[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022239194A1 - 半導体素子を用いたメモリ装置 - Google Patents

半導体素子を用いたメモリ装置 Download PDF

Info

Publication number
WO2022239194A1
WO2022239194A1 PCT/JP2021/018243 JP2021018243W WO2022239194A1 WO 2022239194 A1 WO2022239194 A1 WO 2022239194A1 JP 2021018243 W JP2021018243 W JP 2021018243W WO 2022239194 A1 WO2022239194 A1 WO 2022239194A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
gate
conductor layer
impurity
Prior art date
Application number
PCT/JP2021/018243
Other languages
English (en)
French (fr)
Inventor
望 原田
康司 作井
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
望 原田
康司 作井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 望 原田, 康司 作井 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2021/018243 priority Critical patent/WO2022239194A1/ja
Priority to TW111117506A priority patent/TWI813279B/zh
Priority to US17/740,723 priority patent/US20220367729A1/en
Publication of WO2022239194A1 publication Critical patent/WO2022239194A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/33DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor extending under the transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/036Making the capacitor or connections thereto the capacitor extending under the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor

Definitions

  • the present invention is a memory device using semiconductor elements.
  • the channel In a normal planar MOS transistor, the channel extends horizontally along the upper surface of the semiconductor substrate. In contrast, the SGT channel extends in a direction perpendicular to the upper surface of the semiconductor substrate (see Patent Document 1 and Non-Patent Document 1, for example). For this reason, the SGT enables a higher density semiconductor device compared to a planar MOS transistor.
  • a DRAM Dynamic Random Access Memory
  • a PCM Phase Change Memory
  • Non-Patent Document 4 RRAM (Resistive Random Access Memory, see, for example, Non-Patent Document 4), MRAM (Magneto-resistive Random Access Memory, see, for example, Non-Patent Document 5) that changes the resistance by changing the direction of the magnetic spin by current ) can be highly integrated.
  • DRAM memory cell see Non-Patent Document 6
  • the present application relates to a dynamic flash memory that does not have resistance change elements or capacitors and can be configured only with MOS transistors.
  • FIG. 7 shows the write operation of a DRAM memory cell composed of a single MOS transistor without the capacitor described above
  • FIG. 8 shows the problem in operation
  • FIG. 7 shows the write operation of the DRAM memory cell.
  • FIG. 7(a) shows a "1" write state.
  • the memory cell is formed on the SOI substrate 101 and includes a source N + layer 103 (hereinafter, a semiconductor region containing a high concentration of donor impurities is referred to as an “N + layer”) to which a source line SL is connected.
  • 110a constitutes a DRAM memory cell.
  • the SiO 2 layer 101 of the SOI substrate is in contact directly below the floating body 102 .
  • the MOS transistor 110a When "1" is written to the memory cell constituted by one MOS transistor 110a, the MOS transistor 110a is operated in the linear region. That is, the electron channel 107 extending from the source N + layer 103 has a pinch-off point 108 and does not reach the drain N + layer 104 connected to the bit line. In this way, both the bit line BL connected to the drain N + layer 104 and the word line WL connected to the gate conductive layer 105 are set at a high voltage, and the gate voltage is set to about 1/2 of the drain voltage. , the electric field strength is maximized at the pinch-off point 108 near the drain N + layer 104 .
  • the holes 106 generated at the same time charge the floating body 102 . In this case, the generated holes contribute as increments of majority carriers because the floating body 102 is P-type Si.
  • the floating body 102 is filled with the generated holes 106, and when the voltage of the floating body 102 becomes higher than that of the source N + layer 103 by Vb or more, the generated holes are discharged to the source N + layer 103.
  • Vb is the built-in voltage of the PN junction between the source N + layer 103 and the floating body 102 of the P layer, which is about 0.7V.
  • FIG. 7B shows the floating body 102 saturated with the generated holes 106 .
  • FIG. 7(c) shows how the "1" write state is rewritten to the "0" write state.
  • the voltage of the bit line BL is negatively biased, and the PN junction between the drain N + layer 104 and the floating body 102 of the P layer is forward biased.
  • the holes 106 previously generated in the floating body 102 in the previous cycle flow to the drain N + layer 104 connected to the bit line BL.
  • FIG. 7(b) filled with the generated holes 106 and 110b (FIG. 7(c)) from which the generated holes are ejected are stored.
  • the state of the memory cell is obtained.
  • the floating body 102 potential of the memory cell 110a filled with holes 106 will be higher than the floating body 102 without the generated holes. Therefore, the threshold voltage of memory cell 110a is lower than that of memory cell 110b. This state is shown in FIG. 7(d).
  • the capacitance CFB of the floating body 102 is composed of the capacitance CWL between the gate connected to the word line and the floating body 102, and the source N + layer 103 connected to the source line.
  • FIG. 9(a) shows the "1" write state
  • FIG. 9(b) shows the "0" write state.
  • Vb is written to the floating body 102 by writing "1”
  • the floating body 102 is pulled down to a negative bias when the word line returns to 0 V at the end of writing.
  • the negative bias becomes even deeper. Therefore, as shown in FIG. do not have.
  • This small operating margin is a major problem of the present DRAM memory cell.
  • Critoloveanu “A Compact Capacitor-Less High-Speed DRAM Using Field Effect-Controlled Charge Regeneration,” Electron Device Letters, Vol. 35, No.2, pp. 179-181 (2012) T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama, Y. Asao, and K. Sunouchi: “Memory design using a one-transistor gain cell on SOI,” IEEE JSSC, vol.37, No.11, pp1510-1522 (2002). T. Shino, N. Kusunoki, T. Higashi, T. Ohsawa, K. Fujita, K. Hatsuda, N. Ikumi, F.
  • the memory device includes: A first impurity layer on a substrate, which stands vertically or extends horizontally with respect to the substrate and is located at the center of the cross section, and the first impurity layer covering the first impurity layer.
  • a memory device using a semiconductor element characterized by:
  • the second semiconductor base covers a fifth impurity layer located at the center of the cross section and the fifth impurity layer, and has the same conductivity polarity as the fifth impurity layer, and a sixth impurity layer whose impurity concentration is lower than that of the fifth impurity layer (second invention).
  • the second semiconductor base body is composed of a seventh impurity layer having an impurity concentration lower than that of the first impurity layer (third invention).
  • the wiring connected to the first wiring conductor layer is a source line
  • the wiring connected to the second wiring conductor layer is a bit line
  • the wiring connected to the third wiring conductor layer. is a first drive control line
  • the wiring connected to the fourth wiring conductor layer is a word line
  • the memory erase operation and the memory write operation are performed by voltages applied to the source line, the bit line, the first drive control line, and the word line; (Fifth invention).
  • the first gate capacitance between the first gate conductor layer and the first semiconductor base body is a capacitance between the second gate conductor layer and the second semiconductor base body. It is characterized by being larger than the second gate capacitance (sixth invention).
  • FIG. 1 is a structural diagram of a memory device having SGTs according to the first embodiment
  • FIG. FIG. 3 is a diagram for explaining an erase operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 4 is a diagram for explaining a write operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 2 is a diagram for explaining a read operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 2 is a diagram for explaining a read operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 4 is a structural diagram of a memory device having SGTs according to the second embodiment
  • FIG. 11 is a structural diagram of a memory device having SGTs according to a third embodiment
  • FIG. 4 is a diagram for explaining operational problems of a conventional DRAM memory cell that does not have a capacitor;
  • FIG. 4 is a diagram for explaining operational problems of a conventional DRAM memory cell that does not have a capacitor;
  • FIG. 2 illustrates a read operation of a DRAM memory cell without a conventional capacitor;
  • dynamic flash memory a memory device using semiconductor elements
  • FIG. 1 The structure, operation mechanism, and manufacturing method of the dynamic flash memory cell according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • FIG. 2 The structure of a dynamic flash memory cell will be described with reference to FIG. Then, a data erasing mechanism will be described with reference to FIG. 2, a data writing mechanism will be described with reference to FIG. 3, and a data writing mechanism will be described with reference to FIG.
  • FIG. 1 shows the structure of a dynamic flash memory cell according to a first embodiment of the invention.
  • N + layer 3a which is an example of a "third impurity layer” in the claims
  • substrate 1 an example of the “substrate” in the claims.
  • a first silicon semiconductor pillar 2a which is an example of the "first semiconductor matrix” in the scope of claims
  • Si pillar the silicon semiconductor pillar
  • Si pillar 2b the second Si pillar 2b (which is an example of the "second semiconductor matrix” in the scope of claims) thereon.
  • the first Si pillar 2a has a P + layer 7aa (which is an example of the “first impurity layer” in the claims) (hereinafter referred to as N + layer and opposite conductivity to the central portion) in plan view.
  • a semiconductor region containing a high concentration of acceptor impurities is called a “P + layer”), and a P layer 7ab having a lower acceptor impurity concentration than the P + layer 7aa surrounds the P + layer 7aa (the “ which is an example of "second impurity layer”).
