[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023085178A1 - タービンおよび過給機 - Google Patents

タービンおよび過給機 Download PDF

Info

Publication number
WO2023085178A1
WO2023085178A1 PCT/JP2022/040920 JP2022040920W WO2023085178A1 WO 2023085178 A1 WO2023085178 A1 WO 2023085178A1 JP 2022040920 W JP2022040920 W JP 2022040920W WO 2023085178 A1 WO2023085178 A1 WO 2023085178A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
turbine wheel
tongue
tongue portion
wheel
Prior art date
Application number
PCT/JP2022/040920
Other languages
English (en)
French (fr)
Inventor
大 神崎
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to DE112022003370.3T priority Critical patent/DE112022003370T5/de
Priority to CN202280051926.6A priority patent/CN117751232A/zh
Priority to JP2023559586A priority patent/JPWO2023085178A1/ja
Publication of WO2023085178A1 publication Critical patent/WO2023085178A1/ja
Priority to US18/419,938 priority patent/US20240200456A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/023Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines the working-fluid being divided into several separate flows ; several separate fluid flows being united in a single flow; the machine or engine having provision for two or more different possible fluid flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Patent Document 1 As a turbine provided in a supercharger or the like, two turbine scroll passages wound radially outward with respect to a turbine wheel are arranged in the axial direction of the turbine wheel. There is a turbine lined up in the A tongue is provided at a position facing the downstream end of each turbine scroll passage. Such turbines are also called twin-scroll turbines.
  • An object of the present disclosure is to provide a turbine and a supercharger that can reduce blade vibration of a turbine wheel.
  • the turbine of the present disclosure includes a shaft, a turbine wheel attached to one side of the shaft, a housing part for housing the turbine wheel, and a A first turbine scroll passage that is wound and communicates with the housing portion, and a first turbine scroll passage that is wound radially outwardly with respect to the turbine wheel, communicates with the housing portion, and is arranged on one side of the first turbine scroll passage.
  • a second turbine scroll passage a first tongue portion provided at a position facing the downstream end of the first turbine scroll passage and inclined toward one side in the circumferential direction of the turbine wheel as it progresses toward one side; a second tongue portion provided at a position facing the downstream end of the turbine scroll flow path and inclined toward the other side in the circumferential direction of the turbine wheel as it progresses toward the one side.
  • the first tongue may be inclined in the direction of rotation of the turbine wheel as it proceeds to one side, and the second tongue may be inclined in the direction opposite to the direction of rotation as it proceeds to one side.
  • the first tongue may be inclined in a direction opposite to the direction of rotation of the turbine wheel as it proceeds to one side, and the second tongue may be inclined in the direction of rotation as it proceeds to one side.
  • the inclination angle of the first tongue portion and the second tongue portion with respect to the axial direction of the turbine wheel when viewed in the radial direction of the turbine wheel is an angle obtained by dividing 360° by the number of blades of the turbine wheel. It may be below.
  • the turbocharger of the present disclosure includes the above turbine.
  • blade vibration of a turbine wheel can be reduced.
  • FIG. 1 is a schematic cross-sectional view showing a supercharger according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • FIG. 3 is a cross-sectional view along BB in FIG.
  • FIG. 4 is a cross-sectional view taken along line CC of FIGS. 2 and 3.
  • FIG. 5 is a cross-sectional view taken along line DD of FIG.
  • FIG. 6 is a DD cross-sectional view of a turbine according to a modification.
  • FIG. 1 is a schematic cross-sectional view showing a turbocharger TC according to an embodiment of the present disclosure.
  • the direction of arrow L shown in FIG. 1 is assumed to be the left side of turbocharger TC.
  • the direction of the arrow R shown in FIG. 1 will be described as the right side of the supercharger TC.
  • the supercharger TC includes a supercharger body 1 .
  • the turbocharger main body 1 includes a bearing housing 3 , a turbine housing 5 and a compressor housing 7 .
  • the turbine housing 5 is connected to the left side of the bearing housing 3 by a fastening mechanism 9.
  • the fastening mechanism 9 is, for example, a G coupling.
  • the compressor housing 7 is connected to the right side of the bearing housing 3 by fastening bolts 11 .
  • the supercharger TC comprises a turbine T and a centrifugal compressor C.
  • Turbine T includes bearing housing 3 and turbine housing 5 .
  • Turbine T is a twin-scroll turbine.
  • Centrifugal compressor C includes bearing housing 3 and compressor housing 7 .
  • a bearing hole 3 a is formed in the bearing housing 3 .
  • the bearing hole 3a penetrates the turbocharger TC in the left-right direction.
  • a bearing 13 is provided in the bearing hole 3a.
  • FIG. 1 shows a full floating bearing as an example of the bearing 13 .
  • bearing 13 may also be a semi-floating bearing or other bearing such as a rolling bearing.
  • the bearing 13 rotatably supports the shaft 15 .
  • a turbine wheel 17 is provided at the left end of the shaft 15 .
  • the turbine wheel 17 is mounted on one side, the left side, of the shaft 15 .
  • the turbine wheel 17 is rotatably housed in the turbine housing 5 .
  • a compressor impeller 19 is provided at the right end of the shaft 15 .
  • a compressor impeller 19 is rotatably housed in the compressor housing 7 .
  • the axial direction of the supercharger TC coincides with the axial direction of the shaft 15 , the axial direction of the turbine wheel 17 , and the axial direction of the compressor impeller 19 .
  • the radial direction of the supercharger TC coincides with the radial direction of the shaft 15 , the radial direction of the turbine wheel 17 , and the radial direction of the compressor impeller 19 .
  • the circumferential direction of the supercharger TC coincides with the circumferential direction of the shaft 15 , the turbine wheel 17 , and the compressor impeller 19 .
  • An intake port 21 is formed in the compressor housing 7 .
  • the intake port 21 opens on the right side of the supercharger TC.
  • the intake port 21 is connected to an air cleaner (not shown).
  • a diffuser flow path 23 is formed by the facing surfaces of the bearing housing 3 and the compressor housing 7 .
  • the diffuser flow path 23 pressurizes the air.
  • the diffuser flow path 23 is formed in an annular shape.
  • the diffuser flow path 23 communicates with the intake port 21 via the compressor impeller 19 on the radially inner side.
  • a compressor scroll flow path 25 is also formed in the compressor housing 7 .
  • the compressor scroll flow path 25 is formed in an annular shape.
  • the compressor scroll channel 25 is located radially outside the diffuser channel 23, for example.
  • the compressor scroll channel 25 communicates with the intake port of the engine (not shown) and the diffuser channel 23 .
  • intake air is pressurized and accelerated while flowing between the blades of the compressor impeller 19 .
  • the pressurized and accelerated air is pressurized in the diffuser passage 23 and the compressor scroll passage 25 .
  • the pressurized air is directed to the intake of the engine.
  • the turbine housing 5 is formed with a discharge passage 27 , a housing portion 29 , a first turbine scroll passage 31 and a second turbine scroll passage 33 .
  • the discharge channel 27 opens on the left side of the supercharger TC.
  • the discharge flow path 27 is connected to an exhaust gas purification device (not shown).
  • the discharge channel 27 communicates with the housing portion 29 .
  • the discharge channel 27 continues axially with respect to the accommodating portion 29 .
  • the accommodation portion 29 accommodates the turbine wheel 17 .
  • the first turbine scroll passage 31 and the second turbine scroll passage 33 are provided radially outside the accommodating portion 29 .
  • the first turbine scroll passage 31 and the second turbine scroll passage 33 are wound radially outward with respect to the turbine wheel 17 .
  • the first turbine scroll passage 31 and the second turbine scroll passage 33 communicate with the accommodation portion 29 .
  • the second turbine scroll passage 33 is arranged on the left side of the first turbine scroll passage 31 in the axial direction (that is, one side of the shaft 15 to which the turbine impeller 17 is attached).
  • a partition plate 35 is formed between the first turbine scroll passage 31 and the second turbine scroll passage 33 .
  • the partition plate 35 partitions the first turbine scroll passage 31 and the second turbine scroll passage 33 in the axial direction.
