[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023073870A1 - 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 - Google Patents

電力変換装置、モータ駆動装置および冷凍サイクル適用機器 Download PDF

Info

Publication number
WO2023073870A1
WO2023073870A1 PCT/JP2021/039841 JP2021039841W WO2023073870A1 WO 2023073870 A1 WO2023073870 A1 WO 2023073870A1 JP 2021039841 W JP2021039841 W JP 2021039841W WO 2023073870 A1 WO2023073870 A1 WO 2023073870A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis current
command
pulsation
control unit
component
Prior art date
Application number
PCT/JP2021/039841
Other languages
English (en)
French (fr)
Inventor
遥 松尾
知宏 沓木
貴昭 ▲高▼原
浩一 有澤
健治 ▲高▼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/039841 priority Critical patent/WO2023073870A1/ja
Priority to JP2023555983A priority patent/JPWO2023073870A1/ja
Priority to CN202180103515.2A priority patent/CN118140404A/zh
Publication of WO2023073870A1 publication Critical patent/WO2023073870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a power conversion device, a motor drive device, and a refrigeration cycle application device that convert AC power into desired power.
  • Patent Document 1 discloses a technique for suppressing a decrease in efficiency while performing vibration suppression control in an overmodulation region.
  • a power conversion device rectifies AC power supplied from an AC power supply in a rectifier, smoothes it in a smoothing capacitor, converts it to desired AC power in an inverter composed of multiple switching elements, and outputs it to a motor. are doing.
  • aging deterioration of the smoothing capacitor is accelerated when a large current flows through the smoothing capacitor.
  • the present disclosure has been made in view of the above, and aims to obtain a power conversion device capable of suppressing a decrease in efficiency while suppressing deterioration of a smoothing capacitor.
  • a power conversion device includes a rectification unit that rectifies first AC power supplied from a commercial power supply, and a rectification unit that is connected to an output end of the rectification unit.
  • a capacitor an inverter connected to both ends of the capacitor to generate a second AC power and output it to the motor, a detector for detecting the power state of the capacitor, and a dq rotation that rotates in synchronization with the position of the rotor of the motor.
  • a control unit that uses the coordinates to control the operation of the inverter and the motor.
  • the control unit superimposes the q-axis current pulsation, which is the pulsating component of the q-axis current, on the motor drive pattern according to the detection value of the detection unit, suppresses the charge/discharge current of the capacitor, and controls the current when the voltage of the inverter is saturated.
  • the d-axis current of the motor is pulsated in synchronization with a positive integer multiple of the q-axis current pulsation.
  • the power conversion device has the effect of being able to suppress deterioration in efficiency while suppressing deterioration of the smoothing capacitor.
  • FIG. 1 is a diagram showing a configuration example of a power converter according to Embodiment 1;
  • FIG. FIG. 2 is a block diagram showing a configuration example of a control unit included in the power converter according to Embodiment 1;
  • FIG. 4 is a diagram showing an example of drive waveforms in a power conversion device having a circuit configuration similar to that of the power conversion device of Embodiment 1 as a comparative example;
  • FIG. 4 is a diagram showing examples of drive waveforms in the power converter according to Embodiment 1;
  • FIG. 3 is a block diagram showing a configuration example of a flux-weakening control unit included in the control unit of the power converter according to Embodiment 1;
  • FIG. 4 is a diagram showing a voltage command when a flux-weakening control unit included in the control unit of the power converter according to Embodiment 1 performs flux-weakening control;
  • FIG. 1 is a first diagram showing a simple method of calculating d-axis current pulsation in the flux-weakening control unit according to Embodiment 1;
  • FIG. 1 is a first diagram showing a simple method of calculating d-axis current pulsation in the flux-weakening control unit according to Embodiment 1;
  • FIG. 1 is a first diagram showing a simple method of calculating d-axis current pulsation in the flux-weakening control unit according to Embodiment 1;
  • FIG. 2 shows a simple method of calculating d-axis current pulsation in the flux-weakening control unit according to the first embodiment
  • 4 is a flow chart showing the operation of the control unit included in the power converter according to Embodiment 1
  • 4 is a flow chart showing the operation of a flux-weakening control unit included in the control unit of the power converter according to Embodiment 1
  • FIG. 2 is a diagram showing an example of a hardware configuration that realizes a control unit included in the power converter according to Embodiment 1
  • FIG. FIG. 4 is a diagram showing a control error of flux-weakening control by a flux-weakening control unit provided in the control unit of the power converter according to Embodiment 1
  • FIG. 4 is a block diagram showing a configuration example of a control unit included in a power converter according to Embodiment 2;
  • FIG. 9 is a diagram showing control errors in flux-weakening control by a flux-weakening control unit provided in a control unit of a power converter according to a second embodiment;
  • FIG. 10 is a block diagram showing a configuration example of a flux-weakening control unit included in the control unit of the power converter according to the second embodiment;
  • FIG. 9 is a diagram showing control errors in flux-weakening control by a flux-weakening control unit provided in a control unit of a power converter according to a second embodiment;
  • FIG. 10 is a block diagram showing a configuration example of a flux-weakening control unit included in the control unit of the power converter according to the second embodiment;
  • FIG. 11 is a diagram for explaining flux-weakening control by a flux-weakening control unit included in the control unit of the power converter according to the second embodiment; 4 is a flowchart showing the operation of a flux-weakening control unit included in the control unit of the power converter according to the second embodiment; FIG. 11 is a block diagram showing a configuration example of a control unit included in a power converter according to Embodiment 3; FIG. 11 is a block diagram showing a configuration example of a flux-weakening control unit included in a control unit of a power converter according to a third embodiment; FIG.
  • FIG. 11 is a block diagram showing a configuration example of a d-axis current ripple generator according to Embodiment 3; 9 is a flow chart showing the operation of a flux-weakening control unit included in the control unit of the power converter according to the third embodiment; A diagram showing an example of a frequency analysis result of an ideal d-axis current pulsation.
  • FIG. 11 is a block diagram showing a configuration example of a d-axis current ripple generator according to a fourth embodiment
  • 9 is a flow chart showing the operation of a flux-weakening control unit included in a control unit of a power converter according to a fourth embodiment
  • FIG. 11 is a block diagram showing a configuration example of a control unit included in a power converter according to Embodiment 5
  • 10 is a flow chart showing the operation of a q-axis current pulsation calculator included in the controller of the power converter according to the fifth embodiment
  • FIG. 11 is a block diagram showing a configuration example of a control unit included in a power converter according to a sixth embodiment
  • a power conversion device, a motor drive device, and a refrigeration cycle application device will be described below in detail based on the drawings.
  • FIG. 1 is a diagram showing a configuration example of a power conversion device 1 according to Embodiment 1.
  • Power converter 1 is connected to commercial power source 110 and compressor 315 .
  • Power converter 1 converts first AC power having power supply voltage Vs supplied from commercial power supply 110 into second AC power having a desired amplitude and phase, and supplies the second AC power to compressor 315 .
  • the power conversion device 1 includes a reactor 120 , a rectification section 130 , a voltage detection section 501 , a smoothing section 200 , an inverter 310 , current detection sections 313 a and 313 b , and a control section 400 .
  • a motor drive device 2 is configured by the power conversion device 1 and the motor 314 included in the compressor 315 .
  • Reactor 120 is connected between commercial power supply 110 and rectifying section 130 .
  • the rectifying section 130 has a bridge circuit configured by rectifying elements 131 to 134, rectifies the first AC power of the power supply voltage Vs supplied from the commercial power supply 110, and outputs the first AC power.
  • the rectifier 130 performs full-wave rectification.
  • the voltage detection unit 501 detects the DC bus voltage Vdc , which is the voltage across the smoothing unit 200 charged by the current rectified by the rectifying unit 130 and flowing into the smoothing unit 200 from the rectifying unit 130, and detects the detected voltage value. is output to the control unit 400 .
  • Voltage detection unit 501 is a detection unit that detects the power state of capacitor 210 .
  • the smoothing section 200 is connected to the output terminal of the rectifying section 130 .
  • Smoothing section 200 has capacitor 210 as a smoothing element, and smoothes the power rectified by rectifying section 130 .
  • Capacitor 210 is, for example, an electrolytic capacitor, a film capacitor, or the like.
  • Capacitor 210 is connected to the output end of rectifying section 130 and has a capacity to smooth the power rectified by rectifying section 130 . It does not have a waveform shape, but has a waveform shape in which a voltage ripple corresponding to the frequency of the commercial power supply 110 is superimposed on the DC component, and does not pulsate greatly.
  • the frequency of this voltage ripple is a component twice the frequency of the power supply voltage Vs when the commercial power supply 110 is single-phase, and the main component is a frequency component six times the frequency of the power supply voltage Vs when the commercial power supply 110 is three-phase. If the power input from commercial power supply 110 and the power output from inverter 310 do not change, the amplitude of this voltage ripple is determined by the capacitance of capacitor 210 . For example, it pulsates in such a range that the maximum value of the voltage ripple generated in the capacitor 210 is less than twice the minimum value.
  • the inverter 310 is connected to both ends of the smoothing section 200 , that is, the capacitor 210 .
  • Inverter 310 has switching elements 311a-311f and freewheeling diodes 312a-312f.
  • Inverter 310 turns switching elements 311a to 311f on and off under the control of control unit 400, and converts the power output from rectifying unit 130 and smoothing unit 200 into second AC power having a desired amplitude and phase. of AC power is generated and output to the compressor 315 .
  • Current detection units 313 a and 313 b each detect a current value of one phase out of three-phase currents output from inverter 310 and output the detected current value to control unit 400 .
  • Control unit 400 acquires two-phase current values among the three-phase current values output from inverter 310, thereby calculating the remaining one-phase current value output from inverter 310.
  • Compressor 315 is a load having a motor 314 for driving the compressor. Motor 314 rotates according to the amplitude and phase of the second AC power supplied from inverter 310 to perform compression operation.
  • the compressor 315 is a hermetic compressor used in an air conditioner or the like
  • the load torque of the compressor 315 can often be regarded as a constant torque load.
  • FIG. 1 shows a case where the motor windings are Y-connected, but this is an example and the present invention is not limited to this.
  • the motor windings of the motor 314 may be delta-connection, or may be switchable between Y-connection and delta-connection.
  • reactor 120 may be arranged after rectifying section 130 .
  • the power conversion device 1 may include a booster section, or the rectifier section 130 may have the function of the booster section.
  • the voltage detection section 501 and the current detection sections 313a and 313b may be collectively referred to as detection sections.
  • the voltage value detected by the voltage detection section 501 and the current values detected by the current detection sections 313a and 313b may be referred to as detection values.
  • the control unit 400 acquires the voltage value of the DC bus voltage Vdc of the smoothing unit 200 from the voltage detection unit 501, and obtains the second AC voltage having the desired amplitude and phase converted by the inverter 310 from the current detection units 313a and 313b. Get the current value of power.
  • Control unit 400 controls the operation of inverter 310, specifically, the on/off of switching elements 311a to 311f included in inverter 310, using the detection values detected by the respective detection units. Also, the control unit 400 controls the operation of the motor 314 using the detection values detected by each detection unit.
  • control unit 400 outputs second AC power including pulsation corresponding to the pulsation of power flowing from rectifying unit 130 into capacitor 210 of smoothing unit 200 from inverter 310 to compressor 315 as a load.
  • the operation of the inverter 310 is controlled so as to
  • the pulsation corresponding to the pulsation of the power flowing into the capacitor 210 of the smoothing section 200 is, for example, the pulsation that varies depending on the frequency of the pulsation of the power flowing into the capacitor 210 of the smoothing section 200 .
  • the control unit 400 suppresses the current flowing through the capacitor 210 of the smoothing unit 200 .
  • the control unit 400 does not have to use all the detection values acquired from each detection unit, and may perform control using some of the detection values.
  • the control unit 400 performs control so that any one of the speed, voltage, and current of the motor 314 is in a desired state.
  • the motor 314 is used to drive the compressor 315 and the compressor 315 is a hermetic compressor, attaching a position sensor for detecting the rotor position to the motor 314 is structurally and economically advantageous. Since it is difficult, the control unit 400 controls the motor 314 without a position sensor.
  • control unit 400 controls the operations of inverter 310 and motor 314 using dq rotation coordinates that rotate in synchronization with the rotor position of motor 314, as will be described later.
  • the input current from rectifying section 130 to capacitor 210 of smoothing section 200 is input current I1
  • the output current from capacitor 210 of smoothing section 200 to inverter 310 is output current I2.
  • the charge/discharge current of the capacitor 210 of the smoothing section 200 is assumed to be the charge/discharge current I3.
  • the input current I1 is affected by the power supply phase of the commercial power supply 110 and the characteristics of elements installed before and after the rectifying section 130, but basically has characteristics including a 2n-fold component of the power supply frequency. Note that n is an integer of 1 or more.
  • control unit 400 may control inverter 310 so that input current I1 to capacitor 210 equals output current I2 from capacitor 210. .
  • PWM Pulse Width Modulation
  • the control unit 400 monitors the power state of the smoothing unit 200, that is, the capacitor 210, and provides appropriate pulsation to the motor 314 so that the charging/discharging current I3 decreases. good.
  • the power state of the capacitor 210 means the input current I1 to the capacitor 210, the output current I2 from the capacitor 210, the charging/discharging current I3 of the capacitor 210, the DC bus voltage Vdc of the capacitor 210, and the like.
  • Control unit 400 needs information on at least one of these power states of capacitor 210 for deterioration suppression control.
  • control unit 400 uses DC bus voltage Vdc of capacitor 210 detected by voltage detection unit 501 so that a value obtained by removing PWM ripple from output current I2 matches input current I1.
  • a pulsation is applied to the motor 314 . That is, control unit 400 controls the operation of inverter 310 so that the pulsation corresponding to the detection value of voltage detection unit 501 is superimposed on the drive pattern of motor 314, and suppresses charging/discharging current I3 of capacitor 210.
  • the control unit 400 controls the q-axis current command i q * of the motor 314 based on the input/output power relationship of the motor 314 so that the difference between the input current I1 and the output current I2 becomes small.
  • control unit 400 utilizes the relationship between the input power to inverter 310 and the mechanical output of motor 314 to generate an ideal q-axis current command i q * for reducing charging/discharging current I3. calculate.
  • control unit 400 performs control in rotational coordinates having the d-axis and the q-axis.
  • Power converter 1 is capable of estimating charging/discharging current I3 of capacitor 210 from DC bus voltage Vdc of capacitor 210, and is equipped with a current detection unit that detects charging/discharging current I3 of capacitor 210.
  • the voltage detection unit 501 detects the voltage value of the DC bus voltage Vdc of the capacitor 210 and outputs the voltage value to the control unit 400 .
  • Control unit 400 controls inverter 310 so that the value obtained by removing the PWM ripple from output current I2 from capacitor 210 to inverter 310 matches input current I1, and adds pulsation to the power output to motor 314 .
  • Control unit 400 can reduce charge/discharge current I3 of capacitor 210 by appropriately pulsating output current I2.
  • the output current I2 and the q-axis current iq of the motor 314 also contain 2n times the power supply frequency. become.
  • a specific method of calculating the q-axis current iq of the motor 314 for appropriately pulsating the output current I2 is, for example, the following method.
  • the AC power supply voltage from the commercial power supply 110 which is the input to the power converter 1, is expressed by Equation (1).
  • V s indicates the amplitude of the AC power supply voltage
  • ⁇ in indicates the angular frequency of the AC power supply voltage
  • t indicates time.
  • the input current I1 to the capacitor 210 will include PWM ripple, but it should not be considered after averaging. and Assuming that the input current I1 is a periodic function, and approximating the input current I1 with a Fourier coefficient, the input current I1 can be expressed as in Equation (2).
  • the input current I1 has a waveform that includes many integral multiples of the power supply frequency 2f due to the rectifying section 130 .
  • the fundamental wave of the input current I1 becomes a component of the power supply frequency 2f.
  • the portion "1" of the input current I1 is subscripted in order to match the notation with others. The same shall apply to the following.
  • I DC indicates the DC component of the current, I 2f , I 4f , I 6f , .
  • Fundamental phase and harmonic phase are shown.
  • the input current I1 may be used to control the control unit 400 as it is, or the input current I1 may be filtered and then used to control the control unit 400 .
  • the input current I1' is obtained by extracting the DC component, the fundamental wave component, and the low-order harmonic component of the input current I1 using a low-pass filter and a band-pass filter
  • the input current I1' can be expressed by, for example, the following equation (3).
  • the input current I1' is obtained by extracting the DC component, the power frequency 2f component, and the power frequency 4f component, but may also include components of power frequency 6f or higher.
  • the bandpass filter may be configured by an FIR (Finite Impulse Response) filter, or may be configured by an IIR (Infinite Impulse Response) filter.
  • the input current I1' may be calculated from a coefficient arithmetic expression for Fourier coefficient expansion.
  • Vdc represents the DC bus voltage.
  • the active power P mot consumed by the motor 314 is expressed by Equation (6) using the dq-axis voltage and the dq-axis current.
  • Equation (6) vd indicates the d-axis voltage
  • vq indicates the q-axis voltage
  • id indicates the d-axis current
  • iq indicates the q-axis current
  • Ra indicates armature resistance
  • Ld and Lq indicate dq-axis inductance
  • ⁇ a indicates dq-axis flux linkage number
  • ⁇ e indicates electrical angular velocity.
  • Equation (9) If the q-axis current ripple command i qrip * is given as in Equation (9), deterioration of the capacitor 210 of the smoothing section 200 can be suppressed. If the d-axis current id is non-zero, it may be calculated as shown in Equation (10) with consideration given to the reluctance torque.
  • FIG. 2 is a block diagram showing a configuration example of the control unit 400 included in the power converter 1 according to Embodiment 1.
  • the control unit 400 includes a rotor position estimation unit 401, a speed control unit 402, a flux-weakening control unit 403, a current control unit 404, coordinate conversion units 405 and 406, a PWM signal generation unit 407, a q-axis current A pulsation calculator 408 and an adder 409 are provided.
  • the rotor position estimating unit 401 calculates the direction of the rotor magnetic poles on the dq axis for the rotor (not shown) of the motor 314 from the dq-axis voltage command vector V dq * and the dq-axis current vector i dq applied to the motor 314. Estimate an estimated phase angle ⁇ est and an estimated speed ⁇ est , which is the rotor speed.
  • a speed control unit 402 generates a q-axis current command i qDC * from the speed command ⁇ * and the estimated speed ⁇ est . Specifically, the speed control unit 402 automatically adjusts the q-axis current command iqDC * so that the speed command ⁇ * and the estimated speed ⁇ est match.
  • the speed command ⁇ * is, for example, a temperature detected by a temperature sensor (not shown) or a setting indicated by a remote control that is an operation unit (not shown). It is based on information indicating temperature, information on selection of operation mode, instruction information on operation start and operation end, and the like. The operation modes are, for example, heating, cooling, and dehumidification.
  • the q-axis current command iqDC * may be referred to as the first q-axis current command.
  • the flux-weakening control unit 403 automatically adjusts the d-axis current command i d * so that the absolute value of the dq-axis voltage command vector V dq * falls within the limit value of the voltage limit value V lim * . Further, in the present embodiment, the flux-weakening control unit 403 performs flux-weakening control in consideration of the q-axis current ripple command i qrip * calculated by the q-axis current ripple calculation unit 408 .
  • the flux-weakening control can be broadly classified into a method of calculating the d-axis current command id * from the equation of the voltage limit ellipse, and a method in which the deviation of the absolute value between the voltage limit value Vlim * and the dq-axis voltage command vector Vdq * is zero. There are two methods of calculating the d-axis current command i d * so that The detailed configuration and operation of the flux-weakening control unit 403 will be described later.
  • the current control unit 404 controls the current flowing through the motor 314 using the q-axis current command iq * and the d-axis current command id * to generate the dq-axis voltage command vector Vdq * . Specifically, the current control unit 404 automatically adjusts the dq - axis voltage command vector V dq * so that the dq-axis current vector i dq follows the d-axis current command id * and the q-axis current command i q *. .
  • the dq-axis voltage command vector V dq * may be simply referred to as the dq-axis voltage command.
  • the coordinate conversion unit 405 coordinates-converts the dq-axis voltage command vector V dq * from the dq coordinates into the voltage command V uvw * of the AC quantity according to the estimated phase angle ⁇ est .
  • a coordinate transformation unit 406 coordinates-transforms the current I uvw flowing through the motor 314 from an alternating current quantity to a dq-axis current vector i dq of dq coordinates in accordance with the estimated phase angle ⁇ est .
  • the control unit 400 controls the two-phase current values detected by the current detection units 313a and 313b among the three-phase current values output from the inverter 310, and It can be obtained by calculating the current value of the remaining one phase using the current values of the two phases.
  • PWM signal generation unit 407 generates a PWM signal based on voltage command V uvw * coordinate-transformed by coordinate transformation unit 405 .
  • Control unit 400 applies a voltage to motor 314 by outputting the PWM signal generated by PWM signal generation unit 407 to switching elements 311 a to 311 f of inverter 310 .
  • a q-axis current ripple calculator 408 calculates the q-axis current ripple using the detected value and generates the q-axis current ripple command i qrip * , which is the ripple component of the q-axis current command i q * .
  • the q-axis current ripple calculation unit 408 calculates the following equation (9) or (10) based on the DC bus voltage V dc , which is the voltage value detected by the voltage detection unit 501, and the estimated speed ⁇ est . to calculate the q-axis current ripple command i qrip * . Since the pulsation amplitude of the q -axis current iq varies depending on the drive conditions of the motor 314, the q-axis current pulsation calculator 408 appropriately considers the drive conditions to determine the amplitude.
  • Addition unit 409 adds q-axis current command i qDC * output from speed control unit 402 and q-axis current ripple command i qrip * calculated by q-axis current ripple calculation unit 408 to obtain a q-axis current command.
  • i q * is generated and output to current control section 404 .
  • the q-axis current command iq * may be referred to as a second q-axis current command.
  • the control unit 400 calculates the q-axis current pulsation command i qrip * based on the equation (9) or the equation (10) compared with a conventional power conversion device that performs the same control, and calculates the q-axis current pulsation command i qrip * is used to calculate the q-axis current command iq * , and the q-axis current pulsation command iqrip * is taken into account to perform flux-weakening control. In applications such as air-conditioning compressor motors, flux-weakening control and inverter overmodulation are actively used. does not follow the command value.
  • a flux-weakening control method is known in which the d-axis current id is pulsated at the same time so that the voltage amplitude becomes constant.
  • the flux-weakening control unit 403 pulsates the d-axis current i d at the same time as the q-axis current pulsation command i qrip * at the time of voltage saturation to prevent voltage shortage.
  • the control unit 400 appropriately applies pulsation to the motor 314 by the q-axis current pulsation calculation unit 408 and controls the current flowing through the capacitor 210 to be close to zero or to a small value. , that is, the charging/discharging current I3 of the capacitor 210 can be reduced.
  • FIG. 3 is a diagram showing an example of driving waveforms in a power converter having a circuit configuration similar to that of the power converter 1 of Embodiment 1 as a comparative example. It is assumed that the power conversion device of the comparative example, which is the object of FIG. 3, does not perform control like the power conversion device 1 of the present embodiment.