  • the second Si pillar 2b in plan view, has a central portion that surrounds the P + layer 7ba (an example of the “fifth impurity layer” in the scope of claims) and the P + layer 7ba, There is a P layer 7bb (which is an example of a "sixth impurity layer” in the claims) having an acceptor impurity concentration lower than that of the P + layer 7ba. Then, on the second Si pillar 2b, there is an N + layer 3b (which is an example of the "fourth impurity layer” in the claims). A portion of the Si pillars 2a and 2b between the N + layers 3a and 3b becomes a channel region 7 (an example of the "channel region" in the claims).
  • first gate insulating layer 4a Surrounding the first Si pillar 2a is a first gate insulating layer 4a (which is an example of the "first gate insulating layer” in the claims), and surrounding the second Si pillar 2b is a second gate. and an insulating layer 4b (which is an example of the "second gate insulating layer” in the claims).
  • first gate conductor layer 5a Surrounding the first gate insulating layer 4a is a first gate conductor layer 5a (which is an example of the "first gate conductor layer” in the claims), and surrounding the second gate insulating layer 4b. Then, there is a second gate conductor layer 5b (which is an example of the "second gate conductor layer” in the claims).
  • the first gate conductor layer 5 a and the second gate conductor layer 5 b are separated by an insulating layer 6 .
  • the N + layers 3a and 3b, the first Si pillar 2a, the second Si pillar 2b, the first gate insulating layer 4a, the second gate insulating layer 4b, the first gate conductor layer 5a, the second A dynamic flash memory cell 9 consisting of gate conductor layer 5b is formed.
  • the N + layer 3a serves as a source line SL (an example of a "source line” in the scope of claims), and the N + layer 3b serves as a bit line BL (an example of a "bit line” in the scope of claims).
  • first gate conductor layer 5a is connected to the plate line PL (an example of the "first drive control line” in the claims), and the second gate conductor layer 5b is connected to the word lines WL (claimed , which is an example of a "word line” of the
  • the structure is such that the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL. is desirable.
  • a plurality of dynamic flash memory cells described above are arranged two-dimensionally on the substrate 1 .
  • the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is made larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.
  • the gate length of the first gate conductor layer 5a is longer than that of the second gate conductor layer 5b.
  • the gate length of the first gate conductor layer 5a is not made longer than the gate length of the second gate conductor layer 5b, and the thickness of the gate insulation film of the first gate insulation layer 4a is increased. , may be thinner than the thickness of the gate insulating film of the second gate insulating layer 4b.
  • the dielectric constant of the first gate insulating layer 4a may be higher than that of the second gate insulating layer 4b.
  • the gate capacitance of the first gate conductor layer 5a is determined by combining any one of the length of the gate conductor layers 5a and 5b, the film thickness of the gate insulating layers 4a and 4b, and the dielectric constant of the second gate conductor layer 5b. may be larger than the gate capacitance of
  • first gate conductor layer 5a may be divided into two or more, and each of them may be operated synchronously or asynchronously as a conductor electrode of a plate line.
  • second gate conductor layer 5b may be divided into two or more and each may be operated synchronously or asynchronously as a conductor electrode of a word line. This also provides dynamic flash memory operation.
  • FIG. 2(a) shows a state in which the hole groups 11 generated by impact ionization in the previous cycle are stored in the channel region 7 before the erasing operation. Since the acceptor impurity concentration of the P + layers 7aa, 7ba is higher than that of the P layers 7ab, 7bb, the hole groups 11 are mainly accumulated in the P + layers 7aa, 7ba. and. As shown in FIG. 2(b), the voltage of the source line SL is set to the negative voltage V ERA during the erasing operation.
  • V ERA is, for example, -3V.
  • the PN junction between the source N + layer 3a connected to the source line SL and the channel region 7 is forward biased.
  • the threshold voltage of the N channel MOS transistor of dynamic flash memory cell 9 increases due to the substrate bias effect.
  • the threshold voltage of the second gate conductor layer 5b connected to this word line WL is increased.
  • the erased state of this channel region 7 is logical storage data "0". Note that the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL and the potential of the floating body described above are only examples for performing the erase operation, and other operating conditions under which the erase operation can be performed. may be
  • FIG. 3 shows the write operation of the dynamic flash memory cell according to the first embodiment of the invention.
  • 0 V for example, is input to the N + layer 3a connected to the source line SL
  • 3 V for example, is input to the N + layer 3b connected to the bit line BL
  • the plate line PL 2 V for example, is input to the connected first gate conductor layer 5a
  • 5 V for example, is input to the second gate conductor layer 5b connected to the word line WL.
  • the ring-shaped inversion layer 12a is mainly a P layer in the first channel region 7a inside the first gate conductor layer 5a connected to the plate line PL.
  • a first N-channel MOS transistor formed at 7ab and having a first gate conductor layer 5a is operated in the linear region.
  • a pinch-off point 13 exists in the inversion layer 12a inside the first gate conductor layer 5a to which the plate line PL is connected.
  • the second N-channel MOS transistor having the second gate conductor layer 5b connected to the word line WL is operated in the saturation region.
  • an inversion layer 12b is formed on the entire surface of the second channel region 7bb inside the second gate conductor layer 5b connected to the word line WL without any pinch-off point.
  • the inversion layer 12b formed entirely inside the second gate conductor layer 5b connected to the word line WL serves as a substantial drain of the first N-channel MOS transistor having the first gate conductor layer 5a. work.
  • the channel region 7 between the first N-channel MOS transistor having the first gate conductor layer 5a and the second N-channel MOS transistor having the second gate conductor layer 5b, which are connected in series has a second
  • the electric field is maximum at the boundary region of 1 and the impact ionization phenomenon occurs in this region. Since this region is the region on the source side viewed from the second N-channel MOS transistor having the second gate conductor layer 5b connected to the word line WL, this phenomenon is called the source-side impact ionization phenomenon.
  • Non-Patent Document 14 Due to this source-side impact ionization phenomenon, electrons flow from the N + layer 3a connected to the source line SL toward the N + layer 3b connected to the bit line BL. Accelerated electrons collide with lattice Si atoms and their kinetic energy produces electron-hole pairs. Some of the generated electrons flow into the first gate conductor layer 5a and the second gate conductor layer 5b, but most of them flow into the N + layer 3b connected to the bit line BL. Further, in writing "1", a gate induced drain leakage (GIDL) current may be used to generate electron-hole pairs, and the generated hole groups may fill the floating body FB ( See Non-Patent Document 14).
  • GIDL gate induced drain leakage
  • the generated hole group 11 is majority carriers in the channel region 7 and charges the channel region 7 with a positive bias. Since the N + layer 3a connected to the source line SL is at 0V, the channel region 7 is at the built-in voltage Vb (approximately 0 V) of the PN junction between the N + layer 3a connected to the source line SL and the channel region 7. .7V).
  • Vb approximately 0 V
  • the threshold voltages of the first N-channel MOS transistor and the second N-channel MOS transistor are lowered due to the substrate bias effect. Thereby, as shown in FIG. 3(c), the threshold voltage of the second N-channel MOS transistor connected to the word line WL is lowered.
  • the write state of this channel area 7 is assigned to logical storage data "1".
  • the generated hole groups 11 are mainly stored in the P + layers 7aa and 7bba. This provides a stable substrate bias effect.
  • a second boundary region between N + layer 3a and channel region 7 or a second boundary region between N + layer 3b and channel region 7 is provided. Electron-hole pairs may be generated in the boundary region 3 by impact ionization or GIDL current, and the channel region 7 may be charged with the generated hole groups 11 .
  • the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL are examples for performing the write operation, and other operating conditions that allow the write operation may be used.
  • FIGS. 4A and 4B A read operation of the dynamic flash memory cell according to the first embodiment of the present invention will be described with reference to FIGS. 4A and 4B.
  • the read operation of the dynamic flash memory cell will be described with reference to FIGS. 4A(a) to 4A(c).
  • FIG. 4A(a) when channel region 7 is charged to built-in voltage Vb (approximately 0.7 V), the threshold voltage of the N-channel MOS transistor is lowered due to the substrate bias effect. This state is assigned to logical storage data "1".
  • FIG. 4A(b) when the memory block selected before writing is in the erased state "0" in advance, the floating voltage VFB of the channel region 7 is VERA +Vb.
  • a write operation randomly stores a write state of "1". As a result, logical storage data of logical "0" and “1" are created for the word line WL.
  • FIG. 4A(c) reading is performed by the sense amplifier using the level difference between the two threshold voltages for the word
  • the gate capacitance of the second gate conductor layer 5b connected to the word line WL is preferably designed to be smaller than the gate capacitance of the first gate conductor layer 5a connected to the plate line PL. As shown in FIG. 4B(a), the vertical length of the first gate conductor layer 5a connected to the plate line PL is greater than the vertical length of the second gate conductor layer 5b connected to the word line WL.
  • FIG. 4B(b) shows an equivalent circuit of one cell of the dynamic flash memory of FIG. 4B(a).
  • FIG. 4B(c) shows the coupling capacity relationship of the dynamic flash memory.
  • CWL is the capacitance of the second gate conductor layer 5b
  • CPL is the capacitance of the first gate conductor layer 5a
  • CBL is the capacitance between the N + layer 3b serving as the drain and the channel region 7.
