[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023045222A1 - 一种定转子结构和轴向磁场电机 - Google Patents

一种定转子结构和轴向磁场电机 Download PDF

Info

Publication number
WO2023045222A1
WO2023045222A1 PCT/CN2022/076075 CN2022076075W WO2023045222A1 WO 2023045222 A1 WO2023045222 A1 WO 2023045222A1 CN 2022076075 W CN2022076075 W CN 2022076075W WO 2023045222 A1 WO2023045222 A1 WO 2023045222A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
stator core
permanent magnets
yoke
Prior art date
Application number
PCT/CN2022/076075
Other languages
English (en)
French (fr)
Inventor
张胜川
熊学波
方亮
韩韬
于海生
谭艳军
林霄喆
王瑞平
肖逸阁
Original Assignee
浙江吉利控股集团有限公司
无锡星驱科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 无锡星驱科技有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to EP22747233.9A priority Critical patent/EP4178094A4/en
Priority to JP2022548800A priority patent/JP7500742B2/ja
Priority to US17/798,317 priority patent/US20240186871A1/en
Priority to KR1020227031385A priority patent/KR20230044141A/ko
Publication of WO2023045222A1 publication Critical patent/WO2023045222A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2796Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2798Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Definitions

  • the present disclosure relates to but not limited to electric machines, and particularly relates to a stator-rotor structure and an axial field electric machine.
  • the motor system which is the key drive system of new energy, has also ushered in a period of rapid development.
  • the axial field motor With its high torque density, high efficiency and excellent heat dissipation performance, especially the compact axial size, the axial field motor has attracted more and more research institutions to increase its research efforts, and has become a research field in the field of motors. hotspot.
  • the torque density of axial field motors there is still room for improvement in the torque density of axial field motors.
  • An embodiment of the present disclosure provides a stator-rotor structure, including a first rotor, a first stator, a second rotor and a second stator arranged at intervals in the axial direction, the first rotor includes a first rotor yoke and a A plurality of first rotor permanent magnets are arranged circumferentially at intervals on the side of the first rotor yoke facing the first stator, and the second rotor includes a nonmagnetic second rotor bracket and a second rotor bracket on the first rotor.
  • a plurality of second rotor permanent magnets arranged circumferentially at intervals on the rotor support the first stator includes a first stator core, and the first stator core includes a plurality of first stator cores arranged at circumferential intervals tooth portion, the second stator includes a second stator core, the second stator core includes a second stator core yoke portion and is spaced circumferentially on a side of the second stator core yoke portion facing the second rotor.
  • a plurality of second stator core teeth are provided, and an axial closed-loop magnetic circuit is formed between the first rotor yoke and the second stator yoke.
  • An embodiment of the present disclosure also provides an axial field motor, including a casing, a rotating shaft, and the stator-rotor structure described in any one of the foregoing embodiments, the first rotor and the second rotor are sleeved on the rotating shaft, and the The first stator and the second stator are fixedly connected with the casing.
  • Fig. 1 is a schematic diagram of a dual-rotor single-stator structure
  • Fig. 2 is an exploded view of a stator-rotor structure of an example embodiment of the present disclosure
  • Fig. 3 is a cross-sectional view of the assembled stator and rotor structure shown in Fig. 2;
  • Fig. 4 is a schematic diagram of multiple parts of the second stator in Fig. 2;
  • Fig. 5 is a schematic diagram of multiple components of the second rotor in Fig. 2;
  • Fig. 6 is a schematic diagram of multiple parts of the first stator in Fig. 2;
  • Fig. 7 is a schematic diagram of multiple components of the first rotor in Fig. 2;
  • FIG. 8 is a schematic diagram of a set of closed magnetic circuits of the stator-rotor structure shown in FIG. 2 .
  • 10-1 Stator teeth
  • 10-2 Stator insulation bracket
  • 10-3 Stator winding
  • 20-1 Left rotor yoke
  • 20-2 Left rotor permanent magnet
  • 30-1 Light rotor Yoke
  • 30-2 right rotor permanent magnet
  • exemplary or “for example” means an example, illustration or illustration. Any embodiment described in this disclosure as “exemplary” or “for example” should not be construed as preferred or advantageous over other embodiments.
  • “And/or” in this article is a description of the relationship between associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • “plurality” means at least two, such as two, three, unless otherwise specifically defined.
  • Directional indications (such as up, down, left, right, front, back) in the embodiments of the present disclosure are only used to explain the relative positional relationship between multiple components in a certain posture (as shown in the drawings). Motion, rather than indicating or implying that the referred structure has a particular orientation, is constructed and operates in a particular orientation, and if that particular orientation changes, the directional indication changes accordingly. Therefore, it should not be construed as limiting the present disclosure.
  • the descriptions of “first” and “second” in the embodiments of the present disclosure are only for description purposes, and should not be understood as indicating or implying their relative importance or implicitly indicating the quantity of indicated technical features. Thus, the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • connection and “fixation” should be understood in a broad sense, for example, “fixation” can be a fixed connection, or a detachable connection, or integrated; A mechanical connection, or an electrical connection; a direct connection, or an indirect connection through an intermediary, or an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixation can be a fixed connection, or a detachable connection, or integrated; A mechanical connection, or an electrical connection; a direct connection, or an indirect connection through an intermediary, or an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • Figure 1 shows a dual-rotor single-stator structure, including two rotors and a stator disposed between the two rotors.
  • the rotor on the left in the figure can be called the left rotor
  • the rotor on the right can be called the right rotor.
  • the left rotor includes a left rotor yoke 20-1 and left rotor permanent magnets 20-2 arranged circumferentially at intervals on the side of the left rotor yoke 20-1 facing the stator.
  • the stator includes a stator tooth part 10-1, a stator insulating bracket 10-2 and a stator winding 10-3, the stator winding 10-3 is wound on the stator insulating bracket 10-2, and the stator insulating bracket 10-2 is set on the stator tooth part 10 On -1, there is no stator yoke.
  • the axial field motor without stator yoke can generate higher torque output by utilizing the characteristic of large magnetic field action area of the disc structure of the axial field motor. However, there is still room for improvement in the torque density of axial field motors without stator yokes.
  • an axial field motor with higher torque density and higher efficiency is proposed.
  • the axial field motor has three air gaps.
  • the stator and rotor structure of the axial field motor is shown in Figure 2 to Figure 7 shows.
  • Fig. 2 is an exploded view of the stator-rotor structure
  • Fig. 3 is a sectional view cut along the radial direction after the stator-rotor structure is assembled.
  • 4 to 7 are perspective views of two stators and two rotors, respectively.
  • the stator-rotor structure includes a first rotor 4, a first stator 3, a second rotor 2 and a second stator 1 (see FIG.