  • the first turbine scroll passage 31 and the second turbine scroll passage 33 communicate with an exhaust manifold of the engine (not shown).
  • Exhaust gas discharged from an exhaust manifold of an engine is sent to the housing portion 29 via the first turbine scroll passage 31 and the second turbine scroll passage 33 and then guided to the discharge passage 27 .
  • the exhaust gas guided to the discharge passage 27 rotates the turbine wheel 17 in the course of circulation.
  • the rotational force of the turbine wheel 17 is transmitted to the compressor impeller 19 via the shaft 15. As the compressor impeller 19 rotates, the air is pressurized as described above. Air is thus directed to the intake of the engine.
  • FIG. 2 is a cross-sectional view along line AA in FIG. AA cross section is a cross section perpendicular to the axial direction of the shaft 15 and passing through the first turbine scroll passage 31 .
  • FIG. 2 only the outer circumference of the turbine wheel 17 is indicated by a circle.
  • the turbine housing 5 is formed with a first exhaust inlet 37 .
  • the first exhaust inlet 37 opens to the outside of the turbine housing 5 .
  • Exhaust gas discharged from an exhaust manifold of an engine (not shown) is introduced into the first exhaust gas introduction port 37 .
  • a first exhaust introduction passage 39 is formed between the first exhaust introduction port 37 and the first turbine scroll passage 31 .
  • the first exhaust introduction passage 39 connects the first exhaust introduction port 37 and the first turbine scroll passage 31 .
  • the first exhaust introduction path 39 is formed linearly, for example.
  • the first exhaust introduction passage 39 guides the exhaust gas introduced from the first exhaust introduction port 37 to the first turbine scroll passage 31 .
  • the first turbine scroll passage 31 communicates with the housing portion 29 via the first communication portion 41 .
  • the first communicating portion 41 is formed in an annular shape over the entire circumference of the accommodating portion 29 .
  • the first turbine scroll passage 31 guides the exhaust gas introduced from the first exhaust introduction passage 39 to the accommodation portion 29 via the first communication portion 41 .
  • the first turbine scroll passage 31 is wound so as to approach the turbine wheel 17 as it advances in the rotational direction RD of the turbine wheel 17 .
  • the radial width of the first turbine scroll passage 31 decreases from upstream to downstream.
  • a first tongue portion 43 is provided at a position facing the downstream end of the first turbine scroll passage 31 .
  • the first tongue portion 43 separates the downstream portion and the upstream portion of the first turbine scroll passage 31 .
  • FIG. 3 is a cross-sectional view along BB in FIG.
  • a BB cross section is a cross section perpendicular to the axial direction of the shaft 15 and passing through the second turbine scroll passage 33 .
  • FIG. 3 as in FIG. 2, only the outer circumference of the turbine wheel 17 is indicated by a circle.
  • the turbine housing 5 is formed with a second exhaust inlet 45 .
  • the second exhaust inlet 45 opens to the outside of the turbine housing 5 .
  • the second exhaust inlet 45 is arranged on the axial left side of the first exhaust inlet 37 (that is, one side of the shaft 15 to which the turbine wheel 17 is attached).
  • the first exhaust introduction port 37 and the second exhaust introduction port 45 are partitioned in the axial direction by the partition plate 35 . Exhaust gas discharged from an exhaust manifold of an engine (not shown) is introduced into the second exhaust inlet 45 .
  • a second exhaust introduction passage 47 is formed between the second exhaust introduction port 45 and the second turbine scroll passage 33 .
  • the second exhaust introduction passage 47 connects the second exhaust introduction port 45 and the second turbine scroll passage 33 .
  • the second exhaust introduction path 47 is formed linearly, for example.
  • the second exhaust introduction path 47 is arranged on the left side of the first exhaust introduction path 39 in the axial direction (that is, one side of the shaft 15 to which the turbine wheel 17 is attached).
  • the first exhaust introduction path 39 and the second exhaust introduction path 47 are partitioned in the axial direction by the partition plate 35 .
  • the second exhaust introduction passage 47 guides the exhaust gas introduced from the second exhaust introduction port 45 to the second turbine scroll passage 33 .
  • the second turbine scroll passage 33 communicates with the housing portion 29 via the second communication portion 49 .
  • the second communicating portion 49 is formed in an annular shape over the entire circumference of the accommodating portion 29 .
  • the second communicating portion 49 is arranged on the left side of the first communicating portion 41 in the axial direction (that is, one side of the shaft 15 to which the turbine wheel 17 is attached).
  • the first communicating portion 41 and the second communicating portion 49 are partitioned in the axial direction by the partition plate 35 .
  • the second turbine scroll passage 33 guides the exhaust gas introduced from the second exhaust introduction passage 47 to the accommodation portion 29 via the second communication portion 49 .
  • the second turbine scroll passage 33 is wound so as to approach the turbine wheel 17 as it advances in the rotational direction RD of the turbine wheel 17 .
  • the radial width of the second turbine scroll passage 33 decreases from upstream to downstream.
  • a second tongue portion 51 is provided at a position facing the downstream end of the second turbine scroll passage 33 .
  • the second tongue portion 51 separates the downstream portion and the upstream portion of the second turbine scroll passage 33 .
  • the circumferential position of the first tongue portion 43 and the circumferential position of the second tongue portion 51 coincide with each other.
  • FIG. 4 is a CC cross-sectional view of FIGS. 2 and 3.
  • FIG. A CC cross section is a cross section that passes through the first tongue portion 43 and the second tongue portion 51 and includes the rotation axis of the turbine wheel 17 .
  • the turbine wheel 17 has a plurality of blade bodies 17a.
  • the plurality of wing bodies 17a are provided at regular intervals in the circumferential direction.
  • Each blade 17 a is formed to extend radially outward from the outer peripheral surface of a hub that extends on the rotating shaft of the turbine wheel 17 .
  • the leading edge LE of the blade 17a extends parallel to the rotation axis of the turbine wheel 17.
  • the leading edge LE may be slanted radially outward as it progresses axially to the left (that is, the side of the shaft 15 to which the turbine wheel 17 is attached).
  • the leading edge LE is a portion of the outer peripheral edge of the blade body 17a that faces the first turbine scroll passage 31 and the second turbine scroll passage 33 . Exhaust gas flows from the first turbine scroll passage 31 and the second turbine scroll passage 33 into the accommodation portion 29 through the vicinity of the leading edge LE.
  • the first tongue portion 43 and the second tongue portion 51 are arranged radially outside the leading edge LE of the blade body 17 a of the turbine wheel 17 .
  • the portions of the first tongue 43 and the second tongue 51 facing the turbine wheel 17 extend parallel to the rotation axis of the turbine wheel 17 . That is, the portions of the first tongue portion 43 and the second tongue portion 51 facing the turbine wheel 17 extend parallel to the leading edge LE.
  • tongue portions when the first tongue portion 43 and the second tongue portion 51 are not particularly distinguished, they are simply referred to as tongue portions.
  • the shape of the tongue portion is devised in order to reduce blade vibration of the turbine wheel 17 .
  • FIG. 5 is a cross-sectional view taken along line DD of FIG.
  • a DD cross section is a cross section along the circumferential direction of the turbine wheel 17 passing through the first tongue portion 43 and the second tongue portion 51 .
  • a DD cross section is a cross-sectional view when the first tongue portion 43 and the second tongue portion 51 are seen in the radial direction from the turbine wheel 17 side.
  • the DD cross-sectional view of FIG. 4 is shown with the arrow L direction as the upward direction and the arrow R direction as the downward direction.
  • the first tongue portion 43 is inclined in the rotational direction RD of the turbine wheel 17 as it advances in the arrow L direction. That is, the first tongue portion 43 is inclined in the rotational direction RD as it progresses toward the one side of the shaft 15 to which the turbine wheel 17 is attached.
  • the second tongue portion 51 is inclined in a direction opposite to the rotation direction RD of the turbine wheel 17 as it advances in the arrow L direction. That is, the second tongue portion 51 is inclined in a direction opposite to the rotation direction RD as it progresses toward the one side of the shaft 15 to which the turbine wheel 17 is attached.
