[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023062997A1 - 光ファイバ - Google Patents

光ファイバ Download PDF

Info

Publication number
WO2023062997A1
WO2023062997A1 PCT/JP2022/034075 JP2022034075W WO2023062997A1 WO 2023062997 A1 WO2023062997 A1 WO 2023062997A1 JP 2022034075 W JP2022034075 W JP 2022034075W WO 2023062997 A1 WO2023062997 A1 WO 2023062997A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core
fiber according
less
transmission loss
Prior art date
Application number
PCT/JP2022/034075
Other languages
English (en)
French (fr)
Inventor
慎 佐藤
健美 長谷川
雄揮 川口
洋宇 佐久間
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023555031A priority Critical patent/JPWO2023062997A1/ja
Priority to CN202280056552.7A priority patent/CN117859082A/zh
Publication of WO2023062997A1 publication Critical patent/WO2023062997A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the transmission loss of optical fibers in the near-infrared region used as the communication wavelength band is greatly affected by Rayleigh scattering. Therefore, reduction of transmission loss requires reduction of Rayleigh scattering.
  • Rayleigh scattering occurs as a reflection of the non-uniformity of the glass structure. The non-uniformity of the glass structure is reduced by promoting structural relaxation from the glassy state to a crystalline state with a periodic uniform structure.
  • Patent Literature 1 discloses a method of adding an alkali metal to the core portion of an optical fiber preform to increase the fluidity of the core portion during drawing of the optical fiber, thereby promoting structural relaxation at a lower temperature.
  • Patent Literature 1 discloses a method of controlling annealing time during optical fiber drawing by installing an annealing furnace to promote structural relaxation.
  • the optical fiber according to the first aspect of the present disclosure includes a core made of silica glass and a cladding made of silica glass surrounding the core, and the Raman scattering spectrum R obtained by irradiating the core with excitation light having a wavelength of 532 nm.
  • the spectrum of the wavenumber derivative dR(k)/dk of (k) passes through zero twice or less in the wavenumber range of 400 cm ⁇ 1 to 550 cm ⁇ 1 .
  • An optical fiber includes a core made of silica glass and a cladding made of silica glass surrounding the core, and the Raman scattering spectrum R obtained by irradiating the core with excitation light having a wavelength of 532 nm.
  • the maximum intensity P D1 of the Raman scattered light D1 caused by the four-membered ring structure and the maximum intensity of the Raman scattered light ⁇ 3 caused by one of the vibration modes of the Si—O vibration of the SiO 4 structure The ratio P D1 /P ⁇ 3 to the value P ⁇ 3 is 5 or more.
  • FIG. 1 is a cross-sectional view of an optical fiber according to an embodiment.
  • FIG. 2 is a diagram showing an example of a Raman scattering spectrum obtained by irradiating quartz-based glass (silica glass) with a laser beam having a wavelength of 532 nm.
  • FIG. 3 is a graph showing the relationship between the ratio I D2 /I ⁇ 3 and transmission loss.
  • FIG. 4 is a graph showing the relationship between the transmission loss and the number of extreme values included in the wave number range of 400 cm ⁇ 1 to 550 cm ⁇ 1 of the Raman scattering spectrum.
  • FIG. 5 is a diagram showing an example of a Raman scattering spectrum when the number of extreme values is two.
  • FIG. 1 is a cross-sectional view of an optical fiber according to an embodiment.
  • FIG. 2 is a diagram showing an example of a Raman scattering spectrum obtained by irradiating quartz-based glass (silica glass) with a laser beam having a wavelength of 532 nm.
  • FIG. 6 is a diagram showing an example of a Raman scattering spectrum when the number of extreme values is one.
  • FIG. 7 is a diagram showing an example of a wave number differential spectrum when the number of extreme values is two.
  • FIG. 8 is a diagram showing an example of a wave number differential spectrum when the number of extreme values is three.
  • FIG. 9 is a graph showing the relationship between the ratio P D1 /P ⁇ 3 and transmission loss.
  • FIG. 10 is a diagram showing an example of Raman scattering spectra when the ratio P D1 /P ⁇ 3 is 5 or more.
  • FIG. 11 is a graph showing the relationship between the absolute refractive index of the core and the transmission loss.
  • Silica glass is glass mainly composed of SiO 2 .
  • the liquid-like random structure at high temperature is frozen by quenching SiO 2 melted at high temperature. Therefore, silica glass has not only a six-membered ring structure of quartz, which is a crystal of SiO 2 , but also three- and four-membered Si—O bonding structures in which the six-membered ring structure is broken. . As a result, non-uniformity occurs in the glass structure and Rayleigh scattering increases.
  • the main practice is to reduce the number of three-membered ring structures and four-membered ring structures in glass in order to reduce the non-uniformity of the glass structure.
  • the additive element facilitates the transition of SiO 2 to a crystalline state.
  • crystallization using the compound of the additive element as a crystal nucleus occurs easily, resulting in a decrease in yield.
  • the slow cooling time during drawing of the optical fiber is lengthened by lowering the drawing speed, but the productivity is lowered.
  • An object of the present disclosure is to provide an optical fiber with high productivity and low transmission loss.
  • the optical fiber according to the first aspect of the present disclosure includes a core made of silica glass and a cladding made of silica glass surrounding the core, and the Raman scattering spectrum R obtained by irradiating the core with excitation light having a wavelength of 532 nm.
  • the spectrum of the wavenumber derivative dR(k)/dk of (k) passes through zero twice or less in the wavenumber range of 400 cm ⁇ 1 to 550 cm ⁇ 1 .
  • An optical fiber includes a core made of silica glass and a cladding made of silica glass surrounding the core, and the Raman scattering spectrum R obtained by irradiating the core with excitation light having a wavelength of 532 nm.
  • the maximum intensity P D1 of the Raman scattered light D1 caused by the four-membered ring structure and the maximum intensity of the Raman scattered light ⁇ 3 caused by one of the vibration modes of the Si—O vibration of the SiO 4 structure The ratio P D1 /P ⁇ 3 to the value P ⁇ 3 is 5 or more.
  • the spectrum of the wavenumber differential dR(k)/dk of the Raman scattering spectrum R(k) passes through 0 in the wavenumber range of 400 cm ⁇ 1 or more and 550 cm ⁇ 1 or less. It may be twice or less. In this case, transmission loss can be further reduced.
  • FIG. 1 is a cross-sectional view of an optical fiber according to an embodiment. Unlike the prior art, the optical fiber 1 according to the embodiment shown in FIG. 1 reduces Rayleigh scattering and, as a result, reduces transmission loss by increasing the number of four-membered ring structures.
  • An optical fiber 1 according to an embodiment includes a core 10 and a clad 20. As shown in FIG. The diameter of the core 10 is, for example, 6 ⁇ m or more and 20 ⁇ m or less. Clad 20 surrounds core 10 and is in contact with the outer peripheral surface of core 10 . The diameter of the clad 20 is, for example, 80 ⁇ m or more and 130 ⁇ m or less. The clad 20 has a lower refractive index than the core 10 .
  • the core 10 is made of silica glass and contains, for example, alkali metal elements such as Li, Na and K, and halogen elements.
  • the core 10 may further contain other elements.
  • the clad 20 is made of silica glass and contains, for example, a halogen element.
  • the clad 20 may further contain other elements.
  • All additive elements added to the core 10 and clad 20 have the effect of reducing the viscosity of the SiO2 glass. Therefore, if the addition concentration (mass fraction) is too high, promotion of the four-membered ring structure during high pressure application and wire drawing in the manufacturing stage is suppressed.
  • the additive concentration may be 10000 ppm or less.
  • modifying elements may be added to the core 10 and the clad 20 .
  • the modifying element is an element capable of modifying and repairing defects such as NBOHC. Examples of modifying elements include halogen elements such as fluorine and chlorine. Both the core 10 and the clad 20 may contain at least one halogen element in a mass fraction of 100 ppm or more, or may contain two or more halogen elements.
  • the spectrum of the wavenumber derivative dR(k)/dk of the Raman scattering spectrum R(k) obtained by irradiating the core 10 with the excitation light having a wavelength of 532 nm has a wavenumber of 400 cm ⁇ 1 or more and 550 cm ⁇
  • the number of times of passing 0 in the range of 1 or less is 2 times or less.
  • the maximum value P D1 of the intensity of the Raman scattered light D1 caused by the four-membered ring structure and the Raman scattering caused by one of the vibration modes of the Si—O vibration of the SiO 4 structure The ratio P D1 /P ⁇ 3 of the intensity of the light ⁇ 3 to the maximum value P ⁇ 3 is 5 or more.
  • high pressure treatment may be performed in order to promote the formation of the four-membered ring structure. Since pressure is applied to the glass in the high-pressure treatment, it is expected to promote formation of a three-membered ring structure or a four-membered ring structure with smaller voids than the six-membered ring structure seen in ordinary crystals.
  • a high pressure treatment may be applied to the glass, for example, a pressure greater than 10 ⁇ 4 GPa and less than or equal to 10 GPa.
  • a HIP (Hot Isostatic Pressing) method may be used as the high-pressure treatment method.
  • the HIP method is a method of applying pressure using gas as a medium for applying high pressure. According to the HIP method, it is possible to suppress the occurrence of defects due to contamination of impurities and uneven pressure application, as compared with the pressure application method in which a material having a high hardness is directly pressed.
  • a He atmosphere with high thermal conductivity may be used in the furnace and the cooling section in order to promote the formation of the four-membered ring structure.
  • equipment for forcibly cooling the drawn optical fiber 1 may be used to rapidly cool the drawn optical fiber 1 .
  • the drawing speed (linear speed) is, for example, 500 m/min or more. This encourages the formation of additional four-membered ring structures.
  • the drawing speed may be 1000 m/min or higher, or 2000 m/min or higher.
  • An optical fiber 1 according to an example was manufactured as follows. First, a core containing 100 ppm or more of chlorine or fluorine by mass fraction and containing other additive elements was produced. Subsequently, after preforming, a pressure of greater than 10 ⁇ 4 GPa and 10 GPa or less was applied to the glass using the HIP method. Subsequently, wire drawing was carried out at a drawing speed of 500 m/min or more, and quenching was performed in a He atmosphere.
  • An optical fiber according to the comparative example was manufactured in the same manner as the optical fiber 1 according to the example, except that none of the above methods for promoting the formation of the four-membered ring structure was adopted. That is, in the optical fiber manufacturing method according to the comparative example, high-pressure treatment was not performed. Also, no He atmosphere was used in the furnace and cooling section. Also, no facility for forcibly cooling the optical fiber after drawing was used. Further, drawing was performed at a drawing speed of less than 500 m/min. The method of manufacturing an optical fiber according to the comparative example corresponds to the prior art approach of reducing transmission loss by equally reducing four- and three-membered ring structures.
  • the Raman scattering spectrum will be explained.
  • the interaction between the light and the substance (molecular vibration) generates Raman scattered light having a wavelength different from that of the irradiation light.
  • the structure of the substance at the molecular level can be analyzed from the Raman scattering spectrum obtained by dispersing the Raman scattered light. Multiple peaks occur in the Raman scattering spectrum, depending on the number of vibrational modes of atomic bonds in the material.
  • Raman scattering spectra are one of the few methods for confirming the abundance of three- and four-membered ring structures in glass structures that do not have long-range ordered structures.
  • the Raman scattering spectrum of the optical fiber 1 is measured by microscope Raman spectroscopy similar to Patent Document 2, for example. That is, by condensing a laser beam with a wavelength of 532 nm output from a semiconductor laser device, the spot diameter is about 2 ⁇ m, and the end surface of the optical fiber is irradiated with the laser beam. The exposure is performed twice with an accumulation of 30 seconds. The intensity of the laser light is an oscillation output of 1 W (approximately 100 mW at the end face of the optical fiber). Then, the end face of the optical fiber is vertically irradiated with the laser beam, and the Raman scattering spectrum is measured by the back scattering arrangement.
  • FIG. 2 is a diagram showing an example of a Raman scattering spectrum obtained by irradiating quartz-based glass (silica glass) with a laser beam having a wavelength of 532 nm.
  • the horizontal axis indicates the Raman shift wavenumber (cm ⁇ 1 ), and the vertical axis indicates the intensity.
  • the peak of the Raman scattered light ⁇ 1 due to one of the vibration modes of the Si—O stretching vibration of the six-membered silica ring structure is observed in the wave number range of 400 cm ⁇ 1 or more and 470 cm ⁇ 1 or less. be done.
  • a peak of the Raman scattered light D1 due to the silica four-membered ring structure is observed in the wavenumber range of 480 cm ⁇ 1 or more and 520 cm ⁇ 1 or less.
  • a peak of the Raman scattered light D2 due to the silica three-membered ring structure is observed in the wave number range of 565 cm ⁇ 1 or more and 640 cm ⁇ 1 or less.
  • a peak of the Raman scattered light ⁇ 3 caused by one of the vibration modes of the Si—O stretching vibration of the six-membered silica ring structure is observed in the wavenumber range of 750 cm ⁇ 1 to 875 cm ⁇ 1 .
  • the stretching vibration of Si—O has different Raman shift wavenumbers depending on its vibration mode, and the Raman scattered lights ⁇ 1 and ⁇ 3 are caused by different vibration modes (Non-Patent Document 1).
  • FIG. 3 is a graph showing the relationship between the ratio I D2 /I ⁇ 3 and transmission loss.
  • the horizontal axis indicates the ratio I D2 /I ⁇ 3 and the vertical axis indicates the transmission loss (dB/km).
  • the ratio I D2 /I ⁇ 3 is the ratio between the area intensity I D2 of the Raman scattered light D2 and the area intensity I ⁇ 3 of the Raman scattered light ⁇ 3.
  • the area intensity I D2 is represented by the area of the region sandwiched between the Raman scattering spectrum and the baseline drawn in the wave number range of 565 cm ⁇ 1 to 640 cm ⁇ 1 in the Raman scattering spectrum.
  • the area intensity I ⁇ 3 is represented by the area of the region sandwiched between the Raman scattering spectrum and the baseline drawn in the wave number range of 750 cm ⁇ 1 to 875 cm ⁇ 1 in the Raman scattering spectrum.
  • the four-membered ring structure and the three-membered ring structure are reduced equally.
  • the transmission loss of the optical fiber according to the comparative example decreases as the ratio I D2 /I ⁇ 3 decreases.
  • the optical fiber according to the example only the four-membered ring structure is increased, so the proportions of the three-membered ring structure and the six-membered ring structure in the glass structure decrease to the same extent. Therefore, the transmission loss of the optical fiber according to the embodiment varies even when the ratio I D2 /I ⁇ 3 is substantially constant. Therefore, the ratio I D2 /I ⁇ 3 cannot fully explain the effect of reducing the transmission loss of the optical fiber according to the embodiment.
  • FIG. 4 is a graph showing the relationship between the transmission loss and the number of extreme values included in the wave number range of 400 cm ⁇ 1 to 550 cm ⁇ 1 of the Raman scattering spectrum.
  • the horizontal axis indicates the number of extreme values
  • the vertical axis indicates transmission loss (dB/km).
  • the number of extrema is equal to the number of times the spectrum of the wavenumber differential dR(k)/dk passes through 0 within the wavenumber range of 400 cm ⁇ 1 to 550 cm ⁇ 1 . Measurement points are finite at the time of actual measurement. Therefore, it is considered that an extremum exists between wavenumbers k i and k i+1 when the following equation is satisfied at continuous measurement wavenumber points k i and k i+1 . dR(k i )/dk ⁇ dR(k i+1 )/dk ⁇ 0
  • the extreme value should be within 3 points. Since the measured Raman scattering spectrum contains measurement noise, there may be more than three extrema due to noise. In that case, the moving average may be performed in a wave number range in which the extreme value is within 3 points.
  • the range of wavenumbers for which the moving average is taken may be, for example, the range of wavenumbers k ⁇ 10 cm ⁇ 1 .
  • FIG. 5 is a diagram showing an example of a Raman scattering spectrum when the number of extreme values is two.
  • FIG. 6 is a diagram showing an example of a Raman scattering spectrum when the number of extreme values is one. 5 and 6, the horizontal axis indicates the Raman shift wavenumber (cm ⁇ 1 ), and the vertical axis indicates the intensity.
  • the number of extreme values defined above is an index that indicates how many six-membered ring structures and four-membered ring structures coexist.
  • a six-membered ring structure and a four-membered ring structure usually coexist, and the peak intensities are about the same.
  • the extreme values are the maximum value of the peak of the Raman scattered light ⁇ 1 due to the six-membered ring structure, the maximum value of the peak of the Raman scattered light D1 due to the four-membered ring structure, And there are a total of three points of the local minimum located at the intersection of the skirts of these two peaks.
  • the state where the extreme value is 2 points or less occurs because the peak of the Raman scattered light D1 increases with respect to the peak of the Raman scattered light ⁇ 1 as a result of the change from the six-membered ring structure to the four-membered ring structure. .
  • fluctuations in the glass structure fluctuations in density
  • Rayleigh scattering is reduced, resulting in a state of two or less extreme values.
  • the number of extrema is an index representing how much the glass structure is unified into a four-membered ring structure. Therefore, it can be said that the number of extreme values is an important parameter that affects transmission loss.
  • FIG. 7 is a diagram showing an example of a wave number differential spectrum when the number of extreme values is two.
  • the wave number differential spectrum shown in FIG. 7 corresponds to the Raman scattering spectrum shown in FIG.
  • FIG. 8 is a diagram showing an example of a wave number differential spectrum when the number of extreme values is three. 7 and 8, the horizontal axis indicates the wave number (cm ⁇ 1 ), and the vertical axis indicates the wave number derivative dR(k)/dk.
  • FIG. 9 is a graph showing the relationship between the ratio P D1 /P ⁇ 3 and transmission loss.
  • the horizontal axis indicates the ratio P D1 /P ⁇ 3 and the vertical axis indicates the transmission loss (dB/km).
  • the ratio P D1 /P ⁇ 3 is the ratio between the maximum intensity P D1 of the Raman scattered light D1 and the maximum intensity P ⁇ 3 of the Raman scattered light ⁇ 3.
  • the ratio P D1 /P ⁇ 3 indicates the ratio of the four-membered ring structure and the six-membered ring structure in the glass.
  • the larger the ratio P D1 /P ⁇ 3 the lower the transmission loss.
  • the ratio P D1 /P ⁇ 3 is 5 or more, a transmission loss of 0.152 dB/km or less is realized.
  • the ratio P D1 /P ⁇ 3 is 6 or more, a transmission loss of 0.148 dB/km or less is realized.
  • the ratio P D1 /P ⁇ 3 is 7 or more, a transmission loss of 0.147 dB/km or less is realized.
  • the transmission loss increases as the ratio P D1 /P ⁇ 3 increases.
  • the optical fiber according to the comparative example is manufactured by the conventional technique of controlling the fluctuation of the glass structure by reducing the three-membered ring structure and the four-membered ring structure.
  • the transmission loss of the optical fiber according to the comparative example tends to decrease.
  • the optical fiber according to the example by increasing only the four-membered ring structure so that the four-membered ring structure occupies the majority of the glass structure, fluctuations in the structure of the glass can be controlled.
  • the ratio P D1 /P ⁇ 3 itself is increased compared to the optical fiber according to the comparative example. It is presumed that the reason why the examples show the opposite tendency to the comparative examples is that only the number of four-membered ring structures was increased.
  • FIG. 10 is a diagram showing an example of Raman scattering spectra when the ratio P D1 /P ⁇ 3 is 5 or more. As shown in FIG. 10, in this example, the extreme value is 1 point.
  • FIG. 11 is a graph showing the relationship between the absolute refractive index of the core and the transmission loss.
  • the horizontal axis indicates the absolute refractive index of the core
  • the vertical axis indicates the transmission loss (dB/km).
  • the relationship between the absolute refractive index and the transmission loss is significantly different between the example and the comparative example.
  • the optical fiber according to the embodiment is more effective in reducing transmission loss.
  • the magnitude of the absolute refractive index of the core is n ⁇ 1.46, a transmission loss of 0.150 dB/km or less is achieved.
  • n ⁇ 1.48, a transmission loss of 0.148 dB/km or less is achieved.
  • n ⁇ 1.52 a transmission loss of 0.147 dB/km or less is achieved.
  • the voids contained in the four-membered ring structure are smaller than those contained in the six-membered ring structure based on the SiO4 tetrahedral structure found in quartz crystals. Therefore, increasing the four-membered ring structure increases the density per unit volume.
  • the optical fiber according to the example has an increased absolute refractive index compared to the optical fiber according to the comparative example. That is, the increase or decrease of the refractive index reflects the increase or decrease of the four-membered ring structure. Therefore, an increase in refractive index can be one parameter that indicates a reduction in transmission loss due to an increase in the number of four-membered ring structures.
  • the absolute refractive index of the cladding may also be increased.
  • the absolute refractive index of the core can be increased, so that even if the absolute refractive index of the cladding is increased compared to the conventional comparative example, the amount of light confined can be ensured.
  • the absolute refractive index of the cladding may be greater than 1.42, greater than 1.44, greater than 1.46, greater than 1.49, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

光ファイバは、シリカガラスからなるコアと、コアを取り囲み、シリカガラスからなるクラッドと、を備える。波長532nmの励起光をコアに照射して得られるラマン散乱スペクトルR(k)の波数微分dR(k)/dkのスペクトルが、波数400cm-1以上550cm-1以下の範囲で0を通過する回数が2回以下である。

Description

光ファイバ
 本開示は、光ファイバに関する。本出願は、2021年10月14日出願の日本出願第2021-168535号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 通信波長帯として使用される近赤外領域での光ファイバの伝送損失は、レイリ散乱による影響を大きく受ける。よって、伝送損失の低減には、レイリ散乱の低減が必要である。レイリ散乱は、ガラス構造の不均一性を反映して発生する。ガラス構造の不均一性は、ガラス状態から周期的均一構造を持つ結晶状態への構造緩和を促進することにより低減される。
 特許文献1には、光ファイバ母材のコア部にアルカリ金属を添加することによって、光ファイバの線引時にコア部の流動性を高め、より低い温度まで構造緩和を促進させる方法が開示されている。特許文献1には、徐冷炉の設置によって光ファイバの線引時の徐冷時間を制御し、構造緩和を促進させる方法が開示されている。
特表2005-537210号公報 特開2016-130786号公報
A. E. Geissberger et al.,"Raman studies of vitreous SiO2 versus fictive temperature",Phys. Rev. B, 28, 3266 (1983)
 本開示の第一態様に係る光ファイバは、シリカガラスからなるコアと、コアを取り囲み、シリカガラスからなるクラッドと、を備え、波長532nmの励起光をコアに照射して得られるラマン散乱スペクトルR(k)の波数微分dR(k)/dkのスペクトルが、波数400cm-1以上550cm-1以下の範囲で0を通過する回数が2回以下である。
 本開示の第二態様に係る光ファイバは、シリカガラスからなるコアと、コアを取り囲み、シリカガラスからなるクラッドと、を備え、波長532nmの励起光をコアに照射して得られるラマン散乱スペクトルR(k)において、四員環構造に起因するラマン散乱光D1の強度の最大値PD1と、SiO構造のSi-O振動の振動モードの一つに起因するラマン散乱光ω3の強度の最大値Pω3との比PD1/Pω3は5以上である。
図1は、実施形態に係る光ファイバの断面図である。 図2は、石英系ガラス(シリカガラス)に波長532nmのレーザ光を照射して得られたラマン散乱スペクトルの例を示す図である。 図3は、比ID2/Iω3と伝送損失との関係を示すグラフである。 図4は、ラマン散乱スペクトルの波数400cm-1以上550cm-1以下の範囲に含まれる極値の個数と伝送損失との関係を示すグラフである。 図5は、極値の個数が2個の場合のラマン散乱スペクトルの例を示す図である。 図6は、極値の個数が1個の場合のラマン散乱スペクトルの例を示す図である。 図7は、極値の個数が2個の場合の波数微分スペクトルの例を示す図である。 図8は、極値の個数が3個の場合の波数微分スペクトルの例を示す図である。 図9は、は、比PD1/Pω3と伝送損失との関係を示すグラフである。 図10は、比PD1/Pω3が5以上の場合のラマン散乱スペクトルの例を示す図である。 図11は、コアの絶対屈折率と伝送損失との関係を示すグラフである。
[本開示が解決しようとする課題]
 シリカガラスは、SiOを主体としたガラスである。シリカガラスでは、高温で溶融されたSiOが急冷されることにより、高温での液体的なランダム構造が凍結されている。したがって、シリカガラスは、SiOの結晶である石英が持つ六員環構造のみならず、六員環構造が崩れた形である、三員環及び四員環のSi-Oの結合構造を有する。その結果、ガラス構造に不均一性が発生し、レイリ散乱が増加する。
 特許文献1に記載されるような従来技術では、ガラス構造の不均一性を減らすことを目的に、ガラスの三員環構造及び四員環構造を減らすことが主流として実施されている。しかしながら、ガラスの三員環構造及び四員環構造を減らすことによるレイリ散乱の抑制には、生産性との両立の観点から限界がある。例えば、添加元素により粘性を低減させる方法では、添加元素によりSiOが結晶状態に転移しやすくなる。これにより、添加元素の化合物を結晶核とした結晶化が容易に発生し、歩留が低下する。また、光ファイバの線引時の徐冷時間は、線引速度を下げることにより長くなるが、生産性が低下する。
 本開示は、生産性が高く、伝送損失が低い光ファイバを提供することを目的とする。
[本開示の効果]
 本開示によれば、生産性が高く、伝送損失が低い光ファイバを提供することができる。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。本開示の第一態様に係る光ファイバは、シリカガラスからなるコアと、コアを取り囲み、シリカガラスからなるクラッドと、を備え、波長532nmの励起光をコアに照射して得られるラマン散乱スペクトルR(k)の波数微分dR(k)/dkのスペクトルが、波数400cm-1以上550cm-1以下の範囲で0を通過する回数が2回以下である。
 本開示の第一態様に係る光ファイバでは、ガラス中に占める四員環構造の割合を高めることにより、ガラス構造の揺らぎが抑制されている。よって、レイリ散乱が低減される。この結果、生産性を低減させることなく、伝送損失を低減することができる。
 本開示の第二態様に係る光ファイバは、シリカガラスからなるコアと、コアを取り囲み、シリカガラスからなるクラッドと、を備え、波長532nmの励起光をコアに照射して得られるラマン散乱スペクトルR(k)において、四員環構造に起因するラマン散乱光D1の強度の最大値PD1と、SiO構造のSi-O振動の振動モードの一つに起因するラマン散乱光ω3の強度の最大値Pω3との比PD1/Pω3は5以上である。
 本開示の第二態様に係る光ファイバでは、ガラス中に占める四員環構造の割合を高めることにより、ガラス構造の揺らぎが抑制されている。よって、レイリ散乱が低減される。この結果、生産性を低減させることなく、伝送損失を低減することができる。
 本開示の第二態様に係る光ファイバでは、ラマン散乱スペクトルR(k)の波数微分dR(k)/dkのスペクトルが、波数400cm-1以上550cm-1以下の範囲で0を通過する回数が2回以下であってもよい。この場合、伝送損失を更に低減することができる。
[本開示の実施形態の詳細]
 本開示の光ファイバの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は、実施形態に係る光ファイバの断面図である。図1に示される実施形態に係る光ファイバ1では、従来技術とは異なり、四員環構造を増やすことにより、レイリ散乱を低減し、その結果、伝送損失を低減する。実施形態に係る光ファイバ1は、コア10及びクラッド20を備える。コア10の直径は、例えば、6μm以上20μm以下である。クラッド20は、コア10を取り囲み、コア10の外周面と接している。クラッド20の直径は、例えば、80μm以上130μm以下である。クラッド20の屈折率は、コア10の屈折率よりも低い。
 コア10は、シリカガラスからなり、例えば、Li,Na,K等のアルカリ金属元素と、ハロゲン元素とを含む。コア10は、他の元素を更に含んでもよい。クラッド20は、シリカガラスからなり、例えば、ハロゲン元素を含む。クラッド20は、他の元素を更に含んでもよい。
 コア10及びクラッド20に添加される全ての添加元素は、いずれもSiOガラスの粘性を下げる効果を有する。したがって、添加濃度(質量分率)が高すぎると、製造段階における高圧印加時及び線引時に四員環構造の促進が抑制される。添加濃度は10000ppm以下であってもよい。一方で、粘性が上がると、線引時にNBOHC(non-bridging oxygen hole center)などの欠陥の発生による伝送損失の増加が懸念される。したがって、コア10及びクラッド20に修飾元素を添加してもよい。修飾元素は、NBOHCなどの欠陥部を修飾し修復できる元素である。修飾元素として、例えば、フッ素及び塩素をはじめとしたハロゲン元素が挙げられる。コア10及びクラッド20はいずれも、少なくとも1種類のハロゲン元素を質量分率で100ppm以上含んでもよく、2種類以上のハロゲン元素を含んでもよい。
 実施形態に係る光ファイバ1では、波長532nmの励起光をコア10に照射して得られるラマン散乱スペクトルR(k)の波数微分dR(k)/dkのスペクトルが、波数400cm-1以上550cm-1以下の範囲で0を通過する回数が2回以下である。また、ラマン散乱スペクトルR(k)において、四員環構造に起因するラマン散乱光D1の強度の最大値PD1と、SiO構造のSi-O振動の振動モードの一つに起因するラマン散乱光ω3の強度の最大値Pω3との比PD1/Pω3は5以上である。
 実施形態に係る光ファイバ1の母材製造時には、四員環構造の生成を促進するために、高圧処理を実施してもよい。高圧処理ではガラスに圧力が印加されるので、通常の結晶に見られるような六員環構造に比べて空隙が小さい三員環構造や四員環構造の促進が期待できる。高圧処理により、例えば、10-4GPaよりも大きく10GPa以下の圧力をガラスに印加してもよい。高圧処理法として、HIP(Hot Isostatic Pressing)法を使用してもよい。HIP法は、高圧印加媒体として気体を使用して加圧を行う方法である。HIP法によれば、硬度の高い物質で直接押し込む圧力印加法と比較して、不純物の混入及び圧力印加むらに起因した欠陥の発生を抑制できる。
 実施形態に係る光ファイバ1の線引には、四員環構造の生成を促進するために、炉及び冷却部において熱伝導性の高いHe雰囲気が使用されてもよい。また、線引後の光ファイバ1を急冷するために、線引後の光ファイバ1を強制的に冷却する設備が使用されてもよい。線引速度(線速)は、例えば、500m/min以上である。これにより、更なる四員環構造の生成が促される。線引速度は、1000m/min以上であってもよく、2000m/min以上であってもよい。
 実施例に係る光ファイバ1を以下のように製造した。まず、塩素又はフッ素を質量分率で100ppm以上含むと共に、その他の添加元素を含むコア部を作製した。続いて、プリフォーム化した後、HIP法を用いて10-4GPaよりも大きく10GPa以下の圧力をガラスに印加した。続いて、線速500m/min以上で線引を実施すると共に、He雰囲気で急冷した。
 四員環構造の生成を促進するための上記手法をいずれも採用しなかった以外は、実施例に係る光ファイバ1と同様にして比較例に係る光ファイバを製造した。すなわち、比較例に係る光ファイバの製造方法では、高圧処理を実施しなかった。また、炉及び冷却部においてHe雰囲気を使用しなかった。また、線引後の光ファイバを強制的に冷却する設備を使用しなかった。また、線引速度500m/min未満で線引を実施した。比較例に係る光ファイバの製造方法は、四員環構造及び三員環構造を等しく減少させることにより伝送損失を低減させる従来技術の手法に対応している。
 ここで、ラマン散乱スペクトルについて説明する。一般に、物質に光を照射すると、光と物質(分子振動)との相互作用により、照射光の波長と異なる波長のラマン散乱光が発生する。そのラマン散乱光を分光して得られたラマン散乱スペクトルにより、物質の分子レベルの構造を解析することができる。ラマン散乱スペクトルでは、物質内の原子結合の振動モードの数に応じて、複数のピークが生じる。長距離的な秩序構造を持たないガラスにとって、ラマン散乱スペクトルは、ガラス構造における三員環構造及び四員環構造の存在割合を確認する数少ない手法の一つである。
 光ファイバ1のラマン散乱スペクトルは、例えば、特許文献2と同様の顕微鏡ラマン分光法により測定される。すなわち、半導体レーザ装置から出力される波長532nmのレーザ光を集光することで、約2μmのスポット径として光ファイバ端面に照射する。露光は積算30秒で2回とする。レーザ光の強度は、発振出力1W(光ファイバ端面では約100mW)である。そして、光ファイバ端面に対して上記レーザ光を垂直照射して、後方散乱配置によりラマン散乱スペクトルを測定する。
 図2は、石英系ガラス(シリカガラス)に波長532nmのレーザ光を照射して得られたラマン散乱スペクトルの例を示す図である。図2では、横軸がラマンシフト波数(cm-1)を示し、縦軸が強度を示す。図2に示されるラマン散乱スペクトルでは、シリカ六員環構造のSi-O伸縮振動の振動モードの一つに起因するラマン散乱光ω1のピークが波数400cm-1以上470cm-1以下の範囲に認められる。シリカ四員環構造に起因するラマン散乱光D1のピークが波数480cm-1以上520cm-1以下の範囲に認められる。シリカ三員環構造に起因するラマン散乱光D2のピークが波数565cm-1以上640cm-1以下の範囲に認められる。シリカ六員環構造のSi-O伸縮振動の振動モードの一つに起因するラマン散乱光ω3のピークが波数750cm-1以上875cm-1以下の範囲に認められる。Si-Oの伸縮振動は、その振動モードによりラマンシフト波数が異なっており、ラマン散乱光ω1,ω3は別の振動モードに起因する(非特許文献1)。
 まず、実施例及び比較例に係る光ファイバを用い、特許文献2で報告される、比ID2/Iω3と伝送損失との関係を比較した。図3は、比ID2/Iω3と伝送損失との関係を示すグラフである。図3では、横軸が比ID2/Iω3を示し、縦軸が伝送損失(dB/km)を示す。比ID2/Iω3は、ラマン散乱光D2の面積強度ID2と、ラマン散乱光ω3の面積強度Iω3との比である。
 面積強度ID2は、ラマン散乱スペクトルにおいて波数565cm-1以上640cm-1以下の範囲に引かれたベースラインとラマン散乱スペクトルとの間に挟まれた領域の面積で表される。面積強度Iω3は、ラマン散乱スペクトルにおいて波数750cm-1以上875cm-1以下の範囲に引かれたベースラインとラマン散乱スペクトルとの間に挟まれた領域の面積で表される。
 比較例に係る光ファイバでは、四員環構造及び三員環構造を等しく減少させている。比較例に係る光ファイバの伝送損失は、比ID2/Iω3が減少するにしたがって、減少している。これに対して、実施例に係る光ファイバでは、四員環構造のみを増やすようにしているので、ガラス構造における三員環構造及び六員環構造の存在割合が同程度に減少する。このため、実施例に係る光ファイバの伝送損失は、比ID2/Iω3がほぼ一定でもばらつく。よって、比ID2/Iω3では、実施例に係る光ファイバの伝送損失の低減効果を説明しきれない。
 図4から図9を用いて、図3の比ID2/Iω3が大きい領域における伝送損失のばらつきについて説明する。図4は、ラマン散乱スペクトルの波数400cm-1以上550cm-1以下の範囲に含まれる極値の個数と伝送損失との関係を示すグラフである。図4では、横軸が極値の個数を示し、縦軸が伝送損失(dB/km)を示す。極値とは、ラマン散乱スペクトルR(k)において波数微分dR(k)/dk=0を満たすような点である。極値の個数は、波数微分dR(k)/dkのスペクトルが、波数400cm-1以上550cm-1以下の範囲で0を通過する回数と等しい。実測時には測定点は有限である。よって、連続する測定波数点k、ki+1において、下記式を満たす場合に波数kとki+1の間に極値が存在するとみなす。
dR(k)/dk×dR(ki+1)/dk<0
 上記波数範囲において、測定ノイズが無視できる程度に小さければ極値は3点以下に収まるべきである。実測のラマン散乱スペクトルには測定ノイズが含まれるので、ノイズに起因して3点を超える極値が存在する場合がある。その場合は、極値が3点以下に収まるような波数範囲で移動平均を実施してもよい。移動平均をとる波数範囲は、例えば、波数k≦10cm-1の範囲としてもよい。
 図4に示される関係から、極値の個数が少ないほど伝送損失の低減に効果的であることが確認できる。特に極値の個数が2以下の場合、0.147dB/km以下の伝送損失が実現される。
 図5は、極値の個数が2個の場合のラマン散乱スペクトルの例を示す図である。図6は、極値の個数が1個の場合のラマン散乱スペクトルの例を示す図である。図5及び図6では、横軸がラマンシフト波数(cm-1)を示し、縦軸が強度を示す。
 上記で定義した極値の個数は、六員環構造と四員環構造がどれだけ共存しているかを表す指標となっている。従来のガラス内では、通常、六員環構造と四員環構造が共存しており、ピークの強度も同程度となっている。ピークが上記波数範囲に2個存在する結果、極値は、六員環構造に起因するラマン散乱光ω1のピークの極大値、四員環構造に起因するラマン散乱光D1のピークの極大値、及び、これらの2つのピークの裾の交点に位置する極小値の計3点となる。
 極値が2点以下である状態は、六員環構造が四員環構造に変化していく結果、ラマン散乱光ω1のピークに対して、ラマン散乱光D1のピークが増加するために発生する。つまり、ガラス構造が1種類に統一化されていくことにより、ガラス構造の揺らぎ(密度の揺らぎ)が抑制され、レイリ散乱が低減された結果、極値が2点以下の状態となる。極値の個数は、ガラス構造が四員環構造にどれだけ統一化されているかを表す指標となる。したがって、極値の個数は、伝送損失に影響を与える重要なパラメータと言える。
 図7は、極値の個数が2個の場合の波数微分スペクトルの例を示す図である。図7に示される波数微分スペクトルは、図5に示されるラマン散乱スペクトルに対応している。図8は、極値の個数が3個の場合の波数微分スペクトルの例を示す図である。図7及び図8では、横軸が波数(cm-1)を示し、縦軸が波数微分dR(k)/dkを示す。
 続いて、コア部分の最大値の比PD1/Pω3と伝送損失との関係を比較した。図9は、比PD1/Pω3と伝送損失との関係を示すグラフである。図9では、横軸が比PD1/Pω3を示し、縦軸が伝送損失(dB/km)を示す。比PD1/Pω3は、ラマン散乱光D1の強度の最大値PD1と、ラマン散乱光ω3の強度の最大値Pω3との比である。比PD1/Pω3は、ガラス中に占める四員環構造及び六員環構造の比率を示す。
 図9に示されるように、実施例に係る光ファイバでは、比PD1/Pω3が大きいほど伝送損失が低くなる。比PD1/Pω3が5以上の場合、0.152dB/km以下の伝送損失が実現される。比PD1/Pω3が6以上の場合、0.148dB/km以下の伝送損失が実現される。比PD1/Pω3が7以上の場合、0.147dB/km以下の伝送損失が実現される。
 比較例では、実施例と逆の傾向が見られる。すなわち、比較例に係る光ファイバでは、比PD1/Pω3が大きいほど伝送損失が増加する。上述のように、比較例に係る光ファイバは、三員環構造及び四員環構造を減らすことによりガラス構造の揺らぎを制御する従来技術の手法で製造されている。実際に比PD1/Pω3が減少するにしたがい、比較例に係る光ファイバの伝送損失は減少する方向にある。実施例に係る光ファイバによれば、四員環構造のみを増やし、四員環構造がガラス構造の多数を占める状態とすることにより、ガラスの構造の揺らぎを制御することができる。実際に実施例に係る光ファイバでは、比較例に係る光ファイバと比べて、比PD1/Pω3自体は増加している。実施例で比較例と逆の傾向が見られるのは、四員環構造のみを増やしたことが原因と推測される。
 図10は、比PD1/Pω3が5以上の場合のラマン散乱スペクトルの例を示す図である。図10に示されるように、この例では、極値が1点である。
 図11は、コアの絶対屈折率と伝送損失との関係を示すグラフである。図11では、横軸がコアの絶対屈折率を示し、縦軸が伝送損失(dB/km)を示す。図11に示されるように、実施例と比較例とでは、絶対屈折率と伝送損失との関係が大きく異なっている。伝送損失の低減には、実施例に係る光ファイバの方が有効である。コアの絶対屈折率の大きさnがn≧1.46の場合、0.150dB/km以下の伝送損失が実現される。n≧1.48の場合、0.148dB/km以下の伝送損失が実現される。n≧1.52の場合、0.147dB/km以下の伝送損失が実現される。
 四員環構造に含まれる空隙は、石英結晶に見られるSiO四面体構造を基準とした六員環構造に含まれる空隙よりも小さい。したがって、四員環構造が増加すると、単位体積当たりの密度が増加する。その結果、実施例に係る光ファイバでは、比較例に係る光ファイバと比べて、絶対屈折率が増加している。すなわち、屈折率の増減には、四員環構造の増減が反映されている。よって、屈折率の増加は、四員環構造の増加による伝送損失の低減を示す一つのパラメータとなりうる。
 コアの絶対屈折率の増加によりクラッドの絶対屈折率も増加させてよい。一般にコア及びクラッドの比屈折率差が大きいほど光を閉じ込めやすい。そのため、クラッドの絶対屈折率はコアに対してある程度小さくなければならない。本実施例では、コアの絶対屈折率を上昇できる結果、クラッドの絶対屈折率を従来との比較例に対して上昇しても、光の閉じ込め量を担保できる。例えば、クラッドの絶対屈折率は、例えば、1.42を超えてもよく、1.44を超えてもよく、1.46を超えてもよく、1.49を超えてもよい。
1…光ファイバ
10…コア
20…クラッド
ω1…シリカ六員環構造のSi-O伸縮振動の振動モードに起因するラマン散乱光
ω3…シリカ六員環構造のSi-O伸縮振動の振動モードに起因するラマン散乱光
D1…シリカ四員環構造に起因するラマン散乱光
D2…シリカ三員環構造に起因するラマン散乱光

 

Claims (15)

  1.  シリカガラスからなるコアと、
     前記コアを取り囲み、シリカガラスからなるクラッドと、を備え、
     波長532nmの励起光を前記コアに照射して得られるラマン散乱スペクトルR(k)の波数微分dR(k)/dkのスペクトルが、波数400cm-1以上550cm-1以下の範囲で0を通過する回数が2回以下である、
     光ファイバ。
  2.  シリカガラスからなるコアと、
     前記コアを取り囲み、シリカガラスからなるクラッドと、を備え、
     波長532nmの励起光を前記コアに照射して得られるラマン散乱スペクトルR(k)において、四員環構造に起因するラマン散乱光D1の強度の最大値PD1と、SiO構造のSi-O振動の振動モードの一つに起因するラマン散乱光ω3の強度の最大値Pω3との比PD1/Pω3は5以上である、
     光ファイバ。
  3.  前記ラマン散乱スペクトルR(k)の波数微分dR(k)/dkのスペクトルが、波数400cm-1以上550cm-1以下の範囲で0を通過する回数が2回以下である、
     請求項2に記載の光ファイバ。
  4.  前記コア及び前記クラッドそれぞれに添加される添加元素の濃度は、10000ppm以下である、
     請求項1から3のいずれか一項に記載の光ファイバ。
  5.  前記コア及び前記クラッドそれぞれは、少なくとも1種類以上のハロゲン元素を質量分率で100ppm以上含む、
     請求項1から4のいずれか一項に記載の光ファイバ。
  6.  伝送損失は、0.152dB/km以下である、
     請求項1から5のいずれか一項に記載の光ファイバ。
  7.  伝送損失は、0.148dB/km以下である、
     請求項1から5のいずれか一項に記載の光ファイバ。
  8.  伝送損失は、0.147dB/km以下である、
     請求項1から5のいずれか一項に記載の光ファイバ。
  9.  前記コアの絶対屈折率は、1.46以上である、
     請求項1から8のいずれか一項に記載の光ファイバ。
  10.  前記コアの絶対屈折率は、1.48以上である、
     請求項1から8のいずれか一項に記載の光ファイバ。
  11.  前記コアの絶対屈折率は、1.52以上である、
     請求項1から8のいずれか一項に記載の光ファイバ。
  12.  前記クラッドの絶対屈折率は、1.42以上である、
     請求項1から11のいずれか一項に記載の光ファイバ。
  13.  前記クラッドの絶対屈折率は、1.44以上である、
     請求項1から11のいずれか一項に記載の光ファイバ。
  14.  前記クラッドの絶対屈折率は、1.46以上である、
     請求項1から11のいずれか一項に記載の光ファイバ。
  15.  前記クラッドの絶対屈折率は、1.49以上である、
     請求項1から11のいずれか一項に記載の光ファイバ。

     
PCT/JP2022/034075 2021-10-14 2022-09-12 光ファイバ WO2023062997A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023555031A JPWO2023062997A1 (ja) 2021-10-14 2022-09-12
CN202280056552.7A CN117859082A (zh) 2021-10-14 2022-09-12 光纤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021168535 2021-10-14
JP2021-168535 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023062997A1 true WO2023062997A1 (ja) 2023-04-20

Family

ID=85987446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034075 WO2023062997A1 (ja) 2021-10-14 2022-09-12 光ファイバ

Country Status (3)

Country Link
JP (1) JPWO2023062997A1 (ja)
CN (1) CN117859082A (ja)
WO (1) WO2023062997A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289161B1 (en) * 1998-07-28 2001-09-11 Heraeus Quarzglas Gmbh & Co. Kg Optical component containing a maximum of 200 wt.-ppm of chlorine
JP2006335638A (ja) * 2001-07-30 2006-12-14 Furukawa Electric Co Ltd:The シングルモード光ファイバの製造方法および製造装置
JP2016130786A (ja) * 2015-01-14 2016-07-21 住友電気工業株式会社 光ファイバ
JP2018532674A (ja) * 2015-09-10 2018-11-08 コーニング インコーポレイテッド 低仮想温度光ファイバーを製造するための方法及び装置、並びにそのようにして得られた光ファイバー
JP2019191297A (ja) * 2018-04-20 2019-10-31 住友電気工業株式会社 光ファイバ
CN110794509A (zh) * 2019-09-29 2020-02-14 法尔胜泓昇集团有限公司 一种单模光纤及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289161B1 (en) * 1998-07-28 2001-09-11 Heraeus Quarzglas Gmbh & Co. Kg Optical component containing a maximum of 200 wt.-ppm of chlorine
JP2006335638A (ja) * 2001-07-30 2006-12-14 Furukawa Electric Co Ltd:The シングルモード光ファイバの製造方法および製造装置
JP2016130786A (ja) * 2015-01-14 2016-07-21 住友電気工業株式会社 光ファイバ
JP2018532674A (ja) * 2015-09-10 2018-11-08 コーニング インコーポレイテッド 低仮想温度光ファイバーを製造するための方法及び装置、並びにそのようにして得られた光ファイバー
JP2019191297A (ja) * 2018-04-20 2019-10-31 住友電気工業株式会社 光ファイバ
CN110794509A (zh) * 2019-09-29 2020-02-14 法尔胜泓昇集团有限公司 一种单模光纤及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GEISSBERGER A E, GALEENER F L: "RAMAN STUDIES OF VITREOUS SIO2 VERSUS FICTIVE TEMPERATURE", PHYSICAL REVIEW, B. CONDENSED MATTER., AMERICAN INSTITUTE OF PHYSICS. NEW YORK., US, vol. 28, no. 06, 15 September 1983 (1983-09-15), US , pages 3266 - 3271, XP001146429, ISSN: 0163-1829, DOI: 10.1103/PhysRevB.28.3266 *

Also Published As

Publication number Publication date
JPWO2023062997A1 (ja) 2023-04-20
CN117859082A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
JP6817957B2 (ja) フッ素および塩素が共ドープされたコア領域を有する低損失光ファイバ
JP5831189B2 (ja) 光ファイバおよび光伝送システム
US10259742B2 (en) Optical fiber with low loss and nanoscale structurally homogeneous core
US7900481B2 (en) Method of making an optical fiber
TWI421550B (zh) 雙包層光纖及具有雙包層光纖之裝置
EP0995138A1 (en) Suppression of stimulated brillouin scattering in optical fiber
Zhou et al. Progress on low loss photonic crystal fibers
US20090274427A1 (en) Optical fiber and optical device
WO2016152507A1 (ja) マルチコア光ファイバ
JP2008078629A (ja) ファイバ・レーザおよびファイバ増幅器用の希土類がドープされ有効区域が大きい光ファイバ
JPS5920613B2 (ja) 単一モ−ド光ファイバ−プレフォ−ムの製造方法
WO2023062997A1 (ja) 光ファイバ
Labat et al. Phosphorus-doped photonic crystal fibers for high-power (36 W) visible CW supercontinuum
WO2013140688A1 (ja) 光ファイバの製造方法
WO2015125555A1 (ja) 光ファイバおよび光ファイバの製造方法
JPH10218635A (ja) 光ファイバの製造方法
US20050044893A1 (en) Process for making low-OH glass articles and low-OH optical resonator
WO2022149498A1 (ja) 光ファイバ
CN106604899B (zh) 光纤预制棒、光纤和光纤的制造方法
US6975800B2 (en) Fused silica-based optical waveguide and method for its manufacture
JP2002321936A (ja) 光ファイバ及びその製造方法
JP2014007255A (ja) 光ファイバ
Evrard et al. Highly nonlinear multimode tellurite fibers: from glass synthesis to practical applications in multiphoton imaging
JPS63222031A (ja) 光フアイバ用プリフオ−ムの製造方法
JP2002107555A (ja) 長周期光ファイバグレーティング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555031

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280056552.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22880693

Country of ref document: EP

Kind code of ref document: A1