  • the second rotor 2 includes a non-magnetically conductive second rotor bracket 2-1 and a plurality of second rotor permanent magnets 2-2 (see FIG.
  • the first stator 3 includes The first stator core 3-1, the first stator core 3-1 includes a plurality of first stator core teeth 3-11 (see Figure 6) arranged at intervals in the circumferential direction, and the second stator 1 includes a second stator core 1-1, the second stator core 1-1 includes a second stator core yoke 1-12 and a plurality of second An axial closed-loop magnetic circuit is formed between the stator core tooth portion 1-11 (see FIG. 4 ), the first rotor yoke portion 4-2 and the second stator core yoke portion 1-12.
  • the air gap between the first rotor 4 and the first stator 3 can be called the first air gap
  • the air gap between the first stator 3 and the second rotor 2 can be called the second air gap
  • the second rotor 2 The air gap between the second stator 1 and the second stator 1 can be called the third air gap.
  • a plurality of first rotor permanent magnets 4-1 and a plurality of second rotor permanent magnets 2-2 are all axially magnetized and correspond one-to-one in the axial direction, and the corresponding first rotor permanent magnets
  • the magnetization directions of the magnet 4-1 and the second rotor permanent magnet 2-2 are the same, the magnetization directions of the adjacent two first rotor permanent magnets 4-1 are opposite, and the adjacent two second rotor permanent magnets 2- 2 is magnetized in the opposite direction.
  • FIG. 8 Please refer to FIG. 8 , for the sake of convenience, only three relevant magnetic circuits of the adjacent first rotor permanent magnets 4 - 1 are shown in the figure. It can be seen from the figure that the N pole of the first rotor permanent magnet 4 - 1 in the middle faces the first air gap, while the S poles of the first rotor permanent magnets 4 - 1 on both sides face the first air gap. The magnetization directions of two adjacent first rotor permanent magnets 4-1 are opposite.
  • the second rotor permanent magnet 2-2 corresponding to a first rotor permanent magnet 4-1 2 is the second rotor permanent magnet 2-2 whose projection on the radial plane of all second rotor permanent magnets 2-2 coincides with the projection of the first rotor permanent magnet on the radial plane, corresponding to
  • the magnetization directions of the set first rotor permanent magnet 4-1 and the second rotor permanent magnet 2-2 are the same, for example, the first rotor permanent magnet 4-1 in the middle and the second rotor permanent magnet 2 in the middle shown in FIG.
  • the magnetization direction of the two is indicated by the orientation in the figure, with the N pole on the bottom and the S pole on the top.
  • the first rotor permanent magnet 4-1 on the left side corresponds to the second rotor permanent magnet 2-2 on the left side, and the magnetization direction of the two is the same, and the first rotor permanent magnet 4-1 on the right side and the right side
  • the second rotor permanent magnet 2-2 corresponds, and the magnetization directions of the two are the same.
  • the magnetization directions of the two first rotor permanent magnets 4-1 and the two second rotor permanent magnets 2-2 are both that the N pole is on the top and the S pole is on the bottom.
  • the magnetization directions of two adjacent second rotor permanent magnets 2-2 are opposite.
  • stator-rotor structure shown in Figure 2 it includes 8 first rotor permanent magnets 4-1, and 4 of the 8 first rotor permanent magnets 4-1 are the first with the N pole facing the first air gap.
  • the four rotor permanent magnets 4-1 are the first rotor permanent magnets 4-1 whose S pole faces the first air gap.
  • the first rotor permanent magnets 4-1 with N poles facing the first air gap and the first rotor permanent magnets 4-1 with S poles facing the first air gap are alternately arranged.
  • first rotor permanent magnet 4-1 of each N pole facing the first air gap forms a group with its two adjacent first rotor permanent magnets 4-1, and the eight first rotor permanent magnets 4-1 on the illustrated example first rotor 4 A rotor permanent magnet can be divided into 4 groups, and the magnetic circuit conditions of the first rotor permanent magnet in each group are consistent.
  • Any of the above-mentioned first rotor permanent magnets 4-1 and second rotor permanent magnets 2-2 may be, for example, permanent magnet steel.
  • the axial closed-loop magnetic circuit between the first rotor yoke part 4-2 and the second stator core yoke part 1-12 of the stator-rotor structure includes multiple groups. According to the requirement of the magnetization direction of the first rotor permanent magnet 4-1, the quantity of the first rotor permanent magnet 4-1 is an even number, and the group number of the closed-loop magnetic circuit is 1/ of the number of the first rotor permanent magnet 4-1 2.
  • Each group of closed-loop magnetic circuits can be seen in Figure 8, and the short lines with arrows in the figure are set to indicate the path and direction of the magnetic force lines.
  • each group of closed-loop magnetic circuits starts from the N pole of a first rotor permanent magnet 4-1 facing the first air gap, and passes through the first air gap and the teeth of the first stator core in the axial direction.
  • a second rotor permanent magnet 2-2 corresponding to the first rotor permanent magnet 4-1, the third air gap and the second stator core teeth 1-11, from the second
  • the stator core yoke portion 1-12 returns to both sides, passing through the second stator core tooth portion 1-11, the third air gap, and the two adjacent second rotor permanent magnets 2-2 in the axial direction.
  • Fig. 6 is a schematic diagram of various components of the first stator 3 according to an example embodiment of the present disclosure.
  • the first stator 3 includes a first stator core 3-1, and the first stator core 3-1 includes a plurality of first stator core teeth 3-11 arranged at intervals in the circumferential direction.
  • the first stator 3 further includes a plurality of first stator insulating supports 3-2 and a plurality of first stator windings 3-3, which are arranged in one-to-one correspondence with the plurality of first stator core teeth 3-11.
  • the first stator 3 further includes first stator core pole shoes 3-12 disposed on the peripheries of the two axial end faces of the first stator core tooth portion 3-11 , the first stator insulating bracket 3-2 is sleeved in the annular groove formed by the side wall of the first stator core tooth part 3-11 and the two first stator core pole shoes 3-12, the first stator The winding 3-3 is wound on the first stator insulating support 3-2, for example, it can be wound in the annular groove of the side wall of the first stator insulating support 3-2.
  • the annular first stator insulating support 3-2 can be designed to be composed of two half-rings, and after the two half-rings are set in the corresponding positions of the annular groove, the first stator winding 3-3 Wound on the first stator insulating support 3-2.
  • a plurality of first stator core teeth 3-11 are sequentially spliced into a ring shape through a non-magnetic material, and the non-magnetic material can be arranged on two adjacent first stator core teeth 3-11 in the gap.
  • the plurality of first stator core teeth 3-11 are connected by a non-magnetically permeable annular bracket, and the annular bracket can be connected to two axial sides of the plurality of first stator core teeth 3-11.
  • the two end surfaces are respectively connected to connect a plurality of first stator core tooth parts 3-11 as a whole, and the annular bracket can also be arranged inside the annular space surrounded by a plurality of first stator core tooth parts 3-11, and The plurality of first stator core teeth 3-11 are respectively connected to one side facing the axis.