  • the first tongue portion 43 is inclined toward one side in the circumferential direction of the turbine wheel 17 as it progresses toward the one side of the shaft 15 to which the turbine wheel 17 is attached.
  • the tongue portion 51 is inclined toward the other side in the circumferential direction of the turbine wheel 17 as it progresses toward the one side. Therefore, when each tongue is viewed in the radial direction from the turbine wheel 17 side, each tongue is circumferentially inclined with respect to the axial direction of the turbine wheel 17 .
  • a part of the tongue portion sequentially faces the blade body 17a for each tongue portion.
  • first tongue portion 43 first, the portion on the arrow R direction side of the first tongue portion 43 faces the wing body 17a. After that, the portion of the first tongue portion 43 that faces the wing body 17a transitions in the arrow L direction.
  • second tongue portion 51 first, the portion on the arrow L direction side of the second tongue portion 51 faces the wing body 17a. After that, the portion of the second tongue portion 51 that faces the wing body 17a transitions in the arrow R direction. Therefore, for each tongue, the blade 17a of the turbine wheel 17 is prevented from facing the entire tongue at the same time.
  • the direction in which the first tongue 43 is inclined with respect to the axial direction of the turbine wheel 17 and the direction in which the second tongue 51 is inclined is the opposite direction.
  • gas flows from the vicinity of the first tongue portion 43 into the accommodation portion 29 of the turbine wheel 17 and gas flows from the vicinity of the second tongue portion 51 into the accommodation portion 29 of the turbine wheel 17. are symmetrical with respect to the central plane of the partition plate 35 .
  • the center plane of the partition plate 35 is a plane that passes through the center of the partition plate 35 in the thickness direction and is perpendicular to the axial direction.
  • the first tongue portion 43 and the second tongue portion 51 do not necessarily have to be plane-symmetrical with respect to the central plane of the partition plate 35 . Even if the first tongue portion 43 and the second tongue portion 51 are not plane-symmetrical with respect to the central plane of the partition plate 35, the flow of gas flowing into the accommodation portion 29 of the turbine wheel 17 from the vicinity of the first tongue portion 43 is reduced. Since the axial component and the axial component of the flow of gas flowing into the housing portion 29 of the turbine wheel 17 from the vicinity of the second tongue portion 51 at least partially cancel each other, the blade vibration is reduced.
  • the first tongue 43 is inclined in the rotational direction RD as it progresses toward the one side of the shaft 15 to which the turbine wheel 17 is attached, and the second tongue 51 progresses toward the one side. It is inclined in the direction opposite to the direction of rotation RD as it increases.
  • the gas flowing into the housing portion 29 of the turbine wheel 17 from the vicinity of the first tongue portion 43 is axially guided leftward by the first tongue portion 43 .
  • the gas flowing from the vicinity of the second tongue portion 51 into the housing portion 29 of the turbine wheel 17 is axially guided by the second tongue portion 51 to the opposite side to the left side in the axial direction. Therefore, the gas that flows into the accommodation portion 29 of the turbine wheel 17 from the vicinity of each tongue flows toward the center of the blade body 17a in the axial direction. Thereby, the aerodynamic performance is improved.
  • the inclination angles of the first tongue portion 43 and the second tongue portion 51 with respect to the axial direction when viewed in the radial direction of the turbine wheel 17 will be described. 5, the inclination angle ⁇ 1 of the first tongue portion 43 with respect to the axial direction when viewed in the radial direction of the turbine wheel 17 and the axial direction of the second tongue portion 51 when viewed in the radial direction of the turbine wheel 17 are shown. and the tilt angle .theta.2 with respect to .
  • the tilt angle ⁇ 1 and the tilt angle ⁇ 2 are approximately the same.
  • the inclination angles ⁇ 1 and ⁇ 2 are excessively large, the flow field in the housing portion 29 of the turbine wheel 17 deviates greatly from the assumed state, and the aerodynamic performance may deteriorate.
  • the inclination angles ⁇ 1 and ⁇ 2 are preferably equal to or less than an angle obtained by dividing 360° by the number of blade bodies 17a of the turbine wheel 17, for example.
  • the greater the number of wing bodies 17a the shorter the time difference between the timings at which adjacent wing bodies 17a face the tongue.
  • the inclination angles ⁇ 1 and ⁇ 2 can be decreased as the number of blade bodies 17a increases.
  • the time required for each wing body 17a to pass through the tongue portion relative to the above time difference is suppressed from becoming excessively long. Therefore, it is suppressed that the flow field in the accommodating portion 29 of the turbine wheel 17 deviates greatly from the assumed state, and the deterioration of the aerodynamic performance is suppressed.
  • the inclination angles ⁇ 1 and ⁇ 2 do not have to be less than or equal to the angle obtained by dividing 360° by the number of blade bodies 17a of the turbine wheel 17. Moreover, the inclination angle ⁇ 1 and the inclination angle ⁇ 2 may be different from each other.
  • each tongue when viewed in the circumferential direction of the turbine wheel 17, each tongue is not radially inclined with respect to the axial direction of the turbine wheel 17. However, when viewed in the circumferential direction of the turbine wheel 17 , at least one of the first tongue portion 43 and the second tongue portion 51 may be radially inclined with respect to the axial direction of the turbine wheel 17 .
  • FIG. 6 is a DD sectional view of the turbine T1 according to the modification.
  • the inclination directions of the first tongue portion 43 and the second tongue portion 51 are different from those of the turbine T described above.
  • the first tongue portion 43 inclines in the direction opposite to the rotation direction RD of the turbine wheel 17 as it advances in the arrow L direction. That is, the first tongue portion 43 is inclined in a direction opposite to the rotation direction RD as it progresses toward the one side of the shaft 15 to which the turbine wheel 17 is attached.
  • the second tongue portion 51 is inclined in the rotation direction RD of the turbine wheel 17 as it advances in the arrow L direction. That is, the second tongue portion 51 is inclined in the rotational direction RD as it progresses toward the one side of the shaft 15 to which the turbine wheel 17 is attached.
  • the first tongue 43 extends toward the one side of the shaft 15 to which the turbine wheel 17 is attached.
  • the second tongue portion 51 is inclined toward the other side in the circumferential direction of the turbine wheel 17 as it progresses toward the one side. Therefore, similar to the turbine T described above, the effect of reducing blade vibration is exhibited.
  • the first tongue 43 is inclined in the direction opposite to the rotational direction RD as it progresses toward the one side of the shaft 15 where the turbine wheel 17 is attached, and the second tongue 51 It inclines in the rotation direction RD as it advances to the side.
  • the portions of the first turbine scroll passage 31 and the second turbine scroll passage 33 adjacent to the respective tongues on the upstream side (the left side of the first tongue 43 and the second tongue 51 in FIG. 6) ), an obtuse angle is formed between the surface of the inner surface of each turbine scroll flow path facing the partition plate 35 and each tongue. Therefore, on the upstream side of each turbine scroll passage, which is close to the engine exhaust and hits by gas with higher energy, the occurrence of cracks at the boundary portion between each tongue and each turbine scroll passage is suppressed.
  • the inclination angles ⁇ 1 and ⁇ 2 may be equal to or less than the angle obtained by dividing 360° by the number of the blade bodies 17a of the turbine wheel 17, and may not be equal to or less than this angle. may Also, the inclination angles ⁇ 1 and ⁇ 2 may be substantially the same or may be different from each other. Further, when viewed in the circumferential direction of the turbine wheel 17, each tongue does not have to be radially inclined with respect to the axial direction of the turbine wheel 17, and the first tongue 43 and the second tongue 51 may be radially inclined with respect to the axial direction of the turbine wheel 17 .
  • the turbine T may be mounted on a device other than the turbocharger TC, such as a generator.
  • the present disclosure can reduce blade vibration in turbine wheels, e.g. We can contribute to 9. "Develop resilient infrastructure, promote sustainable industrialization, and expand innovation.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

タービンTは、シャフトと、シャフトの一方側に取り付けられたタービン翼車と、タービン翼車を収容する収容部と、タービン翼車に対して径方向外側に巻き回され、収容部と連通する第1タービンスクロール流路31と、タービン翼車に対して径方向外側に巻き回され、収容部と連通し、第1タービンスクロール流路に対して一方側に並ぶ第2タービンスクロール流路33と、第1タービンスクロール流路31の下流端に面する位置に設けられ、一方側に進むにつれてタービン翼車の周方向の一側に傾斜する第1舌部43と、第2タービンスクロール流路33の下流端に面する位置に設けられ、一方側に進むにつれてタービン翼車の周方向の他側に傾斜する第2舌部51と、を備える。

Description

タービンおよび過給機
 本開示は、タービンおよび過給機に関する。本出願は2021年11月9日に提出された日本特許出願第2021-182419号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。
 例えば、特許文献1に開示されているように、過給機等に設けられるタービンとして、タービン翼車に対して径方向外側に巻き回される2つのタービンスクロール流路がタービン翼車の軸方向に並ぶタービンがある。各タービンスクロール流路の下流端に面する位置に舌部が設けられる。このようなタービンは、ツインスクロール式のタービンとも呼ばれる。
特開2006-348894号公報
 ツインスクロール式のタービンのように舌部を有するタービンでは、タービン翼車の翼体が舌部の近傍を通過する際に、翼体と舌部とによって形成される流路面積が瞬間的に狭くなることによって、ガスの縮流が生じる。それにより、翼体に作用する力が大きく変動し、翼振動が生じる。このようなタービン翼車の翼振動を低減させることが望まれている。
 本開示の目的は、タービン翼車の翼振動を低減させることが可能なタービンおよび過給機を提供することである。
 上記課題を解決するために、本開示のタービンは、シャフトと、シャフトの一方側に取り付けられたタービン翼車と、タービン翼車を収容する収容部と、タービン翼車に対して径方向外側に巻き回され、収容部と連通する第1タービンスクロール流路と、タービン翼車に対して径方向外側に巻き回され、収容部と連通し、第1タービンスクロール流路に対して一方側に並ぶ第2タービンスクロール流路と、第1タービンスクロール流路の下流端に面する位置に設けられ、一方側に進むにつれてタービン翼車の周方向の一側に傾斜する第1舌部と、第2タービンスクロール流路の下流端に面する位置に設けられ、一方側に進むにつれてタービン翼車の周方向の他側に傾斜する第2舌部と、を備える。
 第1舌部は、一方側に進むにつれてタービン翼車の回転方向に傾斜し、第2舌部は、一方側に進むにつれて回転方向と逆方向に傾斜してもよい。
 第1舌部は、一方側に進むにつれてタービン翼車の回転方向と逆方向に傾斜し、第2舌部は、一方側に進むにつれて回転方向に傾斜してもよい。
 タービン翼車の径方向に見た場合における第1舌部および第2舌部のタービン翼車の軸方向に対する傾斜角は、360°をタービン翼車の翼体の枚数で除算して得られる角度以下であってもよい。
 上記課題を解決するために、本開示の過給機は、上記のタービンを備える。
 本開示によれば、タービン翼車の翼振動を低減させることができる。
図1は、本開示の実施形態に係る過給機を示す概略断面図である。 図2は、図1のA-A断面図である。 図3は、図1のB-B断面図である。 図4は、図2および図3のC-C断面図である。 図5は、図4のD-D断面図である。 図6は、変形例に係るタービンにおけるD-D断面図である。
 以下に添付図面を参照しながら、本開示の実施形態について説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。
 図1は、本開示の実施形態に係る過給機TCを示す概略断面図である。以下では、図1に示す矢印L方向を過給機TCの左側として説明する。図1に示す矢印R方向を過給機TCの右側として説明する。図1に示すように、過給機TCは、過給機本体1を備える。過給機本体1は、ベアリングハウジング3と、タービンハウジング5と、コンプレッサハウジング7とを備える。
 タービンハウジング5は、ベアリングハウジング3の左側に締結機構9によって連結される。締結機構9は、例えば、Gカップリングである。コンプレッサハウジング7は、ベアリングハウジング3の右側に締結ボルト11によって連結される。過給機TCは、タービンTおよび遠心圧縮機Cを備える。タービンTは、ベアリングハウジング3およびタービンハウジング5を含む。タービンTは、ツインスクロール式のタービンである。遠心圧縮機Cは、ベアリングハウジング3およびコンプレッサハウジング7を含む。
 ベアリングハウジング3には、軸受孔3aが形成される。軸受孔3aは、過給機TCの左右方向に貫通する。軸受孔3aには、軸受13が設けられる。図1では、軸受13の一例としてフルフローティング軸受が示されている。ただし、軸受13は、セミフローティング軸受または転がり軸受などの他の軸受であってもよい。軸受13は、シャフト15を回転自在に軸支する。シャフト15の左端部には、タービン翼車17が設けられる。このように、タービン翼車17は、シャフト15の一方側である左側に取り付けられる。タービン翼車17は、タービンハウジング5に回転自在に収容されている。シャフト15の右端部には、コンプレッサインペラ19が設けられる。コンプレッサインペラ19は、コンプレッサハウジング7に回転自在に収容されている。
 以下、過給機TCの軸方向、径方向および周方向を、それぞれ単に軸方向、径方向および周方向とも呼ぶ。過給機TCの軸方向は、シャフト15の軸方向、タービン翼車17の軸方向、および、コンプレッサインペラ19の軸方向と一致する。過給機TCの径方向は、シャフト15の径方向、タービン翼車17の径方向、および、コンプレッサインペラ19の径方向と一致する。過給機TCの周方向は、シャフト15の周方向、タービン翼車17の周方向、および、コンプレッサインペラ19の周方向と一致する。