  • C SL is the capacitance of the PN junction between the N + layer 3 a serving as the source and the channel region 7 .
  • V ReadWL is the amplitude potential at the time of reading the word line WL.
  • ⁇ V FB can be reduced by reducing the contribution of C WL compared to the overall capacitance C PL +C WL +C BL +C SL of the channel region 7 .
  • the memory in plan view .DELTA.V.sub.FB may be made even smaller without reducing cell density.
  • the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL and the potential of the floating body described above are examples for performing the read operation, and other operating conditions that allow the read operation. may be
  • the dynamic flash memory device shown in the description of the present embodiment may have any structure as long as it satisfies the condition that the hole groups generated by the impact ionization phenomenon or the gate-induced drain leakage current are retained in the channel region 7 .
  • the channel region 7 may have a floating body structure separated from the substrate 1 .
  • Non-Patent Document 11 GAA (Gate All Around: see, for example, Non-Patent Document 11) technology and Nanosheet technology (see, for example, Non-Patent Document 12), which is one of SGTs
  • the semiconductor matrix in the channel region is formed into the substrate 1
  • the dynamic flash memory operation described above is possible even if it is formed horizontally with respect to the
  • it may be a device structure using SOI (Silicon On Insulator) (for example, see Non-Patent Documents 7 to 10).
  • SOI Silicon On Insulator
  • the bottom of the channel region is in contact with the insulating layer of the SOI substrate, and other channel regions are surrounded by a gate insulating layer and an element isolation insulating layer.
  • the channel region has a floating body structure.
  • the dynamic flash memory device provided by the present embodiment only needs to satisfy the condition that the channel region has a floating body structure. Also, even in a structure in which a Fin transistor (see, for example, Non-Patent Document 13) is formed on an SOI substrate, the dynamic flash memory operation can be performed if the channel region has a floating body structure.
  • the vertical length of the first gate conductor layer 5a connected to the plate line PL is made longer than the vertical length of the first gate conductor layer 5b connected to the word line WL.
  • the addition of the plate line PL alone reduces the capacitive coupling ratio (C WL /(C PL +C WL +C BL +C SL )) of the word line WL to the channel region 7 .
  • the potential variation ⁇ V FB of the channel region 7 of the floating body becomes small.
  • a fixed voltage of, for example, 2 V may be applied to the plate line PL regardless of each operation mode.
  • the voltage of the plate line PL may be applied, for example, 0 V only when erasing.
  • the voltage of the plate line PL may be a fixed voltage or a voltage that varies with time as long as it satisfies the conditions for dynamic flash memory operation.
  • FIG. 1 has been described using the first Si pillar 2a and the second Si pillar 2b having rectangular vertical cross sections, these vertical cross-sectional shapes may be trapezoidal. Moreover, each of the vertical cross sections of the Si pillar 2a and the Si pillar 2b may be different, such as a rectangular shape and a trapezoidal shape.
  • the dynamic flash memory operation can be performed.
  • the dynamic flash memory operation can also be performed by dividing the first gate conductor layer 5a into a plurality of conductor layers and driving each one synchronously or asynchronously.
  • the second gate conductor layer 5b can be divided into multiple conductor layers and driven synchronously or asynchronously to achieve dynamic flash memory operation.
  • the N + layer 3a in FIG. 1 may be extended over the substrate 1 to serve both as the N layer of the PN junction and as the wiring conductor layer of the source line SL.
  • a conductor layer such as a W layer may be connected to the N + layer 3a.
  • a conductor layer made of a metal such as a W layer or an alloy is connected to the N + layer 3a outside the region where more first Si pillars 2a and second Si pillars 2b are formed two-dimensionally. good too.
  • the dynamic flash memory operation can also be performed in a structure in which the N + layers 3a, 3b, the P + layers 7aa, 7ba, and the P layers 7ab, 7bb have opposite conductivity.
  • majority carriers become electrons in the first Si pillar 2a and the second Si pillar 2b having N-type conductivity. Therefore, the electron group generated by impact ionization is stored in the channel region 7, and the "1" state is set.
  • the voltage of the word line WL of the plate line PL of the dynamic flash memory cell according to the first embodiment of the present invention fluctuates up and down when the dynamic flash memory cell performs write and read operations.
  • the plate line PL serves to reduce the capacitive coupling ratio between the word line WL and the channel region 7 .
  • the influence of the voltage change in the channel region 7 when the voltage of the word line WL swings up and down can be significantly suppressed.
  • the threshold voltage difference indicating logic "0" and "1” can be increased. This leads to increased operating margins for dynamic flash memory cells.
  • the hole groups 11 in which the impact ionization phenomenon has occurred are mainly accumulated in the P + layers 7aa and 7ba.
  • An electron current flowing between the N + layers 3a and 3b in the read operation flows through the P layers 7ab and 7bb.
  • the electron current channel of P layers 7ab and 7bb is separated from the floating body of P + layers 7aa and 7ba, and a more stable floating body voltage is maintained. This allows the dynamic flash memory to operate stably, leading to higher performance.
  • the entire second Si pillar 2B is the P layer 7B. Others are the same as in FIG. In the vertical direction, the boundary between the P + layer 7aa and the P layer 7B of the Si pillar 2B is the first Si pillar 2a or the second Si pillar inside the insulating layer 6 or near the insulating layer 6. It may be in 2B.
  • This embodiment provides the following features.
  • Feature 1 In this embodiment, a group of holes generated by writing "1" data is further accumulated in the P + layer 7aa in the first Si pillar 2a than in the case of FIG. Thus, the fluctuation of the floating body voltage of P + layer 7aa due to the address pulse voltage applied to word line WL is suppressed. This allows the dynamic flash memory to operate stably.
  • the entire second Si pillar 2B can be operated as an electron current channel for reading "1" and "0". This allows for faster dynamic flash memory.
  • FIG. 6 A structural diagram of the dynamic flash memory according to the third embodiment will be described with reference to FIG.
  • many dynamic flash memory cells 9 are arranged in rows and columns on the substrate 1 .
  • FIG. 6 the same reference numerals are given to the same or similar components as in FIG.
  • the second Si pillar 7C is formed such that its outer peripheral line is inside the outer peripheral line of the first Si pillar 2a.
  • the second Si pillar 2C is formed from the P layer 7C. Others are the same as those in FIGS. In the vertical direction, the boundary between the P + layer 7aa and the P layer 7C is located inside the insulating layer 6 or in the first Si pillar 2a or the second Si pillar 2C near the insulating layer 6. good too.
  • This embodiment provides the following features.
  • accumulation of hole groups for "1" data writing is performed in the P + layer 7aa of the first Si pillar 2a.
  • the first Si pillar 2a having the P + layer 7aa mainly functions as a hole group accumulation part
  • the second Si pillar 2C formed of the P layer 7C mainly has "1", " Serves as a channel for a 0′′ read switch.
  • a structure in which the first gate conductor layer 5a on the outer periphery of the first Si pillar 2a is connected to the gate electrode connected to the PL line of the dynamic flash memory cell arranged two-dimensionally on the substrate 1.
  • the outer peripheral line of the first Si pillar 2a so as to be outside the outer peripheral line of the second Si pillar 2C, it is connected in the first direction, and in the direction orthogonal to the first direction , the second gate conductor layer 5b connected to the word lines separated from each other can be easily formed. As a result, the dynamic flash memory can be highly integrated.
  • the gate conductor layer 5a connected to the plate line PL may be a single layer or a combination of multiple conductor material layers.
  • the gate conductor layer 5b connected to the word line WL may be a single layer or a combination of multiple conductor material layers.
  • the outside of the gate conductor layer may be connected to a wiring metal layer such as W, for example. This also applies to other embodiments according to the present invention.
  • the shape of the first Si pillar 2a and the second Si pillar 2b in plan view is circular, but other shapes such as an ellipse and a shape elongated in one direction may be used. There may be.
  • Si pillars having different plan view shapes can be mixed and formed in the logic circuit area according to the logic circuit design.
  • the source line SL is negatively biased during the erasing operation to pull out the group of holes in the channel region 7 which is the floating body FB. may be negatively biased, or the source line SL and the bit line BL may be negatively biased to perform the erase operation. Alternatively, the erase operation may be performed under other voltage conditions. This also applies to other embodiments according to the present invention.
  • FIG. 1 there may be an N-type or P-type impurity layer between the N + layer 3a and the first Si pillar 2a.
  • An N-type or P-type impurity layer may be provided between the N + layer 3b and the second Si pillar 2b. This also applies to other embodiments according to the present invention.
  • the P + layers 7aa and 7ba and the P layers 7ab and 7bb may be formed of different semiconductor material layers. Also, the acceptor impurity concentrations of the P + layers 7aa and 7ba may be different. Similarly, P layers 7ab and 7bb may have different acceptor impurity concentrations. This also applies to other embodiments according to the present invention.
  • the N + layers 3a and 3b in the first embodiment may be formed of other semiconductor material layers containing donor impurities. Also, the N + layer 3a and the N + layer 3b may be formed of different semiconductor material layers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

基板1上に、ソース線SLに繋がるN+層3aと、垂直方向に立つ第1のSi柱2aと、第1のSi柱2a上に第2のSi柱2bとがある。第1のSi柱2aの中央部にP+層7aaがあり、P+層7aaを囲んでP層7abがある。第2のSi柱2bの中央部にP+層7baがあり、P+層7baを囲んでP層7bbがある、そして、第2のSi柱上にビット線BLに繋がるN+層3bがある。そして、第1のSi柱2aを囲んで第1のゲート絶縁層4aと、第2のSi柱2bを囲んで第2のゲート絶縁層4bとがある。そして、第1の絶縁層4aを囲み、プレート線PLに繋がった第1のゲート導体層5aと、第2の絶縁層4bを囲み、ワード線WLに繋がった第2のゲート導体層5bと、がある。ソース線SL、プレート線PL、ワード線WL、ビット線BLに印加する電圧を制御して、チャネル領域7の内部でインパクトイオン化現象、またはゲート誘起ドレインリーク電流により発生した正孔群を保持するデータ保持動作と、そして、この正孔群を、チャネル領域7内から除去するデータ消去動作を行う。

Description

半導体素子を用いたメモリ装置
 本発明は、半導体素子を用いたメモリ装置。
 近年、LSI(Large Scale Integration)技術開発において、メモリ素子の高集積化と高性能化が求められている。
 通常のプレナー型MOSトランジスタでは、チャネルが半導体基板の上表面に沿う水平方向に延在する。これに対して、SGTのチャネルは、半導体基板の上表面に対して垂直な方向に延在する(例えば、特許文献1、非特許文献1を参照)。このため、SGTはプレナー型MOSトランジスタと比べ、半導体装置の高密度化が可能である。このSGTを選択トランジスタとして用いて、キャパシタを接続したDRAM(Dynamic Random Access Memory、例えば、非特許文献2を参照)、抵抗変化素子を接続したPCM(Phase Change Memory、例えば、非特許文献3を参照)、RRAM(Resistive Random Access Memory、例えば、非特許文献4を参照)、電流により磁気スピンの向きを変化させて抵抗を変化させるMRAM(Magneto-resistive Random Access Memory、例えば、非特許文献5を参照)などの高集積化を行うことができる。また、キャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセル(非特許文献6を参照)などがある。本願は、抵抗変化素子やキャパシタを有しない、MOSトランジスタのみで構成可能な、ダイナミック フラッシュ メモリに関する。
 図7に、前述したキャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセルの書込み動作を、図8に、動作上の問題点を、図9に、読出し動作を示す(非特許文献7~10を参照)。
 図7にDRAMメモリセルの書込み動作を示す。図7(a)は、“1”書込み状態を示している。ここで、メモリセルは、SOI基板101に形成され、ソース線SLが接続されるソースN+層103(以下、ドナー不純物を高濃度で含む半導体領域を「N+層」と称する。)、ビット線BLが接続されるドレインN+層104、ワード線WLが接続されるゲート導電層105、MOSトランジスタ110aのフローティングボディ(Floating Body)102により構成され、キャパシタを有さず、1個のMOSトランジスタ110aでDRAMのメモリセルが構成されている。なお、フローティングボディ102直下には、SOI基板のSiO2層101が接している。この1個のMOSトランジスタ110aで構成されたメモリセルの“1”書込みを行う際には、MOSトランジスタ110aを線形領域で動作させる。すなわち、ソースN+層103から延びる電子のチャネル107には、ピンチオフ点108があり、ビット線が接続しているドレインN+層104までには、到達していない。このようにドレインN+層104に接続されたビット線BLとゲート導電層105に接続されたワード線WLを共に高電圧にして、ゲート電圧をドレイン電圧の約1/2程度で、MOSトランジスタ110aを動作させると、ドレインN+層104近傍のピンチオフ点108において、電界強度が最大となる。この結果、ソースN+層103からドレインN+層104に向かって流れる加速された電子は、Siの格子に衝突して、その時に失う運動エネルギーによって、電子・正孔対が生成される(インパクトイオン化現象)。発生した大部分の電子(図示せず)は、ドレインN+層104に到達する。また、ごく一部のとても熱い電子は、ゲート酸化膜109を飛び越えて、ゲート導電層105に到達する。そして、同時に発生した正孔106は、フローティングボディ102を充電する。この場合、発生した正孔は、フローティングボディ102がP型Siのため、多数キャリアの増分として、寄与する。フローティングボディ102は、生成された正孔106で満たされ、フローティングボディ102の電圧がソースN+層103よりもVb以上に高くなると、さらに生成された正孔は、ソースN+層103に放電する。ここで、Vbは、ソースN+層103とP層のフローティングボディ102との間のPN接合のビルトイン電圧であり、約0.7Vである。図7(b)には、生成された正孔106でフローティングボディ102が飽和充電された様子を示している。
 次に、図7(c)を用いて、メモリセル110の“0”書込み動作を説明する。共通な選択ワード線WLに対して、ランダムに“1”書込みのメモリセル110aと“0”書込みのメモリセル110bが存在する。図7(c)では、“1”書込み状態から“0”書込み状態に書き換わる様子を示している。“0”書込み時には、ビット線BLの電圧を負バイアスにして、ドレインN+層104とP層のフローティングボディ102との間のPN接合を順バイアスにする。この結果、フローティングボディ102に予め前サイクルで生成された正孔106は、ビット線BLに接続されたドレインN+層104に流れる。書込み動作が終了すると、生成された正孔106で満たされたメモリセル110a(図7(b))と、生成された正孔が吐き出されたメモリセル110b(図7(c))の2つのメモリセルの状態が得られる。正孔106で満たされたメモリセル110aのフローティングボディ102の電位は、生成された正孔がいないフローティングボディ102よりも高くなる。したがって、メモリセル110aのしきい値電圧は、メモリセル110bのしきい値電圧よりも低くなる。その様子を図7(d)に示す。
 次に、この1個のMOSトランジスタで構成されたメモリセルの動作上の問題点を、図8を用いて説明する。図8(a)に示したように、フローティングボディ102の容量CFBは、ワード線の接続されたゲートとフローティングボディ102間の容量CWLと、ソース線の接続されたソースN+層103とフローティングボディ102との間のPN接合の接合容量CSLと、ビット線の接続されたドレインN+層103とフローティングボディ102との間のPN接合の接合容量CBLとの総和で、
CFB = CWL + CBL + CSL (1)
で表される。したがって、書込み時にワード線電圧VWLが振幅すると、メモリセルの記憶ノード(接点)となるフローティングボディ102の電圧も、その影響を受ける。その様子を図8(b)に示している。書込み時にワード線電圧VWLが0VからVProgWLに上昇すると、フローティングボディ102の電圧VFBは、ワード線電圧が変化する前の初期状態の電圧VFB1からVFB2へのワード線との容量結合によって上昇する。その電圧変化量ΔVFBは、
ΔVFB = VFB2 - VFB1
       = CWL / (CWL + CBL + CSL) × VProgWL (2)
で表される。
ここで、
β= CWL / (CWL + CBL + CSL)  (3)
で表され、βをカップリング率と呼ぶ。このようなメモリセルにおいて、CWLの寄与率が大きく、例えば、CWL:CBL:CSL=8:1:1である。この場合、β=0.8となる。ワード線が、例えば、書込み時の5Vから、書込み終了後に0Vになると、ワード線とフローティングボディ102との容量結合によって、フローティングボディ102が、5V×β=4Vも振幅ノイズを受ける。このため、書込み時のフローティングボディ“1”電位と“0”電位の電位差マージンを十分に取れない問題点があった。
 図9に読出し動作を示す。図9(a)は、“1”書込み状態を、図9(b)は、“0”書込み状態を示している。しかし、実際には、“1”書込みでフローティングボディ102にVbが書き込まれていても、書込み終了でワード線が0Vに戻ると、フローティングボディ102は、負バイアスに引き下げられる。“0”が書かれる際には、さらに深く負バイアスになってしまうため、図9(c)に示すように、書込みの際に“1”と“0”との電位差マージンを十分に大きく出来ない。この動作マージンが小さいことが、本DRAMメモリセルの大きい問題であった。加えて、このDRAMメモリセルを高密度化する課題がある。
特開平2-188966号公報 特開平3-171768号公報 特許第3957774号公報
Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991) H. Chung, H. Kim, H. Kim, K. Kim, S. Kim, K. Dong, J. Kim, Y.C. Oh, Y. Hwang, H. Hong, G. Jin, and C. Chung: "4F2 DRAM Cell with Vertical Pillar Transistor(VPT)," 2011 Proceeding of the European Solid-State Device Research Conference, (2011) H. S. Philip Wong, S. Raoux, S. Kim, Jiale Liang, J. R. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson: "Phase Change Memory," Proceeding of IEEE, Vol.98, No 12, December, pp.2201-2227 (2010) T. Tsunoda, K .Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama : "Low Power and high Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3V," IEDM (2007) W. Kang, L. Zhang, J. Klein, Y. Zhang, D. Ravelosona, and W. Zhao: "Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology," IEEE Transaction on Electron Devices, pp.1-9 (2015) M. G. Ertosum, K. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat : "Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electron," IEEE Electron Device Letter, Vol. 31, No.5, pp.405-407 (2010) J. Wan, L. Rojer, A. Zaslavsky, and S. Critoloveanu: "A Compact Capacitor-Less High-Speed DRAM Using Field Effect-Controlled Charge Regeneration," Electron Device Letters, Vol. 35, No.2, pp.179-181 (2012) T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama, Y. Asao, and K. Sunouchi: "Memory design using a one-transistor gain cell on SOI," IEEE JSSC, vol.37, No.11, pp1510-1522 (2002). T. Shino, N. Kusunoki, T. Higashi, T. Ohsawa, K. Fujita, K. Hatsuda, N. Ikumi, F. Matsuoka, Y. Kajitani, R. Fukuda, Y. Watanabe, Y. Minami, A. Sakamoto, J. Nishimura, H. Nakajima, M. Morikado, K. Inoh, T. Hamamoto, A. Nitayama: "Floating Body RAM Technology and its Scalability to 32nm Node and Beyond," IEEE IEDM (2006). E. Yoshida: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE IEDM (2006). J. Y. Song, W. Y. Choi, J. H. Park, J. D. Lee, and B-G. Park: "Design Optimization of Gate-All-Around (GAA) MOSFETs," IEEE Trans. Electron Devices, vol. 5, no. 3, pp.186-191, May 2006. N. Loubet, et al.: "Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET," 2017 IEEE Symposium on VLSI Technology Digest of Technical Papers, T17-5, T230-T231, June 2017. H. Jiang, N. Xu, B. Chen, L. Zeng1, Y. He, G. Du, X. Liu and X. Zhang: "Experimental investigation of self heating effect (SHE) in multiple-fin SOI FinFETs," Semicond. Sci. Technol. 29 (2014) 115021 (7pp). E. Yoshida, and T. Tanaka: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE Transactions on Electron Devices, Vol. 53, No. 4, pp. 692-697,Apr. 2006.
 SGTを用いたメモリ装置でキャパシタを無くした、1個のトランジス型のDRAM(ゲインセル)では、ワード線とフローティング状態のSGTのボディとの容量結合カップリングが大きく、データ読み出し時や書き込み時にワード線の電位を振幅させると、直接SGTボディへのノイズとして、伝達されてしまう問題点があった。この結果、誤読み出しや記憶データの誤った書き換えの問題を引き起こし、キャパシタを無くした1トランジス型のDRAM(ゲインセル)の実用化が困難となっていた。そして、上記問題を解決すると共に、DRAMメモリセルを高性能化することと、高密度化する必要がある。
 上記の課題を解決するために、本発明に係るメモリ装置は、
 基板上に、前記基板に対して、垂直方向に立つか、または水平方向に伸延し、断面中心部にある第1の不純物層と、前記第1の不純物層を覆った、前記第1の不純物層より不純物濃度が低い第2の不純物層と、を有する第1の半導体母体と、
 前記第1の半導体母体に繋がる第2の半導体母体と、
 前記第1の半導体母体の一端側の側面の一部、または全てを囲んだ第1のゲート絶縁層と、
 前記第1のゲート絶縁層に繋がり、且つ前記第2の半導体母体の側面の一部、または全てを囲んだ第2のゲート絶縁層と、
 前記第1のゲート絶縁層を覆った第1のゲート導体層と、
 前記第2のゲート絶縁層を覆った第2のゲート導体層と、
 前記第1の半導体母体に繋がり、且つ第1の半導体母体と反対の導電性を有する第3の不純物層と、
 前記第2の半導体母体に繋がり、前記第2の半導体母体と反対の導電性を有する第4の不純物層と、
 前記第3の不純物層に接続した第1の配線導体層と、
 前記第4の不純物層に接続した第2の配線導体層と、
 前記第1のゲート導体層に接続した第3の配線導体層と、
 前記第2のゲート導体層に接続した第4の配線導体層と、を有し、
 前記第1乃至前記第4の配線導体層に印加する電圧を制御して、前記第3の不純物層と前記第4の不純物層との間に流す電流でインパクトイオン化現象、またはゲート誘起ドレインリーク電流により電子群と正孔群を前記第1の半導体母体と、前記第2の半導体母体と、よりなるチャネル領域内に発生させる動作と、発生させた前記電子群と前記正孔群の内、前記第1の半導体母体、前記第2の半導体母体における少数キャリアである前記電子群と前記正孔群のいずれかを除去する動作と、前記第1半導体母体、前記第2半導体母体における多数キャリアである前記電子群と前記正孔群のいずれかの一部または全てを、少なくとも前記第1の半導体母体に残存させる動作と、を行ってメモリ書き込み動作を行い、
 前記1乃至前記第4の配線導体層に印加する電圧を制御して、前記第1の不純物層と、前記第2の不純物層の一方もしくは両方から、残存している前記第1の半導体母体、前記第2の半導体母体における多数キャリアである前記電子群と前記正孔群のいずれかを抜き取り、メモリ消去動作を行う、
 ことを特徴とする(第1発明)半導体素子を用いたメモリ装置。
 上記の第1発明において、前記第2の半導体母体が、断面中心部にある第5の不純物層と、前記第5の不純物層を覆い、且つ前記第5の不純物層と同じ伝導極性を持ち、且つ前記第5の不純物層より、不純物濃度の小さい第6の不純物層を有することを特徴とする(第2発明)。
 上記の第1発明において、前記第2の半導体母体が、前記第1の不純物層より不純物濃度が小さい第7の不純物層よりなることを特徴とする(第3発明)。
 上記の第3発明において、中心軸方向から見たときに、前記第1の半導体母体の外周線が、前記第2の半導体母体の外周線より外側にある、
 ことを特徴とする(第4発明)
 上記の第1発明において、前記第1の配線導体層に繋がる配線は、ソース線であり、前記第2の配線導体層に繋がる配線はビット線であり、前記第3の配線導体層に繋がる配線は、第1の駆動制御線であり、前記第4の配線導体層に繋がる配線はワード線であり、
 前記ソース線と、前記ビット線と、前記第1の駆動制御線と、前記ワード線とに印加する電圧により、前記メモリ消去動作と、前記メモリ書き込み動作と、を行う、
 ことを特徴とする(第5発明)。
 上記の第1発明において、前記第1のゲート導体層と前記第1の半導体母体との間の第1のゲート容量は、前記第2のゲート導体層と前記第2の半導体母体との間の第2のゲート容量よりも大きいことを特徴とする(第6発明)。
第1実施形態に係るSGTを有するメモリ装置の構造図である。 第1実施形態に係るSGTを有するメモリ装置の消去動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の書込み動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の読出し動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の読出し動作メカニズムを説明するための図である。 第2実施形態に係るSGTを有するメモリ装置の構造図である。 第3実施形態に係るSGTを有するメモリ装置の構造図である。 従来例のキャパシタを有しない、DRAMメモリセルの動作上の問題点を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの動作上の問題点を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの読出し動作を示す図である。
 以下、本発明に係る、半導体素子を用いたメモリ装置(以後、ダイナミック フラッシュ メモリと呼ぶ)の構造、駆動方式、製造方法について、図面を参照しながら説明する。
 (第1実施形態)
 図1~図4を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造と動作メカニズムと製造方法とを説明する。図1を用いて、ダイナミック フラッシュ メモリセルの構造を説明する。そして、図2を用いてデータ消去メカニズムを、図3を用いてデータ書き込みメカニズムを、図4を用いてデータ書き込みメカニズムを説明する。
 図1に、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造を示す。基板1(特許請求の範囲の「基板」の一例である)上にN+層3a(特許請求の範囲の「第3の不純物層」の一例である)がある。そして、N+層3a上に、第1のシリコン半導体柱2a(特許請求の範囲の「第1の半導体母体」の一例である)(以下、シリコン半導体柱を「Si柱」と称する。)の上に第2のSi柱2b(特許請求の範囲の「第2の半導体母体」の一例である)がある。第1のSi柱2aは、平面視において、中央部がP+層7aa(特許請求の範囲の「第1の不純物層」の一例である)(以下、N+層と反対導電性を有し、アクセプタ不純物を高濃度で含む半導体領域を「P+層」と称する)、そして、P+層7aaを囲んで、P+層7aaよりアクセプタ不純物濃度の小さいP層7ab(特許請求の範囲の「第2の不純物層」の一例である)がある。同じく、第2のSi柱2bは、平面視において、中央部がP+層7ba(特許請求の範囲の「第5の不純物層」の一例である)、そして、P+層7baを囲んで、P+層7baよりアクセプタ不純物濃度の小さいP層7bb(特許請求の範囲の「第6の不純物層」の一例である)がある。そして、第2のSi柱2bの上に、N+層3b(特許請求の範囲の「第4の不純物層」の一例である)がある。N+層3a、3b間のSi柱2a、2bの部分がチャネル領域7(特許請求の範囲の「チャネル領域」の一例である)となる。第1のSi柱2aを囲んで第1のゲート絶縁層4a(特許請求の範囲の「第1のゲート絶縁層」の一例である)と、第2のSi柱2bを囲んで第2のゲート絶縁層4b(特許請求の範囲の「第2のゲート絶縁層」の一例である)と、がある。そして、第1のゲート絶縁層4aを囲んで第1のゲート導体層5a(特許請求の範囲の「第1のゲート導体層」の一例である)があり、第2のゲート絶縁層4bを囲んで、第2のゲート導体層5b(特許請求の範囲の「第2のゲート導体層」の一例である)がある。そして、第1のゲート導体層5a、第2のゲート導体層5bは絶縁層6により分離されている。これによりN+層3a、3b、第1のSi柱2a、第2のSi柱2b、第1のゲート絶縁層4a、第2のゲート絶縁層4b、第1のゲート導体層5a、第2のゲート導体層5bからなるダイナミック フラッシュ メモリセル9が形成される。そして、N+層3aはソース線SL(特許請求の範囲の「ソース線」の一例である)に、N+層3bはビット線BL(特許請求の範囲の「ビット線」の一例である)に、第1のゲート導体層5aはプレート線PL(特許請求の範囲の「第1の駆動制御線」の一例である)に、第2のゲート導体層5bはワード線WL(特許請求の範囲の「ワード線」の一例である)に、それぞれ接続している。プレート線PLに接続している、第1のゲート導体層5aのゲート容量は、ワード線WLに接続している、第2のゲート導体層5bのゲート容量よりも、大きくなるような構造を有することが望ましい。メモリ装置では、上述の複数のダイナミック フラッシュ メモリセルが基板1上に2次元状に配置されている。
 なお、図1では、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるように、第1のゲート導体層5aのゲート長を第2のゲート導体層5bのゲート長よりも長くしている。しかし、その他にも、第1のゲート導体層5aのゲート長を、第2のゲート導体層5bのゲート長よりも長くせずに、第1のゲート絶縁層4aのゲート絶縁膜の膜厚を、第2のゲート絶縁層4bのゲート絶縁膜の膜厚よりも薄くしてもよい。また、第1のゲート絶縁層4aの誘電率を、第2のゲート絶縁層4bの誘電率よりも高くしてもよい。また、ゲート導体層5a、5bの長さ、ゲート絶縁層4a、4bの膜厚、誘電率のいずれかを組み合わせて、第1のゲート導体層5aのゲート容量が、第2のゲート導体層5bのゲート容量よりも、大きくしてもよい。
 また、第1のゲート導体層5aを2つ以上に分割して、それぞれをプレート線の導体電極として、同期または非同期で動作させてもよい。同様に、第2のゲート導体層5bを2つ以上に分割して、それぞれをワード線の導体電極として、同期または非同期で動作させてもよい。これによっても、ダイナミック フラッシュ メモリ動作がなされる。
 図2を参照して、消去動作メカニズムを説明する。N+層3a、3b間のチャネル領域7は、電気的に基板から分離され、フローティングボディとなっている。図2(a)に、消去動作前に、前のサイクルでインパクトイオン化により生成された正孔群11がチャネル領域7に蓄えられている状態を示す。P+層7aa、7baのアクセプタ不純物濃度がP層7ab、7bbより高いことにより、正孔群11は、主にP+層7aa、7baに溜められる。そして。図2(b)に示すように、消去動作時には、ソース線SLの電圧を、負電圧VERAにする。ここで、VERAは、例えば、-3Vである。その結果、チャネル領域7の初期電位の値に関係なく、ソース線SLが接続されているソースとなるN+層3aとチャネル領域7のPN接合が順バイアスとなる。その結果、前のサイクルでインパクトイオン化により生成された、チャネル領域7に蓄えられていた、正孔群11が、ソース部のN+層3a、に吸い込まれ、チャネル領域7の電位VFBは、VFB=VERA+Vbとなる。ここで、VbはPN接合のビルトイン電圧であり、約0.7Vである。したがって、VERA=-3Vの場合、チャネル領域7の電位は、-2.3Vになる。この値が、消去状態のチャネル領域7の電位状態となる。このため、フローティングボディのチャネル領域7の電位が負の電圧になると、ダイナミック フラッシュ メモリセル9のNチャネルMOSトランジスタのしきい値電圧は、基板バイアス効果によって、高くなる。これにより、図2(c)に示すように、このワード線WLが接続された第2のゲート導体層5bのしきい値電圧は高くなる。このチャネル領域7の消去状態は論理記憶データ“0”となる。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、消去動作を行うための一例であり、消去動作ができる他の動作条件であってもよい。
 図3に、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの書込み動作を示す。図3(a)に示すように、ソース線SLの接続されたN+層3aに例えば0Vを入力し、ビット線BLの接続されたN+層3bに例えば3Vを入力し、プレート線PLの接続された第1のゲート導体層5aに、例えば、2Vを入力し、ワード線WLの接続された第2のゲート導体層5bに、例えば、5Vを入力する。その結果、図3(a)で示したように、プレート線PLの接続された第1のゲート導体層5aの内側の第1のチャネル領域7aには、環状の反転層12aが主にP層7abに形成され、第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタは線形領域で動作させる。この結果、プレート線PLの接続された第1のゲート導体層5aの内側の反転層12aには、ピンチオフ点13が存在する。一方、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタは飽和領域で動作させる。この結果、ワード線WLの接続された第2のゲート導体層5bの内側の第2のチャネル領域7bbには、ピンチオフ点は存在せずに全面に反転層12bが形成される。このワード線WLの接続された第2のゲート導体層5bの内側に全面に形成された反転層12bは、第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタの実質的なドレインとして働く。この結果、直列接続された第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタと、第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタとの間のチャネル領域7の第1の境界領域で電界は最大となり、この領域でインパクトイオン化現象が生じる。この領域は、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタから見たソース側の領域であるため、この現象をソース側インパクトイオン化現象と呼ぶ。このソース側インパクトイオン化現象により、ソース線SLの接続されたN+層3aからビット線BLの接続されたN+層3bに向かって電子が流れる。加速された電子が格子Si原子に衝突し、その運動エネルギーによって、電子・正孔対が生成される。生成された電子の一部は、第1のゲート導体層5aと第2のゲート導体層5bに流れるが、大半はビット線BLの接続されたN+層3bに流れる。また、“1”書込みにおいて、ゲート誘起ドレインリーク(GIDL:Gate Induced Drain Leakage)電流を用いて電子・正孔対を発生させ、生成された正孔群でフローティングボディFB内を満たしてもよい(非特許文献14を参照)。
 そして、図3(b)に示すように、生成された正孔群11は、チャネル領域7の多数キャリアであり、チャネル領域7を正バイアスに充電する。ソース線SLの接続されたN+層3aは、0Vであるため、チャネル領域7はソース線SLの接続されたN+層3aとチャネル領域7との間のPN接合のビルトイン電圧Vb(約0.7V)まで充電される。チャネル領域7が正バイアスに充電されると、第1のNチャネルMOSトランジスタと第2のNチャネルMOSトランジスタのしきい値電圧は、基板バイアス効果によって、低くなる。これにより、図3(c)に示すように、ワード線WLの接続された第2のNチャネルMOSトランジスタのしきい値電圧は、低くなる。このチャネル領域7の書込み状態を論理記憶データ“1”に割り当てる。生成された正孔群11は主にP+層7aa、7bbaに溜められている。これにより、安定な基板バイアス効果が得られる。
 また、書込み動作時に、上記の第1の境界領域に替えて、N+層3aとチャネル領域7との間の第2の境界領域、または、N+層3bとチャネル領域7との間の第3の境界領域で、インパクトイオン化現象、またはGIDL電流で、電子・正孔対を発生させ、発生した正孔群11でチャネル領域7を充電しても良い。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、書き込み動作を行うための一例であり、書き込み動作ができる他の動作条件であってもよい。
 図4A、図4Bを用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの読出し動作を説明する。図4A(a)~図4A(c)を用いて、ダイナミック フラッシュ メモリセルの読出し動作を説明する。図4A(a)に示すように、チャネル領域7がビルトイン電圧Vb(約0.7V)まで充電されると、NチャネルMOSトランジスタのしきい値電圧が基板バイアス効果によって、低下する。この状態を論理記憶データ“1”に割り当てる。図4A(b)に示すように、書込みを行う前に選択するメモリブロックは、予め消去状態“0”にある場合は、チャネル領域7がフローティング電圧VFBはVERA+Vbとなっている。書込み動作によってランダムに書込み状態“1”が記憶される。この結果、ワード線WLに対して、論理“0”と“1”の論理記憶データが作成される。図4A(c)に示すように、このワード線WLに対する2つのしきい値電圧の高低差を利用して、センスアンプで読出しが行われる。
 図4B(a)~図4B(d)を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの読出し動作時の、2つの第1のゲート導体層5aと第2のゲート導体層5bとのゲート容量の大小関係と、これに関係する動作を説明する。ワード線WLの接続する第2のゲート導体層5bのゲート容量は、プレート線PLの接続する第1のゲート導体層5aのゲート容量よりも小さく設計することが望ましい。図4B(a)に示すように、プレート線PLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第2のゲート導体層5bの垂直方向の長さより長くして、ワード線WLの接続する第2のゲート導体層5bのゲート容量を、プレート線PLの接続する第1のゲート導体層5aのゲート容量よりも小さくする。図4B(b)に図4B(a)のダイナミック フラッシュ メモリの1セルの等価回路を示す。そして、図4B(c)にダイナミック フラッシュ メモリの結合容量関係を示す。ここで、CWLは第2のゲート導体層5bの容量であり、CPLは第1のゲート導体層5aの容量であり、CBLはドレインとなるN+層3bとチャネル領域7との間のPN接合の容量であり、CSLはソースとなるN+層3aとチャネル領域7との間のPN接合の容量である。図4B(d)に示すように、ワード線WL電圧が振幅すると、その動作がチャネル領域7にノイズとして影響を与える。この時のチャネル領域7の電位変動ΔVFBは、
ΔVFB = CWL/(CPL+CWL+CBL+CSL) × VReadWL  (1)
となる。ここで、VReadWLはワード線WLの読出し時の振幅電位である。式(1)から明らかなようにチャネル領域7の全体の容量CPL+CWL+CBL+CSLに比べて、CWLの寄与率を小さくすれば、ΔVFBは小さくなることが分かる。プレート線PLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第2のゲート導体層5bの垂直方向の長さより更に長くすることによって、平面視におけるメモリセルの集積度を落すことなしに、ΔVFBを更に小さくしてもよい。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、読み出し動作を行うための一例であり、読出し動作ができる他の動作条件であってもよい。
 なお、本実施形態の説明で示した、本ダイナミック フラッシュ メモリ素子は、インパクトイオン化現象、またはゲート誘起ドレインリーク電流により発生した正孔群がチャネル領域7に保持される条件を満たす構造であればよい。このためには、チャネル領域7は基板1と分離されたフローティングボディ構造であればよい。これより、例えばSGTの1つであるGAA(Gate All Around : 例えば非特許文献11を参照)技術、Nanosheet技術(例えば、非特許文献12を参照)を用いて、チャネル領域の半導体母体を基板1に対して水平に形成されていても、前述のダイナミック フラッシュ メモリ動作ができる。また、SOI(Silicon On Insulator)を用いたデバイス構造(例えば、非特許文献7~10を参照)であってもよい。このデバイス構造ではチャネル領域の底部がSOI基板の絶縁層に接しており、且つ他のチャネル領域を囲んでゲート絶縁層、及び素子分離絶縁層で囲まれている。この構造においても、チャネル領域はフローティングボディ構造となる。このように、本実施形態が提供するダイナミック・フラッシュ・メモリ素子では、チャネル領域がフローティングボディ構造である条件を満足すればよい。また、Finトランジスタ(例えば非特許文献13を参照)をSOI基板上に形成した構造であっても、チャネル領域がフローティングボディ構造であれば、本ダイナミック フラッシュ メモリ動作が出来る。
 なお、図1において、プレート線PLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第1のゲート導体層5bの垂直方向の長さより更に長くして、CPL>CWLとした。しかし、プレート線PLを付加することだけでも、ワード線WLのチャネル領域7に対する、容量結合のカップリング比(CWL/(CPL+CWL+CBL+CSL))が小さくなる。その結果、フローティングボディのチャネル領域7の電位変動ΔVFBは、小さくなる。
 また、プレート線PLの電圧は、各動作モードに関わらず、例えば、2Vの固定電圧を印加しても良い。また、プレート線PLの電圧は、消去時のみ、例えば、0Vを印加しても良い。また、プレート線PLの電圧は、ダイナミック フラッシュ メモリ動作ができる条件を満たす電圧であれば、固定電圧、または時間的に変化する電圧を与えてもよい。
 また、図1は、矩形状の垂直断面を有する第1のSi柱2a、第2のSi柱2bを用いて説明したが、これら垂直断面形状は台形状であってもよい。また、Si柱2aと、Si柱2bの垂直断面のそれぞれが矩形状と、台形状のように異なっていてもよい。
 また、図1における、第1のゲート導体層5aは、第1のゲート絶縁層4aの一部を囲んでいても、ダイナミック フラッシュ メモリ動作を行うことができる。また、第1のゲート導体層5aを複数の導体層に分割して、それぞれを同期、または非同期で駆動してもダイナミック フラッシュ メモリ動作を行うことができる。同様に、第2のゲート導体層5bを複数の導体層に分割して、それぞれを同期、または非同期で駆動してもダイナミック フラッシュ メモリ動作を行うことができる。
 また、図1における、N+層3aは基板1上に伸延させて、PN接合のN層としての役割と、ソース線SLの配線導体層と、を兼ねさせてもよい。また、N+層3aに、例えばW層などの導体層を接続してもよい。また、第1のSi柱2a、第2のSi柱2bが更に二次元状に多く形成した領域の外側のN+層3aに、例えばW層などの金属、又は合金による導体層を接続させてもよい。
 また、図1において、N+層3a、3b、P+層7aa、7ba、P層7ab、7bbのそれぞれを反対の導電性にした構造においても、ダイナミック フラッシュ メモリ動作がなされる。この場合、N型導電性の第1のSi柱2a、第2のSi柱2bでは、多数キャリアは電子になる。従って、インパクトイオン化により生成された電子群がチャネル領域7に蓄えられて、“1”状態が設定される。
 本実施形態は、下記の特徴を供する。
(特徴1)
 本発明の第1実施形態に係るダイナミック フラッシュ メモリセルのプレート線PLはダイナミック フラッシュ メモリセルが書込み、読出し動作をする際に、ワード線WLの電圧が上下に振幅する。この際に、プレート線PLは、ワード線WLとチャネル領域7との間の容量結合比を低減させる役目を担う。この結果、ワード線WLの電圧が上下に振幅する際の、チャネル領域7の電圧変化の影響を著しく抑えることができる。これにより、論理“0”と“1”を示すしきい値電圧差を大きくすることが出来る。これは、ダイナミック フラッシュ メモリセルの動作マージンの拡大に繋がる。
(特徴2)
 本実施形態では、インパクトイオン化現象が生じた正孔群11は、主にP+層7aa、7baに溜められる。そして、読み出し動作におけるN+層3a、3b間を流れる電子電流はP層7ab、7bbを流れる。これにより、読み出し動作において、P層7ab、7bbの電子電流のチャネルと、P+層7aa、7ba部のフローティングボディが区分され、より安定したフローティングボディ電圧が維持される。これにより、ダイナミック フラッシュ メモリは安定した動作が出来、高性能化に繋がる。
 (第2実施形態)
 図5を用いて、第2実施形態のダイナミック フラッシュ メモリの構造について説明する。なお、実際のメモリ装置では、ダイナミック フラッシュ メモリセル9が多く基板1上に行列状に配置されている。図5において、図1と同一又は類似の構成部分には同一の符号を付してある。
 第2のSi柱2Bの全体がP層7Bとなっている。そして、その他は、図1と同じである。なお、垂直方向において、P+層7aaと、Si柱2BのP層7Bとの境界は、絶縁層6の内部、または絶縁層6の近傍の第1のSi柱2a、又は第2のSi柱2Bにあってもよい。
 本実施形態は、下記の特徴を供する。
 (特徴1)
 本実施形態では、“1”データ書き込みによる正孔群は、図1の場合より更に第1のSi柱2a内のP+層7aaに溜められる。これにより、ワード線WLに印加されるアドレスパルス電圧によるP+層7aaのフローティングボディ電圧の変動が抑圧される。これにより、ダイナミック フラッシュ メモリが安定した動作が出来る。
 (特徴2)
 本実施形態では、第2のSi柱2Bの全体を、“1”、“0”読み出しの電子電流のチャネルとして動作できる。これにより、ダイナミック フラッシュ メモリの高速化が図れる。
 (第3実施形態)
 図6を用いて、第3実施形態のダイナミック フラッシュ メモリの構造図について説明する。なお、実際のメモリ装置では、ダイナミック フラッシュ メモリセル9が多く基板1上に行列状に配置されている。図6において、図1と同一又は類似の構成部分には同一の符号を付してある
 平面視において、第2のSi柱7Cが、その外周線が、第1のSi柱2aの外周線の内側になるように形成されている。そして、第2のSi柱2CはP層7Cより形成されている。そして、その他は、図1、図5と同じである。なお、垂直方向において、P+層7aaと、P層7Cとの境界は、絶縁層6の内部、または絶縁層6の近傍の第1のSi柱2a、又は第2のSi柱2Cにあってもよい。
 本実施形態は、下記の特徴を供する。
 本実施形態では、“1”データ書き込みの正孔群の蓄積を第1のSi柱2aのP+層7aaで行う。この場合、P+層7aaを有する第1のSi柱2aは、主に正孔群の蓄積部として働き、P層7Cで形成された第2のSi柱2Cは、主に“1”、“0”読み出しのスイッチ用のチャネルとして働く。これにより、例えば、第1のSi柱2aの外周部の第1のゲート導体層5aが、基板1上に2次元状に配置したダイナミック フラッシュ メモリセルのPL線に繋がったゲート電極と繋がった構造において、第1のSi柱2aの外周線を、第2のSi柱2Cの外周線より外側になるように形成することにより、第1の方向に繋がり、且つ第1の方向に直交する方向では、互いに分離したワード線に繋がる第2のゲート導体層5bを容易に形成できる。これにより、ダイナミック フラッシュ メモリの高集積化が図れる。
(その他の実施形態)
 なお、第1実施形態では、プレート線PLに繋がるゲート導体層5aは、単層または複数の導体材料層を組み合わせて用いてもよい。同じく、ワード線WLに繋がるゲート導体層5bは、単層または複数の導体材料層を組み合わせて用いてもよい。また、ゲート導体層の外側は、例えばWなどの配線金属層に繋がっていてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態では、第1のSi柱2a、第2のSi柱2bの平面視における形状は、円形状であったが、円形の他、楕円、一方方向に長く伸びた形状などであってもよい。そして、ダイナミック フラッシュ メモリセル領域から離れて形成されるロジック回路領域においても、ロジック回路設計に応じて、ロジック回路領域に、平面視形状の異なるSi柱を混在して形成することができる。これらのこのことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態の説明では、消去動作時にソース線SLを負バイアスにして、フローティングボディFBであるチャネル領域7内の正孔群を引き抜いていたが、ソース線SLに代わり、ビット線BLを負バイアスにして、あるいは、ソース線SLとビット線BLを負バイアスにして、消去動作を行ってもよい。または、他の電圧条件により、消去動作を行ってもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、図1において、N+層3aと、第1のSi柱2aとの間に、N型、またはP型の不純物層があってもよい。また、N+層3bと、第2のSi柱2bとの間に、N型、またはP型の不純物層があってもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、図1において、P+層7aa、7ba、P層7ab、7bbは、それぞれが異なる半導体材料層で形成されていてもよい。また、P+層7aa、7baのアクセプタ不純物濃度が異なっていてもよい。同じく、P層7ab、7bbのアクセプタ不純物濃度が異なっていてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、第1実施形態における、N+層3a、3bは、ドナー不純物を含んだ、他の半導体材料層より形成されてもよい。また、N+層3aと、N+層3bと、は異なる半導体材料層で形成されてもよい。
 また、図1における、垂直方向における、第1のSi柱2aの第1のチャネル領域7aと、第2のSi柱2bのチャネル領域7bとの境界は、絶縁層6の位置にあってもよいし、または第1のSi柱2aの上部、または第2のSi柱2bの下部にあってもよい。のことは、本発明に係るその他の実施形態においても同様である。
 また、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した各実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて上記実施形態の構成要件の一部を除いても本発明の技術思想の範囲内となる。
 本発明に係る、半導体素子を用いたメモリ装置によれば、高密度で、かつ高性能のダイナミック フラッシュ メモリが得られる。
1 基板
2a 第1のSi柱
2b、2B、2C 第2のSi柱
3a、3b N+
4a 第1のゲート絶縁層
4b 第2のゲート絶縁層
5a 第1のゲート導体層
5b 第2のゲート導体層
6 絶縁層
7 チャネル領域
7aa、7ba P+層 
7ab、7bb、7B、7C P層
9 ダイナミック フラッシュ メモリセル
11 正孔群
12a、12b 反転層
13 ピンチオフ点
SL ソース線
PL プレート線
WL、WL1、WL2 ワード線
BL、BL1、BL2 ビット線

