WO2023074115A1 - 熱間プレス部材 - Google Patents
熱間プレス部材 Download PDFInfo
- Publication number
- WO2023074115A1 WO2023074115A1 PCT/JP2022/032656 JP2022032656W WO2023074115A1 WO 2023074115 A1 WO2023074115 A1 WO 2023074115A1 JP 2022032656 W JP2022032656 W JP 2022032656W WO 2023074115 A1 WO2023074115 A1 WO 2023074115A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot
- plating layer
- steel sheet
- layer
- less
- Prior art date
Links
- 238000007747 plating Methods 0.000 claims abstract description 100
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 96
- 239000010959 steel Substances 0.000 claims abstract description 96
- 229910015372 FeAl Inorganic materials 0.000 claims abstract description 38
- 239000006104 solid solution Substances 0.000 claims abstract description 28
- 229910021328 Fe2Al5 Inorganic materials 0.000 claims abstract description 11
- 239000011248 coating agent Substances 0.000 abstract description 29
- 238000000576 coating method Methods 0.000 abstract description 29
- 238000005260 corrosion Methods 0.000 abstract description 28
- 230000007797 corrosion Effects 0.000 abstract description 25
- 239000010410 layer Substances 0.000 description 152
- 239000011701 zinc Substances 0.000 description 102
- 239000000523 sample Substances 0.000 description 26
- 238000007731 hot pressing Methods 0.000 description 24
- 239000000203 mixture Substances 0.000 description 23
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 22
- 238000000034 method Methods 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 15
- 239000007864 aqueous solution Substances 0.000 description 13
- 239000011247 coating layer Substances 0.000 description 13
- 238000004070 electrodeposition Methods 0.000 description 13
- 238000012360 testing method Methods 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000010422 painting Methods 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 229910000765 intermetallic Inorganic materials 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 238000000137 annealing Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 5
- JOSWYUNQBRPBDN-UHFFFAOYSA-P ammonium dichromate Chemical compound [NH4+].[NH4+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O JOSWYUNQBRPBDN-UHFFFAOYSA-P 0.000 description 4
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 4
- 239000004312 hexamethylene tetramine Substances 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229910001335 Galvanized steel Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910007567 Zn-Ni Inorganic materials 0.000 description 3
- 229910007614 Zn—Ni Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000008397 galvanized steel Substances 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910007570 Zn-Al Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
Definitions
- the present invention relates to hot press members.
- it relates to a hot press member having excellent appearance quality after painting and excellent corrosion resistance at cut portions.
- Hot pressing is a forming method in which a steel plate is heated to the austenite single phase temperature range (around 900° C.), press-formed at a high temperature, and at the same time rapidly cooled (quenched) by contact with a die. Press forming is performed in a heated and softened state, and then the strength is increased by quenching. Therefore, according to hot pressing, it is possible to achieve both high strength of the steel sheet and ensuring press formability. .
- hot pressing of galvanized steel sheets has the problem of cracks occurring in the bending part due to liquid metal embrittlement (LME). That is, in hot pressing, press molding is performed in a state of being heated to a temperature higher than the melting point of a general Zn-based plating layer. Therefore, zinc liquefied by heating penetrates into the base material steel plate and causes liquid metal embrittlement, resulting in cracks occurring in the bending portion subjected to tensile stress.
- LME liquid metal embrittlement
- Patent Document 1 discloses a method for manufacturing a hot pressed member, in which a steel sheet having a Zn—Ni alloy plating layer containing 7 to 15% by mass of Ni is heated to 800° C. or higher and hot pressed. there is
- Patent Document 2 a steel sheet having a Zn-Ni alloy plating layer containing 13% by mass or more of Ni is heated to a temperature range from the Ac3 transformation point to 1200 ° C. and hot pressed. A method of manufacture is disclosed.
- hot pressed parts were mainly used for the inner panels of automobiles, that is, parts that cannot be seen from the outside, so appearance quality was not considered important.
- hot pressed parts have also come to be used for semi-outer panels, such as the parts around the pillars that can be seen when the door is opened.
- semi-outer panels such as the parts around the pillars that can be seen when the door is opened.
- excellent appearance quality and corrosion resistance after painting There is also a demand for excellent appearance quality and corrosion resistance after painting.
- the hot press members disclosed in Patent Document 1 and Patent Document 2 have excellent corrosion resistance after coating such as cut parts because Zn, which has a sacrificial anticorrosive action, is present in the plating layer, but the appearance after coating Poor quality.
- Patent Literature 3 discloses a high-strength aluminum-based plated steel sheet for automobile members that is excellent in weldability and corrosion resistance after painting.
- Al plating does not have a sacrificial anti-corrosion action, there is a problem that red rust is likely to occur from cut portions and steel plate ends.
- the present invention has been made in view of the above-mentioned actual situation, and an object of the present invention is to provide a hot pressed member that is excellent in appearance quality after painting and corrosion resistance of the cut portion.
- the present invention was made to solve the above problems, and has the following gist.
- the hot pressed member of the present invention is excellent in appearance quality after painting and in corrosion resistance of cut parts.
- the unit "%" in the solid solution amount of Zn, the chemical composition of the steel sheet, and the composition of the plating layer represents "% by mass” unless otherwise specified.
- a hot pressed member of the present invention has a steel plate as a base material, a plating layer provided on the steel plate, and a Zn-containing oxide layer provided on the plating layer. Each part will be described below.
- Step plate In the present invention, the above problem is solved by controlling the composition of the plating layer and the solid solution amount of Zn present in Fe 2 Al 5 as will be described later. Therefore, any steel plate can be used as the steel plate without any particular limitation.
- the strength of the hot pressed member is high.
- the component composition further optionally includes Nb: 0.05% or less, Ti: 0.05% or less, B: 0.0050% or less, At least one selected from the group consisting of Cr: 0.3% or less and Sb: 0.03% or less can be contained.
- C 0.20-0.35%
- C is an element that has the effect of improving the strength by forming a structure such as martensite. From the viewpoint of obtaining a strength exceeding 1470 MPa class, the C content is preferably 0.20% or more. On the other hand, when the C content exceeds 0.35%, the toughness of the spot weld deteriorates. Therefore, the C content is preferably 0.35% or less.
- Si 0.1-0.5% Si is an effective element for strengthening steel and obtaining a good quality.
- the Si content is preferably 0.1% or more.
- the Si content is preferably 0.5% or less.
- Mn 1.0-3.0%
- Mn is an element effective in increasing the strength of steel. From the viewpoint of ensuring excellent mechanical properties and strength, the Mn content is preferably 1.0% or more. On the other hand, if the Mn content is excessive, the surface thickening during annealing increases, affecting the adhesion of the coating layer to the steel sheet. Therefore, from the viewpoint of improving the adhesion of the plating layer, the Mn content is preferably 3.0% or less.
- the P content is preferably 0.02% or less.
- the lower limit of the P content is not particularly limited, and may be 0%. However, excessive reduction causes an increase in manufacturing costs, so the P content is preferably 0.001% or more.
- S 0.01% or less S becomes inclusions such as MnS and causes deterioration of impact resistance and cracks along the metal flow of the weld. Therefore, it is desirable to reduce the S content as much as possible, specifically to 0.01% or less. Moreover, from the viewpoint of ensuring good stretch flangeability, the content is more preferably 0.005% or less. On the other hand, the lower limit of the S content is not particularly limited, and may be 0%. However, excessive reduction causes an increase in manufacturing costs, so the S content is preferably 0.0001% or more.
- Al 0.1% or less
- Al is an element that acts as a deoxidizing agent.
- the Al content is preferably 0.1% or less.
- the lower limit of the Al content is not particularly limited, but from the viewpoint of enhancing the effect as a deoxidizing agent, the Al content is preferably 0.01% or more.
- the N content is preferably 0.01% or less.
- the lower limit of the N content is not particularly limited, and may be 0%. However, excessive reduction causes an increase in manufacturing costs, so the N content is preferably 0.001% or more.
- Nb 0.05% or less
- Nb is a component that is effective in strengthening steel, but when it is included in excess, the shape fixability is lowered. Therefore, when Nb is added, the Nb content is set to 0.05% or less.
- the lower limit of the Nb content is not particularly limited, and may be 0%.
- Ti 0.05% or less Ti, like Nb, is an effective component for strengthening steel, but if it is included excessively, the shape fixability is lowered. Therefore, when Ti is added, the Ti content should be 0.05% or less. On the other hand, the lower limit of the Ti content is not particularly limited, and may be 0%.
- B 0.0050% or less
- B is an element that suppresses the formation and growth of ferrite from austenite grain boundaries.
- the B content is preferably 0.0050% or less from the viewpoint of improving moldability.
- the lower limit of the B content is not limited, it is preferably 0.0002% or more from the viewpoint of enhancing the effect of B addition.
- Cr 0.3% or less Cr is an element useful for strengthening steel and improving hardenability. However, since Cr is an expensive element, when Cr is added, the Cr content is preferably 0.3% or less in order to reduce alloy costs. On the other hand, the lower limit of the Cr content is not particularly limited, but from the viewpoint of increasing the effect of adding Cr, it is preferably 0.1% or more.
- Sb 0.03% or less
- Sb is an element that has the effect of preventing decarburization of the surface layer of the steel sheet during hot pressing. However, excessive Sb causes an increase in rolling load, resulting in a decrease in productivity. for that reason.
- the Sb content is preferably 0.03% or less from the viewpoint of further improving productivity.
- the lower limit of the Sb content is not particularly limited, it is preferably 0.003% or more from the viewpoint of increasing the effect of adding Sb.
- the hot pressed member of the present invention has a plating layer.
- the plated layer may be provided on at least one surface of the steel sheet, and may be provided on both surfaces.
- the plated layer contains FeAl, Fe 2 Al 5 and Zn.
- FeAl and Fe 2 Al 5 are intermetallic compounds formed by reaction of Fe and Al.
- Zn is an element having a sacrificial anticorrosion effect.
- a Zn-containing oxide layer exists on the surface of the plating layer.
- the hot pressed member of the present invention having the layer structure described above can typically be produced by hot pressing a Zn--Al alloy plated steel sheet.
- a plated steel sheet provided with a Zn-Al alloy plating layer is subjected to hot pressing, components such as Zn contained in the coating layer diffuse to the base steel plate side, while components such as Fe contained in the base steel plate diffuse to the coating layer side.
- Zn in the plating layer and oxygen present in the heating atmosphere combine to form a Zn-containing oxide layer on the surface of the plating layer.
- FeAl-based intermetallic compounds FeAl, Fe2Al5 , etc.
- Zn mainly dissolves in the phase of the FeAl-based intermetallic compound and partly remains as metallic Zn.
- the hot pressed member of the present invention having the layer structure described above has excellent post-coating corrosion resistance.
- the surface of the Zn-based alloy plating layer forms large unevenness with a height difference of more than 10 ⁇ m.
- the inventors presume the reason for this as follows. That is, when the temperature of the steel sheet is raised by heating before hot pressing, a surface oxide layer is formed on the surface of the Zn-based alloy plating layer as the temperature rises. When the temperature of the steel sheet eventually exceeds the melting point of the coating layer, the coating layer located between the surface oxide layer and the steel sheet melts and becomes liquid.
- the surface oxide layer When the temperature of the steel sheet further rises, the surface oxide layer also grows further. At this time, the surface oxide layer tends to grow not only in the thickness direction but also in the direction parallel to the plating layer surface. As a result, the surface oxide layer grows to form irregularities on the surface and increase the surface area. This is because the coating layer positioned between the surface oxide layer and the steel sheet is a liquid that can flow, so that the surface oxide layer can change its shape.
- the hot pressed member manufactured in this manner has large unevenness on the surface. Therefore, when the hot press member is subjected to chemical conversion treatment and electrodeposition coating, the coating film thickness is significantly uneven, resulting in deterioration of the appearance quality.
- FeAl-based intermetallic compounds FeAl, Fe 2 Al 5 , etc.
- the melting point of this FeAl-based intermetallic compound is 1000° C. or higher, which is higher than that of Zn-based alloy plating, the plating layer is not melted by heating before hot pressing. Therefore, a hot pressed member having a flat surface can be obtained as compared with the case where the plating layer does not contain Al.
- the surface oxide layer may not follow its own deformation and may peel off.
- the portions where the oxides are peeled off in this way become the starting points of coating defects, and thus also become a factor in impairing the appearance quality.
- the plating layer of the hot press member may be a plating layer containing FeAl, Fe 2 Al 5 and Zn, but the total amount of FeAl, Fe 2 Al 5 and Zn in the entire plating layer is 89%. It is preferably 90% or more, more preferably 90% or more. Although the upper limit of the total amount of FeAl, Fe 2 Al 5 and Zn in the entire plating layer is not particularly limited, it may be, for example, 100% or 99.9% or less.
- the plated layer of the hot pressed member may have a component composition consisting of Fe, Al, and the balance Zn, and the component composition may optionally contain Si. It is more preferable that the plated layer has a composition of Fe: 20 to 80%, Al: 10 to 50%, Si: 0.1 to 11%, and the balance of Zn and unavoidable impurities. More preferably, the Al content is 20-50%.
- the component composition of the plating layer of the hot press member is determined by dissolving the plating layer in an aqueous solution of hydrochloric acid and quantifying the elements contained in the resulting solution by ICP-AES (inductively coupled plasma atomic emission spectrometry). can ask. More specifically, it can be measured by the method described in Examples.
- Zn solid solution amount in Fe 2 Al 5 10% or more
- FeAl-based intermetallic compounds FeAl, Fe 2 Al 5 , etc.
- Zn mainly forms a solid solution in the FeAl-based intermetallic compound.
- the solid solution amount of Zn in Fe 2 Al 5 is sufficiently high, good corrosion resistance at the cut portion can be obtained. It is considered that this is because the dissolved Zn forms a highly protective Zn-based corrosion product when the FeAl-based intermetallic compound corrodes.
- the solid solution amount of Zn in Fe 2 Al 5 contained in the plating layer is set to 10% or more.
- the Zn solid solution amount is more preferably 12% or more, more preferably 15% or more.
- the upper limit of the Zn solid solution amount in Fe 2 Al 5 is not particularly limited, but from the viewpoint of ease of production, it is preferably 30.0% or less, more preferably 25.0% or less. preferable.
- the solid solution amount of Zn in the Fe 2 Al 5 can be measured by an electron probe microanalyzer (EPMA). Specifically, the Zn solid solution amount at arbitrary 50 locations in Fe 2 Al 5 of the hot pressed member is measured by EPMA, and the average value is taken as the Zn solid solution amount in Fe 2 Al 5 .
- EPMA electron probe microanalyzer
- Thickness of Zn-containing oxide layer 0.10 to 5.0 ⁇ m Since the Zn-containing oxide layer present on the surface of the plating layer has good reactivity with the chemical conversion treatment solution, the formation of the Zn-containing oxide layer is necessary in order to obtain good chemical conversion treatment properties and, in turn, good electrodeposition coating properties. Required.
- the thickness of the Zn-containing oxide layer is not particularly limited, and may be any thickness. However, from the viewpoint of further increasing the corrosion resistance of the cut portion, it is preferable to set the thickness of the Zn-containing oxide layer to 0.10 ⁇ m or more. If the thickness of the Zn-containing oxide layer is 0.10 ⁇ m or more, high chemical conversion treatability can be obtained, and as a result, the final corrosion resistance is further improved.
- the thickness of the Zn-containing oxide layer is preferably 5.0 ⁇ m or less.
- the thickness of the Zn-containing oxide layer can be measured by observing the cross section of the hot pressed member with a scanning electron microscope (SEM). Specifically, the cross section of the hot pressed member is observed at 500 times using an SEM, the thickness of the Zn-containing oxide layer is measured at arbitrary 20 points, and the average value is the Zn-containing oxide layer. thickness.
- SEM scanning electron microscope
- the FeAl/Fe 2 Al 5 ratio in the plating layer is not particularly limited and may be any value.
- the present inventors have found that even with the same FeAl-based intermetallic compound, when the proportion of Fe 2 Al 5 is greater than that of FeAl, better cut corrosion resistance can be obtained. This is probably because the solid-solution amount of Zn in Fe 2 Al 5 is larger than that in FeAl, and the higher the ratio of Fe 2 Al 5 , the greater the amount of solid-solution Zn in the plating layer as a whole. Therefore, from the viewpoint of further improving the corrosion resistance of the cut portion, it is preferable to set the FeAl/Fe 2 Al 5 ratio in the plating layer to 50 or less.
- microcracks may occur during press molding . It is considered that this is because vaporized Zn is generated from dissolved Zn in Fe 2 Al 5 to generate microcracks. A portion with microcracks has a rougher surface than a normal portion, resulting in poor appearance quality. Therefore, from the viewpoint of further improving the appearance quality after painting, it is preferable to set the FeAl/Fe 2 Al 5 ratio to 0.5 or more.
- the FeAl/ Fe2Al5 ratio can be measured by X - ray diffraction (XRD) measurement. Specifically, a diffraction pattern is obtained by XRD measurement, and the ratio of the intensity of the peak attributed to FeAl to the intensity of the peak attributed to Fe 2 Al 5 in the diffraction pattern is defined as the FeAl/Fe 2 Al 5 ratio. .
- the interplanar spacing d of the peak attributed to Fe 2 Al 5 is 2.19
- the interplanar spacing d of the peak attributed to FeAl is 2.05.
- the XRD measurement conditions are X-ray source: Cu-K ⁇ , tube voltage: 40 kV, and tube current: 30 mA.
- Zn area ratio 1 to 20%
- Zn is an element having a sacrificial anti-corrosion effect, and corrosion resistance improves as the proportion of Zn contained in the plating layer increases. Therefore, from the viewpoint of further improving the corrosion resistance of the cut portion, it is preferable to set the area ratio of Zn in the plating layer to 1% or more. On the other hand, if the area ratio of Zn in the plating layer is too high, the surface of the plating layer tends to become uneven during press molding, which may deteriorate the appearance quality after painting. Therefore, from the viewpoint of further improving the appearance quality after coating, it is preferable to set the area ratio of Zn in the plating layer to 20% or less.
- the area ratio of Zn can be measured by EPMA. Specifically, in the measurement by EPMA, the region in the plating layer where the Zn solid solution amount is higher than 70% is the metal Zn region, and the ratio of the area of the metal Zn region to the total area of the plating layer is the area ratio of Zn. do.
- the adhesion amount of the plating layer on the hot pressed member is not particularly limited, but it is preferably 40 g/m 2 or more, more preferably 50 g/m 2 or more, and 60 g/m 2 or more per side of the steel sheet. is more preferred.
- the coating amount of the plating layer is preferably 400 g/m 2 or less, more preferably 300 g/m 2 or less, and even more preferably 200 g/m 2 or less per side of the steel sheet.
- the adhesion amount of the plated layer per side of the hot pressed member can be obtained from the difference in weight before and after dissolving and removing the plated layer of the hot pressed member using an aqueous solution of hydrochloric acid. More specifically, it can be measured by the method described in Examples.
- the amount of coating layer deposited on the hot-pressed member is usually larger than the amount of coating layer deposited on the plated steel sheet before hot-pressing. This is because the metal forming the coating layer and the metal of the base steel sheet interdiffusion in the hot pressing process.
- the Fe concentration in the plating layer after hot pressing is significantly higher than the Fe concentration in the plating layer before hot pressing. The diffusion amount of Fe varies depending on the heating conditions during hot pressing.
- the hot pressed member of the present invention can be manufactured by plating a base steel sheet to form a plated steel sheet, and then subjecting the plated steel sheet to hot pressing.
- the base steel plate can be used as the base steel plate without any particular limitation.
- the preferred chemical composition of the steel sheet is as described above.
- the base steel sheet is preferably a hot-rolled steel sheet or a cold-rolled steel sheet.
- the plating on the base steel sheet can be performed by any method, but is preferably performed by hot dip plating. A case of producing a plated steel sheet by the hot dip plating method will be described below.
- annealing and hot-dip plating are performed after performing pretreatment to remove stains and oxide films on the surface of the base steel sheet by alkaline electrolytic degreasing or hydrochloric acid pickling.
- the surface of the steel sheet is washed with superheated steam instead of the pretreatment.
- the base steel plate surface reacts with high-temperature steam, and a thick natural oxide film is formed on the base steel plate surface. It is believed that this thick natural oxide film functions as a diffusion barrier to suppress diffusion between the coating layer and the base steel sheet in the hot press process.
- the solid solution amount of Zn in Fe 2 Al 5 in the plated layer of the finally obtained hot pressed member can be increased. More specifically, in order to make the solid solution amount of Zn in Fe 2 Al 5 10% by mass or more, the surface of the steel sheet should be treated with superheated steam at a temperature of 100° C. or more.
- the base steel sheet After the treatment with superheated steam, the base steel sheet is annealed prior to hot-dip plating.
- the H 2 /H 2 O ratio in the atmosphere is set to 200 or more.
- the alloying elements contained in the base steel sheet form a concentrated layer on the surface of the steel sheet, and in addition to the natural oxide film, the concentrated layer also suppresses diffusion during the hot pressing process. It is thought that it functions as a barrier.
- hot-dip plating is applied to the base steel sheet after the annealing to form a hot-dip plated steel sheet having a hot-dip coating layer on the surface of the base steel sheet.
- the hot-dip plated layer may be a Zn-based alloy plated layer containing Al.
- the hot-dip plated layer may have a component composition consisting of Fe, Al, and the balance Zn, and the component composition may further optionally contain Si. It is more preferable that the hot-dip plated layer has a composition of Al: 20 to 80%, Si: 0.1 to 11%, and the balance of Zn and unavoidable impurities. More preferably, the Al content is 30-70%.
- the component composition of the hot-dip plated layer of the hot-dip plated steel sheet is obtained by dissolving the hot-dip plated layer in a hydrochloric acid aqueous solution to which hexamethylenetetramine is added as an inhibitor, and quantifying the elements contained in the resulting solution by ICP-AES. can ask. More specifically, it can be measured by the method described in Examples.
- the adhesion amount of the hot-dip plating layer is not particularly limited, it is preferably 20 g/m 2 or more, more preferably 30 g/m 2 or more, and even more preferably 50 g/m 2 or more per side of the steel sheet. . Also, the amount of the hot-dip plated layer deposited on one side of the steel sheet is preferably 300 g/m 2 or less, more preferably 250 g/m 2 or less, and even more preferably 200 g/m 2 or less. As described above, when hot pressing is performed, Fe diffuses from the base steel sheet, increasing the coating amount of the coating layer. Therefore, by setting the adhesion amount of the hot-dip plated layer on the hot-dip plated steel sheet before hot pressing to the above range, the adhesion amount of the plating layer on the hot-pressed member can be set to the preferred range described above.
- the adhesion amount per side of the hot-dip plated steel sheet is obtained by dissolving and removing the hot-dip plated layer of the hot-dip plated steel sheet using an aqueous hydrochloric acid solution to which hexamethylenetetramine is added as an inhibitor, and from the difference in weight before and after that. can be done. More specifically, it can be measured by the method described in Examples.
- the hot-pressed steel sheet is hot-pressed to form a hot-pressed member.
- the hot-dip plated steel sheet is heated under the conditions of a heating temperature of at least Ac3 transformation point and 1000° C. or less for a holding time of 0 to 2.5 minutes, and then pressed using a die. By heating under the above conditions, a hot pressed member having the layer structure described above can be obtained.
- the heating temperature is lower than the Ac3 transformation point, it may not be possible to obtain the strength required for the hot pressed member. On the other hand, if the heating temperature exceeds 1000°C, the operating cost will increase.
- the holding time exceeds 2.5 minutes, diffusion progresses between the base steel sheet and the plating layer, and as a result, the solid solution amount of Zn in Fe 2 Al 5 cannot be 10% by mass or more. Also, from the viewpoint of making the FeAl/Fe 2 Al 5 ratio 50 or less, the holding time is set to 2.5 minutes or less. On the other hand, the lower limit of retention time may be zero. That is, after heating to the above heating temperature, pressing can be performed immediately without holding.
- a hot-dip plated steel sheet was produced by the following procedure, and the hot-pressed member was obtained by hot-pressing the hot-dip plated steel plate.
- the mass% is C: 0.24%, Si: 0.22%, Mn: 2.0%, P: 0.005%, S: 0.001%, Al : 0.03%, N: 0.004%, Nb: 0.03%, Ti: 0.03%, B: 0.001%, Cr: 0.1%, and Sb: 0.015%
- a cold-rolled steel sheet having a thickness of 1.4 mm and having a chemical composition with the balance being Fe and unavoidable impurities was used.
- the base steel plate was subjected to high-temperature surface cleaning for 30 seconds with superheated steam at temperatures shown in Tables 1 and 2. After that, the base steel sheet was sequentially subjected to annealing and hot-dip plating under the conditions shown in Tables 1 and 2 to obtain a hot-dip plated steel sheet.
- the component composition of the hot-dip plated layer and the adhesion amount of the hot-dip plated layer in each of the obtained hot-dip plated steel sheets were measured by the following procedure. Tables 1 and 2 show the measurement results.
- a hot-dip plated steel sheet to be evaluated was punched to obtain a sample of 48 mm ⁇ . After that, one side of the sample (the side opposite to the side on which the component composition was measured) was masked. Then, the sample was immersed in a 20 g/L ammonium dichromate aqueous solution for 60 minutes to dissolve the surface oxide layer. Further, the sample was immersed in a 17% hydrochloric acid aqueous solution containing 1 mL of hexamethylenetetramine as an inhibitor for 60 minutes to dissolve the hot-dip plated layer.
- the metal components (Al, Si, Fe, Zn) in the hydrochloric acid aqueous solution in which the hot-dip plated layer was dissolved were quantified by ICP-AES, and the mass of each element contained in the hot-dip plated layer was determined. By dividing the obtained mass of each element by the total mass of the hot-dip plated layer, the content (% by mass) of each element contained in the hot-dip plated layer was obtained. The total mass of the hot dipping layer was calculated from the adhesion amount (g/m 2 ) of the hot dipping layer and the area (m 2 ) of the hot dipping layer. Although Tables 1 and 2 show only the contents of Al, Si and Fe, the balance was Zn and unavoidable impurities.
- Adhesion amount of hot-dip plating layer First, a hot pressed member to be evaluated is punched, and three samples of 48 mm ⁇ are collected. After that, one surface of each sample (the surface opposite to the surface on which the adhesion amount was measured) was masked. Next, each sample was immersed in a 20 g/L ammonium dichromate aqueous solution for 60 minutes to dissolve the surface oxide layer, and then the weight of each sample was measured. Further, each sample was immersed in a 17% hydrochloric acid aqueous solution containing 1 mL of hexamethylenetetramine as an inhibitor for 60 minutes to dissolve the hot-dip plating layer, and then the weight of each sample was measured again.
- the hot-dip plated adhesion amount per unit area in each sample was calculated. Then, the average value of the coating weights of the three samples was taken as the coating weight per side of the hot-dip plated layer of the hot-dip plated steel sheet.
- test piece of 150 mm x 300 mm was taken from the obtained hot-dip plated steel sheet, and the test piece was heated under the conditions shown in Tables 1 and 2. An electric furnace was used for the heating.
- the test piece was taken out from the electric furnace and immediately hot-pressed at a molding start temperature of 700°C using a hat-shaped mold to obtain a hot-pressed member.
- the shape of the obtained hot press member was 100 mm long for the upper flat portion, 50 mm long for the side flat portion, and 50 mm long for the lower flat portion.
- the bending R of the mold was 7R for both shoulders of the upper surface and both shoulders of the lower surface.
- the component composition of the plating layer and the adhesion amount of the plating layer in each of the obtained hot pressed members were measured by the following procedure. Tables 3 and 4 show the measurement results.
- a hot pressed member to be evaluated was punched to obtain a sample of 48 mm ⁇ . After that, one side of the sample (the side opposite to the side on which the component composition is to be measured) was masked. Then, the sample was immersed in a 20 g/L ammonium dichromate aqueous solution for 60 minutes to dissolve the surface oxide layer. Further, the sample was immersed in a 17% hydrochloric acid aqueous solution for 60 minutes to dissolve the plating layer. The metal components (Al, Si, Fe, Zn) in the hydrochloric acid aqueous solution in which the plating layer was dissolved were quantified by ICP-AES to obtain the mass of each element contained in the plating layer.
- the content (% by mass) of each element contained in the plating layer was obtained.
- the total mass of the plating layer was calculated from the adhesion amount (g/m 2 ) of the plating layer and the area (m 2 ) of the plating layer.
- Tables 3 and 4 show the measurement results. Although Tables 3 and 4 show only the contents of Al, Si and Fe, the balance was Zn and unavoidable impurities.
- a hot press member to be evaluated was punched to obtain three samples of 48 mm ⁇ . After that, one surface of each sample (the surface opposite to the surface on which the adhesion amount was measured) was masked. Next, each sample was immersed in a 20 g/L ammonium dichromate aqueous solution for 60 minutes to dissolve the surface oxide layer, and then the weight of each sample was measured. Further, each sample was immersed in a 17% hydrochloric acid aqueous solution for 60 minutes to dissolve the plating layer, and then the weight of each sample was measured again. By dividing the difference in weight of the plating layer before and after dissolution by the area of the sample, the amount of plating deposited per unit area in each sample was calculated. Then, the average value of the coating weights of the three samples was taken as the coating weight per side of the plating layer of the hot pressed member.
- Zn solid solution amount in Fe2Al5 A test piece for cross-sectional observation was taken from the flat part of the upper surface of the hot pressed member, and analyzed by EPMA to measure the amount of solid solution of Zn in Fe 2 Al 5 . Specifically, the Zn solid-solution amount at arbitrary 50 locations in Fe 2 Al 5 was analyzed, and the average value was taken as the Zn solid-solution amount in Fe 2 Al 5 .
- a test piece for cross-sectional observation was taken from the flat part of the upper surface of the hot pressed member, and the thickness of the Zn-containing oxide layer was measured by observing the cross section. Specifically, the cross section of the hot pressed member is observed at 500 times using an SEM, the thickness of the Zn-containing oxide layer is measured at arbitrary 20 points, and the average value is the Zn-containing oxide layer. thickness.
- Rea ratio of Zn in plating layer The same test piece for cross-sectional observation as that used for measuring the solid solution amount of Zn was analyzed by EPMA to measure the area ratio of Zn in the plating layer. Specifically, a region in which the Zn solid solution amount in the plating layer is higher than 70% is defined as the metal Zn region, and the ratio of the area of the metal Zn region to the total area of the plating layer is defined as the area ratio of Zn.
- a test piece of 70 mm ⁇ 150 mm was cut out from the flat portion of the upper surface of the obtained hot pressed member, and the test piece was subjected to phosphoric acid chemical conversion treatment and electrodeposition coating.
- the phosphorylation treatment was performed under standard conditions using PB-SX35 manufactured by Nihon Parkerizing Co., Ltd., and the electrodeposition coating was performed using GT100V manufactured by Kansai Paint Co., Ltd. so that the coating film thickness was 15 ⁇ m.
- Baking conditions for electrodeposition coating were 170° C. and holding for 20 minutes.
- a sample having an observation length of 15 mm was cut out from the test piece after electrodeposition coating, and then adjusted to a sample for cross-sectional observation.
- a portion of the thinnest electrodeposition coating selected in a field of view of 200 times by SEM was further magnified by 1000 times, and the field of view was divided into 10 equal parts to read each electrodeposition film thickness. ( ⁇ m) and the minimum film thickness D2 ( ⁇ m) were measured, and the uniformity of the electrodeposition coating film was evaluated according to the following criteria. If the evaluation was any of ⁇ , ⁇ , and ⁇ , it was judged that the electrodeposition coating film thickness was uniform and the appearance quality was excellent. Evaluation results are shown in Tables 3 and 4.
- D1-D2 is less than 4.0 ⁇ m ⁇ : D1-D2 is 4.0 ⁇ m or more and less than 6.0 ⁇ m ⁇ : D1-D2 is 6.0 ⁇ m or more and less than 8.0 ⁇ m ⁇ : D1-D2 is 8.0 ⁇ m or more
- Rating 4 No occurrence of red rust at the cut portion Rating 3: The length of the cut damage with red rust is less than 30 mm Rating 2: The length of the cut damage with red rust is 30 mm or more and less than 80 mm Rating 1: Red rust is generated The length of the cut wound is 80 mm or more
- the hot-pressed members satisfying the conditions of the present invention were excellent in appearance quality after painting and in corrosion resistance of cut parts.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
前記鋼板の少なくとも一方の面の上に配された、FeAl、Fe2Al5、およびZnを含有するめっき層と、
前記めっき層の上に配されたZn含有酸化物層とを有し、
前記Fe2Al5中のZn固溶量が10質量%以上である、熱間プレス部材。
本発明では、後述するようにめっき層の組成と、Fe2Al5中に存在するZn固溶量を制御することによって上記課題を解決している。したがって、上記鋼板としては、特に限定されることなく任意の鋼板を用いることができる。
C :0.20~0.35%、
Si:0.1~0.5%、
Mn:1.0~3.0%、
P :0.02%以下、
S :0.01%以下、
Al:0.1%以下、および
N :0.01%以下を含有し、
残部Feおよび不可避的不純物からなる成分組成。
Nb:0.05%以下、
Ti:0.05%以下、
B :0.0050%以下、
Cr:0.3%以下、および
Sb:0.03%以下
からなる群より選択される少なくとも1つを含有することができる。
Cは、マルテンサイトなどの組織を形成させることで強度を向上させる作用を有する元素である。1470MPa級を超える強度を得るという観点からは、C含有量を0.20%以上とすることが好ましい。一方、C含有量が0.35%を超えると、スポット溶接部の靱性が劣化する。したがって、C含有量は0.35%以下とすることが好ましい。
Siは、鋼を強化して良好な材質を得るのに有効な元素である。前記効果を得るために、Si含有量を0.1%以上とすることが好ましい。一方、Si含有量が0.5%を超えるとフェライトが安定化されるため、焼き入れ性が低下する。そのため、Si含有量は0.5%以下とすることが好ましい。
Mnは、鋼の高強度化に有効な元素である。優れた機械特性や強度を確保するという観点からは、Mn含有量を1.0%以上とすることが好ましい。一方、Mn含有量が過剰であると焼鈍時の表面濃化が増加し、鋼板に対するめっき層の密着性に影響を及ぼす。そのため、めっき層の密着性を向上させるという観点からは、Mn含有量を3.0%以下とすることが好ましい。
P含有量が過剰であると、鋳造時のオーステナイト粒界へのP偏析に伴う粒界脆化により、局部延性が劣化する。そしてその結果、鋼板の強度と延性のバランスが低下する。そのため、鋼板の強度と延性のバランスを向上させるという観点からは、P含有量を0.02%以下とすることが好ましい。一方、P含有量の下限についてはとくに限定されず、0%であってよい。しかし、過度の低減は製造コストの増加を招くことから、P含有量は0.001%以上とすることが好ましい。
Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となる。そのため、S含有量は極力低減することが望ましく、具体的には0.01%以下とすることが好ましい。また、良好な伸びフランジ性を確保するという観点からは、0.005%以下とすることがより好ましい。一方、S含有量の下限についてはとくに限定されず、0%であってよい。しかし、過度の低減は製造コストの増加を招くことから、S含有量は0.0001%以上とすることが好ましい。
Alは、脱酸剤として作用する元素である。しかし、Al含有量が0.1%を超えると、焼入れ性が低下する。そのため、Al含有量は0.1%以下とすることが好ましい。一方、Al含有量の下限は特に限定されないが、脱酸剤としての効果を高めるという観点からは、Al含有量は0.01%以上とすることが好ましい。
N含有量が0.01%を超えると、熱間プレス前の加熱時にAlNが生成し、焼入れ性が低下する。そのため、N含有量は0.01%以下とすることが好ましい。一方、N含有量の下限は特に限定されず、0%であってよい。しかし、過度の低減は製造コストの増加を招くことから、N含有量は0.001%以上とすることが好ましい。
Nbは、鋼の強化に有効な成分であるが、過剰に含まれると形状凍結性が低下する。したがって、Nbを添加する場合、Nb含有量を0.05%以下とする。一方、Nb含有量の下限は特に限定されず、0%であってよい。
Tiは、Nbと同様に鋼の強化に有効な成分であるが、過剰に含まれると形状凍結性が低下する。したがって、Tiを添加する場合、Ti含有量を0.05%以下とする。一方、Ti含有量の下限は特に限定されず、0%であってよい。
Bは、オーステナイト粒界からのフェライト生成および成長を抑制する作用を有する元素である。しかし、過剰なBの添加は成形性を大きく損なう。そのため、Bを添加する場合、成形性を向上させるという観点からは、B含有量を0.0050%以下とすることが好ましい。一方、B含有量の下限は限定されないが、Bの添加効果を高めるという観点からは、0.0002%以上とすることが好ましい。
Crは、鋼の強化および焼き入れ性向上のために有用な元素である。しかし、Crは高価な元素であるため、Crを添加する場合、合金コストを低減するためにCr含有量を0.3%以下とすることが好ましい。一方、Cr含有量の下限は特に限定されないが、Crの添加効果を高めるという観点からは、0.1%以上とすることが好ましい。
Sbは、熱間プレス中に鋼板表層の脱炭を防止する効果を有する元素である。しかし、Sbが過剰であると圧延荷重の増加を招くため生産性が低下する。そのため。Sbを添加する場合、生産性のさらなる向上の観点から、Sb含有量を0.03%以下とすることが好ましい。一方、Sb含有量の下限は特に限定されないが、Sbの添加効果を高めるという観点からは、0.003%以上とすることが好ましい。
本発明の熱間プレス部材は、めっき層を有する。前記めっき層は、鋼板の少なくとも一方の面に設けられていればよく、両面に設けられていてもよい。前記めっき層は、FeAl、Fe2Al5、およびZnを含有する。FeAlおよびFe2Al5は、FeとAlが反応してできる金属間化合物である。また、Znは犠牲防食効果を有する元素である。そして、前記めっき層の表面には、Zn含有酸化物層が存在する。
上述したようにZnめっき中にAlが含まれる場合、熱間プレス時にFeは優先的にAlと反応してFeAl系金属間化合物(FeAl、Fe2Al5など)を形成し、Znは主に前記FeAl系金属間化合物中に固溶する。この時、Fe2Al5中へのZn固溶量が十分に高いと、良好なカット部耐食性を得ることができる。これは、FeAl系金属間化合物が腐食する際に、固溶したZnが保護性の高いZn系腐食生成物を生成するためであると考えられる。Fe2Al5中のZn固溶量が10%未満であると、十分なカット部耐食性を得ることができない。そこで、本発明では、前記めっき層に含まれるFe2Al5中のZn固溶量を10%以上とする。前記Zn固溶量は、12%以上とすることがより好ましく、15%以上とすることがさらに好ましい。
めっき層の表面に存在するZn含有酸化物層は、化成処理液との反応性が良いため、良好な化成処理性、ひいては良好な電着塗装性を得るためにZn含有酸化物層の形成は必須である。
上記めっき層におけるFeAl/Fe2Al5比は特に限定されず、任意の値であってよい。しかし、本発明者らは同じFeAl系金属間化合物であっても、FeAlに比べてFe2Al5の比率が多い場合に、より優れたカット部耐食性が得られることを知見した。Fe2Al5中のZn固溶量はFeAlに比べて大きく、Fe2Al5の比率が高いほどめっき層全体としてのZn固溶量が増加するためであると考えられる。そのため、カット部耐食性をさらに向上させるという観点からは、めっき層におけるFeAl/Fe2Al5比を50以下とすることが好ましい。
上述したように、Znは犠牲防食効果を有する元素であり、めっき層に含まれるZnの割合が増加するほど耐食性が向上する。そのため、カット部耐食性をさらに向上させるという観点からは、めっき層におけるZnの面積率を1%以上とすることが好ましい。一方、めっき層におけるZnの面積率が高すぎると、プレス成形時にめっき層の表面に凹凸が生じやすくなるため、塗装後の外観品質が劣化する場合がある。そのため、塗装後の外観品質をさらに向上させるという観点からは、めっき層におけるZnの面積率を20%以下とすることが好ましい。
次に、本発明の熱間プレス部材の好適な製造方法について説明する。
下地鋼板として、質量%で、C:0.24%、Si:0.22%、Mn:2.0%、P:0.005%、S:0.001%、Al:0.03%、N:0.004%、Nb:0.03%、Ti:0.03%、B:0.001%、Cr:0.1%、およびSb:0.015%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、板厚1.4mmの冷延鋼板を用いた。
まず、評価対象とする溶融めっき鋼板を打抜き加工して、48mmφの試料を採取した。その後、前記試料の一方の面(成分組成を測定する面と反対側の面)をマスキングした。次いで、20g/Lの重クロム酸アンモニウム水溶液に前記試料を60分浸漬して表面酸化物層を溶解した。さらに、インヒビターとしてヘキサメチレンテトラミン1mLを添加した17%塩酸水溶液に前記試料を60分間浸漬して溶融めっき層を溶解した。前記溶融めっき層を溶解した塩酸水溶液中の金属成分(Al、Si、Fe、Zn)を、ICP-AESにより定量し、溶融めっき層中に含まれていた各元素の質量を求めた。得られた各元素の質量を、溶融めっき層の全質量で除することにより、溶融めっき層に含まれている各元素の含有量(質量%)を得た。溶融めっき層の全質量は、溶融めっき層の付着量(g/m2)と溶融めっき層の面積(m2)から算出した。なお、表1、2には、Al、Si、およびFeの含有量のみ示したが、残部はZnおよび不可避的不純物であった。
まず、評価対象とする熱間プレス部材を打抜き加工して、48mmφの試料3つを採取する。その後、各試料一方の面(付着量を測定する面と反対側の面)をマスキングした。次いで、20g/Lの重クロム酸アンモニウム水溶液に各試料を60分浸漬して表面酸化物層を溶解した後、各試料の重量を測定した。さらに、インヒビターとしてヘキサメチレンテトラミン1mLを添加した17%塩酸水溶液に各試料を60分間浸漬して溶融めっき層を溶解した後、各試料の重量を再度測定した。溶融めっき層の溶解前後の重量差を、前記試料の面積で割ることにより、各試料における単位面積あたりの溶融めっき付着量を算出した。そして、3試料におけるめっき付着量の平均値を、当該溶融めっき鋼板における溶融めっき層の片面あたりの付着量とした。
次いで、得られた溶融めっき鋼板から150mm×300mmの試験片を採取し、表1、2に示した条件で前記試験片を加熱した。前記加熱には電気炉を使用した。
まず、評価対象とする熱間プレス部材を打抜き加工して、48mmφの試料を採取した。その後、前記試料の一方の面(成分組成を測定する面と反対側の面)をマスキングした。次いで、20g/Lの重クロム酸アンモニウム水溶液に前記試料を60分浸漬して表面酸化物層を溶解した。さらに、17%塩酸水溶液に前記試料を60分間浸漬してめっき層を溶解した。前記めっき層を溶解した塩酸水溶液中の金属成分(Al、Si、Fe、Zn)を、ICP-AESにより定量し、めっき層中に含まれていた各元素の質量を求めた。得られた各元素の質量を、めっき層の全質量で除することにより、めっき層に含まれている各元素の含有量(質量%)を得た。めっき層の全質量は、めっき層の付着量(g/m2)とめっき層の面積(m2)から算出した。測定結果を表3、4に示す。なお、表3、4には、Al、Si、およびFeの含有量のみ示したが、残部はZnおよび不可避的不純物であった。
まず、評価対象とする熱間プレス部材を打抜き加工して、48mmφの試料3つを採取した。その後、各試料一方の面(付着量を測定する面と反対側の面)をマスキングした。次いで、20g/Lの重クロム酸アンモニウム水溶液に各試料を60分浸漬して表面酸化物層を溶解した後、各試料の重量を測定した。さらに、各試料を17%塩酸水溶液に60分間浸漬してめっき層を溶解した後、各試料の重量を再度測定した。めっき層の溶解前後の重量差を、前記試料の面積で割ることにより、各試料における単位面積あたりのめっき付着量を算出した。そして、3試料におけるめっき付着量の平均値を、当該熱間プレス部材におけるめっき層の片面あたりの付着量とした。
熱間プレス部材の上面の平坦部から断面観察用の試験片を採取し、EPMAにより分析することで、Fe2Al5中のZn固溶量を測定した。具体的にはFe2Al5中の任意の50か所におけるZn固溶量を分析し、その平均値をFe2Al5中のZn固溶量とした。
熱間プレス部材の上面の平坦部から断面観察用の試験片を採取し、断面観察を行うことによりZn含有酸化物層の厚さを測定した。具体的には、熱間プレス部材の断面を、SEMを用いて500倍で観察し、任意の20か所におけるZn含有酸化物層の厚さを測定し、その平均値をZn含有酸化物層の厚さとした。
熱間プレス部材から切り出したサンプルを用いて、めっき層におけるFeAl/Fe2Al5比を測定した。具体的には、XRD測定(X線源:Cu-Kα、管電圧:40kV、管電流:30mA)で得られた回折パターンからFeAl(d=2.05)およびFe2Al5(d=2.19)に帰属されるピーク強度を測定し、その強度比をめっき層におけるFeAl/Fe2Al5比とした。
Zn固溶量の測定に用いたものと同じ断面観察用の試験片をEPMAにより分析し、めっき層におけるZnの面積率を測定した。具体的には、めっき層中のZn固溶量が70%より高い領域を金属Zn領域とし、めっき層の全面積に対する前記金属Zn領域の面積の割合をZnの面積率とした。
得られた熱間プレス部材の上面の平坦部から70mm×150mmの試験片を切り出し、前記試験片に対してリン酸系化成処理および電着塗装を施した。前記リン酸化成処理は、日本パーカライジング社製PB-SX35を用いて標準条件で行い、電着塗装は関西ペイント社製GT100Vを用いて塗装膜厚が15μmとなるように行った。電着塗装の焼付け条件は170℃で20分間保持とした。
◎:D1-D2が4.0μm未満
○:D1-D2が4.0μm以上6.0μm未満
△:D1-D2が6.0μm以上8.0μm未満
×:D1-D2が8.0μm以上
上記電着塗装後の試験片の中央に、長さ80mmずつ合計160mmのクロスカット傷(角度60°)を形成した後、30サイクルの腐食試験(SAE-J2334)に供した。前記腐食試験後のカット部における発錆状態を観察し、以下の判定基準に基づいてカット部耐食性を判定した。赤錆が発生しているカット傷部の長さが80mm未満であれば(評点2~4)、カット部耐食性が優れているものとした。評価結果を表3、4に示す。
評点4:カット部における赤錆発生なし
評点3:赤錆発生しているカット傷部の長さが30mm未満
評点2:赤錆発生しているカット傷部の長さが30mm以上80mm未満
評点1:赤錆発生しているカット傷部の長さが80mm以上
Claims (5)
- 鋼板と、
前記鋼板の少なくとも一方の面の上に配された、FeAl、Fe2Al5、およびZnを含有するめっき層と、
前記めっき層の上に配されたZn含有酸化物層とを有し、
前記Fe2Al5中のZn固溶量が10質量%以上である、熱間プレス部材。 - 前記Zn含有酸化物層の厚さが0.10μm以上5.0μm以下である、請求項1に記載の熱間プレス部材。
- 前記めっき層におけるFeAl/Fe2Al5比が0.5以上50以下である、請求項1または2に記載の熱間プレス部材。
- 前記めっき層におけるZnの面積率が1%以上20%以下である、請求項1または2に記載の熱間プレス部材。
- 前記めっき層におけるZnの面積率が1%以上20%以下である、請求項3に記載の熱間プレス部材。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247014507A KR20240089216A (ko) | 2021-10-29 | 2022-08-30 | 열간 프레스 부재 |
JP2022577434A JP7243949B1 (ja) | 2021-10-29 | 2022-08-30 | 熱間プレス部材 |
MX2024005035A MX2024005035A (es) | 2021-10-29 | 2022-08-30 | Miembro prensado en caliente. |
EP22886449.2A EP4386106A1 (en) | 2021-10-29 | 2022-08-30 | Hot pressed member |
CN202280067003.XA CN118140004A (zh) | 2021-10-29 | 2022-08-30 | 热压部件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021178272 | 2021-10-29 | ||
JP2021-178272 | 2021-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023074115A1 true WO2023074115A1 (ja) | 2023-05-04 |
Family
ID=86157742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/032656 WO2023074115A1 (ja) | 2021-10-29 | 2022-08-30 | 熱間プレス部材 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023074115A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011023418A1 (de) | 2009-08-25 | 2011-03-03 | Thyssenkrupp Steel Europe Ag | Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils und stahlbauteil |
JP2011508824A (ja) * | 2007-12-20 | 2011-03-17 | フェストアルピネ シュタール ゲーエムベーハー | スチールのコーティングされ硬化されたコンポーネントを製造する方法と、この方法のためのコーティングされ硬化されたスチール・ストリップ |
JP2011246801A (ja) | 2009-10-28 | 2011-12-08 | Jfe Steel Corp | 熱間プレス部材およびその製造方法 |
WO2017195269A1 (ja) * | 2016-05-10 | 2017-11-16 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
WO2018179395A1 (ja) * | 2017-03-31 | 2018-10-04 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
WO2019180852A1 (ja) * | 2018-03-20 | 2019-09-26 | 日本製鉄株式会社 | ホットスタンプ成形体 |
-
2022
- 2022-08-30 WO PCT/JP2022/032656 patent/WO2023074115A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011508824A (ja) * | 2007-12-20 | 2011-03-17 | フェストアルピネ シュタール ゲーエムベーハー | スチールのコーティングされ硬化されたコンポーネントを製造する方法と、この方法のためのコーティングされ硬化されたスチール・ストリップ |
WO2011023418A1 (de) | 2009-08-25 | 2011-03-03 | Thyssenkrupp Steel Europe Ag | Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils und stahlbauteil |
JP2013503254A (ja) | 2009-08-25 | 2013-01-31 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト | 腐食に対する保護を与える金属コーティングが施された鋼部材を製造する方法、および鋼部材 |
JP2011246801A (ja) | 2009-10-28 | 2011-12-08 | Jfe Steel Corp | 熱間プレス部材およびその製造方法 |
WO2017195269A1 (ja) * | 2016-05-10 | 2017-11-16 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
WO2018179395A1 (ja) * | 2017-03-31 | 2018-10-04 | 新日鐵住金株式会社 | ホットスタンプ成形体 |
WO2019180852A1 (ja) * | 2018-03-20 | 2019-09-26 | 日本製鉄株式会社 | ホットスタンプ成形体 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101707984B1 (ko) | 용융 Al-Zn계 도금 강판 | |
JP5708884B2 (ja) | 合金化溶融亜鉛めっき鋼板とその製造方法 | |
KR20040007718A (ko) | 고강도 알루미늄계 합금 도금 강판과 내열성 및 도장-후내식성이 뛰어난 고강도 차량 부품 | |
KR20040065996A (ko) | 고가공(高加工)시의 내피로성, 내식성, 연성 및 도금부착성을 갖는 고강도 용융 아연 도금 강판 및 합금화용융 아연 도금 강판과 그 제조 방법 | |
JP4837604B2 (ja) | 合金化溶融亜鉛めっき鋼板 | |
JP2003055751A (ja) | 高加工時のめっき密着性および延性に優れた高強度溶融Znめっき鋼板及びその製造方法 | |
JP6406475B1 (ja) | 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法 | |
JP7332967B2 (ja) | ホットスタンプ部品 | |
CN111511942A (zh) | 镀铝系钢板、镀铝系钢板的制造方法及汽车用部件的制造方法 | |
JP4331915B2 (ja) | 疲労耐久性および耐食性に優れた高強度高延性溶融Znめっき鋼板及びその製造方法 | |
JP2008266685A (ja) | 外観に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法 | |
JP7243948B1 (ja) | 熱間プレス部材 | |
EP3396005B1 (en) | Mn-containing hot-dip galvannealed steel sheet and manufacturing method therefor | |
US20220186351A1 (en) | Zinc-plated steel sheet for hot stamping, method of manufacturing zinc-plated steel sheet for hot stamping, and hot-stamping formed body | |
JP4555738B2 (ja) | 合金化溶融亜鉛めっき鋼板 | |
JP2938402B2 (ja) | プレス成型性と成型後の耐食性に優れた燃料タンク用防錆鋼板 | |
JP2003105493A (ja) | 耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板及びその製造方法 | |
JP7131719B1 (ja) | 熱間プレス部材および熱間プレス用鋼板ならびにそれらの製造方法 | |
JP7243949B1 (ja) | 熱間プレス部材 | |
WO2023074115A1 (ja) | 熱間プレス部材 | |
JP5245376B2 (ja) | 焼付硬化性に優れた合金化溶融亜鉛めっき用鋼板を用いた合金化溶融亜鉛めっき鋼板 | |
WO2023074114A1 (ja) | 熱間プレス部材 | |
JP7173368B2 (ja) | 熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法 | |
JP7485219B2 (ja) | 熱間プレス部材および熱間プレス用鋼板、ならびにそれらの製造方法 | |
JP7126093B2 (ja) | 熱間プレス部材およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2022577434 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22886449 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022886449 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022886449 Country of ref document: EP Effective date: 20240311 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280067003.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401002323 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2024/005035 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20247014507 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |