[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022227669A1 - 一种磷酸铁前驱体及其制备方法和应用 - Google Patents

一种磷酸铁前驱体及其制备方法和应用 Download PDF

Info

Publication number
WO2022227669A1
WO2022227669A1 PCT/CN2021/142593 CN2021142593W WO2022227669A1 WO 2022227669 A1 WO2022227669 A1 WO 2022227669A1 CN 2021142593 W CN2021142593 W CN 2021142593W WO 2022227669 A1 WO2022227669 A1 WO 2022227669A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
iron phosphate
phosphate
source
preparation
Prior art date
Application number
PCT/CN2021/142593
Other languages
English (en)
French (fr)
Inventor
李玲
李长东
阮丁山
唐盛贺
秦存鹏
殷磊
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to HU2200339A priority Critical patent/HUP2200339A1/hu
Publication of WO2022227669A1 publication Critical patent/WO2022227669A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium ion battery materials, and in particular relates to an iron phosphate precursor and a preparation method and application thereof.
  • lithium iron phosphate occupies a large position in the battery matching of new energy special vehicles (including new energy logistics vehicles, new energy sanitation vehicles, and other special vehicles for new energy) due to its high safety. Proportion. Lithium iron phosphate has the advantages of good safety performance, long cycle life, environmental protection and safety, low manufacturing cost and high energy density, especially good safety performance.
  • the electrochemical performance of the positive electrode material of lithium iron phosphate battery is relatively stable. During the charging and discharging process, the structure of the battery is not easy to change, and there is very little combustion and explosion. Even under special conditions such as short circuit, overcharge, extrusion, and acupuncture, it is still relatively stable. Safety.
  • Iron phosphate is the precursor of lithium iron phosphate.
  • the commonly used synthesis method of iron phosphate is the precipitation method, that is, ferrous sulfate, hydrogen peroxide and ammonium dihydrogen phosphate are reacted to form iron phosphate precipitation.
  • the reaction process also requires ammonia water to control pH.
  • the whole process of the reaction method is complicated to operate, takes a long time, and generates a large amount of ammonia nitrogen wastewater, which is difficult to treat and increases the difficulty of environmental protection.
  • high compaction density iron phosphate is also a development direction, so corresponding high compaction iron phosphate precursors are required.
  • the tap density of the current iron phosphate precursor is not high, generally not more than 1.0 g/cm 3 .
  • the specific surface area of the current iron phosphate precursor is also relatively high, usually about 50m 2 /g. In order to reduce the specific surface area, most iron phosphate manufacturers use high temperature above 800 °C and prolong the sintering time to melt the iron phosphate, thereby making it anhydrous.
  • the specific surface area of iron phosphate is about 1.5-3m 2 /g, so as to reduce the internal pores of iron phosphate, but this process leads to increased energy consumption, and also causes serious sintering and agglomeration of materials, and the subsequent crushing process is difficult. Greatly reduce the production efficiency of enterprises.
  • the present invention discloses an environment-friendly and simple synthesis method, thereby preparing an iron phosphate precursor with high compaction density and low specific surface area.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention provides an iron phosphate precursor and its preparation method and application.
  • the iron phosphate precursor has high compacted density and low specific surface area, the tapped density can reach 1 g/cm 3 , and the specific surface area is less than 3 m 2 /g .
  • the present invention adopts the following technical solutions:
  • An iron phosphate precursor the microscopic morphology of the iron phosphate precursor is spherical, the particle size D50 is 10-20 ⁇ m, the specific surface area is 1-3 m 2 /g, and the tap density is 1-1.5 g/cm 3 .
  • the iron phosphate precursor is mainly prepared from the following raw materials: an iron source and a phosphorus source; the molar ratio of the iron element in the iron source and the phosphorus element in the phosphorus source is (0.95-1.02):1; the iron phosphate
  • the precursor carries two crystal waters.
  • the phosphorus source is at least one of phosphoric acid, phosphorous acid, sodium hypophosphite, ammonium dihydrogen phosphate or ammonium phosphate.
  • the phosphorus source is phosphoric acid.
  • the iron source is one of iron powder, iron sheet, ferrous chloride, ferric chloride, ferrous sulfate, ferric nitrate or ferrous acetate.
  • the iron source is iron nitrate.
  • a preparation method of an iron phosphate precursor comprising the following steps:
  • ferric phosphate slurry is filtered to obtain ferric phosphate precipitation
  • the phosphorus source is at least one of phosphoric acid, phosphorous acid, sodium hypophosphite, ammonium dihydrogen phosphate or ammonium phosphate.
  • the phosphorus source is phosphoric acid.
  • the iron source is one of iron powder, iron sheet, ferrous chloride, ferric chloride, ferrous sulfate, ferric nitrate or ferrous acetate.
  • the iron source is one of iron powder, iron sheet, ferrous chloride, ferrous sulfate or ferrous acetate
  • an oxidant needs to be added after the iron source and the phosphorus source are mixed, and the oxidant is At least one of hydrogen peroxide, sodium peroxide and ammonium persulfate; more preferably hydrogen peroxide.
  • the iron source is iron nitrate.
  • the molar ratio of iron element and phosphorus element in the molten metal is (0.95-1.02):1, more preferably (0.965-0.99):1.
  • the substance used for adjusting the pH to -1 to 2.5 is sulfuric acid.
  • the pH is -0.2 to 1.0.
  • the stirring speed is 300-500 r/min, more preferably 350-450 r/min.
  • the temperature is raised to a temperature of 70-100°C, more preferably 80-95°C.
  • the drying temperature is 60-110°C, more preferably 90-100°C.
  • the washing times are 3-10 times.
  • the invention also provides the application of the iron phosphate precursor in the preparation of lithium ion batteries.
  • the present invention is by selecting ferric iron as iron source, then phosphoric acid is added to the ferric iron solution, and by controlling pH and reaction temperature, the morphology and particle size distribution of primary particles of iron phosphate are controlled, and the above-mentioned use adds phosphoric acid to ferric phosphate.
  • the initial pH of the system is very low, and then the reaction temperature is controlled at 70-100 ° C, which can form spherical dense primary particles and stack in an orderly manner.
  • Ferric phosphate water, the tap density of the ferric phosphate dihydrate is high, up to 1-1.5/cm 3 .
  • the specific surface area of the iron phosphate dihydrate prepared by the present invention is 1-3m 2 /g, because the specific surface area of the iron phosphate dihydrate is low, therefore, the required dehydration temperature in the post-processing operation is low, the energy consumption is low, and the production cost is low And the production efficiency is high, at the same time, the prepared iron phosphate has good processing performance, strong process controllability, simple and convenient operation, and is suitable for large-scale industrial production; and the synthesis process is simple and has no environmental protection problem, and does not need to treat ammonia nitrogen-containing wastewater.
  • Fig. 1 is the SEM image of the iron phosphate dihydrate of the embodiment of the present invention 1;
  • Fig. 2 is the XRD figure of the iron phosphate dihydrate of the embodiment of the present invention 1;
  • the slurry is filtered to obtain a filter residue, and then the filter residue is repeatedly washed with pure water 3 times to obtain a washed filter residue;
  • the slurry is filtered to obtain a filter residue, and then the filter residue is repeatedly washed with pure water 3 times to obtain a washed filter residue;
  • the slurry is filtered to obtain a filter residue, and then the filter residue is repeatedly washed with pure water 3 times to obtain a washed filter residue;
  • the slurry is filtered to obtain a filter residue, and then the filter residue is repeatedly washed with pure water 3 times to obtain a washed filter residue;
  • the preparation of the iron phosphate precursor of this comparative example includes the following steps:
  • a low-temperature preparation iron phosphate technological process comprises the following steps:
  • ferric phosphate dihydrate with large particle size, small specific surface area and large TD was prepared by the method of Examples 1-4 of the present invention.
  • the specific surface area of the ferric phosphate dihydrate prepared in Example 1-2 is lower than that of Comparative Example 1 and commercially available ferric phosphate, the energy consumption of subsequent calcination is lower, the particle size is larger than that of Comparative Example 1 and commercially available ferric phosphate, and vibration The solid density is much higher than that of Comparative Examples 1-2.
  • the reaction temperature of comparative example 1 is too low, need to add alkali to promote precipitation, adding alkali liquor precipitation can affect the primary particle stacking effect obtained, the primary particle stacking is not the same, will affect the specific surface area and compaction density of iron phosphate dihydrate.
  • Comparative Example 1 sodium salt wastewater is also generated, and the sodium salt wastewater needs to be treated.
  • the reaction temperature of Comparative Example 2 was too low to form a precipitate.
  • Fig. 1 is the SEM image of the iron phosphate dihydrate of Example 1 of the present invention; it can be seen from Fig. 1 that the embodiment has prepared spherical particle iron phosphate with good sphericity
  • Fig. 2 is the iron phosphate dihydrate of Example 1 of the present invention XRD pattern; from the XRD pattern in Figure 2, it can be seen that the preparation obtained in Example 1 is pure-phase iron phosphate dihydrate.
  • 3 is the SEM image of the iron phosphate dihydrate of Comparative Example 1 of the present invention; it can be seen from FIG. 3 that Comparative Example 1 is an iron phosphate formed by agglomeration of fine primary particles, so the specific surface area of the iron phosphate of Comparative Example 1 is large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于锂离子电池材料领域,公开了一种磷酸铁前驱体及其制备方法和应用,磷酸铁前驱体的微观形貌呈球状且粒径D50为10-20μm,比表面积为1-3m 2/g,振实密度为1-1.5g/cm 3。本发明通过选择三价铁作为铁源,再将磷酸加入三价铁溶液中,并通过控制pH和反应温度来控制磷酸铁一次粒子的形貌和粒度分布,上述采用将磷酸加入三价铁盐的方式,使得体系初始的pH很低,再将反应温度控制在70-100℃,可形成球状密实的一次粒子并有序堆叠,干燥后,可得到比表面积低和内部无空隙的二水磷酸铁,该二水磷酸铁的振实密度高,可达1-1.5/cm 3

Description

一种磷酸铁前驱体及其制备方法和应用 技术领域
本发明属于锂离子电池材料领域,具体涉及一种磷酸铁前驱体及其制备方法和应用。
背景技术
随着新能源汽车市场的火热,磷酸铁锂以其安全性较高,在新能源专用车(包含新能源物流车、新能源环卫车、新能源其他专用车)的电池配套中占据了较大比例。磷酸铁锂具有安全性能好、循环寿命长、环保安全、制造成本低、能量密度较高等优势,特别是啊安全性能好。磷酸铁锂电池正极材料电化学性能比较稳定,在充放电过程中,电池的结构不易发生变化,极少出现燃烧爆炸,即使在短路、过充、挤压、针刺等特殊条件下,依然比较安全。
磷酸铁是磷酸铁锂的前驱体,目前,磷酸铁常用的合成方法是沉淀法,即用硫酸亚铁、双氧水、磷酸二氢铵反应生成磷酸铁沉淀,反应过程还需要氨水调控pH。该反应方法整个流程操作繁琐、耗时较长并且会产生大量的氨氮废水,废水处理困难,增加环保难度。另一方面,随着对高能量密度的需求,高压实密度磷酸铁也是发展方向,因此需要相应的高压实磷酸铁前驱体。但是目前的磷酸铁前驱体振实密度都不高,一般都不超过1.0g/cm 3。还有目前的磷酸铁前驱体的比表面积也比较高,通常在50m 2/g左右,为了降低比表面积,多数磷酸铁厂家通过高温800℃以上并延长烧结时间使得磷酸铁熔融,进而使得无水磷酸铁的比表面积在1.5~3m 2/g左右,以此来减少磷酸铁内部孔洞,但该工艺导致能耗升高的同时,还会使得物料烧结、结块严重,后续破碎工序难度大,大大降低了企业生产效率。
为解决上述问题,本发明公开了一种环保简便的合成方法,从而制备一种具有高压实密度和低比表面积的磷酸铁前驱体。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明一种磷酸铁前驱体及其制备方法和应用,该磷酸铁前驱体具有高压实密度和低比表面积,振实密度可达1g/cm 3,比表面积小于3m 2/g。
为实现上述目的,本发明采用以下技术方案:
一种磷酸铁前驱体,所述磷酸铁前驱体的微观形貌呈球状且粒径D50为10-20μm,比表面积为1-3m 2/g,振实密度为1-1.5g/cm 3
优选地,所述磷酸铁前驱体主要由以下原料制得:铁源和磷源;所述铁源中铁元素和磷源中磷元素的摩尔比为(0.95~1.02):1;所述磷酸铁前驱体带两个结晶水。
优选地,所述磷源为磷酸、亚磷酸、次磷酸钠、磷酸二氢铵或磷酸铵中的至少一种。
更优选地,所述磷源为磷酸。
优选地,所述铁源为铁粉、铁皮、氯化亚铁、氯化铁、硫酸亚铁、硝酸铁或醋酸亚铁中的一种。
更优选地,所述铁源为硝酸铁。
一种磷酸铁前驱体的制备方法,包括以下步骤:
S1、将铁源和磷源混合,调节pH为-1~2.5,得到金属液;
S2、将所述金属液搅拌,升温,反应,得到磷酸铁浆料;
S3、将所述磷酸铁浆料过滤,得到磷酸铁沉淀;
S4、取所述磷酸铁沉淀洗涤,烘干,得到二水磷酸铁。
优选地,步骤S1中,所述磷源为磷酸、亚磷酸、次磷酸钠、磷酸二氢铵或磷酸铵中的至少一种。
更优选地,所述磷源为磷酸。
优选地,步骤S1中,所述铁源为铁粉、铁皮、氯化亚铁、氯化铁、硫酸亚铁、硝酸铁或醋酸亚铁中的一种。
优选地,当所述铁源为铁粉、铁皮、氯化亚铁、硫酸亚铁或醋酸亚铁中的一种时,所述铁源和磷源混合后还需添加氧化剂,所述氧化剂为双氧水、过氧化钠、过硫酸铵中的至少一种;进一步优选为双氧水。
更优选地,所述铁源为硝酸铁。
优选地,步骤S1中,所述金属液的铁元素和磷元素的摩尔比为(0.95~1.02):1,进一步优选为(0.965-0.99):1。
优选地,步骤S1中,所述调节pH为-1~2.5所使用的物质为硫酸。
优选地,步骤S1中,所述pH为-0.2~1.0。
优选地,步骤S2中,所述搅拌的速度为300-500r/min,进一步优选为350-450r/min。
优选地,步骤S2中,所述升温到温度为70-100℃,进一步优选为80-95℃。
优选地,步骤S4中,所述烘干的温度为60-110℃,进一步优选为90-100℃。
优选地,步骤S4中,所述洗涤的次数为3-10次。
本发明还提供所述的磷酸铁前驱体在制备锂离子电池中的应用。
相对于现有技术,本发明的有益效果如下:
1.本发明通过选择三价铁作为铁源,再将磷酸加入三价铁溶液中,并通过控制pH和反应温度来控制磷酸铁一次粒子的形貌和粒度分布,上述采用将磷酸加入三价铁盐的方式,使得体系初始的pH很低,再将反应温度控制在70-100℃,可形成球状密实的一次粒子并有序堆叠,干燥后,可得到比表面积低和内部无空隙的二水磷酸铁,该二水磷酸铁的振实密度高,可达1-1.5/cm 3
2.本发明制备的二水磷酸铁的比表面积为1-3m 2/g,由于二水磷酸铁的比表面积低,因此,后加工工序中所需脱水温度低,能耗低、生产成本低且生产效率高,同时,制得的磷酸铁的加工性能好,工艺可控性强,操作简便,适合于大规模工业化生产;而且该合成工艺简单且不存在环保问题,无需处理含氨氮废水。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的二水磷酸铁的SEM图;
图2为本发明实施例1的二水磷酸铁的XRD图;
图3为本发明对比例1的二水磷酸铁的SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例的磷酸铁前驱体的制备方法,包括以下步骤:
S1、选择硝酸铁和磷酸分别作为铁源和磷源,按铁源中铁元素和磷酸中磷元素摩尔比为0.965:1,将磷酸加入硝酸铁中,用硫酸调节pH为0,配置Fe 3+浓度为50g/L的金属液;
S2、将50L金属液加入反应釜中,在400r/min下升温到90℃,反应10h,得到浆液;
S3、将浆液过滤,得到滤渣,再用纯水进行反复洗涤滤渣3遍,得到洗涤后滤渣;
S4、将所得滤渣在100℃下烘干,烘干过程需要翻转几次,即得到二水磷酸铁前驱体。
实施例1所得二水磷酸铁产品的理化结果如下表1:
表1
Figure PCTCN2021142593-appb-000001
实施例2
本实施例的磷酸铁前驱体的制备方法,包括以下步骤:
S1、选择硝酸铁和磷酸分别作为铁源和磷源,按铁源中铁元素和磷酸中磷元素摩尔比为0.965:1,将磷酸加入硝酸铁中,用硫酸调节pH为0,配置Fe 3+浓度为50g/L的金属液;
S2、将50L金属液加入反应釜中,在400r/min下升温到85℃,反应15h,得到浆液;
S3、将浆液过滤,得到滤渣,再用纯水进行反复洗涤滤渣3遍,得到洗涤后滤渣;
S4、将所得滤渣在100℃下烘干,烘干过程需要翻转几次,即得到二水磷酸铁前驱体。
实施例3
本实施例的磷酸铁前驱体的制备方法,包括以下步骤:
S1、选择硫酸亚铁和磷酸分别作为铁源和磷源,按铁元素和磷酸元素摩尔比为 0.97:1,将磷酸加入硝酸铁中,并加入双氧水,用硫酸调节pH为0.5,配置Fe 3+浓度为56g/L的金属液;
S2、将50L金属液加入反应釜中,在400r/min下升温到90℃,反应12h,得到浆液;
S3、将浆液过滤,得到滤渣,再用纯水进行反复洗涤滤渣3遍,得到洗涤后滤渣;
S4、将所得滤渣在100℃下烘干,烘干过程需要翻转几次,即得到二水磷酸铁前驱体。
实施例4
本实施例的磷酸铁前驱体的制备方法,包括以下步骤:
S1、选择硝酸铁和磷酸分别作为铁源和磷源,按铁元素和磷酸元素摩尔比为0.97:1混合,用硫酸调节pH为0.5,将磷酸加入硝酸铁中,配置Fe 3+浓度为50g/L的金属液;
S2、将50L金属液加入反应釜中,在400r/min下升温到95℃,反应10h,得到浆液;
S3、将浆液过滤,得到滤渣,再用纯水进行反复洗涤滤渣3遍,得到洗涤后滤渣;
S4、将所得滤渣在100℃下烘干,烘干过程需要翻转几次,即得到二水磷酸铁前驱体。
对比例1
本对比例的磷酸铁前驱体制备,包括以下步骤:
(1)选择硝酸铁和磷酸分别作为铁源和磷源,按铁元素和磷酸元素摩尔比为0.965:1,将磷酸加入硝酸铁中,用硫酸调节pH为0,配置Fe 3+浓度为50g/L的金属液,氢氧化钠溶解配置为碱性溶液;
(2)将50L金属液加入反应釜中,在400r/min下升温到45℃,氢氧化钠作为沉淀剂缓慢加入反应釜中,反应完成后陈化5-10h;
(3)陈化完成后,将浆液过滤,得到滤渣,再用纯水进行反复洗涤3遍,得到洗涤后滤渣;
(4)将所得滤渣在100℃下烘干,烘干过程需要翻转几次,即得到二水磷酸铁前驱体。
对比例1所得二水磷酸铁前驱体的理化结果如下表2:
表2
Fe% P% Fe/P BET D50 振实密度
28.72 16.45 0.9681 43.1 5.52 0.6
对比例2
一种低温制备磷酸铁工艺过程,包括以下步骤:
(1)选择硫酸亚铁和磷酸分别作为铁源和磷源,按铁元素和磷酸元素摩尔比为0.97:1,将磷酸加入硫酸亚铁中,并加入双氧水,配置Fe 3+浓度为56g/L的金属液;
(2)将50L金属液加入反应釜中,在400r/min下升温到50℃,反应20h;
(3)反应20h后,出来浆液几乎保持金属液的颜色,将浆液过滤,几乎得不到滤渣,即几乎没有合成磷酸铁前驱体。
结果对比:
将实施例1-4和对比例1-2制备的磷酸铁进行对比,得到如表3所示的结果:
表3
Figure PCTCN2021142593-appb-000002
从表3可得,通过本发明实施例1-4的方法制备得到粒度大,比表面积小,TD(振实密度)大的二水磷酸铁。其中实施例1-2制备的二水磷酸铁的比表面积低于对比例1和市售的磷酸铁,后续煅烧的能耗较低,粒度较对比例1和市售磷酸铁大,还有振实密度远高于对比例1-2。对比例1的反应温度太低,需要加碱促进沉淀,添加碱液沉淀会 影响制得的一次粒子堆积效果,一次粒子堆积不一样,就会影响二水磷酸铁的比表面积和压实密度。对比例1还有钠盐废水产生,还需要处理钠盐废水。对比例2的的反应温度太低,无法生成沉淀。
图1为本发明实施例1的二水磷酸铁的SEM图;从图1可以看出实施例制备得到了球形度良好的球形颗粒磷酸铁,图2为本发明实施例1的二水磷酸铁的XRD图;从图2的XRD图谱可以看出实施例1制备所得为纯相二水磷酸铁。图3为本发明对比例1的二水磷酸铁的SEM图;从图3可以看出对比例1为细小一次粒子团聚而成的磷酸铁,因此对比例1的磷酸铁的比表面积大。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种磷酸铁前驱体,其特征在于,所述磷酸铁前驱体的微观形貌呈球状且粒径D50为10-20μm,比表面积为1-3m 2/g,振实密度为1-1.5g/cm 3
  2. 根据权利要求1中所述的磷酸铁前驱体,其特征在于,所述磷酸铁前驱体主要由以下原料制得:铁源和磷源;所述铁源中铁元素和磷源中磷元素的摩尔比为(0.95~1.02):1;所述磷酸铁前驱体带两个结晶水;所述磷源为磷酸、亚磷酸、次磷酸钠、磷酸二氢铵或磷酸铵中的至少一种;所述铁源为铁粉、铁皮、氯化亚铁、氯化铁、硫酸亚铁、硝酸铁或醋酸亚铁中的一种。
  3. 权利要求1-2任一项所述的磷酸铁前驱体的制备方法,其特征在于,包括以下步骤:
    S1、将铁源和磷源混合,调节pH为-1~2.5,得到金属液;
    S2、将所述金属液搅拌,升温,反应,得到磷酸铁浆料;
    S3、将所述磷酸铁浆料过滤,得到磷酸铁沉淀;
    S4、取所述磷酸铁沉淀洗涤,烘干,得到二水磷酸铁。
  4. 根据权利要求3所述的制备方法,其特征在于,步骤S1中,所述磷源为磷酸、亚磷酸、次磷酸钠、磷酸二氢铵或磷酸铵中的至少一种。
  5. 根据权利要求3所述的制备方法,其特征在于,步骤S1中,所述铁源为铁粉、铁皮、氯化亚铁、氯化铁、硫酸亚铁、硝酸铁或醋酸亚铁中的一种。
  6. 根据权利要求3所述的制备方法,其特征在于,当所述铁源为铁粉、铁皮、氯化亚铁、硫酸亚铁或醋酸亚铁中的一种时,所述铁源和磷源混合后还需添加氧化剂;所述氧化剂为双氧水、过氧化钠、过硫酸铵中的至少一种。
  7. 根据权利要求3中所述的制备方法,其特征在于,步骤S1中,所述金属液的铁元素和磷元素的摩尔比为(0.95~1.02):1;步骤S1中,所述调节pH为-1~2.5所使用的物质为硫酸。
  8. 根据权利要求3所述的制备方法,其特征在于,步骤S2中,所述搅拌的速度为300-500r/min。
  9. 根据权利要求3所述的制备方法,其特征在于,步骤S2中,所述升温的温度为 70-100℃;步骤S4中,所述烘干的温度为60-110℃。
  10. 权利要求1-2任一项所述的磷酸铁前驱体在制备锂离子电池中的应用。
PCT/CN2021/142593 2021-04-30 2021-12-29 一种磷酸铁前驱体及其制备方法和应用 WO2022227669A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HU2200339A HUP2200339A1 (hu) 2021-04-30 2021-12-29 Vas-foszfát prekurzor és annak elõállítási eljárása és alkalmazása

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110485737.7 2021-04-30
CN202110485737.7A CN113247876A (zh) 2021-04-30 2021-04-30 一种磷酸铁前驱体及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022227669A1 true WO2022227669A1 (zh) 2022-11-03

Family

ID=77224056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142593 WO2022227669A1 (zh) 2021-04-30 2021-12-29 一种磷酸铁前驱体及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN113247876A (zh)
HU (1) HUP2200339A1 (zh)
WO (1) WO2022227669A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838162A (zh) * 2022-12-21 2023-03-24 三一红象电池有限公司 磷酸钒铁钠正极材料及其制备方法
CN116002652A (zh) * 2022-12-30 2023-04-25 深圳市芭田生态工程股份有限公司 一种应用磷酸铁、磷酸锂制备的磷酸铁锂及其制备方法
CN116534824A (zh) * 2023-06-01 2023-08-04 云南云天化股份有限公司 一种连续氧化工艺制备磷酸铁的方法
CN116902946A (zh) * 2023-09-14 2023-10-20 北京林立新能源有限公司 一种用铁黑制备磷酸铁的方法
WO2024178933A1 (zh) * 2023-02-28 2024-09-06 湖北虹润高科新材料有限公司 高振实密度磷酸铁及其制备方法、磷酸铁锂

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113247876A (zh) * 2021-04-30 2021-08-13 广东邦普循环科技有限公司 一种磷酸铁前驱体及其制备方法和应用
CN114105115B (zh) * 2021-11-22 2023-09-19 青岛九环新越新能源科技股份有限公司 磷酸铁及磷酸铁锂的生产方法和应用
CN116101990B (zh) * 2022-09-07 2024-05-10 浙江华友钴业股份有限公司 磷酸铁和磷酸铁锂及其制备方法、电极及电池
CN116161634A (zh) * 2023-02-10 2023-05-26 贵州雅友新材料有限公司 一种磷酸铁的制备方法及其应用
CN117263153B (zh) * 2023-10-12 2024-08-23 金驰能源材料有限公司 一种多孔球形磷酸铁及其制备方法、金属磷酸盐

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237042A (zh) * 2008-02-26 2008-08-06 郑州瑞普生物工程有限公司 用于锂电池正极材料正磷酸铁的制备方法
CN108609595A (zh) * 2018-05-10 2018-10-02 湖南雅城新材料有限公司 磷酸铁及其制备方法和应用
CN110357057A (zh) * 2019-07-22 2019-10-22 湖南雅城新材料有限公司 一种片状磷酸铁及其制备方法与应用
CN110482512A (zh) * 2019-07-12 2019-11-22 乳源东阳光磁性材料有限公司 一种电池级磷酸铁的制备方法
CN111847417A (zh) * 2020-07-24 2020-10-30 中南大学 一种电池级水合磷酸铁的制备方法
CN111847416A (zh) * 2020-07-24 2020-10-30 中南大学 一种钛白副产硫酸亚铁制备水合磷酸铁的方法
CN113247876A (zh) * 2021-04-30 2021-08-13 广东邦普循环科技有限公司 一种磷酸铁前驱体及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237042A (zh) * 2008-02-26 2008-08-06 郑州瑞普生物工程有限公司 用于锂电池正极材料正磷酸铁的制备方法
CN108609595A (zh) * 2018-05-10 2018-10-02 湖南雅城新材料有限公司 磷酸铁及其制备方法和应用
CN110482512A (zh) * 2019-07-12 2019-11-22 乳源东阳光磁性材料有限公司 一种电池级磷酸铁的制备方法
CN110357057A (zh) * 2019-07-22 2019-10-22 湖南雅城新材料有限公司 一种片状磷酸铁及其制备方法与应用
CN111847417A (zh) * 2020-07-24 2020-10-30 中南大学 一种电池级水合磷酸铁的制备方法
CN111847416A (zh) * 2020-07-24 2020-10-30 中南大学 一种钛白副产硫酸亚铁制备水合磷酸铁的方法
CN113247876A (zh) * 2021-04-30 2021-08-13 广东邦普循环科技有限公司 一种磷酸铁前驱体及其制备方法和应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115838162A (zh) * 2022-12-21 2023-03-24 三一红象电池有限公司 磷酸钒铁钠正极材料及其制备方法
CN115838162B (zh) * 2022-12-21 2024-02-23 三一红象电池有限公司 磷酸钒铁钠正极材料及其制备方法
CN116002652A (zh) * 2022-12-30 2023-04-25 深圳市芭田生态工程股份有限公司 一种应用磷酸铁、磷酸锂制备的磷酸铁锂及其制备方法
WO2024178933A1 (zh) * 2023-02-28 2024-09-06 湖北虹润高科新材料有限公司 高振实密度磷酸铁及其制备方法、磷酸铁锂
CN116534824A (zh) * 2023-06-01 2023-08-04 云南云天化股份有限公司 一种连续氧化工艺制备磷酸铁的方法
CN116534824B (zh) * 2023-06-01 2024-01-19 云南云天化股份有限公司 一种连续氧化工艺制备磷酸铁的方法
CN116902946A (zh) * 2023-09-14 2023-10-20 北京林立新能源有限公司 一种用铁黑制备磷酸铁的方法
CN116902946B (zh) * 2023-09-14 2023-11-14 北京林立新能源有限公司 一种用铁黑制备磷酸铁的方法

Also Published As

Publication number Publication date
HUP2200339A1 (hu) 2023-04-28
CN113247876A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2022227669A1 (zh) 一种磷酸铁前驱体及其制备方法和应用
WO2022267420A1 (zh) 一种磷酸铁前驱体及其制备方法和应用
CN113044824B (zh) 磷酸铁废料循环再生的方法及其应用
CN110357057B (zh) 一种片状磷酸铁及其制备方法与应用
CN112624076A (zh) 一种磷酸铁的制备方法及其应用
JP2015525182A (ja) グラフェン基LiFePO4/C複合材料の製造方法
CN111348637B (zh) 一种纳米磷酸铁锂及其制备方法
WO2022116690A1 (zh) 一种金属磷酸盐的制备方法及应用
CN102745662B (zh) 一种非晶态磷酸铁的制备方法
CN101752564A (zh) 一维纳米结构的锂离子电池正极材料磷酸铁锂的水热合成法
WO2023179046A1 (zh) 磷酸铁锂/碳复合材料的制备方法及其应用
CN111547694A (zh) 一种利用含磷废渣制备电池级磷酸铁的方法
WO2023040286A1 (zh) 含铁矿物综合利用的方法
CN110980677A (zh) 一种利用残次品磷酸铁制备磷酸铁锂前驱体的方法
WO2023142677A1 (zh) 掺杂型磷酸铁及其制备方法和应用
WO2024055519A1 (zh) 一种磷酸锰铁锂的制备方法及其应用
CN108417832B (zh) 一种等摩尔比例制备磷酸铁锂的方法
CN114933292B (zh) 一种磷酸铁锂的制备方法及其应用
CN116902942A (zh) 一种以铁精矿制备电池级磷酸铁的方法
WO2023221213A1 (zh) 一种采用氧化铁和稀磷酸制备电池级磷酸铁的方法
KR20130069022A (ko) 리튬 금속인산화물의 제조방법
CN109860530B (zh) 一种掺杂钛、铌的碱式磷酸铁铵、磷酸铁锂/碳复合材料及其制备方法和应用
CN114516624A (zh) 一种形貌可控的磷酸铁及其制备方法以及一种磷酸铁锂
WO2024000839A1 (zh) 红磷锰矿型磷酸锰铁及其制备方法和应用
CN115849335B (zh) 一种金属掺杂磷酸铁钠及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939128

Country of ref document: EP

Kind code of ref document: A1