Claims (6)

  1.  基板上に、前記基板に対して、垂直方向に立つか、または水平方向に伸延し、断面中心部にある第1の不純物層と、前記第1の不純物層を覆った、前記第1の不純物層より不純物濃度が低い第2の不純物層と、を有する第1の半導体母体と、
     前記第1の半導体母体に繋がる第2の半導体母体と、
     前記第1の半導体母体の一端側の側面の一部、または全てを囲んだ第1のゲート絶縁層と、
     前記第1のゲート絶縁層に繋がり、且つ前記第2の半導体母体の側面の一部、または全てを囲んだ第2のゲート絶縁層と、
     前記第1のゲート絶縁層を覆った第1のゲート導体層と、
     前記第2のゲート絶縁層を覆った第2のゲート導体層と、
     前記第1の半導体母体に繋がり、且つ第1の半導体母体と反対の導電性を有する第3の不純物層と、
     前記第2の半導体母体に繋がり、前記第2の半導体母体と反対の導電性を有する第4の不純物層と、
     前記第3の不純物層に接続した第1の配線導体層と、
     前記第4の不純物層に接続した第2の配線導体層と、
     前記第1のゲート導体層に接続した第3の配線導体層と、
     前記第2のゲート導体層に接続した第4の配線導体層と、を有し、
     前記第1乃至前記第4の配線導体層に印加する電圧を制御して、前記第3の不純物層と前記第4の不純物層との間に流す電流でインパクトイオン化現象、またはゲート誘起ドレインリーク電流により電子群と正孔群を前記第1の半導体母体と、前記第2の半導体母体と、よりなるチャネル領域内に発生させる動作と、発生させた前記電子群と前記正孔群の内、前記第1の半導体母体、前記第2の半導体母体における少数キャリアである前記電子群と前記正孔群のいずれかを除去する動作と、前記第1半導体母体、前記第2半導体母体における多数キャリアである前記電子群と前記正孔群のいずれかの一部または全てを、少なくとも前記第1の半導体母体に残存させる動作と、を行ってメモリ書き込み動作を行い、
     前記1乃至前記第4の配線導体層に印加する電圧を制御して、前記第1の不純物層と、前記第2の不純物層の一方もしくは両方から、残存している前記第1の半導体母体、前記第2の半導体母体における多数キャリアである前記電子群と前記正孔群のいずれかを抜き取り、メモリ消去動作を行う、
     ことを特徴とする半導体素子を用いたメモリ装置。
  2.  前記第2の半導体母体が、断面中心部にある第5の不純物層と、前記第5の不純物層を覆い、且つ前記第5の不純物層と同じ伝導極性を持ち、且つ前記第5の不純物層より、不純物濃度の小さい第6の不純物層を有する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  3.  前記第2の半導体母体が、前記第1の不純物層より不純物濃度が小さい第7の不純物層よりなる、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  4.  中心軸方向から見たときに、前記第1の半導体母体の外周線が、前記第2の半導体母体の外周線より外側にある、
     ことを特徴とする請求項3に記載の半導体素子を用いたメモリ装置
  5.  前記第1の配線導体層に繋がる配線は、ソース線であり、前記第2の配線導体層に繋がる配線はビット線であり、前記第3の配線導体層に繋がる配線は、第1の駆動制御線であり、前記第4の配線導体層に繋がる配線はワード線であり、
     前記ソース線と、前記ビット線と、前記第1の駆動制御線と、前記ワード線とに印加する電圧により、前記メモリ消去動作と、前記メモリ書き込み動作と、を行う、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  6.  前記第1のゲート導体層と前記第1の半導体母体との間の第1のゲート容量は、前記第2のゲート導体層と前記第2の半導体母体との間の第2のゲート容量よりも大きい、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
PCT/JP2021/018243 2021-05-13 2021-05-13 半導体素子を用いたメモリ装置 WO2022239194A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/018243 WO2022239194A1 (ja) 2021-05-13 2021-05-13 半導体素子を用いたメモリ装置
TW111117506A TWI813279B (zh) 2021-05-13 2022-05-10 使用半導體元件的記憶裝置
US17/740,723 US20220367729A1 (en) 2021-05-13 2022-05-10 Semiconductor element-using memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018243 WO2022239194A1 (ja) 2021-05-13 2021-05-13 半導体素子を用いたメモリ装置

Publications (1)

Publication Number Publication Date
WO2022239194A1 true WO2022239194A1 (ja) 2022-11-17

Family

ID=83998860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018243 WO2022239194A1 (ja) 2021-05-13 2021-05-13 半導体素子を用いたメモリ装置

Country Status (3)

Country Link
US (1) US20220367729A1 (ja)
TW (1) TWI813279B (ja)
WO (1) WO2022239194A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080280A (ja) * 2004-09-09 2006-03-23 Toshiba Corp 半導体装置およびその製造方法
JP2008218556A (ja) * 2007-03-01 2008-09-18 Toshiba Corp 半導体記憶装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4216483B2 (ja) * 2001-02-15 2009-01-28 株式会社東芝 半導体メモリ装置
KR100436673B1 (ko) * 2001-05-28 2004-07-02 가부시끼가이샤 도시바 반도체 장치 및 그 제조 방법
JP4530098B1 (ja) * 2009-05-29 2010-08-25 日本ユニサンティスエレクトロニクス株式会社 半導体装置
US11004719B1 (en) * 2010-11-18 2021-05-11 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US10229916B2 (en) * 2015-10-09 2019-03-12 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
JP2020155635A (ja) * 2019-03-20 2020-09-24 キオクシア株式会社 半導体装置
CN113939907A (zh) * 2019-06-05 2022-01-14 新加坡优尼山帝斯电子私人有限公司 柱状半导体装置的制造方法
CN114762127A (zh) * 2019-10-30 2022-07-15 新加坡优尼山帝斯电子私人有限公司 柱状半导体装置及其制造方法
US11502089B2 (en) * 2020-10-05 2022-11-15 Micron Technology, Inc. Three-dimensional fuse architectures and related systems, methods, and apparatuses
WO2022239228A1 (ja) * 2021-05-14 2022-11-17 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080280A (ja) * 2004-09-09 2006-03-23 Toshiba Corp 半導体装置およびその製造方法
JP2008218556A (ja) * 2007-03-01 2008-09-18 Toshiba Corp 半導体記憶装置

Also Published As

Publication number Publication date
TWI813279B (zh) 2023-08-21
TW202310348A (zh) 2023-03-01
US20220367729A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
WO2022137563A1 (ja) 半導体素子を用いたメモリ装置
WO2022208658A1 (ja) メモリ素子を有する半導体装置
WO2023281728A1 (ja) 半導体素子を用いたメモリ装置
WO2022219767A1 (ja) メモリ素子を有する半導体装置
TWI806510B (zh) 具有記憶元件的半導體裝置
TWI808752B (zh) 使用柱狀半導體元件的記憶裝置
TWI813133B (zh) 半導體元件記憶裝置
WO2022219762A1 (ja) メモリ素子を有する半導体装置
WO2022219694A1 (ja) 半導体素子を用いたメモリ装置
JP7057033B1 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2022168219A1 (ja) 柱状半導体素子を用いたメモリ装置
JPWO2022215157A5 (ja)
WO2022239194A1 (ja) 半導体素子を用いたメモリ装置
WO2022239192A1 (ja) 半導体素子を用いたメモリ装置
WO2022239102A1 (ja) 半導体素子を用いたメモリ装置
WO2022168220A1 (ja) 半導体素子を用いたメモリ装置
WO2022239198A1 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2022208587A1 (ja) 半導体素子を用いたメモリ装置と、その製造方法
WO2022180738A1 (ja) 半導体素子を用いたメモリ装置
TWI787046B (zh) 半導體元件記憶裝置
JP7057034B1 (ja) 半導体メモリセル及び半導体メモリ装置
WO2023135631A1 (ja) 半導体メモリ装置
WO2023199474A1 (ja) 半導体素子を用いたメモリ装置
US20240130105A1 (en) Memory device including semiconductor element
WO2022180733A1 (ja) 柱状半導体素子を用いたメモリ装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941927

Country of ref document: EP

Kind code of ref document: A1