  • the plurality of first stator core teeth 3-11 can be molded into a whole by injection molding.
  • the first stator core 3-1 without a stator yoke is realized by the process of split core, and is directly molded by soft magnetic composite materials (Soft Magnetic Composite materials, SMC), and the manufacturing process is simple , Convenient, high production efficiency, easy for automatic winding.
  • the soft magnetic composite material has high resistivity and low eddy current loss, and is especially suitable for axial magnetic field high-frequency motors. Usually, when the frequency is higher than 400Hz, the specific loss of the soft magnetic composite material is lower than that of the silicon steel sheet material.
  • FIG. 4 is a schematic diagram of multiple components of the second stator 1 according to an example embodiment of the present disclosure.
  • the second stator 1 includes a second stator core 1-1
  • the second stator core 1-1 includes a second stator core yoke portion 1-12 and a second stator core yoke portion 1-12 facing the second rotor.
  • a plurality of second stator core teeth 1-11 arranged at intervals in the circumferential direction on one side of 2.
  • the second stator 1 also includes a plurality of second stator insulating supports 1-2 and a plurality of second stator windings 1-3 which are arranged in one-to-one correspondence with the plurality of second stator core teeth 1-11; the ring-shaped second stator The insulating support 1-2 is sleeved on the side wall of the second stator core tooth part 1-11, and the second stator winding 1-3 is wound on the second stator insulating support 1-2.
  • the second The stator winding 1-3 is wound in the annular groove of the side wall of the second stator insulating support 1-2.
  • the second stator core 1-1 with the stator yoke can be formed by winding silicon steel sheets, or can be directly molded by soft magnetic composite materials, and the manufacturing process is simple, convenient and efficient.
  • High, soft magnetic composite materials have high resistivity and low eddy current loss, especially suitable for axial magnetic field high-frequency motors.
  • the frequency is higher than 400Hz, the specific loss of soft magnetic composite materials is lower than that of silicon steel sheet materials.
  • the specific loss of silicon steel sheets is lower than that of soft magnetic composite materials.
  • the second stator core 1-1 with the stator yoke can be wound with silicon steel sheets process; when the design of the axial field motor pays more attention to cost and production efficiency, the second stator core 1-1 with the stator yoke can be directly molded by soft magnetic composite material.
  • the second stator core yoke portion 1-12 and the plurality of second stator core tooth portions 1-11 can be integrally formed.
  • the second stator core yoke portion 1-12 and the plurality of second stator core tooth portions 1-11 may be fabricated separately and integrated into one body by being connected.
  • the first stator core 3-1 without a stator yoke is directly molded by soft magnetic composite material
  • the second stator core 1-1 with a stator yoke is made by winding silicon steel sheets
  • the specific loss of the silicon steel sheet material is lower than that of the soft magnetic composite material at low frequencies (usually below 400 Hz), so that the axial field motor adopting the stator and rotor structure of this embodiment can take into account the efficiency at both high frequency and low frequency.
  • FIG. 7 is a schematic diagram of several components of the first rotor 4 according to an example embodiment of the present disclosure.
  • the first rotor 4 includes a first rotor yoke 4-2 and a plurality of first rotor permanent magnets arranged at intervals in the circumferential direction on the side of the first rotor yoke 4-2 facing the first stator 3 4-1.
  • the first rotor yoke 4-2 is an annular guide disc, and the guide disc is provided with a plurality of positioning slots ( Not shown in the figure), a plurality of first rotor permanent magnets 4-1 are fixed in a plurality of positioning slots in one-to-one correspondence.
  • the first rotor permanent magnet 4 - 1 of the first rotor 4 with the guide disk can be fixed in the corresponding positioning shallow groove on the guide disk, and fixed on the guide disk by glue bonding or injection molding.
  • FIG. 5 is a schematic diagram of various components of the first rotor 4 according to an example embodiment of the present disclosure.
  • the second rotor 2 includes a non-magnetic second rotor support 2-1 and a plurality of second rotor permanent magnets 2-2 arranged at intervals in the circumferential direction on the second rotor support 2-1.
  • the second rotor support 2-1 includes a second rotor support inner ring 2-11, a second rotor support outer ring 2-13, and multiple rings extending radially between the inner ring and the outer ring.
  • a second rotor support connector 2-12, a plurality of second rotor support connectors 2-12 divides the annular space between the second rotor support inner ring 2-11 and the second rotor support outer ring 2-13 into multiple
  • the second rotor permanent magnet of the second rotor 2 without the guide disk is fixed in the high-strength rotor bracket made of non-magnetic material, and can be molded as a whole through injection molding.
  • the second rotor support 2-1 is made of a non-magnetic high-strength alloy material, which has good mechanical strength and can run at a relatively high speed.
  • the first rotor and the second rotor are provided with 8 permanent magnets, and there are 12 teeth on the first stator and the second stator, and the shapes of the permanent magnets and the teeth are both Scalloped blocks.
  • the number of permanent magnets and teeth can be determined according to the design requirements of the axial field motor.
  • the stator-rotor structure is a double-stator, double-rotor axial field motor structure, and the first rotor permanent magnet 4-1 of the outer first rotor 4 is fixed on the first rotor yoke 4-2 Above, there is no rotor yoke on the inner second rotor 2, and the second rotor permanent magnet 2-2 is fixed on the second rotor bracket 2-1.
  • the inner first stator core 3-1 has no stator yoke
  • the outer second stator core 1-1 has a second stator core yoke 1-12.
  • the magnetic flux of the stator-rotor structure passes through three air gaps, and the air-gap magnetic field realizes the energy transmission, and the output torque can be increased by about 50% compared with the axial field motor with double rotors and single stator of the same size. , so that the torque density of the motor has been greatly improved.
  • an axial field motor including a casing, a rotating shaft, and the stator-rotor structure described in any embodiment of the present disclosure, the first rotor 4 and the second rotor 2 in the stator-rotor structure Sleeved on the rotating shaft of the axial field motor, the first stator 3 and the second stator 1 are fixedly connected with the casing of the axial field motor.
  • the first rotor 4 and the second rotor 2 can be directly sleeved on the rotating shaft, or can be sleeved on the rotating shaft through an intermediate bracket or other components.
  • the axial field motor Compared with the axial field motor with double rotor and single stator, the axial field motor lacks the rotor yoke on one side, and adds a stator core with a stator yoke, through which the stator yoke is connected with the rotor on the other side
  • the yoke forms a magnetic circuit closed loop.
  • the magnetic flux of the entire magnetic circuit passes through three air gaps to realize energy transmission, which can increase the output torque by about 50%, so that the torque density of the axial field motor has been greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

