumferential direction to form an even number of heating areas, and each heating area has a part of the infrared heating layer 112 .
  • the first extension part 122 and the second extension part 132 are alternately arranged at intervals, so that the infrared heating layer 112 can be fully utilized and divided into an even number of heating areas Substrate heating for aerosol generation.
  • the electrodes of the two adjacent extension parts 122 are of the same polarity
  • the electrodes of two adjacent second extension parts 132 are of the same polarity, and no current can be conducted between them, that is, the adjacent two first extension parts 122 or the adjacent two A heating area cannot be formed between the two second extension parts 132, and the infrared heating layer 112 cannot be fully utilized.
  • the first extension part 122 and the second extension part 132 are the same, the first extension part 122 and the second extension part 132 are alternately arranged at intervals, so that the infrared heating layer 112 can be fully utilized, and part of the infrared heating layer is avoided. 112 There is a situation where a hot zone cannot be formed.
  • any adjacent first extension part 122 and second extension part 132 have the same spacing distance, and the first extension part 122 and the second extension part 132 extend along the axial direction and are linear, so that a plurality of first extension parts
  • the extension part 122 and the plurality of second extension parts 132 are evenly distributed circumferentially on the outer surface 110a of the heating element 110, and the shape and size of the heat generation area between adjacent first extension parts 122 and second extension parts 132 are the same , the equivalent resistance of each heating zone is the same. Therefore, the magnitude of heat emitted by each heating area can be basically the same after electrification, and each heating area can evenly heat all directions of the aerosol-generating substrate.
  • the second electrode 130 includes a third connection part 133 .
  • the first connecting part 121 is used for connecting with the positive lead wire and also for connecting multiple first extension parts 122;
  • the third connecting part 133 is used for connecting with the negative lead wire and also for connecting multiple second extending parts 132 , that is, the first electrode 120 and the second electrode 130 form a spline electrode.
  • the third connection part 133 is connected to each second extension part 132, and the third connection part 133 forms a ring at the second end 110d of the heating body, so that each heating area can be energized to work.
  • the number of the first extension part 122 and the number of the second extension part 132 are both two.
  • the two first extension parts 122 are respectively located at two ends of the first connecting part 121 .
  • One second extension portion 132 is respectively connected to the second connection portion 131 and the third connection portion 133 , and the other second extension portion 132 is disposed between the two first extension portions 122 and only connected to the third connection portion 133 .
  • the third connecting portion 133 is annularly disposed on the second end 110d of the heating element 110 and connected to the two second extending portions 132 respectively.
  • the two first extensions 122 and the two second extensions 132 are alternately arranged at intervals, both extend along the axial direction of the heating element 110 , and are linear.
  • the two first extensions 122 and the two second extensions 132 are evenly distributed along the circumferential direction, and the infrared heating layer 112 is divided into four heating areas with the same shape and size, so that the four heating areas can evenly Aerosols generate substrate heating.
  • the equivalent resistance of each heating area in the heating assembly 100 with four heating areas is smaller, and the heating power of each heating area is larger.
  • the heating element 100 is more efficient at heating the aerosol-generating substrate.
  • FIG. 11 provides a schematic view of the structure of the outer wall of the heating assembly 100 in the sixth embodiment along its axial direction.
  • the number of the first extension part 122 and the number of the second extension part 132 is one.
  • the first extension part 122 , the second extension part 132 and the infrared heating layer 112 all extend spirally along the circumferential direction of the heating element 110 , and extend from the first end 110 c to the second end 110 d of the heating element 110 .
  • both ends of the first extension part 122 can be used as the first connecting part 121
  • both ends of 132 can be used as the second connection part 131 .
  • the first connecting portion 121 and the second connecting portion 131 are both provided at the first end 110c and the second end 110d, and the first connecting portion 121 is connected to one end of the first extension portion 122, and the second connecting portion 131 is connected to the second end.
  • One end of the extension part 132 is connected.
  • the infrared heating layer 112 is located between the first extending portion 122 and the second extending portion 132 and forms a spiral heating area.
  • the helical extension directions of the first extension part 122 and the second extension part 132 are consistent, and the distance between the first extension part 122 and the second extension part 132 is equal everywhere, and the first extension part 122 and the second extension part 132 are evenly distributed on the outer surface 110a of the heating element 110, so that the infrared heating layer 112 can evenly heat the aerosol-generating substrate.
  • the heating body 110 includes a plurality of sub-heating bodies 114 , and the plurality of sub-heating bodies 114 can be spliced into one heating body 110 by cooperation. Electrodes are provided on the inner surface 110 b of the multiple sub-heating bodies 114 . After splicing the multiple sub-heating bodies 114 , the electrodes of the multiple sub-heating bodies 114 can be spliced to form a circuit of the heating body 110 .
  • the heating body 110 may include a plurality of sub-heating bodies 114 of the same size and the same shape, or may include a plurality of sub-heating bodies 114 of different sizes and shapes.
  • the plurality of sub-heating elements 114 may be in the shape of a plurality of hollow arcs.
  • FIG. 11 provides a schematic structural view of a seed heating element 114 .
  • the sub-heating body 114 has a hollow semi-cylindrical shape, and two hollow semi-cylindrical sub-heating bodies 114 can be spliced to form a complete hollow cylindrical heating body 110 .
  • the present application sets the first electrode 120, the second electrode 130 and the infrared heating layer 112 on the inner surface 110b of the substrate 111, it is not convenient to coat the electrodes and the infrared heating layer 112 from the outside during the manufacturing process of the heating element. in the housing chamber 1111. Therefore, it is necessary to divide the heating element 110 into multiple sub-heating elements 114 , coat the electrodes and the infrared heating layer 112 on each sub-heating element 114 , and finally splice each sub-heating element 114 into a complete heating element 110 .
  • each sub-heating body 114 is provided with a first sub-connection portion 123 and/or a second sub-connection portion 134, and the first sub-connection portions 123 on a plurality of sub-heating bodies 114 are spliced to form a first connection portion 121 , the second sub-connecting portions 134 on the plurality of sub-heating elements 114 are spliced to form the second connecting portion 131 .
  • each sub-heating body 114 is provided with a first sub-connection part 123 and a second sub-connection part 134, and the first sub-connection part 123 and the second sub-connection part 134 of the same sub-heating body 114 respectively pass through
  • the extension part is electrically connected to the infrared heating layer 112 of the sub-heating body 114, so that the infrared heating layer 112 of each sub-heating body 114 can work independently. That is, multiple sub-heating bodies 114 can not only heat the aerosol-generating substrate as a whole after splicing, but can also be independent heating bodies 110 without splicing, and heat the aerosol-generating substrate after being energized.
  • multiple sets of positive and negative wires can be used to connect the first sub-connection part 123 and the second sub-connection part 134 of each sub-heating body 114 respectively.
  • FIG. 13 is a schematic diagram of the expanded structure of the side wall of the heating element 110 formed by splicing two sub-heating elements 114 as shown in FIG. 11 provided by the seventh embodiment.
  • the heating body 110 includes a first sub-heating body 115 and a second sub-heating body 116, both of which are hollow semi-cylindrical.
  • the first sub-heating body 115 and the second sub-heating body 116 can be spliced to form a hollow cylindrical heating body 110 .
  • the inner side 110b of the first sub-heating body 115 and the inner side 110b of the second sub-heating body 116 are provided with a first sub-connecting part 123, a second sub-connecting part 134, a first extension part 122 and two second sub-extending parts. Section 1321.
  • the second sub-extension 1321 on the adjacent first sub-heating body 115 and the second sub-extension 1321 on the second sub-heating body 116 form a second extension 132, and the two sub-extensions 132 on the first sub-heating body 115
  • the second sub-extension 1321 and the two second sub-extensions 1321 on the second sub-heating body 116 form two second extensions 132 .
  • a heating zone is formed between adjacent first extensions 122 and second sub-extensions 1321 , so that both the first sub-heating body 115 and the second sub-heating body 116 can heat the aerosol-generating substrate when energized.
  • the inner side 110b of the first sub-heating body 115 and the inner side 110b of the second sub-heating body 116 are both provided with a third sub-connecting portion 1331, and the third sub-connecting portion 1331 connects two second sub-heating bodies 114 of the same sub-heating body 114. Two sub extensions 1321 .
  • the third sub-connecting part 1331 on each sub-heating body 114 is spliced to form the third connecting part 133 . Setting the third sub-connecting part 1331 can make the circuit on each sub-heating body 114 realize single-sided wiring and double-sided wiring at the same time.
  • the wiring method of the assembly 100 is described in this specification.
  • the heating assembly 100 may further include a first conductive elastic piece, a second conductive elastic piece and a third conductive elastic piece.
  • the first conductive elastic piece, the second conductive elastic piece and the third conductive elastic piece are all arranged at the joints of the multiple heating sub-elements 114 .
  • the electrodes of multiple sub-heating bodies 114 may be in poor contact.
  • the electrodes are electrically connected so that the heating element can work normally and generate substrate heating for the aerosol.
  • the first conductive elastic piece is disposed on the inner surface 110 b of the heating element 110 , and is electrically connected to the first sub-connecting portion 123 on each sub-heating element 114 .
  • the first conductive elastic piece can be contacted and connected with the first sub-connecting portion 123 on each sub-heating body 114 , so as to electrically connect the first sub-connecting portion 123 on each sub-heating body 114 .
  • the first conductive elastic piece can also be contacted and connected to the first extension portion 123 on each sub-heating body 114 , so as to electrically connect the first sub-connecting portion 123 on each sub-heating body 114 .
  • the second conductive elastic piece is disposed on the inner surface 110 b of the heating element 110 and communicates with the second sub-connecting portion 134 on each sub-heating element 114 .
  • the second conductive elastic piece can be contacted and connected with the second sub-connecting portion 134 on each sub-heating body 114 , so as to electrically connect the second sub-connecting portion 134 on each sub-heating body 114 .
  • the first conductive elastic piece can also be contacted and connected to the second sub-extending portion 1321 on each sub-heating body 114 , so as to electrically connect the second sub-connecting portion 134 on each sub-heating body 114 .
  • the third conductive shrapnel is arranged on the inner surface 110b of the heating element 110, and is connected to the third sub-connecting part 1331 on each sub-heating element 114, so that each sub-heating element 114
  • the second sub-connection portion 134 communicates and is electrically connected.
  • FIG. 14 is a schematic structural diagram of a heating assembly 100 of the eighth embodiment.
  • the heating assembly 100 further includes a fixing mechanism 150 , which is sheathed on the outer wall of the heating element 110 , and is used for fixing a plurality of sub-heating elements 114 so as to limit the plurality of sub-heating elements 114 .
  • the fixing mechanism 150 can also splice multiple sub-heating elements 114 into the heating element 110, so that the heating components can work normally.
  • the fixing mechanism 150 further includes a first fixing part 151 and a second fixing part 152 .
  • the first fixing member 151 is sleeved on the first ends 110c of the plurality of sub-heating bodies 114 for fixing the first ends 110c of the plurality of sub-heating bodies 114;
  • the second fixing member 152 is sleeved on the first ends 110c of the plurality of sub-heating bodies 114 The two ends 110d are used to fix the second ends 110d of the plurality of sub-heating elements 114 .
  • the first fixing part 151 and the second fixing part 152 may have limiting grooves, and the first ends 110c and the second ends 110d of the plurality of sub-heating elements 114 are respectively provided in the limiting grooves of the first fixing part 151 and the second fixing part 152 In the limit groove of the multiple sub-heating elements 114, the limit is carried out.
  • the first fixing part 151 is a cylindrical upper cover
  • the second fixing part 152 is a cylindrical base.
  • the heating element 110 includes two sub-heating elements 114, the upper cover is sleeved on one end of the two sub-heating elements 114, and the base is sleeved on the other end of the two sub-heating elements 114, so that the two sub-heating elements 114 are fixed in the upper cover and the base .
  • the upper cover and the base limit the two sub-heating bodies 114, and the two sub-heating bodies 114 are spliced into one heating body 110, so that the heating body 110 can heat the aerosol-generating substrate after being energized.
  • the fixing mechanism 150 further has a through hole 153 , and the diameter of the through hole 153 is smaller than the inner diameter of the receiving cavity 1111 of the heating element 110 . That is, the fixing mechanism 150 can also be used as a limiting member 113 to limit the position of the aerosol-generating substrate in the storage chamber 1111, so that there is a gap between the outer surface 110a of the aerosol-generating substrate and the inner surface 110b of the receiving chamber 1111. The gap forms an air passage between the aerosol-generating matrix and the receiving cavity 1111, which is convenient for adjusting the suction resistance of the aerosol-generating matrix and the infrared heating layer.
  • FIG. 15 is a schematic structural diagram of an aerosol generating device 200 provided by an embodiment of the present application.
  • the present application also provides an aerosol generating device 200 , which may include a heating assembly 100 and a power supply assembly 230 .
  • the heating assembly 100 can specifically be the heating assembly 100 involved in any of the above-mentioned embodiments, and its specific structure and function can refer to the relevant description of the heating assembly 100 in the above-mentioned embodiments, and can achieve the same or similar technical effects. This will not be repeated here.
  • the aerosol generating device 200 may further include a casing 210 and a mounting seat 220 .
  • the mounting base 220 is used to fix the heating assembly 100 on the housing 210; specifically, the installation includes a mounting body, the mounting body is provided with a through hole 153, and the heating assembly 100 is inserted into the through hole 153 to be connected to the mounting base 220.
  • an avoidance groove may also be provided on the side wall of the through hole 153, and the positive and negative lead wires specifically extend into the mounting seat 220 through the avoidance groove so as to be on the heating element 110 away from the first mounting seat 220.
  • the first electrode 120 is connected to the second electrode 130 .
  • at least two clamping parts are provided on the installation body, and the mounting base 220 is fixed to the housing 210 of the aerosol forming device through the clamping parts.
  • the aerosol generating device 200 may also include a controller (not shown in the figure), the controller is respectively connected with the heating assembly 100 and the power supply assembly 230, and is used to control the power supply assembly 230 to supply power to the heating assembly 100 and Control the heating power of the heating component 100, the heating duration, and the like.
  • the power supply component 230 is connected with the heating component 100 for supplying power to the heating component 100; and in one embodiment, the power supply component 230 may specifically include a rechargeable lithium-ion battery.
  • the aerosol generating device 200 provided in this embodiment is provided with a heating assembly 100, and the heating assembly 100 is configured to generate heat by setting the first connecting portion 121 for connecting to the positive lead wire and the second connecting portion 131 for connecting to the negative lead wire.
  • the positive and negative lead wires need to be connected at both ends, which not only greatly simplifies the routing of the wires
  • the path reduces the length of the wire, and effectively reduces the manufacturing cost and difficulty.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)

Abstract

本申请公开了一种加热组件和气溶胶产生装置。加热组件包括发热体、导电的第一电极和导电的第二电极。发热体用于收容并在通电时加热气溶胶产生基质;第一电极设置于发热体的内侧面,且第一电极具有第一连接部;第二电极与第一电极间隔设置于发热体的内侧面,且第二电极具有第二连接部,其中,第一连接部与第二连接部位于发热体的同一端,并用于连接至电源组件。该加热组件和气溶胶产生装置不仅大大简化了导线的走线路径,减小了导线的长度,且有效降低了制作成本及难度。

Description

加热组件和气溶胶产生装置
相关申请的交叉引用
本申请基于2021年07月23日提交的中国专利申请2021108410964主张其优先权,此处通过参照引入其全部的记载内容。
【技术领域】
本发明涉及电子雾化装置技术领域,尤其涉及一种加热组件和气溶胶产生装置。
【背景技术】
加热不燃烧气溶胶产生装置因其具有使用安全、方便、健康、环保等优点,而越来越受到人们的关注和青睐。
现有的加热不燃烧气溶胶产生装置,其一般包括加热组件,以通过加热组件在通电时加热并雾化气溶胶产生基质;具体的,加热组件上设置有第一电极和第二电极,其中,第一电极用于与电极导线连接,第二电极用于与负极导线连接,进而通过正极导线和负极导线与电源连通,从而使电源为加热组件供电。
然而,现有的加热组件使用时,正极导线和/或负极导线的走线路径较为复杂,制作成本较高,难度较大。
【发明内容】
本发明提供的加热组件和气溶胶产生装置,该加热组件能够解决现有的加热组件,正极导线和/或负极导线的走线路径较为复杂,制作成本较高,难度较大的问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种加热组件,包括发热体、导电的第一电极和导电的第二电极。发热体用于收容并在通电时加热气溶胶产生基质;第一电极设置于发热体的内侧面,且第一电极具有第一连接部;第二电极与第一电极间隔设置于发热体的内侧面,且第二电极具有第二连接部,其中,第一连接部与第二连接部位于发热体的同一端并用于连接至电源组件。
其中,发热体包括基体和红外发热层。基体具有一端开口的收容腔,收容腔用于从开口收容气溶胶产生基质,第一电极和第二电极均设于收容腔的内侧面上;红外发热层设置在基体的内侧面,并分别与第一电极和第二电极连接,红外发热层用于在通电时产生红外波以加热气溶胶产生基质。其中,加热组件还包括红外反射层,红外反射层设置于基体的外侧面,用于反射红外发热层发射的红外线。
其中,发热体包括多个子发热体,每一子发热体的内侧面设有第一子连接部和/或第二子连接部,多个子发热体上的第一子连接部形成第一连接部,多个子发热体上的第二子连接部形成第二连接部。
其中,每一子发热体的内侧面设有第一子连接部和第二子连接部,同一子发热体的第一子连接部和第二子连接部分别通过延伸部与子发热体的红外发热层电连接,使得每一子发热体的红外发热层可以独立工作。
其中,发热体包括第一子发热体和第二子发热体,第一子发热体的内侧面和第二子发热体的内侧面 均设有第一子连接部、第二子连接部、第一延伸部和两个第二子延伸部,第一子发热体和第二子发热体上相对设置的两个第二子延伸部形成第二延伸部,相邻的第一延伸部和第二子延伸部之间形成一个发热区,以使第一子发热体和第二子发热体均能在通电时加热气溶胶产生基质。
其中,第一子发热体的内侧面和第二子发热体的内侧面均设有第三子连接部,第三子连接部连接同一子发热体的两个第二子延伸部。其中,加热组件还包括第一导电弹片和第二导电弹片。第一导电弹片设置在发热体的内侧面上,与每一子发热体上的第一子连接部电连接;和/或,第二导电弹片设置在发热体的内侧面上,与每一子发热体上的第二子连接部电连接。
其中,加热组件还包括固定机构,套设在发热体的外侧壁上,用于固定多个子发热体以形成发热体。其中,固定机构包括第一固定件和第二固定件,第一固定件套设在多个发热体的第一端,用于对多个子发热体的第一端进行固定;第二固定件套设在多个子发热体的第二端,用于对多个子发热体的第二端进行固定。
其中,第一连接部沿着发热体的周向延伸且具有缺口。。
其中,第二连接部位于缺口的位置,并在发热体的轴向方向上与第一连接部的高度一致。
其中,发热体具有相对的第一端和第二端,第一连接部和第二连接部均设于发热体的第一端;第一电极还包括与第一连接部连接的至少一个第一延伸部,第一延伸部自第一连接部朝向发热体的第二端延伸;第二电极还包括与第二连接部连接的至少一个第二延伸部,第二延伸部自第二连接部朝向发热体的第二端延伸,相邻的第一延伸部和第二延伸部之间形成一个发热区。
其中,第一延伸部和/或第二延伸部沿发热体的轴向方向延伸且呈直线型。
其中,一个第一延伸部与一个第二延伸部间隔设置或多个第一延伸部与多个第二延伸部交替间隔设置,以将发热体分割形成偶数个发热区。
其中,任意相邻的第一延伸部和第二延伸部的间隔距离相同。
其中,第一延伸部和第二延伸部沿发热体的周向方向延伸且呈螺旋型;发热区位于一个第一延伸部和一个第二延伸部之间且形成螺旋型发热区。
其中,第一延伸部和第二延伸部的延伸方向一致。
其中,第二电极还包括第三连接部,用于与负极导线连接,第三连接部设置于发热体的第二端,并与至少一个第二延伸部连接。
其中,第一连接部和第二连接部均与发热体的红外发热层间隔设置。
其中,第一连接部、第二连接部和第三连接部中均与发热体的红外发热层间隔设置。
其中,发热体还包括限位件,限位件设于基体上,限位件用于对气溶胶产生基质进行限位,以使气溶胶产生基质的外侧面与收容腔的内侧面之间具有间隙;限位件形成限位口,限位口与收容腔连通,且限位口的口径小于收容腔的内径;气溶胶产生基质通过限位口收容于收容腔。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种气溶胶产生装置,包括加热组件和电源组件。加热组件用于在通电后加热气溶胶产生基质;加热组件为上述任一项的加热组件;电源组件与加热组件电连接,用于向加热组件供电。
本发明提供的加热组件和气溶胶产生装置,该加热组件通过将用于与正极导线连接的第一连接部和用于与负极导线连接的第二连接部设于发热体内侧面的同一端,使得正极导线和负极能够在发热体的同一端进行接线,无需正极导线或负极导线进一步走线至另一端以与相应的电极连接,相比于将正极导线和负极导线需要进行两端接线的方案,不仅大大简化了导线的走线路径,减小了导线的长度,且有效降低了制作成本及难度。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请第一实施例提供的加热组件的整体结构示意图;
图2为本申请一实施例提供的图1所示的加热组件沿A-A向的剖视结构示意图;
图3为本申请一实施例提供的图1所示加热组件沿其轴向方向展开的外侧壁的结构示意图;
图4为本申请第二实施例提供的加热组件的整体结构示意图;
图5为本申请一实施例提供的图4所示的加热组件沿B-B向的剖视结构示意图;
图6为本申请一实施例提供的图4所示加热组件沿其轴向方向展开的外侧壁的结构示意图;
图7为本申请一实施例提供的气溶胶产生装置插入一加热组件的剖视结构示意图;
图8为本申请第三实施例提供的加热组件沿其轴向方向展开的外侧壁的结构示意图;
图9为本申请第四实施例提供的加热组件沿其轴向方向展开的外侧壁的结构示意图;
图10为本申请第五实施例提供的加热组件沿其轴向方向展开的外侧壁的结构示意图;
图11为本申请第六实施例提供的加热组件沿其轴向方向展开的外侧壁的结构示意图;
图12为本申请一实施例提供的子发热体及子发热体上的电路的整体结构示意图;
图13为本申请第七实施例提供的加热组件沿其轴向方向展开的外侧壁的结构示意图;
图14为本申请第八实施例提供的加热组件的整体结构示意图;
图15为本申请一实施例提供的气溶胶产生装置的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
本发明中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含 地包括至少一个所述特征。本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果所述特定姿态发生改变时,则所述方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1、图2和图3,图1提供了第一实施例中加热组件100的一种结构示意图,图2为图1的加热组件100沿A-A向的剖视结构示意图,图3为图1的加热组件100沿其轴向方向展开的外侧壁的结构示意图。
本申请提供一种加热组件100,该加热组件100用于在通电时加热收容在该加热组件100内的气溶胶形成基质;其中,气溶胶形成基质具体可为植物草叶类基质或膏状基质等,并且植物草叶类基质还可以进一步添加香气成分。气溶胶形成基质可以包裹在铝箔或纸张等内部,一起使用。
具体的,加热组件100包括发热体110、第一电极120和第二电极130。
其中,发热体110用于收容气溶胶形成基质,且发热体110包括发热材料。该发热体110既可对容置其中的气溶胶形成基质进行支撑,又能够在通电时发热,并对收容于其中的气溶胶形成基质加热,从而形成供用户使用的气溶胶。
第一电极120用于与正极导线连接,第二电极130用于与负极导线连接,以使发热组件能接收外部电源提供的电力,从而使发热体110通电发热。发热体110具有外侧面110a和内侧面110b,导电的第一电极120与导电的第二电极130间隔设置于发热体110的内侧面110b,并通过一导电红外发热层电连接。在其他实施方式中,第一电极120和第二电极130也可以设于发热体110的外侧面110a,不限于只设置在发热体110的内侧面110b。
第一电极120具有第一连接部121,第一连接部121用于与正极导线连接;第二电极130具有第二连接部131,第二连接部131用于与负极导线连接。其中,第一连接部121与第二连接部131间隔设置于发热体110的同一端。其中,发热体110的同一端是指发热体110的第一端或发热体110的第二端;具体的,以垂直于发热体110的轴向方向且穿过所述发热体110沿其轴向方向的中心点所在平面为界限,位于该平面一侧的部分发热体110为发热体110的第一端110c,位于该平面另一侧的部分发热体110为发热体110的第二端110d。具体的,发热体110为中空柱状,具有相对的第一端110c和第二端110d,第一连接部121与第二连接部131间隔设置于发热体110的第一端110c。从而,正极导线和负极导线均 能在发热体110的同一端分别与第一连接部121和第二连接部131连接。在其他实施例中,也可以是第一连接部121与负极导线连接,第二连接部131与正极导线连接。
第一电极120和第二电极130可以是涂覆于发热体110的内侧面110b的导电涂层,导电涂层可以是金属涂层、导电银浆或者导电胶带等,也可以是设于发热体110的内侧面110b的金属导电片或沉积在发热体110的外侧面110a的金属等,例如金膜、铝膜或铜膜。
加热组件100通过将用于与正极导线连接的第一连接部121和用于与负极导线连接的第二连接部131设于发热体110的内侧面110b的同一端,使得正极导线和负极能够在发热体110的同一端进行接线,无需正极导线或负极导线进一步走线至另一端以与相应的电极连通。相比于将第一连接部121和第二连接部131设置在发热体110的相对两端,使得正极导线和负极导线需要进行两端接线的方案,不仅大大简化了导线的走线路径,减小了导线的长度,且有效降低了制作成本及难度。
发热体110可以整个采用导电材料制备,例如导电陶瓷,也可以包括绝缘基体和设置于绝缘基体表面的导电红外发热层。在一种实施方式中,发热体110包括基体111和红外发热层112。
其中,基体111具有一端开口11111的收容腔1111,收容腔1111用于从开口11111收容气溶胶产生基质。具体的,开口11111的口径可大于或对应于气溶胶产生基质的外径,且收容腔1111的内径也大于或对应于气溶胶产生基质的外径,以使气溶胶产生基质能从开口11111插入或退出收容腔1111的内部。另外,在一种实施例中,气溶胶产生基质的外侧壁与收容腔1111的内侧壁可以具有一定的间隙,以使气溶胶产生基质能更容易插入或退出收容腔1111。
进一步地,在一实施例中,开口11111的口径可与收容腔1111的内径一致;在另一实施例中,开口11111的口径可小于收容腔1111的内径,且开口11111的中轴线与收容腔的中轴线重合,以在气溶胶产生基质通过该开口11111收容于收容腔1111内时,气溶胶产生基质与收容腔1111的内壁面间隔设置,避免气溶胶产生基质对位于收容腔1111的内壁面上的第一电极120和/或第二电极130造成破坏。
其中,基体111可以是中空管状,进一步地,在第一实施例中,基体111为中空圆柱体,收容腔1111为圆柱状。且基体111的侧壁的壁厚为固定值,以使发热体110能均匀地对气溶胶产生基质加热。第一连接部121和第二连接部131均沿着基体111的周向延伸形状弧形,优选地,第一连接部121和第二连接部131的长度相同,且沿着基体111轴向位于相同高度。
第一电极120和第二电极130设于基体111的内侧面110b,基体111具有相对的第一端110c和第二端110d,第一连接部121与第二连接部131间隔设于收容腔1111的内侧面110b的同一端。基体111可以是石英玻璃、陶瓷或云母等耐高温的绝缘材料,以防止第一电极120和第二电极130短路,当基体为石英玻璃时,其可以选用透明度80%以上的石英玻璃。
红外发热层112在通电时能产生红外波,以加热气溶胶产生基质。具体的,红外发热层112可环绕收容腔1111的内侧面110b设置,并分别与第一电极120和第二电极130连接;在第一电极120和第二电极130通电后,位于第一电极120和第二电极130之间的红外发热层112有电流通过,进而产生红外波。红外发热层112可以为金属层、导电陶瓷层或导电碳层。红外发热层112的形状可以为连续的膜状,多孔的网状或条状。其中,红外发热层112的材料、形状和大小可以根据需要进行设置。
其中,将红外发热层112设于基体111的内侧面110b,与红外发热层112设于基体111的外侧面110a的方案相比,红外发热层112与气溶胶产生基质的距离更近,且红外发热层112产生的红外波无需经过基体111侧壁的传导,即可直接对气溶胶产生基质进行加热,从而能够有效避免出现红外波经过基体111侧壁传导造成热量损失的问题,进而有效提高了红外发热层112对气溶胶产生基质的热传递效率。
在一具体实施例中,红外发热层112可以为红外发热膜,红外发热膜通电时辐射红外线,以加热收容腔1111中的气溶胶产生基质。可以理解的是,在红外发热膜通电时,红外发热膜发射的红外线无需穿过基体111的侧壁,可直接对收容腔1111内的气溶胶产生基质进行加热,提高了红外辐射的效率。其中,红外加热波长2.5um~20um,针对加热气溶胶形成基质的特点,通常加热温度需要350℃以上,能量辐射极值主要在3~5um波段。
其中,由于红外发热膜产生的红外线中,部分红外线朝向基体111外侧发射,使得红外发热膜产生的红外波不能被充分利用;为了解决该问题,在一种实施方式中,加热组件100还包括红外反射层140。红外反射层140设置于基体111的外侧面110a,用于反射所述红外发热膜发射的红外线;具体的,红外反射层140用于反射红外发热膜朝向基体111外侧发射的红外线,以使该部分红外线能够被反射回基体111的内部,并对气溶胶产生基质进行红外辐射加热,从而有效提高红外发热膜的加热效率。
在一实施例中,红外反射层140可以设于基体111的全部外侧面110a上,也可以设于基体111的部分外侧面110a上;在一具体实施例中,红外反射层140的至少部分与红外发热膜相对位置,以反射红外发热膜发射的红外线。
具体的,红外反射层140可以是耐高温的红外反射膜,红外反射膜涂覆于基体111的外侧面110a上。
请参考图4、图5和图6,图4提供了第二实施例中加热组件100的一种结构示意图,图5为图4的加热组件100沿B-B向的剖视结构示意图,图6为图4的加热组件100沿其轴向方向展开的外侧壁的结构示意图。
在一种实施方式中,该发热体110还可包括限位件113,限位件113设于基体111上,用于限位气溶胶产生基质的径向方向的位移,以使气溶胶产生基质在插入收容腔1111的过程中,气溶胶产生基质的外侧面110a与收容腔1111的内侧面110b之间具有间隙,从而在气溶胶产生基质和收容腔1111之间形成气道,便于调整气溶胶产生基质的抽吸阻力。
在一实施例中,限位件113可以设于基体111具有开口11111的一端,且限定形成限位口1131;限位口1131与收容腔1111连通,且限位口1131的口径小于收容腔1111的内径,气溶胶产生基质具体通过该限位口1131收容于收容腔1111,以使气溶胶产生基质通过限位口1131限位于收容腔1111时,气溶胶产生基质的外侧面110a与收容腔1111的内侧面110b之间具有间隙,从而在气溶胶产生基质和收容腔1111之间形成气道,便于调整气溶胶产生基质的抽吸阻力。
具体的,在该实施例中,限位口1131的口径可大于气溶胶产生基质的外径,以使气溶胶产生基质能通过该限位口1131顺利插入或退出收容腔1111。
具体的,限位件113可以与基体111为同一材料,且一体成型,以简化发热体110的制造流程。当 然,限位件113也可以与基体111为不同的材料。
在一种实施方式中,限位口1131的中心与收容腔1111的中轴位于同一条直线上,以使限位口1131对气溶胶产生基质在收容腔1111中的径向方向限位时,气溶胶产生基质的外侧壁与收容腔1111的内侧壁之间的距离处处相等。从而,收容腔1111的内侧壁上的红外发热层112对气溶胶产生基质的周向均匀地加热,有利于气溶胶产生基质加热过程中热量分布均匀。
在一种实施方式中,如图7所示,图7为气溶胶产生基质插入加热组件100的一种剖面结构示意图。限位件113设于基体111具有开口11111的端面上;在该实施例中,限位件113限定形成的限位口1131区别于收容腔1111的开口11111,且可位于收容腔1111的开口11111的上方位置;在气溶胶产生基质插入收容腔1111的过程中,气溶胶产生基质依次通过限位口1131、收容腔1111的开口11111进入收容腔1111。当然,在该实施例中,限位件113也可朝向收容腔1111内倾斜延伸,以在收容腔的开口11111处限定形成限位口1131,可以理解的是,在该实施例中,该限位口1131即收容腔1111的开口。
在另一实施方式中,参见图4和图5,限位件113可以设于收容腔1111的内侧面110b上并位于收容腔1111的端部;具体的,在该实施例中,限位件113的上端面可与基体111的侧壁的上端面平齐,并限定形成收容腔1111的开口11111;可以理解的是,在该实施例中,开口11111与限位口1131位于同一平面上,限位件113限定形成的限位口1131即为收容腔1111的开口11111。
在一实施例中,限位件113可为沿收容腔1111的周向延伸的凸环;参见图4,凸环可设置在收容腔1111的内壁面且环绕收容腔1111的内壁面一圈设置;在该实施例中,凸环背离收容腔1111的内壁面的中空区域形成为限位口1131。
在另一实施例中,限位件113可包括多个沿收容腔1111的周向方向间隔设置的凸块;优选地,多个凸块可沿收容腔1111的周向方向等间隔设置于基体111上,以使限位件113能有效地对气溶胶产生基质的多个径向方向进行限位。进一步地,多个凸块于收容腔1111的轴线方向上的高度相等,以在收容腔1111的同一轴向高度上形成限位口1131。
具体的,上述限位件113的形状可以是环状、圆弧状、点状、块状、条状等形状。例如可以是两个弧形的条块等间隔设置于收容腔1111的内侧面110b上;或者,三个块状的结构等间隔的设置于基体111的第一端110c的端面上,并在基体111的第一端110c形成限位口1131。需要说明的是,限位件113的数量、形状、结构和设置位置不限于以上提到的几种方式。
比如,在限位件113的数量为多个时,多个限位件113可以同时设于基体111的一端,也可以分别设于基体111的相对的两端,或者,多个限位件113可以沿轴线方向分布于收容腔1111的内部。例如,限位件113的数量可以为两个,其中一个限位件113设于基体111的第一端110c,另一个限位件113设于基体111的第二端110d,以在基体111的两端形成两个限位口1131,使气溶胶产生基质相对的两端均能被限位件113限位。
收容腔1111内壁上的电路图可以根据需要设计成各种形式。在一种实施方式中,如图8所示,图8为第三实施例中加热组件100沿其轴向方向展开的外侧壁的结构示意图。其中,第一连接部121为环状,且沿着发热体110的周向延伸并具有缺口1211,即第一连接部121在周向方向未形成闭环。第二连接部 131位于第一连接部121远离第一端110c端面的位置,从而负极导线能通过缺口1211与第二连接部131相连。第一连接部121形成缺口1211,能使得负极导线不与第一连接部121接触并与第二连接部131连接,防止负极导线与第一连接部121接触短路,便于走线。
图8出示了第一连接部121与第二连接部131的三种纵向位置关系。第二电极130在a位置时,第二连接部131沿发热体110的轴向方向与缺口1211完全错位;第二电极130在b位置时,第二连接部131与缺口1211在发热体110的轴线方向上正对设置;第二电极130130在c位置时,第二连接部131沿发热体110的轴线方向与缺口1211部分错位。第二电极130设于b位置时,导线更容易通过缺口1211与第二连接部131连接,导线的走线路径更简单。
在一种实施例中,如图3所示,第一连接部121和第二连接部131均可以视为具有缺口的圆环状,其中,第一连接部121和第二连接部131中的一个设置于另一个的缺口处。例如,全部的第二连接部131沿发热体110的轴线方向通过缺口1211暴露,且第二连接部131位于缺口1211的位置,并在发热体110的轴向方向上与第一连接部121的高度一致。进一步的,第一连接部121和第二连接部131与发热体110第一端110c的端面平齐。由此,正极导线和负极导线能直接与第一连接部121和第二连接部131连接,导线的走线路径更简单,简化了加热组件100的走线方式。
在一种实施方式中,请参考图3,第一电极120还包括至少一个第一延伸部122,第一延伸部122的一端与第一连接部121连接,另一端自第一连接部121朝向发热体110的第二端110d延伸。第二电极130还包括至少一个第二延伸部132,第二延伸部132的一端与第二连接部131连接,另一端自第二连接部131朝向发热体110的第二端110d延伸。第一延伸部122和第二延伸部132可以延伸至靠近第二端110d的位置,也可以延伸至第二端110d的端面。其中,第一延伸部122和第二延伸部132用于在红外发热层112上形成或定义至少一个发热区。第一延伸部122与第二延伸部132间隔设置,相邻的第一延伸部122和第二延伸部132之间的红外发热层112形成一个发热区。第一电极120和第二电极130通电后,第一延伸部122和第二延伸部132之间的发热区有电流通过,发热区发热加热气溶胶产生基质。第一连接部121与第一延伸部122的材料可以相同,通过印刷或沉积一次形成。第二连接部131与第二延伸部132的材料可以相同,通过印刷或沉积一次形成。本申请中,连接部与延伸部的区别在于连接部的尺寸可以比延伸部的尺寸大,便于与外接导线焊接或粘结固定。
其中,第一延伸部122和第二延伸部132的延伸路径可以是直线型、折线形、曲线型或者不规则的形状;第一延伸部122和第二延伸部132的延伸方向可以沿轴向方向延伸,也可以与轴向方向呈任一角度方向延伸,或者沿周向方向螺旋延伸。
在一种实施方式中,第一延伸部122和第二延伸部132平行,均沿发热体110的轴向方向延伸,且均呈直线型,以使第一延伸部122和第二延伸部132之间的加热区的形状规则,有利于使第一延伸部122和第二延伸部132之间的电流分布均匀,进而使各个加热区对气溶胶产生基质的加热均匀。
在第一实施例中,第一连接部121与第二连接部131均匀地周向分布在基体111的第一端110c。第一延伸部122和第二延伸部132的数量均可为一个。第一延伸部122的一端设于第一连接部121的中部,另一端延伸至基体111的第二端110d的端面。第二延伸部132的一端设于第二连接部131的中部,另 一端延伸至基体111的第二端110d的端面。第一延伸部122和第二延伸部132间隔设置于圆柱状基体111的同一直径的相对两端,均沿发热体110的轴向方向延伸,且均可呈直线型;当然,在其他实施例中,第一延伸部122和/或第二延伸部132也可呈弯曲型,本申请对此并不加以限制,只要二者不相交即可;具体的,第一延伸部122和第二延伸部132沿周向均匀地分布,并将红外发热层112分隔为两个形状和大小相同的两个发热区,以使两个发热区能均匀地对气溶胶产生基质加热。第一电极120和第二电极130通电后,电流从第一延伸部122沿相反的两个方向向第二延伸部132流动,电流流经两个发热区,两个发热区发热对气溶胶产生基质加热。这种发热组件的电路分布简单,且实现了同一端出现的接线方式,使得发热组件的走线路径较为简单,降低了制作成本和难度。
在一种实施方式中,请参考图9,图9提供了第四实施例中加热组件100沿其轴向方向展开的外侧壁的结构示意图。第二电极130还包括第三连接部133,第三连接部133用于与负极导线连接。第三连接部133设于发热体110的第二端110d,并与第二延伸部132连接。第三连接部133可以沿着发热体110的第二端110d周向延伸形成闭环状、具有缺口的环状或弧状。在接线时,正极导线与第一端110c的第一连接部121连接,负极导线既可以与第一端110c的第二连接部131连接,也可以与第二端110d的第三连接部133连接。因此,设置第三连接部133能使得加热组件100在实现单侧接线的同时,也能实现双侧接线,该加热组件100提供了多种走线的方式,可以根据需要选择加热组件100的接线方式。在其他实施例中,也可以是第一电极120包括第三连接部133,第三连接部133用于与正极导线连接,同样能实现发热组件既能单侧接线,也能双侧接线的功能。
在一种实施方式中,第一连接部121、第二连接部131和第三连接部133中的至少一个与发热体110的红外发热层112间隔设置。当红外发热层112与第一连接部121、第二连接部131和第三连接部133中的至少一个相连接时,部分电流会从第一连接部121流向第二延伸部132,或者,从第一延伸部122流向第二连接部131,或者,从第一延伸部122流向第三连接部133,使得发热区电流的走向不规律,发热区发热不均匀。优选地,第一连接部121、第二连接部131和第三连接部133均与发热体110的红外发热层112间隔设置,以限定发热区的电流流向方向为周向,以使发热区电流的走向规律,使得发热区的发热更加均匀,对气溶胶产生基质加热更加均匀。进一步地,红外发热层112的边缘与第一延伸部122靠近第二端110d的端部平齐,第一延伸部122将红外发热层112完全分隔为形状和面积相同的两个间隔的发热区,以使发热区的电流的走向更加规律。可以理解,当没有第三连接部133时,第一连接部121和第二连接部131均与发热体110的红外发热层112间隔设置,且与发热体110的红外发热层112的间距相同。
在一种实施方式中,请参考图10,图10提供了第五实施例中加热组件100沿其轴向方向展开的外侧壁的结构示意图。第一电极120包括与第一连接部121连接的多个第一延伸部122,第二电极130包括与第二连接部131连接的多个第二延伸部132。相邻的第一延伸部122和第二延伸部132间隔设置,相邻的第一延伸部122和第二延伸部132之间形成发热区。进一步地,多个第一延伸部122与多个第二延伸部132交替间隔设置,以将红外发热层112周向分隔形成偶数个发热区,每个发热区具有部分红外发热层112。
当第一延伸部122和第二延伸部132的数量相同时,第一延伸部122和第二延伸部132交替间隔设置,能使红外发热层112被全部利用,并被分隔为偶数个发热区为气溶胶产生基质加热。当第一延伸部122和第二延伸部132的数量为不同时,会出现两个第一延伸部122相邻或者两个第二延伸部132相邻的情况,相邻的两个第一延伸部122的电极为同一极性,相邻的两个第二延伸部132的电极为同一极性,其之间不能导通电流,即相邻的两个第一延伸部122或相邻的两个第二延伸部132之间不能形成发热区,红外发热层112不能被全部利用。因此,当第一延伸部122和第二延伸部132的数量相同时,第一延伸部122和第二延伸部132交替间隔设置,能使红外发热层112被全部利用,避免了部分红外发热层112出现不能形成发热区的情况。
进一步地,任意相邻的第一延伸部122和第二延伸部132的间隔距离相同,且第一延伸部122和第二延伸部132沿轴线方向延伸且呈直线型,以使多个第一延伸部122和多个第二延伸部132均匀地周向分布在发热体110的外侧面110a上,相邻的第一延伸部122和第二延伸部132之间的发热区的形状和大小相同,每个发热区的等效电阻相同。因此,能使得通电后各个发热区发出的热量大小基本相同,各个发热区能均匀地对气溶胶产生基质的各个方向加热。
第一延伸部122和第二延伸部132的数量为多个的时候,第二电极130包括第三连接部133。第一连接部121用于与正极导线连接的同时,还用于连接多个第一延伸部122;第三连接部133用于与负极导线连接的同时,还用于连接多个第二延伸部132,即第一电极120和第二电极130形成插齿电极。优选的,第三连接部133与每一个第二延伸部132连接,且第三连接部133在加热体的第二端110d形成环状,以使每个发热区都能通电工作。
第五实施例中,第一延伸部122和第二延伸部132的数量均为两个。两个第一延伸部122分别位于第一连接部121的两端。一个第二延伸部132分别与第二连接部131和第三连接部133相连,另一个第二延伸部132设于两个第一延伸部122之间且仅与第三连接部133连接。第三连接部133环形设置在发热体110的第二端110d,并分别与两个第二延伸部132连接。两个第一延伸部122和两个第二延伸部132交替间隔设置,均沿发热体110的轴向方向延伸,且均呈直线型。两个第一延伸部122和两个第二延伸部132沿周向均匀地分布,并将红外发热层112分隔为四个形状和大小相同的发热区,以使四个发热区能均匀地对气溶胶产生基质加热。相比于电路将红外发热层112分隔为两个发热区的加热组件100,四个发热区的加热组件100中每个发热区的等效电阻更小,每个发热区的发热功率更大,加热组件100对气溶胶产生基质的加热效率更高。
请参考图11,图11提供了第六实施例中加热组件100沿其轴向方向展开的外侧壁的结构示意图。第六实施例中,第一延伸部122和第二延伸部132的数量均为一个。第一延伸部122、第二延伸部132和红外发热层112均沿发热体110的周向方向螺旋型延伸,并从发热体110的第一端110c延伸至第二端110d。
由于第一延伸部122和第二延伸部132发热体110的第一端110c螺旋延伸至第二端110d,第一延伸部122的两端均可以用作第一连接部121,第二延伸部132的两端均可以用作第二连接部131。或者,在第一端110c和第二端110d均设置第一连接部121和第二连接部131,且第一连接部121与第一延伸 部122的一端连接,第二连接部131与第二延伸部132的一端连接。
其中,红外发热层112位于第一延伸部122和第二延伸部132之间,并形成一个螺旋型发热区。优选的,第一延伸部122和第二延伸部132的螺旋延伸方向一致,且第一延伸部122和第二延伸部132之间的间隔距离处处相等,第一延伸部122和第二延伸部132均匀地分布在发热体110的外侧面110a,以使红外发热层112均匀地对气溶胶产生基质加热。
在一种实施方式中,如图12和图13所示,发热体110包括多个子发热体114,多个子发热体114配合能拼接成一个发热体110。多个子发热体114的内侧面110b上均设有电极,多个子发热体114拼接后,多个子发热体114的电极能拼接成发热体110的电路。发热体110可以包括多个大小相等,形状相同的多个子发热体114,也可以包括多个大小不同,形状不同的多个子发热体114。发热体110为中空圆柱体时,多个子发热体114可以是多个中空圆弧状的形状。图11提供了一种子发热体114的结构示意图。该实施例中,子发热体114为空心半圆柱状,两个空心半圆柱状的子发热体114可以拼接成一个完整的空心圆柱状的发热体110。
由于本申请将第一电极120、第二电极130以及红外发热层112均设于基体111的内侧面110b上,在发热组件的制造过程中,从外部不便于将电极和红外发热层112涂覆于收容腔1111中。因此,需要将发热体110分隔为多个子发热体114,将电极和红外发热层112涂覆于各个子发热体114上,最终将各个子发热体114拼接成完整的发热体110。
具体的,每一子发热体114的内侧面110b设有第一子连接部123和/或第二子连接部134,多个子发热体114上的第一子连接部123拼接形成第一连接部121,多个子发热体114上的第二子连接部134拼接形成第二连接部131。优选地,每一子发热体114的内侧面110b设有第一子连接部123和第二子连接部134,同一子发热体114的第一子连接部123和第二子连接部134分别通过延伸部与子发热体114的红外发热层112电连接,使得每一子发热体114的红外发热层112可以独立工作。即,多个子发热体114不仅拼接后能作为一个整体对气溶胶产生基质加热,也能不进行拼接,各自作为独立的发热体110,各自通电后对气溶胶产生基质加热。当多个子发热体114各自作为独立的发热体110对气溶胶产生基质加热,可以使用多组正负极导线分别连接每个子发热体114的第一子连接部123和第二子连接部134。
如图13所示,图13为第七实施例提供的两个如图11所示的子发热体114拼接成的发热体110的侧壁展开结构示意图。其中,发热体110包括第一子发热体115和第二子发热体116,第一子发热体115和第二子发热体116均为空心半圆柱状。第一子发热体115和第二子发热体116拼接后能形成一个空心圆柱状的发热体110。第一子发热体115的内侧面110b和第二子发热体116的内侧面110b均设有第一子连接部123、第二子连接部134、第一延伸部122和两个第二子延伸部1321。相邻的第一子发热体115上的第二子延伸部1321和第二子发热体116上的第二子延伸部1321形成一个第二延伸部132,第一子发热体115上的两个第二子延伸部1321和第二子发热体116上的两个第二子延伸部1321形成两个第二延伸部132。相邻的第一延伸部122和第二子延伸部1321之间形成一个发热区,以使第一子发热体115和第二子发热体116均能在通电时加热所述气溶胶产生基质。
进一步地,第一子发热体115的内侧面110b和第二子发热体116的内侧面110b均设有第三子连接 部1331,第三子连接部1331连接同一子发热体114的两个第二子延伸部1321。每个子发热体114上的第三子连接部1331拼接形成第三连接部133。设置第三子连接部1331能使得每个子发热体114上的电路在实现单侧接线的同时,也能实现双侧接线,该加热组件100提供了多种走线的方式,可以根据需要选择加热组件100的接线方式。
在一种实施方式中,加热组件100还可以包括第一导电弹片、第二导电弹片和第三导电弹片。优选地,第一导电弹片、第二导电弹片和第三导电弹片均设于多个子发热体114的拼接处。
多个子发热体114拼接的过程中,多个子发热体114的电极可能会接触不良,通过设置第一导电弹片、第二导电弹片和第三导电弹片,能将不同的子发热体114上的各个电极电连接,使得发热组件能正常工作,对气溶胶产生基质加热。
第一导电弹片设置在发热体110的内侧面110b上,与每一子发热体114上的第一子连接部123电连接。第一导电弹片的数量可以是多个,每个第一导电弹片连接相邻的两个第一子连接部123。具体的,第一导电弹片可以与每一子发热体114上的第一子连接部123接触连接,以使每一子发热体114上的第一子连接部123电连接。或者,第一导电弹片也可以与每一子发热体114上的第一延伸部123接触连接,以使每一子发热体114上的第一子连接部123电连接。
第二导电弹片设置在发热体110的内侧面110b上,与每一子发热体114上的第二子连接部134连通。第二导电弹片的数量可以是多个,每个第二导电弹片连接相邻的两个第一子连接部123。具体的,第二导电弹片可以与每一子发热体114上的第二子连接部134接触连接,以使每一子发热体114上的第二子连接部134电连接。或者,第一导电弹片也可以与每一子发热体114上的第二子延伸部1321接触连接,以使每一子发热体114上的第二子连接部134电连接。
在一种实施方式中,第三导电弹片设置在发热体110的内侧面110b上,与每一所述子发热体114上的第三子连接部1331连接,以使每一子发热体114上的第二子连接部134连通并电连接。第三导电弹片的数量可以是多个,每个第三导电弹片连接相邻的两个第三子连接部1331。
在一种实施方式中,如图14所示,图14为第八实施例的加热组件100的结构示意图。加热组件100还包括固定机构150,固定机构150套设在发热体110的外侧壁上,用于固定多个子发热体114,以对多个子发热体114进行限位。同时,固定机构150也能使多个子发热体114拼接为发热体110,使得发热组件能正常工作。
在一种实施方式中,固定机构150进一步包括第一固定件151和第二固定件152。第一固定件151套设在多个子发热体114的第一端110c,用于对多个子发热体114的第一端110c进行固定;第二固定件152套设在多个子发热体114的第二端110d,用于对多个子发热体114的第二端110d进行固定。第一固定件151和第二固定件152可以具有限位槽,多个子发热体114的第一端110c和第二端110d分别设于第一固定件151的限位槽和第二固定件152的限位槽中,以对多个子发热体114进行限位。
在第八实施例中,如图14所示,第一固定件151为圆柱形的上盖,第二固定件152为圆柱形的底座。发热体110包括两个子发热体114,上盖套设在两个子发热体114的一端,底座套设在两个子发热体114的另一端,以使两个子发热体114固定于上盖和底座中。进一步地,上盖和底座限位两个子发热 体114,并使两个子发热体114拼接为一个发热体110,以使发热体110通电后能对气溶胶产生基质进行加热。
在一种实施方式中,如图14所示,固定机构150还具有通孔153,通孔153的孔径小于发热体110的收容腔1111的内径。即,固定机构150还可以作为限位件113,对气溶胶产生基质在收容腔1111中的位置进行限位,以使气溶胶产生基质的外侧面110a与收容腔1111的内侧面110b之间具有间隙,从而在气溶胶产生基质和收容腔1111之间形成气道,便于调整气溶胶产生基质的抽吸阻力红外发热层。
图15为本申请一实施例提供的气溶胶产生装置200的结构示意图。本申请还提供一种气溶胶产生装置200,该气溶胶产生装置200可包括加热组件100和电源组件230。
其中,加热组件100具体可为上述任一实施例所涉及的加热组件100,其具体结构与功能可参见上述实施例中关于加热组件100的相关描述,且可实现相同或相似的技术效果,在此不再赘述。
其中,气溶胶产生装置200进一步可包括壳体210和安装座220。安装座220用于将加热组件100固定在壳体210上;具体的,安装包括安装主体,安装主体上设置有通孔153,加热组件100体插接在该通孔153中以与安装座220安装;在具体实施例中,通孔153的侧壁上还可设置有避让槽,正负极导线具体通过该避让槽伸入安装座220内以与发热体110上的远离安装座220的第一电极120和第二电极130连接。进一步地,安装主体上还设置有至少两个卡接部,安装座220具体通过卡接部以与气溶胶形成装置的壳体210固定。
其中,该气溶胶产生装置200还可包括控制器(图未示),控制器分别与加热组件100和电源组件230连接,用于在接收到启动信号后控制电源组件230为加热组件100供电并控制加热组件100发热的功率、加热时长等。
其中,电源组件230与加热组件100连接,用于向加热组件100供电;且在一实施例中,电源组件230具体可包括可充电的锂离子电池。
本实施例提供的气溶胶产生装置200,通过设置加热组件100,加热组件100通过将用于与正极导线连接的第一连接部121和用于与负极导线连接的第二连接部131设于发热体110外侧面110a的同一端,使得正极导线和负极能够在发热体110的同一端进行接线,无需正极导线或负极导线进一步走线至另一端以与相应的电极连通。相比于将第一连接部121和第二连接部131设置在发热体110的外侧壁的相对两端,使得正极导线和负极导线需要进行两端接线的方案,不仅大大简化了导线的走线路径,减小了导线的长度,且有效降低了制作成本及难度。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (22)

  1. 一种加热组件,其中,包括:
    发热体,用于收容并在通电时加热气溶胶产生基质;
    导电的第一电极,设置于所述发热体的内侧面,且所述第一电极具有第一连接部;
    导电的第二电极,与所述第一电极间隔设置于所述发热体的内侧面,且所述第二电极具有第二连接部,其中,所述第一连接部与所述第二连接部位于所述发热体的同一端并用于连接至电源组件。
  2. 根据权利要求1所述的加热组件,其中,所述发热体包括:
    基体,具有一端开口的收容腔,所述收容腔用于从所述开口收容所述气溶胶产生基质,所述第一电极和所述第二电极均设于所述收容腔的内侧面上;
    红外发热层,设置在所述基体的内侧面,并分别与所述第一电极和所述第二电极连接,所述红外发热层用于在通电时产生红外波以加热所述气溶胶产生基质。
  3. 根据权利要求2所述的加热组件,其中,所述加热组件还包括红外反射层,所述红外反射层设置于所述基体的外侧面,用于反射所述红外发热层发射的红外线。
  4. 根据权利要求1所述的加热组件,其中,所述发热体包括多个子发热体,每一所述子发热体的内侧面设有第一子连接部和/或第二子连接部,所述多个子发热体上的第一子连接部形成所述第一连接部,所述多个子发热体上的第二子连接部形成所述第二连接部。
  5. 根据权利要求4所述的加热组件,其中,每一所述子发热体的内侧面设有所述第一子连接部和所述第二子连接部,同一所述子发热体的所述第一子连接部和所述第二子连接部分别通过延伸部与所述子发热体的红外发热层电连接,使得每一所述子发热体的红外发热层可以独立工作。
  6. 根据权利要求4所述的加热组件,其中,所述发热体包括第一子发热体和第二子发热体,所述第一子发热体的内侧面和所述第二子发热体的内侧面均设有所述第一子连接部、所述第二子连接部、第一延伸部和两个第二子延伸部,所述第一子发热体和所述第二子发热体上相对设置的两个所述第二子延伸部形成第二延伸部,相邻的所述第一延伸部和所述第二子延伸部之间形成一个发热区,以使所述第一子发热体和所述第二子发热体均能在通电时加热所述气溶胶产生基质。
  7. 根据权利要求6所述的加热组件,其中,所述第一子发热体的内侧面和所述第二子发热体的内侧面均设有第三子连接部,所述第三子连接部连接同一所述子发热体的所述两个第二子延伸部。
  8. 根据权利要求4所述的加热组件,其中,还包括:
    第一导电弹片,设置在所述发热体的内侧面上,与每一所述子发热体上的第一子连接部电连接;和/或,
    第二导电弹片,设置在所述发热体的内侧面上,与每一所述子发热体上的第二子连接部电连接。
  9. 根据权利要求4所述的加热组件,其中,还包括固定机构,套设在所述发热体的外侧壁上,用于固定多个所述子发热体以形成所述发热体。
  10. 根据权利要求9所述的加热组件,其中,所述固定机构包括:
    第一固定件,套设在所述多个发热体的第一端,用于对所述多个子发热体的第一端进行固定;
    第二固定件,套设在所述多个子发热体的第二端,用于对所述多个子发热体的第二端进行固定。
  11. 根据权利要求1所述的加热组件,其中,所述第一连接部沿着所述发热体的周向延伸且具有缺口。
  12. 根据权利要求11所述的加热组件,其中,所述第二连接部位于所述缺口的位置,并在所述发热体的轴向方向上与所述第一连接部的高度一致。
  13. 根据权利要求1所述的加热组件,其中,所述发热体具有相对的第一端和第二端,所述第一连接部和所述第二连接部均设于所述发热体的第一端;所述第一电极还包括与所述第一连接部连接的至少一个第一延伸部,所述第一延伸部自所述第一连接部朝向所述发热体的第二端延伸;所述第二电极还包括与所述第二连接部连接的至少一个第二延伸部,所述第二延伸部自所述第二连接部朝向所述发热体的第二端延伸,相邻的所述第一延伸部和所述第二延伸部之间形成一个发热区。
  14. 根据权利要求13所述的加热组件,其中,所述第一延伸部和/或所述第二延伸部沿所述发热体的轴向方向延伸且呈直线型。
  15. 根据权利要求14所述的加热组件,其中,一个所述第一延伸部与一个所述第二延伸部间隔设置或多个所述第一延伸部与多个所述第二延伸部交替间隔设置,以将所述发热体分割形成偶数个所述发热区。
  16. 根据权利要求14所述的加热组件,其中,任意相邻的所述第一延伸部和所述第二延伸部的间隔距离相同。
  17. 根据权利要求14所述的加热组件,其中,所述第二电极还包括第三连接部,用于与所述负极导线连接,所述第三连接部设置于所述发热体的第二端,并与所述至少一个第二延伸部连接。
  18. 根据权利要求13所述的加热组件,其中,所述第一延伸部和所述第二延伸部沿所述发热体的周向方向延伸且呈螺旋型;所述发热区位于一个所述第一延伸部和一个所述第二延伸部之间且形成螺旋型发热区。
  19. 根据权利要求18所述的加热组件,其中,所述第一延伸部和所述第二延伸部的延伸方向一致。
  20. 根据权利要求2所述的加热组件,其中,所述第一连接部和所述第二连接部均与所述发热体的红外发热层间隔设置。
  21. 根据权利要求2所述的加热组件,其中,所述发热体还包括限位件,所述限位件设于所述基体上,所述限位件用于对所述气溶胶产生基质进行限位,以使所述气溶胶产生基质的外侧面与所述收容腔的内侧面之间具有间隙;所述限位件形成限位口,所述限位口与所述收容腔连通,且所述限位口的口径小于所述收容腔的内径;所述气溶胶产生基质通过所述限位口收容于所述收容腔。
  22. 一种气溶胶产生装置,其中,包括:
    加热组件,用于在通电后加热气溶胶产生基质;所述加热组件为如权利要求1所述的加热组件;
    电源组件,与所述加热组件电连接,用于向所述加热组件供电。
PCT/CN2022/100154 2021-07-23 2022-06-21 加热组件和气溶胶产生装置 WO2023000902A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024501251A JP2024525680A (ja) 2021-07-23 2022-06-21 加熱アセンブリおよびエアロゾル発生装置
EP22845067.2A EP4374722A1 (en) 2021-07-23 2022-06-21 Communication device and method for receiving and transmitting signal thereof, and switching circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110841096.4 2021-07-23
CN202110841096.4A CN113647692B (zh) 2021-07-23 2021-07-23 加热组件和气溶胶产生装置

Publications (1)

Publication Number Publication Date
WO2023000902A1 true WO2023000902A1 (zh) 2023-01-26

Family

ID=78478121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100154 WO2023000902A1 (zh) 2021-07-23 2022-06-21 加热组件和气溶胶产生装置

Country Status (4)

Country Link
EP (1) EP4374722A1 (zh)
JP (1) JP2024525680A (zh)
CN (1) CN113647692B (zh)
WO (1) WO2023000902A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113647692A (zh) * 2021-07-23 2021-11-16 深圳麦时科技有限公司 加热组件和气溶胶产生装置
CN118301797A (zh) * 2024-06-04 2024-07-05 浙江大华技术股份有限公司 加热视窗、摄像头以及加热视窗的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114052297A (zh) * 2021-11-26 2022-02-18 深圳麦时科技有限公司 加热组件及气溶胶产生装置
CN114304749B (zh) * 2021-12-31 2024-08-09 深圳麦时科技有限公司 加热不燃烧气溶胶形成装置及其加热件
CN114788585A (zh) * 2022-03-22 2022-07-26 深圳麦时科技有限公司 加热组件及气溶胶生成装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212279881U (zh) * 2020-01-02 2021-01-05 深圳市合元科技有限公司 加热器以及包含该加热器的烟具
CN112841740A (zh) * 2019-11-27 2021-05-28 深圳市合元科技有限公司 加热器以及包含该加热器的烟具
CN213604400U (zh) * 2020-09-22 2021-07-06 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
CN113080520A (zh) * 2019-12-23 2021-07-09 深圳市合元科技有限公司 加热器以及包括该加热器的烟具
CN113647692A (zh) * 2021-07-23 2021-11-16 深圳麦时科技有限公司 加热组件和气溶胶产生装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213344347U (zh) * 2020-07-17 2021-06-04 深圳市合元科技有限公司 加热器以及包括该加热器的烟具
CN212488479U (zh) * 2020-07-24 2021-02-09 深圳市卓力能技术股份有限公司 一种加热组件及气溶胶生成装置
CN216220206U (zh) * 2021-07-23 2022-04-08 深圳麦时科技有限公司 加热组件和气溶胶产生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112841740A (zh) * 2019-11-27 2021-05-28 深圳市合元科技有限公司 加热器以及包含该加热器的烟具
CN113080520A (zh) * 2019-12-23 2021-07-09 深圳市合元科技有限公司 加热器以及包括该加热器的烟具
CN212279881U (zh) * 2020-01-02 2021-01-05 深圳市合元科技有限公司 加热器以及包含该加热器的烟具
CN213604400U (zh) * 2020-09-22 2021-07-06 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
CN113647692A (zh) * 2021-07-23 2021-11-16 深圳麦时科技有限公司 加热组件和气溶胶产生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113647692A (zh) * 2021-07-23 2021-11-16 深圳麦时科技有限公司 加热组件和气溶胶产生装置
CN113647692B (zh) * 2021-07-23 2024-08-16 深圳麦时科技有限公司 加热组件和气溶胶产生装置
CN118301797A (zh) * 2024-06-04 2024-07-05 浙江大华技术股份有限公司 加热视窗、摄像头以及加热视窗的制备方法

Also Published As

Publication number Publication date
EP4374722A8 (en) 2024-07-10
JP2024525680A (ja) 2024-07-12
CN113647692B (zh) 2024-08-16
CN113647692A (zh) 2021-11-16
EP4374722A1 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
WO2023000902A1 (zh) 加热组件和气溶胶产生装置
WO2023000858A1 (zh) 加热组件和气溶胶产生装置
EP3598905B1 (en) Backed smoking set and vacuum insulated heating assembly
TWI281834B (en) Infrared ray lamp and heating apparatus
EP4091476B1 (en) Heating assembly and low-temperature smoking set
US6868230B2 (en) Vacuum insulated quartz tube heater assembly
WO2016123738A1 (zh) 卷烟加热器及其加热组件
WO2023093450A1 (zh) 加热组件及气溶胶产生装置
JP2024000501A (ja) エアロゾル発生装置及びその加熱モジュール
WO2023109532A1 (zh) 加热器以及包括该加热器的烟具
WO2024060721A1 (zh) 气溶胶产生装置及其加热装置
CN113068866A (zh) 加热器以及包括该加热器的烟具
JP2023529879A (ja) 発熱部品及びエアロゾル形成装置
CN216220206U (zh) 加热组件和气溶胶产生装置
WO2023216700A1 (zh) 加热组件及电子雾化装置
WO2024055720A1 (zh) 加热组件及气溶胶生成装置
WO2023093449A1 (zh) 加热组件及气溶胶产生装置
CN217509913U (zh) 一种加热装置及加热非燃烧型烟具
WO2023083013A1 (zh) 加热组件和气溶胶产生装置
WO2022062341A1 (zh) 发热组件及气溶胶形成装置
WO2024230694A1 (zh) 一种气溶胶产生装置及其发热组件
CN212678358U (zh) 一种加热器
CN216875034U (zh) 管状发热体及气溶胶产生装置
CN114052300A (zh) 加热器以及含有该加热器的烟具
JP2023529880A (ja) 加熱部品及びエアロゾル形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024501251

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022845067

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845067

Country of ref document: EP

Effective date: 20240223