WO2022230467A1 - パラキシレンの製造方法 - Google Patents
パラキシレンの製造方法 Download PDFInfo
- Publication number
- WO2022230467A1 WO2022230467A1 PCT/JP2022/013653 JP2022013653W WO2022230467A1 WO 2022230467 A1 WO2022230467 A1 WO 2022230467A1 JP 2022013653 W JP2022013653 W JP 2022013653W WO 2022230467 A1 WO2022230467 A1 WO 2022230467A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- reaction
- separated
- hydrogen
- raw material
- Prior art date
Links
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000007789 gas Substances 0.000 claims abstract description 133
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000001257 hydrogen Substances 0.000 claims abstract description 44
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 44
- 239000000203 mixture Substances 0.000 claims abstract description 43
- 239000002994 raw material Substances 0.000 claims abstract description 42
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 40
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 36
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000012071 phase Substances 0.000 claims abstract description 33
- 238000000926 separation method Methods 0.000 claims abstract description 32
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 18
- 239000008096 xylene Substances 0.000 claims abstract description 10
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 239000007809 chemical reaction catalyst Substances 0.000 claims abstract description 7
- 239000008346 aqueous phase Substances 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 238000004064 recycling Methods 0.000 claims abstract description 4
- 239000003054 catalyst Substances 0.000 claims description 37
- 229910021536 Zeolite Inorganic materials 0.000 claims description 20
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 20
- 239000010457 zeolite Substances 0.000 claims description 20
- 238000010926 purge Methods 0.000 claims description 14
- 238000003786 synthesis reaction Methods 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 239000003921 oil Substances 0.000 claims description 12
- 150000002431 hydrogen Chemical class 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 11
- 239000011701 zinc Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 8
- 238000009835 boiling Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000001179 sorption measurement Methods 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 239000007791 liquid phase Substances 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- 239000002737 fuel gas Substances 0.000 claims description 5
- 239000002210 silicon-based material Substances 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- 239000002028 Biomass Substances 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 238000002309 gasification Methods 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 239000003245 coal Substances 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims description 2
- 238000005868 electrolysis reaction Methods 0.000 claims description 2
- 230000005484 gravity Effects 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical group 0.000 claims description 2
- 239000003546 flue gas Substances 0.000 claims 1
- 239000010813 municipal solid waste Substances 0.000 claims 1
- 239000000047 product Substances 0.000 abstract description 17
- 239000006227 byproduct Substances 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 238000011084 recovery Methods 0.000 abstract description 2
- 239000011541 reaction mixture Substances 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 28
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 14
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 8
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 8
- 238000004088 simulation Methods 0.000 description 8
- 238000000746 purification Methods 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 150000001335 aliphatic alkanes Chemical class 0.000 description 5
- 150000001491 aromatic compounds Chemical class 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000007323 disproportionation reaction Methods 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 238000006317 isomerization reaction Methods 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 4
- 229910000423 chromium oxide Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- JQOAZIZLIIOXEW-UHFFFAOYSA-N zinc;chromium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Cr+3].[Cr+3].[Zn+2] JQOAZIZLIIOXEW-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/12—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/005—Spinels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/26—Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/86—Chromium
- B01J23/868—Chromium copper and chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/005—Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/405—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/043—Catalysts; their physical properties characterised by the composition
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/043—Catalysts; their physical properties characterised by the composition
- C07C1/0435—Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/005—Processes comprising at least two steps in series
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/09—Purification; Separation; Use of additives by fractional condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/12—After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
- B01J2229/123—After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation in order to deactivate outer surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/32—Reaction with silicon compounds, e.g. TEOS, siliconfluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/60—Synthesis on support
- B01J2229/62—Synthesis on support in or on other molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/03—Catalysts comprising molecular sieves not having base-exchange properties
- B01J29/035—Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/06—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/24—Chromium, molybdenum or tungsten
- C07C2523/26—Chromium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/72—Copper
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a method for producing para-xylene using a mixed gas of carbon dioxide or carbon monoxide and hydrogen as the main raw material.
- Para-xylene which is useful as a raw material for polyester fibers and polyethylene terephthalate (PET) resin, has conventionally been produced by a reforming reaction of naphtha in a petrochemical complex, but this method requires fossil (petroleum) resources. In addition, the manufacturing process emits a large amount of carbon dioxide.
- Non-Patent Document 1 a method using so-called synthesis gas composed of carbon monoxide and hydrogen as a raw material has already been proposed (Non-Patent Document 1, Patent Document 1).
- synthesis gas is converted to methanol by a catalyst with a ZnCr 2 O 4 spinel structure or the like, and then the methanol is converted into H-ZSM-5 zeolite (proton-type ZSM-5 zeolite) whose outer surface is coated with silicalite-1. It converts to an aromatic compound containing para-xylene by a catalyst or the like.
- Patent Document 2 a method of synthesizing para-xylene in one step using carbon dioxide instead of carbon monoxide and hydrogen as raw materials has also been proposed (Patent Document 2).
- a chromium oxide catalyst is used as a methanol synthesis catalyst
- H-ZSM-5 zeolite coated with silicalite-1 is used as a para-xylene synthesis catalyst, thereby improving the production efficiency of para-xylene.
- para-xylene is synthesized from carbon dioxide and hydrogen in a single reaction operation.
- Example 2 a catalyst containing a mixture of a catalyst containing chromium oxide and a catalyst containing H-ZSM-5 zeolite coated with silicalite-1 was used, and a mixed gas of carbon dioxide and hydrogen was converted to para. It synthesizes xylene in high yield.
- Comparative Example 1 a catalyst containing chromium zinc oxide was used instead of the catalyst containing chromium oxide, and in Comparative Example 2, some acid sites of H-ZSM-5 coated with silicalite-1 were replaced with zinc. Catalysts including doped (ion-exchanged) are used.
- Example 1 the yield of para-xylene is 7.61%, which is higher than 3.42% in Comparative Example 1 and 5.06% in Comparative Example 2, but the CO2 conversion is low. It is the same as the comparative example in terms of points. Therefore, it is necessary to improve the yield of para-xylene and reduce energy consumption as a whole process including reuse of unreacted gas.
- the present invention is a method for producing para-xylene using a mixed gas of carbon dioxide or carbon monoxide or both of them and hydrogen as a main raw material, wherein the raw mixed gas containing the mixed gas is brought into contact with a reaction catalyst at high temperature and high pressure. and a reaction step of obtaining a product gas mixture containing para-xylene by reacting with the characterized by comprising a separation step of separating an oil phase containing a xylene mixture and a gas phase containing an unreacted gas, and a recycling step of mixing at least part of the gas phase separated in the separation step with the raw material mixed gas To solve the above problems.
- ZSM-5 zeolite coated with a silicon-containing compound preferably silicalite-1
- a silicon-containing compound preferably silicalite-1
- the ratio of para-xylene contained in is increased, and less energy is required for purification steps (distillation, adsorptive separation, isomerization, disproportionation).
- unreacted gases carbon dioxide, carbon monoxide and hydrogen
- the overall process yield rate is greatly improved.
- FIG. 1 shows an example (first embodiment) of an apparatus suitable for carrying out the method of the invention.
- Figure 2 shows a second form of apparatus suitable for carrying out the method of the invention;
- Figure 3 shows a third form of apparatus suitable for carrying out the method of the invention;
- Figure 4 shows a fourth form of apparatus suitable for carrying out the method of the invention;
- 2 shows the process flow assumed in the simulations of Examples 1 and 2.
- FIG. The process flow assumed in the simulation of Example 3 is shown.
- the method of the present invention is a method for producing para-xylene using a mixed gas of carbon dioxide or carbon monoxide or both of them and hydrogen as a main raw material, wherein the raw mixed gas containing the mixed gas is subjected to a reaction catalyst at high temperature and high pressure. and cooling the product gas mixture obtained in the reaction step to condense the high-boiling components to water containing water-soluble components.
- a spinel-structured catalyst composed of a composite oxide of zinc (or copper) and chromium can be suitably used as the catalyst for advancing the methanol synthesis reaction of formula (1).
- Zn/H--ZSM-5 zeolite can be suitably used as a catalyst for promoting the reaction and selectively synthesizing para-xylene.
- the outer surface of the Zn/H-ZSM-5 zeolite is coated with a silicon-containing compound (preferably one such as silicalite-1 which has the same lattice structure as ZSM-5 zeolite and does not have acid sites), , the proportion of para-xylene in the product mixture can be increased. If these catalysts are mixed and used, the reaction of formula (1) and the reaction of formula (2) proceed continuously or in parallel, so that a product containing para-xylene can be produced in a single reactor. .
- chromium in the reaction step of the present invention, chromium , a catalyst containing at least one metal oxide appropriately selected from zinc and copper, and H-ZSM-5 zeolite appropriately doped with zinc or the like coated with a silicon-containing compound such as silicalite-1. It may be used in combination with a catalyst containing.
- H-ZSM-5 zeolite doped (ion-exchanged) with proton type or various ions is generically referred to as ZSM-5 zeolite, but para-xylene is selectively used in the reaction of formula (2).
- ZSM-5 zeolite coated with a silicon-containing compound such as silicalite-1 for synthesis, it is preferable to use ZSM-5 zeolite coated with a silicon-containing compound such as silicalite-1.
- gas phase components including unreacted carbon dioxide and carbon monoxide
- the ratio of carbon and the content of other components should be considered at the reactor inlet.
- One of the objects of the present invention is to contribute to the reduction of carbon dioxide concentration in the atmosphere.
- Carbon dioxide separated from exhaust gas from equipment that burns the generated fuel carbon dioxide separated in ammonia production equipment, ethylene glycol production equipment and hydrogen production equipment, separation from generated gas of coal, biomass and waste gasification furnaces It is preferable to use carbon dioxide separated from carbon dioxide, carbon dioxide separated from blast furnaces in steel plants, carbon dioxide separated from air in the atmosphere, and the like.
- hydrogen generated by electrolyzing water using electricity generated by renewable energy such as solar power, wind power, hydraulic power, geothermal power, biomass, or nuclear power is used. is preferred.
- the raw material mixed gas includes synthesis gas produced by a gasification furnace, off-gas discharged from a blast furnace in a steel plant, off-gas separated in a hydrogen production unit, and synthesis gas produced by co-electrolysis of water and carbon dioxide.
- synthesis gas produced by the reverse shift reaction of hydrogen and carbon dioxide, or the like is preferably used.
- the type of reactor should be one that allows gas-solid contact operation between the raw material mixed gas (gas) and the reaction catalyst (solid) and can maintain the desired temperature and pressure (packed bed, moving bed, fluidized bed, etc.). Although not particularly limited, a packed bed is preferable in terms of high contact efficiency, less channeling, and less mechanical damage to the catalyst particles.
- the catalyst filling amount and gas flow rate can be set as appropriate, but in the case of a packed bed type, it is preferable to set the catalyst filling amount and gas flow rate so that the space velocity (SV) is about 100 to 10000/hr based on the empty column. . Further, it is preferable to set the reaction temperature to about 250° C. to 600° C. and the reaction pressure to about 1 to 10 MPaG.
- the gas mixture containing para-xylene obtained in the reaction step is cooled in the subsequent separation step to condense the high boiling point components containing para-xylene.
- the liquid phase is further divided into an aqueous phase containing water-soluble components such as water and alcohol produced by the reaction, and an oil phase containing aromatic components (including paraxylene) immiscible with water. That is, from the bottom side of the gas-liquid separator, the liquid phase is divided into the lower layer, the oil phase, and the upper layer, the gas phase. You can pull it out.
- the liquid phase may be separated into an oil phase and an aqueous phase by a separation method such as centrifugation or sedimentation using a difference in specific gravity.
- the oil phase extracted from the gas-liquid separator contains other aromatic compounds such as benzene, toluene, ortho-xylene, meta-xylene, ethylbenzene, and trimethylbenzene in addition to the target compound, para-xylene. to separate them. For this reason, the oil phase is first distilled to remove benzene and toluene, which have lower boiling points than xylenes (ortho-xylene, meta-xylene, para-xylene, and ethylbenzene), and trimethylbenzene, which has a higher boiling point than xylenes. Separation as a high boiling point fraction is preferred.
- the boiling points of ortho-xylene, meta-xylene, and ethylbenzene are close to those of para-xylene, so it is inefficient to separate them only by distillation. Therefore, it is preferable to obtain the xylene fraction as a mixture thereof, and then adsorb and separate this mixture with zeolite.
- zeolite Since zeolite has pores with the molecular size of para-xylene, it hardly adsorbs ortho-xylene, meta-xylene, and ethylbenzene, which adsorb para-xylene well, and functions as a molecular sieve. That is, components other than para-xylene (ortho-xylene, meta-xylene, and other impurities) pass through the adsorption tower without being adsorbed by zeolite. It can be concentrated and purified.
- a xylene mixture is passed through an adsorption tower packed with an adsorbent (zeolite) to adsorb only paraxylene, and the adsorbent containing the paraxylene is brought into contact with the desorbent to desorb the paraxylene.
- a high-concentration para-xylene can be obtained by separating the para-xylene mixture in a distillation column.
- the gas phase extracted from the gas-liquid separator contains unreacted gases such as carbon dioxide, carbon monoxide and hydrogen, it is returned to the inlet side of the heater in the preceding stage of the reactor and circulated to the reactor.
- the gas phase contains lower alkanes having 1 to 4 carbon atoms (mainly methane), which are by-products. These lower alkanes gradually accumulate in the gas in the circulation path. Therefore, part of the gas in the circulation must be purged to the outside. By purging about 1 to 20% by volume of the entire circulation, the lower alkane concentration in the circulation can be maintained below 40% by volume.
- Ortho-xylene and meta-xylene remaining after obtaining high-purity para-xylene in the purification process can be partially converted to para-xylene by isomerization treatment and then returned to the inlet side of the purification process.
- the mixture of ortho-xylene and meta-xylene after separation of para-xylene is heated and passed through a reactor packed with a zeolite catalyst for isomerization.
- toluene and trimethylbenzene separated by distillation can be partially converted to a xylene mixture containing paraxylene by disproportionation treatment, and then returned to the inlet side of the purification process.
- a mixture containing toluene and trimethylbenzene is heated and passed through a reactor filled with a zeolite catalyst for disproportionation treatment.
- the gas purged in the circulation process contains carbon monoxide, hydrogen, and lower alkanes in addition to unreacted carbon dioxide, so it can be used as a fuel gas.
- the hydrogen contained in this purge gas can be separated by membrane separation or adsorption separation (Pressure Swing Adsorption, etc.), and only hydrogen can be recovered and recycled from the purge gas. preferable.
- carbon dioxide and carbon monoxide may be recovered from the purge gas. These gases can be separated and recovered from the purge gas by membrane separation using an appropriate membrane.
- Heating of the raw material mixed gas at the inlet side of the reactor and cooling of the product gas mixture at the outlet side of the reactor can be performed by using the heat recovered by cooling the product gas mixture for heating the raw material mixed gas. , which is preferable because the energy required for heating and cooling can be saved. Further, when sufficient cooling of the product gas mixture cannot be expected only by heat exchange, the product gas mixture whose temperature has been lowered to some extent by the heat exchange operation may be further cooled.
- FIG. 1 shows an example of an apparatus suitable for carrying out the method of the invention.
- the raw material mixed gas is heated by the heater 1 and then introduced into the reactor 2 .
- a catalyst containing an oxide of at least one metal selected from chromium, zinc and copper and a catalyst containing ZSM-5 zeolite coated with silicalite-1 are mixed and filled to form a mixed catalyst.
- the raw material gas mixture introduced into the reactor reacts with the mixed catalyst under a high temperature and high pressure atmosphere of 250° C. to 600° C. and 1 to 10 MPaG in the reactor to contain para-xylene. It becomes a product gas mixture (reaction step).
- the obtained product gas mixture is cooled to near normal temperature by the cooler 3 and introduced into the gas-liquid separator 4, and the condensed high boiling point components are separated into the aqueous phase (lower layer) containing water-soluble components in the gas-liquid separator. It is separated into three layers: an oil phase (middle layer) containing paraxylene and a gas phase (upper layer) containing unreacted gas (separation step).
- the oil phase forming the middle layer is extracted from the gas-liquid separator 4, it is first subjected to a refining step 5 that combines distillation separation, adsorption separation, isomerization treatment, and disproportionation treatment to obtain the desired high-purity para-xylene. It can be obtained, and the amount of para-xylene can be increased from the outlet of the gas-liquid separator 4 (purification step).
- the raw material mixed gas at the inlet side of the heater 1 is used as a circulating gas. and is heated again and returned to reactor 2. Part of the circulating gas is purged out of the system in order to prevent accumulation of lower alkanes (circulating step).
- the aqueous phase that forms the lower layer is sent to the wastewater treatment device 6 and treated to remove water-soluble organic matter.
- the purge gas from which a part of the circulating gas is extracted is effectively used as a fuel gas as a heat source for a nearby heating furnace.
- FIG. 2 shows another example of apparatus suitable for carrying out the method of the invention.
- the apparatus shown in FIG. 2 has the same basic configuration as the apparatus shown in FIG. 1, but differs in that hydrogen is separated from the purge gas and combined with the circulating gas.
- FIG. 2 will be described below, but the description of the same configuration as in FIG. 1 will be omitted.
- the purge gas contains a small amount of reaction by-products such as lower alkyls (methane, ethane, propane, etc.). Since these lower alkyls do not participate in the para-xylene synthesis reaction in the reactor, they must be removed as a purge gas to prevent them from accumulating in the circulation gas.
- the hydrogen contained in the purge gas can be recovered by the hydrogen separator 7 consisting of membrane separation using a hydrogen separation membrane or adsorption separation (Pressure Swing Adsorption, etc.). By joining the circulating gas and returning it to the reactor, it can be reused as a raw material.
- FIG. 3 shows yet another example of apparatus suitable for carrying out the method of the invention.
- the apparatus shown in FIG. 3 has the same basic configuration as the apparatus shown in FIG. FIG. 3 will be described below, but the description of the same configuration as in FIG. 1 will be omitted.
- One of the purposes of the present invention is to reduce the concentration of carbon dioxide in the atmosphere by using carbon dioxide as a raw material for the production of paraxylene. Therefore, the carbon footprint and associated energy consumption in the process of the present invention should be minimized.
- the apparatus of FIG. 3 reduces the amount of heat sources (steam, fuel gas, etc.) that must be supplied from the outside for heating the raw material mixed gas.
- the flow path for introducing the raw material mixed gas into the reactor and the flow path for discharging the product gas mixture from the reactor are combined via a heat exchanger 8, and the heat quantity obtained by cooling the product gas mixture is transferred to the raw material. It is configured to be used for heating mixed gas.
- a normal shell-and-tube heat exchanger may be used as the heat exchanger.
- FIG. 4 shows yet another example of apparatus suitable for carrying out the method of the invention.
- the device in FIG . 4 has the same basic configuration as the device in FIG . , in that it is recycled as part of the raw material gas.
- the CO 2 after burning the purge gas is also recovered as a raw material, which greatly contributes to the reduction of the overall carbon dioxide emissions.
- Example 1 Assuming the process flow of the configuration shown in FIG. 5, a simulation was performed for the production of 12,500 kg/h (100,000 tons/year) of para-xylene using a raw material mixed gas composed of carbon dioxide and hydrogen. The simulation results are shown in Table 1 as temperature, pressure, flow rate and composition at points 1 to 7 in FIG.
- Example 2 Assuming the process flow of the configuration shown in FIG. 5, a simulation was performed for the production of 12,500 kg/h (100,000 tons/year) of para-xylene using a raw material mixed gas composed of carbon monoxide and hydrogen. The simulation results are shown in Table 2 as temperature, pressure, flow rate and composition at points 1 to 7 in FIG.
- Example 3 Assuming the process flow of the configuration shown in FIG. 6, a simulation was performed for the production of 12,500 kg/h (100,000 tons/year) of para-xylene using a raw material mixed gas composed of carbon dioxide and hydrogen. The results of the simulation are shown in Table 3 as temperature, pressure, flow rate and composition at points 1 to 8 in FIG.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Compounds Of Unknown Constitution (AREA)
Abstract
Description
一酸化炭素と水素との混合物すなわち合成ガスからパラキシレンを含む生成物を製造する場合には、式(1)に示すように一酸化炭素の水素化によりメタノールやジメチルエーテルが生成し、こうして生成したメタノールやジメチルエーテルが式(2)に示すように低級オレフィンを経由して各種芳香族化合物の混合物を生成するとされている。
2CO+2H2 ⇒ 2CH3OH (⇔ CH3OCH3+H2O) (1)
CH3OCH3 ⇒ C2H4、C3H6等 ⇒ 各種芳香族化合物 (2)
CO2+3H2 ⇒ CH3OH+H2O (3)
すなわち、メタノールが生成される際に副生される水の量が多くなるため、特許文献2に記載されるように、式(3)の反応を進行させる触媒として上記亜鉛(または銅)とクロムの複合酸化物からなる触媒ではなく(亜鉛または銅を含まない)酸化クロムからなる触媒を用い、式(2)の反応を進行させる触媒として亜鉛ドープを行わないプロトン型のH-ZSM-5を用いる方がパラキシレンの収率を上げることができる。
反応工程で得られたパラキシレンを含むガス混合物は、これを後段の分離工程で冷却することにより、パラキシレンを含む高沸点成分を凝縮させる。液相はさらに反応で生成した水やアルコールなどの水溶性成分を含む水相と水と混和しない芳香族成分等(パラキシレンを含む)を含む油相とに分かれる。すなわち、気液分離器の底側から順に下層をなす水相と中層をなす油相と上層をなす気相とに分かれるため、各相の流体をそれぞれの層が形成されている位置から装置外部へ抜き出せばよい。あるいは、気液混合物をまず気相と液相とに分けた後、液相を遠心分離や沈降分離などの比重差を利用した分離法で油相と水相とに分離してもよい。
気液分離器から抜き出された油相は、目的化合物であるパラキシレン以外に、ベンゼン、トルエン、オルトキシレン、メタキシレン、エチルベンゼン、トリメチルベンゼンなどといった他の芳香族化合物も含むため、必要に応じてこれらを分離する。このため、油相に対しては先ず蒸留操作によりキシレン類(オルトキシレン、メタキシレン、パラキシレン、エチルベンゼン)より沸点が低いベンゼンやトルエンを低沸点分として、またキシレン類より沸点が高いトリメチルベンゼンを高沸点分として分離することが好ましい。一方、オルトキシレン、メタキシレン、エチルベンゼンの沸点はパラキシレンと近いので、蒸留操作のみでこれらを分離するのは非効率的である。そこで、キシレン留分はこれらの混合物として取得し、次いで、この混合物をゼオライトで吸着分離することが好ましい。
気液分離器から抜き出された気相は、未反応ガスである二酸化炭素、一酸化炭素および水素を含むため、これを反応器の前段である加熱器の入口側に戻して反応器に循環させる。しかしながら、気相にはこれらの未反応ガス以外に、副生物である炭素数1~4の低級アルカン(主にメタン)が含まれており、こうした低級アルカンは反応器内でのパラキシレン合成反応には殆ど与らないため、循環路内のガスにこれらの低級アルカンが次第に蓄積してくる。そこで、循環路内のガスの一部は外部にパージする必要がある。循環量全体の1~20体積%程度をパージすれば循環路中の低級アルカン濃度を40体積%未満に維持できる。
パラキシレンを増産するために、必要に応じて、異性化処理、不均化処理をすることが望ましい。精製工程で高純度パラキシレンを取得した後に残るオルトキシレンおよびメタキシレンは、異性化処理を行って一部をパラキシレンに変換した後、精製工程の入口側に戻すことができる。具体的には、パラキシレンを分離した後のオルトキシレンおよびメタキシレンの混合物を加熱し、ゼオライト触媒を詰めた反応器に通すことで異性化処理を行う。
図1は、本発明の方法を実施するのに適した装置の一例を示す。本発明の方法において原料混合ガスは、加熱器1で加熱された後、反応器2に導入される。反応器2内にはクロム、亜鉛および銅から選択される少なくとも1種の金属の酸化物を含む触媒とシリカライト-1で被覆したZSM-5系ゼオライトを含む触媒とが混合充填されて混合触媒層を形成しており、反応器に導入された原料ガス混合物は反応器内で250℃~600℃および1~10MPaGの高温高圧雰囲気下に混合触媒と接触することにより反応してパラキシレンを含む生成ガス混合物になる(反応工程)。
図2は、本発明の方法を実施するのに適した装置の別の例を示す。図2の装置は、基本的な構成は図1の装置と同じだが、パージガスから水素を分離して循環ガスに合流させる点が異なる。以下、図2について説明するが、図1と同一の構成については説明を省略する。
図3は、本発明の方法を実施するのに適した装置の更に別の例を示す。図3の装置は、基本的な構成は図1の装置と同じだが、原料混合ガスの加熱(予熱)と生成ガス混合物の冷却を熱交換器8により行う点が異なる。以下、図3について説明するが、図1と同一の構成については説明を省略する。
図4は、本発明の方法を実施するのに適した装置のまた更に別の例を示す。図4の装置は、基本的な構成は図3の装置と同じだが、循環ガスからのパージガスを近くの加熱炉9などで燃焼させた後にCO2回収装置10でCO2のみを分離回収して、原料ガスの一部としてリサイクルする点が異なる。
図5に示す構成のプロセスフローを想定して、二酸化炭素と水素からなる原料混合ガスを用いてパラキシレンを12500kg/h(10万トン/年)製造する場合のシミュレーションを行った。シミュレーションの結果を、図5の1~7の各点における温度、圧力、流量及び組成として表1に示す。
図5に示す構成のプロセスフローを想定して、一酸化炭素と水素からなる原料混合ガスを用いてパラキシレンを12500kg/h(10万トン/年)製造する場合のシミュレーションを行った。シミュレーションの結果を、図5の1~7の各点における温度、圧力、流量及び組成として表2に示す。
図6に示す構成のプロセスフローを想定して、二酸化炭素と水素からなる原料混合ガスを用いてパラキシレンを12500kg/h(10万トン/年)製造する場合のシミュレーションを行った。シミュレーションの結果を、図6の1~8の各点における温度、圧力、流量及び組成として表3に示す。
2 反応器
3 冷却器
4 気液分離器
5 精製工程
6 排水処理装置
7 水素分離器
8 熱交換器
9 加熱炉
10 CO2回収装置
Claims (11)
- 二酸化炭素または一酸化炭素またはその両方と水素との混合ガスを主原料としてパラキシレンを製造する方法であって、該混合ガスを含む原料混合ガスを高温高圧下で反応触媒に接触させることにより反応させてパラキシレンを含む生成ガス混合物を取得する反応工程と、該反応工程で得られた生成ガス混合物を冷却することにより高沸点成分を凝結させて水溶性成分を含む水相とキシレン混合物を含む油相と未反応ガスを含む気相とに分離する分離工程と、該分離工程で分離された気相の少なくとも一部を原料混合ガスに混合する循環工程とを含むことを特徴とする方法。
- 前記反応工程で用いられる反応触媒が、クロム、亜鉛および銅から選択される少なくとも1種の金属の酸化物を含む触媒とケイ素を含む化合物で表面を被覆したZSM-5系ゼオライトを含む触媒との混合物を含む混合触媒である、請求項1に記載の方法。
- 前記反応工程において、原料混合ガスを反応温度250~600℃、反応圧力1~10MPaGで反応触媒に接触させる、請求項1又は2に記載の方法。
- 前記分離工程において、生成ガス混合物を冷却して得られた気液混合物を、まず液相と気相とに分離し、次いで分離された液相を比重差を利用した分離法で油相と水相とに分離する、請求項1~3のいずれか一項に記載の方法。
- 前記循環工程において、循環ガスの一部をパージし、パージしたガスから分離回収した水素を原料混合ガスに混合する、請求項1~4のいずれか一項に記載の方法。
- 前記循環工程において、パージガスから水素を回収する方法として、PSA(Pressure Swing Adsorption)または水素分離膜を用いる、請求項5に記載の方法。
- 前記循環工程において、循環ガスの一部をパージし、パージガスを燃料ガスとして有効利用する、請求項1~6のいずれか一項に記載の方法。
- 前記原料混合ガスと前記生成ガス混合物とを熱交換させた後、該原料混合ガスを反応工程に移送する、請求項1~7のいずれか一項に記載の方法。
- 火力発電所もしくは加熱炉の燃焼排ガスから分離された二酸化炭素、アンモニア製造装置、エチレングリコール製造装置もしくは水素製造装置において分離された二酸化炭素、石炭、バイオマスもしくはゴミのガス化炉の生成ガスから分離された二酸化炭素、製鉄所の高炉から分離された二酸化炭素、または大気中の空気から分離した二酸化炭素を、原料混合ガスを構成する二酸化炭素の少なくとも一部として用いる、請求項1~8のいずれか一項に記載の方法。
- 太陽光、風力、水力、地熱、バイオマスまたは原子力により発生した電力を用いて水を電気分解することで生成された水素を、原料混合ガスを構成する水素の少なくとも一部として用いる、請求項1~9のいずれか一項に記載の方法。
- ガス化炉により生成された合成ガス、製鉄所の高炉から排出されるオフガス、水素製造装置において分離されたオフガス、水と二酸化炭素の共電解により生成された合成ガス、または水素と二酸化炭素の逆シフト反応により生成された合成ガスを、原料混合ガスの少なくとも一部として用いる、請求項1~10のいずれか一項に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3217855A CA3217855A1 (en) | 2021-04-30 | 2022-03-23 | Method for producing para-xylene |
EP22782809.2A EP4119530A4 (en) | 2021-04-30 | 2022-03-23 | PROCESS FOR PRODUCING PARAXYLENE |
AU2022267952A AU2022267952A1 (en) | 2021-04-30 | 2022-03-23 | Method of producing para-xylene |
US18/556,902 US20240217893A1 (en) | 2021-04-30 | 2022-03-23 | Method for producing paraxylene |
CN202280031378.0A CN117222610A (zh) | 2021-04-30 | 2022-03-23 | 对二甲苯的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021078065A JP7321207B2 (ja) | 2021-04-30 | 2021-04-30 | パラキシレンの製造方法 |
JP2021-078065 | 2021-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022230467A1 true WO2022230467A1 (ja) | 2022-11-03 |
Family
ID=83847925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/013653 WO2022230467A1 (ja) | 2021-04-30 | 2022-03-23 | パラキシレンの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240217893A1 (ja) |
EP (1) | EP4119530A4 (ja) |
JP (1) | JP7321207B2 (ja) |
CN (1) | CN117222610A (ja) |
AU (1) | AU2022267952A1 (ja) |
CA (1) | CA3217855A1 (ja) |
WO (1) | WO2022230467A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024203963A1 (ja) * | 2023-03-24 | 2024-10-03 | 日本製鉄株式会社 | パラキシレン製造用触媒、パラキシレン製造用触媒の製造方法、及びパラキシレンの製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023094259A (ja) * | 2021-12-23 | 2023-07-05 | 千代田化工建設株式会社 | パラキシレンの製造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5835128A (ja) * | 1981-08-27 | 1983-03-01 | Teijin Yuka Kk | p−キシレンの改良製造法 |
JPH08157399A (ja) * | 1994-10-03 | 1996-06-18 | Sanyo Sekiyu Kagaku Kk | 芳香族炭化水素の製造方法 |
JP2009120897A (ja) * | 2007-11-14 | 2009-06-04 | Jfe Steel Corp | 高炉ガスの利用方法 |
JP2015507612A (ja) * | 2011-12-08 | 2015-03-12 | ジーティーシー テクノロジー ユーエス, エルエルシー | 芳香族化合物のメチル化によるキシレンの製造 |
JP2015189721A (ja) * | 2014-03-28 | 2015-11-02 | 千代田化工建設株式会社 | 天然ガス処理物の製造方法及び天然ガス処理プラント |
JP2019205969A (ja) | 2018-05-29 | 2019-12-05 | 日本製鉄株式会社 | パラキシレン製造用触媒、パラキシレン製造用触媒の製造方法、およびパラキシレンの製造方法 |
JP2020535966A (ja) | 2017-09-30 | 2020-12-10 | ハイケム株式会社 | 合成ガスからパラキシレンを直接製造する触媒及びその製造方法と使用 |
JP2021078065A (ja) | 2019-11-13 | 2021-05-20 | Necプラットフォームズ株式会社 | 基地局装置、制御方法及び制御プログラム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023094259A (ja) * | 2021-12-23 | 2023-07-05 | 千代田化工建設株式会社 | パラキシレンの製造方法 |
-
2021
- 2021-04-30 JP JP2021078065A patent/JP7321207B2/ja active Active
-
2022
- 2022-03-23 CN CN202280031378.0A patent/CN117222610A/zh active Pending
- 2022-03-23 WO PCT/JP2022/013653 patent/WO2022230467A1/ja active Application Filing
- 2022-03-23 US US18/556,902 patent/US20240217893A1/en active Pending
- 2022-03-23 AU AU2022267952A patent/AU2022267952A1/en active Pending
- 2022-03-23 CA CA3217855A patent/CA3217855A1/en active Pending
- 2022-03-23 EP EP22782809.2A patent/EP4119530A4/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5835128A (ja) * | 1981-08-27 | 1983-03-01 | Teijin Yuka Kk | p−キシレンの改良製造法 |
JPH08157399A (ja) * | 1994-10-03 | 1996-06-18 | Sanyo Sekiyu Kagaku Kk | 芳香族炭化水素の製造方法 |
JP2009120897A (ja) * | 2007-11-14 | 2009-06-04 | Jfe Steel Corp | 高炉ガスの利用方法 |
JP2015507612A (ja) * | 2011-12-08 | 2015-03-12 | ジーティーシー テクノロジー ユーエス, エルエルシー | 芳香族化合物のメチル化によるキシレンの製造 |
JP2015189721A (ja) * | 2014-03-28 | 2015-11-02 | 千代田化工建設株式会社 | 天然ガス処理物の製造方法及び天然ガス処理プラント |
JP2020535966A (ja) | 2017-09-30 | 2020-12-10 | ハイケム株式会社 | 合成ガスからパラキシレンを直接製造する触媒及びその製造方法と使用 |
JP2019205969A (ja) | 2018-05-29 | 2019-12-05 | 日本製鉄株式会社 | パラキシレン製造用触媒、パラキシレン製造用触媒の製造方法、およびパラキシレンの製造方法 |
JP2021078065A (ja) | 2019-11-13 | 2021-05-20 | Necプラットフォームズ株式会社 | 基地局装置、制御方法及び制御プログラム |
Non-Patent Citations (2)
Title |
---|
PEIPEI ZHANG ET AL.: "Chemical Science", THE ROYAL SOCIETY OF CHEMISTRY, vol. 8, October 2017 (2017-10-01), pages 7941 - 7946 |
See also references of EP4119530A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024203963A1 (ja) * | 2023-03-24 | 2024-10-03 | 日本製鉄株式会社 | パラキシレン製造用触媒、パラキシレン製造用触媒の製造方法、及びパラキシレンの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4119530A1 (en) | 2023-01-18 |
AU2022267952A1 (en) | 2023-11-09 |
US20240217893A1 (en) | 2024-07-04 |
CA3217855A1 (en) | 2022-11-03 |
JP7321207B2 (ja) | 2023-08-04 |
CN117222610A (zh) | 2023-12-12 |
EP4119530A4 (en) | 2023-09-27 |
JP2022171430A (ja) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2738270C (en) | Production of hydrocarbon liquids | |
CN102686540B (zh) | 从合成气中生产烃特别是汽油的方法 | |
RU2524720C2 (ru) | Комплексная установка для переработки газа | |
WO2022230467A1 (ja) | パラキシレンの製造方法 | |
JP2009519371A (ja) | 天然ガスからの炭化水素の生成 | |
JP2009179591A (ja) | メタノールの製造方法 | |
WO2018085614A1 (en) | Oxidative dehydrogenation of alkanes to alkenes, and related system | |
WO2006087971A1 (ja) | 芳香族化合物の製造方法及び水素化芳香族化合物の製造方法 | |
WO2023120628A1 (ja) | パラキシレンの製造方法 | |
RU2203214C1 (ru) | Способ получения метанола | |
JP2011084528A (ja) | プロピレンの製造方法 | |
Sedov et al. | Development of technologies for more efficient deep processing of natural gas | |
EP4059596A1 (en) | Process for methanol production from co2 with water removal | |
JP7222034B2 (ja) | 芳香族化合物の製造方法 | |
CN111559949B (zh) | 一种利用富碳天然气增产对二甲苯的系统及方法 | |
US20230312444A1 (en) | Method for producing methanol | |
RU2472765C1 (ru) | Способ получения метанола | |
EP2751024B1 (en) | Integration of a fischer-tropsch system and syn-gas generation | |
US20240010586A1 (en) | Methanol production method | |
WO2024215524A1 (en) | A process and apparatus for regenerating catalyst from a methanol to olefins process | |
JP2024113598A (ja) | ポリエチレンテレフタレートの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022782809 Country of ref document: EP Effective date: 20221012 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22782809 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18556902 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 3217855 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2022267952 Country of ref document: AU Ref document number: 2022267952 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2301007005 Country of ref document: TH Ref document number: P6002784/2023 Country of ref document: AE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280031378.0 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2022267952 Country of ref document: AU Date of ref document: 20220323 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202347079228 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 523451328 Country of ref document: SA |