一种定转子结构和轴向磁场电机,定转子结构为双定子双转子结构,外侧转子的永磁体固定在转子轭部上,内侧转子无转子轭部,内侧转子的永磁体固定在转子支架上,内侧定子的铁心无定子轭部,外侧定子的铁心有定子轭部。

Description

一种定转子结构和轴向磁场电机
相关申请的交叉引用
本公开要求2021年9月22日递交到CNIPA的,申请号为202111105831.1、发明名称为“一种定转子结构和轴向磁场电机”的中国专利申请的优先权,其内容在此通过引用并入。
技术领域
本公开涉及但不限于电机,特别涉及一种定转子结构和轴向磁场电机。
背景技术
随着新能源汽车的飞速发展,作为新能源关键驱动系统的电机系统也迎来了快速发展期。轴向磁场电机以高转矩密度、高效率和优良的散热性能,尤其是轴向尺寸紧凑的特点,吸引了越来越多的研究机构加大对其的研究力度,已经成为电机领域的研究热点。但轴向磁场电机的转矩密度仍有提升空间。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种定转子结构,包括在轴向依次间隔设置的第一转子、第一定子、第二转子和第二定子,所述第一转子包括第一转子轭部和在所述第一转子轭部朝向所述第一定子的一侧上周向间隔设置的多个第一转子永磁体,所述第二转子包括非导磁的第二转子支架和在所述第二转子支架上周向间隔设置的多个第二转子永磁体,所述第一定子包括第一定子铁心,所述第一定子铁心包括周向间隔设置的多个第一定子铁心齿部,所述第二定子包括第二定子铁心,所述第二定子铁心包括第二定子铁心轭部和在所述第二定子铁心轭部朝向所述第二转子的一侧上周向间隔设置的多个第二定子铁 心齿部,所述第一转子轭部和所述第二定子铁心轭部之间形成轴向的闭环磁路。
本公开实施例还提供了一种轴向磁场电机,包括机壳、转轴和前述任一个实施例所述的定转子结构,所述第一转子和第二转子套设在所述转轴上,所述第一定子和第二定子与所述机壳固定连接。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是一种双转子单定子结构的示意图;
图2是本公开一示例实施例定转子结构的爆炸图;
图3是图2所示定转子结构组装后的剖视图;
图4是图2中第二定子多个部件的示意图;
图5是图2中第二转子多个部件的示意图;
图6是图2中第一定子多个部件的示意图;
图7是图2中第一转子多个部件的示意图;
图8是图2所示定转子结构一组闭合磁路的示意图。
10-1—定子齿部,10-2—定子绝缘支架,10-3—定子绕组,20-1—左转子轭部,20-2—左转子永磁体,30-1—右转子轭部,30-2—右转子永磁体;
1—第二定子,2—第二转子,3—第一定子,4—第一转子,1-1—第二定子铁心,1-2—第二定子绝缘支架,1-3—第二定子绕组,1-11—第二定子铁心齿部,1-12—第二定子铁心轭部,2-1—第二转子支架,2-2—第二转子永磁体,2-11—第二转子支架内环,2-12—第二转子支架连接件,2-13—第二转子支架外环,3-1—第一定子铁心,3-2—第一定子绝缘支架,3-3—第一定子绕组,3-11—第一定子铁心齿部,3-12—第一定子铁心极靴,4-1—第一转子永磁体,4-2—第一转子轭部。
详述
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的描述中,“示例性的”或者“例如”表示作例子、例证或说明。本公开中被描述为“示例性的”或者“例如”的任何实施例不应被解释为比其他实施例更优选或更具优势。本文中的“和/或”是对关联对象的关联关系的一种描述,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
本公开实施例中的方向性指示(诸如上、下、左、右、前、后)仅用于解释在某一特定姿态(如附图所示)下多个部件之间的相对位置关系、运动情况,而不是指示或暗示所指的结构具有特定的方位、以特定的方位构造和操作,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。因此不能理解为对本公开的限制。另外,在本公开实施例中如涉及“第一”、“第二”的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
在本公开中,除非另有明确的规定和限定,术语“连接”、“固定”应做广义理解,例如,“固定”可以是固定连接,或者可以是可拆卸连接,或成一体;可以是机械连接,或者可以是电连接;可以是直接相连,或者可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
本公开每个实施例之间的技术方案可以相互结合,但是是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本公开要求的保护范围之内。
图1所示是一种双转子单定子结构,包括两个转子和设置在两个转子中间的定子。为了表述方便,将图中左侧的转子可以称为左转子,右侧的转子 可以称为右转子。如图所示,左转子包括左转子轭部20-1和在左转子轭部20-1朝向定子的一侧上周向间隔设置的左转子永磁体20-2,右转子包括右转子轭部30-1和在右转子轭部30-1朝向定子的一侧上周向间隔设置的右转子永磁体30-2。定子包括定子齿部10-1、定子绝缘支架10-2和定子绕组10-3,定子绕组10-3绕制在定子绝缘支架10-2上,定子绝缘支架10-2套在定子齿部10-1上,无定子轭部。无定子轭部的轴向磁场电机利用轴向磁场电机的盘式结构磁场作用面积大的特点,可以产生较高转矩输出。但无定子轭部的轴向磁场电机转矩密度仍然存在有提升的空间。
