[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022230467A1 - パラキシレンの製造方法 - Google Patents

パラキシレンの製造方法 Download PDF

Info

Publication number
WO2022230467A1
WO2022230467A1 PCT/JP2022/013653 JP2022013653W WO2022230467A1 WO 2022230467 A1 WO2022230467 A1 WO 2022230467A1 JP 2022013653 W JP2022013653 W JP 2022013653W WO 2022230467 A1 WO2022230467 A1 WO 2022230467A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction
separated
hydrogen
raw material
Prior art date
Application number
PCT/JP2022/013653
Other languages
English (en)
French (fr)
Inventor
修 広畑
正 伊藤
太一郎 正垣
有理愛 渡邉
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to CA3217855A priority Critical patent/CA3217855A1/en
Priority to EP22782809.2A priority patent/EP4119530A4/en
Priority to AU2022267952A priority patent/AU2022267952A1/en
Priority to US18/556,902 priority patent/US20240217893A1/en
Priority to CN202280031378.0A priority patent/CN117222610A/zh
Publication of WO2022230467A1 publication Critical patent/WO2022230467A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/005Processes comprising at least two steps in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/09Purification; Separation; Use of additives by fractional condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/12After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
    • B01J2229/123After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation in order to deactivate outer surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/62Synthesis on support in or on other molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing para-xylene using a mixed gas of carbon dioxide or carbon monoxide and hydrogen as the main raw material.
  • Para-xylene which is useful as a raw material for polyester fibers and polyethylene terephthalate (PET) resin, has conventionally been produced by a reforming reaction of naphtha in a petrochemical complex, but this method requires fossil (petroleum) resources. In addition, the manufacturing process emits a large amount of carbon dioxide.
  • Non-Patent Document 1 a method using so-called synthesis gas composed of carbon monoxide and hydrogen as a raw material has already been proposed (Non-Patent Document 1, Patent Document 1).
  • synthesis gas is converted to methanol by a catalyst with a ZnCr 2 O 4 spinel structure or the like, and then the methanol is converted into H-ZSM-5 zeolite (proton-type ZSM-5 zeolite) whose outer surface is coated with silicalite-1. It converts to an aromatic compound containing para-xylene by a catalyst or the like.
  • Patent Document 2 a method of synthesizing para-xylene in one step using carbon dioxide instead of carbon monoxide and hydrogen as raw materials has also been proposed (Patent Document 2).
  • a chromium oxide catalyst is used as a methanol synthesis catalyst
  • H-ZSM-5 zeolite coated with silicalite-1 is used as a para-xylene synthesis catalyst, thereby improving the production efficiency of para-xylene.
  • para-xylene is synthesized from carbon dioxide and hydrogen in a single reaction operation.
  • Example 2 a catalyst containing a mixture of a catalyst containing chromium oxide and a catalyst containing H-ZSM-5 zeolite coated with silicalite-1 was used, and a mixed gas of carbon dioxide and hydrogen was converted to para. It synthesizes xylene in high yield.
  • Comparative Example 1 a catalyst containing chromium zinc oxide was used instead of the catalyst containing chromium oxide, and in Comparative Example 2, some acid sites of H-ZSM-5 coated with silicalite-1 were replaced with zinc. Catalysts including doped (ion-exchanged) are used.
  • Example 1 the yield of para-xylene is 7.61%, which is higher than 3.42% in Comparative Example 1 and 5.06% in Comparative Example 2, but the CO2 conversion is low. It is the same as the comparative example in terms of points. Therefore, it is necessary to improve the yield of para-xylene and reduce energy consumption as a whole process including reuse of unreacted gas.
  • the present invention is a method for producing para-xylene using a mixed gas of carbon dioxide or carbon monoxide or both of them and hydrogen as a main raw material, wherein the raw mixed gas containing the mixed gas is brought into contact with a reaction catalyst at high temperature and high pressure. and a reaction step of obtaining a product gas mixture containing para-xylene by reacting with the characterized by comprising a separation step of separating an oil phase containing a xylene mixture and a gas phase containing an unreacted gas, and a recycling step of mixing at least part of the gas phase separated in the separation step with the raw material mixed gas To solve the above problems.
  • ZSM-5 zeolite coated with a silicon-containing compound preferably silicalite-1
  • a silicon-containing compound preferably silicalite-1
  • the ratio of para-xylene contained in is increased, and less energy is required for purification steps (distillation, adsorptive separation, isomerization, disproportionation).
  • unreacted gases carbon dioxide, carbon monoxide and hydrogen
  • the overall process yield rate is greatly improved.
  • FIG. 1 shows an example (first embodiment) of an apparatus suitable for carrying out the method of the invention.
  • Figure 2 shows a second form of apparatus suitable for carrying out the method of the invention;
  • Figure 3 shows a third form of apparatus suitable for carrying out the method of the invention;
  • Figure 4 shows a fourth form of apparatus suitable for carrying out the method of the invention;
  • 2 shows the process flow assumed in the simulations of Examples 1 and 2.
  • FIG. The process flow assumed in the simulation of Example 3 is shown.
  • the method of the present invention is a method for producing para-xylene using a mixed gas of carbon dioxide or carbon monoxide or both of them and hydrogen as a main raw material, wherein the raw mixed gas containing the mixed gas is subjected to a reaction catalyst at high temperature and high pressure. and cooling the product gas mixture obtained in the reaction step to condense the high-boiling components to water containing water-soluble components.
  • a spinel-structured catalyst composed of a composite oxide of zinc (or copper) and chromium can be suitably used as the catalyst for advancing the methanol synthesis reaction of formula (1).
  • Zn/H--ZSM-5 zeolite can be suitably used as a catalyst for promoting the reaction and selectively synthesizing para-xylene.
  • the outer surface of the Zn/H-ZSM-5 zeolite is coated with a silicon-containing compound (preferably one such as silicalite-1 which has the same lattice structure as ZSM-5 zeolite and does not have acid sites), , the proportion of para-xylene in the product mixture can be increased. If these catalysts are mixed and used, the reaction of formula (1) and the reaction of formula (2) proceed continuously or in parallel, so that a product containing para-xylene can be produced in a single reactor. .
  • chromium in the reaction step of the present invention, chromium , a catalyst containing at least one metal oxide appropriately selected from zinc and copper, and H-ZSM-5 zeolite appropriately doped with zinc or the like coated with a silicon-containing compound such as silicalite-1. It may be used in combination with a catalyst containing.
  • H-ZSM-5 zeolite doped (ion-exchanged) with proton type or various ions is generically referred to as ZSM-5 zeolite, but para-xylene is selectively used in the reaction of formula (2).
  • ZSM-5 zeolite coated with a silicon-containing compound such as silicalite-1 for synthesis, it is preferable to use ZSM-5 zeolite coated with a silicon-containing compound such as silicalite-1.
  • gas phase components including unreacted carbon dioxide and carbon monoxide
  • the ratio of carbon and the content of other components should be considered at the reactor inlet.
  • One of the objects of the present invention is to contribute to the reduction of carbon dioxide concentration in the atmosphere.
  • Carbon dioxide separated from exhaust gas from equipment that burns the generated fuel carbon dioxide separated in ammonia production equipment, ethylene glycol production equipment and hydrogen production equipment, separation from generated gas of coal, biomass and waste gasification furnaces It is preferable to use carbon dioxide separated from carbon dioxide, carbon dioxide separated from blast furnaces in steel plants, carbon dioxide separated from air in the atmosphere, and the like.
  • hydrogen generated by electrolyzing water using electricity generated by renewable energy such as solar power, wind power, hydraulic power, geothermal power, biomass, or nuclear power is used. is preferred.
  • the raw material mixed gas includes synthesis gas produced by a gasification furnace, off-gas discharged from a blast furnace in a steel plant, off-gas separated in a hydrogen production unit, and synthesis gas produced by co-electrolysis of water and carbon dioxide.
  • synthesis gas produced by the reverse shift reaction of hydrogen and carbon dioxide, or the like is preferably used.
  • the type of reactor should be one that allows gas-solid contact operation between the raw material mixed gas (gas) and the reaction catalyst (solid) and can maintain the desired temperature and pressure (packed bed, moving bed, fluidized bed, etc.). Although not particularly limited, a packed bed is preferable in terms of high contact efficiency, less channeling, and less mechanical damage to the catalyst particles.
  • the catalyst filling amount and gas flow rate can be set as appropriate, but in the case of a packed bed type, it is preferable to set the catalyst filling amount and gas flow rate so that the space velocity (SV) is about 100 to 10000/hr based on the empty column. . Further, it is preferable to set the reaction temperature to about 250° C. to 600° C. and the reaction pressure to about 1 to 10 MPaG.
  • the gas mixture containing para-xylene obtained in the reaction step is cooled in the subsequent separation step to condense the high boiling point components containing para-xylene.
  • the liquid phase is further divided into an aqueous phase containing water-soluble components such as water and alcohol produced by the reaction, and an oil phase containing aromatic components (including paraxylene) immiscible with water. That is, from the bottom side of the gas-liquid separator, the liquid phase is divided into the lower layer, the oil phase, and the upper layer, the gas phase. You can pull it out.
  • the liquid phase may be separated into an oil phase and an aqueous phase by a separation method such as centrifugation or sedimentation using a difference in specific gravity.
  • the oil phase extracted from the gas-liquid separator contains other aromatic compounds such as benzene, toluene, ortho-xylene, meta-xylene, ethylbenzene, and trimethylbenzene in addition to the target compound, para-xylene. to separate them. For this reason, the oil phase is first distilled to remove benzene and toluene, which have lower boiling points than xylenes (ortho-xylene, meta-xylene, para-xylene, and ethylbenzene), and trimethylbenzene, which has a higher boiling point than xylenes. Separation as a high boiling point fraction is preferred.
  • the boiling points of ortho-xylene, meta-xylene, and ethylbenzene are close to those of para-xylene, so it is inefficient to separate them only by distillation. Therefore, it is preferable to obtain the xylene fraction as a mixture thereof, and then adsorb and separate this mixture with zeolite.
  • zeolite Since zeolite has pores with the molecular size of para-xylene, it hardly adsorbs ortho-xylene, meta-xylene, and ethylbenzene, which adsorb para-xylene well, and functions as a molecular sieve. That is, components other than para-xylene (ortho-xylene, meta-xylene, and other impurities) pass through the adsorption tower without being adsorbed by zeolite. It can be concentrated and purified.
  • a xylene mixture is passed through an adsorption tower packed with an adsorbent (zeolite) to adsorb only paraxylene, and the adsorbent containing the paraxylene is brought into contact with the desorbent to desorb the paraxylene.
  • a high-concentration para-xylene can be obtained by separating the para-xylene mixture in a distillation column.
  • the gas phase extracted from the gas-liquid separator contains unreacted gases such as carbon dioxide, carbon monoxide and hydrogen, it is returned to the inlet side of the heater in the preceding stage of the reactor and circulated to the reactor.
  • the gas phase contains lower alkanes having 1 to 4 carbon atoms (mainly methane), which are by-products. These lower alkanes gradually accumulate in the gas in the circulation path. Therefore, part of the gas in the circulation must be purged to the outside. By purging about 1 to 20% by volume of the entire circulation, the lower alkane concentration in the circulation can be maintained below 40% by volume.
  • Ortho-xylene and meta-xylene remaining after obtaining high-purity para-xylene in the purification process can be partially converted to para-xylene by isomerization treatment and then returned to the inlet side of the purification process.
  • the mixture of ortho-xylene and meta-xylene after separation of para-xylene is heated and passed through a reactor packed with a zeolite catalyst for isomerization.
  • toluene and trimethylbenzene separated by distillation can be partially converted to a xylene mixture containing paraxylene by disproportionation treatment, and then returned to the inlet side of the purification process.
  • a mixture containing toluene and trimethylbenzene is heated and passed through a reactor filled with a zeolite catalyst for disproportionation treatment.
  • the gas purged in the circulation process contains carbon monoxide, hydrogen, and lower alkanes in addition to unreacted carbon dioxide, so it can be used as a fuel gas.
  • the hydrogen contained in this purge gas can be separated by membrane separation or adsorption separation (Pressure Swing Adsorption, etc.), and only hydrogen can be recovered and recycled from the purge gas. preferable.
  • carbon dioxide and carbon monoxide may be recovered from the purge gas. These gases can be separated and recovered from the purge gas by membrane separation using an appropriate membrane.
  • Heating of the raw material mixed gas at the inlet side of the reactor and cooling of the product gas mixture at the outlet side of the reactor can be performed by using the heat recovered by cooling the product gas mixture for heating the raw material mixed gas. , which is preferable because the energy required for heating and cooling can be saved. Further, when sufficient cooling of the product gas mixture cannot be expected only by heat exchange, the product gas mixture whose temperature has been lowered to some extent by the heat exchange operation may be further cooled.
  • FIG. 1 shows an example of an apparatus suitable for carrying out the method of the invention.
  • the raw material mixed gas is heated by the heater 1 and then introduced into the reactor 2 .
  • a catalyst containing an oxide of at least one metal selected from chromium, zinc and copper and a catalyst containing ZSM-5 zeolite coated with silicalite-1 are mixed and filled to form a mixed catalyst.
  • the raw material gas mixture introduced into the reactor reacts with the mixed catalyst under a high temperature and high pressure atmosphere of 250° C. to 600° C. and 1 to 10 MPaG in the reactor to contain para-xylene. It becomes a product gas mixture (reaction step).
  • the obtained product gas mixture is cooled to near normal temperature by the cooler 3 and introduced into the gas-liquid separator 4, and the condensed high boiling point components are separated into the aqueous phase (lower layer) containing water-soluble components in the gas-liquid separator. It is separated into three layers: an oil phase (middle layer) containing paraxylene and a gas phase (upper layer) containing unreacted gas (separation step).
  • the oil phase forming the middle layer is extracted from the gas-liquid separator 4, it is first subjected to a refining step 5 that combines distillation separation, adsorption separation, isomerization treatment, and disproportionation treatment to obtain the desired high-purity para-xylene. It can be obtained, and the amount of para-xylene can be increased from the outlet of the gas-liquid separator 4 (purification step).
  • the raw material mixed gas at the inlet side of the heater 1 is used as a circulating gas. and is heated again and returned to reactor 2. Part of the circulating gas is purged out of the system in order to prevent accumulation of lower alkanes (circulating step).
  • the aqueous phase that forms the lower layer is sent to the wastewater treatment device 6 and treated to remove water-soluble organic matter.
  • the purge gas from which a part of the circulating gas is extracted is effectively used as a fuel gas as a heat source for a nearby heating furnace.
  • FIG. 2 shows another example of apparatus suitable for carrying out the method of the invention.
  • the apparatus shown in FIG. 2 has the same basic configuration as the apparatus shown in FIG. 1, but differs in that hydrogen is separated from the purge gas and combined with the circulating gas.
  • FIG. 2 will be described below, but the description of the same configuration as in FIG. 1 will be omitted.
  • the purge gas contains a small amount of reaction by-products such as lower alkyls (methane, ethane, propane, etc.). Since these lower alkyls do not participate in the para-xylene synthesis reaction in the reactor, they must be removed as a purge gas to prevent them from accumulating in the circulation gas.
  • the hydrogen contained in the purge gas can be recovered by the hydrogen separator 7 consisting of membrane separation using a hydrogen separation membrane or adsorption separation (Pressure Swing Adsorption, etc.). By joining the circulating gas and returning it to the reactor, it can be reused as a raw material.
  • FIG. 3 shows yet another example of apparatus suitable for carrying out the method of the invention.
  • the apparatus shown in FIG. 3 has the same basic configuration as the apparatus shown in FIG. FIG. 3 will be described below, but the description of the same configuration as in FIG. 1 will be omitted.
  • One of the purposes of the present invention is to reduce the concentration of carbon dioxide in the atmosphere by using carbon dioxide as a raw material for the production of paraxylene. Therefore, the carbon footprint and associated energy consumption in the process of the present invention should be minimized.
  • the apparatus of FIG. 3 reduces the amount of heat sources (steam, fuel gas, etc.) that must be supplied from the outside for heating the raw material mixed gas.
  • the flow path for introducing the raw material mixed gas into the reactor and the flow path for discharging the product gas mixture from the reactor are combined via a heat exchanger 8, and the heat quantity obtained by cooling the product gas mixture is transferred to the raw material. It is configured to be used for heating mixed gas.
  • a normal shell-and-tube heat exchanger may be used as the heat exchanger.
  • FIG. 4 shows yet another example of apparatus suitable for carrying out the method of the invention.
  • the device in FIG . 4 has the same basic configuration as the device in FIG . , in that it is recycled as part of the raw material gas.
  • the CO 2 after burning the purge gas is also recovered as a raw material, which greatly contributes to the reduction of the overall carbon dioxide emissions.
  • Example 1 Assuming the process flow of the configuration shown in FIG. 5, a simulation was performed for the production of 12,500 kg/h (100,000 tons/year) of para-xylene using a raw material mixed gas composed of carbon dioxide and hydrogen. The simulation results are shown in Table 1 as temperature, pressure, flow rate and composition at points 1 to 7 in FIG.
  • Example 2 Assuming the process flow of the configuration shown in FIG. 5, a simulation was performed for the production of 12,500 kg/h (100,000 tons/year) of para-xylene using a raw material mixed gas composed of carbon monoxide and hydrogen. The simulation results are shown in Table 2 as temperature, pressure, flow rate and composition at points 1 to 7 in FIG.
  • Example 3 Assuming the process flow of the configuration shown in FIG. 6, a simulation was performed for the production of 12,500 kg/h (100,000 tons/year) of para-xylene using a raw material mixed gas composed of carbon dioxide and hydrogen. The results of the simulation are shown in Table 3 as temperature, pressure, flow rate and composition at points 1 to 8 in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

反応混合物からのパラキシレンの分離や未反応ガス及び副生成物の分離・回収・再利用を含めたプロセス全体として、パラキシレンの収率向上や消費エネルギーの削減を図る。二酸化炭素または一酸化炭素またはその両方と水素との混合ガスを主原料としてパラキシレンを製造する方法であって、該混合ガスを含む原料混合ガスを高温高圧下で反応触媒に接触させることにより反応させてパラキシレンを含む生成ガス混合物を取得する反応工程と、該反応工程で得られた生成ガス混合物を冷却することにより高沸点成分を凝結させて水溶性成分を含む水相とキシレン混合物を含む油相と未反応ガスを含む気相とに分離する分離工程と、該分離工程で分離された気相の少なくとも一部を原料混合ガスに混合する循環工程とを含むことを特徴とするパラキシレンの製造方法。

Description

パラキシレンの製造方法
 本発明は、二酸化炭素または一酸化炭素と水素との混合ガスを主原料としてパラキシレンを製造する方法に関する。
 ポリエステル繊維やポリエチレンテレフタレート(PET)樹脂の原料として有用なパラキシレンは、従来、石油化学コンプレックスの中でナフサの改質反応により製造されているが、この方法は化石(石油)資源を必要とするうえ、製造過程において大量の二酸化炭素を排出する。
 一方、化石資源を用いずにパラキシレンを製造する方法としては、一酸化炭素と水素からなる所謂合成ガスを原料として用いる方法が既に提案されている(非特許文献1、特許文献1)。この方法は、合成ガスをZnCrスピネル構造の触媒等によりメタノールに変換し、次いでメタノールをH-ZSM-5ゼオライト(プロトン型のZSM-5ゼオライト)の外表面をシリカライト-1で被覆した触媒等によりパラキシレンを含む芳香族化合物に変換するものである。そして、これらの触媒を混合して用いることで一酸化炭素と水素から一段の反応操作でパラキシレンを合成するものである。また、一酸化炭素の代わりに二酸化炭素を用い、これと水素とを原料としてパラキシレンを一段で合成する方法も提案されている(特許文献2)。特許文献2の方法は、メタノール合成触媒として酸化クロム触媒を用い、パラキシレン合成触媒としてH-ZSM-5ゼオライトにシリカライト-1を被覆したものを用いることでパラキシレンの生成効率を向上させるとともに、メタノール合成触媒とパラキシレン合成触媒を混合して用いることで二酸化炭素と水素から一段の反応操作でパラキシレンを合成するものである。
特表2020-535966号公報 特開2019-205969号公報
Peipei Zhang et al., Chemical Science, The Royal Society of Chemistry, 2017年10月, 第8巻、7941~7946項
 特許文献2では、実施例1で、酸化クロムを含む触媒とシリカライト-1で被覆したH-ZSM-5ゼオライトを含む触媒とを混合した触媒を用い、二酸化炭素と水素との混合ガスからパラキシレンを高収率で合成している。一方、比較例1では酸化クロムを含む触媒に代えてクロム亜鉛酸化物を含む触媒を用い、比較例2では更にシリカライト-1で被覆するH-ZSM-5の一部の酸点を亜鉛でドープ(イオン交換)したものを含む触媒を用いている。しかしながら、実施例1においても、パラキシレンの収率は7.61%であり、比較例1の3.42%や比較例2の5.06%に比べれば高いものの、CO転化率が低い点では比較例と変わらない。従って、未反応ガスの再利用を含めたプロセス全体として、パラキシレンの収率向上や消費エネルギーの削減を図っていく必要がある。
 本発明は、二酸化炭素または一酸化炭素またはその両方と水素との混合ガスを主原料としてパラキシレンを製造する方法であって、該混合ガスを含む原料混合ガスを高温高圧下で反応触媒に接触させることにより反応させてパラキシレンを含む生成ガス混合物を取得する反応工程と、該反応工程で得られた生成ガス混合物を冷却することにより高沸点成分を凝結させて水溶性成分を含む水相とキシレン混合物を含む油相と未反応ガスを含む気相とに分離する分離工程と、該分離工程で分離された気相の少なくとも一部を原料混合ガスに混合する循環工程とを含むことを特徴とする方法を提供し、これにより上記課題を解決する。
 本発明の方法によれば、反応工程においてケイ素を含む化合物(好ましくはシリカライト-1)で被覆したZSM-5系ゼオライトを触媒として用いるため、分離工程において生成ガス混合物から分離された油相中に含まれるパラキシレンの割合が大きくなり、精製工程(蒸留、吸着分離、異性化、不均化)に必要なエネルギーが少なくて済む。加えて、分離工程において分離された気相中に含まれるガス(の体積)の大半を占める未反応ガス(二酸化炭素と一酸化炭素と水素)が反応工程に戻されるため、プロセス全体としての収率が大きく向上する。
本発明の方法を実施するのに適した装置の一例(第1の形態)を示す。 本発明の方法を実施するのに適した装置の第2の形態を示す。 本発明の方法を実施するのに適した装置の第3の形態を示す。 本発明の方法を実施するのに適した装置の第4の形態を示す。 実施例1及び2のシミュレーションで想定したプロセスフローを示す。 実施例3のシミュレーションで想定したプロセスフローを示す。
 本発明の方法は、二酸化炭素または一酸化炭素またはその両方と水素との混合ガスを主原料としてパラキシレンを製造する方法であって、該混合ガスを含む原料混合ガスを高温高圧下で反応触媒に接触させることにより反応させてパラキシレンを含む生成ガス混合物を取得する反応工程と、該反応工程で得られた生成ガス混合物を冷却することにより高沸点成分を凝結させて水溶性成分を含む水相とキシレン混合物を含む油相と未反応ガスを含む気相とに分離する分離工程と、該分離工程で分離された気相の少なくとも一部を原料混合ガスに混合する循環工程とを含む。
<反応工程>
 一酸化炭素と水素との混合物すなわち合成ガスからパラキシレンを含む生成物を製造する場合には、式(1)に示すように一酸化炭素の水素化によりメタノールやジメチルエーテルが生成し、こうして生成したメタノールやジメチルエーテルが式(2)に示すように低級オレフィンを経由して各種芳香族化合物の混合物を生成するとされている。
 2CO+2H ⇒ 2CHOH (⇔ CHOCH+HO) (1)
 CHOCH ⇒ C、C等 ⇒ 各種芳香族化合物 (2)
 この場合、式(1)のメタノール合成反応を進行させるための触媒としては、亜鉛(または銅)とクロムの複合酸化物からなるスピネル構造の触媒を好適に用いることができ、式(2)の反応を進行させてパラキシレンを選択的に合成するための触媒としては、Zn/H-ZSM-5ゼオライトを好適に用いることができる。このとき、Zn/H-ZSM-5ゼオライトの外表面をケイ素を含む化合物(好ましくはシリカライト-1のようにZSM-5ゼオライトと同じ格子構造をもち酸点を有しないもの)で被覆すれば、生成混合物中のパラキシレンの割合を高めることができる。なお、これらの触媒を混合して用いれば、式(1)の反応と式(2)の反応が連続ないし並行して進行するため、1段の反応器でパラキシレンを含む生成物を製造できる。
 一方、二酸化炭素と水素との混合ガスを主原料としてパラキシレンを含む生成物を製造する場合には、メタノールを生成する反応が式(3)に示すように進行する。
   CO+3H ⇒ CHOH+HO  (3)
 すなわち、メタノールが生成される際に副生される水の量が多くなるため、特許文献2に記載されるように、式(3)の反応を進行させる触媒として上記亜鉛(または銅)とクロムの複合酸化物からなる触媒ではなく(亜鉛または銅を含まない)酸化クロムからなる触媒を用い、式(2)の反応を進行させる触媒として亜鉛ドープを行わないプロトン型のH-ZSM-5を用いる方がパラキシレンの収率を上げることができる。
 すなわち、本発明の反応工程においては、主原料として用いられる混合ガス(以下では「原料混合ガス」という)中の二酸化炭素と一酸化炭素の比率やそれ以外の成分の含有量に応じて、クロム、亜鉛および銅から適宜選択される少なくとも1種の金属の酸化物を含む触媒と、適宜亜鉛等でドープしたH-ZSM-5ゼオライトをシリカライト-1のようなケイ素を含む化合物で被覆したものを含む触媒とを組み合わせて混合して用いればよい。本明細書では、プロトン型あるいは各種イオンでドープ(イオン交換)したH-ZSM-5ゼオライトを、包括的にZSM-5系ゼオライトとよぶが、式(2)の反応においてパラキシレンを選択的に合成するためにはシリカライト-1のようなケイ素を含む化合物で被覆したZSM-5系ゼオライトを用いることが好ましい。なお、後述するように、本発明においては分離工程で分離された気相成分(未反応の二酸化炭素や一酸化炭素を含む)が反応工程に戻されるため、上に述べた二酸化炭素と一酸化炭素の比率やそれ以外の成分の含有量は反応器入口におけるものを考慮すべきである。
 本発明は、大気中の二酸化炭素濃度の削減に寄与することを目的の一つとしているのであるから、原料混合ガスを構成する二酸化炭素としては、火力発電所や各種加熱炉などの二酸化炭素を発生する燃料を燃焼させる装置からの排ガスから分離された二酸化炭素、アンモニア製造装置やエチレングリコール製造装置や水素製造装置において分離された二酸化炭素、石炭やバイオマスやゴミのガス化炉の生成ガスから分離された二酸化炭素、製鉄所の高炉から分離された二酸化炭素、大気中の空気から分離した二酸化炭素などを利用することが好ましい。
 また、原料混合ガスを構成する水素としては、太陽光、風力、水力、地熱、バイオマスなどの再生可能エネルギーや原子力により発生した電力を用いて水を電気分解することで生成される水素を用いることが好ましい。
 特に、原料混合ガスとしては、ガス化炉により生成された合成ガス、製鉄所の高炉から排出されるオフガス、水素製造装置において分離されたオフガス、水と二酸化炭素の共電解により生成された合成ガス、水素と二酸化炭素の逆シフト反応により生成された合成ガスなどを用いることが好ましい。
 反応器の形式は、原料混合ガス(気体)と反応触媒(固体)との気固接触操作が可能で所望の温度・圧力を維持できるもの(充填床、移動床、流動床など)であれば特に限定されないが、接触効率がよくチャネリングを生じにくく触媒粒子の機械的損傷も少ない点で充填床が好ましい。触媒充填量やガス流速は適宜設定できるが、充填床形式の場合、空間速度(SV)が空塔基準で100~10000/hr程度になるように触媒充填量及びガス流速を設定するのがよい。また、反応温度は250℃~600℃程度、反応圧力は1~10MPaG程度に設定することが好ましい。
<分離工程>
 反応工程で得られたパラキシレンを含むガス混合物は、これを後段の分離工程で冷却することにより、パラキシレンを含む高沸点成分を凝縮させる。液相はさらに反応で生成した水やアルコールなどの水溶性成分を含む水相と水と混和しない芳香族成分等(パラキシレンを含む)を含む油相とに分かれる。すなわち、気液分離器の底側から順に下層をなす水相と中層をなす油相と上層をなす気相とに分かれるため、各相の流体をそれぞれの層が形成されている位置から装置外部へ抜き出せばよい。あるいは、気液混合物をまず気相と液相とに分けた後、液相を遠心分離や沈降分離などの比重差を利用した分離法で油相と水相とに分離してもよい。
<精製工程>
 気液分離器から抜き出された油相は、目的化合物であるパラキシレン以外に、ベンゼン、トルエン、オルトキシレン、メタキシレン、エチルベンゼン、トリメチルベンゼンなどといった他の芳香族化合物も含むため、必要に応じてこれらを分離する。このため、油相に対しては先ず蒸留操作によりキシレン類(オルトキシレン、メタキシレン、パラキシレン、エチルベンゼン)より沸点が低いベンゼンやトルエンを低沸点分として、またキシレン類より沸点が高いトリメチルベンゼンを高沸点分として分離することが好ましい。一方、オルトキシレン、メタキシレン、エチルベンゼンの沸点はパラキシレンと近いので、蒸留操作のみでこれらを分離するのは非効率的である。そこで、キシレン留分はこれらの混合物として取得し、次いで、この混合物をゼオライトで吸着分離することが好ましい。
 ゼオライトはパラキシレンの分子サイズを有する細孔を有するため、パラキシレンをよく吸着するオルトキシレン、メタキシレン、エチルベンゼンは殆ど吸着せず、モレキュラーシーブとして機能する。すなわち、パラキシレン以外の成分(オルトキシレン及びメタキシレンとその他の不純物)はゼオライトに吸着されずに吸着塔を通過するため、ゼオライトを用いてこの混合物の吸着と脱着を繰り返すことにより、パラキシレンを濃縮精製することができる。具体的には、吸着剤(ゼオライト)を詰めた吸着塔にキシレン混合物を流しパラキシレンのみを吸着させ、そのパラキシレンを含む吸着剤に脱着剤を接触させてパラキシレンを脱着させ、脱着剤とパラキシレンの混合物を蒸留塔にて分離することで、高濃度のパラキシレンを得ることができる。
<循環工程>
 気液分離器から抜き出された気相は、未反応ガスである二酸化炭素、一酸化炭素および水素を含むため、これを反応器の前段である加熱器の入口側に戻して反応器に循環させる。しかしながら、気相にはこれらの未反応ガス以外に、副生物である炭素数1~4の低級アルカン(主にメタン)が含まれており、こうした低級アルカンは反応器内でのパラキシレン合成反応には殆ど与らないため、循環路内のガスにこれらの低級アルカンが次第に蓄積してくる。そこで、循環路内のガスの一部は外部にパージする必要がある。循環量全体の1~20体積%程度をパージすれば循環路中の低級アルカン濃度を40体積%未満に維持できる。
<その他の付属的工程>
 パラキシレンを増産するために、必要に応じて、異性化処理、不均化処理をすることが望ましい。精製工程で高純度パラキシレンを取得した後に残るオルトキシレンおよびメタキシレンは、異性化処理を行って一部をパラキシレンに変換した後、精製工程の入口側に戻すことができる。具体的には、パラキシレンを分離した後のオルトキシレンおよびメタキシレンの混合物を加熱し、ゼオライト触媒を詰めた反応器に通すことで異性化処理を行う。
 また、蒸留で分離されたトルエンやトリメチルベンゼンは、不均化処理を行って一部をパラキシレンを含むキシレン混合物に変換したのち、精製工程の入り口側に戻すことができる。具体的には、トルエンやトリメチルベンゼンを含む混合物を加熱し、ゼオライト触媒を詰めた反応器に通すことで不均化処理を行う。
 循環工程でパージされたガスは、未反応ガスである二酸化炭素のほかに、一酸化炭素および水素、ならびに低級アルカンを含むため、燃料用のガスとして用いることができる。ただし、原料ガスとして必要な水素量を減らすため、このパージガスに含まれる水素については、膜分離や吸着分離(Pressure Swing Adsorption等)などにより分離し、パージガスから水素のみを回収してリサイクルすることが好ましい。
 また、水素に加え、二酸化炭素や一酸化炭素をパージガスから回収してもよい。適切な膜を用いて膜分離を行えば、これらのガスをパージガスから分離回収することができる。
 反応器の入口側で行う原料混合ガスの加熱と、反応器の出口側で行う生成ガス混合物の冷却は、生成ガス混合物の冷却で回収された熱を原料混合ガスの加熱に用いるようにすれば、加熱や冷却に必要なエネルギーを節約することができるため好ましい。また、熱交換だけでは十分な生成ガス混合物の冷却が望めない場合には、熱交換操作である程度温度が低下した生成ガス混合物を更に冷却するようにしてもよい。
<第1の形態>
 図1は、本発明の方法を実施するのに適した装置の一例を示す。本発明の方法において原料混合ガスは、加熱器1で加熱された後、反応器2に導入される。反応器2内にはクロム、亜鉛および銅から選択される少なくとも1種の金属の酸化物を含む触媒とシリカライト-1で被覆したZSM-5系ゼオライトを含む触媒とが混合充填されて混合触媒層を形成しており、反応器に導入された原料ガス混合物は反応器内で250℃~600℃および1~10MPaGの高温高圧雰囲気下に混合触媒と接触することにより反応してパラキシレンを含む生成ガス混合物になる(反応工程)。
 得られた生成ガス混合物は、冷却器3で常温付近まで冷却されて気液分離器4に導入され、凝縮した高沸点成分は気液分離器内で水溶性成分を含む水相(下層)とパラキシレンを含む油相(中層)と未反応ガスを含む気相(上層)の3層に分離される(分離工程)。
 中層を形成する油相は、気液分離器4から抜き出された後、まず蒸留分離・吸着分離・異性化処理・不均化処理を組み合わせた精製工程5により、目的の高純度パラキシレンを取得することができるとともに、気液分離器4の出口よりもパラキシレンの量を増加させることができる(精製工程)。
 上層を形成する気相は、水素、二酸化炭素、一酸化炭素などの未反応ガスを含むため、気液分離器4から抜き出された後、循環ガスとして加熱器1の入口側の原料混合ガスの流れに混合され、再び加熱されて反応器2に戻されることになる。なお、循環ガスの一部は低級アルカンの蓄積を防止するために系外にパージされる(循環工程)。
 下層を形成する水相は、水溶性有機物などを除去するため排水処理装置6に送られて処理される。一方、循環ガスの一部が抜き出されたパージガスは、燃料ガスとして近くの加熱炉の熱源などに有効利用される。
<第2の形態>
 図2は、本発明の方法を実施するのに適した装置の別の例を示す。図2の装置は、基本的な構成は図1の装置と同じだが、パージガスから水素を分離して循環ガスに合流させる点が異なる。以下、図2について説明するが、図1と同一の構成については説明を省略する。
 パージガスには、未反応の二酸化炭素、一酸化炭素および水素に加えて、反応副生物である低級アルキル(メタン、エタン、プロパンなど)が少量含まれる。これらの低級アルキルは、反応器内でのパラキシレン合成反応に与らないため、循環ガス中に蓄積するのを防止するためにパージガスとして抜き出す必要がある。一方で、パージガス中に含まれる水素は、水素分離膜を用いた膜分離や吸着分離(Pressure Swing Adsorption等)などからなる水素分離器7により、回収できるため、パージガスから水素のみを回収して再び循環ガスに合流させて反応器に戻すことで原料として再利用できる。
 図2の装置では、パージガスの全量を燃料ガスとして用いる代わりに、そこに含まれる大部分の水素を原料ガスとして再利用するわけであるから、原料水素使用量を減少させることになる。
<第3の形態>
 図3は、本発明の方法を実施するのに適した装置の更に別の例を示す。図3の装置は、基本的な構成は図1の装置と同じだが、原料混合ガスの加熱(予熱)と生成ガス混合物の冷却を熱交換器8により行う点が異なる。以下、図3について説明するが、図1と同一の構成については説明を省略する。
 本発明は、二酸化炭素をパラキシレン製造の原料として用いることで、大気中の二酸化炭素濃度の低減を図ることを目的の一つとしている。従って、本発明のプロセスの中での二酸化炭素排出量およびそれにつながるエネルギー消費量は極力減らすべきである。図3の装置は、原料混合ガスの加熱のために外部から投入しなければいけない熱源(スチーム、燃料ガスなど)の量を削減するものである。
 図3の装置では、反応器への原料混合ガスの導入流路と反応器からの生成ガス混合物の導出流路を熱交換器8を介して組合せ、生成ガス混合物の冷却で取得した熱量を原料混合ガスの加熱に用いるように構成している。熱交換器としては、通常のシェルアンドチューブ型熱交換器を用いればよい。
<第4の形態>
 図4は、本発明の方法を実施するのに適した装置のまた更に別の例を示す。図4の装置は、基本的な構成は図3の装置と同じだが、循環ガスからのパージガスを近くの加熱炉9などで燃焼させた後にCO回収装置10でCOのみを分離回収して、原料ガスの一部としてリサイクルする点が異なる。
 図4の形態では、パージガスを燃焼した後のCOも原料として回収することで、全体の二酸化炭素排出量の低減に大きく寄与することになる。
<実施例1>
 図5に示す構成のプロセスフローを想定して、二酸化炭素と水素からなる原料混合ガスを用いてパラキシレンを12500kg/h(10万トン/年)製造する場合のシミュレーションを行った。シミュレーションの結果を、図5の1~7の各点における温度、圧力、流量及び組成として表1に示す。
<実施例2>
 図5に示す構成のプロセスフローを想定して、一酸化炭素と水素からなる原料混合ガスを用いてパラキシレンを12500kg/h(10万トン/年)製造する場合のシミュレーションを行った。シミュレーションの結果を、図5の1~7の各点における温度、圧力、流量及び組成として表2に示す。
<実施例3>
 図6に示す構成のプロセスフローを想定して、二酸化炭素と水素からなる原料混合ガスを用いてパラキシレンを12500kg/h(10万トン/年)製造する場合のシミュレーションを行った。シミュレーションの結果を、図6の1~8の各点における温度、圧力、流量及び組成として表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 この出願は2021年4月30日に出願された日本国特許出願第2021-78065からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
 1 加熱器
 2 反応器
 3 冷却器
 4 気液分離器
 5 精製工程
 6 排水処理装置
 7 水素分離器
 8 熱交換器
 9 加熱炉
 10 CO回収装置

Claims (11)

  1.  二酸化炭素または一酸化炭素またはその両方と水素との混合ガスを主原料としてパラキシレンを製造する方法であって、該混合ガスを含む原料混合ガスを高温高圧下で反応触媒に接触させることにより反応させてパラキシレンを含む生成ガス混合物を取得する反応工程と、該反応工程で得られた生成ガス混合物を冷却することにより高沸点成分を凝結させて水溶性成分を含む水相とキシレン混合物を含む油相と未反応ガスを含む気相とに分離する分離工程と、該分離工程で分離された気相の少なくとも一部を原料混合ガスに混合する循環工程とを含むことを特徴とする方法。
  2.  前記反応工程で用いられる反応触媒が、クロム、亜鉛および銅から選択される少なくとも1種の金属の酸化物を含む触媒とケイ素を含む化合物で表面を被覆したZSM-5系ゼオライトを含む触媒との混合物を含む混合触媒である、請求項1に記載の方法。
  3.  前記反応工程において、原料混合ガスを反応温度250~600℃、反応圧力1~10MPaGで反応触媒に接触させる、請求項1又は2に記載の方法。
  4.  前記分離工程において、生成ガス混合物を冷却して得られた気液混合物を、まず液相と気相とに分離し、次いで分離された液相を比重差を利用した分離法で油相と水相とに分離する、請求項1~3のいずれか一項に記載の方法。
  5.  前記循環工程において、循環ガスの一部をパージし、パージしたガスから分離回収した水素を原料混合ガスに混合する、請求項1~4のいずれか一項に記載の方法。
  6.  前記循環工程において、パージガスから水素を回収する方法として、PSA(Pressure Swing Adsorption)または水素分離膜を用いる、請求項5に記載の方法。
  7.  前記循環工程において、循環ガスの一部をパージし、パージガスを燃料ガスとして有効利用する、請求項1~6のいずれか一項に記載の方法。
  8.  前記原料混合ガスと前記生成ガス混合物とを熱交換させた後、該原料混合ガスを反応工程に移送する、請求項1~7のいずれか一項に記載の方法。
  9.  火力発電所もしくは加熱炉の燃焼排ガスから分離された二酸化炭素、アンモニア製造装置、エチレングリコール製造装置もしくは水素製造装置において分離された二酸化炭素、石炭、バイオマスもしくはゴミのガス化炉の生成ガスから分離された二酸化炭素、製鉄所の高炉から分離された二酸化炭素、または大気中の空気から分離した二酸化炭素を、原料混合ガスを構成する二酸化炭素の少なくとも一部として用いる、請求項1~8のいずれか一項に記載の方法。
  10.  太陽光、風力、水力、地熱、バイオマスまたは原子力により発生した電力を用いて水を電気分解することで生成された水素を、原料混合ガスを構成する水素の少なくとも一部として用いる、請求項1~9のいずれか一項に記載の方法。
  11.  ガス化炉により生成された合成ガス、製鉄所の高炉から排出されるオフガス、水素製造装置において分離されたオフガス、水と二酸化炭素の共電解により生成された合成ガス、または水素と二酸化炭素の逆シフト反応により生成された合成ガスを、原料混合ガスの少なくとも一部として用いる、請求項1~10のいずれか一項に記載の方法。
PCT/JP2022/013653 2021-04-30 2022-03-23 パラキシレンの製造方法 WO2022230467A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3217855A CA3217855A1 (en) 2021-04-30 2022-03-23 Method for producing para-xylene
EP22782809.2A EP4119530A4 (en) 2021-04-30 2022-03-23 PROCESS FOR PRODUCING PARAXYLENE
AU2022267952A AU2022267952A1 (en) 2021-04-30 2022-03-23 Method of producing para-xylene
US18/556,902 US20240217893A1 (en) 2021-04-30 2022-03-23 Method for producing paraxylene
CN202280031378.0A CN117222610A (zh) 2021-04-30 2022-03-23 对二甲苯的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021078065A JP7321207B2 (ja) 2021-04-30 2021-04-30 パラキシレンの製造方法
JP2021-078065 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022230467A1 true WO2022230467A1 (ja) 2022-11-03

Family

ID=83847925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013653 WO2022230467A1 (ja) 2021-04-30 2022-03-23 パラキシレンの製造方法

Country Status (7)

Country Link
US (1) US20240217893A1 (ja)
EP (1) EP4119530A4 (ja)
JP (1) JP7321207B2 (ja)
CN (1) CN117222610A (ja)
AU (1) AU2022267952A1 (ja)
CA (1) CA3217855A1 (ja)
WO (1) WO2022230467A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203963A1 (ja) * 2023-03-24 2024-10-03 日本製鉄株式会社 パラキシレン製造用触媒、パラキシレン製造用触媒の製造方法、及びパラキシレンの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023094259A (ja) * 2021-12-23 2023-07-05 千代田化工建設株式会社 パラキシレンの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835128A (ja) * 1981-08-27 1983-03-01 Teijin Yuka Kk p−キシレンの改良製造法
JPH08157399A (ja) * 1994-10-03 1996-06-18 Sanyo Sekiyu Kagaku Kk 芳香族炭化水素の製造方法
JP2009120897A (ja) * 2007-11-14 2009-06-04 Jfe Steel Corp 高炉ガスの利用方法
JP2015507612A (ja) * 2011-12-08 2015-03-12 ジーティーシー テクノロジー ユーエス, エルエルシー 芳香族化合物のメチル化によるキシレンの製造
JP2015189721A (ja) * 2014-03-28 2015-11-02 千代田化工建設株式会社 天然ガス処理物の製造方法及び天然ガス処理プラント
JP2019205969A (ja) 2018-05-29 2019-12-05 日本製鉄株式会社 パラキシレン製造用触媒、パラキシレン製造用触媒の製造方法、およびパラキシレンの製造方法
JP2020535966A (ja) 2017-09-30 2020-12-10 ハイケム株式会社 合成ガスからパラキシレンを直接製造する触媒及びその製造方法と使用
JP2021078065A (ja) 2019-11-13 2021-05-20 Necプラットフォームズ株式会社 基地局装置、制御方法及び制御プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023094259A (ja) * 2021-12-23 2023-07-05 千代田化工建設株式会社 パラキシレンの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835128A (ja) * 1981-08-27 1983-03-01 Teijin Yuka Kk p−キシレンの改良製造法
JPH08157399A (ja) * 1994-10-03 1996-06-18 Sanyo Sekiyu Kagaku Kk 芳香族炭化水素の製造方法
JP2009120897A (ja) * 2007-11-14 2009-06-04 Jfe Steel Corp 高炉ガスの利用方法
JP2015507612A (ja) * 2011-12-08 2015-03-12 ジーティーシー テクノロジー ユーエス, エルエルシー 芳香族化合物のメチル化によるキシレンの製造
JP2015189721A (ja) * 2014-03-28 2015-11-02 千代田化工建設株式会社 天然ガス処理物の製造方法及び天然ガス処理プラント
JP2020535966A (ja) 2017-09-30 2020-12-10 ハイケム株式会社 合成ガスからパラキシレンを直接製造する触媒及びその製造方法と使用
JP2019205969A (ja) 2018-05-29 2019-12-05 日本製鉄株式会社 パラキシレン製造用触媒、パラキシレン製造用触媒の製造方法、およびパラキシレンの製造方法
JP2021078065A (ja) 2019-11-13 2021-05-20 Necプラットフォームズ株式会社 基地局装置、制御方法及び制御プログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PEIPEI ZHANG ET AL.: "Chemical Science", THE ROYAL SOCIETY OF CHEMISTRY, vol. 8, October 2017 (2017-10-01), pages 7941 - 7946
See also references of EP4119530A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203963A1 (ja) * 2023-03-24 2024-10-03 日本製鉄株式会社 パラキシレン製造用触媒、パラキシレン製造用触媒の製造方法、及びパラキシレンの製造方法

Also Published As

Publication number Publication date
EP4119530A1 (en) 2023-01-18
AU2022267952A1 (en) 2023-11-09
US20240217893A1 (en) 2024-07-04
CA3217855A1 (en) 2022-11-03
JP7321207B2 (ja) 2023-08-04
CN117222610A (zh) 2023-12-12
EP4119530A4 (en) 2023-09-27
JP2022171430A (ja) 2022-11-11

Similar Documents

Publication Publication Date Title
CA2738270C (en) Production of hydrocarbon liquids
CN102686540B (zh) 从合成气中生产烃特别是汽油的方法
RU2524720C2 (ru) Комплексная установка для переработки газа
WO2022230467A1 (ja) パラキシレンの製造方法
JP2009519371A (ja) 天然ガスからの炭化水素の生成
JP2009179591A (ja) メタノールの製造方法
WO2018085614A1 (en) Oxidative dehydrogenation of alkanes to alkenes, and related system
WO2006087971A1 (ja) 芳香族化合物の製造方法及び水素化芳香族化合物の製造方法
WO2023120628A1 (ja) パラキシレンの製造方法
RU2203214C1 (ru) Способ получения метанола
JP2011084528A (ja) プロピレンの製造方法
Sedov et al. Development of technologies for more efficient deep processing of natural gas
EP4059596A1 (en) Process for methanol production from co2 with water removal
JP7222034B2 (ja) 芳香族化合物の製造方法
CN111559949B (zh) 一种利用富碳天然气增产对二甲苯的系统及方法
US20230312444A1 (en) Method for producing methanol
RU2472765C1 (ru) Способ получения метанола
EP2751024B1 (en) Integration of a fischer-tropsch system and syn-gas generation
US20240010586A1 (en) Methanol production method
WO2024215524A1 (en) A process and apparatus for regenerating catalyst from a methanol to olefins process
JP2024113598A (ja) ポリエチレンテレフタレートの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022782809

Country of ref document: EP

Effective date: 20221012

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22782809

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18556902

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3217855

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: AU2022267952

Country of ref document: AU

Ref document number: 2022267952

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2301007005

Country of ref document: TH

Ref document number: P6002784/2023

Country of ref document: AE

WWE Wipo information: entry into national phase

Ref document number: 202280031378.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022267952

Country of ref document: AU

Date of ref document: 20220323

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202347079228

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523451328

Country of ref document: SA