  • FIG. 4 is a diagram showing examples of drive waveforms in the power conversion device 1 according to the first embodiment. 3 and 4, the upper diagram shows the input current I1 from the rectifier 130 to the capacitor 210, the output current I2 from the capacitor 210, and the charge/discharge current I3 of the capacitor 210, and the lower diagram shows the DC bus voltage Vdc. ing. 3 and 4 are drawn on the same scale. For convenience of explanation, the ripple of PWM is not considered in FIGS. 3 and 4.
  • FIG. 4 shows the ripple of PWM.
  • control unit 400 controls the operation of inverter 310 so that output current I2 from capacitor 210 has the shape of “rabbit ears.” , the peak value of the charging/discharging current I3 becomes smaller. As the peak value of charging/discharging current I3 of capacitor 210 decreases, the ripple of DC bus voltage Vdc also decreases. By reducing the outflow and inflow of the current in the capacitor 210, it is possible to suppress the element deterioration and the aged deterioration of the parts. In the power conversion device 1, the capacity of the elements can be reduced by the amount of suppression by the control unit 400 as described above, and the ripple resistance is relaxed.
  • an inexpensive smoothing element that is, the capacitor 210 can be used, and the system cost can be suppressed.
  • deterioration suppression control is performed by extracting only the DC component, the power supply frequency 2f component, and the power supply frequency 4f component. ingredients may be added.
  • power supply frequency components up to 6f are taken into consideration.
  • only the DC component and the power supply frequency 2f component may be considered.
  • the control method of the control unit 400 according to the present embodiment is based on the theoretical formula of the input/output power of the motor 314, the q-axis current pulsation of the motor 314 can be determined directly with respect to the change in the input current I1. High responsiveness to changes in the input current I1. Therefore, there is an advantage that deterioration of the capacitor 210 of the smoothing section 200 can be easily suppressed when it is used together with the pulsating load compensation.
  • FIG. 5 is a block diagram showing a configuration example of the flux-weakening control unit 403 included in the control unit 400 of the power converter 1 according to the first embodiment.
  • the flux-weakening controller 403 includes a subtractor 601 , an integral controller 602 , a d-axis current ripple generator 603 , and an adder 604 .
  • a subtraction unit 601 performs subtraction processing for calculating a voltage deviation by subtracting the dq-axis voltage command vector V dq * from the voltage limit value V lim * .
  • the integral control unit 602 performs integral control so that the voltage deviation calculated by the subtraction unit 601 becomes zero, and determines the d-axis current command idDC * .
  • the flux-weakening control unit 403 may perform proportional control, differential control, or the like in parallel with the integral control of the integral control unit 602 . That is, the flux-weakening controller 403 may include a PID (Proportional Integral Differential) controller instead of the integral controller 602 .
  • the flux-weakening control unit 403 automatically increases the d-axis current id, thereby alleviating the voltage shortage.
  • the d-axis current command i dDC * may be referred to as the first d-axis current command.
  • the power converter 1 since general flux-weakening control does not use motor parameters, it is robust against parameter fluctuations, but has the disadvantage that control responsiveness cannot be made very high. This is because if the control response is forcibly increased, the control becomes unstable. Therefore, even when the q-axis current iq changes at high frequencies, the d-axis current id is generally constant. In this case, in a power converter that performs general flux-weakening control, a transient voltage shortage occurs, causing an excessive d-axis current id to flow, resulting in an increase in copper loss. Therefore, in the present embodiment, the power converter 1 also pulsates the d-axis current id in synchronization with the q-axis current pulsation.
  • the d-axis current ripple generation unit 603 uses the q-axis current ripple command i qrip * acquired from the q-axis current ripple calculation unit 408 and the voltage phase average value ⁇ vave to calculate the d-axis current ripple command i dAC *. do.
  • the d-axis current ripple generator 603 synchronizes with the q-axis current ripple command i qrip * corresponding to the q-axis current ripple, and generates the dq-axis voltage command vector V by the q-axis current ripple command i qrip * corresponding to the q-axis current ripple.
  • a d-axis current pulsation command i dAC * that suppresses an increase or decrease in the amplitude of dq * is generated.
  • the voltage phase average value ⁇ vave can be calculated from the absolute value of the dq-axis voltage command vector V dq * .
  • the calculation of the average value ⁇ vave of the voltage phase may be performed by a component outside the flux-weakening control unit 403, or may be performed by the d-axis current ripple generating unit 603 inside the flux-weakening control unit 403 or a component not shown. good too.
  • the method of calculating the d-axis current ripple command i dAC * in the d-axis current ripple generator 603 is not limited to the above example.
  • the d-axis current ripple generation unit 603 when the d-axis current command i dDC * output from the integral control unit 602 is a low-frequency d-axis current command, the d-axis current ripple generation unit 603 generates a high-frequency d-axis current ripple command to determine the d-axis current pulsation command i dAC * .
  • Adder 604 adds two command values, that is, d-axis current command idDC * obtained by integral control unit 602 and d-axis current ripple command idAC * obtained by d-axis current ripple generator 603. to determine the d-axis current command i d * .
  • the d-axis current command id * may be referred to as a second d-axis current command.
  • the flux-weakening control unit 403 generates the d-axis current pulsation command idAC * that pulsates the d-axis current id in synchronization with the q-axis current pulsation command iqrip * .
  • the flux-weakening control unit 403 generates a d-axis current command i dDC having a lower frequency than the frequency of the d-axis current ripple command i dAC * from the voltage deviation between the dq-axis voltage command vector V dq * and the voltage limit value V lim * . * is generated.
  • the flux-weakening control unit 403 adds the d-axis current command idDC * and the d-axis current pulsation command idAC * to generate the d-axis current command id * .
  • FIG. 6 is a diagram showing the voltage command v * when the flux-weakening control unit 403 included in the control unit 400 of the power converter 1 according to Embodiment 1 performs the flux-weakening control.
  • FIG. 7 is a first diagram showing a simple method of calculating the d-axis current ripple i dAC in flux-weakening control section 403 according to the first embodiment.
  • FIG. 8 is a second diagram showing a simple method of calculating the d-axis current ripple i dAC in flux-weakening control section 403 according to the first embodiment.
  • the voltage command v * corresponds to the aforementioned dq-axis voltage command vector V dq * .
  • the limit value V om corresponds to the aforementioned voltage limit value V lim * .
  • the d-axis current pulsation i dAC corresponds to the d-axis current pulsation command i dAC * described above.
  • the d-axis current i dDC corresponds to the aforementioned d-axis current command i dDC * .
  • the q-axis current pulsation i qAC corresponds to the q-axis current pulsation command i qrip * described above.
  • the q-axis current i qDC corresponds to the aforementioned q-axis current command i qDC * .
  • the limit value V om has a hexagonal shape, but here it is considered as an approximation of a circle on the dq coordinates.
  • the discussion is based on the premise that the approximation is by a circle, but it is needless to say that the discussion may be made strictly considering a hexagon.
  • a circle centered on the origin and having a radius of the limit value V om is referred to as a voltage limit circle 21 .
  • the limit value Vom varies depending on the value of the DC bus voltage Vdc . In FIG.
  • voltage command v * is determined by d-axis current id , q-axis current iq , motor speed, motor parameters, and the like. Also, the voltage command v * is restricted by the voltage restriction circle 21 .
  • the control unit 400 of the power converter 1 gives the q-axis current pulsation iqAC to the q -axis current iq during overmodulation, the voltage command v * exceeds the voltage limit range, that is, the voltage limit circle 21 . Therefore, in the present embodiment, in the control unit 400 of the power converter 1, the flux-weakening control unit 403 provides the d-axis current id with the d -axis current pulsation idAC to prevent voltage shortage. .
  • d-axis current ripple generator 603 of the flux-weakening controller 403 calculates the d-axis current ripple i dAC , that is, the d-axis current ripple command i dAC * as shown in equation (11).
  • the flux-weakening control unit 403 generates the d-axis current ripple command i dAC * based on the multiplication result of the tangent of the average voltage advance angle and the q-axis current ripple command i qrip * .
  • the flux-weakening control unit 403 maintains the trajectory of the voltage command v * , which is the vector of the dq-axis voltage command, in the circumferential direction or tangential direction of the voltage limit circle 21 having a specified radius based on the voltage limit value V lim * . , it can be said that the d-axis current pulsation command i dAC * is generated.
  • the d-axis current ripple generation unit 603 calculates the d-axis current ripple command i dAC * as shown in Equation (11), and uses the d-axis current ripple command i dAC * to generate the d-axis current command i Determine d * .
  • the power converter 1 can keep the voltage command amplitude constant even during the capacitor current suppression control. Since the power conversion device 1 does not need to excessively flow the d -axis current id, the capacitor current can be efficiently reduced in the overmodulation region.
  • the control unit 400 superimposes the q-axis current pulsation command i qrip * corresponding to the q-axis current pulsation on the drive pattern of the motor 314 according to the detection value of the detection unit, thereby controlling the charging and discharging current of the capacitor 210.
  • I3 is suppressed, and the d-axis current id of the motor 314 is pulsated in synchronization with the frequency of the q-axis current pulsation command iqrip * corresponding to the q-axis current pulsation when the voltage of the inverter 310 is saturated.
  • the q-axis current iq may be expressed as an active current
  • the d-axis current id may be expressed as a reactive current. The same shall apply to the following.
  • FIG. 9 is a flow chart showing the operation of the control unit 400 included in the power conversion device 1 according to Embodiment 1.
  • the control unit 400 acquires the DC bus voltage Vdc of the capacitor 210, which is the detected value, from the voltage detection unit 501 (step S1). Based on the acquired detection value, control unit 400 controls dq-axis voltage command vector V dq * so that the difference between input current I1 to capacitor 210 and output current I2 from capacitor 210 becomes small, and dq-axis voltage command vector V dq * reaches the voltage limit value.
  • the operation of the inverter 310 is controlled so as not to exceed V lim * (step S2).
  • FIG. 10 is a flowchart showing the operation of the flux-weakening control unit 403 included in the control unit 400 of the power converter 1 according to Embodiment 1.
  • the subtraction unit 601 subtracts the dq-axis voltage command vector V dq * from the voltage limit value V lim * to calculate the voltage deviation (step S11).
  • the integral control unit 602 performs integral control so that the voltage deviation becomes zero, and determines the d-axis current command i dDC * (step S12).
  • the d-axis current ripple generator 603 calculates a d-axis current ripple command i dAC * using the q-axis current ripple command i qrip * and the voltage phase average value ⁇ vave (step S13).
  • the adder 604 adds the d-axis current command idDC * and the d-axis current pulsation command idAC * to generate the d-axis current command id * , that is, determines the d-axis current command id * (step S14 ).
  • FIG. 11 is a diagram showing an example of a hardware configuration that implements the control unit 400 included in the power converter 1 according to Embodiment 1. As shown in FIG. Control unit 400 is implemented by processor 91 and memory 92 .
  • the processor 91 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, DSP (Digital Signal Processor)), or a system LSI (Large Scale Integration).
  • the memory 92 includes RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Non-volatile or volatile such as Only Memory)
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory flash memory
  • EPROM Erasable Programmable Read Only Memory
  • EEPROM registered trademark
  • a semiconductor memory can be exemplified.
  • the memory 92 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • control unit 400 uses DC bus voltage Vdc of capacitor 210 detected by voltage detection unit 501 to generate q-axis current pulsation command i qrip * is calculated, and the q-axis current pulsation command i qrip * is used to generate the d-axis current command i d * to control the operation of the inverter 310 and suppress the charge/discharge current I3 of the capacitor 210. .
  • the power converter 1 can suppress the deterioration of the smoothing capacitor 210 and suppress the enlargement of the power converter 1 .
  • the power conversion device 1 can suppress a decrease in efficiency in the overmodulation region.
  • Embodiment 2 the d-axis current pulsation i dAC is obtained so that the locus of the vector of the voltage command v * is tangent to the voltage limit circle 21, but ideally it is preferable to have a circular locus. If the q-axis current pulsation iqAC is large, the error between the tangent line approximation and the ideal value becomes large, and there is a possibility that appropriate flux-weakening control cannot be performed.
  • FIG. 12 is a diagram showing a control error of the flux-weakening control by the flux-weakening control unit 403 provided in the control unit 400 of the power converter 1 according to the first embodiment. In FIG.
  • FIG. 12 is a trial calculation under the condition that the amplitude of the q-axis current pulsation iqAC is large to some extent. becomes.
  • the waveform of the d-axis current pulsation i dAC oscillates at approximately the same period as the q-axis current pulsation i qAC , but contains some harmonic components.
  • This solid line waveform is assumed to be an ideal value for control.
  • the actual d-axis current pulsation idAC output by the flux-weakening control unit 403 has a waveform indicated by the dotted line in FIG. Since the flux-weakening control unit 403 of Embodiment 1 targets a sinusoidal waveform that does not include harmonics, there is some deviation from the ideal value.
  • FIG. 13 is a block diagram showing a configuration example of the control unit 400a included in the power converter 1 according to Embodiment 2.
  • the controller 400a is obtained by replacing the flux-weakening controller 403 in the controller 400 of the first embodiment shown in FIG. 2 with a flux-weakening controller 403a.
  • the power conversion device 1 according to Embodiment 2 replaces the control unit 400 with a control unit 400a in the power conversion device 1 according to Embodiment 1 shown in FIG. .
  • FIG. 14 is a diagram showing a control error of flux-weakening control by the flux-weakening control unit 403a provided in the control unit 400a of the power converter 1 according to the second embodiment.
  • the horizontal axis indicates the phase angle of the q-axis current ripple iqAC
  • the vertical axis indicates the amount of additional compensation for the d-axis current.
  • the waveform shown in FIG. 14 is the difference between the solid-line waveform and the dotted-line waveform shown in FIG. 14, the scale of the vertical axis is enlarged with respect to FIG.
  • the flux-weakening control unit 403a of the second embodiment can realize ideal flux-weakening control by calculating a current waveform as shown in FIG. 14 and adding it to the d-axis current pulsation idAC .
  • FIG. 15 is a block diagram showing a configuration example of the flux-weakening control unit 403a included in the control unit 400a of the power converter 1 according to the second embodiment.
  • the flux-weakening control unit 403a is obtained by adding a d-axis current ripple readjustment unit 605 to the flux-weakening control unit 403 of the first embodiment shown in FIG.
  • the d-axis current ripple readjustment unit 605 investigates the amount of increase or decrease in the amplitude of the dq-axis voltage command vector V dq * due to the q-axis current ripple command i qrip * and the d-axis current ripple command i dAC * , and according to the amount of increase or decrease, The d-axis current ripple command i dAC * is readjusted, and the readjusted d-axis current ripple command i dAC ** is output. Specifically, the d-axis current pulsation readjustment unit 605 calculates an additional compensation amount for the d-axis current id in the following process. FIG.
  • FIG. 16 is a diagram for explaining the flux-weakening control by the flux-weakening control unit 403a provided in the control unit 400a of the power converter 1 according to the second embodiment.
  • the voltage command v * conv is expected to be larger than the voltage limit circle 21.
  • a deficiency ⁇ V q occurs in the q-axis voltage. If the shortfall ⁇ Vq of the q-axis voltage is known, ⁇ id2 , which is the additional compensation amount of the d-axis current id , can be obtained by the following equation (12).
  • the limit value V qlim of the q-axis voltage is determined by the Pythagorean theorem as shown in Equation (15). .
  • the pulsation readjustment unit 605 readjusts the d-axis current pulsation command i dAC * by such calculation.
  • FIG. 17 is a flow chart showing the operation of the flux-weakening control section 403a included in the control section 400a of the power converter 1 according to the second embodiment.
  • the subtraction unit 601 subtracts the dq-axis voltage command vector V dq * from the voltage limit value V lim * to calculate the voltage deviation (step S11).
  • the integral control unit 602 performs integral control so that the voltage deviation becomes zero, and determines the d-axis current command i dDC * (step S12).
  • the d-axis current ripple generator 603 calculates a d-axis current ripple command i dAC * using the q-axis current ripple command i qrip * and the voltage phase average value ⁇ vave (step S13).
  • the d-axis current ripple readjustment unit 605 readjusts the d-axis current ripple command idAC * according to the amount of increase or decrease in the voltage command amplitude due to the dq-axis current ripple (step S21).
  • the addition unit 604 adds the d-axis current command i dDC * and the readjusted d-axis current ripple command i dAC ** to generate the d-axis current command i d * , that is, the d-axis current command i d * Determine (step S14).
  • Control unit 400a included in the power converter 1 will be described.
  • Control unit 400a is implemented by processor 91 and memory 92, similar to control unit 400 of the first embodiment.
  • the flux-weakening control unit 403a of the control unit 400a readjusts the d-axis current pulsation command i dAC * to obtain the d-axis current command i d * was determined.
  • the power converter 1 can improve the accuracy of the flux-weakening control and perform accurate flux-weakening control as compared with the first embodiment, so that the d-axis current id does not have to flow excessively. Therefore, the copper loss can be improved.
  • the power conversion device 1 can suppress the deterioration of the smoothing capacitor 210 while suppressing the decrease in efficiency in the overmodulation region.
  • Embodiment 3 the flux-weakening control was described based on the flux-weakening control of Patent Document 1, but other methods of obtaining an appropriate d-axis current ripple idAC are conceivable. For example, there may be a method of obtaining an appropriate d-axis current ripple i dAC on a feedback basis. Unlike the methods of the first and second embodiments, the feedback-based method has the advantage of being resistant to fluctuations in control constants, lack of current control response, etc., although the control design is complicated. Repetitive control, a method based on Fourier coefficient calculation, and the like are known as vibration suppression control methods. If this is applied to feedback-type flux-weakening control, good d-axis current ripple idAC should be obtained.
  • FIG. 18 is a block diagram showing a configuration example of the control unit 400b included in the power converter 1 according to Embodiment 3.
  • the controller 400b is obtained by replacing the flux-weakening controller 403 in the controller 400 of the first embodiment shown in FIG. 2 with a flux-weakening controller 403b.
  • the power conversion device 1 according to Embodiment 3 replaces the control unit 400 with a control unit 400b in the power conversion device 1 according to Embodiment 1 shown in FIG. .
  • FIG. 19 is a block diagram showing a configuration example of the flux-weakening control unit 403b included in the control unit 400b of the power converter 1 according to the third embodiment.
  • the flux-weakening control unit 403b is obtained by replacing the d-axis current ripple generating unit 603 with the d-axis current ripple generating unit 603b in the flux-weakening control unit 403 of the first embodiment shown in FIG.
  • the d-axis current pulsation generator 603b generates a d-axis current pulsation command i dAC * that suppresses an increase or decrease in the amplitude of the dq-axis voltage command vector V dq * according to the voltage deviation. Specifically, the d-axis current ripple generator 603b calculates the d-axis current ripple command i dAC * from the voltage deviation obtained by the subtractor 601 and the frequency of the q-axis current ripple.
  • the frequency of the q-axis current ripple is, for example, the q-axis current ripple command i qrip * calculated by the q-axis current ripple calculator 408 .
  • the d-axis current ripple generator 603b includes Fourier coefficient calculators 704 and 705 , PID controllers 708 and 709 , and an AC restorer 710 .
  • the d-axis current ripple generator 603b is configured to calculate the d-axis current ripple idAC from the voltage deviation.
  • the method using the d-axis current pulsation generator 603b is a method of converting a pulsation signal into a direct current and controlling it using Fourier coefficient calculation.
  • Fourier coefficient calculation units 704 and 705 divide the specific frequency component of the voltage deviation into a COS component and a SIN component by Fourier coefficient calculation, convert them to DC, and extract them.
  • the Fourier coefficient calculators 704 and 705 use the frequency of the q-axis current pulsation as a reference, ie, the frequency of the q-axis current pulsation as 1F, and one extracts the COS 1F component and the other extracts the SIN 1F component. It can be seen from FIG. 12 that it is most effective to apply a pulsation of the same frequency as the q -axis current iq to the d -axis current id. , other frequency components may be suppressed.
  • the Fourier coefficient calculators 704 and 705 divide the prescribed frequency component based on the q-axis current pulsation command i qrip * into the SIN component and the COS component, convert them to direct current, and extract them from the voltage deviation.
  • SIN may be referred to as sine
  • COS may be referred to as cosine.
  • the PID control unit 708 performs PID control so that each frequency component extracted by the Fourier coefficient calculation unit 704 becomes zero.
  • PID control section 709 performs PID control so that each frequency component extracted by Fourier coefficient calculation section 705 becomes zero.
  • PID control ie, proportional-integral-derivative control
  • PID controllers 708 and 709 are integral controllers that control the SIN and COS components of the frequency components extracted by Fourier coefficient calculators 704 and 705 to be zero.
  • AC restoration section 710 receives the calculation results of PID control sections 708 and 709 and restores the calculation results into one AC signal.
  • AC restorer 710 outputs the restored AC signal as d-axis current pulsation command idAC * .
  • the d-axis current pulsation generator 603b can pulsate the d-axis current id at the same frequency as the q-axis current pulsation.
  • the pulsation signal is converted into a direct current and handled, so it is possible to suppress the pulsation of the target frequency without unreasonably increasing the control gain.
  • the integral control unit 602 alone is to perform high-frequency flux-weakening control, the control gain must be increased. Therefore, it is difficult to perform high-frequency flux-weakening control by the integral control unit 602 alone.
  • the d-axis current pulsation generator 603b is added in parallel to separate the high-frequency flux-weakening control and the low-frequency flux-weakening control, destabilization of the control part 400b can be prevented and excellent flux-weakening control can be achieved. can do.
  • FIG. 21 is a flow chart showing the operation of the flux-weakening control section 403b included in the control section 400b of the power converter 1 according to the third embodiment.
  • the subtraction unit 601 subtracts the dq-axis voltage command vector V dq * from the voltage limit value V lim * to calculate the voltage deviation (step S11).
  • the integral control unit 602 performs integral control so that the voltage deviation becomes zero, and determines the d-axis current command i dDC * (step S12).
  • Fourier coefficient calculators 704 and 705 divide the specific frequency component of the voltage deviation into a COS component and a SIN component by Fourier coefficient calculation, convert them to DC, and extract them.
  • the PID controllers 708 and 709 control the frequency components extracted by the Fourier coefficient calculators 704 and 705 to be zero (step S31).
  • the AC restorer 710 restores the calculation results of the PID controllers 708 and 709 to AC signals to calculate the d-axis current ripple command idAC * (step S13).
  • the adder 604 adds the d-axis current command idDC * and the d-axis current pulsation command idAC * to generate the d-axis current command id * , that is, determines the d-axis current command id * (step S14 ).
  • Control unit 400b is realized by processor 91 and memory 92, similar to control unit 400 of the first embodiment.
  • the flux-weakening control unit 403b of the control unit 400b performs feedback-type flux-weakening control to determine the d-axis current command i d * .
  • the power converter 1 can improve the accuracy of the flux-weakening control and perform accurate flux-weakening control as compared with the first embodiment, so that the d-axis current id does not have to flow excessively. Therefore, the copper loss can be improved.
  • the power conversion device 1 can suppress the deterioration of the smoothing capacitor 210 while suppressing the decrease in efficiency in the overmodulation region.
  • the flux-weakening control unit 403b since the flux-weakening control unit 403b does not use the motor constant, the motor constant fluctuation It is characterized by being strong against In addition, the flux-weakening control unit 403b automatically adjusts the phase of the d-axis current pulsation i dAC by the PID control units 708 and 709, so even when the current response cannot be made very high, the voltage amplitude can be easily kept constant. There are also benefits. It should be noted that the control content of the third embodiment can be appropriately combined with the control content of the first and second embodiments.
  • FIG. 22 is a diagram showing an example of frequency analysis results of an ideal d-axis current ripple i dAC .
  • the horizontal axis indicates the order of harmonics included in the voltage deviation
  • the vertical axis indicates the content of harmonics included in the voltage deviation.
  • FIG. 22 shows the result of frequency analysis of the waveform of the ideal values shown in FIG.
  • the configuration of the control unit 400b is the same as the configuration of the control unit 400b of the third embodiment shown in FIG.
  • the configuration of the flux-weakening control section 403b is the same as the configuration of the flux-weakening control section 403b of the third embodiment shown in FIG.
  • the power conversion device 1 according to Embodiment 4 replaces the control unit 400 with a control unit 400b in the power conversion device 1 according to Embodiment 1 shown in FIG. .
  • FIG. 23 is a block diagram showing a configuration example of the d-axis current ripple generating section 603b according to the fourth embodiment.
  • the d-axis current pulsation generation section 603b includes a gain section 701, Fourier coefficient calculation sections 702-705, PID control sections 706-709, and an AC restoration section 710.
  • the d-axis current pulsation generator 603b is provided with a parallel control system for setting only a specific frequency component to zero with respect to the voltage deviation.
  • a control system using Fourier coefficient calculation will be exemplified. I don't mind.
  • a gain unit 701 multiplies the frequency of q-axis current pulsation by N times.
  • N is an integer of 2 or more.
  • Fourier coefficient calculation units 702 to 705 divide the specific frequency component of the voltage deviation into a COS component and a SIN component by Fourier coefficient calculation, convert them to DC, and extract them.
  • Fourier coefficient calculators 704 and 705 use the frequency of the q-axis current pulsation as a reference, ie, the frequency of the q-axis current pulsation as 1f, and one extracts the COS 1F component and the other extracts the SIN 1F component.
  • One of the Fourier coefficient calculators 702 and 703 extracts the COS2F component, and the other extracts the SIN2F component.
  • the control system for suppressing the voltage deviation pulsation of frequency 1F and frequency 2F may be further parallelized so as to suppress other frequency components.
  • the Fourier coefficient calculators 704 and 705 divide the first frequency component specified based on the q-axis current pulsation command i qrip * into the SIN component and the COS component from the voltage deviation, convert it to a DC component, and extract the first frequency component.
  • 1 is a Fourier coefficient calculator.
  • Fourier coefficient calculators 702 and 703 are second Fourier coefficient calculators that divide the second frequency component obtained by the gain unit 701 into a SIN component and a COS component, convert them to direct current, and extract them from the voltage deviation.
  • the PID control unit 706 performs PID control so that each frequency component extracted by the Fourier coefficient calculation unit 702 becomes zero.
  • PID control section 707 performs PID control so that each frequency component extracted by Fourier coefficient calculation section 703 becomes zero.
  • PID control section 708 performs PID control so that each frequency component extracted by Fourier coefficient calculation section 704 becomes zero.
  • PID control section 709 performs PID control so that each frequency component extracted by Fourier coefficient calculation section 705 becomes zero.
  • PID control ie, proportional-integral-derivative control, is exemplified as general control, but another type of control may be used.
  • PID controllers 708 and 709 are first integral controllers that control the SIN and COS components of the first frequency components extracted by Fourier coefficient calculators 704 and 705 to be zero.
  • PID controllers 706 and 707 are second integral controllers that control the SIN and COS components of the second frequency components extracted by Fourier coefficient calculators 702 and 703 to be zero.
  • AC restoration section 710 receives the calculation results of PID control sections 706 to 709 and restores the calculation results into one AC signal.
  • AC restorer 710 outputs the restored AC signal as d-axis current pulsation command idAC * .
  • the d-axis current pulsation generator 603b can pulsate the d-axis current id at a frequency including the 1F component and the 2F component of the q-axis current pulsation.
  • control unit 400b superimposes the q-axis current pulsation command i qrip * corresponding to the q-axis current pulsation on the drive pattern of the motor 314 according to the detection value of the detection unit, thereby controlling the charge/discharge current of the capacitor 210.
  • the d-axis current id of the motor 314 is pulsated in synchronization with the frequency of a positive integer multiple of .
  • the positive integer is 2 in this embodiment, but may be 3 or more, or may be plural.
  • positive integers can also be referred to as 1 and 2 for this embodiment.
  • control unit 400b superimposes the q-axis current pulsation command i qrip * corresponding to the q-axis current pulsation on the drive pattern of the motor 314 according to the detection value of the detection unit, so that the capacitor 210
  • the control unit 400b superimposes the q-axis current pulsation command i qrip * corresponding to the q-axis current pulsation on the drive pattern of the motor 314 according to the detection value of the detection unit, so that the capacitor 210
  • the d-axis it can also be said that the current id is pulsated.
  • FIG. 24 is a flow chart showing the operation of the flux-weakening control section 403b included in the control section 400b of the power converter 1 according to the fourth embodiment.
  • the subtraction unit 601 subtracts the dq-axis voltage command vector V dq * from the voltage limit value V lim * to calculate the voltage deviation (step S11).
  • the integral control unit 602 performs integral control so that the voltage deviation becomes zero, and determines the d-axis current command i dDC * (step S12).
  • Fourier coefficient calculation sections 702 to 705 divide a plurality of specific frequency components of the voltage deviation into COS components and SIN components by Fourier coefficient calculation, convert them into DC components, and extract them.
  • the PID controllers 706-709 perform control so that each frequency component extracted by the Fourier coefficient calculators 702-705 becomes zero (step S41).
  • the AC restorer 710 restores the calculation results of the PID controllers 706 to 709 to AC signals to calculate the d-axis current ripple command i dAC * (step S13).
  • the adder 604 adds the d-axis current command idDC * and the d-axis current pulsation command idAC * to generate the d-axis current command id * , that is, determines the d-axis current command id * (step S14 ).
  • the flux-weakening control unit 403b of the control unit 400b performs feedback-type flux-weakening control using a plurality of specific frequency components, and d It was decided to determine the shaft current command i d * .
  • the power conversion device 1 can improve the accuracy of the flux-weakening control and perform accurate flux-weakening control as compared with the third embodiment, so that the d-axis current id does not have to flow excessively. Therefore, the copper loss can be improved.
  • the power conversion device 1 can further suppress deterioration of the smoothing capacitor 210 and suppress a decrease in efficiency in the overmodulation region.
  • the fifth embodiment aims to improve the waveform of the q-axis current iq. , to prevent an increase in copper loss.
  • the power converter 1 includes a reactor 120, a rectifying section 130, and the like, and a smoothing section 200 includes a smoothing capacitor 210 and the like.
  • the capacity of the reactor 120, the capacitor 210, etc., in the power conversion device 1 is large, the current flowing into the capacitor 210 has a "rabbit ear" shape as described above.
  • the copper loss is worsened when the pulsation of twice the frequency is applied at the same time. It is non-obvious that the copper loss is improved by simultaneously applying pulsation with a double frequency when the load of the motor 314 is heavy.
  • FIG. 25 is a diagram showing an example of the waveform of the current command in the light load range.
  • the horizontal axis indicates time
  • the vertical axis in the upper diagram indicates the d-axis current command
  • the vertical axis in the lower diagram indicates the q-axis current command.
  • the fundamental frequency of the capacitor current pulsation is 2f.
  • a frequency that is twice the fundamental wave frequency 2f of the capacitor current pulsation is 4f.
  • the fundamental wave frequency 2f is the same frequency as the power supply frequency 2f described above.
  • FIG. 26 is a diagram showing an example of the waveform of the current command in the heavy load range.
  • the horizontal axis indicates time
  • the vertical axis in the upper diagram indicates the d-axis current command
  • the vertical axis in the lower diagram indicates the q-axis current command.
  • the dq-axis current there is an upper limit to the dq-axis current that can be applied to the motor 314 due to the demagnetization limit of the motor 314, voltage saturation, and the like.
  • the pulsation width of the q-axis current iq is reduced by simultaneously adding the 2f pulsation and the 4f pulsation.
  • the deceleration of the motor 314 can be reduced by reducing the downward swing of the q-axis current iq .
  • copper loss is reduced. This is a phenomenon newly discovered by the inventors, and is non-obvious to other persons skilled in the art. At this time, the capacitor current (not shown) was about the same, but the copper loss was reduced by about 40% by simultaneously compensating for the 4f pulsation.
  • Embodiment 5 states that "in the control for reducing capacitor current pulsation, if the capacitor current pulsation with a frequency that is two times and four times the frequency of the AC power supply is corrected at the same time, the flux-weakening current will decrease under heavy load.” It is based on knowledge. Henceforth, it demonstrates based on this knowledge.
  • FIG. 27 is a block diagram showing a configuration example of the control unit 400c included in the power converter 1 according to Embodiment 5.
  • Control unit 400c replaces flux-weakening control unit 403 with flux-weakening control unit 403c in control unit 400 of the first embodiment shown in FIG. is replaced with
  • the q-axis current ripple calculator 408 c includes a first q-axis current ripple calculator 801 , a second q-axis current ripple calculator 802 , and an operating state determiner 803 .
  • the power conversion device 1 according to Embodiment 5 replaces the control unit 400 with a control unit 400c in the power conversion device 1 according to Embodiment 1 shown in FIG. .
  • the frequency of the power supply voltage Vs supplied from the commercial power supply 110 is assumed to be 1f. Since the commercial power supply 110 is a single-phase AC power supply, the fundamental frequency of the capacitor current pulsation is 2f, and twice the fundamental frequency of the capacitor current pulsation is 4f.
  • the first q-axis current ripple calculation unit 801 is a control system that suppresses the 2f ripple of the DC bus voltage Vdc when the fundamental frequency of the capacitor current ripple is 2f, and compensates for the 2f ripple of the DC bus voltage Vdc .
  • the second q-axis current ripple calculation unit 802 is a control system that suppresses the 4f ripple of the DC bus voltage Vdc , and calculates a second q-axis current ripple command that compensates for the 4f ripple of the DC bus voltage Vdc . output. It is well known that these control systems can reduce the current flowing through the capacitor 210 of the smoothing section 200 .
  • the operating state determination unit 803 determines the operating state of the motor 314 , that is, the magnitude of the load applied to the motor 314 .
  • the operating state determination unit 803 determines that the load applied to the motor 314 is light, it selects the output of the first q-axis current ripple calculation unit 801 and outputs it as the q-axis current ripple command i qrip * . Output.
  • the operating state determination unit 803 determines that the load applied to the motor 314 is heavy, the output of the first q-axis current ripple calculation unit 801 and the second q-axis current ripple calculation unit 802 , and output as the q-axis current pulsation command i qrip * .
  • the operating state determining unit 803. there are various methods for determining the operating state in the operating state determining unit 803.
  • the q-axis current command i qDC * output from the speed control unit 402 and the output from the rotor position estimating unit 401 are used.
  • a method using the estimated speed ⁇ est is conceivable. Since the average output power P DC of the motor 314 can be obtained by multiplying the q-axis current command i qDC * by the estimated speed ⁇ est , the operating state determination unit 803, based on the magnitude of the average output power P DC of the motor 314, It can be determined whether the load applied to the motor 314 is heavy or light.
  • the operating state determination unit 803 preferably provides a hysteresis width for the threshold for determining the heavy load and the light load so that the heavy load and light load determinations do not chatter. For example, the operating state determination unit 803 determines that the load has become heavy when the average output power P DC exceeds 60% of the maximum output power, and then when the average output power P DC falls below 40% of the maximum output power. It suffices to perform processing for determining that the load has become light when Note that the thresholds such as 60% and 40% exemplified here are examples, and other values may be used.
  • a determination method using the voltage applied to the motor 314 and the current flowing through the motor 314 is also considered. Since the input power to the motor 314 can be obtained by multiplying the voltage and the current, the operating state determination unit 803 determines whether the load applied to the motor 314 is a heavy load or a light load by obtaining the input power to the motor 314. may
  • the operating state determination unit 803 determines that the load is light when the added value does not reach the limit value of the q-axis current iq (not shown), and determines that the load is heavy when the added value reaches the limit value of the q -axis current iq. judge.
  • the operating state determination unit 803 may be omitted and the 2f pulsation and the 4f pulsation may always be compensated for at the same time.
  • the flux-weakening control unit 403c is a control system that generates a d-axis current pulsation idAC in synchronization with the q-axis current pulsation, and gives a d-axis current command id * including 1f pulsation and 2f pulsation.
  • the flux-weakening control unit 403c may be configured as in Embodiments 1 and 3, or may have pulsations of other frequencies with respect to the d-axis current id as in Embodiments 2 and 4. It may be configured such that they are given at the same time.
  • control unit 400c can suppress the increase in the copper loss and appropriately suppress the capacitor current. It becomes possible to
  • FIG. 28 is a flowchart showing the operation of the q-axis current pulsation calculator 408c included in the controller 400c of the power converter 1 according to the fifth embodiment.
  • the first q-axis current ripple calculator 801 calculates a first q-axis current ripple command that compensates for the 2f ripple of the DC bus voltage Vdc (step S51).
  • the second q-axis current ripple calculator 802 calculates a second q-axis current ripple command that compensates for the 4f ripple of the DC bus voltage Vdc (step S52).
  • the operating state determination unit 803 determines the magnitude of the load applied to the motor 314 (step S53).
  • step S54 If the load is light (step S54: Yes), the operating state determination unit 803 selects the first q-axis current pulsation command and outputs it as the q-axis current pulsation command i qrip * (step S55). If the load is heavy (step S54: No), the operating state determination unit 803 adds the first q-axis current pulsation command and the second q-axis current pulsation command, and outputs the result as the q-axis current pulsation command i qrip * . (step S56).
  • q-axis current pulsation calculator 408c determines the load of motor 314 .
  • the q-axis current pulsation calculation unit 408c determines that the load is light by comparison with a threshold value for determining that the load is a light load
  • the q-axis current pulsation calculation unit 408c generates a pulsation that is twice the frequency of the first AC power. Generate a compensating q-axis current ripple command i qrip * .
  • the q-axis current pulsation calculation unit 408c determines that the load is a heavy load by comparison with a threshold value for determining a heavy load that is a specified load, the q-axis current pulsation calculation unit 408c performs pulsation twice the frequency of the first AC power and Generate a q-axis current ripple command i qrip * that compensates for the quadruple ripple.
  • the commercial power supply 110 is a single-phase AC power supply
  • this embodiment can also be applied when the commercial power supply 110 is a three-phase AC power supply.
  • the fundamental frequency of capacitor current pulsation is three times that when commercial power supply 110 is a single-phase AC power supply. That is, when the commercial power supply 110 is a three-phase AC power supply, the fundamental frequency of the capacitor current pulsation is 6f, and twice the fundamental frequency of the capacitor current pulsation is 12f.
  • the q-axis current pulsation calculator 408c determines the load of the motor 314 .
  • the q-axis current pulsation calculation unit 408c determines that the load is light by comparison with a threshold value for determining that the load is light
  • the q-axis current pulsation calculation unit 408c generates pulsation six times the frequency of the first AC power. Generate a compensating q-axis current ripple command i qrip * .
  • the q-axis current pulsation calculation unit 408c determines that the load is a heavy load by comparison with a threshold value for determining a heavy load that is a specified load, the q-axis current pulsation calculation unit 408c performs pulsation six times the frequency of the first AC power and Generate a q-axis current ripple command i qrip * that compensates for the 12-fold ripple.
  • Control unit 400c included in the power converter 1 will be described.
  • Control unit 400c is realized by processor 91 and memory 92, similar to control unit 400 of the first embodiment.
  • q-axis current pulsation calculation unit 408c of control unit 400c reduces DC bus voltage Vdc when the load applied to motor 314 is large.
  • the sum of the first q-axis current ripple command compensating for the 1f ripple and the second q-axis current ripple command for compensating the 2f ripple of the DC bus voltage Vdc is output as the q-axis current ripple command iqrip * . It was decided to.
  • the power conversion device 1 can appropriately suppress the capacitor current while suppressing an increase in copper loss as compared with the first embodiment.
  • the control content of the fifth embodiment can be appropriately combined with the control content of the first to fourth embodiments.
  • Embodiments 1 to 5 have described cases where the capacitor current reduction control and the flux-weakening control are performed in the power converter 1 .
  • the flux-weakening control of Embodiments 2 to 4 can also be applied to Patent Document 1.
  • the flux-weakening control described in Patent Document 1 is a method similar to the flux-weakening control according to Embodiment 1, but as described above, the error between the tangent line approximation and the ideal value becomes large, and appropriate flux-weakening control is not possible. It may not be possible.
  • the power converter of the sixth embodiment can improve the accuracy of the flux-weakening control when performing the vibration suppression control and the flux-weakening control.
  • FIG. 29 is a diagram showing a configuration example of a power conversion device 1d according to the sixth embodiment.
  • the power converter 1d replaces the controller 400 of the power converter 1 shown in FIG. 1 with a controller 400d.
  • the power conversion device 1d and the motor 314 included in the compressor 315 constitute a motor driving device 2d.
  • FIG. 30 is a block diagram showing a configuration example of a control unit 400d included in the power converter 1d according to Embodiment 6.
  • Control unit 400d replaces flux-weakening control unit 403a with flux-weakening control unit 403d in control unit 400a of the second embodiment shown in FIG. is replaced with
  • the q-axis current pulsation calculation unit 408d has a configuration corresponding to the speed pulsation suppression control unit or vibration suppression control unit described in paragraph 0025 of Patent Document 1, and corresponds to the q-axis current pulsation i qAC of Patent Document 1.
  • a q-axis current pulsation command i qrip * is output.
  • the specific configuration of the q-axis current pulsation calculator 408d, which corresponds to the speed pulsation suppression controller or the vibration suppression controller, may be a general configuration, so it does not matter as in Patent Document 1.
  • the flux-weakening control unit 403d performs flux-weakening control in consideration of the q-axis current ripple command i qrip * calculated by the q-axis current ripple calculation unit 408d.
  • the q-axis current pulsating command i qrip * of the sixth embodiment and the q-axis current pulsating command i qrip * of the second to fourth embodiments have different pulsating frequencies.
  • the flux-weakening control unit 403d has the same configuration as the flux-weakening control unit 403a of the second embodiment or the flux-weakening control unit 403b of the third and fourth embodiments, so that the d-axis current command i d * can be auto-tuned.
  • the control unit 400d superimposes the q-axis current pulsation, which is the pulsation component of the q -axis current iq, on the driving pattern of the motor 314 according to the detection value of the detection unit, thereby suppressing the vibration caused by the rotation of the motor 314.
  • the d-axis current id of the motor 314 is pulsated in synchronization with a positive integer multiple frequency of the q-axis current pulsation.
  • the positive integer it may be one or plural as described above.
  • a positive integer may be only 1 or 1 and 2.
  • the control unit 400d has the same configuration as the control unit 400a shown in FIG. 13 when operating like the control unit 400a of the second embodiment, and the flux-weakening control unit 403a shown in FIG. Prepare.
  • the operation of each configuration of the control unit 400a and the flux-weakening control unit 403a is as described above.
  • control unit 400d has the same configuration as the control unit 400b shown in FIG. 18 when it operates like the control unit 400b of the third embodiment, and performs the flux weakening control shown in FIG. 19 as the flux weakening control unit 403d.
  • a portion 403b is provided.
  • the flux-weakening controller 403b includes a d-axis current ripple generator 603b shown in FIG. The operation of each configuration of the control unit 400b, the flux-weakening control unit 403b, and the d-axis current ripple generation unit 603b is as described above.
  • control unit 400d has the same configuration as the control unit 400b shown in FIG. 18 when it operates like the control unit 400b of the fourth embodiment, and performs the flux-weakening control shown in FIG. A portion 403b is provided.
  • the flux-weakening controller 403b includes a d-axis current ripple generator 603b shown in FIG. The operation of each configuration of the control unit 400b, the flux-weakening control unit 403b, and the d-axis current ripple generation unit 603b is as described above.
  • Control unit 400d included in the power converter 1d will be described.
  • Control unit 400d is implemented by processor 91 and memory 92, similar to control unit 400 of the first embodiment.
  • the flux-weakening control section 403d of the control section 400d performs the same control as the flux-weakening control of the second to fourth embodiments.
  • the power conversion device 1d can improve the accuracy of the flux-weakening control and perform accurate flux-weakening control so that the d-axis current id does not have to flow excessively, thereby improving the copper loss.
  • the power conversion device 1d can suppress a decrease in efficiency in the overmodulation region while suppressing vibration due to the rotation of the motor 314 .
  • FIG. 31 is a diagram showing a configuration example of a refrigeration cycle equipment 900 according to Embodiment 7.
  • a refrigerating cycle-applied equipment 900 according to the seventh embodiment includes the power converter 1 described in the first to fifth embodiments.
  • the refrigerating cycle applied equipment 900 can include the power conversion device 1d described in Embodiment 6, but here, as an example, a case of including the power conversion device 1 will be described.
  • the refrigerating cycle applied equipment 900 according to Embodiment 7 can be applied to products equipped with a refrigerating cycle, such as air conditioners, refrigerators, freezers, and heat pump water heaters.
  • constituent elements having functions similar to those of the first embodiment are assigned the same reference numerals as those of the first embodiment.
  • Refrigerating cycle applied equipment 900 includes compressor 315 incorporating motor 314 according to Embodiment 1, four-way valve 902, indoor heat exchanger 906, expansion valve 908, and outdoor heat exchanger 910 with refrigerant pipe 912. attached through
  • a compression mechanism 904 that compresses the refrigerant and a motor 314 that operates the compression mechanism 904 are provided inside the compressor 315 .
  • the refrigeration cycle applied equipment 900 can perform heating operation or cooling operation by switching operation of the four-way valve 902 .
  • the compression mechanism 904 is driven by a variable speed controlled motor 314 .
  • the refrigerant is pressurized by the compression mechanism 904 and sent out through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910, and the four-way valve 902. Return to compression mechanism 904 .
  • the refrigerant is pressurized by the compression mechanism 904 and sent through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902. Return to compression mechanism 904 .
  • the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat.
  • the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat.
  • the expansion valve 908 reduces the pressure of the refrigerant to expand it.
  • 1, 1d power conversion device, 2, 2d motor drive device, 110 commercial power supply, 120 reactor, 130 rectification section, 131 to 134 rectification element, 200 smoothing section, 210 capacitor, 310 inverter, 311a to 311f switching element, 312a to 312f Freewheeling diode, 313a, 313b current detector, 314 motor, 315 compressor, 400, 400a, 400b, 400c, 400d controller, 401 rotor position estimator, 402 speed controller, 403, 403a, 403b, 403c, 403d Weakening magnetic flux control unit, 404 current control unit, 405, 406 coordinate conversion unit, 407 PWM signal generation unit, 408, 408c, 408d q-axis current pulsation calculation unit, 409 addition unit, 501 voltage detection unit, 601 subtraction unit, 602 integration Control section, 603, 603b d-axis current ripple generation section, 604 addition section, 605 d-axis current ripple readjustment section, 701 gain

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電力変換装置(1)は、商用電源(110)から供給される第1の交流電力を整流する整流部(130)と、整流部(130)の出力端に接続されるコンデンサ(210)と、コンデンサ(210)の両端に接続され、第2の交流電力を生成してモータ(314)に出力するインバータ(310)と、コンデンサ(210)の電力状態を検出する電圧検出部(501)と、モータ(314)の回転子位置に同期して回転するdq回転座標を用いて、インバータ(310)およびモータ(314)の動作を制御する制御部(400)と、を備え、制御部(400)は、電圧検出部(501)の検出値に応じてq軸電流脈動をモータ(314)の駆動パターンに重畳し、コンデンサ(210)の充放電電流を抑制するとともに、インバータ(310)の電圧が飽和する際にq軸電流脈動の正の整数倍の周波数に同期してモータ(314)のd軸電流を脈動させる。

Description

電力変換装置、モータ駆動装置および冷凍サイクル適用機器
 本開示は、交流電力を所望の電力に変換する電力変換装置、モータ駆動装置および冷凍サイクル適用機器に関する。
 従来、電力変換装置には、負荷トルクに周期的な変動が発生するもの、すなわち周期的な負荷トルク脈動を持つ機械装置に接続されるものが多い。機械装置、機械装置の動力源となるモータなどでは、負荷トルク脈動によって、振動、騒音などが発生することがある。そのため、振動抑制制御に関する様々な技術が検討されている。一方で、高速回転時に振動抑制制御を行おうとすると、d軸電流を平均的に多く流して変調率に大きく余裕を取る必要があるため、モータの駆動の際の効率が損なわれてしまうことがある。このような問題に対して、特許文献1には、過変調領域において振動抑制制御を行いつつ、効率の低下を抑制する技術が開示されている。
国際公開第2020/234971号
 一般的に、電力変換装置は、交流電源から供給される交流電力を整流部で整流し、さらに平滑コンデンサで平滑し、複数のスイッチング素子からなるインバータで所望の交流電力に変換し、モータに出力している。しかしながら、上記従来の技術によれば、平滑コンデンサに大きな電流が流れると、平滑コンデンサの経年劣化が加速する、という問題があった。このような問題に対して、平滑コンデンサの容量を大きくすることでコンデンサ電圧のリプル変化を抑制する、またはリプルによる劣化耐量の大きい平滑コンデンサを使用する方法が考えられるが、コンデンサ部品のコストが高くなり、また装置が大型化してしまう。
 本開示は、上記に鑑みてなされたものであって、平滑用のコンデンサの劣化を抑制しつつ、効率の低下を抑制可能な電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係る電力変換装置は、商用電源から供給される第1の交流電力を整流する整流部と、整流部の出力端に接続されるコンデンサと、コンデンサの両端に接続され、第2の交流電力を生成してモータに出力するインバータと、コンデンサの電力状態を検出する検出部と、モータの回転子位置に同期して回転するdq回転座標を用いて、インバータおよびモータの動作を制御する制御部と、を備える。制御部は、検出部の検出値に応じてq軸電流の脈動成分であるq軸電流脈動をモータの駆動パターンに重畳し、コンデンサの充放電電流を抑制するとともに、インバータの電圧が飽和する際にq軸電流脈動の正の整数倍の周波数に同期してモータのd軸電流を脈動させる。
 本開示に係る電力変換装置は、平滑用のコンデンサの劣化を抑制しつつ、効率の低下を抑制できる、という効果を奏する。
実施の形態1に係る電力変換装置の構成例を示す図 実施の形態1に係る電力変換装置が備える制御部の構成例を示すブロック図 比較例として実施の形態1の電力変換装置と同様の回路構成の電力変換装置における駆動波形の例を示す図 実施の形態1に係る電力変換装置における駆動波形の例を示す図 実施の形態1に係る電力変換装置の制御部が備える弱め磁束制御部の構成例を示すブロック図 実施の形態1に係る電力変換装置の制御部が備える弱め磁束制御部が弱め磁束制御を実施した場合の電圧指令を示す図 実施の形態1に係る弱め磁束制御部における簡便なd軸電流脈動の計算方法を示す第1の図 実施の形態1に係る弱め磁束制御部における簡便なd軸電流脈動の計算方法を示す第2の図 実施の形態1に係る電力変換装置が備える制御部の動作を示すフローチャート 実施の形態1に係る電力変換装置の制御部が備える弱め磁束制御部の動作を示すフローチャート 実施の形態1に係る電力変換装置が備える制御部を実現するハードウェア構成の一例を示す図 実施の形態1に係る電力変換装置の制御部が備える弱め磁束制御部による弱め磁束制御の制御誤差を示す図 実施の形態2に係る電力変換装置が備える制御部の構成例を示すブロック図 実施の形態2に係る電力変換装置の制御部が備える弱め磁束制御部による弱め磁束制御の制御誤差を示す図 実施の形態2に係る電力変換装置の制御部が備える弱め磁束制御部の構成例を示すブロック図 実施の形態2に係る電力変換装置の制御部が備える弱め磁束制御部による弱め磁束制御を説明するための図 実施の形態2に係る電力変換装置の制御部が備える弱め磁束制御部の動作を示すフローチャート 実施の形態3に係る電力変換装置が備える制御部の構成例を示すブロック図 実施の形態3に係る電力変換装置の制御部が備える弱め磁束制御部の構成例を示すブロック図 実施の形態3に係るd軸電流脈動発生部の構成例を示すブロック図 実施の形態3に係る電力変換装置の制御部が備える弱め磁束制御部の動作を示すフローチャート 理想的なd軸電流脈動の周波数分析結果の例を示す図 実施の形態4に係るd軸電流脈動発生部の構成例を示すブロック図 実施の形態4に係る電力変換装置の制御部が備える弱め磁束制御部の動作を示すフローチャート 軽負荷域での電流指令の波形の例を示す図 重負荷域での電流指令の波形の例を示す図 実施の形態5に係る電力変換装置が備える制御部の構成例を示すブロック図 実施の形態5に係る電力変換装置の制御部が備えるq軸電流脈動演算部の動作を示すフローチャート 実施の形態6に係る電力変換装置の構成例を示す図 実施の形態6に係る電力変換装置が備える制御部の構成例を示すブロック図 実施の形態7に係る冷凍サイクル適用機器の構成例を示す図
 以下に、本開示の実施の形態に係る電力変換装置、モータ駆動装置および冷凍サイクル適用機器を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1に係る電力変換装置1の構成例を示す図である。電力変換装置1は、商用電源110および圧縮機315に接続される。電力変換装置1は、商用電源110から供給される電源電圧Vsの第1の交流電力を所望の振幅および位相を有する第2の交流電力に変換し、圧縮機315に供給する。電力変換装置1は、リアクトル120と、整流部130と、電圧検出部501と、平滑部200と、インバータ310と、電流検出部313a,313bと、制御部400と、を備える。なお、電力変換装置1、および圧縮機315が備えるモータ314によって、モータ駆動装置2を構成している。
 リアクトル120は、商用電源110と整流部130との間に接続される。整流部130は、整流素子131~134によって構成されるブリッジ回路を有し、商用電源110から供給される電源電圧Vsの第1の交流電力を整流して出力する。整流部130は、全波整流を行うものである。電圧検出部501は、整流部130によって整流され、整流部130から平滑部200に流入される電流によって充電された平滑部200の両端電圧である直流母線電圧Vdcを検出し、検出した電圧値を制御部400に出力する。電圧検出部501は、コンデンサ210の電力状態を検出する検出部である。
 平滑部200は、整流部130の出力端に接続される。平滑部200は、平滑素子としてコンデンサ210を有し、整流部130によって整流された電力を平滑化する。コンデンサ210は、例えば、電解コンデンサ、フィルムコンデンサなどである。コンデンサ210は、整流部130の出力端に接続され、整流部130によって整流された電力を平滑化するような容量を有し、平滑化によりコンデンサ210に発生する電圧は商用電源110の全波整流波形形状ではなく、直流成分に商用電源110の周波数に応じた電圧リプルが重畳した波形形状となり、大きく脈動しない。この電圧リプルの周波数は、商用電源110が単相の場合は電源電圧Vsの周波数の2倍成分となり、商用電源110が三相の場合は6倍成分が主成分となる。商用電源110から入力される電力とインバータ310から出力される電力が変化しない場合、この電圧リプルの振幅はコンデンサ210の容量によって決まる。例えば、コンデンサ210に発生する電圧リプルの最大値が最小値の2倍未満となるような範囲で脈動している。
 インバータ310は、平滑部200、すなわちコンデンサ210の両端に接続される。インバータ310は、スイッチング素子311a~311f、および還流ダイオード312a~312fを有する。インバータ310は、制御部400の制御によってスイッチング素子311a~311fをオンオフし、整流部130および平滑部200から出力される電力を所望の振幅および位相を有する第2の交流電力に変換、すなわち第2の交流電力を生成して、圧縮機315に出力する。電流検出部313a,313bは、各々、インバータ310から出力される3相の電流のうち1相の電流値を検出し、検出した電流値を制御部400に出力する。なお、制御部400は、インバータ310から出力される3相の電流値のうち2相の電流値を取得することで、インバータ310から出力される残りの1相の電流値を算出することができる。圧縮機315は、圧縮機駆動用のモータ314を有する負荷である。モータ314は、インバータ310から供給される第2の交流電力の振幅および位相に応じて回転し、圧縮動作を行う。例えば、圧縮機315が空気調和機などで使用される密閉型圧縮機の場合、圧縮機315の負荷トルクは定トルク負荷とみなせる場合が多い。モータ314について、図1ではモータ巻線がY結線の場合を示しているが、一例であり、これに限定されない。モータ314のモータ巻線は、Δ結線であってもよいし、Y結線とΔ結線とが切り替え可能な仕様であってもよい。
 なお、電力変換装置1において、図1に示す各構成の配置は一例であり、各構成の配置は図1で示される例に限定されない。例えば、リアクトル120は、整流部130の後段に配置されてもよい。また、電力変換装置1は、昇圧部を備えてもよいし、整流部130に昇圧部の機能を持たせるようにしてもよい。以降の説明において、電圧検出部501、および電流検出部313a,313bをまとめて検出部と称することがある。また、電圧検出部501で検出された電圧値、および電流検出部313a,313bで検出された電流値を、検出値と称することがある。
 制御部400は、電圧検出部501から平滑部200の直流母線電圧Vdcの電圧値を取得し、電流検出部313a,313bからインバータ310によって変換された所望の振幅および位相を有する第2の交流電力の電流値を取得する。制御部400は、各検出部によって検出された検出値を用いて、インバータ310の動作、具体的には、インバータ310が有するスイッチング素子311a~311fのオンオフを制御する。また、制御部400は、各検出部によって検出された検出値を用いて、モータ314の動作を制御する。本実施の形態において、制御部400は、整流部130から平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動を含む第2の交流電力をインバータ310から負荷である圧縮機315に出力するようにインバータ310の動作を制御する。平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動とは、例えば、平滑部200のコンデンサ210に流入する電力の脈動の周波数などによって変動する脈動である。これにより、制御部400は、平滑部200のコンデンサ210に流れる電流を抑制する。なお、制御部400は、各検出部から取得した全ての検出値を用いなくてもよく、一部の検出値を用いて制御を行ってもよい。
 制御部400は、モータ314の速度、電圧、電流のいずれかが所望の状態になるように制御を行う。ここで、モータ314が圧縮機315の駆動用に使用され、圧縮機315が密閉型圧縮機の場合、モータ314に回転子位置を検出する位置センサを取り付けることが構造的にもコスト的にも難しいので、制御部400は、モータ314の制御を位置センサレスで行う。モータ314の位置センサレス制御方法については、一次磁束一定制御、およびセンサレスベクトル制御の2種類がある。本実施の形態では、一例として、センサレスベクトル制御をベースに説明する。なお、以降で説明する制御方法については、軽微な変更で一次磁束一定制御に適用することも可能である。本実施の形態において、制御部400は、後述するように、モータ314の回転子位置に同期して回転するdq回転座標を用いて、インバータ310およびモータ314の動作を制御する。
 つづいて、制御部400における本実施の形態での特徴的な動作について説明する。図1に示すように、電力変換装置1において、整流部130から平滑部200のコンデンサ210への入力電流を入力電流I1とし、平滑部200のコンデンサ210からインバータ310への出力電流を出力電流I2とし、平滑部200のコンデンサ210の充放電電流を充放電電流I3とする。入力電流I1は、商用電源110の電源位相、整流部130の前後に設置される素子の特性などの影響は受けるものの、基本的に電源周波数の2n倍成分を含む特性を有する。なお、nは1以上の整数である。
 平滑部200のコンデンサ210として電解コンデンサを用いる場合、充放電電流I3が大きいとコンデンサ210の経年劣化が加速する。充放電電流I3を減少させ、コンデンサ210の劣化を抑制するためには、制御部400は、コンデンサ210への入力電流I1=コンデンサ210からの出力電流I2となるようにインバータ310を制御すればよい。ただし、出力電流I2にはPWM(Pulse Width Modulation)に起因するリプル成分が重畳されるため、制御部400は、リプル成分を加味してインバータ310を制御する必要がある。制御部400は、コンデンサ210の劣化を抑制するためには、平滑部200、すなわちコンデンサ210の電力状態を監視し、モータ314に適切な脈動を与えて充放電電流I3が減少するようにすればよい。ここで、コンデンサ210の電力状態とは、コンデンサ210への入力電流I1、コンデンサ210からの出力電流I2、コンデンサ210の充放電電流I3、コンデンサ210の直流母線電圧Vdcなどのことである。制御部400は、これらのコンデンサ210の電力状態のうち、少なくともいずれか1つの情報が劣化抑制制御に必要となる。
 本実施の形態では、制御部400は、電圧検出部501で検出されたコンデンサ210の直流母線電圧Vdcを用いて、出力電流I2からPWMリプルを除いた値が入力電流I1と一致するようにモータ314に脈動を加える。すなわち、制御部400は、電圧検出部501の検出値に応じた脈動がモータ314の駆動パターンに重畳されるようにインバータ310の動作を制御し、コンデンサ210の充放電電流I3を抑制する。制御部400は、入力電流I1と出力電流I2との差分が小さくなるように、モータ314の入出力電力の関係からモータ314のq軸電流指令i を制御する。制御部400は、この制御方法では、インバータ310への入力電力とモータ314の機械出力との関係を利用して、充放電電流I3を低減するための理想的なq軸電流指令i を算出する。このように、本実施の形態において、制御部400は、d軸およびq軸を有する回転座標において制御を行う。なお、電力変換装置1は、コンデンサ210の直流母線電圧Vdcからコンデンサ210の充放電電流I3を推定することが可能であるが、コンデンサ210の充放電電流I3を検出する電流検出部を備えていてもよい。
 電力変換装置1において、電圧検出部501は、コンデンサ210の直流母線電圧Vdcの電圧値を検出し、電圧値を制御部400に出力する。制御部400は、コンデンサ210からインバータ310への出力電流I2からPWMリプルを除いた値が入力電流I1と一致するようにインバータ310を制御し、モータ314に出力される電力に脈動を加える。制御部400は、出力電流I2を適切に脈動させることによって、コンデンサ210の充放電電流I3を減少させることができる。前述のように、コンデンサ210への入力電流I1には電源周波数の2n倍成分が含まれることから、出力電流I2およびモータ314のq軸電流iにも電源周波数の2n倍成分が含まれることになる。出力電流I2を適切に脈動させるためのモータ314のq軸電流iの具体的な計算方法は、例えば、以下のような方法がある。
 電力変換装置1への入力となる商用電源110からの交流電源電圧は式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Vは交流電源電圧の振幅を示し、ωinは交流電源電圧の角周波数を示し、tは時間を示す。角周波数ωinは電源環境にもよるが、多くの場合、50Hz×2π=314rad/s、または60Hz×2π=377rad/sとなる。なお、電力変換装置1は、整流部130の前段または後段に昇圧部を含む回路構成の場合、コンデンサ210への入力電流I1にはPWMリプルが含まれることになるが、平均化して考慮しないこととする。入力電流I1が周期関数であると仮定して、入力電流I1をフーリエ係数で近似すると、入力電流I1は式(2)のように表せる。入力電流I1は整流部130によって電源周波数2fの整数倍の成分が多く含まれる波形となる。入力電流I1の基本波は電源周波数2fの成分となる。なお、数式では、他と表記を合わせるため、入力電流I1の「1」の部分は下付にしている。以降についても同様とする。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、IDCは電流の直流分を示し、I2f,I4f,I6f,…は電流の基本波振幅および高調波振幅を示し、θ2f,θ4f,θ6f,…は基本波位相および高調波位相を示す。入力電流I1をそのまま制御部400の制御に使用してもよいし、入力電流I1にフィルタを掛けてから制御部400の制御に使用してもよい。例えば、ローパスフィルタおよびバンドパスフィルタによって入力電流I1の直流成分、基本波成分、および低次高調波成分を抽出したものを入力電流I1´とすると、入力電流I1´は、例えば、式(3)のように表せる。式(3)において、入力電流I1´は、直流成分、電源周波数2f成分、および電源周波数4f成分を抽出したものであるが、電源周波数6f以上の成分を加味してもよい。なお、バンドパスフィルタは、FIR(Finite Impulse Response)フィルタによって構成してもよいし、IIR(Infinite Impulse Response)フィルタによって構成してもよい。また、入力電流I1´について、フーリエ係数展開の係数演算式から計算してもよい。
Figure JPOXMLDOC01-appb-M000003
 上述のフィルタ類によって特定の周波数成分のみを抽出するのは、モータ314に対して与える脈動に意図しない周波数成分が含まれるのを防ぐためである。一方で、上述のフィルタ類を使用した場合、入力電流I1の変化に対する即応性が低下するので、フィルタ類を使用するか否かは状況に応じて決めてよい。以下の説明では、上述のフィルタ類を使用したものとして説明する。コンデンサ210からの出力電流I2の出力電流指令I を式(4)のように与える。
Figure JPOXMLDOC01-appb-M000004
 出力電流指令I が指令値通りに流れるようにモータ314に脈動を加えるには、例えば、以下のようにすればよい。出力電流指令I が指令値通りに流れたとき、コンデンサ210からモータ314に入力される有効電力Pinは式(5)のように表される。
Figure JPOXMLDOC01-appb-M000005
 式(5)において、Vdcは直流母線電圧を示す。一方、モータ314で消費される有効電力Pmotは、dq軸電圧およびdq軸電流によって式(6)のように表される。
Figure JPOXMLDOC01-appb-M000006
 式(6)において、vはd軸電圧を示し、vはq軸電圧を示し、iはd軸電流を示し、iはq軸電流を示す。ここで、永久磁石同期モータの定常状態の電圧方程式を考え、式(6)に代入すると式(7)が得られる。
Figure JPOXMLDOC01-appb-M000007
 式(7)において、Rは電機子抵抗を示し、LおよびLはdq軸インダクタンスを示し、Φはdq軸鎖交磁束数を示し、ωは電気角速度を示す。電機子抵抗Rによる電圧降下が無視でき、なおかつ、d軸電流iがほぼゼロとみなせるケースでは、式(8)が成立する。
Figure JPOXMLDOC01-appb-M000008
 Pmot=Pinとなるようにモータ314に脈動を与えれば、平滑部200に流れる電流、すなわち充放電電流I3を低減できるため、式(9)のようにq軸電流脈動指令iqrip を与えればよい。
Figure JPOXMLDOC01-appb-M000009
 式(9)のようにq軸電流脈動指令iqrip を与えれば、平滑部200のコンデンサ210の劣化抑制が可能である。なお、d軸電流iが非ゼロの場合は、リラクタンストルクを加味して式(10)のように演算してもよい。
Figure JPOXMLDOC01-appb-M000010
 ここで、i はd軸電流指令である。式(9)および式(10)ではPmot=Pinを仮定したが、モータ314には銅損、鉄損、機械損といった損失がつきものである。そのため、このような損失を加味して演算を行ってもよい。
 上記のような演算を行う制御部400の構成について説明する。図2は、実施の形態1に係る電力変換装置1が備える制御部400の構成例を示すブロック図である。制御部400は、回転子位置推定部401と、速度制御部402と、弱め磁束制御部403と、電流制御部404と、座標変換部405,406と、PWM信号生成部407と、q軸電流脈動演算部408と、加算部409と、を備える。
 回転子位置推定部401は、モータ314にかかるdq軸電圧指令ベクトルVdq およびdq軸電流ベクトルidqから、モータ314が有する図示しない回転子について、回転子磁極のdq軸での方向である推定位相角θest、および回転子速度である推定速度ωestを推定する。
 速度制御部402は、速度指令ωおよび推定速度ωestからq軸電流指令iqDC を生成する。具体的には、速度制御部402は、速度指令ωと推定速度ωestとが一致するようにq軸電流指令iqDC を自動調整する。速度指令ωは、電力変換装置1が冷凍サイクル適用機器として空気調和機などに使用される場合、例えば、図示しない温度センサで検出された温度、図示しない操作部であるリモコンから指示される設定温度を示す情報、運転モードの選択情報、運転開始及び運転終了の指示情報などに基づくものである。運転モードとは、例えば、暖房、冷房、除湿などである。以降の説明において、q軸電流指令iqDC を第1のq軸電流指令と称することがある。
 弱め磁束制御部403は、dq軸電圧指令ベクトルVdq の絶対値が電圧制限値Vlim の制限値内に収まるようにd軸電流指令i を自動調整する。また、本実施の形態において、弱め磁束制御部403は、q軸電流脈動演算部408で演算されたq軸電流脈動指令iqrip を加味して弱め磁束制御を行う。弱め磁束制御は、大別して、電圧制限楕円の方程式からd軸電流指令i を計算する方法、および電圧制限値Vlim とdq軸電圧指令ベクトルVdq との絶対値の偏差がゼロになるようにd軸電流指令i を計算する方法の2種類があるが、どちらの方法を使用してもよい。弱め磁束制御部403の詳細な構成および動作については後述する。
 電流制御部404は、q軸電流指令i およびd軸電流指令i を用いてモータ314に流れる電流を制御し、dq軸電圧指令ベクトルVdq を生成する。具体的には、電流制御部404は、dq軸電流ベクトルidqがd軸電流指令i およびq軸電流指令i に追従するようにdq軸電圧指令ベクトルVdq を自動調整する。以降の説明において、dq軸電圧指令ベクトルVdq を単にdq軸電圧指令と称することがある。
 座標変換部405は、推定位相角θestに応じて、dq軸電圧指令ベクトルVdq をdq座標から交流量の電圧指令Vuvw に座標変換する。
 座標変換部406は、推定位相角θestに応じて、モータ314に流れる電流Iuvwを交流量からdq座標のdq軸電流ベクトルidqに座標変換する。前述のように、制御部400は、モータ314に流れる電流Iuvwについて、インバータ310から出力される3相の電流値のうち、電流検出部313a,313bで検出される2相の電流値、および2相の電流値を用いて残りの1相の電流値を算出することによって取得することができる。
 PWM信号生成部407は、座標変換部405で座標変換された電圧指令Vuvw に基づいてPWM信号を生成する。制御部400は、PWM信号生成部407で生成されたPWM信号をインバータ310のスイッチング素子311a~311fに出力することで、モータ314に電圧を印加する。
 q軸電流脈動演算部408は、検出値を用いてq軸電流脈動を演算し、q軸電流指令i の脈動成分である前述のq軸電流脈動指令iqrip を生成する。具体的には、q軸電流脈動演算部408は、電圧検出部501で検出された電圧値である直流母線電圧Vdc、および推定速度ωestに基づいて、式(9)または式(10)の演算を行ってq軸電流脈動指令iqrip を計算する。q軸電流iの脈動振幅はモータ314の駆動条件によって変わってくるので、q軸電流脈動演算部408は、駆動条件を適切に考慮して振幅を決定する。
 加算部409は、速度制御部402から出力されたq軸電流指令iqDC と、q軸電流脈動演算部408で演算されたq軸電流脈動指令iqrip とを加算してq軸電流指令i を生成し、電流制御部404へ出力する。以降の説明において、q軸電流指令i を第2のq軸電流指令と称することがある。
 制御部400は、従来と同様の制御を行う電力変換装置と比較して、式(9)または式(10)に基づいてq軸電流脈動指令iqrip を演算し、q軸電流脈動指令iqrip を用いてq軸電流指令i を演算する点、およびq軸電流脈動指令iqrip を加味して弱め磁束制御を行う点が異なる。空調用圧縮機モータのようなアプリケーションでは、弱め磁束制御、インバータ過変調などを積極活用するが、これらの制御を使用する電圧飽和域では、q軸電流iのみに脈動を与えても電圧不足で指令値に追従しない。そのため、q軸電流脈動指令iqrip に合わせてd軸電流iも脈動させる必要がある。電圧振幅が一定になるようにd軸電流iも同時に脈動させる弱め磁束制御の方法が公知である。弱め磁束制御部403は、電圧飽和時にq軸電流脈動指令iqrip と同時にd軸電流iも同時に脈動させて電圧不足に陥ることを防ぐ。
 制御部400は、q軸電流脈動演算部408によってモータ314に適切に脈動を与え、コンデンサ210に流れる電流をゼロに近づける、または小さい値に制御することで、コンデンサ210への電流流入および電流流出、すなわちコンデンサ210の充放電電流I3を減らすことができる。
 図3は、比較例として実施の形態1の電力変換装置1と同様の回路構成の電力変換装置における駆動波形の例を示す図である。図3の対象である比較例の電力変換装置は、本実施の形態の電力変換装置1のような制御は行っていないものとする。図4は、実施の形態1に係る電力変換装置1における駆動波形の例を示す図である。図3および図4において、上図は整流部130からコンデンサ210への入力電流I1、コンデンサ210からの出力電流I2、およびコンデンサ210の充放電電流I3を示し、下図は直流母線電圧Vdcを示している。なお、図3および図4は同じスケールで描かれている。また、説明の都合上、図3および図4では、PWMのリプルは考慮していない。
 平滑部200のコンデンサ210の容量がある程度大きい場合、コンデンサ210に流れ込む入力電流I1が「うさぎの耳」のような形状となる。比較例の電力変換装置では、コンデンサからの出力電流I2がほぼ一定であったため、コンデンサの充放電電流I3も「うさぎの耳」の形になる。これに伴い、直流母線電圧Vdcには大きなリプルが生じる。これらの波形は周期的な脈動が大きいので、コンデンサ210の経年劣化が早まる。
 これに対して、本実施の形態の電力変換装置1では、コンデンサ210からの出力電流I2が「うさぎの耳」の形になるように制御部400がインバータ310の動作を制御するので、コンデンサ210の充放電電流I3のピーク値は小さくなる。コンデンサ210の充放電電流I3のピーク値が小さくなるのと同時に、直流母線電圧Vdcのリプルも小さくなる。コンデンサ210の電流の流出および流入を減らせば、素子劣化を抑制でき、部品の経年劣化を抑制できる。電力変換装置1では、前述のような制御部400の抑制の分、素子の容量を低減でき、リプル耐量が緩和される。そのため、安価な平滑素子、すなわちコンデンサ210を活用することができ、システムコストを抑制できる。なお、図4では、直流成分、電源周波数2f成分、および電源周波数4f成分のみを抽出して劣化抑制制御を実施しているが、コンデンサ210の充放電電流I3をより小さくしたい場合、より高次の成分を加味してもよい。ただし、実用上では電源周波数6f成分までを考慮すれば必要十分と考えられる。また、計算量を少なくしたい場合、直流成分、および電源周波数2f成分のみを考慮する形にしてもよい。
 本実施の形態による制御部400の制御方法は、モータ314の入出力電力の理論式をベースにしているため、入力電流I1の変化に対してダイレクトにモータ314のq軸電流脈動を決定でき、入力電流I1の変化に対する即応性が高い。このことから、脈動負荷補償と併用したときに平滑部200のコンデンサ210の劣化抑制がしやすいというメリットがある。
 なお、図1に示すようにモータ314が周期的な負荷トルク脈動を有する負荷である圧縮機315を駆動する場合、制御部400は、前述の制御と併せて、負荷トルク脈動に起因する速度脈動を抑制するように制御してもよい。
 つぎに、弱め磁束制御部403の構成および動作について説明する。図5は、実施の形態1に係る電力変換装置1の制御部400が備える弱め磁束制御部403の構成例を示すブロック図である。弱め磁束制御部403は、減算部601と、積分制御部602と、d軸電流脈動発生部603と、加算部604と、を備える。
 減算部601は、電圧制限値Vlim からdq軸電圧指令ベクトルVdq を減算して、電圧偏差を算出する減算処理を行う。
 積分制御部602は、減算部601で算出された電圧偏差がゼロになるように積分制御を行い、d軸電流指令idDC を決定する。なお、弱め磁束制御部403は、積分制御部602の積分制御と並列に比例制御、微分制御などを行ってもよい。すなわち、弱め磁束制御部403は、積分制御部602に替えてPID(Proportional Integral Differential)制御部を備えていてもよい。電力変換装置1は、モータ314の駆動中に電圧不足に陥った場合、弱め磁束制御部403がd軸電流iを自動的に増やすことによって、電圧不足を緩和することができる。以降の説明において、d軸電流指令idDC を第1のd軸電流指令と称することがある。
 ここで、一般的な弱め磁束制御は、モータパラメータを使用していないため、パラメータ変動にロバストであるものの、制御応答性をあまり高くできないという欠点がある。制御応答を無理に高めようとすると、制御不安定に陥るからである。そのため、q軸電流iが高周波変化する場合にも、d軸電流iはおおむね一定値となる。この場合、一般的な弱め磁束制御を行う電力変換装置では、過渡的な電圧不足が発生することによって、過剰にd軸電流iを流しているような状態となって銅損が増加する。そのため、本実施の形態では、電力変換装置1は、q軸電流脈動に同期してd軸電流iも脈動させる。
 d軸電流脈動発生部603は、q軸電流脈動演算部408から取得したq軸電流脈動指令iqrip 、および電圧位相の平均値θvaveを用いて、d軸電流脈動指令idAC を算出する。d軸電流脈動発生部603は、q軸電流脈動に相当するq軸電流脈動指令iqrip に同期し、q軸電流脈動に相当するq軸電流脈動指令iqrip によるdq軸電圧指令ベクトルVdq の振幅の増減を抑制するd軸電流脈動指令idAC を生成する。電圧位相の平均値θvaveについては、dq軸電圧指令ベクトルVdq の絶対値から演算によって求めることができる。電圧位相の平均値θvaveの演算については、弱め磁束制御部403の外部の構成が行ってもよいし、弱め磁束制御部403の内部のd軸電流脈動発生部603または図示しない構成が行ってもよい。なお、d軸電流脈動発生部603におけるd軸電流脈動指令idAC の算出方法については、上記の例に限定されない。弱め磁束制御部403では、積分制御部602から出力されるd軸電流指令idDC を低周波のd軸電流指令とした場合、d軸電流脈動発生部603が、高周波のd軸電流脈動指令としてd軸電流脈動指令idAC を決定する。
 加算部604は、2つの指令値、すなわち、積分制御部602で得られたd軸電流指令idDC 、およびd軸電流脈動発生部603で得られたd軸電流脈動指令idAC を加算して、d軸電流指令i を決定する。以降の説明において、d軸電流指令i を第2のd軸電流指令と称することがある。
 このように、弱め磁束制御部403は、q軸電流脈動指令iqrip に同期してd軸電流iを脈動させるd軸電流脈動指令idAC を生成する。弱め磁束制御部403は、dq軸電圧指令ベクトルVdq と電圧制限値Vlim との電圧偏差からd軸電流脈動指令idAC の周波数に対して低い周波数であるd軸電流指令idDC を生成する。弱め磁束制御部403は、d軸電流指令idDC とd軸電流脈動指令idAC とを加算してd軸電流指令i を生成する。
 ここで、本実施の形態の弱め磁束制御部403における弱め磁束制御の原理について説明する。図6は、実施の形態1に係る電力変換装置1の制御部400が備える弱め磁束制御部403が弱め磁束制御を実施した場合の電圧指令vを示す図である。図7は、実施の形態1に係る弱め磁束制御部403における簡便なd軸電流脈動idACの計算方法を示す第1の図である。図8は、実施の形態1に係る弱め磁束制御部403における簡便なd軸電流脈動idACの計算方法を示す第2の図である。図6から図8の説明において、電圧指令vは前述のdq軸電圧指令ベクトルVdq に相当する。制限値Vomは前述の電圧制限値Vlim 、に相当する。また、d軸電流脈動idACは前述のd軸電流脈動指令idAC に相当する。d軸電流idDCは前述のd軸電流指令idDC に相当する。q軸電流脈動iqACは前述のq軸電流脈動指令iqrip に相当する。q軸電流iqDCは前述のq軸電流指令iqDC に相当する。
 制限値Vomは厳密には六角形状であるが、ここではdq座標上の円で近似して考えている。本実施の形態では、円で近似することを前提として議論するが、厳密に六角形を考えて議論してもよいことは言うまでも無い。本実施の形態では、原点を中心とする半径が制限値Vomの円のことを電圧制限円21と呼ぶ。なお、制限値Vomは、直流母線電圧Vdcの値によって変動する。図6において、電圧指令vは、d軸電流i、q軸電流i、モータ速度、モータパラメータなどによって決定される。また、電圧指令vは、電圧制限円21によって制限される。電力変換装置1の制御部400は、過変調時にq軸電流iにq軸電流脈動iqACを与えた場合、d軸電流iにもd軸電流脈動idACを与えなければ、電圧指令vが電圧制限範囲、すなわち電圧制限円21を超えてしまう。そのため、本実施の形態では、電力変換装置1の制御部400において、弱め磁束制御部403は、d軸電流iにもd軸電流脈動idACを与えることで、電圧不足に陥るのを防ぐ。
 d軸電流脈動idACの計算方法については様々な方法が考えられるが、特許文献1に記載されているように、電圧制限円21の接線を用いた近似手法がある。電圧位相の平均値をθvaveとし、q軸電流脈動iqACを与えたときの電圧軌跡を考える。電圧軌跡が電圧制限円21の接線方向になるように図8のような直角三角形を考えると、その1つの角はθvaveとなる。このことを利用して、弱め磁束制御部403のd軸電流脈動発生部603は、d軸電流脈動idAC、すなわちd軸電流脈動指令idAC を式(11)のように演算する。
Figure JPOXMLDOC01-appb-M000011
 すなわち、弱め磁束制御部403は、電圧進角の平均値のタンジェントとq軸電流脈動指令iqrip との乗算結果に基づいて、d軸電流脈動指令idAC を生成する。弱め磁束制御部403は、dq軸電圧指令のベクトルである電圧指令vの軌跡が電圧制限値Vlim に基づく規定された半径の電圧制限円21の円周方向または接線方向に維持されるように、d軸電流脈動指令idAC を生成するとも言える。弱め磁束制御部403は、d軸電流脈動発生部603が式(11)のようにd軸電流脈動指令idAC を計算し、d軸電流脈動指令idAC を用いてd軸電流指令i を決定する。これにより、電力変換装置1は、コンデンサ電流抑制制御時も電圧指令振幅を一定に保つことができる。電力変換装置1は、d軸電流iを過剰に流さなくても済むようになるので、過変調領域で効率的にコンデンサ電流を減らすことができるようになる。
 このように、制御部400は、検出部の検出値に応じてq軸電流脈動に相当するq軸電流脈動指令iqrip をモータ314の駆動パターンに重畳することで、コンデンサ210の充放電電流I3を抑制するとともに、インバータ310の電圧が飽和する際にq軸電流脈動に相当するq軸電流脈動指令iqrip の周波数に同期してモータ314のd軸電流iを脈動させる。なお、q軸電流iを有効電流と表記し、d軸電流iを無効電流と表記してもよい。以降についても同様とする。
 制御部400の動作を、フローチャートを用いて説明する。図9は、実施の形態1に係る電力変換装置1が備える制御部400の動作を示すフローチャートである。制御部400は、電圧検出部501から検出値であるコンデンサ210の直流母線電圧Vdcを取得する(ステップS1)。制御部400は、取得した検出値に基づいて、コンデンサ210への入力電流I1とコンデンサ210からの出力電流I2との差分が小さくなるように、かつdq軸電圧指令ベクトルVdq が電圧制限値Vlim を超えないようにインバータ310の動作を制御する(ステップS2)。
 図10は、実施の形態1に係る電力変換装置1の制御部400が備える弱め磁束制御部403の動作を示すフローチャートである。弱め磁束制御部403において、減算部601は、電圧制限値Vlim からdq軸電圧指令ベクトルVdq を減算し、電圧偏差を算出する(ステップS11)。積分制御部602は、電圧偏差がゼロになるように積分制御を行い、d軸電流指令idDC を決定する(ステップS12)。d軸電流脈動発生部603は、q軸電流脈動指令iqrip および電圧位相の平均値θvaveを用いて、d軸電流脈動指令idAC を算出する(ステップS13)。加算部604は、d軸電流指令idDC とd軸電流脈動指令idAC とを加算してd軸電流指令i を生成、すなわちd軸電流指令i を決定する(ステップS14)。
 つづいて、電力変換装置1が備える制御部400のハードウェア構成について説明する。図11は、実施の形態1に係る電力変換装置1が備える制御部400を実現するハードウェア構成の一例を示す図である。制御部400は、プロセッサ91およびメモリ92により実現される。
 プロセッサ91は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、またはシステムLSI(Large Scale Integration)である。メモリ92は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性または揮発性の半導体メモリを例示できる。またメモリ92は、これらに限定されず、磁気ディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)でもよい。
 以上説明したように、本実施の形態によれば、電力変換装置1において、制御部400は、電圧検出部501で検出されたコンデンサ210の直流母線電圧Vdcを用いて、q軸電流脈動指令iqrip を演算し、q軸電流脈動指令iqrip を用いてd軸電流指令i を生成してインバータ310の動作を制御し、コンデンサ210の充放電電流I3を抑制することとした。これにより、電力変換装置1は、平滑用のコンデンサ210の劣化を抑制しつつ、電力変換装置1の大型化を抑制することができる。また、電力変換装置1は、過変調領域において効率の低下を抑制することができる。
実施の形態2.
 実施の形態1では、電圧指令vのベクトルの軌跡が電圧制限円21の接線となるようにd軸電流脈動idACを求めたが、理想的には円軌跡となるほうが好ましい。q軸電流脈動iqACが大きい場合、接線近似と理想値との誤差が大きくなり、妥当な弱め磁束制御ができなくなるおそれがある。図12は、実施の形態1に係る電力変換装置1の制御部400が備える弱め磁束制御部403による弱め磁束制御の制御誤差を示す図である。図12において、横軸はq軸電流脈動iqACの位相角を示し、縦軸はd軸電流脈動idACを示す。図12は、q軸電流脈動iqACの振幅がある程度大きい条件で試算したものであるが、電圧指令振幅を一定にするために必要なd軸電流脈動idACは図12の実線のような波形となる。
 d軸電流脈動idACの波形は概ねq軸電流脈動iqACと同じ周期で振動しているが、多少の高調波成分が含まれている。この実線の波形を制御上の理想値とする。一方、弱め磁束制御部403が出力する実際のd軸電流脈動idACは図12の点線の波形となる。実施の形態1の弱め磁束制御部403は、高調波を含まない正弦波波形を対象にしているため、理想値とは多少のズレがある。q軸電流脈動iqACが小さい場合はズレを無視しても構わないが、q軸電流脈動iqACが大きい場合はズレを無視しづらい。実施の形態1の弱め磁束制御部403ではこのような制御誤差が生じるため、q軸電流脈動iqACが大きい場合では速度脈動、コンデンサ電流などの悪化、銅損の増加など、様々な問題が生じるおそれがある。そのため、本実施の形態では、弱め磁束制御の制御誤差の発生を抑制する方法について説明する。
 図13は、実施の形態2に係る電力変換装置1が備える制御部400aの構成例を示すブロック図である。制御部400aは、図2に示す実施の形態1の制御部400に対して、弱め磁束制御部403を弱め磁束制御部403aに置き換えたものである。なお、図示は省略するが、実施の形態2に係る電力変換装置1は、図1に示す実施の形態1の電力変換装置1に対して、制御部400を制御部400aに置き換えたものとする。
 図14は、実施の形態2に係る電力変換装置1の制御部400aが備える弱め磁束制御部403aによる弱め磁束制御の制御誤差を示す図である。図14において、横軸はq軸電流脈動iqACの位相角を示し、縦軸はd軸電流の追加補償量を示す。図14に示す波形は、図12に示す実線の波形と点線の波形との差分である。なお、図14では、図12に対して縦軸のスケールを拡大している。実施の形態2の弱め磁束制御部403aは、図14に示すような電流波形を算出し、d軸電流脈動idACに加算できれば、理想的な弱め磁束制御を実現することができる。
 つぎに、弱め磁束制御部403aの構成および動作について説明する。図15は、実施の形態2に係る電力変換装置1の制御部400aが備える弱め磁束制御部403aの構成例を示すブロック図である。弱め磁束制御部403aは、図5に示す実施の形態1の弱め磁束制御部403に対して、d軸電流脈動再調整部605を追加したものである。
 d軸電流脈動再調整部605は、q軸電流脈動指令iqrip およびd軸電流脈動指令idAC によるdq軸電圧指令ベクトルVdq の振幅の増減量を調査し、増減量に応じてd軸電流脈動指令idAC を再調整し、再調整後のd軸電流脈動指令idAC **を出力する。d軸電流脈動再調整部605は、具体的には以下のプロセスでd軸電流iの追加補償量を算出する。図16は、実施の形態2に係る電力変換装置1の制御部400aが備える弱め磁束制御部403aによる弱め磁束制御を説明するための図である。平均電圧指令をv aveとし、実施の形態1の弱め磁束制御による電圧指令をv convとした場合、電圧指令v convは、電圧制限円21よりも大きくなることが予想されるから、q軸電圧に不足量ΔVが生じる。q軸電圧の不足量ΔVが既知であれば、d軸電流iの追加補償量であるΔid2は以下の式(12)のように求まる。
Figure JPOXMLDOC01-appb-M000012
 q軸電圧の不足量ΔVを正確に算出するためには、永久磁石によるdq軸鎖交磁束数Φが既知であることが望ましいが、dq軸鎖交磁束数Φはモータ温度によって変化するため、dq軸鎖交磁束数Φを用いずに概算することを考える。実施の形態1での電圧指令v convのd軸電圧成分v dconvおよびq軸電圧成分v qconvは、式(13)および式(14)によって表される。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 実施の形態1でのd軸電圧成分v dconvおよび半径が制限値Vomの電圧制限円21から、三平方の定理によって、q軸電圧の制限値Vqlimを式(15)のように求める。
Figure JPOXMLDOC01-appb-M000015
 制限値Vomおよび直流母線電圧Vdcの関係は、以下の式(16)のようになるのが一般的であるが、インバータ310の過変調を行う場合にはこの限りではないので、違う比率にしてもよい。
Figure JPOXMLDOC01-appb-M000016
 実施の形態1でのq軸電圧成分v qconvとq軸電圧の制限値Vqlimとの差分を取れば式(17)のようにq軸電圧の不足量ΔVが求まるので、d軸電流脈動再調整部605は、このような演算によってd軸電流脈動指令idAC を再調整する。
Figure JPOXMLDOC01-appb-M000017
 図17は、実施の形態2に係る電力変換装置1の制御部400aが備える弱め磁束制御部403aの動作を示すフローチャートである。弱め磁束制御部403aにおいて、減算部601は、電圧制限値Vlim からdq軸電圧指令ベクトルVdq を減算し、電圧偏差を算出する(ステップS11)。積分制御部602は、電圧偏差がゼロになるように積分制御を行い、d軸電流指令idDC を決定する(ステップS12)。d軸電流脈動発生部603は、q軸電流脈動指令iqrip および電圧位相の平均値θvaveを用いて、d軸電流脈動指令idAC を算出する(ステップS13)。d軸電流脈動再調整部605は、dq軸電流脈動による電圧指令振幅の増減量に応じてd軸電流脈動指令idAC を再調整する(ステップS21)。加算部604は、d軸電流指令idDC と再調整後のd軸電流脈動指令idAC **とを加算してd軸電流指令i を生成、すなわちd軸電流指令i を決定する(ステップS14)。
 電力変換装置1が備える制御部400aのハードウェア構成について説明する。制御部400aは、実施の形態1の制御部400と同様、プロセッサ91およびメモリ92により実現される。
 以上説明したように、本実施の形態によれば、電力変換装置1において、制御部400aの弱め磁束制御部403aは、d軸電流脈動指令idAC を再調整し、d軸電流指令i を決定することとした。これにより、電力変換装置1は、実施の形態1と比較して、弱め磁束制御の精度を向上させ、的確な弱め磁束制御を行うことで、d軸電流iを過剰に流さなくても済むので銅損を改善できる。電力変換装置1は、実施の形態1と比較して、より平滑用のコンデンサ210の劣化を抑制しつつ、過変調領域において効率の低下を抑制することができる。
実施の形態3.
 実施の形態1および実施の形態2では、弱め磁束制御について、特許文献1の弱め磁束制御をベースにして説明したが、適切なd軸電流脈動idACを得る方法は他にも考えられる。例えば、フィードバックベースで適切なd軸電流脈動idACを得る方法もあり得る。フィードバックベースの手法は実施の形態1および実施の形態2の手法とは異なり、制御設計の煩雑さはあるものの、制御定数変動、電流制御応答の不足などに対して強いというメリットがある。振動抑制制御の手法として、繰り返し制御、フーリエ係数演算に基づく手法などが公知である。これをフィードバック型の弱め磁束制御に応用すれば、良好なd軸電流脈動idACが得られるはずである。
 図18は、実施の形態3に係る電力変換装置1が備える制御部400bの構成例を示すブロック図である。制御部400bは、図2に示す実施の形態1の制御部400に対して、弱め磁束制御部403を弱め磁束制御部403bに置き換えたものである。なお、図示は省略するが、実施の形態3に係る電力変換装置1は、図1に示す実施の形態1の電力変換装置1に対して、制御部400を制御部400bに置き換えたものとする。
 弱め磁束制御部403bの構成および動作について説明する。図19は、実施の形態3に係る電力変換装置1の制御部400bが備える弱め磁束制御部403bの構成例を示すブロック図である。弱め磁束制御部403bは、図5に示す実施の形態1の弱め磁束制御部403に対して、d軸電流脈動発生部603をd軸電流脈動発生部603bに置き換えたものである。
 d軸電流脈動発生部603bは、電圧偏差に応じて、dq軸電圧指令ベクトルVdq の振幅の増減を抑制するd軸電流脈動指令idAC を生成する。具体的には、d軸電流脈動発生部603bは、減算部601で得られた電圧偏差、およびq軸電流脈動の周波数からd軸電流脈動指令idAC を演算する。q軸電流脈動の周波数は、例えば、q軸電流脈動演算部408で演算されたq軸電流脈動指令iqrip である。図20は、実施の形態3に係るd軸電流脈動発生部603bの構成例を示すブロック図である。d軸電流脈動発生部603bは、フーリエ係数演算部704,705と、PID制御部708,709と、交流復元部710と、を備える。d軸電流脈動発生部603bは、電圧偏差からd軸電流脈動idACを演算する構成である。d軸電流脈動発生部603bによる手法は、フーリエ係数演算を利用し、脈動信号を直流化して制御する手法である。
 フーリエ係数演算部704,705は、フーリエ係数演算によって電圧偏差の特定周波数成分をCOS成分およびSIN成分に分けて直流化して抽出する。例えば、フーリエ係数演算部704,705は、q軸電流脈動の周波数を基準、すなわちq軸電流脈動の周波数を1Fとして、一方がCOS1F成分を抽出し、他方がSIN1F成分を抽出する。d軸電流iに対しq軸電流iと同じ周波数の脈動を加えるのが最も効果的であることが図12から分かるので、ここでは周波数1Fの電圧偏差脈動を抑え込む制御系を例示するが、他の周波数成分を抑制するようにしてもよい。このように、フーリエ係数演算部704,705は、電圧偏差から、q軸電流脈動指令iqrip に基づく規定された周波数成分をSIN成分およびCOS成分に分けて直流化して抽出する。以降の説明において、SINをサインと称し、COSをコサインと称することがある。
 PID制御部708は、フーリエ係数演算部704で抽出された各周波数成分がゼロになるようにPID制御を実施する。PID制御部709は、フーリエ係数演算部705で抽出された各周波数成分がゼロになるようにPID制御を実施する。なお、ここでは一般的な制御としてPID制御、すなわち比例積分微分制御を例示しているが、別種の制御を用いても構わない。PID制御部708,709は、フーリエ係数演算部704,705で抽出された周波数成分のSIN成分およびCOS成分がゼロになるように制御する積分制御部である。
 交流復元部710は、PID制御部708,709の演算結果を入力とし、演算結果を1つの交流信号に復元する。交流復元部710は、復元した交流信号をd軸電流脈動指令idAC として出力する。これにより、d軸電流脈動発生部603bは、q軸電流脈動と同じ周波数でd軸電流iを脈動させることができる。
 d軸電流脈動発生部603bの内部では脈動信号が直流化して取り扱われるので、制御ゲインを無闇に高めずとも、ターゲットとなる周波数の脈動を抑制することが可能である。積分制御部602単体で高周波の弱め磁束制御を行おうとした場合、制御ゲインを高くしなければならないが、制御ゲインを高めすぎると不安定となるおそれがある。そのため、積分制御部602単体で高周波の弱め磁束制御を行うことが難しい。しかしながら、d軸電流脈動発生部603bを並列に追加し、高周波の弱め磁束制御と低周波の弱め磁束制御とを分離すれば、制御部400bの不安定化を防ぎ、良好な弱め磁束制御を実現することができる。
 図21は、実施の形態3に係る電力変換装置1の制御部400bが備える弱め磁束制御部403bの動作を示すフローチャートである。弱め磁束制御部403bにおいて、減算部601は、電圧制限値Vlim からdq軸電圧指令ベクトルVdq を減算し、電圧偏差を算出する(ステップS11)。積分制御部602は、電圧偏差がゼロになるように積分制御を行い、d軸電流指令idDC を決定する(ステップS12)。d軸電流脈動発生部603bにおいて、フーリエ係数演算部704,705は、フーリエ係数演算によって電圧偏差の特定周波数成分をCOS成分およびSIN成分に分けて直流化して抽出する。PID制御部708,709は、フーリエ係数演算部704,705で抽出された各周波数成分がゼロになるように制御する(ステップS31)。d軸電流脈動発生部603bにおいて、交流復元部710は、PID制御部708,709の演算結果を交流信号に復元してd軸電流脈動指令idAC を算出する(ステップS13)。加算部604は、d軸電流指令idDC とd軸電流脈動指令idAC とを加算してd軸電流指令i を生成、すなわちd軸電流指令i を決定する(ステップS14)。
 電力変換装置1が備える制御部400bのハードウェア構成について説明する。制御部400bは、実施の形態1の制御部400と同様、プロセッサ91およびメモリ92により実現される。
 以上説明したように、本実施の形態によれば、電力変換装置1において、制御部400bの弱め磁束制御部403bは、フィードバック型の弱め磁束制御を行い、d軸電流指令i を決定することとした。これにより、電力変換装置1は、実施の形態1と比較して、弱め磁束制御の精度を向上させ、的確な弱め磁束制御を行うことで、d軸電流iを過剰に流さなくても済むので銅損を改善できる。電力変換装置1は、実施の形態1と比較して、より平滑用のコンデンサ210の劣化を抑制しつつ、過変調領域において効率の低下を抑制することができる。本実施の形態において、弱め磁束制御部403bは、モータ定数を使っていないため、実施の形態1の弱め磁束制御部403および実施の形態2の弱め磁束制御部403aと比較して、モータ定数変動に強いという特徴がある。また、弱め磁束制御部403bは、PID制御部708,709によってd軸電流脈動idACの位相が自動調整されるので、電流応答をあまり高くできない場合においても、電圧振幅を一定にキープしやすいというメリットもある。なお、実施の形態3の制御内容については、実施の形態1,2の制御内容と適宜組み合わせることも可能である。
実施の形態4.
 実施の形態3は非常に有用な手法であるが、q軸電流脈動の周波数の1F成分の電圧偏差のみを制御しているため、q軸電流脈動の振幅が大きい場合、実施の形態1と同様、適切な弱め磁束制御ができなくなる。そこで、実施の形態3の制御を並列化して、他の周波数成分の電圧偏差も同時に制御するように構成することを考える。図22は、理想的なd軸電流脈動idACの周波数分析結果の例を示す図である。図22において、横軸は電圧偏差に含まれる高調波の次数を示し、縦軸は電圧偏差に含まれる高調波の含有量を示す。図22は、図12に示した理想値の波形を周波数分析した結果である。q軸電流脈動周波数を基準、すなわち1Fとすると、d軸電流iに1F成分の脈動を重畳するだけでは理想的な電圧軌跡は得られない。さらに2F成分の脈動を加えれば、かなり理想に近い電圧軌跡が得られる。そこで、本実施の形態では、電圧偏差の脈動のうち、1F成分および2F成分を抑制するための弱め磁束制御について説明する。なお、3F成分以上についても抑制するのが理想であるため、3F成分以上の制御系をさらに並列化するように構成してもよい。
 実施の形態4において、制御部400bの構成は、図18に示す実施の形態3の制御部400bの構成と同様である。また、実施の形態4において、弱め磁束制御部403bの構成は、図19に示す実施の形態3の弱め磁束制御部403bの構成と同様である。なお、図示は省略するが、実施の形態4に係る電力変換装置1は、図1に示す実施の形態1の電力変換装置1に対して、制御部400を制御部400bに置き換えたものとする。
 図23は、実施の形態4に係るd軸電流脈動発生部603bの構成例を示すブロック図である。d軸電流脈動発生部603bは、ゲイン部701と、フーリエ係数演算部702~705と、PID制御部706~709と、交流復元部710と、を備える。実施の形態4では、d軸電流脈動発生部603bは、電圧偏差に対して特定周波数成分のみをゼロにするような制御系を並列化して設けている。実施の形態4では、実施の形態3と同様、フーリエ係数演算を用いた制御系を例示するが、特定周波数成分のみをゼロにするような制御系であれば、他種の制御系器であっても構わない。
 ゲイン部701は、q軸電流脈動の周波数をN倍にする。なお、Nは2以上の整数である。ここでは一例としてN=2とするが、他の値にしてもよい。
 フーリエ係数演算部702~705は、フーリエ係数演算によって電圧偏差の特定周波数成分をCOS成分およびSIN成分に分けて直流化して抽出する。例えば、フーリエ係数演算部704,705は、q軸電流脈動の周波数を基準、すなわちq軸電流脈動の周波数を1fとして、一方がCOS1F成分を抽出し、他方がSIN1F成分を抽出する。また、フーリエ係数演算部702,703は、一方がCOS2F成分を抽出し、他方がSIN2F成分を抽出する。ここでは周波数1Fおよび周波数2Fの電圧偏差脈動を抑え込む制御系を例示するが、他の周波数成分を抑制するように、制御系をさらに並列化してもよい。このように、フーリエ係数演算部704,705は、電圧偏差から、q軸電流脈動指令iqrip に基づく規定された第1の周波数成分をSIN成分およびCOS成分に分けて直流化して抽出する第1のフーリエ係数演算部である。フーリエ係数演算部702,703は、電圧偏差から、ゲイン部701で得られた第2の周波数成分をSIN成分およびCOS成分に分けて直流化して抽出する第2のフーリエ係数演算部である。
 PID制御部706は、フーリエ係数演算部702で抽出された各周波数成分がゼロになるようにPID制御を実施する。PID制御部707は、フーリエ係数演算部703で抽出された各周波数成分がゼロになるようにPID制御を実施する。PID制御部708は、フーリエ係数演算部704で抽出された各周波数成分がゼロになるようにPID制御を実施する。PID制御部709は、フーリエ係数演算部705で抽出された各周波数成分がゼロになるようにPID制御を実施する。なお、ここでは一般的な制御としてPID制御、すなわち比例積分微分制御を例示しているが、別種の制御を用いても構わない。PID制御部708,709は、フーリエ係数演算部704,705で抽出された第1の周波数成分のSIN成分およびCOS成分がゼロになるように制御する第1の積分制御部である。PID制御部706,707は、フーリエ係数演算部702,703で抽出された第2の周波数成分のSIN成分およびCOS成分がゼロになるように制御する第2の積分制御部である。
 交流復元部710は、PID制御部706~709の演算結果を入力とし、演算結果を1つの交流信号に復元する。交流復元部710は、復元した交流信号をd軸電流脈動指令idAC として出力する。これにより、d軸電流脈動発生部603bは、q軸電流脈動の1F成分および2F成分を含む周波数でd軸電流iを脈動させることができる。
 このように、制御部400bは、検出部の検出値に応じてq軸電流脈動に相当するq軸電流脈動指令iqrip をモータ314の駆動パターンに重畳することで、コンデンサ210の充放電電流I3を抑制するとともに、インバータ310の電圧が飽和する際に、q軸電流脈動に相当するq軸電流脈動指令iqrip の周波数、およびq軸電流脈動に相当するq軸電流脈動指令iqrip の正の整数倍の周波数に同期してモータ314のd軸電流iを脈動させる。ここで、正の整数とは、本実施の形態では2となるが、3以上であってもよいし、複数であってもよい。例えば、本実施の形態については、正の整数は1および2とも言える。すなわち、上記の説明については、制御部400bは、検出部の検出値に応じてq軸電流脈動に相当するq軸電流脈動指令iqrip をモータ314の駆動パターンに重畳することで、コンデンサ210の充放電電流I3を抑制するとともに、インバータ310の電圧が飽和する際にq軸電流脈動に相当するq軸電流脈動指令iqrip の正の整数倍の周波数に同期してモータ314のd軸電流iを脈動させる、とも言える。
 図24は、実施の形態4に係る電力変換装置1の制御部400bが備える弱め磁束制御部403bの動作を示すフローチャートである。弱め磁束制御部403bにおいて、減算部601は、電圧制限値Vlim からdq軸電圧指令ベクトルVdq を減算し、電圧偏差を算出する(ステップS11)。積分制御部602は、電圧偏差がゼロになるように積分制御を行い、d軸電流指令idDC を決定する(ステップS12)。d軸電流脈動発生部603bにおいて、フーリエ係数演算部702~705は、フーリエ係数演算によって電圧偏差の複数の特定周波数成分をCOS成分およびSIN成分に分けて直流化して抽出する。PID制御部706~709は、フーリエ係数演算部702~705で抽出された各周波数成分がゼロになるように制御する(ステップS41)。d軸電流脈動発生部603bにおいて、交流復元部710は、PID制御部706~709の演算結果を交流信号に復元してd軸電流脈動指令idAC を算出する(ステップS13)。加算部604は、d軸電流指令idDC とd軸電流脈動指令idAC とを加算してd軸電流指令i を生成、すなわちd軸電流指令i を決定する(ステップS14)。
 以上説明したように、本実施の形態によれば、電力変換装置1において、制御部400bの弱め磁束制御部403bは、複数の特定周波数成分を用いて、フィードバック型の弱め磁束制御を行い、d軸電流指令i を決定することとした。これにより、電力変換装置1は、実施の形態3と比較して、弱め磁束制御の精度を向上させ、的確な弱め磁束制御を行うことで、d軸電流iを過剰に流さなくても済むので銅損を改善できる。電力変換装置1は、実施の形態3と比較して、より平滑用のコンデンサ210の劣化を抑制しつつ、過変調領域において効率の低下を抑制することができる。
実施の形態5.
 実施の形態1から実施の形態4がd軸電流iの波形を改善することを目的としたものであるのに対し、実施の形態5は、q軸電流iの波形を改善することで、銅損の増加を防ぐものである。図1に示すように、電力変換装置1は、リアクトル120、整流部130などを備え、平滑部200には平滑コンデンサであるコンデンサ210などが用いられる。電力変換装置1においてリアクトル120、コンデンサ210などの容量が大きい場合、コンデンサ210へ流れ込む電流は、前述のように「うさぎの耳」のような形状になる。このような場合、コンデンサ電流脈動を減らすためには、コンデンサ電流脈動の基本波周波数だけでなく、基本周波数の2倍の周波数もケアすることが重要である。q軸電流iに対しコンデンサ電流脈動の基本波周波数と基本波周波数の2倍の周波数の脈動を与え、さらにd軸電流iに対してもq軸電流脈動と同期して脈動を与えるように制御系を構成したところ、基本波周波数のみに脈動を与えた場合に比べ、2倍の周波数の脈動を同時に加えた方が重負荷域で銅損が小さくなった。一方、モータ314の負荷が軽い軽負荷時には、2倍の周波数の脈動を同時に加えた方が、銅損が悪化した。モータ314の負荷が重い重負荷時には2倍の周波数の脈動を同時に加えることで銅損が改善されるという事象は非自明である。
 この事象について、波形を用いて説明する。図25は、軽負荷域での電流指令の波形の例を示す図である。図25において、横軸は時間を示し、上図の縦軸はd軸電流指令を示し、下図の縦軸はq軸電流指令を示す。ここでは単相交流電源の周波数を基本波周波数、すなわち1fとしているので、コンデンサ電流脈動の基本波周波数は2fとなる。コンデンサ電流脈動の基本波周波数2fの2倍の周波数は4fである。なお、基本波周波数2fは、前述の電源周波数2fと同じ周波数である。コンデンサ電流脈動を小さくするには正弦波状のq軸電流iを与えることが考えられる。ただし、リアクトル120、コンデンサ210などの容量が大きい場合、コンデンサ電流をより小さくすることだけを考えるのであれば、2f脈動のみだけでなく4f脈動も同時に与えてq軸電流iを「うさぎの耳」の形のように尖らせるほうがよい。q軸電流iのピーク値は4f脈動を重畳したときの方が大きくなる。このとき、電圧飽和が生じることがあるので、d軸電流iにも脈動を与える。ただし、d軸電流iをプラス方向に流すことにメリットはないので、ここではd軸電流iの上限値はゼロでクランプしている。モータ314の銅損はdq軸電流の2乗和に比例するから、軽負荷時には4f脈動を同時に与えた方が、銅損が大きくなる。このことは図25を見れば自明である。
 図26は、重負荷域での電流指令の波形の例を示す図である。図26において、横軸は時間を示し、上図の縦軸はd軸電流指令を示し、下図の縦軸はq軸電流指令を示す。モータ314の減磁限界、電圧飽和などによってモータ314に流せるdq軸電流には上限があることが知られている。q軸電流iの最大値がほぼ同じになるようにした場合、2f脈動と4f脈動を同時に加えることで、q軸電流iの脈動幅が小さくなる。2f脈動のみを与えた場合と比較して、4f脈動を同時に加えることでq軸電流iの下振れが緩和されるからである。q軸電流iを平均値よりも下方向に変化させるとモータ速度は減速するので、この減速を補うために加速トルクが必要となる。電圧飽和域で加速トルクを発生させるためには、d軸電流iをより多く流して電圧飽和を緩和する必要があるが、d軸電流iを流すことにより銅損が増加する。すなわち、q軸電流iが飽和する重負荷時においては、q軸電流iの下振れを少なくすることによって、モータ314の減速を小さくすることができ、その結果、d軸電流iが減って銅損が減少する。これは、発明者らが新たに発見した事象であり、他の当業者にとっても非自明なことである。このとき、図示しないコンデンサ電流は同程度であったが、4f脈動を同時に補償することによって銅損は約40%低減した。
 実施の形態5は、「コンデンサ電流脈動を低減する制御において交流電源の周波数の2倍の周波数および4倍の周波数のコンデンサ電流脈動を同時に補正した場合、重負荷時に弱め磁束電流が減少する」という知見に基づくものである。以降では、この知見に基づいて説明する。
 図27は、実施の形態5に係る電力変換装置1が備える制御部400cの構成例を示すブロック図である。制御部400cは、図2に示す実施の形態1の制御部400に対して、弱め磁束制御部403を弱め磁束制御部403cに置き換え、q軸電流脈動演算部408をq軸電流脈動演算部408cに置き換えたものである。q軸電流脈動演算部408cは、第1のq軸電流脈動演算部801と、第2のq軸電流脈動演算部802と、運転状態判定部803と、を備える。なお、図示は省略するが、実施の形態5に係る電力変換装置1は、図1に示す実施の形態1の電力変換装置1に対して、制御部400を制御部400cに置き換えたものとする。一例として、商用電源110が単相交流電源の場合について説明する。また、商用電源110から供給される電源電圧Vsの周波数を1fとする。商用電源110が単相交流電源であることから、コンデンサ電流脈動の基本周波数は2fとなり、コンデンサ電流脈動の基本周波数の2倍は4fとなる。
 第1のq軸電流脈動演算部801は、コンデンサ電流脈動の基本周波数を2fとした場合、直流母線電圧Vdcの2f脈動を抑制する制御系であり、直流母線電圧Vdcの2f脈動を補償する第1のq軸電流脈動指令を演算して出力する。第2のq軸電流脈動演算部802は、直流母線電圧Vdcの4f脈動を抑制する制御系であり、直流母線電圧Vdcの4f脈動を補償する第2のq軸電流脈動指令を演算して出力する。これらの制御系によって平滑部200のコンデンサ210に流れる電流が低減できることは公知である。
 運転状態判定部803は、モータ314の運転状態、すなわちモータ314に印加される負荷の大きさを判定する。運転状態判定部803は、モータ314に印加されている負荷が軽負荷であると判定した場合、第1のq軸電流脈動演算部801の出力を選択し、q軸電流脈動指令iqrip *として出力する。一方、運転状態判定部803は、モータ314に印加されている負荷が重負荷であると判定した場合、第1のq軸電流脈動演算部801の出力と第2のq軸電流脈動演算部802の出力とを加算したものを、q軸電流脈動指令iqrip *として出力する。
 運転状態判定部803における運転状態の判定方法としては様々な方法があるが、例えば、速度制御部402からの出力であるq軸電流指令iqDC および回転子位置推定部401からの出力である推定速度ωestを利用する方法が考えられる。q軸電流指令iqDC と推定速度ωestとを乗算するとモータ314の平均出力電力PDCが求まるので、運転状態判定部803は、モータ314の平均出力電力PDCの大きさに基づいて、モータ314に印加される負荷が重負荷か軽負荷かを判定することができる。この際、重負荷および軽負荷の判定がチャタリングしないように、運転状態判定部803は、重負荷および軽負荷を判定するための閾値について、ヒステリシス幅を設けて判定するとなおよい。例えば、運転状態判定部803は、平均出力電力PDCが最大出力電力の60%を超えたときに重負荷になったと判定し、次に平均出力電力PDCが最大出力電力の40%を下回ったときに軽負荷になったと判定するような処理を行えばよい。なお、ここで例示した60%、40%などの閾値は一例であって、他の値を用いてもよい。
 また、別の判定方法として、モータ314にかかる電圧およびモータ314に流れる電流を用いて判定する方法もあると思われる。電圧と電流とを乗算するとモータ314への入力電力が求まるので、運転状態判定部803は、モータ314への入力電力を求めてモータ314に印加される負荷が重負荷か軽負荷かを判定してもよい。
 また、別の判定方法として、例えば、q軸電流指令iqDC および第1のq軸電流脈動演算部801の出力の加算値を使う方法も考えられる。運転状態判定部803は、加算値が図示しないq軸電流iの制限値に達しない場合は軽負荷と判定し、加算値がq軸電流iの制限値に達した場合は重負荷と判定する。
 運転状態判定部803においてモータ314に印加される負荷が重負荷か軽負荷かを判定する方法は、ここで例示した方法以外にも様々考えられるが、いずれの方法を用いてもよい。なお、制御部400cについて、制御系の構成を簡素化したい場合、運転状態判定部803を省いて、常に2f脈動および4f脈動を同時に補償してもよい。
 弱め磁束制御部403cは、q軸電流脈動に同期してd軸電流脈動idACを発生させる制御系であり、1f脈動および2f脈動を含んだd軸電流指令i を与える。弱め磁束制御部403cは、実施の形態1および実施の形態3のような構成でもよいし、実施の形態2および実施の形態4のようにd軸電流iに対して他の周波数の脈動も同時に与えるような構成でもよい。
 重負荷域では銅損およびコンデンサ電流のトレードオフ問題があるが、本実施の形態のような構成を採用することにより、制御部400cは、銅損の増加を抑えつつ、的確にコンデンサ電流を抑制することが可能となる。
 図28は、実施の形態5に係る電力変換装置1の制御部400cが備えるq軸電流脈動演算部408cの動作を示すフローチャートである。q軸電流脈動演算部408cにおいて、第1のq軸電流脈動演算部801は、直流母線電圧Vdcの2f脈動を補償する第1のq軸電流脈動指令を演算する(ステップS51)。第2のq軸電流脈動演算部802は、直流母線電圧Vdcの4f脈動を補償する第2のq軸電流脈動指令を演算する(ステップS52)。運転状態判定部803は、モータ314に印加される負荷の大きさを判定する(ステップS53)。軽負荷の場合(ステップS54:Yes)、運転状態判定部803は、第1のq軸電流脈動指令を選択し、q軸電流脈動指令iqrip *として出力する(ステップS55)。重負荷の場合(ステップS54:No)、運転状態判定部803は、第1のq軸電流脈動指令と第2のq軸電流脈動指令とを加算し、q軸電流脈動指令iqrip *として出力する(ステップS56)。
 このように、商用電源110が単相交流電源の場合において、q軸電流脈動演算部408cは、モータ314の負荷を判定する。q軸電流脈動演算部408cは、規定された負荷である軽負荷と判定するための閾値との比較によって負荷が軽負荷であると判定した場合、第1の交流電力の周波数の2倍脈動を補償するq軸電流脈動指令iqrip *を生成する。q軸電流脈動演算部408cは、規定された負荷である重負荷と判定するための閾値との比較によって負荷が重負荷であると判定した場合、第1の交流電力の周波数の2倍脈動および4倍脈動を補償するq軸電流脈動指令iqrip *を生成する。
 なお、商用電源110が単相交流電源の場合について説明したが、本実施の形態は、商用電源110が三相交流電源の場合にも適用可能である。商用電源110が三相交流電源の場合、コンデンサ電流脈動の基本周波数は、商用電源110が単相交流電源のときの3倍になる。すなわち、商用電源110が三相交流電源の場合、コンデンサ電流脈動の基本周波数は6fとなり、コンデンサ電流脈動の基本周波数の2倍は12fとなる。
 商用電源110が三相交流電源の場合において、q軸電流脈動演算部408cは、モータ314の負荷を判定する。q軸電流脈動演算部408cは、規定された負荷である軽負荷と判定するための閾値との比較によって負荷が軽負荷であると判定した場合、第1の交流電力の周波数の6倍脈動を補償するq軸電流脈動指令iqrip *を生成する。q軸電流脈動演算部408cは、規定された負荷である重負荷と判定するための閾値との比較によって負荷が重負荷であると判定した場合、第1の交流電力の周波数の6倍脈動および12倍脈動を補償するq軸電流脈動指令iqrip *を生成する。
 電力変換装置1が備える制御部400cのハードウェア構成について説明する。制御部400cは、実施の形態1の制御部400と同様、プロセッサ91およびメモリ92により実現される。
 以上説明したように、本実施の形態によれば、電力変換装置1において、制御部400cのq軸電流脈動演算部408cは、モータ314に印加される負荷が大きい場合、直流母線電圧Vdcの1f脈動を補償する第1のq軸電流脈動指令に、直流母線電圧Vdcの2f脈動を補償する第2のq軸電流脈動指令を加算したものを、q軸電流脈動指令iqrip として出力することとした。これにより、電力変換装置1は、実施の形態1と比較して、銅損の増加を抑えつつ、的確にコンデンサ電流を抑制することが可能となる。なお、実施の形態5の制御内容については、実施の形態1~4の制御内容と適宜組み合わせることも可能である。
実施の形態6.
 実施の形態1~5では、電力変換装置1において、コンデンサ電流低減制御および弱め磁束制御を行う場合について説明した。このうち、実施の形態2~4の弱め磁束制御については、特許文献1にも適用可能である。特許文献1に記載の弱め磁束制御は、実施の形態1による弱め磁束制御と同様の手法であるが、前述のように、接線近似と理想値との誤差が大きくなり、妥当な弱め磁束制御ができなくなるおそれがある。実施の形態6の電力変換装置は、実施の形態2~4の弱め磁束制御を用いることで、振動抑制制御および弱め磁束制御を行う場合において、弱め磁束制御の精度を向上させることができる。
 図29は、実施の形態6に係る電力変換装置1dの構成例を示す図である。電力変換装置1dは、図1に示す電力変換装置1の制御部400を制御部400dに置き換えたものである。なお、電力変換装置1d、および圧縮機315が備えるモータ314によって、モータ駆動装置2dを構成している。図30は、実施の形態6に係る電力変換装置1dが備える制御部400dの構成例を示すブロック図である。制御部400dは、図13に示す実施の形態2の制御部400aに対して、弱め磁束制御部403aを弱め磁束制御部403dに置き換え、q軸電流脈動演算部408をq軸電流脈動演算部408dに置き換えたものである。
 q軸電流脈動演算部408dは、特許文献1の段落0025に記載されている速度脈動抑制制御部または振動抑制制御部に相当する構成であり、特許文献1のq軸電流脈動iqACに相当するq軸電流脈動指令iqrip を出力する。速度脈動抑制制御部または振動抑制制御部に相当するq軸電流脈動演算部408dの具体的な構成については、一般的なものでよいので、特許文献1と同様、特に問わない。
 弱め磁束制御部403dは、q軸電流脈動演算部408dで演算されたq軸電流脈動指令iqrip を加味して弱め磁束制御を行う。ここで、実施の形態6のq軸電流脈動指令iqrip と実施の形態2~4のq軸電流脈動指令iqrip とでは脈動周波数が異なる。しかしながら、弱め磁束制御部403dは、実施の形態2の弱め磁束制御部403a、または実施の形態3,4の弱め磁束制御部403bと同様の構成によって、振動抑制制御に対応したd軸電流指令i を自動調整することができる。
 このように、制御部400dは、検出部の検出値に応じてq軸電流iの脈動成分であるq軸電流脈動をモータ314の駆動パターンに重畳し、モータ314の回転による振動を抑制するとともに、インバータの電圧が飽和する際にq軸電流脈動の正の整数倍の周波数に同期してモータ314のd軸電流iを脈動させる。正の整数については、前述のように、1つであってもよいし、複数であってもよい。例えば、正の整数は、1のみでもよし、1および2でもよい。
 制御部400dは、実施の形態2の制御部400aのように動作する場合は図13に示す制御部400aと同様の構成であり、弱め磁束制御部403dとして、図15に示す弱め磁束制御部403aを備える。制御部400aおよび弱め磁束制御部403aの各構成の動作は、前述の通りである。
 また、制御部400dは、実施の形態3の制御部400bのように動作する場合は図18に示す制御部400bと同様の構成であり、弱め磁束制御部403dとして、図19に示す弱め磁束制御部403bを備える。さらに、弱め磁束制御部403bは、図20に示すd軸電流脈動発生部603bを備える。制御部400b、弱め磁束制御部403b、およびd軸電流脈動発生部603bの各構成の動作は、前述の通りである。
 また、制御部400dは、実施の形態4の制御部400bのように動作する場合は図18に示す制御部400bと同様の構成であり、弱め磁束制御部403dとして、図19に示す弱め磁束制御部403bを備える。さらに、弱め磁束制御部403bは、図23に示すd軸電流脈動発生部603bを備える。制御部400b、弱め磁束制御部403b、およびd軸電流脈動発生部603bの各構成の動作は、前述の通りである。
 電力変換装置1dが備える制御部400dのハードウェア構成について説明する。制御部400dは、実施の形態1の制御部400と同様、プロセッサ91およびメモリ92により実現される。
 以上説明したように、本実施の形態によれば、電力変換装置1dにおいて、制御部400dの弱め磁束制御部403dは、実施の形態2~4の弱め磁束制御と同様の制御を行う。これにより、電力変換装置1dは、弱め磁束制御の精度を向上させ、的確な弱め磁束制御を行うことで、d軸電流iを過剰に流さなくても済むので銅損を改善できる。電力変換装置1dは、モータ314の回転による振動を抑制しつつ、過変調領域において効率の低下を抑制することができる。
実施の形態7.
 図31は、実施の形態7に係る冷凍サイクル適用機器900の構成例を示す図である。実施の形態7に係る冷凍サイクル適用機器900は、実施の形態1~5で説明した電力変換装置1を備える。なお、冷凍サイクル適用機器900は、実施の形態6で説明した電力変換装置1dを備えることも可能であるが、ここでは一例として、電力変換装置1を備える場合について説明する。実施の形態7に係る冷凍サイクル適用機器900は、空気調和機、冷蔵庫、冷凍庫、ヒートポンプ給湯器といった冷凍サイクルを備える製品に適用することが可能である。なお、図31において、実施の形態1と同様の機能を有する構成要素には、実施の形態1と同一の符号を付している。
 冷凍サイクル適用機器900は、実施の形態1におけるモータ314を内蔵した圧縮機315と、四方弁902と、室内熱交換器906と、膨張弁908と、室外熱交換器910とが冷媒配管912を介して取り付けられている。
 圧縮機315の内部には、冷媒を圧縮する圧縮機構904と、圧縮機構904を動作させるモータ314とが設けられている。
 冷凍サイクル適用機器900は、四方弁902の切替動作により暖房運転又は冷房運転をすることができる。圧縮機構904は、可変速制御されるモータ314によって駆動される。
 暖房運転時には、実線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室内熱交換器906、膨張弁908、室外熱交換器910及び四方弁902を通って圧縮機構904に戻る。
 冷房運転時には、破線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室外熱交換器910、膨張弁908、室内熱交換器906及び四方弁902を通って圧縮機構904に戻る。
 暖房運転時には、室内熱交換器906が凝縮器として作用して熱放出を行い、室外熱交換器910が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器910が凝縮器として作用して熱放出を行い、室内熱交換器906が蒸発器として作用し、熱吸収を行う。膨張弁908は、冷媒を減圧して膨張させる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1d 電力変換装置、2,2d モータ駆動装置、110 商用電源、120 リアクトル、130 整流部、131~134 整流素子、200 平滑部、210 コンデンサ、310 インバータ、311a~311f スイッチング素子、312a~312f 還流ダイオード、313a,313b 電流検出部、314 モータ、315 圧縮機、400,400a,400b,400c,400d 制御部、401 回転子位置推定部、402 速度制御部、403,403a,403b,403c,403d 弱め磁束制御部、404 電流制御部、405,406 座標変換部、407 PWM信号生成部、408,408c,408d q軸電流脈動演算部、409 加算部、501 電圧検出部、601 減算部、602 積分制御部、603,603b d軸電流脈動発生部、604 加算部、605 d軸電流脈動再調整部、701 ゲイン部、702~705 フーリエ係数演算部、706~709 PID制御部、710 交流復元部、801 第1のq軸電流脈動演算部、802 第2のq軸電流脈動演算部、803 運転状態判定部、900 冷凍サイクル適用機器、902 四方弁、904 圧縮機構、906 室内熱交換器、908 膨張弁、910 室外熱交換器、912 冷媒配管。

Claims (16)

  1.  商用電源から供給される第1の交流電力を整流する整流部と、
     前記整流部の出力端に接続されるコンデンサと、
     前記コンデンサの両端に接続され、第2の交流電力を生成してモータに出力するインバータと、
     前記コンデンサの電力状態を検出する検出部と、
     前記モータの回転子位置に同期して回転するdq回転座標を用いて、前記インバータおよび前記モータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記検出部の検出値に応じてq軸電流の脈動成分であるq軸電流脈動を前記モータの駆動パターンに重畳し、前記コンデンサの充放電電流を抑制するとともに、前記インバータの電圧が飽和する際に前記q軸電流脈動の正の整数倍の周波数に同期して前記モータのd軸電流を脈動させる、
     電力変換装置。
  2.  前記制御部は、
     速度指令および推定速度から第1のq軸電流指令を生成する速度制御部と、
     前記検出値を用いて前記q軸電流脈動を演算し、q軸電流脈動指令を生成するq軸電流脈動演算部と、
     前記第1のq軸電流指令と前記q軸電流脈動指令とを加算して第2のq軸電流指令を生成する加算部と、
     前記q軸電流脈動指令に同期して前記d軸電流を脈動させるd軸電流脈動指令を生成し、dq軸電圧指令と電圧制限値との電圧偏差から前記d軸電流脈動指令の周波数に対して低い周波数である第1のd軸電流指令を生成し、前記第1のd軸電流指令と前記d軸電流脈動指令とを加算して第2のd軸電流指令を生成する弱め磁束制御部と、
     前記第2のq軸電流指令および前記第2のd軸電流指令を用いて前記モータに流れる電流を制御し、前記dq軸電圧指令を生成する電流制御部と、
     を備える請求項1に記載の電力変換装置。
  3.  前記弱め磁束制御部は、電圧進角の平均値のタンジェントと前記q軸電流脈動指令との乗算結果に基づいて、前記d軸電流脈動指令を生成する、
     請求項2に記載の電力変換装置。
  4.  前記弱め磁束制御部は、前記dq軸電圧指令のベクトルの軌跡が前記電圧制限値に基づく規定された半径の電圧制限円の円周方向または接線方向に維持されるように、前記d軸電流脈動指令を生成する、
     請求項2または3に記載の電力変換装置。
  5.  前記弱め磁束制御部は、
     前記q軸電流脈動に同期し、前記q軸電流脈動による前記dq軸電圧指令の振幅の増減を抑制する前記d軸電流脈動指令を生成するd軸電流脈動発生部と、
     前記q軸電流脈動指令および前記d軸電流脈動指令による前記dq軸電圧指令の振幅の増減量を調査し、前記増減量に応じて前記d軸電流脈動指令を再調整するd軸電流脈動再調整部と、
     を備え、
     前記第1のd軸電流指令と再調整後の前記d軸電流脈動指令とを加算して前記第2のd軸電流指令を生成する、
     請求項2から4のいずれか1つに記載の電力変換装置。
  6.  前記弱め磁束制御部は、
     前記電圧偏差に応じて、前記dq軸電圧指令の振幅の増減を抑制する前記d軸電流脈動指令を生成するd軸電流脈動発生部、
     を備え、
     前記d軸電流脈動発生部は、
     前記電圧偏差から、前記q軸電流脈動指令に基づく規定された周波数成分をサイン成分およびコサイン成分に分けて直流化して抽出するフーリエ係数演算部と、
     前記フーリエ係数演算部で抽出された前記周波数成分の前記サイン成分および前記コサイン成分がゼロになるように制御する積分制御部と、
     前記積分制御部の演算結果を1つの交流信号に復元し、前記d軸電流脈動指令として出力する交流復元部と、
     を備える請求項2から4のいずれか1つに記載の電力変換装置。
  7.  前記弱め磁束制御部は、
     前記電圧偏差に応じて、前記dq軸電圧指令の振幅の増減を抑制する前記d軸電流脈動指令を生成するd軸電流脈動発生部、
     を備え、
     前記d軸電流脈動発生部は、
     前記電圧偏差から、前記q軸電流脈動指令に基づく規定された第1の周波数成分をサイン成分およびコサイン成分に分けて直流化して抽出する第1のフーリエ係数演算部と、
     前記第1のフーリエ係数演算部で抽出された前記第1の周波数成分の前記サイン成分および前記コサイン成分がゼロになるように制御する第1の積分制御部と、
     Nを2以上の正の整数とし、前記q軸電流脈動指令の周波数をN倍にするゲイン部と、
     前記電圧偏差から、前記ゲイン部で得られた第2の周波数成分をサイン成分およびコサイン成分に分けて直流化して抽出する第2のフーリエ係数演算部と、
     前記第2のフーリエ係数演算部で抽出された前記第2の周波数成分の前記サイン成分および前記コサイン成分がゼロになるように制御する第2の積分制御部と、
     前記第1の積分制御部の演算結果および前記第2の積分制御部の演算結果を1つの交流信号に復元し、前記d軸電流脈動指令として出力する交流復元部と、
     を備える請求項2から4のいずれか1つに記載の電力変換装置。
  8.  前記商用電源を単相交流電源とし、
     前記q軸電流脈動演算部は、前記モータの負荷を判定し、
     規定された負荷である軽負荷と判定するための閾値との比較によって前記負荷が前記軽負荷であると判定した場合、前記第1の交流電力の周波数の2倍脈動を補償する前記q軸電流脈動指令を生成し、
     規定された負荷である重負荷と判定するための閾値との比較によって前記負荷が前記重負荷であると判定した場合、前記第1の交流電力の周波数の2倍脈動および4倍脈動を補償する前記q軸電流脈動指令を生成する、
     請求項2から7のいずれか1つに記載の電力変換装置。
  9.  前記商用電源を三相交流電源とし、
     前記q軸電流脈動演算部は、前記モータの負荷を判定し、
     規定された負荷である軽負荷と判定するための閾値との比較によって前記負荷が前記軽負荷であると判定した場合、前記第1の交流電力の周波数の6倍脈動を補償する前記q軸電流脈動指令を生成し、
     規定された負荷である重負荷と判定するための閾値との比較によって前記負荷が前記重負荷であると判定した場合、前記第1の交流電力の周波数の6倍脈動および12倍脈動を補償する前記q軸電流脈動指令を生成する、
     請求項2から7のいずれか1つに記載の電力変換装置。
  10.  商用電源から供給される第1の交流電力を整流する整流部と、
     前記整流部の出力端に接続されるコンデンサと、
     前記コンデンサの両端に接続され、第2の交流電力を生成してモータに出力するインバータと、
     前記コンデンサの電力状態を検出する検出部と、
     前記モータの回転子位置に同期して回転するdq回転座標を用いて、前記インバータおよび前記モータの動作を制御する制御部と、
     を備え、
     前記制御部は、前記検出部の検出値に応じてq軸電流の脈動成分であるq軸電流脈動を前記モータの駆動パターンに重畳し、前記モータの回転による振動を抑制するとともに、前記インバータの電圧が飽和する際に前記q軸電流脈動の正の整数倍の周波数に同期して前記モータのd軸電流を脈動させる、
     電力変換装置。
  11.  前記制御部は、
     速度指令および推定速度から第1のq軸電流指令を生成する速度制御部と、
     前記検出値を用いて前記q軸電流脈動を演算し、q軸電流脈動指令を生成するq軸電流脈動演算部と、
     前記第1のq軸電流指令と前記q軸電流脈動指令とを加算して第2のq軸電流指令を生成する加算部と、
     前記q軸電流脈動指令に同期して前記d軸電流を脈動させるd軸電流脈動指令を生成し、dq軸電圧指令と電圧制限値との電圧偏差から前記d軸電流脈動指令の周波数に対して低い周波数である第1のd軸電流指令を生成し、前記第1のd軸電流指令と前記d軸電流脈動指令とを加算して第2のd軸電流指令を生成する弱め磁束制御部と、
     前記第2のq軸電流指令および前記第2のd軸電流指令を用いて前記モータに流れる電流を制御し、前記dq軸電圧指令を生成する電流制御部と、
     を備える請求項10に記載の電力変換装置。
  12.  前記弱め磁束制御部は、
     前記q軸電流脈動に同期し、前記q軸電流脈動による前記dq軸電圧指令の振幅の増減を抑制する前記d軸電流脈動指令を生成するd軸電流脈動発生部と、
     前記q軸電流脈動指令および前記d軸電流脈動指令による前記dq軸電圧指令の振幅の増減量を調査し、前記増減量に応じて前記d軸電流脈動指令を再調整するd軸電流脈動再調整部と、
     を備え、
     前記第1のd軸電流指令と再調整後の前記d軸電流脈動指令とを加算して前記第2のd軸電流指令を生成する、
     請求項11に記載の電力変換装置。
  13.  前記弱め磁束制御部は、
     前記電圧偏差に応じて、前記dq軸電圧指令の振幅の増減を抑制する前記d軸電流脈動指令を生成するd軸電流脈動発生部、
     を備え、
     前記d軸電流脈動発生部は、
     前記電圧偏差から、前記q軸電流脈動指令に基づく規定された周波数成分をサイン成分およびコサイン成分に分けて直流化して抽出するフーリエ係数演算部と、
     前記フーリエ係数演算部で抽出された前記周波数成分の前記サイン成分および前記コサイン成分がゼロになるように制御する積分制御部と、
     前記積分制御部の演算結果を1つの交流信号に復元し、前記d軸電流脈動指令として出力する交流復元部と、
     を備える請求項11に記載の電力変換装置。
  14.  前記弱め磁束制御部は、
     前記電圧偏差に応じて、前記dq軸電圧指令の振幅の増減を抑制する前記d軸電流脈動指令を生成するd軸電流脈動発生部、
     を備え、
     前記d軸電流脈動発生部は、
     前記電圧偏差から、前記q軸電流脈動指令に基づく規定された第1の周波数成分をサイン成分およびコサイン成分に分けて直流化して抽出する第1のフーリエ係数演算部と、
     前記第1のフーリエ係数演算部で抽出された前記第1の周波数成分の前記サイン成分および前記コサイン成分がゼロになるように制御する第1の積分制御部と、
     Nを2以上の正の整数とし、前記q軸電流脈動指令の周波数をN倍にするゲイン部と、
     前記電圧偏差から、前記ゲイン部で得られた第2の周波数成分をサイン成分およびコサイン成分に分けて直流化して抽出する第2のフーリエ係数演算部と、
     前記第2のフーリエ係数演算部で抽出された前記第2の周波数成分の前記サイン成分および前記コサイン成分がゼロになるように制御する第2の積分制御部と、
     前記第1の積分制御部の演算結果および前記第2の積分制御部の演算結果を1つの交流信号に復元し、前記d軸電流脈動指令として出力する交流復元部と、
     を備える請求項11に記載の電力変換装置。
  15.  請求項1から14のいずれか1つに記載の電力変換装置を備えるモータ駆動装置。
  16.  請求項1から14のいずれか1つに記載の電力変換装置を備える冷凍サイクル適用機器。
PCT/JP2021/039841 2021-10-28 2021-10-28 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 WO2023073870A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/039841 WO2023073870A1 (ja) 2021-10-28 2021-10-28 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP2023555983A JPWO2023073870A1 (ja) 2021-10-28 2021-10-28
CN202180103515.2A CN118140404A (zh) 2021-10-28 2021-10-28 电力转换装置、马达驱动装置和制冷循环应用设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039841 WO2023073870A1 (ja) 2021-10-28 2021-10-28 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Publications (1)

Publication Number Publication Date
WO2023073870A1 true WO2023073870A1 (ja) 2023-05-04

Family

ID=86157563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039841 WO2023073870A1 (ja) 2021-10-28 2021-10-28 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Country Status (3)

Country Link
JP (1) JPWO2023073870A1 (ja)
CN (1) CN118140404A (ja)
WO (1) WO2023073870A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299290A (ja) * 1998-04-17 1999-10-29 Hitachi Ltd 交流電動機駆動システム
JP2002189064A (ja) * 2000-12-20 2002-07-05 Ko Gijutsu Kenkyusho:Kk 電気機器設備の異常診断方法
WO2004070402A1 (ja) * 2003-02-07 2004-08-19 Atec Co., Ltd. 電気設備の高調波診断方法
JP2016192854A (ja) * 2015-03-31 2016-11-10 東芝エレベータ株式会社 エレベータの制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11299290A (ja) * 1998-04-17 1999-10-29 Hitachi Ltd 交流電動機駆動システム
JP2002189064A (ja) * 2000-12-20 2002-07-05 Ko Gijutsu Kenkyusho:Kk 電気機器設備の異常診断方法
WO2004070402A1 (ja) * 2003-02-07 2004-08-19 Atec Co., Ltd. 電気設備の高調波診断方法
JP2016192854A (ja) * 2015-03-31 2016-11-10 東芝エレベータ株式会社 エレベータの制御装置

Also Published As

Publication number Publication date
JPWO2023073870A1 (ja) 2023-05-04
CN118140404A (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
EP2667501B1 (en) Power conversion apparatus
CN105978433B (zh) 电容小型化的电机驱动装置和变频空调器
CN106208887B (zh) 无电解电容电机驱动系统及其控制方法、装置
CN109546913B (zh) 一种电容小型化电机驱动装置
JP2003164179A (ja) モータ駆動装置及びモータ駆動方法
WO2017037945A1 (ja) 電力変換装置およびヒートポンプ装置
WO2023073870A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2020095377A1 (ja) 負荷駆動装置、冷凍サイクル装置及び空気調和機
US20240380345A1 (en) Power converting apparatus, motor drive unit, and refrigeration cycle-incorporating apparatus
WO2023100321A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
JP7330401B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2024075210A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023073880A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023084600A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2023100305A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023105676A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
JP7325671B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2022149210A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023067724A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023157045A1 (ja) 電力変換装置および空気調和機
WO2023105570A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2024142324A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
JP7361948B2 (ja) 電動機駆動装置、冷凍サイクル装置、及び空気調和機
WO2023105761A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2024184960A1 (ja) 電力変換装置および空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962418

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555983

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180103515.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21962418

Country of ref document: EP

Kind code of ref document: A1