本公开一示例实施例中,提出了一种更高转矩密度、更高效率的轴向磁场电机,该轴向磁场电机具有三个气隙,轴向磁场电机的定转子结构如图2至图7所示。其中,图2是定转子结构的爆炸图,图3是定转子结构装配好之后沿径向剖切得到的剖面图。图4至图7分别是2个定子和2个转子的立体图。
如图所示,该定转子结构包括在轴向依次间隔设置的第一转子4、第一定子3、第二转子2和第二定子1(见图2),第一转子4包括第一转子轭部4-2和在第一转子轭部4-2朝向第一定子3的一侧上周向间隔设置的多个第一转子永磁体4-1(见图7),第二转子2包括非导磁的第二转子支架2-1和在第二转子支架2-1上周向间隔设置的多个第二转子永磁体2-2(见图5),第一定子3包括第一定子铁心3-1,第一定子铁心3-1包括周向间隔设置的多个第一定子铁心齿部3-11(见图6),第二定子1包括第二定子铁心1-1,第二定子铁心1-1包括第二定子铁心轭部1-12和在第二定子铁心轭部1-12朝向第二转子2的一侧上周向间隔设置的多个第二定子铁心齿部1-11(见图4),第一转子轭部4-2和第二定子铁心轭部1-12之间形成轴向的闭环磁路。
第一转子4和第一定子3之间的气隙可以称为第一气隙,第一定子3和第二转子2之间的气隙可以称为第二气隙,第二转子2和第二定子1之间的气隙可以称为第三气隙。
图2所示的定转子结构中,多个第一转子永磁体4-1和多个第二转子永 磁体2-2均轴向充磁且在轴向一一对应,对应的第一转子永磁体4-1和第二转子永磁体2-2的充磁方向相同,相邻的两个第一转子永磁体4-1的充磁方向相反,相邻的两个第二转子永磁体2-2的充磁方向相反。
请参见图8,为了方便表示,图中仅示出了3个依次相邻的第一转子永磁体4-1的相关磁路。从图中可以看出,中间的第一转子永磁体4-1的N极面向第一气隙,而两侧的第一转子永磁体4-1则是S极面向第一气隙。相邻的两个第一转子永磁体4-1的充磁方向相反。如图所示,与该3个第一转子永磁体4-1对应的3个第二转子永磁体2-2中(与一个第一转子永磁体4-1对应的第二转子永磁体2-2是所有第二转子永磁体2-2中在径向平面上的投影与该第一转子永磁体在该径向平面上的投影重合度最大的一个第二转子永磁体2-2),对应设置的第一转子永磁体4-1和第二转子永磁体2-2的充磁方向相同,例如,图8所示中间的第一转子永磁体4-1和中间的第二转子永磁体2-2对应,两者充磁方向按图中方位表示,均为N极在下,S极在上。同样,左侧的第一转子永磁体4-1和左侧的第二转子永磁体2-2对应,两者的充磁方向相同,右侧的第一转子永磁体4-1和右侧的第二转子永磁体2-2对应,两者的充磁方向相同。这2个第一转子永磁体4-1和2个第二转子永磁体2-2的充磁方向均为N极在上,S极在下。相邻的两个第二转子永磁体2-2的充磁方向是相反的。
在图2所示的定转子结构的示例中,包括8个第一转子永磁体4-1,8个第一转子永磁体4-1中有4个是N极面向第一气隙的第一转子永磁体4-1,4个是S极面向第一气隙的第一转子永磁体4-1。N极面向第一气隙的第一转子永磁体4-1和S极面向第一气隙的第一转子永磁体4-1交错设置。而每一个N极面向第一气隙的第一转子永磁体4-1和其相邻的两个第一转子永磁体4-1组成一组,图示示例第一转子4上的8个第一转子永磁体可以分为4组,每组第一转子永磁体的磁路情况是一致的。上述任一第一转子永磁体4-1和第二转子永磁体2-2例如可以是永磁磁钢。
本公开一示例实施例中,定转子结构的第一转子轭部4-2和第二定子铁心轭部1-12之间轴向的闭环磁路包括多组。按对第一转子永磁体4-1的充磁方向的要求,第一转子永磁体4-1的数量为偶数,而闭环磁路的组数是第一 转子永磁体4-1数量的1/2,每组闭环磁路均可见图8,图中带箭头的短线设置为表示磁力线的路径和方向。如图8所示,每一组闭环磁路从一个第一转子永磁体4-1的面向第一气隙的N极出发,沿轴向穿过第一气隙、第一定子铁心齿部3-11、第二气隙、与该第一转子永磁体4-1对应的一个第二转子永磁体2-2、第三气隙和第二定子铁心齿部1-11后,从第二定子铁心轭部1-12向两侧返回,沿轴向穿过第二定子铁心齿部1-11、第三气隙、与对应的该第二转子永磁体2-2相邻的两个第二转子永磁体2-2、第二气隙、第一定子铁心齿部3-11、第一气隙和与该第一转子永磁体4-1相邻的两个第一转子永磁体4-1后,从第一转子轭部4-2返回该第一转子永磁体4-1的S极,形成闭合回路。
图6是本公开一示例实施例的第一定子3多个部件的示意图。如图所示,第一定子3包括第一定子铁心3-1,第一定子铁心3-1包括周向间隔设置的多个第一定子铁心齿部3-11。第一定子3还包括与多个第一定子铁心齿部3-11一一对应设置的多个第一定子绝缘支架3-2和多个第一定子绕组3-3。在一示例实施例中,如图所示,第一定子3还包括在第一定子铁心齿部3-11轴向的两个端面的周缘设置的第一定子铁心极靴3-12,第一定子绝缘支架3-2套设于第一定子铁心齿部3-11的侧壁和两个第一定子铁心极靴3-12所形成的环形槽内,第一定子绕组3-3绕制在第一定子绝缘支架3-2上,如可以绕制在第一定子绝缘支架3-2侧壁的环形槽内。在制作时,可以将环形的第一定子绝缘支架3-2设计为由2个半环组成,将2个半环套设在环形槽的相应位置后,将第一定子绕组3-3绕制在第一定子绝缘支架3-2上。
在本公开一示例实施例中,多个第一定子铁心齿部3-11通过非导磁材料依次拼接成环形,该非导磁材料可以设置在相邻两个第一定子铁心齿部3-11的间隙中。在另一示例实施例中,多个第一定子铁心齿部3-11通过非导磁的环形支架连接,该环形支架可以与多个第一定子铁心齿部3-11轴向的两个端面分别连接,将多个第一定子铁心齿部3-11连接为一个整体,该环形支架还可以设置在多个第一定子铁心齿部3-11围成的环形空间内部,与多个第一定子铁心齿部3-11朝向轴心的一侧分别连接。在又一示例实施例中,多个第一 定子铁心齿部3-11可以通过注塑塑封成为一个整体。
在本公开一示例实施例中,不带定子轭部的第一定子铁心3-1采用分割铁心的工艺实现,采用软磁复合材料(Soft Magnetic Composite materials,SMC)直接模压成型,制作工艺简单、方便、生产效率高,便于自动化的绕线。软磁复合材料的电阻率高,涡流损耗低,尤其适合于轴向磁场高频电机中,通常在频率高于400Hz时,软磁复合材料的比损耗低于硅钢片材料。
图4所示是本公开一示例实施例的第二定子1多个部件的示意图。如图所示,第二定子1包括第二定子铁心1-1,第二定子铁心1-1包括第二定子铁心轭部1-12和在第二定子铁心轭部1-12朝向第二转子2的一侧上周向间隔设置的多个第二定子铁心齿部1-11。第二定子1还包括与多个第二定子铁心齿部1-11一一对应设置的多个第二定子绝缘支架1-2和多个第二定子绕组1-3;环状的第二定子绝缘支架1-2套设在第二定子铁心齿部1-11的侧壁上,第二定子绕组1-3绕制在第二定子绝缘支架1-2上,在图示示例中,第二定子绕组1-3绕制在第二定子绝缘支架1-2侧壁的环形槽内。
本公开一示例实施例中,带定子轭部的第二定子铁心1-1可以通过硅钢片冲片卷绕而成,或者可以通过软磁复合材料直接模压成型,制作工艺简单、方便、生产效率高,软磁复合材料的电阻率高,涡流损耗低,尤其适合于轴向磁场高频电机中,通常在频率高于400Hz时,软磁复合材料的比损耗低于硅钢片材料,在低于400Hz下,硅钢片的比损耗低于软磁复合材料,在设计的轴向磁场电机更关注低频下效率的情况下,带有定子轭部的第二定子铁心1-1可以采用硅钢片卷绕工艺制成;在设计的轴向磁场电机更关注成本、生产效率时,带有定子轭部的第二定子铁心1-1可以采用软磁复合材料直接模压成型。按以上任一方式制做时,第二定子铁心轭部1-12和多个第二定子铁心齿部1-11可以一体成型。在一示例实施例中,第二定子铁心轭部1-12和多个第二定子铁心齿部1-11可以分别制作,通过连接为一体。
本公开一示例实施例中,不带定子轭部的第一定子铁心3-1采用软磁复合材料直接模压成型,带定子轭部的第二定子铁心1-1采用硅钢片卷绕制成,硅钢片材料在低频下(通常400Hz以下)比损耗低于软磁复合材料,使得采 用本实施例定转子结构的轴向磁场电机能够兼顾高频、低频下的效率。
图7所示是本公开一示例实施例的第一转子4多个部件的示意图。如图所示,第一转子4包括第一转子轭部4-2和在第一转子轭部4-2朝向第一定子3的一侧上周向间隔设置的多个第一转子永磁体4-1,在图示的示例中,第一转子轭部4-2为圆环状的导磁盘,该导磁盘朝向第一定子3的一侧上周向间隔设置有多个定位槽(图中未示出),多个第一转子永磁体4-1一一对应固定在多个定位槽中。在一示例实施例中,带导磁盘的第一转子4的第一转子永磁体4-1可以固定于导磁盘上对应的定位浅槽内,通过胶水粘接或者注塑塑封固定于导磁盘上。
图5所示是本公开一示例实施例的第一转子4多个部件的示意图。如图所示,第二转子2包括非导磁的第二转子支架2-1和在第二转子支架2-1上周向间隔设置的多个第二转子永磁体2-2。在图示的示例中,第二转子支架2-1包括第二转子支架内环2-11、第二转子支架外环2-13和设置在内环和外环之间沿径向延伸的多个第二转子支架连接件2-12,多个第二转子支架连接件2-12将第二转子支架内环2-11和第二转子支架外环2-13之间的环形空间分隔成多个扇形的通槽,多个第二转子永磁体2-2一一对应固定在多个通槽中。不带导磁盘的第二转子2的第二转子永磁体固定于由不导磁材料制成的高强度转子支架内,可以经注塑塑封为一个整体。在一示例实施例中,第二转子支架2-1采用不导磁的高强度合金材料制成,有良好的机械强度,可以运行于较高的转速。
在图2所示的实施例中,第一转子和第二转子均设置有8个永磁体,第一定子和第二定子上的齿部有12个,永磁体和齿部的形状均为扇形块。永磁体和齿部的数量可以根据轴向磁场电机的设计需要而确定。
本公开一示例实施例中,定转子结构是一种双定子、双转子的轴向磁场电机架构,外侧第一转子4的第一转子永磁体4-1固定在第一转子轭部4-2上,内侧第二转子2上无转子轭部,第二转子永磁体2-2固定在第二转子支架2-1上。内侧的第一定子铁心3-1无定子轭部,外侧的第二定子铁心1-1具有第二定子铁心轭部1-12。本实施例定转子结构的磁通经过三个气隙,气 隙磁场实现能量的传递,输出的转矩较同等尺寸的双转子单定子的轴向磁场电机,可以提升约50%的输出转矩,使得电机的转矩密度得到了大幅的提升。
本公开一示例实施例中,提供了一种轴向磁场电机,包括机壳、转轴和本公开任一实施例所述的定转子结构,定转子结构中的第一转子4和第二转子2套设在轴向磁场电机的转轴上,第一定子3和第二定子1与轴向磁场电机的机壳固定连接。第一转子4和第二转子2可以直接套设在转轴上,或者可以通过中间支架或其他部件套设在转轴上。
轴向磁场电机相较于采用双转子单定子的轴向磁场电机,少了一侧的转子轭部,增加了一个带有定子轭部的定子铁心,通过该定子轭部与另一侧的转子轭部形成磁路闭环。整个磁路的磁通经过三个气隙实现能量的传递,可以提升约50%的输出转矩,使得轴向磁场电机的转矩密度得到了大幅的提升。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定为准。

Claims (11)

  1. 一种定转子结构,包括在轴向依次间隔设置的第一转子、第一定子、第二转子和第二定子,所述第一转子包括第一转子轭部和在所述第一转子轭部朝向所述第一定子的一侧上周向间隔设置的多个第一转子永磁体,所述第二转子包括非导磁的第二转子支架和在所述第二转子支架上周向间隔设置的多个第二转子永磁体,所述第一定子包括第一定子铁心,所述第一定子铁心包括周向间隔设置的多个第一定子铁心齿部,所述第二定子包括第二定子铁心,所述第二定子铁心包括第二定子铁心轭部和在所述第二定子铁心轭部朝向所述第二转子的一侧上周向间隔设置的多个第二定子铁心齿部,所述第一转子轭部和所述第二定子铁心轭部之间形成轴向的闭环磁路。
  2. 如权利要求1所述的定转子结构,其中:
    多个第一转子永磁体和多个第二转子永磁体均轴向充磁且在轴向一一对应,对应设置的第一转子永磁体和第二转子永磁体的充磁方向相同,相邻的两个第一转子永磁体的充磁方向相反,相邻的两个第二转子永磁体的充磁方向相反。
  3. 如权利要求2所述的定转子结构,其中:
    所述第一转子和第一定子之间为第一气隙,所述第一定子和第二转子之间为第二气隙,所述第二转子和第二定子之间为第三气隙;
    所述闭环磁路包括多组,每组闭环磁路从一个第一转子永磁体的面向第一气隙的N极出发,沿轴向穿过所述第一气隙、第一定子铁心齿部、第二气隙、与该第一转子永磁体对应的一个第二转子永磁体、第三气隙和第二定子铁心齿部后,从所述第二定子铁心轭部向两侧返回,沿轴向穿过所述第二定子铁心齿部、第三气隙、与对应的该第二转子永磁体相邻的两个第二转子永磁体、第二气隙、第一定子铁心齿部、第一气隙和与该第一转子永磁体相邻的两个第一转子永磁体后,从所述第一转子轭部返回该第一转子永磁体的S极。
  4. 如权利要求1或2所述的定转子结构,其中:
    所述第一定子铁心采用软磁复合材料直接模压成型。
  5. 如权利要求1或2所述的定转子结构,其中:
    所述第一定子还包括与多个所述第一定子铁心齿部一一对应设置的多个第一定子绝缘支架和多个第一定子绕组;所述第一定子铁心齿部在轴向的两个端面的周缘设有第一定子铁心极靴,所述第一定子绝缘支架套设于所述第一定子铁心齿部的侧壁和两个所述第一定子铁心极靴所形成的环形槽内,所述第一定子绕组绕制在所述第一定子绝缘支架上。
  6. 如权利要求1或2所述的定转子结构,其中:
    多个所述第一定子铁心齿部通过非导磁材料依次拼接成环形,或者通过非导磁的环形支架连接,或者通过注塑塑封成为一个整体。
  7. 如权利要求1或2所述的定转子结构,其中:
    所述第二定子铁心通过硅钢片冲片卷绕而成,或者采用软磁复合材料直接模压而成。
  8. 如权利要求1或2所述的定转子结构,其中:
    所述第二定子还包括与多个所述第二定子铁心齿部一一对应设置的多个第二定子绝缘支架和多个第二定子绕组;所述第二定子绝缘支架套设在所述第二定子铁心齿部的侧壁上,所述第二定子绕组绕制在所述第二定子绝缘支架上。
  9. 如权利要求1或2所述的定转子结构,其中:
    所述第一转子轭部为圆环状的导磁盘,所述导磁盘朝向所述第一定子的一侧上周向间隔设置有多个定位槽,多个所述第一转子永磁体一一对应固定在多个所述定位槽中。
  10. 如权利要求1所述的定转子结构,其中:
    所述第二转子支架包括第二转子支架内环、第二转子支架外环和在所述第二转子支架内环和第二转子支架外环之间沿径向延伸的多个第二转子支架连接件,多个所述第二转子支架连接件将所述第二转子支架内环和第二转子 支架外环之间的环形空间分隔成多个扇形的通槽,多个所述第二转子永磁体一一对应固定在多个所述通槽中。
  11. 一种轴向磁场电机,其中,包括机壳、转轴和如权利要求1至10中任一所述的定转子结构,所述第一转子和第二转子套设在所述转轴上,所述第一定子和第二定子与所述机壳固定连接。
PCT/CN2022/076075 2021-09-22 2022-02-11 一种定转子结构和轴向磁场电机 WO2023045222A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22747233.9A EP4178094A4 (en) 2021-09-22 2022-02-11 STRUCTURE WITH STATORS AND ROTORS, AND ELECTRIC MOTOR WITH AXIAL MAGNETIC FIELD
JP2022548800A JP7500742B2 (ja) 2021-09-22 2022-02-11 固定子・回転子構造及び軸方向磁場モーター
US17/798,317 US20240186871A1 (en) 2021-09-22 2022-02-11 Stator-and-rotor structure and Axial Magnetic Field Motor
KR1020227031385A KR20230044141A (ko) 2021-09-22 2022-02-11 스테이터-로터 구조 및 샤프트 방향 자기장 모터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111105831.1A CN113949177A (zh) 2021-09-22 2021-09-22 一种定转子结构和轴向磁场电机
CN202111105831.1 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023045222A1 true WO2023045222A1 (zh) 2023-03-30

Family

ID=79328475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076075 WO2023045222A1 (zh) 2021-09-22 2022-02-11 一种定转子结构和轴向磁场电机

Country Status (6)

