[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023000642A1 - 一种可降解复合无纺布及其制造方法 - Google Patents

一种可降解复合无纺布及其制造方法 Download PDF

Info

Publication number
WO2023000642A1
WO2023000642A1 PCT/CN2022/074240 CN2022074240W WO2023000642A1 WO 2023000642 A1 WO2023000642 A1 WO 2023000642A1 CN 2022074240 W CN2022074240 W CN 2022074240W WO 2023000642 A1 WO2023000642 A1 WO 2023000642A1
Authority
WO
WIPO (PCT)
Prior art keywords
degradable
fiber
melt
fibers
layer
Prior art date
Application number
PCT/CN2022/074240
Other languages
English (en)
French (fr)
Inventor
巫朝胜
李世煌
陈永恭
Original Assignee
厦门延江新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门延江新材料股份有限公司 filed Critical 厦门延江新材料股份有限公司
Priority to US18/288,194 priority Critical patent/US20240198629A1/en
Publication of WO2023000642A1 publication Critical patent/WO2023000642A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/265Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
    • B32B5/266Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers
    • B32B5/268Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers characterised by at least one non-woven fabric layer that is a melt-blown fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/20Fibres of continuous length in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means

Definitions

  • the invention relates to the field of non-woven fabrics, in particular to a degradable non-woven fabric for wiping and a manufacturing method thereof for personal care and infant care.
  • Non-woven fabrics for wiping are favored by consumers because they are quite convenient to carry and store, and are easy to use.
  • non-woven fabrics for wiping can be spunlace non-woven products, or melt-blown non-woven fabrics or spunbonded non-woven fabrics.
  • the production method is convenient, the price is low, and it can be used wet or dry. It is difficult to degrade and rot in the natural environment, and seriously pollutes the environment.
  • This non-degradable polymer mixed with the soil can affect the absorption of water and nutrients by crops, resulting in a reduction in crop yield; it takes up land and takes hundreds of years to degrade when it is buried. Therefore, with the increasing use of non-woven fabrics for wiping, the waste is also increasing, and the degradation problem is becoming more and more prominent.
  • the purpose of the present invention is to provide a degradable composite non-woven fabric for wiping and its manufacturing method, which overcomes the defects of existing products and production methods.
  • the solution of the present invention is: a degradable composite wiping nonwoven fabric, which is a layered structure, including an upper surface layer, an intermediate fiber layer and a lower surface layer in sequence, and the degradable composite wiping nonwoven fabric
  • the upper and lower surface layers of the cloth are mainly composed of degradable melt-blown fibers
  • the middle fiber layer is mainly composed of degradable water-absorbing fibers, wherein the weight of the middle layer fibers accounts for more than 65% of the total weight of the composite nonwoven fabric , there is a fiber interweaving and interpenetrating area between the upper and lower surface layers and adjacent layers of the middle fiber layer.
  • the degradable melt-blown fibers are fibers formed from polylactic acid, polyadipate/butylene terephthalate (PBAT) or mixtures thereof.
  • the degradable melt-blown fibers are degradable single-component fibers, degradable two-component melt-blown fibers with low melting point resin on the surface or a mixture of the two.
  • the degradable two-component melt-blown fiber is a degradable two-component sheath-core melt-blown fiber, a degradable two-component pie-shaped melt-blown fiber or a degradable two-component side-by-side melt-blown fiber.
  • the fiber layer of the middle layer is mainly composed of viscose fiber, wood pulp fiber or a mixture of the two.
  • the mass percentage of viscose fibers in the mixed fibers of the intermediate fiber layer is ⁇ 15%.
  • a method for manufacturing a degradable composite non-woven fabric The specific manufacturing steps are: (1) The degradable water-absorbing fiber is carded into a fiber web by a carding machine or loosened by an opening roller. Under action, the intermediate fiber layer is formed through the nozzle, wherein the intermediate fiber layer is mainly composed of viscose fiber, wood pulp fiber or a mixture of the two.
  • the degradable thermoplastic resin is heated and melted, and the hot air flow is used to blow the melt stream jetted from the spinneret into fiber bundles with a fiber diameter of 3 ⁇ m to 8 ⁇ m, which is formed with the air flow
  • the melt-blown fiber web is intersected at the two sides of the middle layer fiber web to form a degradable multi-layer structure fiber web with melt-blown fiber web layers on both sides, and the middle fiber layer is composed of degradable water-absorbing fibers.
  • degradable multi-layer fiber web is consolidated together by a heating device to form a degradable composite non-woven fiber layer composed of degradable water-absorbing fibers in the upper and lower layers. cloth.
  • the heating device is a hot air oven, a hot roll or a combination of the two.
  • the composite wiping non-woven fabric as a whole is degradable.
  • the degradable material solves the problem that traditional wiping non-woven fabrics use plastic polymers such as polypropylene as the melt-blown surface layer, which is difficult to degrade and rot in the natural environment, and seriously pollutes the environment.
  • degradable wiping non-woven fabrics can be landfilled for waste disposal and degraded in the soil, while the carbon dioxide produced directly enters the soil organic matter or is planted. Absorption, will not be discharged into the atmosphere, will not cause the greenhouse effect.
  • Figure 1 is a schematic diagram of the manufacture of the degradable composite nonwoven fabric in Example 1 of the present invention.
  • Fig. 2 is a cross-sectional view of the degradable composite nonwoven fabric in Example 1 of the present invention.
  • Fig. 3 is a schematic diagram of the manufacture of the degradable composite nonwoven fabric in Example 2 of the present invention.
  • Fig. 4 is a cross-sectional view of the degradable composite nonwoven fabric in Example 2 of the present invention.
  • Fig. 5 is a schematic diagram of the manufacture of the degradable composite nonwoven fabric in Example 3 of the present invention.
  • Fig. 6 is a cross-sectional view of the degradable composite nonwoven fabric in Example 3 of the present invention.
  • the viscose fiber is passed through the carding machine A1 to be carded into a viscose fiber web 11, and the middle layer fiber composed of degradable water-absorbing fiber is formed through the nozzle B1 under the action of the auxiliary airflow net13.
  • the polylactic acid is heated and melted, and the hot air flow is used to blow the melt jets from the spinnerets C1 and C1' into very fine fiber bundles, and the melt-blown fiber web formed with the airflow 12 and 12 ', and intersect with the two sides of the middle layer fiber web 13 composed of viscose fibers, forming both sides are melt-blown fiber web layers 12 and 12 ', and the middle layer fiber web 13 is a viscose fiber web 11.
  • the multi-layer fiber web is consolidated together by a pair of embossing rollers D1 to form the upper and lower layers as degradable melt-blown fiber layers 12 and 12', and the middle layer fiber web 13 is viscose fiber web
  • the tensile strength test is carried out by XLW-100N intelligent electronic tensile testing machine, and the test parameters are as follows.
  • MD longitudinal direction sample width: 50mm, clamping distance: 200mm, tensile speed: 100m/min.
  • CD transverse direction sample width: 50mm, clamp distance: 100mm, tensile speed: 100m/min.
  • Degradable materials refer to materials that can be completely decomposed by microorganisms (such as bacteria, fungi, and algae, etc.) into low-molecular compounds under appropriate and demonstrable natural environmental conditions, and will not cause negative impacts on the environment.
  • the degradation index is usually used to express the degradation degree of the material.
  • Composting contains rich microbial sources, which can reflect the biodegradation performance of plastics in the natural environment to a certain extent.
  • the cultivation of microorganisms should be carried out in a container or in a room in the dark or under low light, without any steam that would affect the growth of microorganisms, and kept at a constant temperature of 58 ⁇ 2°C.
  • TLC Thin layer chromatography grade
  • the CO2 content in the exhaust gas of each composting container was measured regularly with a total organic carbon analyzer.
  • the biodegradation stage measure at least twice a day, with an interval of about 6 hours.
  • the stable stage measure at least once a day.
  • test period should be extended until the constant plateau, if the plateau occurs earlier, the test period can be shortened.
  • ThCO 2 M TOT ⁇ C TOT ⁇ 44/12.
  • M TOT the total dry solids in the test material added to the compost container at the beginning of the test, in grams (g);
  • C TOT - the ratio of total organic carbon to total dry solids in the test material, in grams per Gram (g/g); 44 and 12 - represent the molecular weight of carbon dioxide and the atomic weight of carbon, respectively.
  • (CO 2 ) T the cumulative amount of carbon dioxide released by each compost container containing the test mixture, in grams per container (g/container);
  • ( CO 2 ) B the cumulative amount of carbon dioxide released by the blank container Average value, unit is gram per container (g/container);
  • ThCO 2 Theoretical release amount of carbon dioxide produced by the test material, unit is gram per container (g/container).
  • biodegradation curve (relationship curve of biodegradation percentage and time) of the test material
  • read the average biodegradation rate value from the flat part of the biodegradation curve and record it as the biodegradation rate of the test material.
  • Example 1 the degradable composite nonwoven fabric produced in Example 1 and the composite nonwoven fabric conventionally used for wipes, that is, the upper and lower surface layers are melt-blown nonwoven fabric layers, and the middle layer for wood pulp fibers.
  • the surface layer of the degradable composite nonwoven fabric in Example 1 is a degradable polylactic acid melt-blown layer
  • the middle fiber layer is composed of viscose fibers, and the viscose fibers are regenerated cellulose fibers, which can be It can be degraded naturally in a composting environment, and the carbon dioxide produced will directly enter the soil organic matter or be absorbed by plants, and will not be discharged into the atmosphere, and will not cause the greenhouse effect. inability to complete biodegradation.
  • the fiber length of viscose fiber is about 35mm-76mm, while the fiber length of wood pulp fiber is about 1mm-4mm in the non-woven fabric middle layer conventionally used for wipes, so viscose fiber with longer fiber length is used as the The fibers of the middle layer are not easy to drill out from the fiber pores of the upper and lower surface layers.
  • the wood pulp fibers 22 pass through the opening roller E2 to loosen and disperse them, and pass through the nozzle B2 under the action of the auxiliary air flow to form an intermediate fiber web 24 composed of wood pulp fibers.
  • the degradable polybutylene adipate/terephthalate (PBAT) is heated and melted, and the melt jets from the spinneret C2 and C2' are blown away by the hot air flow Toward very thin fiber bundles, the melt-blown fiber webs 23 and 23' formed with the air flow, and meet with the two sides of the middle layer fiber web 24 composed of wood pulp fibers, forming both sides is a melt-blown fiber web layer 23 and 23', the middle layer fiber web 24 is a multi-layer structure fiber web composed of wood pulp fibers, wherein the melt-blown fibers are degradable polyadipate/butylene terephthalate (PBAT) fibers, which can be degradable Degradable single-component melt-blown fibers can also be degradable two-component melt-blown fibers, wherein the degradable two-component melt-blown fibers can be degradable two-component sheath-core melt-blown fibers, degradable two-component orange
  • the multi-layer fiber web first passes through the hot air oven F2 so that the surface layers of the degradable two-component melt-blown fibers in the upper and lower surface layers can be melted under the action of hot air, and bonded to each other with adjacent fibers , and then through a pair of embossing rollers D2 to consolidate the fiber web together to form the upper and lower layers of melt-blown fiber layers 23 and 23 ', the middle layer of fiber web 24 is a composite non-woven fabric composed of wood pulp fibers 22 Cloth 25, wherein, there is a fiber interweaving and interpenetrating area between adjacent layers of the meltblown fiber layers 23, 23' and the middle layer fiber web 24.
  • Example 2 The degradable composite nonwoven fabric produced in Example 2 and the composite nonwoven fabric conventionally used for wipes were tested and evaluated, and the testing data are as follows.
  • the middle fiber layer 24 is composed of wood pulp fibers 22, wherein the wood pulp fibers belong to degradable water-absorbing fibers, and the upper and lower surface layers are made of degradable polyethylene glycol.
  • Diacid/butylene terephthalate (PBAT) melt-blown fiber composition in degradable materials, polyadipate/butylene terephthalate (PBAT) is terephthalic acid, adipic acid and butylene
  • PBAT polyadipate/butylene terephthalate
  • the terpolymer of diol is easy to process, has strong toughness and good biodegradability. It decomposes into carbon dioxide, biomass and water under the condition of soil or compost, and has good biodegradability. Compared with polylactic acid and other fiber materials, the hand feeling of woven fabric is softer, with better elasticity and good heat resistance.
  • the viscose fiber is passed through the carding machine A3, and it is carded into a viscose fiber web 31, and the wood pulp fiber 32 is opened and loosened by the opening roller E3, and mixed with viscose.
  • the interlayer fiber web 34 formed by blending viscose fibers and wood pulp fibers is formed through the nozzle B3 under the action of the auxiliary airflow.
  • melt-blown fiber webs 33 and 33' formed with the air flow are mixed with the two sides of the middle layer fiber web 34 composed of viscose fiber and wood pulp fiber
  • the two sides intersect each other to form melt-blown fiber web layers 33 and 33' on both sides, and the middle layer fiber web 34 is a multi-layer structure fiber web composed of viscose fibers and wood pulp fibers blended, wherein the melt-blown fibers are degradable Two-component melt-blown fiber, degradable two-component melt-blown fiber can be a degradable two-component sheath-core fiber, or a degradable two-component orange segment fiber or a degradable two-component side-by-side fiber; the middle The weight of
  • the multi-layer fiber web first passes through the hot air oven F3 so that the surface layer of the degradable two-component meltblown fiber in the upper and lower surface layers contains low melting point polybutylene adipate/terephthalate (PBAT) resin , can be melted under the action of hot air, and bonded with adjacent fibers, and then the fiber web is consolidated together by a pair of embossing rollers D3 to form the upper and lower layers as melt-blown fiber layers 33 and 33 ', the interlayer fiber web 34 is a composite non-woven fabric 35 composed of viscose fiber web 31 and wood pulp fiber 32 after blending, wherein, the melt blown fiber layers 33, 33 ' and the interlayer fiber web 34 phase There is a fiber interweaving area between adjacent layers.
  • PBAT polybutylene adipate/terephthalate
  • Example 3 The composite nonwoven fabric produced in Example 3 and the composite nonwoven fabric conventionally used for wipes were tested and evaluated, and the testing data are as follows.
  • the degradable bi-component fiber surface of the upper and lower surface layers contains low melting point resin polybutylene adipate/terephthalate (PBAT), after heating
  • PBAT polybutylene adipate/terephthalate
  • the low-melting point resin starts to melt, and the adjacent fibers are easy to stick together, which increases the bonding strength of the surface layer and effectively prevents the degradable water-absorbing fibers in the middle fiber layer from overflowing and the phenomenon of "fluffing".
  • the upper and lower surface layers and the middle layer of the composite wiping non-woven fabric are all made of degradable materials, which can be disposed of by landfill and degraded in the soil, while the carbon dioxide produced directly enters the organic matter of the soil or is absorbed by plants. Will be discharged into the atmosphere, will not cause the greenhouse effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

一种可降解复合无纺布,其为层状结构,依次包括上表面层、中间纤维层和下表面层,所述可降解复合无纺布的上、下表面层主要由可降解熔喷纤维组成,中间纤维层主要由可降解吸水纤维组成,其中,所述中间层纤维的重量占所述复合无纺布总重量的百分比大于65%,所述上、下表面层与中间纤维层的相邻层之间具有纤维交织穿插区域。相较与传统的擦拭无纺布废弃物采用焚烧和火化处理方式,可降解擦拭无纺布可以采用填埋法进行废弃物处理,在土壤中降解,而产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入大气,不会造成温室效应。

Description

一种可降解复合无纺布及其制造方法 技术领域
本发明涉及无纺布领域,尤其涉及应用于个人护理、婴幼儿护理用的一种可降解的擦拭用无纺布及其制造方法。
背景技术
擦拭用无纺布由于携带及收纳相当的方便,且使用便利,因此受到广大消费者的喜爱。目前,擦拭用无纺布可以是水刺无纺布制品,也可以是熔喷无纺布或纺粘无纺布。较传统的布类擦拭巾,其生产方法方便,价格低廉,并且干湿均可使用,但是现有熔纺无纺布中熔喷面层多为聚丙烯等可塑性高聚物,由于它们用后在自然环境中难以降解、腐烂,严重污染环境,这种不可降解的高聚物混入土壤能够影响作物吸收水分和养分,导致农作物减产;填埋起来,占用土地并且上百年才可以降解。因此随着擦拭用无纺布使用量日益加大,其废弃物也日益增多,其降解问题也日益突出。
技术问题
本发明的目的在于提供一种可降解的擦拭用复合无纺布及其制造方法,克服现有产品及生产方法的缺陷。
技术解决方案
为实现上述目的,本发明的解决方案是:一种可降解复合擦拭无纺布,其为层状结构,依次包括上表面层、中间纤维层和下表面层,所述可降解复合擦拭无纺布的上、下表面层主要由可降解熔喷纤维组成,中间纤维层主要由可降解吸水纤维组成,其中,所述中间层纤维的重量占所述复合无纺布总重量的百分比大于65%,所述上、下表面层与中间纤维层的相邻层之间具有纤维交织穿插区域。
所述的可降解熔喷纤维为聚乳酸、聚己二酸/对苯二甲酸丁二酯(PBAT)或它们的混合物所形成的纤维。
所述的可降解熔喷纤维为可降解单组份纤维、表面含有低熔点树脂的可降解双组份熔喷纤维或两者相混合。
所述的可降解双组份熔喷纤维为可降解双组份皮芯型熔喷纤维、可降解双组份橘瓣型熔喷纤维或可降解双组份并列型熔喷纤维。
所述中间层纤维层主要由粘胶纤维、木浆纤维或两者的混合纤维组成。
所述的中间纤维层的混合纤维中粘胶纤维的质量百分含量≥15%。
一种可降解复合无纺布的制造方法,其具体制造步骤为:(1)可降解吸水纤维通过梳理机将其梳理成纤维网或通过开松辊将其开松打散,在辅助气流的作用下通过喷管形成所述的中间纤维层,其中,所述的中间纤维层主要由粘胶纤维、木浆纤维或两者的混合纤维组成。
(2)采用熔喷法工艺,将可降解热塑性树脂加热,熔融,利用热气流将从喷丝板中喷出的溶体细流吹散成纤维直径为3μm~8μm的纤维束,伴随气流形成的熔喷纤维网,并在中间层纤维网的两个侧面处相交汇,形成两侧是熔喷纤维网层,中间纤维层由可降解吸水纤维组成的可降解多层结构纤维网。
(3)所述的可降解多层纤维网通过加热装置将纤维网固结在一起,形成上、下两层为熔喷纤维层,中间纤维层由可降解吸水纤维组成的可降解复合无纺布。
所述的加热装置为热风烘箱、热轧辊或两者相结合。
有益效果
采用上述结构及其制造方法,由于复合擦拭无纺布的上、下表面层由可降解的熔喷纤维组成,中间层的吸水纤维也属于可降解材质,因此复合擦拭无纺布整体均属于可降解材质,解决了传统擦拭无纺布由于采用聚丙烯等可塑性高聚物作为熔喷面层,从而在自然环境中难以降解、腐烂,严重污染环境的问题。相较与传统的擦拭无纺布废弃物采用焚烧和火化处理方式,可降解擦拭无纺布可以采用填埋法进行废弃物处理,在土壤中降解,而产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入大气,不会造成温室效应。
附图说明
图1 为本发明实施例1中可降解复合无纺布的制造示意图。
图2 为本发明实施例1中可降解复合无纺布的剖面图。
图3 为本发明实施例2中可降解复合无纺布的制造示意图。
图4 为本发明实施例2中可降解复合无纺布的剖面图。
图5 为本发明实施例3中可降解复合无纺布的制造示意图。
图6 为本发明实施例3中可降解复合无纺布的剖面图。
本发明的实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
实施例 1
如图1、图2所示,将粘胶纤维通过梳理机A1,将其梳理成粘胶纤维纤维网11,在辅助气流的作用下通过喷管B1形成由可降解吸水纤维组成的中间层纤维网13。
采用熔喷法工艺,将聚乳酸加热,熔融,利用热气流将从喷丝板C1 和C1’中喷出的熔体细流吹散成很细的纤维束,伴随气流形成的熔喷纤维网12和12’,并与由粘胶纤维组成的中间层纤维网13的两个侧面处相交汇,形成两侧是熔喷纤维网层12和12’,中间层纤维网13是粘胶纤维网11的多层结构纤维网,其中,熔喷纤维为可降解单组份聚乳酸纤维;粘胶纤维的重量占复合无纺布总重量的百分比为75%。
所述的多层纤维网通过一对压花辊D1将纤维网固结在一起,形成上、下两层为可降解熔喷纤维层12和12’,中间层纤维网13是粘胶纤维网11的可降解复合擦拭无纺布14,其中,可降解熔喷纤维层12、12’和中间层纤维网13相邻层之间具有纤维交织穿插区域。
力学性能测试。
通过XLW-100N智能电子拉力试验机进行拉伸强度检测,测试参数如下所示。
MD纵向方向:样品宽度:50mm,夹距:200mm,拉伸速度:100m/min。
CD横向方向:样品宽度:50mm, 夹距:100mm,拉伸速度:100m/min。
生物分解率。
可降解材料,是指在适当和可表明期限的自然环境条件下,能够被微生物(如细菌、真菌和藻类等)完全分解变成低分子化合物的材料,对环境不会造成负面影响。通常用降解指数来表现材料的降解程度。
目前国际上评价塑料生物降解性能的主要方法是堆肥法,堆肥中含有丰富的微生物源,能在一定程度上宏观反映塑料在自然环境中的生物降解性能。
试验环境。
微生物的培养应放在容器或室内,在黑暗或弱光下进行,没有任何会影响微生物生长的蒸汽,并保持恒温58±2℃。
试剂。
薄层色谱级(TLC)纤维素、活化蛭石。
仪器。
堆肥容器、总有机碳的分析仪、天平。
试验步骤。
1、准备3个装试验材料的堆肥容器,即称取活化蛭石200g(干重)和试验材料50g(干重)混合均匀后放入堆肥容器。
2、准备3个空白的堆肥容器,即称取活化蛭石200g(干重)放入堆肥容器。
3、将堆肥容器放置在58±2℃的试验环境中,用水饱和的、没有二氧化碳的空气进行曝气。将空气通过灌满氢氧化钠溶液的洗瓶就可以得到所需的水饱和的、没有二氧化碳的空气。堆肥容器每周振荡一次,防止板结,保证微生物与试验材料充分接触。
4、在试验期间定期用总有机碳分析仪测量每个堆肥容器排放气中的二氧化碳的含量。在生物分解阶段至少每天测量2次,时间间隔大约6h,在平稳阶段,每天至少测量1次。
5、堆肥周期不超过6个月。如果还能观测到明显的生物分解现象,则试验周期应当延长到恒定平稳阶段为止,如果平稳阶段提前出现,则可以缩短试验周期。
计算二氧化碳理论释放量( ThCO 2 ),以克(g)表示。
ThCO 2 = M TOT × C TOT ×44/12。
式中: M TOT ——试验开始时加入堆肥容器的试验材料中的总干固体,单位为克(g); C TOT ——试验材料中总有机碳与总干固体的比,单位为克每克(g/g);44和12——分别表示二氧化碳的分子量和碳的原子量。
计算生物分解百分率( D t )(%): D t =[( CO 2 T-( CO 2 B]/ ThCO 2 ×100。
式中:(CO 2T——每个含有试验混合物的堆肥容器累计放出的二氧化碳量,单位为克每个容器(g/容器);( CO 2 B——空白容器累计放出的二氧化碳量平均值,单位为克每个容器(g/容器); ThCO 2 ——试验材料产生的二氧化碳理论释放量,单位为克每个容器(g/容器)。
根据计算的生物分解百分率作出试验材料的生物分解曲线(生物分解百分率与时间的关系曲线),从生物分解曲线的平坦部分读取平均生物分解率值,记录为该试验材料的生物分解率。
采用上述测试项目和方法,分别检测并评定实施例1中所生产可降解复合无纺布和常规用于擦拭巾的复合无纺布,即上下两表面层为熔喷无纺布层,中间层为木浆纤维。
Figure 794883dest_path_image001
由以上测试数据可以看出,由于实施例1中的可降解复合无纺布表层为可降解聚乳酸熔喷层,中间纤维层由粘胶纤维组成,粘胶纤维为再生纤维素纤维,均可在堆肥环境下可以自然降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入大气,不会造成温室效应,解决了传统擦拭无纺布由于采用聚丙烯树脂作为外层,在自然界中无法完成生物降解的问题。同时,粘胶纤维的纤维长度约35mm~76mm,而常规用于擦拭巾的无纺布中间层为木浆纤维的纤维长度约为1mm~4mm,因此采用具有较长纤维长度的粘胶纤维作为中间层纤维时不易从上、下表面层的纤维孔隙中钻出。
实施例2。
如图3、图4所示,木浆纤维22通过过开松辊E2,将其开松打散,在辅助气流的作用下通过喷管B2形成由木浆纤维组成的中间层纤维网24。
采用熔喷法工艺,将可降解聚己二酸/对苯二甲酸丁二酯(PBAT)加热,熔融,利用热气流将从喷丝板C2 和C2’中喷出的熔体细流吹散成很细的纤维束,伴随气流形成的熔喷纤维网23和23’,并与由木浆纤维组成的中间层纤维网24的两个侧面处相交汇,形成两侧是熔喷纤维网层23和23’,中间层纤维网24是木浆纤维组成的多层结构纤维网,其中,熔喷纤维为可降解聚己二酸/对苯二甲酸丁二酯(PBAT)纤维,可以为可降解单组份熔喷纤维,也可以是可降解双组份熔喷纤维,其中,可降解双组份熔喷纤维可以是可降解双组份皮芯型熔喷纤维、可降解双组份桔瓣型熔喷纤维或可降解双组份并列型熔喷纤维;中间层纤维的重量占复合无纺布总重量的百分比为70%。
所述的多层纤维网先通过热风烘箱F2使得上、下表面层中的可降解双组份熔喷纤维的表层可以在热风作用下熔融,并与相邻的纤维之间相互粘结在一起,然后再通过一对压花辊D2将纤维网固结在一起,形成上、下两层为熔喷纤维层23和23’,中间层纤维网24是由木浆纤维22组成的复合无纺布25,其中,熔喷纤维层23、23’和中间层纤维网24相邻层之间具有纤维交织穿插区域。
将实施例2中所生产的可降解复合无纺布和常规用于擦拭巾的复合无纺布进行检测和评定,检测数据如下。
测试项目。
Figure 617346dest_path_image002
采用上述结构和制造方法生产的可降解复合擦拭无纺布,中间纤维层24是由木浆纤维22组成的,其中木浆纤维属于可降解吸水纤维,上、下表面层由可降解的聚己二酸/对苯二甲酸丁二酯(PBAT)熔喷纤维组成,在可降解材料中,聚己二酸/对苯二甲酸丁二酯(PBAT)是对苯二甲酸、己二酸和丁二醇的三元共聚物,易加工,有较强的韧性和良好的生物降解性,在土壤或堆肥的条件下分解为二氧化碳、生物质和水,具有良好的生物降解性,同时形成的无纺布手感较聚乳酸等纤维材料柔软,具有较好的弹性,耐热性好。
实施例3。
如图5、图6所示,将粘胶纤维通过梳理机A3,将其梳理成粘胶纤维纤维网31,木浆纤维32通过开松辊E3,将其开松打散,并与粘胶纤维网31相混合后在辅助气流的作用下通过喷管B3形成由粘胶纤维和木浆纤维共混后组成的中间层纤维网34。
采用熔喷法工艺,将50%聚乳酸和50%聚己二酸/对苯二甲酸丁二酯(PBAT)分别加热,熔融,利用热气流将从喷丝板C2 和C2’中喷出的熔体细流吹散成很细的纤维束,伴随气流形成的熔喷纤维网33和33’,并与由粘胶纤维和木浆纤维共混后组成的中间层纤维网34的两个侧面处相交汇,形成两侧是熔喷纤维网层33和33’,中间层纤维网34是粘胶纤维和木浆纤维共混后组成的多层结构纤维网,其中,熔喷纤维为可降解双组份熔喷纤维,可降解双组份熔喷纤维可以为可降解双组份皮芯型纤维,也可以是可降解双组份桔瓣型纤维或可降解双组份并列型纤维;中间层纤维的重量占复合无纺布总重量的百分比为80%;中间纤维层中粘胶纤维的含量为50%,所述中间纤维层中和粘胶纤维共混的纤维除木浆纤维外,还可以是其他可降解吸水纤维,如棉纤维等。
所述的多层纤维网先通过热风烘箱F3使得上、下表面层中的可降解双组份熔喷纤维的表层中含有低熔点聚己二酸/对苯二甲酸丁二酯(PBAT)树脂,可以在热风作用下熔融,并与相邻的纤维之间相互粘结在一起,然后再通过一对压花辊D3将纤维网固结在一起,形成上、下两层为熔喷纤维层33和33’,中间层纤维网34是由粘胶纤维网31和木浆纤维32共混后组成的复合无纺布35,其中,熔喷纤维层33、33’和中间层纤维网34相邻层之间具有纤维交织穿插区域。
将实施例3中所生产的复合无纺布和常规用于擦拭巾的复合无纺布进行检测和评定,检测数据如下。
Figure 195963dest_path_image003
采用上述结构和制造方法生产的可降解复合无纺布,上、下表面层的可降解双组份纤维表面含有低熔点树脂聚己二酸/对苯二甲酸丁二酯(PBAT),加热后低熔点树脂开始熔融,相邻纤维容易粘连在一起,增加了表面层的粘结强度,有效防止了中间纤维层中的可降解吸水纤维的溢出,出现“掉毛”现象。并且该复合擦拭无纺布上、下表面层和中间层均采用可降解材质,可以采用填埋法进行废弃物处理,在土壤中降解,而产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入大气,不会造成温室效应。

Claims (8)

  1. 一种可降解复合无纺布,其为层状结构,依次包括上表面层、中间纤维层和下表面层,其特征在于:所述可降解复合擦拭无纺布的上、下表面层主要由可降解熔喷纤维组成,中间纤维层主要由可降解吸水纤维组成,其中,所述中间层纤维的重量占所述复合无纺布总重量的百分比大于65%,所述上、下表面层与中间纤维层的相邻层之间具有纤维交织穿插区域。
  2. 如权利要求1所述的一种可降解复合无纺布,其特征在于:所述的可降解熔喷纤维为聚乳酸、聚己二酸/对苯二甲酸丁二酯或它们的混合物所形成的纤维。
  3. 如权利要求1所述的一种可降解复合无纺布,其特征在于:所述的可降解熔喷纤维为可降解单组份纤维、表面含有低熔点树脂的可降解双组份熔喷纤维或两者相混合。
  4. 如权利要求3所述的一种可降解复合无纺布,其特征在于:所述的可降解双组份熔喷纤维为可降解双组份皮芯型熔喷纤维、可降解双组份橘瓣型熔喷纤维或可降解双组份并列型熔喷纤维。
  5. 如权利要求1所述的一种可降解复合无纺布,其特征在于:所述中间层纤维主要由粘胶纤维、木浆纤维或两者的混合纤维组成。
  6. 如权利要求5所述的一种可降解复合无纺布,其特征在于:所述的中间纤维层的混合纤维中粘胶纤维的质量百分含量≥15%。
  7. 一种如权利要求1所述的可降解复合无纺布的制造方法,其特征在于,具体制造步骤为:
    (1)可降解吸水纤维通过梳理机将其梳理成纤维网或通过开松辊将其开松打散,在辅助气流的作用下通过喷管形成所述的中间纤维层,其中,所述的中间纤维层主要由粘胶纤维、木浆纤维或两者的混合纤维组成;
    (2)采用熔喷法工艺,将可降解热塑性树脂加热,熔融,利用热气流将从喷丝板中喷出的溶体细流吹散成纤维直径为3μm~8μm的纤维束,伴随气流形成的熔喷纤维网,并在中间层纤维网的两个侧面处相交汇,形成两侧是熔喷纤维网层,中间纤维层由可降解吸水纤维组成的可降解多层纤维网;
    (3)所述的可降解多层纤维网通过加热装置将纤维网固结在一起,形成上、下两层为熔喷纤维层,中间纤维层由可降解吸水纤维组成的可降解复合无纺布。
  8. 如权利要求7所述的一种可降解复合无纺布的制造方法,其特征在于:所述的加热装置为热风烘箱、热轧辊或两者相结合。
PCT/CN2022/074240 2021-07-19 2022-01-27 一种可降解复合无纺布及其制造方法 WO2023000642A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/288,194 US20240198629A1 (en) 2021-07-19 2022-01-27 Degradable composite non-woven fabric and fabrication method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110813822.1A CN113547797A (zh) 2021-07-19 2021-07-19 一种可降解复合无纺布及其制造方法
CN202110813822.1 2021-07-19

Publications (1)

Publication Number Publication Date
WO2023000642A1 true WO2023000642A1 (zh) 2023-01-26

Family

ID=78132087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074240 WO2023000642A1 (zh) 2021-07-19 2022-01-27 一种可降解复合无纺布及其制造方法

Country Status (3)

Country Link
US (1) US20240198629A1 (zh)
CN (1) CN113547797A (zh)
WO (1) WO2023000642A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113547797A (zh) * 2021-07-19 2021-10-26 厦门延江新材料股份有限公司 一种可降解复合无纺布及其制造方法
CN114232210B (zh) * 2021-11-18 2023-04-21 中原工学院 香蒲叶脉结构的熔喷医用防护材料及其制备方法和应用
CN114214783B (zh) * 2021-12-20 2023-03-17 浙江优全护理用品科技股份有限公司 一种可降解的去油污湿巾及其制备方法
CN115787195A (zh) * 2022-12-29 2023-03-14 广东必得福医卫科技股份有限公司 一种mpm复合无纺布生产装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554824A (zh) * 2019-01-15 2019-04-02 厦门延江新材料股份有限公司 一种耐磨擦拭巾及其制造方法
CN109629118A (zh) * 2019-01-15 2019-04-16 厦门延江新材料股份有限公司 一种擦拭巾及其制造方法
CN109680406A (zh) * 2019-01-15 2019-04-26 厦门延江新材料股份有限公司 一种吸水擦拭巾及其制造方法
CN112779677A (zh) * 2021-01-11 2021-05-11 厦门延江新材料股份有限公司 一种复合擦拭巾及其制造方法
CN113547797A (zh) * 2021-07-19 2021-10-26 厦门延江新材料股份有限公司 一种可降解复合无纺布及其制造方法
CN216100758U (zh) * 2021-07-19 2022-03-22 厦门延江新材料股份有限公司 一种可降解复合无纺布

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064568A (ja) * 2001-05-30 2003-03-05 Toray Ind Inc 不織布および該不織布を用いてなる簡易衣料、ワイパー
CN108221177A (zh) * 2018-01-30 2018-06-29 杭州诚品实业有限公司 一种三层复合非织造材料及其生产设备、生产方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109554824A (zh) * 2019-01-15 2019-04-02 厦门延江新材料股份有限公司 一种耐磨擦拭巾及其制造方法
CN109629118A (zh) * 2019-01-15 2019-04-16 厦门延江新材料股份有限公司 一种擦拭巾及其制造方法
CN109680406A (zh) * 2019-01-15 2019-04-26 厦门延江新材料股份有限公司 一种吸水擦拭巾及其制造方法
CN112779677A (zh) * 2021-01-11 2021-05-11 厦门延江新材料股份有限公司 一种复合擦拭巾及其制造方法
CN113547797A (zh) * 2021-07-19 2021-10-26 厦门延江新材料股份有限公司 一种可降解复合无纺布及其制造方法
CN216100758U (zh) * 2021-07-19 2022-03-22 厦门延江新材料股份有限公司 一种可降解复合无纺布

Also Published As

Publication number Publication date
CN113547797A (zh) 2021-10-26
US20240198629A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
WO2023000642A1 (zh) 一种可降解复合无纺布及其制造方法
USRE46716E1 (en) Biopolymer-based growth media, and methods of making and using same
AU639794B2 (en) Polyesters and their use in compostable products such as disposable diapers
TWI621743B (zh) Method for preparing moisture-absorbing transfer non-woven fabric by using short fiber spinning method
TWI621742B (zh) 使用熔噴方式製備具有吸濕轉移性不織布的方法
TWI632259B (zh) Method for preparing moisture-absorbing transfer non-woven fabric by using spunbonding method
MX2013013516A (es) Fibra de composiciones de almidon-polimero-aceite.
CN101432472A (zh) 聚合物线和无纺织物
JP2003260321A (ja) エアフィルター
CN1559176A (zh) 环保型麻地膜及其制造工艺
CN216100758U (zh) 一种可降解复合无纺布
CN101092067A (zh) 一种环保湿巾及其制备方法
CN105696192B (zh) 使用熔喷方式制备具有吸湿转移性不织布的方法
CN103252931A (zh) 复合麻毡
JPH0995847A (ja) ポリ乳酸系長繊維不織布およびその製造方法
CN1814881A (zh) 可降解再生纤维素纤维土工布及加工技术
WO2015002555A1 (en) Biodegradable, combustible or noncombustible nonwoven, process of manufacture and use
CN105696198B (zh) 使用纺粘方式制备具有吸湿转移性不织布的方法
JP3494404B2 (ja) 生分解性農業用被覆資材
CN212560640U (zh) 一种双轴向经编组织织物
CN108130652A (zh) 一种聚乳酸无纺布及其制备方法与应用
CN105624917B (zh) 使用短纤纺丝方式制备具有吸湿转移性不织布的方法
CN110760996A (zh) 包装用阻燃无轧点无纺布的生产方法及应用
Haile et al. Biodegradable copolyester for fibers and nonwovens
Sengupta et al. Biodegradable nonwoven bonded fabric from Tossa jute and polylactic acid fibre for carry bag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22844816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18288194

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22844816

Country of ref document: EP

Kind code of ref document: A1