 コンプレッサハウジング7には、吸気口21が形成される。吸気口21は、過給機TCの右側に開口する。吸気口21は、不図示のエアクリーナに接続される。ベアリングハウジング3とコンプレッサハウジング7の対向面によって、ディフューザ流路23が形成される。ディフューザ流路23は、空気を昇圧する。ディフューザ流路23は、環状に形成される。ディフューザ流路23は、径方向内側において、コンプレッサインペラ19を介して吸気口21に連通している。
 また、コンプレッサハウジング7には、コンプレッサスクロール流路25が形成される。コンプレッサスクロール流路25は、環状に形成される。コンプレッサスクロール流路25は、例えば、ディフューザ流路23よりも径方向外側に位置する。コンプレッサスクロール流路25は、不図示のエンジンの吸気口と、ディフューザ流路23とに連通している。コンプレッサインペラ19が回転すると、吸気口21からコンプレッサハウジング7内に空気が吸気される。吸気された空気は、コンプレッサインペラ19の翼間を流通する過程において加圧加速される。加圧加速された空気は、ディフューザ流路23およびコンプレッサスクロール流路25で昇圧される。昇圧された空気は、エンジンの吸気口に導かれる。
 タービンハウジング5には、排出流路27と、収容部29と、第1タービンスクロール流路31と、第2タービンスクロール流路33とが形成される。排出流路27は、過給機TCの左側に開口する。排出流路27は、不図示の排気ガス浄化装置に接続される。排出流路27は、収容部29と連通する。排出流路27は、収容部29に対して軸方向に連続する。収容部29は、タービン翼車17を収容する。第1タービンスクロール流路31および第2タービンスクロール流路33は、収容部29の径方向外側に設けられる。
 第1タービンスクロール流路31および第2タービンスクロール流路33は、タービン翼車17に対して径方向外側に巻き回される。第1タービンスクロール流路31および第2タービンスクロール流路33は、収容部29と連通する。第2タービンスクロール流路33は、第1タービンスクロール流路31に対して軸方向の左側(つまり、シャフト15のうちタービン翼車17が取り付けられる一方側)に並ぶ。第1タービンスクロール流路31と第2タービンスクロール流路33との間には、仕切板35が形成される。仕切板35は、第1タービンスクロール流路31と第2タービンスクロール流路33とを軸方向に区画する。第1タービンスクロール流路31および第2タービンスクロール流路33は、不図示のエンジンの排気マニホールドと連通する。不図示のエンジンの排気マニホールドから排出された排気ガスは、第1タービンスクロール流路31および第2タービンスクロール流路33を介して収容部29に送られた後、排出流路27に導かれる。排出流路27に導かれる排気ガスは、流通過程においてタービン翼車17を回転させる。
 タービン翼車17の回転力は、シャフト15を介してコンプレッサインペラ19に伝達される。コンプレッサインペラ19が回転すると、上記のとおりに空気が昇圧される。こうして、空気がエンジンの吸気口に導かれる。
 図2は、図1のA-A断面図である。A-A断面は、シャフト15の軸方向に垂直、かつ、第1タービンスクロール流路31を通る断面である。図2では、タービン翼車17について、外周のみが円で示されている。
 図2に示すように、タービンハウジング5には、第1排気導入口37が形成される。第1排気導入口37は、タービンハウジング5の外部に開口する。第1排気導入口37には、不図示のエンジンの排気マニホールドから排出される排気ガスが導入される。
 第1排気導入口37と第1タービンスクロール流路31との間には、第1排気導入路39が形成される。第1排気導入路39は、第1排気導入口37と第1タービンスクロール流路31とを接続する。第1排気導入路39は、例えば、直線状に形成される。第1排気導入路39は、第1排気導入口37から導入された排気ガスを第1タービンスクロール流路31に導く。
 第1タービンスクロール流路31は、第1連通部41を介して収容部29と連通する。第1連通部41は、収容部29の全周に亘って環状に形成される。第1タービンスクロール流路31は、第1排気導入路39から導入された排気ガスを、第1連通部41を介して収容部29に導く。第1タービンスクロール流路31は、タービン翼車17の回転方向RDに進むにつれてタービン翼車17に近づくように、巻き回される。第1タービンスクロール流路31の径方向の幅は、上流側から下流側に向かうにつれて小さくなる。
 第1タービンスクロール流路31の下流端に面する位置には、第1舌部43が設けられる。第1舌部43は、第1タービンスクロール流路31の下流側の部分と上流側の部分とを仕切る。
 図3は、図1のB-B断面図である。B-B断面は、シャフト15の軸方向に垂直、かつ、第2タービンスクロール流路33を通る断面である。図3では、図2と同様に、タービン翼車17について、外周のみが円で示されている。
 図3に示すように、タービンハウジング5には、第2排気導入口45が形成される。第2排気導入口45は、タービンハウジング5の外部に開口する。第2排気導入口45は、第1排気導入口37に対して軸方向の左側(つまり、シャフト15のうちタービン翼車17が取り付けられる一方側)に並ぶ。第1排気導入口37と第2排気導入口45とは、仕切板35によって軸方向に区画される。第2排気導入口45には、不図示のエンジンの排気マニホールドから排出される排気ガスが導入される。
 第2排気導入口45と第2タービンスクロール流路33との間には、第2排気導入路47が形成される。第2排気導入路47は、第2排気導入口45と第2タービンスクロール流路33とを接続する。第2排気導入路47は、例えば、直線状に形成される。第2排気導入路47は、第1排気導入路39に対して軸方向の左側(つまり、シャフト15のうちタービン翼車17が取り付けられる一方側)に並ぶ。第1排気導入路39と第2排気導入路47とは、仕切板35によって軸方向に区画される。第2排気導入路47は、第2排気導入口45から導入された排気ガスを第2タービンスクロール流路33に導く。
 第2タービンスクロール流路33は、第2連通部49を介して収容部29と連通する。第2連通部49は、収容部29の全周に亘って環状に形成される。第2連通部49は、第1連通部41に対して軸方向の左側(つまり、シャフト15のうちタービン翼車17が取り付けられる一方側)に並ぶ。第1連通部41と第2連通部49とは、仕切板35によって軸方向に区画される。第2タービンスクロール流路33は、第2排気導入路47から導入された排気ガスを、第2連通部49を介して収容部29に導く。第2タービンスクロール流路33は、タービン翼車17の回転方向RDに進むにつれてタービン翼車17に近づくように、巻き回される。第2タービンスクロール流路33の径方向の幅は、上流側から下流側に向かうにつれて小さくなる。
 第2タービンスクロール流路33の下流端に面する位置には、第2舌部51が設けられる。第2舌部51は、第2タービンスクロール流路33の下流側の部分と上流側の部分とを仕切る。第1舌部43の周方向位置と、第2舌部51の周方向位置とは、互いに一致する。
 図4は、図2および図3のC-C断面図である。C-C断面は、第1舌部43および第2舌部51を通りタービン翼車17の回転軸を含む断面である。
 図4に示すように、タービン翼車17は、複数の翼体17aを有する。複数の翼体17aは、周方向に等間隔に設けられる。各翼体17aは、タービン翼車17の回転軸上に延在するハブの外周面から径方向外側に延びて形成される。図4の例では、翼体17aのリーディングエッジLEは、タービン翼車17の回転軸と平行に延びている。ただし、リーディングエッジLEは、軸方向の左側(つまり、シャフト15のうちタービン翼車17が取り付けられる一方側)に進むにつれて径方向外側に傾斜していてもよい。リーディングエッジLEは、翼体17aの外周縁のうち、第1タービンスクロール流路31および第2タービンスクロール流路33と対向する部分である。第1タービンスクロール流路31および第2タービンスクロール流路33から、リーディングエッジLEの近傍を通って、収容部29に排気ガスが流入する。
 第1舌部43および第2舌部51は、タービン翼車17の翼体17aのリーディングエッジLEの径方向外側に配置されている。図4の例では、第1舌部43および第2舌部51のうちタービン翼車17に面する部分は、タービン翼車17の回転軸と平行に延びている。つまり、第1舌部43および第2舌部51のうちタービン翼車17に面する部分は、リーディングエッジLEと平行に延びている。以下、第1舌部43と第2舌部51とを特に区別しない場合、単に舌部と呼ぶ。
 タービンTでは、タービン翼車17の翼体17aが舌部の近傍を通過する際に、翼体17aと舌部とによって形成される流路面積が瞬間的に狭くなることによって、ガスの縮流が生じる。それにより、翼体17aに作用する力が大きく変動し、翼振動が生じる。本実施形態では、タービン翼車17の翼振動を低減させるために、舌部の形状に工夫が施されている。
 図5は、図4のD-D断面図である。D-D断面は、第1舌部43および第2舌部51を通りタービン翼車17の周方向に沿った断面である。D-D断面は、タービン翼車17側から第1舌部43および第2舌部51を径方向に見た場合の断面図である。図5では、図4のD-D断面図が、矢印L方向を上方向とし、矢印R方向を下方向として示されている。
 タービンTでは、図5に示すように、第1舌部43は、矢印L方向に進むにつれてタービン翼車17の回転方向RDに傾斜している。つまり、第1舌部43は、シャフト15のうちタービン翼車17が取り付けられる一方側に進むにつれて回転方向RDに傾斜している。第2舌部51は、矢印L方向に進むにつれてタービン翼車17の回転方向RDと逆方向に傾斜している。つまり、第2舌部51は、シャフト15のうちタービン翼車17が取り付けられる一方側に進むにつれて回転方向RDと逆方向に傾斜している。
 上記のように、タービンTでは、第1舌部43は、シャフト15のうちタービン翼車17が取り付けられる一方側に進むにつれてタービン翼車17の周方向の一側に傾斜しており、第2舌部51は、上記一方側に進むにつれてタービン翼車17の周方向の他側に傾斜している。ゆえに、タービン翼車17側から各舌部を径方向に見た場合、各舌部は、タービン翼車17の軸方向に対して周方向に傾斜している。それにより、タービン翼車17の翼体17aが舌部の近傍を通過する際に、各舌部について、舌部の一部が翼体17aと順次対向する。
 第1舌部43については、まず、第1舌部43のうち矢印R方向側の部分が翼体17aと対向する。その後、第1舌部43のうち翼体17aと対向する部分は、矢印L方向側に遷移していく。第2舌部51については、まず、第2舌部51のうち矢印L方向側の部分が翼体17aと対向する。その後、第2舌部51のうち翼体17aと対向する部分は、矢印R方向側に遷移していく。ゆえに、各舌部について、タービン翼車17の翼体17aが舌部の全域と同時に対向することが抑制される。よって、タービン翼車17の翼体17aが舌部の近傍を通過する際に、翼体17aと舌部とによって形成される流路面積が瞬間的に狭くなる程度が抑制され、ガスの縮流の発生が抑制される。したがって、翼体17aに作用する力の瞬間的な変動が抑制され、翼振動が低減される。
 さらに、タービンTでは、タービン翼車17側から各舌部を径方向に見た場合、第1舌部43がタービン翼車17の軸方向に対して傾斜する方向と、第2舌部51がタービン翼車17の軸方向に対して傾斜する方向とが逆方向となっている。それにより、第1舌部43の近傍からタービン翼車17の収容部29に流入するガスの流れと、第2舌部51の近傍からタービン翼車17の収容部29に流入するガスの流れとが、仕切板35の中心面に関して面対称となる。仕切板35の中心面は、仕切板35の厚み方向の中心を通り、軸方向に直交する面である。ゆえに、第1舌部43の近傍からタービン翼車17の収容部29に流入するガスの流れの軸方向成分と、第2舌部51の近傍からタービン翼車17の収容部29に流入するガスの流れの軸方向成分とが、互いに打ち消し合う。よって、翼体17aの近傍での渦流れの発生が抑制され、翼体17aに作用する力の瞬間的な変動がより効果的に抑制される。したがって、翼振動がより効果的に低減される。
 第1舌部43と第2舌部51とは、必ずしも仕切板35の中心面に関して面対称でなくてもよい。第1舌部43と第2舌部51とが仕切板35の中心面に関して面対称でない場合にも、第1舌部43の近傍からタービン翼車17の収容部29に流入するガスの流れの軸方向成分と、第2舌部51の近傍からタービン翼車17の収容部29に流入するガスの流れの軸方向成分とが、少なくとも部分的に互いに打ち消し合うので、翼振動が低減される。
 特に、タービンTでは、第1舌部43は、シャフト15のうちタービン翼車17が取り付けられる一方側に進むにつれて回転方向RDに傾斜しており、第2舌部51は、上記一方側に進むにつれて回転方向RDと逆方向に傾斜している。それにより、第1舌部43の近傍からタービン翼車17の収容部29に流入するガスは、軸方向について、第1舌部43によって軸方向の左側に案内される。一方、第2舌部51の近傍からタービン翼車17の収容部29に流入するガスは、軸方向について、第2舌部51によって軸方向の左側と逆側に案内される。ゆえに、各舌部の近傍からタービン翼車17の収容部29に流入するガスが、翼体17aのうち軸方向の中心側に向かって流入する。それにより、空力性能が向上される。
 タービン翼車17の径方向に見た場合における第1舌部43および第2舌部51の軸方向に対する傾斜角について説明する。図5では、タービン翼車17の径方向に見た場合における第1舌部43の軸方向に対する傾斜角θ1と、タービン翼車17の径方向に見た場合における第2舌部51の軸方向に対する傾斜角θ2とが示されている。
 傾斜角θ1と傾斜角θ2とは、略一致する。傾斜角θ1、θ2が大きいほど、タービン翼車17の翼体17aが舌部の近傍を通過する際に、翼体17aと舌部とによって形成される流路面積が瞬間的に狭くなる程度がより効果的に抑制され、ガスの縮流の発生がより効果的に抑制される。ゆえに、翼体17aに作用する力の瞬間的な変動がより効果的に抑制され、翼振動を低減する効果が高くなる。一方、傾斜角θ1、θ2が過度に大きいと、タービン翼車17の収容部29内における流れ場が想定する状態から大きく乖離し、空力性能が低下するおそれがある。
 空力性能の低下を抑制する観点では、傾斜角θ1、θ2は、例えば、360°をタービン翼車17の翼体17aの枚数で除算して得られる角度以下であることが好ましい。翼体17aの枚数が多いほど、隣り合う翼体17aが舌部と対向するタイミングの時間差が短くなる。傾斜角θ1、θ2を上記のように設定することで、翼体17aの枚数が多いほど、傾斜角θ1、θ2を小さくすることができる。それにより、上記の時間差に対して、各翼体17aが舌部を通過するのにかかる時間が相対的に過度に長くなることが抑制される。ゆえに、タービン翼車17の収容部29内における流れ場が想定する状態から大きく乖離することが抑制され、空力性能の低下が抑制される。
 ただし、傾斜角θ1、θ2は、360°をタービン翼車17の翼体17aの枚数で除算して得られる角度以下でなくてもよい。また、傾斜角θ1と傾斜角θ2とは、互いに異なっていてもよい。
 上記では、タービン翼車17の周方向に見た場合、各舌部がタービン翼車17の軸方向に対して径方向に傾斜していない例を説明した。ただし、タービン翼車17の周方向に見た場合、第1舌部43および第2舌部51のうち少なくとも一方がタービン翼車17の軸方向に対して径方向に傾斜していてもよい。
 図6は、変形例に係るタービンT1におけるD-D断面図である。タービンT1では、上述したタービンTと比較して、第1舌部43および第2舌部51の傾斜方向が異なる。
 タービンT1では、図6に示すように、第1舌部43は、矢印L方向に進むにつれてタービン翼車17の回転方向RDと逆方向に傾斜している。つまり、第1舌部43は、シャフト15のうちタービン翼車17が取り付けられる一方側に進むにつれて回転方向RDと逆方向に傾斜している。第2舌部51は、矢印L方向に進むにつれてタービン翼車17の回転方向RDに傾斜している。つまり、第2舌部51は、シャフト15のうちタービン翼車17が取り付けられる一方側に進むにつれて回転方向RDに傾斜している。
 上記のように、タービンT1では、上述したタービンTと同様に、第1舌部43は、シャフト15のうちタービン翼車17が取り付けられる一方側に進むにつれてタービン翼車17の周方向の一側に傾斜しており、第2舌部51は、上記一方側に進むにつれてタービン翼車17の周方向の他側に傾斜している。ゆえに、上述したタービンTと同様に、翼振動を低減させる効果が奏される。
 特に、タービンT1では、第1舌部43は、シャフト15のうちタービン翼車17が取り付けられる一方側に進むにつれて回転方向RDと逆方向に傾斜しており、第2舌部51は、上記一方側に進むにつれて回転方向RDに傾斜している。それにより、第1タービンスクロール流路31および第2タービンスクロール流路33のうち各舌部に対して上流側に隣り合う部分(図6中の第1舌部43および第2舌部51より左側の部分)において、各タービンスクロール流路の内面のうち仕切板35に対向する面と各舌部とのなす角が鈍角となる。ゆえに、エンジン排気に近く、よりエネルギーをもったガスが当たる各タービンスクロール流路の上流側において、各舌部と各タービンスクロール流路との境界部分にクラックが生じることが抑制される。
 タービンT1においても、タービンT1と同様に、傾斜角θ1、θ2は、360°をタービン翼車17の翼体17aの枚数で除算して得られる角度以下であってもよく、当該角度以下でなくてもよい。また、傾斜角θ1、θ2は、略一致していてもよく、互いに異なっていてもよい。また、タービン翼車17の周方向に見た場合、各舌部がタービン翼車17の軸方向に対して径方向に傾斜していなくてもよく、第1舌部43および第2舌部51のうち少なくとも一方がタービン翼車17の軸方向に対して径方向に傾斜していてもよい。
 以上、添付図面を参照しながら本開示の実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 上記では、タービンTが過給機TCに搭載される例を説明したが、タービンTは、発電機等の過給機TC以外の装置に搭載されてもよい。
 本開示は、タービン翼車の翼振動を低減できるので、例えば、持続可能な開発目標(SDGs)の目標7「手ごろで信頼でき、持続可能かつ近代的なエネルギーへのアクセスを確保する」および目標9「レジリエントなインフラを整備し、持続可能な産業化を推進するとともに、イノベーションの拡大を図る」に貢献することができる。
15:シャフト 17:タービン翼車 17a:翼体 29:収容部 31:第1タービンスクロール流路 33:第2タービンスクロール流路 43:第1舌部 51:第2舌部 RD:回転方向 T:タービン T1:タービン TC:過給機 θ1:傾斜角
θ2 傾斜角

Claims (12)

  1.  シャフトと、
     前記シャフトの一方側に取り付けられたタービン翼車と、
     前記タービン翼車を収容する収容部と、
     前記タービン翼車に対して径方向外側に巻き回され、前記収容部と連通する第1タービンスクロール流路と、
     前記タービン翼車に対して径方向外側に巻き回され、前記収容部と連通し、前記第1タービンスクロール流路に対して前記一方側に並ぶ第2タービンスクロール流路と、
     前記第1タービンスクロール流路の下流端に面する位置に設けられ、前記一方側に進むにつれて前記タービン翼車の周方向の一側に傾斜する第1舌部と、
     前記第2タービンスクロール流路の下流端に面する位置に設けられ、前記一方側に進むにつれて前記タービン翼車の周方向の他側に傾斜する第2舌部と、
     を備える、
     タービン。
  2.  前記第1舌部は、前記一方側に進むにつれて前記タービン翼車の回転方向に傾斜し、
     前記第2舌部は、前記一方側に進むにつれて前記回転方向と逆方向に傾斜する、
     請求項1に記載のタービン。
  3.  前記第1舌部は、前記一方側に進むにつれて前記タービン翼車の回転方向と逆方向に傾斜し、
     前記第2舌部は、前記一方側に進むにつれて前記回転方向に傾斜する、
     請求項1に記載のタービン。
  4.  前記タービン翼車の径方向に見た場合における前記第1舌部および前記第2舌部の前記タービン翼車の軸方向に対する傾斜角は、360°を前記タービン翼車の翼体の枚数で除算して得られる角度以下である、
     請求項1に記載のタービン。
  5.  前記タービン翼車の径方向に見た場合における前記第1舌部および前記第2舌部の前記タービン翼車の軸方向に対する傾斜角は、360°を前記タービン翼車の翼体の枚数で除算して得られる角度以下である、
     請求項2に記載のタービン。
  6.  前記タービン翼車の径方向に見た場合における前記第1舌部および前記第2舌部の前記タービン翼車の軸方向に対する傾斜角は、360°を前記タービン翼車の翼体の枚数で除算して得られる角度以下である、
     請求項3に記載のタービン。
  7.  請求項1に記載のタービンを備える、
     過給機。
  8.  請求項2に記載のタービンを備える、
     過給機。
  9.  請求項3に記載のタービンを備える、
     過給機。
  10.  請求項4に記載のタービンを備える、
     過給機。
  11.  請求項5に記載のタービンを備える、
     過給機。
  12.  請求項6に記載のタービンを備える、
     過給機。
PCT/JP2022/040920 2021-11-09 2022-11-01 タービンおよび過給機 WO2023085178A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022003370.3T DE112022003370T5 (de) 2021-11-09 2022-11-01 Turbine und Turbolader
CN202280051926.6A CN117751232A (zh) 2021-11-09 2022-11-01 涡轮以及增压器
JP2023559586A JPWO2023085178A1 (ja) 2021-11-09 2022-11-01
US18/419,938 US20240200456A1 (en) 2021-11-09 2024-01-23 Turbine and turbocharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021182419 2021-11-09
JP2021-182419 2021-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/419,938 Continuation US20240200456A1 (en) 2021-11-09 2024-01-23 Turbine and turbocharger

Publications (1)

Publication Number Publication Date
WO2023085178A1 true WO2023085178A1 (ja) 2023-05-19

Family

ID=86335980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040920 WO2023085178A1 (ja) 2021-11-09 2022-11-01 タービンおよび過給機

Country Status (5)

Country Link
US (1) US20240200456A1 (ja)
JP (1) JPWO2023085178A1 (ja)
CN (1) CN117751232A (ja)
DE (1) DE112022003370T5 (ja)
WO (1) WO2023085178A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132329U (ja) * 1979-03-13 1980-09-19
WO2013105316A1 (ja) * 2012-01-11 2013-07-18 三菱重工業株式会社 タービンハウジングのスクロール構造
WO2015092373A1 (en) * 2013-12-16 2015-06-25 Cummins Ltd Turbine housing
WO2020003649A1 (ja) * 2018-06-29 2020-01-02 株式会社Ihi タービンおよび過給機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548237B2 (ja) 2005-06-17 2010-09-22 トヨタ自動車株式会社 ターボチャージャのツインスクロールタービンハウジング
DE102015205998A1 (de) * 2015-04-02 2016-10-06 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine mit zweiflutiger Turbine und gruppierten Zylindern
JP6931797B2 (ja) 2017-06-01 2021-09-08 パナソニックIpマネジメント株式会社 制御システム、制御方法、および制御プログラム
JP7259397B2 (ja) * 2019-02-25 2023-04-18 株式会社Ihi タービン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132329U (ja) * 1979-03-13 1980-09-19
WO2013105316A1 (ja) * 2012-01-11 2013-07-18 三菱重工業株式会社 タービンハウジングのスクロール構造
WO2015092373A1 (en) * 2013-12-16 2015-06-25 Cummins Ltd Turbine housing
WO2020003649A1 (ja) * 2018-06-29 2020-01-02 株式会社Ihi タービンおよび過給機

Also Published As

Publication number Publication date
JPWO2023085178A1 (ja) 2023-05-19
DE112022003370T5 (de) 2024-04-18
CN117751232A (zh) 2024-03-22
US20240200456A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
JP5649758B2 (ja) 遠心圧縮機
EP2636868B1 (en) Turbine housing for twin scroll turbocharger
JP4317327B2 (ja) 低速度高圧縮比ターボチャージャ
KR20140099206A (ko) 축류 터빈 및 이를 포함하는 터보 과급기
WO2018146753A1 (ja) 遠心圧縮機、ターボチャージャ
JP2017193985A (ja) タービンインペラ
JP7364082B2 (ja) タービンおよび過給機
WO2023085178A1 (ja) タービンおよび過給機
JP7259397B2 (ja) タービン
JP2012002140A (ja) タービン及び過給機
CN220365643U (zh) 轴向分隔的双蜗壳的涡轮机壳体,涡轮机和具有其的涡轮机械
JP7435164B2 (ja) タービンおよび過給機
JP6947304B2 (ja) タービンおよび過給機
JP2023023915A (ja) タービンおよび過給機
JP7501254B2 (ja) タービンおよび過給機
JP2020186649A (ja) 遠心圧縮機のインペラ、遠心圧縮機及びターボチャージャ
WO2020050051A1 (ja) タービンおよび過給機
WO2024105784A1 (ja) タービンおよび過給機
JP7008789B2 (ja) 半径流入式タービン及びターボチャージャー
JP7491151B2 (ja) タービンおよび過給機
JP2023023914A (ja) 遠心圧縮機
JP2023142143A (ja) タービンおよび過給機
WO2022123839A1 (ja) 遠心圧縮機および過給機
WO2022196234A1 (ja) タービンおよび過給機
JP2023007748A (ja) 遠心式回転装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559586

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280051926.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022003370

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22892677

Country of ref document: EP

Kind code of ref document: A1