Country Link
US (1) US20240186871A1 (zh)
EP (1) EP4178094A4 (zh)
JP (1) JP7500742B2 (zh)
KR (1) KR20230044141A (zh)
CN (1) CN113949177A (zh)
WO (1) WO2023045222A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117220463A (zh) * 2023-11-07 2023-12-12 天津九信科技有限公司 云台电机及增稳云台
CN117375276A (zh) * 2023-12-07 2024-01-09 奥铄动力科技(天津)有限公司 一种外转子结构的盘式电机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113949177A (zh) * 2021-09-22 2022-01-18 义乌吉利自动变速器有限公司 一种定转子结构和轴向磁场电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003351A1 (en) * 1984-11-30 1986-06-05 Fanuc Ltd Disc-shaped stator of ac motor and method of producing the same
US20050179337A1 (en) * 2003-11-10 2005-08-18 Masahiro Hasebe Axial gap electric rotary machine
CN105141060A (zh) * 2015-10-21 2015-12-09 沈阳工业大学 轴向磁通永磁同步电机转子
CN110676996A (zh) * 2019-09-26 2020-01-10 南通大学 一种双磁路调磁型轴向永磁电机
CN111884454A (zh) * 2020-08-10 2020-11-03 清华大学 一种用于高压断路器及其使用的轴向磁通永磁电机
CN112332627A (zh) * 2020-10-29 2021-02-05 郭之傲 一种双转子对转轴向磁场永磁电机
CN112564442A (zh) * 2020-12-01 2021-03-26 东南大学 一种轴向磁场双转子永磁游标电机
CN113949177A (zh) * 2021-09-22 2022-01-18 义乌吉利自动变速器有限公司 一种定转子结构和轴向磁场电机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049149A (en) * 1999-03-23 2000-04-11 Lin; Shou-Mei Brushless DC motor having opposed pairs of axial magnetic field type permanent magnets and control system therefor
JP2005151725A (ja) 2003-11-17 2005-06-09 Equos Research Co Ltd アキシャルギャップ回転電機
JP2009072009A (ja) * 2007-09-14 2009-04-02 Shin Etsu Chem Co Ltd 永久磁石回転機
JP5083826B2 (ja) * 2008-08-28 2012-11-28 本田技研工業株式会社 アキシャルギャップ型モータ
GB2466436A (en) * 2008-12-18 2010-06-23 Scimar Engineering Ltd Axial flux motor and generator assemblies
KR101131743B1 (ko) * 2010-06-23 2012-04-05 주식회사 아모텍 드럼세탁기의 직결형 구동장치
GB2532478B (en) * 2014-11-20 2021-08-25 Time To Act Ltd Generator
WO2017190292A1 (zh) * 2016-05-04 2017-11-09 余仁伟 一种高效叠片式无铁芯发电机及其制作方法
US10770940B2 (en) * 2017-01-31 2020-09-08 Regal Beloit Australia Pty Ltd. Modular rotors for axial flux electric machines
CN112688518A (zh) * 2020-12-29 2021-04-20 福州大学 一种多盘式结构轴向磁场混合永磁型记忆电机
CN112688515B (zh) * 2020-12-29 2023-11-28 福州大学 一种磁通切换型轴向磁场永磁电机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003351A1 (en) * 1984-11-30 1986-06-05 Fanuc Ltd Disc-shaped stator of ac motor and method of producing the same
US20050179337A1 (en) * 2003-11-10 2005-08-18 Masahiro Hasebe Axial gap electric rotary machine
CN105141060A (zh) * 2015-10-21 2015-12-09 沈阳工业大学 轴向磁通永磁同步电机转子
CN110676996A (zh) * 2019-09-26 2020-01-10 南通大学 一种双磁路调磁型轴向永磁电机
CN111884454A (zh) * 2020-08-10 2020-11-03 清华大学 一种用于高压断路器及其使用的轴向磁通永磁电机
CN112332627A (zh) * 2020-10-29 2021-02-05 郭之傲 一种双转子对转轴向磁场永磁电机
CN112564442A (zh) * 2020-12-01 2021-03-26 东南大学 一种轴向磁场双转子永磁游标电机
CN113949177A (zh) * 2021-09-22 2022-01-18 义乌吉利自动变速器有限公司 一种定转子结构和轴向磁场电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4178094A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117220463A (zh) * 2023-11-07 2023-12-12 天津九信科技有限公司 云台电机及增稳云台
CN117220463B (zh) * 2023-11-07 2024-03-01 天津九信科技有限公司 云台电机及增稳云台
CN117375276A (zh) * 2023-12-07 2024-01-09 奥铄动力科技(天津)有限公司 一种外转子结构的盘式电机
CN117375276B (zh) * 2023-12-07 2024-03-08 奥铄动力科技(天津)有限公司 一种外转子结构的盘式电机

Also Published As

Publication number Publication date
EP4178094A1 (en) 2023-05-10
KR20230044141A (ko) 2023-04-03
JP7500742B2 (ja) 2024-06-17
JP2023550858A (ja) 2023-12-06
CN113949177A (zh) 2022-01-18
EP4178094A4 (en) 2023-08-16
US20240186871A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
WO2023045222A1 (zh) 一种定转子结构和轴向磁场电机
US4441043A (en) Compound interaction/induction electric rotating machine
US7030528B2 (en) Dual concentric AC motor
CN112564346B (zh) 一种高转矩密度轴向磁场永磁电机转子结构及其电机
CN111541351B (zh) 一种双定子单转子轴向磁场混合励磁同步电机
CN109302027A (zh) 横向磁通电机
JP2008167646A (ja) 内転形永久磁石励磁横磁束電動機
CN112994389B (zh) 一种轴向-径向磁通永磁电机结构
WO2016058446A1 (zh) 电机
CN202535236U (zh) 多磁路盘式发电机
US12132353B2 (en) Rotor, synchronous reluctance motor, and rotor forming method
CN102355099A (zh) 多磁路盘式发电机
CN113489274B (zh) 双边交替极型混合励磁无刷电机
CN114552925A (zh) 一种定子永磁型轴径向混合磁场永磁磁通切换电机
CN113765258A (zh) 一种复合多向无铁芯盘式电机
CN110417215B (zh) 一种多极槽配合的轴向磁通永磁同步电机
WO2020220621A1 (zh) 定子组件及电机
CN111030402B (zh) 方向性硅钢片轴向磁场电动机
CN107425620B (zh) 一种组合铁芯定子及双边外转子盘式永磁同步电机
CN115411904A (zh) 一种永磁电机
CN110323906B (zh) 一种混合槽数的轴向磁通永磁同步电机
CN111934508A (zh) 径向磁场无铁心永磁同步电机
CN218040947U (zh) 用于轴向磁通电机的定子以及轴向磁通电机
CN114977706B (zh) 一种转子五自由度磁悬浮的双定子无轴承磁通切换电机
KR102570898B1 (ko) 2개의 로터를 결합한 발전기 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022548800

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022747233

Country of ref document: EP

Effective date: 20220809

WWE Wipo information: entry into national phase

Ref document number: 17798317

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22747233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE