[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022224624A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2022224624A1
WO2022224624A1 PCT/JP2022/011129 JP2022011129W WO2022224624A1 WO 2022224624 A1 WO2022224624 A1 WO 2022224624A1 JP 2022011129 W JP2022011129 W JP 2022011129W WO 2022224624 A1 WO2022224624 A1 WO 2022224624A1
Authority
WO
WIPO (PCT)
Prior art keywords
boundary line
center
coordinate system
rotation
revolving
Prior art date
Application number
PCT/JP2022/011129
Other languages
French (fr)
Japanese (ja)
Inventor
悠介 鈴木
宏明 田中
寿身 中野
靖彦 金成
博史 坂本
昭広 楢▲崎▼
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to JP2023516332A priority Critical patent/JP7375260B2/en
Publication of WO2022224624A1 publication Critical patent/WO2022224624A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload

Definitions

  • the present invention relates to work machines used for road construction, construction work, civil engineering work, dredging work, and the like.
  • a revolving body is attached to the upper part of the traveling body that runs by the power system, and an articulated front working device is attached to the revolving body.
  • each front member constituting the front working device is mounted so as to be vertically swingable and driven by a cylinder.
  • An example of this is a so-called hydraulic excavator having a front working device composed of a boom, an arm, a bucket, and the like.
  • an operation restriction area (also called an intrusion prohibited area) for the front work equipment is set in a coordinate system (body coordinate system) based on the excavator body, and the front work equipment is set in the operation restriction area.
  • a device that displays the distance between the front work device and the restricted operation area on a monitor or the like to alert or warn the operator.
  • a system that restricts the operation of the front work device according to the distance between the front work device and the operation restricted area so that the front work device does not enter the operation restricted area.
  • Patent document 1 describes a vehicle body lower area (operation restriction area) that prohibits entry of the tip of the bucket, which is an area below the traveling body (crawler) set to prevent the collapse of the ground on which the hydraulic excavator is placed.
  • a technique for displaying on a monitor a boundary line between a range (workable range) that can be reached by a front working device More specifically, when the rotating structure (vehicle body) is horizontal, the boundary line between the lower body area and the workable area is set in the vertical direction in the global coordinate system. is set so that the boundary line is maintained in the vertical direction in the global coordinate system, and when the rotating body is tilted backward, the angle between the ground surface on which the rotating body is mounted and the boundary line is 90 degrees.
  • a controller is disclosed that corrects the boundary line as described above.
  • hydraulic excavators are sometimes operated so that part of the traveling body is lifted while the front work device is in contact with the ground in order to fully demonstrate its work capacity.
  • the rear part of the traveling body counterweight side
  • the front part of the traveling body front working device side
  • Operate the front working device operate so as to be in a so-called jack-up state.
  • you want to maximize the upward lift force of the front working device for example, when lifting a heavy load, operate the front working device so that the front part of the traveling body touches the ground and the rear part of the traveling body floats up.
  • the running body rotates around the contact point (rotation center) at the rear of the running body, and in the latter case, becomes a posture that rotates around the grounding point (rotation center) of the front part of the running body. That is, the center of rotation of the running body differs depending on whether the front part or the rear part of the running body is lifted.
  • the center of rotation of the running body differs depending on whether the front part or the rear part of the running body is lifted.
  • Patent Document 1 assumes that both the front and rear parts of the running body are in contact with the ground (that is, it does not assume that the running body is lifted), and the lower vehicle body region When correcting the boundary line of the workable range, only rotational movement based on the front end of the crawler belt is used. Therefore, if the front or rear portion of the traveling body is lifted as described above, it cannot be dealt with, and the limited operation region cannot be maintained accurately.
  • the present invention has been made in view of the above problems, and its purpose is to provide a work machine that can accurately maintain the restricted operation area even when the front or rear part of the traveling body is lifted.
  • the present application includes a plurality of means for solving the above problems.
  • a first attitude sensor for detecting the attitude of the revolving body; and a controller stored on a coordinate system, wherein the controller calculates a lift angle of the running body based on the output of the first attitude sensor, and lifts the running body based on the lift angle.
  • the actual center of rotation is calculated, and the position of the boundary line in the vehicle body coordinate system is corrected based on the lifting angle and the center of rotation.
  • the operation restricted area can be accurately maintained, and the workability of the operator can be maintained satisfactorily.
  • FIG. 1 is a side view of a hydraulic excavator that is a working machine to which an embodiment of the present invention is applied;
  • FIG. 1 is a configuration diagram of a control system according to an embodiment of the present invention;
  • FIG. 3 is a diagram showing the configuration (functional block diagram) of a main controller according to the embodiment of the present invention;
  • FIG. FIG. 3 is a diagram showing a state in which the hydraulic excavator (running body) is in surface contact with the horizontal ground;
  • Fig. 10 is a diagram showing a state in which the revolving body of the hydraulic excavator is tilted backward (a state in which the front part of the traveling body is lifted);
  • FIG. 1 is a side view of a hydraulic excavator that is a working machine to which an embodiment of the present invention is applied;
  • FIG. 1 is a configuration diagram of a control system according to an embodiment of the present invention;
  • FIG. 3 is a diagram showing the configuration (functional block diagram) of a main
  • FIG. 10 is a diagram showing a state in which the revolving body of the hydraulic excavator is tilted forward (a state in which the rear of the traveling body is lifted);
  • FIG. 5 is a diagram showing an example of a screen on a monitor showing the positional relationship between the boundary line of the restricted operation area and the hydraulic excavator.
  • FIG. 4 is a flow chart showing an example of the flow of calculation by each unit shown in the main controller in FIG. 3;
  • FIG. 1 is a top view of a hydraulic excavator 1 according to this embodiment;
  • FIG. 10 is a side view of the hydraulic excavator when the front working device side of the traveling body is lifted in the cases of A and B of FIG. 9;
  • FIG. 10 is a diagram for classifying based on the relative angle ⁇ which of the cases A and B in FIG. 9 corresponds.
  • 9 is a flowchart of processing executed by a main controller according to the second embodiment;
  • a hydraulic excavator (working machine) 1 includes a traveling body 4, a revolving body 3 attached to the top thereof, and a plurality of front members 20, 21, 22. and an articulated front working device 2 rotatably attached to a revolving body 3 .
  • the revolving body 3 is attached to the traveling body 4 so as to be able to revolve in the horizontal direction, and is driven to revolve by a revolving hydraulic motor (not shown).
  • the front working device 2 includes a boom 20 whose base end is rotatably connected to the revolving body 3, an arm 21 whose base end is rotatably connected to the tip of the boom 20, and a base end of the arm 21.
  • a bucket 22 rotatably connected to the tip side, a boom cylinder 20A having the tip side connected to the boom 20 and the base end side connected to the revolving body 3, and the tip side connected to the arm 21 and the base end side to the boom 20.
  • a first link member 22B whose tip side is rotatably connected to the bucket 22, and a second link whose tip side is rotatably connected to the base end side of the first link member 22B
  • a member 22C and a bucket cylinder 22A that spans between the connecting portion of the two link members 22B and 22C and the arm 21 are provided.
  • These hydraulic cylinders 20A, 21A, and 22A are configured so as to be vertically rotatable about their connecting portions.
  • the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A have a structure that can be expanded and contracted by supplying and discharging hydraulic oil discharged from the hydraulic pump 36b (see FIG. 2), and by expanding and contracting, the boom 20 , the arm 21 and the bucket 22 can be rotated (operated).
  • the bucket 22 can be arbitrarily replaced with an attachment (not shown) such as a grapple, breaker, ripper, magnet, or the like.
  • the boom cylinder 20A has a pressure sensor (boom bottom pressure sensor) 20BP for detecting the pressure on the bottom side of the boom cylinder 20A and a pressure sensor (boom rod pressure sensor) 20RP for detecting the pressure on the rod side of the boom cylinder 20A. installed. These two pressure sensors 20BP and 20RP can function as load detectors for the boom cylinder 20A.
  • An inertial measurement unit sensor (hereinafter referred to as an IMU sensor) (boom) 20S for detecting the attitude of the boom 20 is attached to the boom 20, and an IMU sensor for detecting the attitude of the arm 21 is attached to the arm 21. (Arm) 21S is attached.
  • An IMU sensor (bucket) 22S for detecting the posture of the bucket 22 is attached to the second link member 22C.
  • the IMU sensor (boom) 20S, the IMU sensor (arm) 21S, and the IMU sensor (bucket) 22S are each composed of an angular velocity sensor and an acceleration sensor, and detect the inclination angle, angular velocity, and acceleration of each front member 20, 21, 22. detection is possible.
  • these three IMU sensors 20S, 21S, 22S that respectively detect the attitudes of the three front members 20, 21, 22 are sometimes referred to as third attitude sensors.
  • the revolving body 3 has a main frame 31. On the main frame 31, there are an IMU sensor (revolving structure) 30S for detecting the tilt angle of the revolving structure 3, an operator's cab 32, and a plurality of hydraulic actuators in the hydraulic excavator 1.
  • a counterweight 37 positioned on the rear side of the revolving body 3 and a revolving motor 38 for revolving the revolving body 3 in either the left or right direction are mounted.
  • the IMU sensor (revolving body) 30S is composed of an acceleration sensor and an angular velocity sensor, and can detect the inclination (inclination angle) of the revolving body 3 with respect to the horizontal plane, as well as the angular velocity and acceleration.
  • the IMU sensor 30S that detects the attitude of the revolving body 3 may be referred to as a first attitude sensor.
  • the operator's cab 32 includes an operation input device 33 for inputting operations by the operator, and a device for storing in the main controller 34 the position of the boundary line of the restricted operation area into which the front work device 2 is prohibited from entering.
  • An operation restriction area setting device 100 and a monitor (display device) 110 for displaying various information about the hydraulic excavator 1 including the position of the boundary line of the operation restriction area are provided.
  • the boundary line of the restricted operation area can be set, for example, on a three-dimensional coordinate system (vehicle body coordinate system) set on the revolving superstructure 3 .
  • a coordinate system can be set in which the height direction, the front-rear direction, and the left-right direction of the revolving body 3 are used as coordinate axes.
  • a tablet terminal (tablet computer) having a touch panel is used as a device that doubles as the operation restriction area setting device 100 and the monitor 110.
  • two codes 100 are used for one symbol.
  • 110 are labeled.
  • a controller including an input device (a computer including a memory and a processor) may be used instead of the tablet terminal.
  • the operation input device 33 includes two operation levers 33a (illustrated) for instructing the rotation of the front work device 2 (boom 20, arm 21, bucket 22) and the rotation of the revolving body 3 according to the operator's operation. are combined into one), and two travel control levers 33c (illustrated are combined into one) for instructing the running operation of the left and right crawler belts 45 related to the traveling body 4 according to the operator's operation. , and a plurality of operation sensors 33b (collected as one sensor in the drawing) for detecting the amount (operation amount) of each operation lever 33a, 33c pushed down.
  • a plurality of operation sensors 33b detects the amount by which the operator pushes down each of the four operation levers 33a and 33c, thereby detecting the motions requested by the operator to the front members 20, 21, 22, the revolving body 3, and the traveling body 4.
  • the speed is converted into an electric signal (operation signal) and output to the main controller 34 .
  • the operation input device 33 (operating levers 33a and 33b) may be of a hydraulic pilot type that outputs hydraulic oil whose pressure is adjusted according to the amount of operation as an operation signal. In that case, a pressure sensor is used as the operation sensor 33b, and a signal detected by the pressure sensor is output to the main controller 34 to detect the amount of operation.
  • the hydraulic control device 35 includes a plurality of electromagnetic control valves 35a that generate hydraulic oil (pilot pressure) at a pressure corresponding to an operation command value (command current) output from the main controller 34, and output from the corresponding electromagnetic control valves 35a. It is driven by hydraulic oil (pilot pressure) applied to the hydraulic excavator 1, and is composed of a plurality of direction switching valves 35b for controlling the flow rate and flow direction of the hydraulic oil supplied to the plurality of hydraulic actuators mounted on the hydraulic excavator 1, respectively.
  • the operation command value output from the controller 34 is generated based on the operator's operation input to the operation levers 33a and 33b. Operation command values (including stop command values) for non-existent hydraulic actuators may also be generated.
  • Hydraulic actuators may include those that drive attachments and equipment not included above.
  • the prime mover 36 comprises an engine (prime mover) 36a and at least one hydraulic pump 36b driven by the engine 36a. 38 is supplied with pressure oil (hydraulic oil) necessary for driving the .
  • the driving device 36 is not limited to this configuration, and other power sources such as an electric pump may be used.
  • the turning angle sensor 40S is a sensor (second posture sensor) that detects the relative angle ⁇ between the turning body 3 and the traveling body 4, and is mounted on the hydraulic excavator 1 so as to detect the relative angle ⁇ .
  • a potentiometer can preferably be used as the turning angle sensor 40S.
  • the traveling body 4 includes a track frame 40 , left and right crawler belts 45 attached to the track frame 40 , and left and right traveling motors 41 for driving the left and right crawler belts 45 so as to rotate the track frame 40 .
  • the operator can make the hydraulic excavator 1 travel by adjusting the rotation speed of the left and right travel hydraulic motors (hydraulic actuators) 41 by appropriately operating the two travel control levers 33c.
  • the running body 4 is not limited to one having crawler belts 45, and may be one having running wheels or legs (outriggers).
  • FIG. 2 is a system configuration diagram of a hydraulic control system mounted on the hydraulic excavator 1 of this embodiment. It should be noted that the description of the parts that have already been described above may be omitted as appropriate.
  • the main controller 34 includes an operation restricted area setting device 100, a monitor 110, a plurality of operation sensors 33b, an IMU sensor 30S (first attitude sensor), a plurality of IMU sensors 20S, 21S, 22S (third attitude sensor), turning angle sensor 40S (second attitude sensor), multiple pressure sensors 20BP and 20RP (load detectors), and multiple electromagnetic control valves 35a are electrically connected, It is configured to be able to communicate with these.
  • the operation restricted area setting device 100 outputs the position data of the boundary of the operation restricted area set by the operator to the main controller 34 .
  • the boundary of the limited operation area can be set, for example, in the vehicle body coordinate system set in the revolving superstructure 3 .
  • the position data of the boundary of the restricted operation area may be directly input by the operator via the restricted operation area setting device 100, or the design data created in advance on the geographical coordinate system, the site coordinate system, etc. may be used. Via the restricted area setting device 100, coordinate transformation may be added as appropriate and input may be performed.
  • the restricted operation area 59 can be set at any position with respect to the excavator 1 .
  • the shape of the operation restriction area 59 may be a polygon or a curve.
  • the operation restriction area setting device 100 only needs to have a function of storing the position data of the boundary of the preset operation restriction area 59, and can be replaced by a storage device such as a semiconductor memory. Therefore, if the position data of the boundary of the restricted operation area 59 is stored in, for example, a storage device within the main controller 34 or a storage device mounted on the hydraulic excavator, it can be omitted.
  • the monitor 110 monitors the position of the boundary of the restricted operation area 59, the attitude of the hydraulic excavator 1 (including the attitudes of the front working device 2 and the bucket 22), the distance and positional relationship between the boundary of the restricted operation area 59 and the bucket 22, and the like. information to the operator.
  • the main controller 34 is a controller in charge of various controls related to the hydraulic excavator 1 . There are two characteristic controls that can be executed by the main controller 34 of this embodiment.
  • the main controller 34 controls the operation of the front work device 2 beyond the intersection line 60 (referred to as the boundary line 60) between the operation plane of the front work device 2 and the boundary of the operation restriction area 59 (see FIG. 4).
  • the target speed vector of the front work device 2 so as not to enter the area 59 (for example, the target speed vector is calculated so as to decrease as the distance between the front work device 2 and the boundary line 60 decreases, and when the distance is zero) , zero is calculated as the target speed vector), and the hydraulic pressure of at least one of the plurality of hydraulic cylinders 20A, 21A, 22A is adjusted so that the front working device 2 operates according to the calculated target speed vector.
  • Region limit control can be executed by calculating and outputting operation command values for controlling the cylinders.
  • this area restriction control for example, even if the operator inputs an arm cloud operation while the front work device 2 is positioned near the operation restriction area 59, the front work apparatus 2 continues outside the operation restriction area 59. Since the front working device 2 is semi-automatically controlled so as to be positioned at the front working device 2 (for example, the front working device 2 semi-automatically stops when it approaches the operation restriction area 59), the front working device 2 can be reliably prevented from entering the operation restricted area 59.
  • the main controller 34 calculates a lifting angle ⁇ (details will be described later) of the running body 4 based on the output of the IMU sensor 30S of the revolving body 3, and based on the lifting angle ⁇ , the moving body 4 rises.
  • a rotation center Cr (details will be described later) can be calculated, and the position data of the boundary line in the vehicle body coordinate system can be corrected based on the calculated lifting angle ⁇ and the rotation center Cr.
  • the operating plane of the front working device 2 is the plane on which the front members 20, 21, 22 operate, that is, the plane orthogonal to all the three front members 20, 21, 22.
  • a plane passing through the center in the width direction of the front working device 2 (the center in the axial direction of the boom pin serving as the rotation axis on the base end side of the boom 20) can be selected.
  • hydraulic excavators are set so that the larger the amount of tilting of the operating levers 33a and 33c (tilting amount), the faster the operating speed of each of the hydraulic actuators 20A, 21A, 22A, 38 and 41.
  • tilting amount the amount of tilting the levers 33a, 33c
  • the operating speed of each hydraulic actuator 20A, 21A, 22A, 38, 41 is changed to operate the hydraulic excavator 1.
  • the operation sensor 33b electrically detects the operation amount (tilt amount) of the operation lever 33a with respect to the boom 20, arm 21, bucket 22 (boom cylinder 20A, arm cylinder 21A, bucket cylinder 22A) and swing body 3 (swing motor 38).
  • the operation speed of the boom cylinder 20A, the arm cylinder 21A, the bucket cylinder 22A, and the swing body 3 requested by the operator can be detected based on the detection signal of the operation sensor 33b.
  • the operation sensor 33b includes a sensor that electrically detects the operation amount (tilt amount) of the operation lever 33c with respect to the traveling motor 41. Based on the detection signal of the operation sensor 33b, the operator makes a request. The operating speed of the running body 4 can be detected.
  • the operation sensor is not limited to the one that directly detects the amount by which the operation levers 33a and 33c are tilted, but it is a method that detects the hydraulic oil pressure (operation pilot pressure) output by the operation of the operation levers 33a and 33c. may
  • the IMU sensor (rotating body) 30S, IMU sensor (boom) 20S, IMU sensor (arm) 21S, and IMU sensor (bucket) 22S can function as an angular velocity sensor, an acceleration sensor, and an inclination angle sensor, respectively. Angular velocity, acceleration data, and tilt angle data at each installation position can be obtained from these IMU sensors.
  • the boom 20, the arm 21, the bucket 22, the boom cylinder 20A, the arm cylinder 21A, the bucket cylinder 22A, the first link member 22B, the second link member 22C, and the revolving body 3 are mounted so as to be able to rotate (revolve).
  • the attitudes and positions of the boom 20, the arm 21, the bucket 22, and the revolving body 3 in the vehicle body coordinate system can be calculated from the dimensions of each part and the mechanical link relationship.
  • the posture and position detection method shown here is just an example, and a method that directly measures the relative angle of each part of the front work device 2, or a method that detects the strokes of the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A.
  • the posture and position of each part of the hydraulic excavator 1 may be calculated.
  • the pressure sensors 20BP and 20RP which are load detection devices, may be directly attached to the boom cylinder 20A as described above, or may be attached on the oil passage from the hydraulic control device 35 to the boom cylinder 20A.
  • the load detection device is not limited to the pressure sensors 20BP and 20RP, but may be a load cell that directly detects the torque acting on the connecting portion between the boom 20 and the revolving structure 3, or detects the strain of the front working device 2 to detect the load.
  • An estimation method strain gauge may be used.
  • FIG. 3 is a configuration diagram of the main controller 34.
  • the main controller 34 includes, for example, a CPU (Central Processing Unit) (not shown), a storage device such as a ROM (Read Only Memory) or an HDD (Hard Disc Drive) that stores various programs for executing processing by the CPU, and the CPU. It is configured using hardware including a RAM (Random Access Memory) that serves as a work area when executing a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • HDD Hard Disc Drive
  • the attitude calculation unit 710 By executing the programs stored in the storage device in this manner, the attitude calculation unit 710, the operation restriction area calculation unit 720, the operation restriction area correction unit 730, the floating judgment unit 910, the floating angle computing unit 920, the floating center computing unit 930, functions as the operation command unit 310; Next, the details of the processing performed by each unit will be described.
  • the posture calculation unit 710 detects acceleration signals and angular velocity signals obtained from the IMU sensor (boom) 20S, IMU sensor (arm) 21S, IMU sensor (bucket) 22S, and IMU sensor (rotating body) 30S, 21, the bucket 22, and the revolving body 3 (inclination angle) are calculated. If the dimensions of the front members 20, 21, and 22 are added to the result of calculation of the posture, the position of the front working device 2 can also be calculated. The position of the front working device 2 in the vehicle body coordinate system can be calculated from the attitudes of the boom 20, arm 21 and bucket 22 that can be calculated from three IMU sensors 20S, 21S, 22S (third attitude sensors).
  • the operation restriction area calculation unit 720 calculates the position of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system based on the position data of the operation restriction area 59 input from the operation restriction area setting device 100 .
  • the position of the boundary line 60 calculated here is the position of the boundary line 60 when the revolving superstructure 3 is horizontal, and is hereinafter sometimes referred to as the "initial position".
  • a lift determination unit 910 determines whether or not a part of the traveling body 4 is lifted.
  • 4 shows a state in which the running body 4 is in surface contact with the horizontal ground
  • FIG. 5 shows a state in which the revolving body 3 is tilted backward (a state in which the front of the running body 4 is lifted)
  • FIG. indicates a state in which the revolving body 3 is tilted forward (a state in which the rear of the running body 4 is lifted).
  • the boundary line 60 of the operation restriction area 59 is corrected. is not corrected (that is, the position of the boundary line 60 is kept at its initial position). That is, whether or not the traveling body 4 is lifted coincides with whether or not the boundary line 60 of the operation restriction area 59 is corrected.
  • a method for judging whether the traveling body 4 has risen will be explained. If the hydraulic excavator 1 receives a large reaction force from the ground via the front work device 2 while the working machine 1 is stopped from traveling by the traveling body 4, the traveling body 4 may be lifted.
  • the lift determination unit 910 of the present embodiment monitors the presence or absence of an operation input to the travel control lever 33c (that is, the presence or absence of travel) by the output of the operation sensor 33b, and detects the presence or absence of the lift of the traveling body 4 by the IMU sensor (turning motion). body) Monitor the output of 30S.
  • the floating determination section 910 determines that the traveling body 4 is floating. On the other hand, if the travel control lever 33c is steered, or if the output of the IMU sensor (revolving body) 30S is constant, it is determined that the travel body 4 is not lifted.
  • the load of the front working device 2 is detected, and if the inclination angle of the traveling body 4 changes while the reaction force required for the traveling body 4 to float up is obtained, the traveling body 4 may be determined to be floating.
  • the thrust F1 of the boom cylinder 20A is calculated from outputs of two pressure sensors (rod side, bottom side) 20BP and 20RP related to the boom cylinder 20A. By comparing the calculated thrust force F1 of the boom cylinder 20A with the thrust force F2 of the boom cylinder 20A required to support the front working device 2, it is determined whether or not the reaction force necessary for lifting the traveling body 4 is obtained. and determine whether or not there is floating.
  • the traveling body 4 is determined to be floating.
  • the thrust force F1 of the boom cylinder 20A matches the thrust force F2 required to support the front working device 2, or when the output of the IMU sensor (rotating body) 30S is constant (more specifically, can be regarded as constant), it is determined that the running body 4 is not floating (the running body 4 is in surface contact with the ground).
  • the "thrust force F2 of the boom cylinder 20A required to support the front work device 2" used in the above comparison is the attitude of each front member 20, 21, 22 calculated by the attitude calculation unit 710, and the It can be calculated based on the weights of the front members 20, 21 and 22, and can be calculated by general dynamic calculation.
  • a lifting angle calculator 920 calculates a change ⁇ in the inclination angle of the revolving body 3 due to the lifting of the traveling body 4 based on the output of the IMU sensor (revolving body) 30S.
  • this angle ⁇ is referred to as a lift angle.
  • the rising angle ⁇ is defined by the angle between the ground surface with which the running body 4 is in contact and the bottom surface of the running body 4 . That is, by calculating the deviation between the tilt angle immediately before the running body 4 lifts up (the tilt angle of the ground that the running body 4 is in contact with) and the tilt angle after lifting, the following equation (1) is obtained. Angle ⁇ can be calculated.
  • the inclination of the traveling structure 4 can be detected by measuring the inclination angle of the revolving structure 3 with the IMU sensor (revolving structure) 30S. Angle can be estimated.
  • ⁇ Lifting center calculation unit 930 Based on the lifting angle ⁇ calculated by the lifting angle calculating unit 920, the lifting center calculation unit 930 determines the center of the moving object 4 at which the lifting occurs, and determines the center of rotation when the moving object 4 is lifted. Compute Cr(Crb, Crf).
  • FIG. Assuming that the angle in the forward tilting direction of the revolving structure 3 is positive (+) as indicated by an arrow 55 in FIG. When tilting (when the front working device 2 side of the traveling body 4 floats up), it becomes a positive value, and as shown in FIG. becomes a negative value. Therefore, it can be determined whether the front work device 2 side or the counterweight 37 side of the running body 4 is floating depending on whether the lifting angle is positive or negative.
  • the uplift angle ⁇ is a positive value
  • the front working device 2 side of the traveling body 4 is lifted as shown in FIG.
  • the contact line where 4 contacts the ground is defined as the rotation center Crb of the lift.
  • the lifting angle ⁇ is a negative value
  • the counterweight 37 side of the traveling body 4 is lifted as shown in FIG.
  • the line of contact where the traveling body 4 contacts the ground is defined as the center of rotation Crf of floating.
  • the origin O of the vehicle body coordinate system is set at the intersection of the rotation axis of the boom 20 (the axis of rotation of the boom pin) and the operation plane of the front work device 2.
  • the coordinates (a, c) of the positions of the rotation centers Crb and Crf with respect to the origin O on the operation plane of the front working device 2 are the relative angle ⁇ and the dimensions of the revolving body 3 and the traveling body 4 (which can be stored in advance in the controller 34).
  • the operation restriction area correction unit 730 provides the position data of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system and the position data of each of the front members 20, 21, 22 in the vehicle body coordinate system calculated by the posture calculation unit 710. , the shortest distance d between the boundary line 60 of the restricted operation area 59 and the front working device 2 is calculated.
  • ⁇ Operation command unit 310> Based on the shortest distance d between the boundary line 60 of the operation restriction area 59 and the front work device 2 and the output of the operation sensor 33b, the operation command unit 310 controls the electromagnetic waves related to the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A. An operation command value necessary for driving the control valve 35a is calculated.
  • the shortest distance d is calculated based on the position (initial position or corrected position) of the boundary line 60 output from the restricted operation area correction unit 730 . That is, when the running body 4 is floating, the calculation is based on the corrected position of the boundary line 60, and when the bottom surface of the running body 4 is in surface contact with the ground, the calculation is based on the initial position of the boundary line 60. be done.
  • the operation command unit 310 sets the shortest distance d between the boundary line 60 of the operation restriction area 59 and the front work device 2 to a predetermined value. It is determined whether or not it is smaller than (threshold). When the shortest distance d becomes smaller than the predetermined value, the operation command unit 310 controls the boom cylinder 20A, the arm cylinder 21A, and the bucket to stop the front working device 2 regardless of the output from the operation sensor 33b. Set the target operating speed of cylinder 22A to zero.
  • the operation command unit 310 generates an operation command value necessary for driving each electromagnetic control valve 35a according to the target operation speed, and outputs the generated operation command value to the corresponding electromagnetic control valve 35a, thereby The direction switching valve (control valve) 35b is driven.
  • the direction switching valve (control valve) 35b is driven.
  • the target speeds of the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A are calculated according to the output of the operation sensor 33b, and the front working device 2 is operated according to the operator's operation. Operate.
  • ⁇ Monitor 110> An example of a screen on the monitor 110 showing the positional relationship between the boundary line 60 of the restricted operation area 59 and the hydraulic excavator (working machine) 1 is shown in FIG.
  • FIG. 7 An image is displayed in which the bottom surface of the running body 4 and the ground are in full contact with each other, as shown in FIG.
  • the value of the shortest distance d of the work device 2 is displayed.
  • the shortest distances da (+0.5 m) and db (+1.2 m) between the vertical boundary line 60a located in front of the hydraulic excavator 1 and the horizontal boundary line 60b located below the hydraulic excavator 1 are displayed respectively.
  • the boundary line 60 of the operation restriction area 59 and the hydraulic excavator 1 may be displayed by changing the color or figure.
  • the image of the hydraulic excavator 1 is displayed, but instead of displaying this image, it is also possible to notify by a message or an alarm that the traveling body 4 is floating.
  • FIG. 8 is a flow chart of processing executed by the main controller 34, explaining an example of the flow of calculation by each unit shown in the main controller 34 in FIG.
  • each process steps S110 to S210
  • steps S110 to S210 may be described with each part in the main controller 34 shown in FIG. Further, detailed explanations of the processing of each part may be described in the description of each part.
  • the relative angle ⁇ between the traveling body 4 and the revolving body 3 is assumed to be zero degree.
  • the attitude calculation unit 710 refers to the data detected by the attitude sensors 30S, 20S, 21S, 22S, and 40S, and determines the attitudes of the boom 20, arm 21, bucket 22, traveling body 4, and revolving body 3. to calculate
  • step S120 the operation restriction area calculation unit 720 determines the position of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system (initial position ).
  • step S130 the floating determination unit 910 determines whether the running body 4 is in a floating state, based on whether there is an operation input to the travel control lever 33c and the output of the IMU sensor (rotating body) 30S. If it is determined that the traveling body 4 is floating, the process proceeds to step S140, and if it is determined that it is not floating, the process proceeds to step S200.
  • step S140 the lifting angle calculation unit 920 calculates a change in the inclination angle (lifting angle) .theta. move on.
  • step S160 the floating center calculation unit 930 determines in which direction the traveling object 4 is floating based on the floating angle ⁇ calculated in step S140. is negative, the revolving body 3 is tilted forward and the counterweight 37 side of the running body 4 is floating (that is, the state of FIG. 6), so the process proceeds to step S170. On the other hand, if the rising angle is positive, the revolving body 3 is tilted backward, and the front working device 2 side of the traveling body 4 is floating (that is, the state of FIG. 5), so the process proceeds to step S180.
  • step S170 the hydraulic excavator 1 is in the posture shown in FIG.
  • the center of rotation Crf is set on the side (that is, the front side of the traveling body 4).
  • step S180 the hydraulic excavator 1 is in the posture shown in FIG. (that is, the rear side of the traveling body 4) is set as the center of rotation Crb.
  • step S190 the operation restriction area correction unit 730 determines the operation restriction area 59 in the vehicle body coordinate system based on the positions of the rotation centers Crf and Crb set in step S170 or S180 and the lifting angle ⁇ calculated in step S140.
  • the position of the boundary line 60 is corrected to be the corrected position.
  • the lifting angle ⁇ is zero (when the traveling body 4 does not lift)
  • the initial position is held as the position of the boundary line 60 .
  • step S200 the boundary line 60 is displayed on the screen of the monitor 110 at the position corrected in step S190.
  • step S210 the operation restriction area correction unit 730 obtains the position data of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system calculated in step S190 (initial position if there is no lifting, and Corrected position) and the attitude data of the front members 20, 21, 22 calculated in step S110, the shortest distance d between the boundary line 60 of the operation restriction area 59 and the front working device 2 is calculated, and the operation is performed. Output to command unit 310 .
  • the operation command unit 310 sets the target operating speeds of the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A to zero. Then, an operation command value required for driving each electromagnetic control valve 35a is generated and output according to the target operation speed. As a result, when the front working device 2 approaches the boundary line 60, the front working device 2 is stopped. On the other hand, when the shortest distance d is equal to or greater than the predetermined value, the motion command unit 310 calculates the target speeds of the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A according to the output of the operation sensor 33b. The front working device 2 operates accordingly.
  • a predetermined value threshold value
  • the area denoted by reference numeral 69 is the limited operation area 69 corrected by adding only rotation about the origin of the vehicle body coordinate system.
  • the main controller 34 calculates the lifting angle ⁇ of the traveling structure 4 based on the output of the IMU sensor (revolving structure) 30S, and the lifting angle ⁇ Based on this, the rotation center Cr (Crf, Crb) when the traveling body 4 is lifted is calculated, and the position of the boundary line 60 in the vehicle body coordinate system is corrected based on the lift angle ⁇ and the rotation center Cr.
  • the position of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system is corrected according to the lifting angle ⁇ of the traveling body 4 and the position of the rotation center Cr. (Area limit control) malfunction can be prevented.
  • the operation state of the traveling body 4 and the IMU sensor (turning body) 30S output state apart from determining whether or not lifting of the traveling body 4 has occurred, whether or not the lifting angle ⁇ 0 is established, the operation state of the traveling body 4 and the IMU sensor (turning body) 30S output state. Specifically, A) when the output of the IMU sensor (swivel body) 30S changes while the running body 4 is stopped, it is determined that floating has occurred and the position of the boundary line 60 is corrected; is running, or when the output of the IMU sensor (slewing body) 30S is constant, it is determined that no lifting has occurred, and the initial position is maintained without correcting the position of the boundary line 60. did. As a result, it is possible to accurately determine whether or not the traveling body 4 is lifted, so that the correction accuracy of the boundary line 60 can be improved.
  • the main controller 34 calculates the thrust F1 of the boom cylinder 20A based on the outputs of the two pressure sensors 20BP and 20RP, When different and when the output of the IMU sensor (swivel body) 30S changes, correct the position of the boundary line 60 where it is determined that the lift has occurred, and B) when the calculated thrust force F1 matches the thrust force F2, or , when the output of the IMU sensor (revolving body) 30S is constant, it may be determined that no lifting has occurred, and the initial position may be maintained without correcting the position of the boundary line 60 .
  • This method can also improve the correction accuracy of the boundary line 60 .
  • this method is superior to the above-described method in that it can determine which of the two contact lines Crf and Crb is the center of rotation when the traveling body 4 floats. That is, if F1 ⁇ F2 is established when floating occurs, it can be determined that the revolving structure 3 tilts backward and the contact line Crb becomes the center of rotation (see FIG. 5). Conversely, if F1>F2 is established , the revolving body 3 tilts forward and the contact line Crf becomes the center of rotation (see FIG. 6).
  • FIG. 9 is a top view of the hydraulic excavator 1 according to this embodiment
  • FIG. 10 is a side view of the hydraulic excavator 1 when the front working device 2 side of the traveling body 4 is lifted up in the cases of A and B of FIG. show.
  • the running body 4 has different lengths in the front-rear direction (traveling direction of the running body 4) and in the left-right direction (perpendicular to the traveling direction). is longer in the front-rear direction than in the left-right direction. Therefore, the position of the rotation center Cr with respect to the origin O of the vehicle body coordinate system may vary depending on the relative angle ⁇ between the revolving body 3 and the traveling body 4 . For example, as shown in FIGS.
  • a pair of left and right crawler belts 45 constituting the running body 4 contact the ground in front of the running body 4 (advance direction) and a contact line Crf where the crawler belts 45 contact the ground behind the running body 4 (backward direction).
  • Either one of the two contact lines Crf and Crb with the contact line Crb that contacts the ground at can be the center of rotation.
  • Both of the contact lines Crf and Crb are straight lines extending in the lateral direction of the traveling body 4 (perpendicular to the traveling direction).
  • the left crawler belt 45L of the pair of left and right crawler belts 45 constituting the traveling body 4 has a contact line Crl that contacts the ground at the edge extending in the longitudinal direction (advancing direction), and the right crawler belt 45R.
  • Any one of the two contact lines Crl and Crr with the contact line Crr that contacts the ground at the edge extending in the front-rear direction can be the center of rotation.
  • Both of the contact lines Crl and Crr are straight lines extending in the left-right direction of the traveling body 4 (perpendicular to the traveling direction).
  • FIG. 11 is a diagram showing which of A and B in FIG. 9 corresponds based on the relative angle ⁇ .
  • a point Cs in the drawing indicates the turning center of the turning body 3 .
  • the relative angle ⁇ between the rotating body 3 and the traveling body 4 is assumed to be 0 degrees when the advancing direction of the traveling body 4 and the extending direction of the front working device 2 (the x-axis direction of the vehicle body coordinate system) are aligned.
  • the sign of the relative angle ⁇ is positive when the revolving body 3 turns to the right, and the sign is negative when it turns to the left.
  • a threshold value is provided for the relative angle ⁇ , and the position of the rotation center Cr of the traveling body 4 is classified based on the relationship between the threshold value and the relative angle ⁇ detected by the turning angle sensor 40S.
  • the thresholds for the relative angle ⁇ are +45 degrees (-315 degrees), +135 degrees (-225 degrees), +225 degrees (-135 degrees), +315 degrees (-45 degrees), and two adjacent thresholds differ by 90 degrees. .
  • a circle centered on the turning center Cs shown in FIG. 11 is divided into four areas A1, B1, A2, and B2 by these threshold values.
  • Area A1 (first area) has a range of relative angles ⁇ from 0 degrees ( ⁇ 360 degrees) to +45 degrees ( ⁇ 315 degrees) and a range of relative angles ⁇ from +315 degrees ( ⁇ 45 degrees) to +360 degrees (0 degree).
  • the region B1 (second region) has a relative angle ⁇ ranging from +45 degrees ( ⁇ 315 degrees) to +135 degrees ( ⁇ 225 degrees).
  • the relative angle ⁇ ranges from +135 degrees (-225 degrees) to +225 degrees (-135 degrees).
  • Region B2 (fourth region) has a relative angle ⁇ ranging from +225 degrees ( ⁇ 135 degrees) to +315 degrees ( ⁇ 45 degrees).
  • the floating center calculator 930 calculates one of the two contact lines Crf and Crb as the center of rotation.
  • the contact line Crf becomes the center of rotation when the revolving body 3 tilts forward
  • the contact line Crb becomes the center of rotation when the revolving body 3 tilts backward.
  • the contact line Crb is the center of rotation when the revolving body 3 tilts forward
  • the contact line Crf is the center of rotation when the revolving body 3 tilts backward.
  • the floating center calculation unit 930 calculates one of the two contact lines Crl and Crr as the center of rotation.
  • the contact line Crl is the center of rotation when the revolving body 3 tilts forward
  • the contact line Crr is the center of rotation when the revolving body 3 tilts backward.
  • the contact line Crr is the center of rotation when the revolving body 3 tilts forward
  • the contact line Crl is the center of rotation when the revolving body 3 tilts backward.
  • FIG. 12 is a flowchart of processing executed by the main controller 34 according to this embodiment.
  • the same reference numerals are assigned to the same processes as in FIG. 8, and the description thereof will be omitted, and the processes different from those in FIG. 8 will be described below.
  • the floating center calculation unit 930 determines whether the running body 4 is in the front-back direction based on the relative angle ⁇ of the running body 4 with respect to the revolving body 3. That is, it is determined whether the relative angle ⁇ is included in either the area A1 or the area A2. If the relative angle ⁇ is included in either the area A1 or the area A2, the process proceeds to step S160. On the contrary, if the relative angle ⁇ is included in either the region B1 or the region B2 (that is, if the traveling body 4 is not in the front-rear direction (in the left-right direction)), the process proceeds to step 161 .
  • step S160 the floating center calculation unit 930 determines in which direction the traveling object 4 is floating based on the floating angle ⁇ calculated in step S140. is negative, the revolving body 3 is tilted forward and the counterweight 37 side of the running body 4 is floating, so the process proceeds to step S170. On the other hand, if the rising angle is positive, the revolving body 3 is tilted backward, and the front working device 2 side of the running body 4 is floating, so the process proceeds to step S180.
  • step S170 since the revolving body 3 is tilted forward, the lifting center calculation section 930 is operated in the traveling direction (also referred to as the front-rear direction or length direction) of the traveling body 4 and on the side of the front working device 2 (that is, the traveling body). 4) to set the center of rotation.
  • the rotation center Crf is set when the relative angle ⁇ is included in the area A1
  • the rotation center Crb is set when the relative angle ⁇ is included in the area A2.
  • step S180 since the revolving body 3 is tilted backward, the floating center calculation section 930 is operated in the traveling direction of the running body 4 (also referred to as the longitudinal direction or the length direction) and the counterweight 37 side (that is, the running body 4 ) to set the center of rotation.
  • the rotation center Crb is set when the relative angle ⁇ is included in the area A1
  • the rotation center Crf is set when the relative angle ⁇ is included in the area A2.
  • step S161 the floating center calculation unit 930 determines in which direction the traveling body 4 is floating based on the floating angle ⁇ calculated in step S140. is negative, the revolving body 3 is tilted forward and the counterweight 37 side of the traveling body 4 is floating, so the process proceeds to step S171. On the other hand, if the rising angle is positive, the revolving body 3 is tilted backward, and the front working device 2 side of the traveling body 4 is floating, so the process proceeds to step S181.
  • step S171 since the revolving body 3 is tilted forward, the lifting center calculation unit 930 sets the center of rotation in the lateral direction of the traveling body 4 and on the side of the front working device 2 (that is, the front side of the traveling body 4). As a result, the rotation center Crl is set when the relative angle ⁇ is included in the region B1, and the rotation center Crr is set when the relative angle ⁇ is included in the region B2.
  • step S181 since the revolving body 3 is tilted backward, the lifting center calculation unit 930 sets the center of rotation in the lateral direction of the running body 4 and on the side of the counterweight 37 (that is, the rear side of the running body 4). As a result, the rotation center Crr is set when the relative angle ⁇ is included in the region B1, and the rotation center Crl is set when the relative angle ⁇ is included in the region B2.
  • the center of rotation of the traveling body 4 can be accurately calculated even when the relative angle ⁇ between the revolving body 3 and the traveling body 4 is not zero. can improve the correction accuracy of
  • the present invention is not limited to the above-described embodiments, and includes various modifications within a scope that does not deviate from the gist of the present invention.
  • the present invention is not limited to those having all the configurations described in the above embodiments, but also includes those with some of the configurations omitted. Also, it is possible to add or replace part of the configuration according to one embodiment with the configuration according to another embodiment.
  • each configuration related to the controller 34 and the functions and execution processing of each configuration are implemented partially or entirely by hardware (for example, logic for executing each function is designed by an integrated circuit).
  • the configuration related to the controller 34 may be a program (software) that implements each function related to the configuration of the controller 34 by being read and executed by an arithmetic processing unit (for example, CPU).
  • Information related to the program can be stored, for example, in a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disk, etc.), or the like.
  • control lines and information lines have been shown as necessary for the description of the embodiments, but not necessarily all the control lines and information lines related to the product does not necessarily indicate In reality, it can be considered that almost all configurations are interconnected.
  • SYMBOLS 1 Hydraulic excavator (working machine), 2... Front working device, 3... Revolving body, 4... Traveling body, 20... Boom, 20A... Boom cylinder, 20BP... Pressure sensor (boom bottom pressure sensor), 20RP...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

A hydraulic shovel 1 comprises an IMU sensor 30S that detects the posture of a turning body 4, and a main controller 34 in which the position of a boundary 60 of an operation restricted region 59 which a work device 2 is prohibited from entering is stored on a vehicle body coordinate system set for the turning body. A main controller 37 calculates an uplift angle θ of a traveling body 4 on the basis of the output from the IMU sensor 30S, calculates a rotation center Cr (Crf, Crb) around which the traveling body is uplifted on the basis of the uplift angle θ, and corrects the position of the boundary 60 on the vehicle body coordinate system on the basis of the uplift angle and the rotation center.

Description

作業機械working machine
 本発明は,道路工事,建設工事,土木工事,浚渫工事等に使用される作業機械に関する。 The present invention relates to work machines used for road construction, construction work, civil engineering work, dredging work, and the like.
 道路工事,建設工事,土木工事,浚渫工事等に使用される作業機械として,動力系により走行する走行体の上部に旋回体を旋回自在に取り付けると共に,旋回体に多関節型のフロント作業装置を上下方向に揺動自在に取り付け,フロント作業装置を構成する各フロント部材をシリンダにて駆動するものが知られている。その一例にブーム,アーム,バケット等から構成されるフロント作業装置を有する,いわゆる油圧ショベルがある。 As a work machine used for road construction, construction work, civil engineering work, dredging work, etc., a revolving body is attached to the upper part of the traveling body that runs by the power system, and an articulated front working device is attached to the revolving body. It is known that each front member constituting the front working device is mounted so as to be vertically swingable and driven by a cylinder. An example of this is a so-called hydraulic excavator having a front working device composed of a boom, an arm, a bucket, and the like.
 この種の油圧ショベルには,例えば油圧ショベル本体を基準とした座標系(車体座標系)においてフロント作業装置の稼働制限領域(侵入禁止領域とも称する)を設定し,その稼働制限領域にフロント作業装置が侵入しないようにすることを目的として,フロント作業装置と稼働制限領域までの距離をモニタなどに表示してオペレータに注意喚起や警告するものがある。また,フロント作業装置が稼働制限領域に侵入しないようにフロント作業装置と稼働制限領域の距離に応じてフロント作業装置の動作を制限するものもある。 For this type of hydraulic excavator, for example, an operation restriction area (also called an intrusion prohibited area) for the front work equipment is set in a coordinate system (body coordinate system) based on the excavator body, and the front work equipment is set in the operation restriction area. In order to prevent the intrusion of dust, there is a device that displays the distance between the front work device and the restricted operation area on a monitor or the like to alert or warn the operator. In addition, there is also a system that restricts the operation of the front work device according to the distance between the front work device and the operation restricted area so that the front work device does not enter the operation restricted area.
 特許文献1は,油圧ショベルが載っている地盤の崩落を防止するために設定される走行体(履帯)の下方の領域であってバケット先端の侵入を禁止する車体下部領域(稼働制限領域)と,フロント作業装置が届くことができる範囲(作業可能範囲)との境界線をモニタに表示する技術を開示している。より具体的には,旋回体(車両本体)が水平な場合には車体下部領域と作業可能範囲との境界線をグローバル座標系における鉛直方向に設定し,旋回体が前傾している場合には当該境界線をグローバル座標系における鉛直方向に維持するように設定し,旋回体が後傾している場合には旋回体が載置される地盤面と当該境界線とのなす角が90度以上になるように当該境界線を補正するコントローラが開示されている。 Patent document 1 describes a vehicle body lower area (operation restriction area) that prohibits entry of the tip of the bucket, which is an area below the traveling body (crawler) set to prevent the collapse of the ground on which the hydraulic excavator is placed. , a technique for displaying on a monitor a boundary line between a range (workable range) that can be reached by a front working device. More specifically, when the rotating structure (vehicle body) is horizontal, the boundary line between the lower body area and the workable area is set in the vertical direction in the global coordinate system. is set so that the boundary line is maintained in the vertical direction in the global coordinate system, and when the rotating body is tilted backward, the angle between the ground surface on which the rotating body is mounted and the boundary line is 90 degrees. A controller is disclosed that corrects the boundary line as described above.
特開2012-172427号公報JP 2012-172427 A
 ところで,油圧ショベルでは,その作業能力を十分に発揮するためにフロント作業装置を地面に接触させた状態で走行体の一部が浮き上がるように操作することがある。例えば硬い地盤を掘削する場面でフロント作業装置の下方への掘削力を最大化したいときには,走行体後部(カウンタウェイト側)が地面に接触し走行体前部(フロント作業装置側)が浮き上がるようにフロント作業装置を操作する(いわゆるジャッキアップ状態になるように操作する)。一方で,例えば重い荷物を持ち上げる場面でフロント作業装置の上方へのリフト力を最大化したいときには,走行体前部が地面に接触し走行体後部が浮き上がるようにフロント作業装置を操作する。両者の場合の走行体の姿勢に着目すると,前者の場合には,走行体は走行体後部の接地点(回転中心)を中心に回転するような姿勢になり,後者の場合には,走行体は走行体前部の接地点(回転中心)を中心に回転するような姿勢になる。つまり,走行体の前部と後部のどちらが浮き上がるかで走行体の回転中心が異なる。このような走行体の姿勢変化に応じて稼働制限領域の表示を補正するには,稼働制限領域の表示位置の補正に際する車体座標系と重力座標系の座標変換において,回転移動だけでなく平行移動(つまり回転中心の移動)も考慮する必要がある。 By the way, hydraulic excavators are sometimes operated so that part of the traveling body is lifted while the front work device is in contact with the ground in order to fully demonstrate its work capacity. For example, when excavating hard ground and maximizing the downward excavating force of the front working equipment, the rear part of the traveling body (counterweight side) contacts the ground and the front part of the traveling body (front working device side) floats up. Operate the front working device (operate so as to be in a so-called jack-up state). On the other hand, when you want to maximize the upward lift force of the front working device, for example, when lifting a heavy load, operate the front working device so that the front part of the traveling body touches the ground and the rear part of the traveling body floats up. Focusing on the posture of the running body in both cases, in the former case, the running body rotates around the contact point (rotation center) at the rear of the running body, and in the latter case, becomes a posture that rotates around the grounding point (rotation center) of the front part of the running body. That is, the center of rotation of the running body differs depending on whether the front part or the rear part of the running body is lifted. In order to correct the display of the restricted operation area according to such a change in the posture of the traveling object, in the coordinate transformation between the vehicle body coordinate system and the gravitational coordinate system when correcting the display position of the restricted operation area, not only rotational movement but also Parallel movement (that is, movement of the center of rotation) must also be considered.
 この点に関して,特許文献1の技術は,走行体の前部と後部の双方が接地していることを前提としており(つまり走行体に浮き上がりが生じる場合は想定しておらず),車体下部領域と作業可能範囲の境界線の補正に際して履帯の前端を基準とした回転移動だけで対応している。そのため,上記のような走行体の前部又は後部の浮き上がりが生じた場合には対応不能であり,稼働制限領域を正確に保持できない。 Regarding this point, the technology of Patent Document 1 assumes that both the front and rear parts of the running body are in contact with the ground (that is, it does not assume that the running body is lifted), and the lower vehicle body region When correcting the boundary line of the workable range, only rotational movement based on the front end of the crawler belt is used. Therefore, if the front or rear portion of the traveling body is lifted as described above, it cannot be dealt with, and the limited operation region cannot be maintained accurately.
 本発明は上記課題を鑑みてなされたものであり,その目的は走行体の前部又は後部の浮き上がりが生じた場合にも稼働制限領域を正確に保持できる作業機械を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to provide a work machine that can accurately maintain the restricted operation area even when the front or rear part of the traveling body is lifted.
 本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,走行体と,前記走行体の上部に旋回可能に取り付けられた旋回体と,前記旋回体に取り付けられ,複数のフロント部材からなる作業装置と,前記旋回体の姿勢を検出する第1姿勢センサと,前記作業装置の侵入が禁止される稼働制限領域の境界線の位置を,前記旋回体に設定された車体座標系上に記憶したコントローラとを備えた作業機械において,前記コントローラは,前記第1姿勢センサの出力に基づいて前記走行体の浮き上がり角度を演算し,前記浮き上がり角度に基づいて前記走行体が浮き上がる際の回転中心を演算し,前記浮き上がり角度と前記回転中心とに基づいて,前記車体座標系における前記境界線の位置を補正することとする。 The present application includes a plurality of means for solving the above problems. a first attitude sensor for detecting the attitude of the revolving body; and a controller stored on a coordinate system, wherein the controller calculates a lift angle of the running body based on the output of the first attitude sensor, and lifts the running body based on the lift angle. The actual center of rotation is calculated, and the position of the boundary line in the vehicle body coordinate system is corrected based on the lifting angle and the center of rotation.
 本発明によれば,走行体の前部又は後部の浮き上がりが生じた場合にも稼働制限領域を正確に保持でき,オペレータの作業性を良好に維持できる。 According to the present invention, even if the front or rear part of the traveling body is lifted, the operation restricted area can be accurately maintained, and the workability of the operator can be maintained satisfactorily.
本発明の実施形態が適用される作業機械である油圧ショベルの側面図である。1 is a side view of a hydraulic excavator that is a working machine to which an embodiment of the present invention is applied; FIG. 本発明の実施形態に係る制御システムの構成図である。1 is a configuration diagram of a control system according to an embodiment of the present invention; FIG. 本発明の実施形態に係るメインコントローラの構成(機能ブロック図)を示す図である。3 is a diagram showing the configuration (functional block diagram) of a main controller according to the embodiment of the present invention; FIG. 油圧ショベル(走行体)が水平な地面に面接触している状態を示す図である。FIG. 3 is a diagram showing a state in which the hydraulic excavator (running body) is in surface contact with the horizontal ground; 油圧ショベルの旋回体が後傾している状態(走行体の前方が浮き上がっている状態)を示す図である。Fig. 10 is a diagram showing a state in which the revolving body of the hydraulic excavator is tilted backward (a state in which the front part of the traveling body is lifted); 油圧ショベルの旋回体が前傾している状態(走行体の後方が浮き上がっている状態)を示す図である。FIG. 10 is a diagram showing a state in which the revolving body of the hydraulic excavator is tilted forward (a state in which the rear of the traveling body is lifted); 稼働制限領域の境界線と油圧ショベルの位置関係を示すモニタ上の画面の一例を示す図である。FIG. 5 is a diagram showing an example of a screen on a monitor showing the positional relationship between the boundary line of the restricted operation area and the hydraulic excavator. 図3でメインコントローラ内に示した各部による演算の流れの一例を示すフローチャートである。FIG. 4 is a flow chart showing an example of the flow of calculation by each unit shown in the main controller in FIG. 3; FIG. 本実施形態に係る油圧ショベル1の上面図である。1 is a top view of a hydraulic excavator 1 according to this embodiment; FIG. 図9のA,Bの場合に走行体におけるフロント作業装置側が浮き上がったときの油圧ショベルの側面図である。FIG. 10 is a side view of the hydraulic excavator when the front working device side of the traveling body is lifted in the cases of A and B of FIG. 9; 図9のA,Bのどちらの場合に該当するかを相対角度φに基づいて分類した図である。FIG. 10 is a diagram for classifying based on the relative angle φ which of the cases A and B in FIG. 9 corresponds. 第2実施形態に係るメインコントローラが実行する処理のフローチャートである。9 is a flowchart of processing executed by a main controller according to the second embodiment;
 以下,本発明の実施の形態について図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 <対象装置>
 図1に示すように,本発明の第1実施形態に係る油圧ショベル(作業機械)1は,走行体4と,その上部に取り付けられた旋回体3と,複数のフロント部材20,21,22を連結して構成され旋回体3に回動可能に取り付けられた多関節型のフロント作業装置2とを備えている。
<Target device>
As shown in FIG. 1, a hydraulic excavator (working machine) 1 according to the first embodiment of the present invention includes a traveling body 4, a revolving body 3 attached to the top thereof, and a plurality of front members 20, 21, 22. and an articulated front working device 2 rotatably attached to a revolving body 3 .
 旋回体3は,走行体4に対して左右方向に旋回可能に取り付けられており,旋回油圧モータ(図示せず)によって旋回駆動される。 The revolving body 3 is attached to the traveling body 4 so as to be able to revolve in the horizontal direction, and is driven to revolve by a revolving hydraulic motor (not shown).
 フロント作業装置2は,基端側が旋回体3に回動可能に連結されたブーム20と,基端側がブーム20の先端側に回動可能に連結されたアーム21と,基端側がアーム21の先端側に回動可能に連結されたバケット22と,先端側がブーム20に連結され,基端側が旋回体3に連結されたブームシリンダ20Aと,先端側がアーム21に連結され,基端側がブーム20に連結されたアームシリンダ21Aと,先端側がバケット22に回動可能に連結された第1リンク部材22Bと,先端側が第1リンク部材22Bの基端側に回動可動に連結された第2リンク部材22Cと,2つのリンク部材22B,22Cの連結部とアーム21との間に掛け渡されたバケットシリンダ22Aを備えている。これらの油圧シリンダ20A,21A,22Aはそれぞれ連結部分を中心に,上下方向に回動可能に構成されている。 The front working device 2 includes a boom 20 whose base end is rotatably connected to the revolving body 3, an arm 21 whose base end is rotatably connected to the tip of the boom 20, and a base end of the arm 21. A bucket 22 rotatably connected to the tip side, a boom cylinder 20A having the tip side connected to the boom 20 and the base end side connected to the revolving body 3, and the tip side connected to the arm 21 and the base end side to the boom 20. , a first link member 22B whose tip side is rotatably connected to the bucket 22, and a second link whose tip side is rotatably connected to the base end side of the first link member 22B A member 22C and a bucket cylinder 22A that spans between the connecting portion of the two link members 22B and 22C and the arm 21 are provided. These hydraulic cylinders 20A, 21A, and 22A are configured so as to be vertically rotatable about their connecting portions.
 ブームシリンダ20A,アームシリンダ21A,バケットシリンダ22Aは,油圧ポンプ36b(図2参照)から吐出される作動油を給排することによりそれぞれ伸縮可能な構造となっており,伸縮することによりそれぞれブーム20,アーム21,バケット22を回動(動作)させることができる。バケット22は,グラップル,ブレーカ,リッパ,マグネット等の図示しないアタッチメントに任意に交換可能である。 The boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A have a structure that can be expanded and contracted by supplying and discharging hydraulic oil discharged from the hydraulic pump 36b (see FIG. 2), and by expanding and contracting, the boom 20 , the arm 21 and the bucket 22 can be rotated (operated). The bucket 22 can be arbitrarily replaced with an attachment (not shown) such as a grapple, breaker, ripper, magnet, or the like.
 ブームシリンダ20Aには,ブームシリンダ20Aにおけるボトム側の圧力を検出する圧力センサ(ブームボトム圧センサ)20BPと,ブームシリンダ20Aにおけるロッド側の圧力を検出する圧力センサ(ブームロッド圧センサ)20RPとが取り付けられている。この2つの圧力センサ20BP,20RPはブームシリンダ20Aの負荷検出装置として機能し得る。 The boom cylinder 20A has a pressure sensor (boom bottom pressure sensor) 20BP for detecting the pressure on the bottom side of the boom cylinder 20A and a pressure sensor (boom rod pressure sensor) 20RP for detecting the pressure on the rod side of the boom cylinder 20A. installed. These two pressure sensors 20BP and 20RP can function as load detectors for the boom cylinder 20A.
 ブーム20にはブーム20の姿勢を検出するための慣性計測ユニットセンサ(以下,IMUセンサと称する)(ブーム)20Sが取り付けられており,アーム21にはアーム21の姿勢を検出するためのIMUセンサ(アーム)21Sが取り付けられている。第2リンク部材22Cには,バケット22の姿勢を検出するためのIMUセンサ(バケット)22Sが取り付けられている。IMUセンサ(ブーム)20S,IMUセンサ(アーム)21S,IMUセンサ(バケット)22Sは,それぞれ角速度センサと加速度センサから構成されており,各フロント部材20,21,22の傾斜角度,角速度及び加速度の検出が可能である。本稿では,3つのフロント部材20,21,22の姿勢をそれぞれ検出するこれら3つのIMUセンサ20S,21S,22Sを第3姿勢センサと称することがある。 An inertial measurement unit sensor (hereinafter referred to as an IMU sensor) (boom) 20S for detecting the attitude of the boom 20 is attached to the boom 20, and an IMU sensor for detecting the attitude of the arm 21 is attached to the arm 21. (Arm) 21S is attached. An IMU sensor (bucket) 22S for detecting the posture of the bucket 22 is attached to the second link member 22C. The IMU sensor (boom) 20S, the IMU sensor (arm) 21S, and the IMU sensor (bucket) 22S are each composed of an angular velocity sensor and an acceleration sensor, and detect the inclination angle, angular velocity, and acceleration of each front member 20, 21, 22. detection is possible. In this paper, these three IMU sensors 20S, 21S, 22S that respectively detect the attitudes of the three front members 20, 21, 22 are sometimes referred to as third attitude sensors.
 旋回体3はメインフレーム31を有する。メインフレーム31上には,旋回体3の傾斜角度を検出するためのIMUセンサ(旋回体)30Sと,オペレータが搭乗する運転室32と,油圧ショベル1内の複数の油圧アクチュエータの駆動制御を司るメインコントローラ(駆動制御用コントローラ)34と,エンジン36a及びエンジン36aによって駆動される油圧ポンプ36bを有する原動装置36と,メインコントローラ34からの信号に応じて油圧ポンプ36bから油圧アクチュエータ(例えば,油圧シリンダ20A,21A,22A)に供給される作動油(油圧)の流量及び流通方向を制御する複数の方向切替弁35bを有する油圧制御装置35と,作業中の油圧ショベル1のバランスをとるための重りであり旋回体3における後側に位置するカウンタウェイト37と,旋回体3を左右方向のいずれかに旋回駆動する旋回用モータ38とが搭載されている。 The revolving body 3 has a main frame 31. On the main frame 31, there are an IMU sensor (revolving structure) 30S for detecting the tilt angle of the revolving structure 3, an operator's cab 32, and a plurality of hydraulic actuators in the hydraulic excavator 1. A main controller (drive control controller) 34, a prime mover 36 having an engine 36a and a hydraulic pump 36b driven by the engine 36a, and a hydraulic actuator (for example, a hydraulic cylinder 20A, 21A, and 22A), and a weight for balancing the hydraulic excavator 1 during operation. A counterweight 37 positioned on the rear side of the revolving body 3 and a revolving motor 38 for revolving the revolving body 3 in either the left or right direction are mounted.
 IMUセンサ(旋回体)30Sは,加速度センサと角速度センサから構成されており,旋回体3の水平面に対する傾き(傾斜角)や,角速度及び加速度を検出することができる。本稿では,旋回体3の姿勢を検出するIMUセンサ30Sを第1姿勢センサと称することがある。 The IMU sensor (revolving body) 30S is composed of an acceleration sensor and an angular velocity sensor, and can detect the inclination (inclination angle) of the revolving body 3 with respect to the horizontal plane, as well as the angular velocity and acceleration. In this paper, the IMU sensor 30S that detects the attitude of the revolving body 3 may be referred to as a first attitude sensor.
 運転室32には,オペレータが操作を入力するための操作入力装置33と,フロント作業装置2の侵入が禁止される稼働制限領域の境界線の位置をメインコントローラ34に記憶させるための装置である稼働制限領域設定装置100と,稼働制限領域の境界線の位置を含め,油圧ショベル1に関する各種情報が表示されるモニタ(表示装置)110とが備えられている。稼働制限領域の境界線は,例えば旋回体3に設定された3次元座標系(車体座標系)上に設定できる。すなわち,例えば旋回体3の高さ方向,前後方向,左右方向を座標軸とする座標系に設定できる。なお,図1に示した例では,稼働制限領域設定装置100とモニタ110を兼用する装置としてタッチパネルを有するタブレット端末(タブレットコンピュータ)を利用しており,その関係で1つのシンボルに2つの符号100,110が付されている。なお,稼働制限領域設定装置100としては,タブレット端末に代えて,入力デバイスを含むコントローラ(メモリとプロセッサを備えるコンピュータ)を利用しても良い。 The operator's cab 32 includes an operation input device 33 for inputting operations by the operator, and a device for storing in the main controller 34 the position of the boundary line of the restricted operation area into which the front work device 2 is prohibited from entering. An operation restriction area setting device 100 and a monitor (display device) 110 for displaying various information about the hydraulic excavator 1 including the position of the boundary line of the operation restriction area are provided. The boundary line of the restricted operation area can be set, for example, on a three-dimensional coordinate system (vehicle body coordinate system) set on the revolving superstructure 3 . That is, for example, a coordinate system can be set in which the height direction, the front-rear direction, and the left-right direction of the revolving body 3 are used as coordinate axes. In the example shown in FIG. 1, a tablet terminal (tablet computer) having a touch panel is used as a device that doubles as the operation restriction area setting device 100 and the monitor 110. In this connection, two codes 100 are used for one symbol. , 110 are labeled. As the operation restricted area setting device 100, a controller including an input device (a computer including a memory and a processor) may be used instead of the tablet terminal.
 操作入力装置33は,オペレータの操作に応じてフロント作業装置2(ブーム20,アーム21,バケット22)の回動動作と旋回体3の旋回動作を指示するための2本の操作レバー33a(図示は1本にまとめている)と,オペレータの操作に応じて走行体4に係る左右の履帯45の走行動作を指示するための2本の走行操作レバー33c(図示は1本にまとめている)と,各操作レバー33a,33cが倒された量(操作量)を検出する複数の操作センサ33b(図示は1つにまとめている)により構成されている。複数の操作センサ33bは,オペレータが4本の操作レバー33a,33cのそれぞれを倒す量を検出することで,オペレータが各フロント部材20,21,22,旋回体3及び走行体4に要求する動作速度を電気信号(操作信号)に変換してメインコントローラ34に出力する。なお,操作入力装置33(操作レバー33a,33b)は,操作量に応じた圧力に調整された作動油を操作信号として出力する油圧パイロット方式によるものでもよい。その場合には,操作センサ33bとして圧力センサを利用して,当該圧力センサで検出した信号をメインコントローラ34に出力して操作量を検出する。 The operation input device 33 includes two operation levers 33a (illustrated) for instructing the rotation of the front work device 2 (boom 20, arm 21, bucket 22) and the rotation of the revolving body 3 according to the operator's operation. are combined into one), and two travel control levers 33c (illustrated are combined into one) for instructing the running operation of the left and right crawler belts 45 related to the traveling body 4 according to the operator's operation. , and a plurality of operation sensors 33b (collected as one sensor in the drawing) for detecting the amount (operation amount) of each operation lever 33a, 33c pushed down. A plurality of operation sensors 33b detects the amount by which the operator pushes down each of the four operation levers 33a and 33c, thereby detecting the motions requested by the operator to the front members 20, 21, 22, the revolving body 3, and the traveling body 4. The speed is converted into an electric signal (operation signal) and output to the main controller 34 . The operation input device 33 (operating levers 33a and 33b) may be of a hydraulic pilot type that outputs hydraulic oil whose pressure is adjusted according to the amount of operation as an operation signal. In that case, a pressure sensor is used as the operation sensor 33b, and a signal detected by the pressure sensor is output to the main controller 34 to detect the amount of operation.
 油圧制御装置35は,メインコントローラ34から出力される動作指令値(指令電流)に応じた圧力の作動油(パイロット圧)を発生させる複数の電磁制御弁35aと,対応する電磁制御弁35aから出力される作動油(パイロット圧)によって駆動され,油圧ショベル1に搭載された複数の油圧アクチュエータに供給される作動油の流量と流通方向をそれぞれ制御する複数の方向切替弁35bとから構成される。コントローラ34から出力される動作指令値は,操作レバー33a,33bに入力されるオペレータ操作を基に生成されるが,後述する領域制限制御が機能している場合には,その条件に従ってオペレータ操作の無い油圧アクチュエータに関する動作指令値(停止指令値も含む)も生成され得る。メインコントローラ34から電磁制御弁35aに対して動作指令値を出力すると,それに対応する方向切替弁35bが動作して,当該方向切替弁35bに対応する油圧アクチュエータ(例えば,油圧シリンダ20A,21A,22A)が動作する。油圧アクチュエータには,上記に含まれないアタッチメントや機器を駆動するものも含めてもよい。 The hydraulic control device 35 includes a plurality of electromagnetic control valves 35a that generate hydraulic oil (pilot pressure) at a pressure corresponding to an operation command value (command current) output from the main controller 34, and output from the corresponding electromagnetic control valves 35a. It is driven by hydraulic oil (pilot pressure) applied to the hydraulic excavator 1, and is composed of a plurality of direction switching valves 35b for controlling the flow rate and flow direction of the hydraulic oil supplied to the plurality of hydraulic actuators mounted on the hydraulic excavator 1, respectively. The operation command value output from the controller 34 is generated based on the operator's operation input to the operation levers 33a and 33b. Operation command values (including stop command values) for non-existent hydraulic actuators may also be generated. When an operation command value is output from the main controller 34 to the electromagnetic control valve 35a, the corresponding direction switching valve 35b is operated, and the hydraulic actuator (for example, the hydraulic cylinders 20A, 21A, 22A) corresponding to the direction switching valve 35b is operated. ) works. Hydraulic actuators may include those that drive attachments and equipment not included above.
 原動装置36は,エンジン(原動機)36aと,エンジン36aによって駆動される少なくとも1台の油圧ポンプ36bとから構成され,油圧シリンダ20A,21A,22Aと,2つの走行用モータ41と,旋回用モータ38とを駆動するために必要な圧油(作動油)を供給する。原動装置36はこの構成に限らず,電動ポンプなどの他の動力源を用いても良い。 The prime mover 36 comprises an engine (prime mover) 36a and at least one hydraulic pump 36b driven by the engine 36a. 38 is supplied with pressure oil (hydraulic oil) necessary for driving the . The driving device 36 is not limited to this configuration, and other power sources such as an electric pump may be used.
 旋回角度センサ40Sは,旋回体3と走行体4の相対角度φを検出するセンサ(第2姿勢センサ)であり,当該相対角度φを検出できるように油圧ショベル1に搭載されている。旋回角度センサ40Sとしては望ましくはポテンショメータが利用可能である。 The turning angle sensor 40S is a sensor (second posture sensor) that detects the relative angle φ between the turning body 3 and the traveling body 4, and is mounted on the hydraulic excavator 1 so as to detect the relative angle φ. A potentiometer can preferably be used as the turning angle sensor 40S.
 走行体4は,トラックフレーム40と,トラックフレーム40に取り付けられた左右の履帯45と,トラックフレーム40を周回するように左右の履帯45のそれぞれを駆動する左右の走行用モータ41とを備えている。オペレータは2本の走行操作レバー33cを適宜操作することにより,左右の走行油圧モータ(油圧アクチュエータ)41の回転速度を調整することで油圧ショベル1を走行させることができる。走行体4は,履帯45を備えたものに限定されることなく,走行輪や脚(アウトリガー)を備えたものであってもよい。 The traveling body 4 includes a track frame 40 , left and right crawler belts 45 attached to the track frame 40 , and left and right traveling motors 41 for driving the left and right crawler belts 45 so as to rotate the track frame 40 . there is The operator can make the hydraulic excavator 1 travel by adjusting the rotation speed of the left and right travel hydraulic motors (hydraulic actuators) 41 by appropriately operating the two travel control levers 33c. The running body 4 is not limited to one having crawler belts 45, and may be one having running wheels or legs (outriggers).
 <システム構成>
 図2は本実施形態の油圧ショベル1に搭載された油圧制御システムのシステム構成図である。なお,上記で既に説明した部分については適宜説明を省略することがある。
<System configuration>
FIG. 2 is a system configuration diagram of a hydraulic control system mounted on the hydraulic excavator 1 of this embodiment. It should be noted that the description of the parts that have already been described above may be omitted as appropriate.
 この図に示すように,メインコントローラ34は,稼働制限領域設定装置100と,モニタ110と,複数の操作センサ33bと,IMUセンサ30S(第1姿勢センサ)と,複数のIMUセンサ20S,21S,22S(第3姿勢センサ)と,旋回角度センサ40S(第2姿勢センサ)と,複数の圧力センサ20BP,20RP(負荷検出装置)と,複数の電磁制御弁35aと電気的に接続されており,これらと通信可能に構成されている。 As shown in this figure, the main controller 34 includes an operation restricted area setting device 100, a monitor 110, a plurality of operation sensors 33b, an IMU sensor 30S (first attitude sensor), a plurality of IMU sensors 20S, 21S, 22S (third attitude sensor), turning angle sensor 40S (second attitude sensor), multiple pressure sensors 20BP and 20RP (load detectors), and multiple electromagnetic control valves 35a are electrically connected, It is configured to be able to communicate with these.
 稼働制限領域設定装置100は,オペレータが設定した稼働制限領域の境界の位置データをメインコントローラ34に出力する。稼働制限領域の境界は,例えば旋回体3に設定した車体座標系に設定可能である。稼働制限領域の境界の位置データは,稼働制限領域設定装置100を介してオペレータが直接入力しても良いし,地理座標系や現場座標系等の上に予め作成しておいた設計データを稼働制限領域設定装置100を介して適宜座標変換を加えて入力しても良い。図4に示すように,稼働制限領域59は,油圧ショベル1に対して任意の位置に設定することができる。また,稼働制限領域59の形状は多角形や曲線であってもよい。 The operation restricted area setting device 100 outputs the position data of the boundary of the operation restricted area set by the operator to the main controller 34 . The boundary of the limited operation area can be set, for example, in the vehicle body coordinate system set in the revolving superstructure 3 . The position data of the boundary of the restricted operation area may be directly input by the operator via the restricted operation area setting device 100, or the design data created in advance on the geographical coordinate system, the site coordinate system, etc. may be used. Via the restricted area setting device 100, coordinate transformation may be added as appropriate and input may be performed. As shown in FIG. 4 , the restricted operation area 59 can be set at any position with respect to the excavator 1 . Also, the shape of the operation restriction area 59 may be a polygon or a curve.
 なお,稼働制限領域設定装置100は,予め設定した稼働制限領域59の境界の位置データの記憶機能を具備していれば良く,例えば半導体メモリ等の記憶装置にも代替可能である。そのため稼働制限領域59の境界の位置データを例えばメインコントローラ34内の記憶装置や油圧ショベルに搭載された記憶装置に記憶した場合には省略可能である。 It should be noted that the operation restriction area setting device 100 only needs to have a function of storing the position data of the boundary of the preset operation restriction area 59, and can be replaced by a storage device such as a semiconductor memory. Therefore, if the position data of the boundary of the restricted operation area 59 is stored in, for example, a storage device within the main controller 34 or a storage device mounted on the hydraulic excavator, it can be omitted.
 モニタ110は,稼働制限領域59の境界の位置や,油圧ショベル1の姿勢(フロント作業装置2やバケット22の姿勢も含む)や,稼働制限領域59の境界とバケット22との距離や位置関係などの情報をオペレータに提供可能な表示装置である。 The monitor 110 monitors the position of the boundary of the restricted operation area 59, the attitude of the hydraulic excavator 1 (including the attitudes of the front working device 2 and the bucket 22), the distance and positional relationship between the boundary of the restricted operation area 59 and the bucket 22, and the like. information to the operator.
 メインコントローラ34は,油圧ショベル1に関する各種制御を司るコントローラである。本実施形態のメインコントローラ34が実行可能な特徴的な制御は2つある。 The main controller 34 is a controller in charge of various controls related to the hydraulic excavator 1 . There are two characteristic controls that can be executed by the main controller 34 of this embodiment.
 第1に,メインコントローラ34は,フロント作業装置2の動作平面と稼働制限領域59(図4参照)の境界との交線60(境界線60と称する)を超えてフロント作業装置2が稼働制限領域59に侵入しないようにフロント作業装置2の目標速度ベクトル(例えば,当該目標速度ベクトルは,フロント作業装置2と当該境界線60との距離が小さくなるほど小さくなるように演算され,当該距離がゼロの場合には当該目標速度ベクトルとしてゼロが演算される)を演算し,その演算した目標速度ベクトルに従ってフロント作業装置2が動作するように複数の油圧シリンダ20A,21A,22Aのうち少なくとも1つの油圧シリンダを制御するため動作指令値を演算及び出力することで領域制限制御を実行できる。すなわちこの領域制限制御によれば,例えばフロント作業装置2が稼働制限領域59の近傍に位置する状態でオペレータがアームクラウド操作を入力しても,フロント作業装置2が稼働制限領域59の外側に継続して位置するようにフロント作業装置2が半自動的に制御されるため(例えば,稼働制限領域59に近づくとフロント作業装置2が半自動的に停止する),オペレータの技量に依らずフロント作業装置2の稼働制限領域59内への侵入を確実に防止できる。 First, the main controller 34 controls the operation of the front work device 2 beyond the intersection line 60 (referred to as the boundary line 60) between the operation plane of the front work device 2 and the boundary of the operation restriction area 59 (see FIG. 4). The target speed vector of the front work device 2 so as not to enter the area 59 (for example, the target speed vector is calculated so as to decrease as the distance between the front work device 2 and the boundary line 60 decreases, and when the distance is zero) , zero is calculated as the target speed vector), and the hydraulic pressure of at least one of the plurality of hydraulic cylinders 20A, 21A, 22A is adjusted so that the front working device 2 operates according to the calculated target speed vector. Region limit control can be executed by calculating and outputting operation command values for controlling the cylinders. That is, according to this area restriction control, for example, even if the operator inputs an arm cloud operation while the front work device 2 is positioned near the operation restriction area 59, the front work apparatus 2 continues outside the operation restriction area 59. Since the front working device 2 is semi-automatically controlled so as to be positioned at the front working device 2 (for example, the front working device 2 semi-automatically stops when it approaches the operation restriction area 59), the front working device 2 can be reliably prevented from entering the operation restricted area 59.
 第2に,メインコントローラ34は,旋回体3のIMUセンサ30Sの出力に基づいて走行体4の浮き上がり角度θ(詳細は後述)を演算し,その浮き上がり角度θに基づいて走行体4が浮き上がる際の回転中心Cr(詳細は後述)を演算し,演算した当該浮き上がり角度θと当該回転中心Crとに基づいて車体座標系における境界線の位置データを補正する処理を実行できる。これにより境界線60の位置を車体座標系上に設定した場合に走行体4に浮き上がりが生じた場合にも領域制限制御が誤った境界線に従って実行されることが防止できる。 Secondly, the main controller 34 calculates a lifting angle θ (details will be described later) of the running body 4 based on the output of the IMU sensor 30S of the revolving body 3, and based on the lifting angle θ, the moving body 4 rises. A rotation center Cr (details will be described later) can be calculated, and the position data of the boundary line in the vehicle body coordinate system can be corrected based on the calculated lifting angle θ and the rotation center Cr. As a result, when the position of the boundary line 60 is set on the vehicle body coordinate system, it is possible to prevent the region restriction control from being executed along the erroneous boundary line even when the traveling body 4 is lifted.
 なお,フロント作業装置2の動作平面とは,各フロント部材20,21,22が動作する平面,すなわち,3つのフロント部材20,21,22の全てに直交する平面であり,そのような平面のうち例えばフロント作業装置2の幅方向の中心(ブーム20の基端側の回動軸となるブームピンにおける軸方向の中心)を通過する平面が選択できる。 The operating plane of the front working device 2 is the plane on which the front members 20, 21, 22 operate, that is, the plane orthogonal to all the three front members 20, 21, 22. Among them, for example, a plane passing through the center in the width direction of the front working device 2 (the center in the axial direction of the boom pin serving as the rotation axis on the base end side of the boom 20) can be selected.
 <操作入力装置>
 一般に油圧ショベルでは操作レバー33a,33cが倒された量(傾倒量)が大きいほど,各油圧アクチュエータ20A,21A,22A,38,41の動作速度が速くなるように設定されており,オペレータは操作レバー33a,33cを倒す量を変更することにより,各油圧アクチュエータ20A,21A,22A,38,41の動作速度を変更して油圧ショベル1を動作させる。
<Operation input device>
In general, hydraulic excavators are set so that the larger the amount of tilting of the operating levers 33a and 33c (tilting amount), the faster the operating speed of each of the hydraulic actuators 20A, 21A, 22A, 38 and 41. By changing the amount of tilting the levers 33a, 33c, the operating speed of each hydraulic actuator 20A, 21A, 22A, 38, 41 is changed to operate the hydraulic excavator 1.
 操作センサ33bには,ブーム20,アーム21,バケット22(ブームシリンダ20A,アームシリンダ21A,バケットシリンダ22A)及び旋回体3(旋回用モータ38)に対する操作レバー33aの操作量(傾倒量)を電気的に検出するセンサが含まれており,操作センサ33bの検出信号に基づいて,オペレータが要求するブームシリンダ20A,アームシリンダ21A,バケットシリンダ22A,旋回体3の動作速度をそれぞれ検出することができる。また,操作センサ33bには,走行用モータ41に対する操作レバー33cの操作量(傾倒量)を電気的に検出するセンサが含まれており,操作センサ33bの検出信号に基づいて,オペレータが要求する走行体4の動作速度を検出することができる。操作センサとしては,操作レバー33a,33cが倒された量を直接検出するものに限らず,操作レバー33a,33cの操作によって出力される作動油の圧力(操作パイロット圧)を検出する方式であってもよい。 The operation sensor 33b electrically detects the operation amount (tilt amount) of the operation lever 33a with respect to the boom 20, arm 21, bucket 22 (boom cylinder 20A, arm cylinder 21A, bucket cylinder 22A) and swing body 3 (swing motor 38). The operation speed of the boom cylinder 20A, the arm cylinder 21A, the bucket cylinder 22A, and the swing body 3 requested by the operator can be detected based on the detection signal of the operation sensor 33b. . Further, the operation sensor 33b includes a sensor that electrically detects the operation amount (tilt amount) of the operation lever 33c with respect to the traveling motor 41. Based on the detection signal of the operation sensor 33b, the operator makes a request. The operating speed of the running body 4 can be detected. The operation sensor is not limited to the one that directly detects the amount by which the operation levers 33a and 33c are tilted, but it is a method that detects the hydraulic oil pressure (operation pilot pressure) output by the operation of the operation levers 33a and 33c. may
 <姿勢センサ>
 IMUセンサ(旋回体)30S,IMUセンサ(ブーム)20S,IMUセンサ(アーム)21S,IMUセンサ(バケット)22Sは,それぞれ角速度センサと加速度センサと傾斜角センサとして機能し得る。これらのIMUセンサによりそれぞれの設置位置における角速度と加速度データと傾斜角データを得ることができる。ブーム20,アーム21,バケット22,ブームシリンダ20A,アームシリンダ21A,バケットシリンダ22A,第1リンク部材22B,第2リンク部材22C,および旋回体3は,それぞれ回動(旋回)できるように取り付けられているので,各部の寸法と機械的なリンク関係とから,ブーム20,アーム21,バケット22,および旋回体3の車体座標系における姿勢や位置を算出することができる。なお,ここで示した姿勢及び位置の検出方法は一例であり,フロント作業装置2の各部の相対角度を直接計測するものや,ブームシリンダ20A,アームシリンダ21A,バケットシリンダ22Aのストロークを検出して油圧ショベル1の各部の姿勢及び位置を算出してもよい。
<負荷検出装置>
 負荷検出装置である圧力センサ20BP,20RPは,上記のようにブームシリンダ20Aに直接取り付けられても良いし,油圧制御装置35からブームシリンダ20Aに至るまでの油路上に取り付けられても良い。また,負荷検出装置としては,圧力センサ20BP,20RPに限らず,ブーム20と旋回体3の接続部に働くトルクを直接検出するロードセルでも良いし,フロント作業装置2のひずみを検出して負荷を推定する方式(ひずみゲージ)であってもよい。
<Attitude sensor>
The IMU sensor (rotating body) 30S, IMU sensor (boom) 20S, IMU sensor (arm) 21S, and IMU sensor (bucket) 22S can function as an angular velocity sensor, an acceleration sensor, and an inclination angle sensor, respectively. Angular velocity, acceleration data, and tilt angle data at each installation position can be obtained from these IMU sensors. The boom 20, the arm 21, the bucket 22, the boom cylinder 20A, the arm cylinder 21A, the bucket cylinder 22A, the first link member 22B, the second link member 22C, and the revolving body 3 are mounted so as to be able to rotate (revolve). Therefore, the attitudes and positions of the boom 20, the arm 21, the bucket 22, and the revolving body 3 in the vehicle body coordinate system can be calculated from the dimensions of each part and the mechanical link relationship. The posture and position detection method shown here is just an example, and a method that directly measures the relative angle of each part of the front work device 2, or a method that detects the strokes of the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A. The posture and position of each part of the hydraulic excavator 1 may be calculated.
<Load detector>
The pressure sensors 20BP and 20RP, which are load detection devices, may be directly attached to the boom cylinder 20A as described above, or may be attached on the oil passage from the hydraulic control device 35 to the boom cylinder 20A. Moreover, the load detection device is not limited to the pressure sensors 20BP and 20RP, but may be a load cell that directly detects the torque acting on the connecting portion between the boom 20 and the revolving structure 3, or detects the strain of the front working device 2 to detect the load. An estimation method (strain gauge) may be used.
 <メインコントローラ>
 図3はメインコントローラ34の構成図である。メインコントローラ34は,例えば図示しないCPU(Central Processing Unit)と,CPUによる処理を実行するための各種プログラムを格納するROM(Read Only Memory)やHDD(Hard Disc Drive)などの記憶装置と,CPUがプログラムを実行する際の作業領域となるRAM(Random Access Memory)とを含むハードウェアを用いて構成されている。このように記憶装置に格納されたプログラムを実行することで,姿勢演算部710,稼働制限領域演算部720,稼働制限領域補正部730,浮き上がり判定部910,浮き上がり角度演算部920,浮き上がり中心演算部930,動作指令部310として機能する。次に各部が行う処理の詳細について説明する。
<Main controller>
FIG. 3 is a configuration diagram of the main controller 34. As shown in FIG. The main controller 34 includes, for example, a CPU (Central Processing Unit) (not shown), a storage device such as a ROM (Read Only Memory) or an HDD (Hard Disc Drive) that stores various programs for executing processing by the CPU, and the CPU. It is configured using hardware including a RAM (Random Access Memory) that serves as a work area when executing a program. By executing the programs stored in the storage device in this manner, the attitude calculation unit 710, the operation restriction area calculation unit 720, the operation restriction area correction unit 730, the floating judgment unit 910, the floating angle computing unit 920, the floating center computing unit 930, functions as the operation command unit 310; Next, the details of the processing performed by each unit will be described.
 <姿勢演算部710>
 姿勢演算部710は,IMUセンサ(ブーム)20S,IMUセンサ(アーム)21S,IMUセンサ(バケット)22S,IMUセンサ(旋回体)30Sから得られる加速度信号と角速度信号を検出し,ブーム20,アーム21,バケット22,および旋回体3の姿勢(傾斜角度)をそれぞれ演算する。この姿勢の演算結果に各フロント部材20,21,22の寸法を加味すればフロント作業装置2の位置も演算できる。3つのIMUセンサ20S,21S,22S(第3姿勢センサ)から演算できるブーム20,アーム21及びバケット22の姿勢からは車体座標系におけるフロント作業装置2の位置を演算できる。
<Posture calculation unit 710>
The posture calculation unit 710 detects acceleration signals and angular velocity signals obtained from the IMU sensor (boom) 20S, IMU sensor (arm) 21S, IMU sensor (bucket) 22S, and IMU sensor (rotating body) 30S, 21, the bucket 22, and the revolving body 3 (inclination angle) are calculated. If the dimensions of the front members 20, 21, and 22 are added to the result of calculation of the posture, the position of the front working device 2 can also be calculated. The position of the front working device 2 in the vehicle body coordinate system can be calculated from the attitudes of the boom 20, arm 21 and bucket 22 that can be calculated from three IMU sensors 20S, 21S, 22S (third attitude sensors).
 <稼働制限領域演算部720>
 稼働制限領域演算部720は,稼働制限領域設定装置100から入力される稼働制限領域59の位置データに基づいて,車体座標系における稼働制限領域59の境界線60の位置を演算する。ここで演算される境界線60の位置は,旋回体3が水平な状態における境界線60の位置であり,以下ではこれを「初期位置」と称することがある。
<Operation restriction area calculation unit 720>
The operation restriction area calculation unit 720 calculates the position of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system based on the position data of the operation restriction area 59 input from the operation restriction area setting device 100 . The position of the boundary line 60 calculated here is the position of the boundary line 60 when the revolving superstructure 3 is horizontal, and is hereinafter sometimes referred to as the "initial position".
 <浮き上がり判定部910>
 浮き上がり判定部910は,走行体4の一部が浮き上がった状態であるか否かを判定する。図4は走行体4が水平な地面に面接触している状態を示し,図5は旋回体3が後傾している状態(走行体4の前方が浮き上がっている状態)を示し,図6は旋回体3が前傾している状態(走行体4の後方が浮き上がっている状態)を示す。
<Floating Determination Unit 910>
A lift determination unit 910 determines whether or not a part of the traveling body 4 is lifted. 4 shows a state in which the running body 4 is in surface contact with the horizontal ground, FIG. 5 shows a state in which the revolving body 3 is tilted backward (a state in which the front of the running body 4 is lifted), and FIG. indicates a state in which the revolving body 3 is tilted forward (a state in which the rear of the running body 4 is lifted).
 なお,走行体4の浮き上がりが発生している場合には稼働制限領域59の境界線60の補正が行われ,走行体4の浮き上がりが発生していない場合には稼働制限領域59の境界線60の補正は行われない(すなわち境界線60の位置は初期位置のまま保持される)。すなわち,走行体4の浮き上がりの有無は,稼働制限領域59の境界線60の補正の有無に一致する。 When the traveling object 4 is lifted, the boundary line 60 of the operation restriction area 59 is corrected. is not corrected (that is, the position of the boundary line 60 is kept at its initial position). That is, whether or not the traveling body 4 is lifted coincides with whether or not the boundary line 60 of the operation restriction area 59 is corrected.
 走行体4の浮き上がり判定の方法について説明する。作業機械1が走行体4による走行を停止しているときに,フロント作業装置2を介して油圧ショベル1が地面から大きな反力を受けると走行体4の浮き上がりが発生し得る。 A method for judging whether the traveling body 4 has risen will be explained. If the hydraulic excavator 1 receives a large reaction force from the ground via the front work device 2 while the working machine 1 is stopped from traveling by the traveling body 4, the traveling body 4 may be lifted.
 そこで,本実施形態の浮き上がり判定部910は,走行操作レバー33cに対する操作入力の有無(すなわち走行の有無)を操作センサ33bの出力で監視しつつ,走行体4の浮き上がりの有無をIMUセンサ(旋回体)30Sの出力で監視する。そして,走行操作レバー33cに対する操作が無い状態(すなわち非走行状態)の場合にIMUセンサ(旋回体)30Sの出力が変化したときには,浮き上がり判定部910は走行体4が浮き上がっていると判定する。一方,走行操作レバー33cに対する操舵が有る場合,または,IMUセンサ(旋回体)30Sの出力が一定の場合には,走行体4の浮き上がりは無いと判定する。 Therefore, the lift determination unit 910 of the present embodiment monitors the presence or absence of an operation input to the travel control lever 33c (that is, the presence or absence of travel) by the output of the operation sensor 33b, and detects the presence or absence of the lift of the traveling body 4 by the IMU sensor (turning motion). body) Monitor the output of 30S. When the output of the IMU sensor (revolving body) 30S changes while the traveling control lever 33c is not operated (that is, in the non-running state), the floating determination section 910 determines that the traveling body 4 is floating. On the other hand, if the travel control lever 33c is steered, or if the output of the IMU sensor (revolving body) 30S is constant, it is determined that the travel body 4 is not lifted.
 上記の他の判定方法として,フロント作業装置2の負荷を検出し,走行体4が浮き上がるのに必要な反力を得ているときに走行体4の傾斜角度が変化した場合は,走行体4が浮き上がっていると判定してもよい。例えば,浮き上がり判定部910において,ブームシリンダ20Aに関する2つの圧力センサ(ロッド側,ボトム側)20BP,20RPの出力からブームシリンダ20Aの推力F1を算出する。算出したブームシリンダ20Aの推力F1と,フロント作業装置2を支えるのに必要なブームシリンダ20Aの推力F2と比較することで,走行体4が浮き上がるのに必要な反力を得ているか否かを判断し,浮き上がりの有無を判定する。具体的には(1)ブームシリンダ20Aの推力F1がフロント作業装置2を支持するために必要な推力F2と異なるとき,かつ,IMUセンサ(旋回体)30の出力が変化したときには,走行体4が浮き上がっていると判定する。一方,(2)ブームシリンダ20Aの推力F1がフロント作業装置2を支持するために必要な推力F2に一致するとき,または,IMUセンサ(旋回体)30Sの出力が一定のとき(より具体的には一定とみなせるとき)には,走行体4が浮き上がっていない(走行体4が地面と面接触している)と判定する。 As another determination method, the load of the front working device 2 is detected, and if the inclination angle of the traveling body 4 changes while the reaction force required for the traveling body 4 to float up is obtained, the traveling body 4 may be determined to be floating. For example, in the uplift determination unit 910, the thrust F1 of the boom cylinder 20A is calculated from outputs of two pressure sensors (rod side, bottom side) 20BP and 20RP related to the boom cylinder 20A. By comparing the calculated thrust force F1 of the boom cylinder 20A with the thrust force F2 of the boom cylinder 20A required to support the front working device 2, it is determined whether or not the reaction force necessary for lifting the traveling body 4 is obtained. and determine whether or not there is floating. Specifically, (1) when the thrust F1 of the boom cylinder 20A is different from the thrust F2 required to support the front working device 2, and when the output of the IMU sensor (revolving body) 30 changes, the traveling body 4 is determined to be floating. On the other hand, (2) when the thrust force F1 of the boom cylinder 20A matches the thrust force F2 required to support the front working device 2, or when the output of the IMU sensor (rotating body) 30S is constant (more specifically, can be regarded as constant), it is determined that the running body 4 is not floating (the running body 4 is in surface contact with the ground).
 この方法を利用すると,走行体4の浮き上がりにより旋回体3が前傾と後傾のいずれの姿勢を示すかも判定できる。上記(1)の場合にF1<F2が成立すれば,旋回体3が後傾していることを示し,旋回体3の後側(カウンタウェイト37側)において走行体4が地面と接触する接触線を中心に走行体4が浮き上がっていると判定できる(図5参照)。逆にF1>F2が成立すれば,旋回体3が前傾していることを示し,旋回体3の前側(フロント作業装置2側)において走行体4が地面と接触する接触線を中心に走行体4が浮き上がっていると判定できる(図6参照)。 By using this method, it is possible to determine whether the revolving structure 3 is tilted forward or tilted backward due to the lifting of the traveling structure 4 . If F1<F2 holds true in the above case (1), it indicates that the revolving body 3 is tilted backward, and the rear side of the revolving body 3 (the side of the counterweight 37) contacts the running body 4 with the ground. It can be determined that the traveling body 4 is floating around the line (see FIG. 5). Conversely, if F1>F2 holds, it indicates that the revolving body 3 is tilted forward, and the traveling body 4 travels around the contact line where the traveling body 4 contacts the ground on the front side of the revolving body 3 (on the side of the front working device 2). It can be determined that the body 4 is floating (see FIG. 6).
 なお,上記の比較において利用される「フロント作業装置2を支えるのに必要なブームシリンダ20Aの推力F2」は,姿勢演算部710で演算される各フロント部材20,21,22の姿勢と,各フロント部材20,21,22の重量とに基づいて演算され得るものであり,一般的な力学演算により算出可能である。 It should be noted that the "thrust force F2 of the boom cylinder 20A required to support the front work device 2" used in the above comparison is the attitude of each front member 20, 21, 22 calculated by the attitude calculation unit 710, and the It can be calculated based on the weights of the front members 20, 21 and 22, and can be calculated by general dynamic calculation.
 <浮き上がり角度演算部920>
 浮き上がり角度演算部920は,IMUセンサ(旋回体)30Sの出力に基づいて,走行体4の浮き上がりによる旋回体3の傾斜角度の変化θを演算する。ここではこの角度θを浮き上がり角度と称する。
<Lifting Angle Calculator 920>
A lifting angle calculator 920 calculates a change θ in the inclination angle of the revolving body 3 due to the lifting of the traveling body 4 based on the output of the IMU sensor (revolving body) 30S. Here, this angle θ is referred to as a lift angle.
 走行体4の浮き上がり角度θの演算方法について説明する。図5および図6に示されるように,走行体4は作業状態によってフロント作業装置2側またはカウンタウェイト37側が浮き上がる。浮き上がり角度θは,走行体4が接触している地面と走行体4の底面がなす角度で定義される。つまり,走行体4が浮き上がる直前の傾斜角度(走行体4が接触している地面の傾斜角度)と,浮き上がり後の傾斜角度との偏差を演算することで,下記式(1)のように浮き上がり角度θを演算できる。なお,油圧ショベル1では,旋回体3と走行体4は1軸の回転動作をする構造のため,IMUセンサ(旋回体)30Sにより旋回体3の傾斜角度を計測することで走行体4の傾斜角度を推定できる。 A method of calculating the rising angle θ of the traveling body 4 will be explained. As shown in FIGS. 5 and 6, the running body 4 floats on the side of the front working device 2 or on the side of the counterweight 37 depending on the working conditions. The rising angle θ is defined by the angle between the ground surface with which the running body 4 is in contact and the bottom surface of the running body 4 . That is, by calculating the deviation between the tilt angle immediately before the running body 4 lifts up (the tilt angle of the ground that the running body 4 is in contact with) and the tilt angle after lifting, the following equation (1) is obtained. Angle θ can be calculated. Since the hydraulic excavator 1 has a structure in which the revolving structure 3 and the traveling structure 4 rotate about one axis, the inclination of the traveling structure 4 can be detected by measuring the inclination angle of the revolving structure 3 with the IMU sensor (revolving structure) 30S. Angle can be estimated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 <浮き上がり中心演算部930>
 浮き上がり中心演算部930は,浮き上がり角度演算部920で演算された浮き上がり角度θに基づいて,走行体4のどこを中心に浮き上がりが発生しているかを判定し,走行体4が浮き上がるときの回転中心Cr(Crb,Crf)を演算する。
<Lifting center calculation unit 930>
Based on the lifting angle θ calculated by the lifting angle calculating unit 920, the lifting center calculation unit 930 determines the center of the moving object 4 at which the lifting occurs, and determines the center of rotation when the moving object 4 is lifted. Compute Cr(Crb, Crf).
 図5および図6を用いて浮き上がりの回転中心Crを演算する方法について説明する。図5中の矢印55が示すように旋回体3が前傾する方向の角度を正(+)とすると,式(1)に示した浮き上がり角度θは,図5のように旋回体3が後傾するとき(走行体4のフロント作業装置2側が浮き上がるとき)には正の値になり,図6のように旋回体3が前傾するとき(走行体4のカウンタウェイト37側が浮き上がるとき)には負の値になる。そのため浮き上がり角度の正負により,走行体4におけるフロント作業装置2側とカウンタウェイト37側のどちらが浮き上がっているかを判定することができる。 A method of calculating the floating center of rotation Cr will be described with reference to FIGS. 5 and 6. FIG. Assuming that the angle in the forward tilting direction of the revolving structure 3 is positive (+) as indicated by an arrow 55 in FIG. When tilting (when the front working device 2 side of the traveling body 4 floats up), it becomes a positive value, and as shown in FIG. becomes a negative value. Therefore, it can be determined whether the front work device 2 side or the counterweight 37 side of the running body 4 is floating depending on whether the lifting angle is positive or negative.
 浮き上がり角度θが正の値のときには,図5のように走行体4のフロント作業装置2側が浮き上がって旋回体3が後傾するので,旋回体3のカウンタウェイト37側(後側)において走行体4が地面と接触する接触線を浮き上がりの回転中心Crbとする。反対に,浮き上がり角度θが負の値のときには,図6のように走行体4のカウンタウェイト37側が浮き上がって旋回体3が前傾するので,旋回体3のフロント作業装置2側(前側)において走行体4が地面と接触する接触線を浮き上がりの回転中心Crfとする。 When the uplift angle θ is a positive value, the front working device 2 side of the traveling body 4 is lifted as shown in FIG. The contact line where 4 contacts the ground is defined as the rotation center Crb of the lift. On the contrary, when the lifting angle θ is a negative value, the counterweight 37 side of the traveling body 4 is lifted as shown in FIG. The line of contact where the traveling body 4 contacts the ground is defined as the center of rotation Crf of floating.
 本実施形態では図4-図6に示すようにブーム20の回転軸(ブームピンの回転軸心)とフロント作業装置2の動作平面との交点に車体座標系の原点Oが設定されている。フロント作業装置2の動作平面上における当該原点Oに対する各回転中心Crb,Crfの位置の座標(a,c)は,旋回角度センサ40Sで検出される旋回体3と走行体4との相対角度φと,旋回体3と走行体4との寸法(予めコントローラ34に記憶させておくことが可能)とに基づいて演算可能である。 In this embodiment, as shown in FIGS. 4 to 6, the origin O of the vehicle body coordinate system is set at the intersection of the rotation axis of the boom 20 (the axis of rotation of the boom pin) and the operation plane of the front work device 2. The coordinates (a, c) of the positions of the rotation centers Crb and Crf with respect to the origin O on the operation plane of the front working device 2 are the relative angle φ and the dimensions of the revolving body 3 and the traveling body 4 (which can be stored in advance in the controller 34).
 <稼働制限領域補正部730>
 稼働制限領域補正部730は,走行体4が浮き上がるときの回転中心Crf,Crbの位置と,浮き上がり角度θとに基づいて,車体座標系における稼働制限領域59の境界線60の位置を補正する。但し走行体4の浮き上がりが無い場合(浮き上がり角度θ=0の場合)には補正は行われず境界線60の位置は初期位置のまま出力される。また,稼働制限領域補正部730は,車体座標系における稼働制限領域59の境界線60の位置データと,姿勢演算部710で演算される各フロント部材20,21,22の車体座標系における位置データとに基づいて,稼働制限領域59の境界線60とフロント作業装置2との最短距離dを演算する。
<Operation restriction area correction unit 730>
The operation restriction area correction unit 730 corrects the position of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system based on the positions of the rotation centers Crf and Crb when the traveling body 4 is lifted and the lifting angle θ. However, when the traveling body 4 is not lifted (when the lift angle .theta.=0), correction is not performed and the position of the boundary line 60 is output as the initial position. In addition, the operation restriction area correction unit 730 provides the position data of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system and the position data of each of the front members 20, 21, 22 in the vehicle body coordinate system calculated by the posture calculation unit 710. , the shortest distance d between the boundary line 60 of the restricted operation area 59 and the front working device 2 is calculated.
 稼働制限領域補正部730が車体座標系における稼働制限領域59の境界線60の位置を補正する方法について説明する。稼働制限領域59を構成する任意の点をP(X,Z),回転中心Crf,Crb(a,c)の周りに浮き上がり角θだけ回転した点をQ(X’,Z’)とすると,下記式(2)が成り立つ。 A method for correcting the position of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system by the operation restriction area correction unit 730 will be described. Let P(X, Z) be an arbitrary point that constitutes the restricted operation area 59, and let Q(X', Z') be a point rotated by the floating angle θ around the rotation center Crf, Crb(a, c). The following formula (2) holds.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 既に触れたように,上記式(2)におけるθ,a,cは演算可能な定数である。そのため,例えば,初期位置の境界線60の位置を示す関数Z=f(X)と,上記式(2)とに基づいて,補正後の境界線60の位置(補正位置)を示す関数Z’=g(X’)をXの関数で表すことができる。なお,式(2)による変換は,境界線60の初期位置(X,Z)を回転中心Crf,Crfの回りに-θ回転させ,回転中心Crf,Crfの座標(a,c)の分だけ平行移動するものである。 As already mentioned, θ, a, and c in the above formula (2) are calculable constants. Therefore, for example, a function Z′ =g(X') can be expressed as a function of X. Note that the conversion by equation (2) is performed by rotating the initial position (X, Z) of the boundary line 60 by -θ around the rotation centers Crf, Crf, and by the coordinates (a, c) of the rotation centers Crf, Crf. It moves in parallel.
 <動作指令部310>
 動作指令部310は,稼働制限領域59の境界線60とフロント作業装置2との最短距離dと,操作センサ33bの出力とに基づいて,ブームシリンダ20A,アームシリンダ21A及びバケットシリンダ22Aに係る電磁制御弁35aの駆動に必要な動作指令値を演算する。最短距離dは,稼働制限領域補正部730から出力される境界線60の位置(初期位置または補正位置)に基づいて演算される。すなわち,走行体4が浮き上がっている場合には境界線60の補正位置に基づいて演算され,走行体4の下面が地面と面接触している場合には境界線60の初期位置に基づいて演算される。
<Operation command unit 310>
Based on the shortest distance d between the boundary line 60 of the operation restriction area 59 and the front work device 2 and the output of the operation sensor 33b, the operation command unit 310 controls the electromagnetic waves related to the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A. An operation command value necessary for driving the control valve 35a is calculated. The shortest distance d is calculated based on the position (initial position or corrected position) of the boundary line 60 output from the restricted operation area correction unit 730 . That is, when the running body 4 is floating, the calculation is based on the corrected position of the boundary line 60, and when the bottom surface of the running body 4 is in surface contact with the ground, the calculation is based on the initial position of the boundary line 60. be done.
 動作指令部310は,油圧ショベル1が稼働している間(または領域制限制御が有効とされている間),稼働制限領域59の境界線60とフロント作業装置2との最短距離dが所定値(閾値)よりも小さいか否かを判定する。当該最短距離dが当該所定値よりも小さくなった場合には,動作指令部310は,操作センサ33bから出力に関わらず,フロント作業装置2が停止するためにブームシリンダ20A,アームシリンダ21A,バケットシリンダ22Aの目標動作速度をゼロに設定する。そして,動作指令部310は,当該目標動作速度に従って各電磁制御弁35aの駆動に必要な動作指令値を生成し,生成した動作指令値を対応する電磁制御弁35aに出力することで,対応する方向切替弁(コントロールバルブ)35bを駆動する。これによりフロント作業装置2が境界線60に接近した場合にはフロント作業装置2が停止され,フロント作業装置2が稼働制限領域59内に侵入することが防止される。 While the hydraulic excavator 1 is operating (or while the area restriction control is valid), the operation command unit 310 sets the shortest distance d between the boundary line 60 of the operation restriction area 59 and the front work device 2 to a predetermined value. It is determined whether or not it is smaller than (threshold). When the shortest distance d becomes smaller than the predetermined value, the operation command unit 310 controls the boom cylinder 20A, the arm cylinder 21A, and the bucket to stop the front working device 2 regardless of the output from the operation sensor 33b. Set the target operating speed of cylinder 22A to zero. Then, the operation command unit 310 generates an operation command value necessary for driving each electromagnetic control valve 35a according to the target operation speed, and outputs the generated operation command value to the corresponding electromagnetic control valve 35a, thereby The direction switching valve (control valve) 35b is driven. As a result, when the front working device 2 approaches the boundary line 60 , the front working device 2 is stopped, and the front working device 2 is prevented from entering the restricted operation area 59 .
 なお,最短距離dが所定値以上の場合には,操作センサ33bの出力に従ってブームシリンダ20A,アームシリンダ21A,バケットシリンダ22Aの目標速度が演算され,オペレータの操作に即してフロント作業装置2が動作する。 When the shortest distance d is equal to or greater than a predetermined value, the target speeds of the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A are calculated according to the output of the operation sensor 33b, and the front working device 2 is operated according to the operator's operation. Operate.
 <モニタ110>
 稼働制限領域59の境界線60と油圧ショベル(作業機械)1の位置関係を示すモニタ110上の画面の一例を図7に示す。走行体4の浮き上がりがない場合には,図中左側の(a)のように走行体4の底面と地面が全面で接地している画像を表示し,稼働制限領域59の境界線60とフロント作業装置2の最短距離dの値を表示する。図7の例では油圧ショベル1の前方に位置する垂直の境界線60aと油圧ショベル1の下方に位置する水平の境界線60bとの最短距離da(+0.5m),db(+1.2m)をそれぞれ表示している。走行体4の浮き上がりがある場合には,図中右側の(b)のような走行体4が浮き上がっている画像を表示し,(a)と同様に稼働制限領域59の境界線60(60a,60b)とフロント作業装置2の最短距離d(da,db)を表示する。
<Monitor 110>
An example of a screen on the monitor 110 showing the positional relationship between the boundary line 60 of the restricted operation area 59 and the hydraulic excavator (working machine) 1 is shown in FIG. When the running body 4 is not lifted, an image is displayed in which the bottom surface of the running body 4 and the ground are in full contact with each other, as shown in FIG. The value of the shortest distance d of the work device 2 is displayed. In the example of FIG. 7, the shortest distances da (+0.5 m) and db (+1.2 m) between the vertical boundary line 60a located in front of the hydraulic excavator 1 and the horizontal boundary line 60b located below the hydraulic excavator 1 are displayed respectively. When the traveling body 4 is lifted, an image of the traveling body 4 floating as shown in (b) on the right side of the drawing is displayed, and the boundary line 60 (60a, 60b) and the shortest distance d (da, db) of the front working device 2 are displayed.
 上記で説明した浮きあがり角度θに応じた境界線60の補正を行うことで,走行体4に浮きあがりが生じてもモニタ110の画面上の境界線60の位置は保持される。 By correcting the boundary line 60 according to the lifting angle θ described above, the position of the boundary line 60 on the screen of the monitor 110 is maintained even if the moving object 4 is lifted.
 なお,図7の例では境界線60の形状に応じて最短距離を2つ表示したが,フロント作業装置2と最も近い境界線60との距離のみを表示してもよい。また,このほかに,色や図形を変えることで稼働制限領域59の境界線60と油圧ショベル1の位置関係を表示してもよい。例えば,図7の例では油圧ショベル1の画像を表示したが,この画像の表示の代わりに走行体4の浮き上がりが生じていることをメッセージや警報等で報知するに留めても良い。 Although two shortest distances are displayed according to the shape of the boundary line 60 in the example of FIG. 7, only the distance between the front working device 2 and the nearest boundary line 60 may be displayed. In addition, the positional relationship between the boundary line 60 of the operation restriction area 59 and the hydraulic excavator 1 may be displayed by changing the color or figure. For example, in the example of FIG. 7, the image of the hydraulic excavator 1 is displayed, but instead of displaying this image, it is also possible to notify by a message or an alarm that the traveling body 4 is floating.
 <メインコントローラの制御手順>
 図8は,図3でメインコントローラ34内に示した各部による演算の流れの一例を説明したメインコントローラ34が実行する処理のフローチャートである。以下では,図3に示したメインコントローラ34内の各部を主語として各処理(ステップS110-S210)を説明する場合があるが,各処理を実行するハードウェアはメインコントローラ34である。また,各部の処理の詳細な説明は各部の説明箇所に記載されていることがある。なお,走行体4と旋回体3の相対角度φはゼロ度とする。
<Control procedure of the main controller>
FIG. 8 is a flow chart of processing executed by the main controller 34, explaining an example of the flow of calculation by each unit shown in the main controller 34 in FIG. In the following, each process (steps S110 to S210) may be described with each part in the main controller 34 shown in FIG. Further, detailed explanations of the processing of each part may be described in the description of each part. The relative angle φ between the traveling body 4 and the revolving body 3 is assumed to be zero degree.
 まず,ステップS110では,姿勢演算部710は,姿勢センサ30S,20S,21S,22S,40Sで検出されたデータを参照し,ブーム20,アーム21,バケット22,走行体4および旋回体3の姿勢を演算する。 First, in step S110, the attitude calculation unit 710 refers to the data detected by the attitude sensors 30S, 20S, 21S, 22S, and 40S, and determines the attitudes of the boom 20, arm 21, bucket 22, traveling body 4, and revolving body 3. to calculate
 ステップS120では,稼働制限領域演算部720は,稼働制限領域設定装置100から入力される稼働制限領域59の位置データに基づいて,車体座標系における稼働制限領域59の境界線60の位置(初期位置)を演算する。 In step S120, the operation restriction area calculation unit 720 determines the position of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system (initial position ).
 ステップS130では,浮き上がり判定部910は,走行操作レバー33cに対する操作入力の有無と,IMUセンサ(旋回体)30Sの出力とに基づいて,走行体4が浮き上がり状態であるかを判定する。走行体4が浮上がり状態にあると判定された場合にはステップS140に進み,浮き上がっていないと判定された場合にはステップS200に進む。 In step S130, the floating determination unit 910 determines whether the running body 4 is in a floating state, based on whether there is an operation input to the travel control lever 33c and the output of the IMU sensor (rotating body) 30S. If it is determined that the traveling body 4 is floating, the process proceeds to step S140, and if it is determined that it is not floating, the process proceeds to step S200.
 ステップS140では,浮き上がり角度演算部920は,IMUセンサ(旋回体)30Sの出力に基づいて,走行体4の浮き上がりによる旋回体3の傾斜角度の変化(浮き上がり角度)θを演算し,ステップS160に進む。 In step S140, the lifting angle calculation unit 920 calculates a change in the inclination angle (lifting angle) .theta. move on.
 ステップS160では,浮き上がり中心演算部930は,ステップS140で演算した浮き上がり角度θに基づいて,走行体4の浮上がりがどの方向に発生しているかを判定する。浮上がり角度θが負の場合には,旋回体3が前傾しており,走行体4におけるカウンタウェイト37側が浮上がっているので(つまり図6の状態),ステップS170に進む。一方,浮上がり角度が正の場合には,旋回体3が後傾しており,走行体4におけるフロント作業装置2側が浮上がっているので(つまり図5の状態),ステップS180に進む。 In step S160, the floating center calculation unit 930 determines in which direction the traveling object 4 is floating based on the floating angle θ calculated in step S140. is negative, the revolving body 3 is tilted forward and the counterweight 37 side of the running body 4 is floating (that is, the state of FIG. 6), so the process proceeds to step S170. On the other hand, if the rising angle is positive, the revolving body 3 is tilted backward, and the front working device 2 side of the traveling body 4 is floating (that is, the state of FIG. 5), so the process proceeds to step S180.
 ステップS170では,油圧ショベル1は図6のような姿勢になっているので,浮き上がり中心演算部930は,走行体4の進行方向(前後方向や長さ方向とも称される)かつフロント作業装置2側(つまり走行体4の前側)に回転中心Crfを設定する。 In step S170, the hydraulic excavator 1 is in the posture shown in FIG. The center of rotation Crf is set on the side (that is, the front side of the traveling body 4).
 ステップS180では,油圧ショベル1は図5のような姿勢になっているので,浮き上がり中心演算部930は,走行体4の進行方向(前後方向や長さ方向とも称される)かつカウンタウェイト37側(つまり走行体4の後側)に回転中心Crbを設定する。 At step S180, the hydraulic excavator 1 is in the posture shown in FIG. (that is, the rear side of the traveling body 4) is set as the center of rotation Crb.
 ステップS190では,稼働制限領域補正部730は,ステップS170またはS180で設定した回転中心Crf,Crbの位置と,ステップS140で演算した浮き上がり角度θとに基づいて,車体座標系における稼働制限領域59の境界線60の位置を補正して補正位置とする。浮き上がり角度θがゼロの場合(走行体4の浮き上がりが発生していない場合)には境界線60の位置として初期位置が保持される。 In step S190, the operation restriction area correction unit 730 determines the operation restriction area 59 in the vehicle body coordinate system based on the positions of the rotation centers Crf and Crb set in step S170 or S180 and the lifting angle θ calculated in step S140. The position of the boundary line 60 is corrected to be the corrected position. When the lifting angle θ is zero (when the traveling body 4 does not lift), the initial position is held as the position of the boundary line 60 .
 ステップS200では,モニタ110の画面上で,ステップS190で補正された位置に境界線60が表示される。 In step S200, the boundary line 60 is displayed on the screen of the monitor 110 at the position corrected in step S190.
 ステップS210では,稼働制限領域補正部730は,ステップS190で演算された車体座標系における稼働制限領域59の境界線60の位置データ(浮き上がりの無い場合には初期位置,浮き上がりが発生した場合には補正位置)と,ステップS110で演算された各フロント部材20,21,22の姿勢データとに基づいて,稼働制限領域59の境界線60とフロント作業装置2との最短距離dを演算し,動作指令部310に出力する。 In step S210, the operation restriction area correction unit 730 obtains the position data of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system calculated in step S190 (initial position if there is no lifting, and Corrected position) and the attitude data of the front members 20, 21, 22 calculated in step S110, the shortest distance d between the boundary line 60 of the operation restriction area 59 and the front working device 2 is calculated, and the operation is performed. Output to command unit 310 .
 動作指令部310は,稼働制限領域補正部730で演算された最短距離dが所定値(閾値)よりも小さい場合には,ブームシリンダ20A,アームシリンダ21A,バケットシリンダ22Aの目標動作速度をゼロに設定し,当該目標動作速度に従って各電磁制御弁35aの駆動に必要な動作指令値を生成・出力する。これによりフロント作業装置2が境界線60に接近した場合にはフロント作業装置2が停止される。一方,最短距離dが所定値以上の場合には,動作指令部310は,操作センサ33bの出力に従ってブームシリンダ20A,アームシリンダ21A,バケットシリンダ22Aの目標速度を演算し,その結果,オペレータの操作に即してフロント作業装置2が動作する。 When the shortest distance d calculated by the operation restriction area correction unit 730 is smaller than a predetermined value (threshold value), the operation command unit 310 sets the target operating speeds of the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A to zero. Then, an operation command value required for driving each electromagnetic control valve 35a is generated and output according to the target operation speed. As a result, when the front working device 2 approaches the boundary line 60, the front working device 2 is stopped. On the other hand, when the shortest distance d is equal to or greater than the predetermined value, the motion command unit 310 calculates the target speeds of the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A according to the output of the operation sensor 33b. The front working device 2 operates accordingly.
 <効果>
 まず本願の課題を改めて説明する。例えば車体座標系上に図4のような境界線60を設定した場合に,図5のように旋回体3が後傾するような走行体4の浮き上がりが発生したときには,走行体4の浮き上がりとともに車体座標系上の境界線60も回転してしまい,実際の境界線60と異なってしまう。そこで,車体座標系の原点を中心にして浮き上がり角度θを打ち消す分だけ境界線60を回転し,当該回転後の境界線60を新たな境界線60とする方法が考えられる。しかし,図5に示すように実際の走行体4の浮き上がりは走行体4の後方に位置する点Crbを中心に発生している。つまり,車体座標系の原点を中心に境界線60を回転させるだけでは不充分であり,車体座標系の原点と実際の回転中心Crbのズレに応じた平行移動を境界線60に加える必要がある。なお,図5及び図6中で符号69を付した領域は,車体座標系の原点を中心とする回転のみを加えて補正した稼働制限領域69である。
<effect>
First, the subject of the present application will be explained again. For example, when a boundary line 60 as shown in FIG. The boundary line 60 on the vehicle body coordinate system also rotates and becomes different from the actual boundary line 60 . Therefore, it is conceivable to rotate the boundary line 60 around the origin of the vehicle body coordinate system by an amount that cancels the lifting angle θ, and then use the rotated boundary line 60 as a new boundary line 60 . However, as shown in FIG. 5, the actual floating of the running body 4 occurs centering on the point Crb located behind the running body 4 . In other words, it is not enough to rotate the boundary line 60 around the origin of the vehicle body coordinate system, and it is necessary to add a parallel displacement to the boundary line 60 according to the deviation between the origin of the vehicle body coordinate system and the actual rotation center Crb. . 5 and 6, the area denoted by reference numeral 69 is the limited operation area 69 corrected by adding only rotation about the origin of the vehicle body coordinate system.
 そこで,上記のように構成した本実施形態の油圧ショベル1では,メインコントローラ34が,IMUセンサ(旋回体)30Sの出力に基づいて走行体4の浮き上がり角度θを演算し,その浮き上がり角度θに基づいて走行体4が浮き上がる際の回転中心Cr(Crf,Crb)を演算し,浮き上がり角度θと回転中心Crとに基づいて車体座標系における境界線60の位置を補正する。これにより走行体4の浮き上がり角度θ及び回転中心Crの位置に応じて車体座標系における稼働制限領域59の境界線60の位置が補正されるので,例えば境界線60の位置に基づく油圧アクチュエータの制御(領域制限制御)の誤動作の発生を防止できる。 Therefore, in the hydraulic excavator 1 of the present embodiment configured as described above, the main controller 34 calculates the lifting angle θ of the traveling structure 4 based on the output of the IMU sensor (revolving structure) 30S, and the lifting angle θ Based on this, the rotation center Cr (Crf, Crb) when the traveling body 4 is lifted is calculated, and the position of the boundary line 60 in the vehicle body coordinate system is corrected based on the lift angle θ and the rotation center Cr. As a result, the position of the boundary line 60 of the operation restriction area 59 in the vehicle body coordinate system is corrected according to the lifting angle θ of the traveling body 4 and the position of the rotation center Cr. (Area limit control) malfunction can be prevented.
 また,図5,6等に示したように,旋回体3と走行体4の相対角度が0度の場合(走行体4の前進方向とフロント作業装置2が伸びる方向(車体座標系のx軸方向)が一致する場合)には,走行体4の回転中心Crは,フロント作業装置2側に位置する地面との接触線Crf(図6)と,カウンタウェイト37側に位置する地面との接触線Crb(図5)のいずれかとなる。そこで本実施形態では,この2つの接触線Crf,Crbのうちいずれが回転中心となるかを浮き上がり角度θの正負で判定することにした。具体的には浮き上がり角度θが負の場合には旋回体3は前傾して接触線Crfが回転中心となり,正の場合には旋回体3は後傾して接触線Crbが回転中心となる。これにより走行体4におけるフロント作業装置2側とカウンタウェイト37側のいずれが回転中心となるかを正確に判断できるので,境界線60の補正を正確に行うことができる。 5, 6, etc., when the relative angle between the revolving body 3 and the traveling body 4 is 0 degrees (the forward direction of the traveling body 4 and the direction in which the front working device 2 extends (the x-axis of the vehicle body coordinate system). direction) coincide with each other), the rotation center Cr of the traveling body 4 is aligned with the contact line Crf (FIG. 6) with the ground located on the side of the front working device 2 and the contact line Crf (FIG. 6) with the ground located on the side of the counterweight 37. line Crb (FIG. 5). Therefore, in the present embodiment, which of the two contact lines Crf and Crb is the center of rotation is determined by the sign of the floating angle θ. Specifically, when the lifting angle θ is negative, the revolving body 3 tilts forward and the contact line Crf becomes the center of rotation. . As a result, it is possible to accurately determine which of the front working device 2 side and the counterweight 37 side of the traveling body 4 is the center of rotation, so that the boundary line 60 can be corrected accurately.
 また,本実施形態では,走行体4の浮き上がりが発生したか否かを,浮き上がり角度θ≠0が成立するか否かを判定することとは別に,走行体4の動作状態とIMUセンサ(旋回体)30Sの出力の状態とに基づいて判定している。具体的には,A)走行体4の停止中にIMUセンサ(旋回体)30Sの出力が変化したときには,浮き上がりが発生したと判定して境界線60の位置を補正し,B)走行体4が走行中のとき,または,IMUセンサ(旋回体)30Sの出力が一定のときには,浮き上がりは発生していないと判定して境界線60の位置の補正を行わずに初期位置を保持することとした。これにより走行体4の浮き上がりの発生の有無を精度良く判定できるので境界線60の補正精度を向上できる。 In addition, in this embodiment, apart from determining whether or not lifting of the traveling body 4 has occurred, whether or not the lifting angle θ≠0 is established, the operation state of the traveling body 4 and the IMU sensor (turning body) 30S output state. Specifically, A) when the output of the IMU sensor (swivel body) 30S changes while the running body 4 is stopped, it is determined that floating has occurred and the position of the boundary line 60 is corrected; is running, or when the output of the IMU sensor (slewing body) 30S is constant, it is determined that no lifting has occurred, and the initial position is maintained without correcting the position of the boundary line 60. did. As a result, it is possible to accurately determine whether or not the traveling body 4 is lifted, so that the correction accuracy of the boundary line 60 can be improved.
 さらに,走行体4の浮き上がりが発生したか否かは,上記で触れた通り,ブームシリンダ20Aのロッド側圧力とボトム側圧力をそれぞれ検出する2つの圧力センサ20BP,20RPの出力を利用することでも判定可能である。すなわち,メインコントローラ34により,2つの圧力センサ20BP,20RPの出力に基づいてブームシリンダ20Aの推力F1を演算し,A)演算した推力F1がフロント作業装置2を支持するために必要な推力F2と異なるとき,かつ,IMUセンサ(旋回体)30Sの出力が変化したときには,浮き上がりが発生したと判定した境界線60の位置を補正し,B)演算した推力F1が推力F2に一致するとき,または,IMUセンサ(旋回体)30Sの出力が一定のときには,浮き上がりは発生していないと判定して境界線60の位置の補正を行わずに初期位置を保持することとしても良い。この方法によっても境界線60の補正精度を向上できる。ただし,この方法は,走行体4が浮き上がる際に2つの接触線Crf,Crbのうちいずれが回転中心となるかを判定できる点で先に説明した方法よりも優れている。すなわち,浮き上がりが発生した場合にF1<F2が成立すれば,旋回体3は後傾して接触線Crbが回転中心となる(図5参照)と判定でき,反対にF1>F2が成立すれば,旋回体3は前傾して接触線Crfが回転中心となる(図6参照)と判定できる。 Furthermore, whether or not the traveling body 4 has lifted can be determined by using the outputs of the two pressure sensors 20BP and 20RP that detect the rod side pressure and bottom side pressure of the boom cylinder 20A, respectively, as mentioned above. can be determined. That is, the main controller 34 calculates the thrust F1 of the boom cylinder 20A based on the outputs of the two pressure sensors 20BP and 20RP, When different and when the output of the IMU sensor (swivel body) 30S changes, correct the position of the boundary line 60 where it is determined that the lift has occurred, and B) when the calculated thrust force F1 matches the thrust force F2, or , when the output of the IMU sensor (revolving body) 30S is constant, it may be determined that no lifting has occurred, and the initial position may be maintained without correcting the position of the boundary line 60 . This method can also improve the correction accuracy of the boundary line 60 . However, this method is superior to the above-described method in that it can determine which of the two contact lines Crf and Crb is the center of rotation when the traveling body 4 floats. That is, if F1<F2 is established when floating occurs, it can be determined that the revolving structure 3 tilts backward and the contact line Crb becomes the center of rotation (see FIG. 5). Conversely, if F1>F2 is established , the revolving body 3 tilts forward and the contact line Crf becomes the center of rotation (see FIG. 6).
 <第2実施形態>
 次に本発明の第2実施形態について説明する。第1実施形態では旋回体3と走行体4の相対角度φがゼロ度であったが,本実施形態では相対角度φがゼロ以外の場合も考慮し,浮き上がり中心演算部930が相対角度φに応じて回転中心Crを変更する点に特徴がある。なお,本実施形態のハードウェア構成は既に説明した第1実施形態と同じであるため説明は省略する。
<Second embodiment>
Next, a second embodiment of the invention will be described. In the first embodiment, the relative angle φ between the revolving structure 3 and the traveling structure 4 was zero degrees. It is characterized in that the center of rotation Cr is changed accordingly. Note that the hardware configuration of the present embodiment is the same as that of the already described first embodiment, so description thereof will be omitted.
 <浮き上がり中心演算部930>
 図9は本実施形態に係る油圧ショベル1の上面図であり,図10は図9のA,Bの場合に走行体4におけるフロント作業装置2側が浮き上がったときの油圧ショベル1の側面図をそれぞれ示す。
<Lifting center calculation unit 930>
FIG. 9 is a top view of the hydraulic excavator 1 according to this embodiment, and FIG. 10 is a side view of the hydraulic excavator 1 when the front working device 2 side of the traveling body 4 is lifted up in the cases of A and B of FIG. show.
 図9のA,Bに示すように,走行体4はその前後方向(走行体4の進行方向)と左右方向(進行方向に対して直交方向)とで長さが異なっており,走行体4の長さは前後方向の方が左右方向よりも長い。そのため,旋回体3と走行体4の相対角度φに応じて車体座標系の原点Oに対する回転中心Crの位置が異なり得る。例えば,図10の(a)(b)に示すように走行体4におけるフロント作業装置2側が浮き上がっていることが共通していても,両者における車体座標系の原点Oに対する回転中心Crb,Crrの位置(a,c),(a’,c’)は異なっている。したがって,旋回体3と走行体4の相対角度φに応じて浮き上がりの回転中心Crの位置の補正を行うことが好ましい。 As shown in FIGS. 9A and 9B, the running body 4 has different lengths in the front-rear direction (traveling direction of the running body 4) and in the left-right direction (perpendicular to the traveling direction). is longer in the front-rear direction than in the left-right direction. Therefore, the position of the rotation center Cr with respect to the origin O of the vehicle body coordinate system may vary depending on the relative angle φ between the revolving body 3 and the traveling body 4 . For example, as shown in FIGS. 10(a) and 10(b), even if the front work device 2 side of the traveling body 4 is in common, the rotation centers Crb and Crr of the two with respect to the origin O of the vehicle body coordinate system Positions (a,c) and (a',c') are different. Therefore, it is preferable to correct the position of the floating center of rotation Cr according to the relative angle φ between the revolving body 3 and the traveling body 4 .
 図9Aの場合には,走行体4を構成する左右一対の履帯45が走行体4の前方(前進方向)で地面と接触する接触線Crfと,履帯45が走行体4の後方(後退方向)で地面と接触する接触線Crbとの2つの接触線Crf,Crbのうちいずれか一方が回転中心となり得る。接触線Crf,Crbはいずれも走行体4の左右方向(進行方向に対して直交方向)に延びる直線である。 In the case of FIG. 9A, a pair of left and right crawler belts 45 constituting the running body 4 contact the ground in front of the running body 4 (advance direction) and a contact line Crf where the crawler belts 45 contact the ground behind the running body 4 (backward direction). Either one of the two contact lines Crf and Crb with the contact line Crb that contacts the ground at can be the center of rotation. Both of the contact lines Crf and Crb are straight lines extending in the lateral direction of the traveling body 4 (perpendicular to the traveling direction).
 図9Bの場合には,走行体4を構成する左右一対の履帯45のうち左側の履帯45Lがその前後方向(進行方向)に延びるエッジで地面と接触する接触線Crlと,右側の履帯45Rがその前後方向に延びるエッジで地面と接触する接触線Crrとの2つの接触線Crl,Crrのうちいずれか一方が回転中心となり得る。接触線Crl,Crrはいずれも走行体4の左右方向(進行方向に対して直交方向)に延びる直線である。 In the case of FIG. 9B, the left crawler belt 45L of the pair of left and right crawler belts 45 constituting the traveling body 4 has a contact line Crl that contacts the ground at the edge extending in the longitudinal direction (advancing direction), and the right crawler belt 45R. Any one of the two contact lines Crl and Crr with the contact line Crr that contacts the ground at the edge extending in the front-rear direction can be the center of rotation. Both of the contact lines Crl and Crr are straight lines extending in the left-right direction of the traveling body 4 (perpendicular to the traveling direction).
 図9のA,Bのどちらの場合に該当するかは,旋回角度センサ40Sで検出される旋回体3と走行体4との相対角度φに基づいて決定される。図11は図9のA,Bのどちらの場合に該当するかを相対角度φに基づいて分類した図である。図中の点Csは旋回体3の旋回中心を示す。図11のように走行体4の前進方向とフロント作業装置2が伸びる方向(車体座標系のx軸方向)が一致した状態の旋回体3と走行体4の相対角度φを0度とする。旋回体3が右方向に旋回した場合の相対角度φの符号を正とし,左方向に旋回した場合の符号を負とする。 Which of A and B in FIG. 9 corresponds is determined based on the relative angle φ between the revolving body 3 and the traveling body 4 detected by the revolving angle sensor 40S. FIG. 11 is a diagram showing which of A and B in FIG. 9 corresponds based on the relative angle φ. A point Cs in the drawing indicates the turning center of the turning body 3 . As shown in FIG. 11, the relative angle φ between the rotating body 3 and the traveling body 4 is assumed to be 0 degrees when the advancing direction of the traveling body 4 and the extending direction of the front working device 2 (the x-axis direction of the vehicle body coordinate system) are aligned. The sign of the relative angle φ is positive when the revolving body 3 turns to the right, and the sign is negative when it turns to the left.
 本実施形態では相対角度φに閾値を設け,その閾値と旋回角度センサ40Sで検出される相対角度φとの関係に基づいて,走行体4の回転中心Crの位置を分類する。相対角度φの閾値は,+45度(-315度),+135度(-225度),+225度(-135度),+315度(-45度)であり,隣接する2つの閾値は90度異なる。図11に示した旋回中心Csを中心とする円は,これら閾値によって4つの領域A1,B1,A2,B2に区分されている。 In this embodiment, a threshold value is provided for the relative angle φ, and the position of the rotation center Cr of the traveling body 4 is classified based on the relationship between the threshold value and the relative angle φ detected by the turning angle sensor 40S. The thresholds for the relative angle φ are +45 degrees (-315 degrees), +135 degrees (-225 degrees), +225 degrees (-135 degrees), +315 degrees (-45 degrees), and two adjacent thresholds differ by 90 degrees. . A circle centered on the turning center Cs shown in FIG. 11 is divided into four areas A1, B1, A2, and B2 by these threshold values.
 領域A1(第1領域)は,相対角度φが0度(-360度)度から+45度(-315度)までの範囲と,相対角φが+315度(-45度)から+360度(0度)までの範囲である。領域B1(第2領域)は,相対角度φが+45度(-315度)から+135度(-225度)までの範囲である。領域A2(第3領域)は,相対角度φが+135度(-225度)から+225度(-135度)までの範囲である。領域B2(第4領域)は,相対角度φが+225度(-135度)から+315度(-45度)までの範囲である。 Area A1 (first area) has a range of relative angles φ from 0 degrees (−360 degrees) to +45 degrees (−315 degrees) and a range of relative angles φ from +315 degrees (−45 degrees) to +360 degrees (0 degree). The region B1 (second region) has a relative angle φ ranging from +45 degrees (−315 degrees) to +135 degrees (−225 degrees). In the area A2 (third area), the relative angle φ ranges from +135 degrees (-225 degrees) to +225 degrees (-135 degrees). Region B2 (fourth region) has a relative angle φ ranging from +225 degrees (−135 degrees) to +315 degrees (−45 degrees).
 相対角度φが領域A1と領域A2のいずれかにあるときには,浮き上がり中心演算部930は,2つの接触線Crf,Crbのうちいずれか一方を回転中心として算出する。ただし,領域A1では,旋回体3が前傾した場合に接触線Crfが回転中心に,旋回体3が後傾した場合に接触線Crbが回転中心になる。一方,領域A2では,旋回体3が前傾した場合に接触線Crbが回転中心に,旋回体3が後傾した場合に接触線Crfが回転中心になる。 When the relative angle φ is in either the area A1 or the area A2, the floating center calculator 930 calculates one of the two contact lines Crf and Crb as the center of rotation. However, in the area A1, the contact line Crf becomes the center of rotation when the revolving body 3 tilts forward, and the contact line Crb becomes the center of rotation when the revolving body 3 tilts backward. On the other hand, in the area A2, the contact line Crb is the center of rotation when the revolving body 3 tilts forward, and the contact line Crf is the center of rotation when the revolving body 3 tilts backward.
 相対角度φが領域B1と領域B2のいずれかにあるときには,浮き上がり中心演算部930は,2つの接触線Crl,Crrのうちいずれか一方を回転中心として算出する。ただし,領域B1では,旋回体3が前傾した場合に接触線Crlが回転中心に,旋回体3が後傾した場合に接触線Crrが回転中心になる。一方,領域B2では,旋回体3が前傾した場合に接触線Crrが回転中心に,旋回体3が後傾した場合に接触線Crlが回転中心になる。 When the relative angle φ is in either region B1 or region B2, the floating center calculation unit 930 calculates one of the two contact lines Crl and Crr as the center of rotation. However, in the region B1, the contact line Crl is the center of rotation when the revolving body 3 tilts forward, and the contact line Crr is the center of rotation when the revolving body 3 tilts backward. On the other hand, in the area B2, the contact line Crr is the center of rotation when the revolving body 3 tilts forward, and the contact line Crl is the center of rotation when the revolving body 3 tilts backward.
 <メインコントローラの制御手順>
 図12は本実施形態に係るメインコントローラ34が実行する処理のフローチャートである。図8と同じ処理には同じ符号を付して説明を省略し,以下では図8と異なる処理について説明する。
<Control procedure of the main controller>
FIG. 12 is a flowchart of processing executed by the main controller 34 according to this embodiment. The same reference numerals are assigned to the same processes as in FIG. 8, and the description thereof will be omitted, and the processes different from those in FIG. 8 will be described below.
 ステップS150では,浮き上がり中心演算部930は,旋回体3に対する走行体4の相対角度φに基づいて,走行体4が前後方向かを判定する。すなわち,相対角度φが領域A1と領域A2のいずれかに含まれているかを判定する。相対角度φが領域A1と領域A2のいずれかに含まれている場合にはステップS160に進む。これとは反対に,相対角度φが領域B1と領域B2のいずれかに含まれている場合(つまり,走行体4が前後方向でない(左右方向の)場合)にはステップ161に進む。 At step S150, the floating center calculation unit 930 determines whether the running body 4 is in the front-back direction based on the relative angle φ of the running body 4 with respect to the revolving body 3. That is, it is determined whether the relative angle φ is included in either the area A1 or the area A2. If the relative angle φ is included in either the area A1 or the area A2, the process proceeds to step S160. On the contrary, if the relative angle φ is included in either the region B1 or the region B2 (that is, if the traveling body 4 is not in the front-rear direction (in the left-right direction)), the process proceeds to step 161 .
 ステップS160では,浮き上がり中心演算部930は,ステップS140で演算した浮き上がり角度θに基づいて,走行体4の浮上がりがどの方向に発生しているかを判定する。浮上がり角度θが負の場合には,旋回体3が前傾しており,走行体4におけるカウンタウェイト37側が浮上がっているので,ステップS170に進む。一方,浮上がり角度が正の場合には,旋回体3が後傾しており,走行体4におけるフロント作業装置2側が浮上がっているので,ステップS180に進む。 In step S160, the floating center calculation unit 930 determines in which direction the traveling object 4 is floating based on the floating angle θ calculated in step S140. is negative, the revolving body 3 is tilted forward and the counterweight 37 side of the running body 4 is floating, so the process proceeds to step S170. On the other hand, if the rising angle is positive, the revolving body 3 is tilted backward, and the front working device 2 side of the running body 4 is floating, so the process proceeds to step S180.
 ステップS170では,旋回体3は前傾しているので,浮き上がり中心演算部930は,走行体4の進行方向(前後方向や長さ方向とも称される)かつフロント作業装置2側(つまり走行体4の前側)に回転中心を設定する。これにより,相対角度φが領域A1に含まれている場合には回転中心Crfが,領域A2に含まれている場合には回転中心Crbが設定される。 In step S170, since the revolving body 3 is tilted forward, the lifting center calculation section 930 is operated in the traveling direction (also referred to as the front-rear direction or length direction) of the traveling body 4 and on the side of the front working device 2 (that is, the traveling body). 4) to set the center of rotation. As a result, the rotation center Crf is set when the relative angle φ is included in the area A1, and the rotation center Crb is set when the relative angle φ is included in the area A2.
 ステップS180では,旋回体3は後傾しているので,浮き上がり中心演算部930は,走行体4の進行方向(前後方向や長さ方向とも称される)かつカウンタウェイト37側(つまり走行体4の後側)に回転中心を設定する。これにより,相対角度φが領域A1に含まれている場合には回転中心Crbが,領域A2に含まれている場合には回転中心Crfが設定される。 In step S180, since the revolving body 3 is tilted backward, the floating center calculation section 930 is operated in the traveling direction of the running body 4 (also referred to as the longitudinal direction or the length direction) and the counterweight 37 side (that is, the running body 4 ) to set the center of rotation. As a result, the rotation center Crb is set when the relative angle φ is included in the area A1, and the rotation center Crf is set when the relative angle φ is included in the area A2.
 ステップS161では,浮き上がり中心演算部930は,ステップS140で演算した浮き上がり角度θに基づいて,走行体4の浮上がりがどの方向に発生しているかを判定する。浮上がり角度θが負の場合には,旋回体3が前傾しており,走行体4におけるカウンタウェイト37側が浮上がっているので,ステップS171に進む。一方,浮上がり角度が正の場合には,旋回体3が後傾しており,走行体4におけるフロント作業装置2側が浮上がっているので,ステップS181に進む。 In step S161, the floating center calculation unit 930 determines in which direction the traveling body 4 is floating based on the floating angle θ calculated in step S140. is negative, the revolving body 3 is tilted forward and the counterweight 37 side of the traveling body 4 is floating, so the process proceeds to step S171. On the other hand, if the rising angle is positive, the revolving body 3 is tilted backward, and the front working device 2 side of the traveling body 4 is floating, so the process proceeds to step S181.
 ステップS171では,旋回体3は前傾しているので,浮き上がり中心演算部930は,走行体4の左右方向かつフロント作業装置2側(つまり走行体4の前側)に回転中心を設定する。これにより,相対角度φが領域B1に含まれている場合には回転中心Crlが,領域B2に含まれている場合には回転中心Crrが設定される。 In step S171, since the revolving body 3 is tilted forward, the lifting center calculation unit 930 sets the center of rotation in the lateral direction of the traveling body 4 and on the side of the front working device 2 (that is, the front side of the traveling body 4). As a result, the rotation center Crl is set when the relative angle φ is included in the region B1, and the rotation center Crr is set when the relative angle φ is included in the region B2.
 ステップS181では,旋回体3は後傾しているので,浮き上がり中心演算部930は,走行体4の左右方向かつカウンタウェイト37側(つまり走行体4の後側)に回転中心を設定する。これにより,相対角度φが領域B1に含まれている場合には回転中心Crrが,領域B2に含まれている場合には回転中心Crlが設定される。 In step S181, since the revolving body 3 is tilted backward, the lifting center calculation unit 930 sets the center of rotation in the lateral direction of the running body 4 and on the side of the counterweight 37 (that is, the rear side of the running body 4). As a result, the rotation center Crr is set when the relative angle φ is included in the region B1, and the rotation center Crl is set when the relative angle φ is included in the region B2.
 <効果>
 以上のように構成した油圧ショベル1によれば,旋回体3と走行体4の相対角度φがゼロ以外の場合にも正確に走行体4の回転中心を演算することができるので,境界線60の補正精度を向上できる。
<effect>
According to the hydraulic excavator 1 configured as described above, the center of rotation of the traveling body 4 can be accurately calculated even when the relative angle φ between the revolving body 3 and the traveling body 4 is not zero. can improve the correction accuracy of
 なお,本発明は,上記の実施の形態に限定されるものではなく,その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば,本発明は,上記の実施の形態で説明した全ての構成を備えるものに限定されず,その構成の一部を削除したものも含まれる。また,ある実施の形態に係る構成の一部を,他の実施の形態に係る構成に追加又は置換することが可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications within a scope that does not deviate from the gist of the present invention. For example, the present invention is not limited to those having all the configurations described in the above embodiments, but also includes those with some of the configurations omitted. Also, it is possible to add or replace part of the configuration according to one embodiment with the configuration according to another embodiment.
 また,上記のコントローラ34に係る各構成や当該各構成の機能及び実行処理等は,それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また,上記のコントローラ34に係る構成は,演算処理装置(例えばCPU)によって読み出し・実行されることで当該コントローラ34の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は,例えば,半導体メモリ(フラッシュメモリ,SSD等),磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク,光ディスク等)等に記憶することができる。 In addition, each configuration related to the controller 34 and the functions and execution processing of each configuration are implemented partially or entirely by hardware (for example, logic for executing each function is designed by an integrated circuit). can be Further, the configuration related to the controller 34 may be a program (software) that implements each function related to the configuration of the controller 34 by being read and executed by an arithmetic processing unit (for example, CPU). Information related to the program can be stored, for example, in a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disk, etc.), or the like.
 また,上記の各実施の形態の説明では,制御線や情報線は,当該実施の形態の説明に必要であると解されるものを示したが,必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。 In addition, in the description of each of the above embodiments, the control lines and information lines have been shown as necessary for the description of the embodiments, but not necessarily all the control lines and information lines related to the product does not necessarily indicate In reality, it can be considered that almost all configurations are interconnected.
 1…油圧ショベル(作業機械),2…フロント作業装置,3…旋回体,4…走行体,20…ブーム,20A…ブームシリンダ,20BP…圧力センサ(ブームボトム圧センサ),20RP…圧力センサ(ブームロッド圧センサ),20S…IMUセンサ(第3姿勢センサ),21…アーム,21A…アームシリンダ,21S…IMUセンサ(第3姿勢センサ),22…バケット,22A…バケットシリンダ,22B…第1リンク部材,22C…第2リンク部材,22S…IMUセンサ(第3姿勢センサ),30S…IMUセンサ(第1姿勢センサ),31…メインフレーム,32…運転室,33a…操作レバー,33b…操作センサ,33c…走行操作レバー,34…メインコントローラ(制御装置),35…油圧制御装置,35a…電磁制御弁,35b…方向切替弁(コントロールバルブ),36a…エンジン(原動機),36b…油圧ポンプ,37…カウンタウェイト,38…旋回用モータ,40…トラックフレーム,40S…旋回角度センサ(第2姿勢センサ),41…走行用モータ,45L…履帯,45R…履帯,59…稼働制限領域,60…境界線,69…稼働制限領域,100…稼働制限領域設定装置,110…モニタ(表示装置),310…動作指令部,710…姿勢演算部,720…稼働制限領域演算部,730…稼働制限領域補正部,910…判定部,920…角度演算部,930…中心演算部 DESCRIPTION OF SYMBOLS 1... Hydraulic excavator (working machine), 2... Front working device, 3... Revolving body, 4... Traveling body, 20... Boom, 20A... Boom cylinder, 20BP... Pressure sensor (boom bottom pressure sensor), 20RP... Pressure sensor ( boom rod pressure sensor), 20S...IMU sensor (third attitude sensor), 21...arm, 21A...arm cylinder, 21S...IMU sensor (third attitude sensor), 22...bucket, 22A...bucket cylinder, 22B...first Link member 22C...Second link member 22S...IMU sensor (third attitude sensor) 30S...IMU sensor (first attitude sensor) 31...Main frame 32...Driver's cab 33a...Operation lever 33b...Operation Sensor 33c Travel control lever 34 Main controller (control device) 35 Hydraulic control device 35a Electromagnetic control valve 35b Direction switching valve (control valve) 36a Engine (motor) 36b Hydraulic pump , 37... Counterweight, 38... Turning motor, 40... Track frame, 40S... Turning angle sensor (second attitude sensor), 41... Traveling motor, 45L... Crawler, 45R... Crawler, 59... Operation restricted area, 60 Boundary line 69 Operation restriction area 100 Operation restriction area setting device 110 Monitor (display device) 310 Motion command unit 710 Posture calculation unit 720 Operation restriction area calculation unit 730 Operation restriction Area correction unit 910 Determination unit 920 Angle calculation unit 930 Center calculation unit

Claims (7)

  1.  走行体と,
     前記走行体の上部に旋回可能に取り付けられた旋回体と,
     前記旋回体に取り付けられ,複数のフロント部材からなる作業装置と,
     前記旋回体の姿勢を検出する第1姿勢センサと,
     前記作業装置の侵入が禁止される稼働制限領域の境界線の位置を,前記旋回体に設定された車体座標系上に記憶したコントローラとを備えた作業機械において,
     前記コントローラは,
      前記第1姿勢センサの出力に基づいて前記走行体の浮き上がり角度を演算し,
      前記浮き上がり角度に基づいて前記走行体が浮き上がる際の回転中心を演算し,
      前記浮き上がり角度と前記回転中心とに基づいて,前記車体座標系における前記境界線の位置を補正する
     ことを特徴とする作業機械。
    a running body;
    a revolving body rotatably attached to the upper part of the running body;
    a work device attached to the revolving structure and comprising a plurality of front members;
    a first attitude sensor that detects the attitude of the revolving body;
    A working machine comprising a controller that stores the position of a boundary line of an operation-restricted area into which entry of the working device is prohibited on a vehicle body coordinate system set on the revolving structure,
    The controller is
    calculating the lifting angle of the traveling body based on the output of the first attitude sensor;
    calculating a center of rotation when the traveling object is lifted based on the lift angle;
    A working machine, wherein the position of the boundary line in the vehicle body coordinate system is corrected based on the lifting angle and the center of rotation.
  2.  請求項1の作業機械において,
     前記コントローラは,
      前記浮き上がり角度が前記旋回体の後傾を示す場合には,前記旋回体の後側において前記走行体が地面と接触する接触線を前記回転中心として演算し,
      前記浮き上がり角度が前記旋回体の前傾を示す場合には,前記旋回体の前側において前記走行体が地面と接触する接触線を前記回転中心として演算する
     ことを特徴とする作業機械。
    The work machine of claim 1,
    The controller is
    when the lifting angle indicates the rearward inclination of the revolving body, a contact line at which the running body contacts the ground on the rear side of the revolving body is calculated as the center of rotation;
    A working machine according to claim 1, wherein, when the uplift angle indicates a forward inclination of the revolving body, a contact line at which the running body contacts the ground on the front side of the revolving body is calculated as the center of rotation.
  3.  請求項2の作業機械において,
     前記旋回体と前記走行体の相対角度を検出する第2姿勢センサをさらに備え,
     前記コントローラは,前記相対角度に基づいて前記回転中心を演算すること
     を特徴とする作業機械。
    The working machine of claim 2,
    further comprising a second attitude sensor for detecting the relative angle of the revolving body and the running body;
    A working machine, wherein the controller calculates the center of rotation based on the relative angle.
  4.  請求項3の作業機械において,
     前記コントローラは,
      前記相対角度が0度から45度の範囲,135度から225度の範囲,または315度から360度の範囲に含まれる場合には,前記走行体を構成する一対の履帯がその前方又は後方で地面と接触する接触線を前記回転中心として演算し,
      前記相対角度が45度から135度の範囲,または225度から315度の範囲に含まれる場合には,前記一対の履帯のうちいずれか一方の履帯がその前後方向に延びるエッジで地面と接触する接触線を前記回転中心として演算する
     ことを特徴とする作業機械。
    The working machine of claim 3,
    The controller is
    When the relative angle is included in the range of 0 to 45 degrees, 135 to 225 degrees, or 315 to 360 degrees, the pair of crawler belts that make up the running body are positioned in front or rear thereof. Calculate the contact line that contacts the ground as the center of rotation,
    When the relative angle is in the range of 45 degrees to 135 degrees or in the range of 225 degrees to 315 degrees, one of the pair of crawler belts contacts the ground at its longitudinally extending edge. A working machine characterized in that calculation is performed with the contact line as the center of rotation.
  5.  請求項1の作業機械において,
     前記コントローラは,
      前記走行体の停止中に前記第1姿勢センサの出力が変化したときには,前記車体座標系における前記境界線の位置を補正し,
      前記走行体が走行中のとき,または,前記第1姿勢センサの出力が一定のときには,前記車体座標系における前記境界線の位置を保持する
     ことを特徴とする作業機械。
    The work machine of claim 1,
    The controller is
    correcting the position of the boundary line in the vehicle body coordinate system when the output of the first attitude sensor changes while the traveling object is stopped;
    A working machine, wherein the position of the boundary line in the vehicle body coordinate system is held when the traveling body is traveling or when the output of the first attitude sensor is constant.
  6.  請求項1の作業機械において,
     前記複数のフロント部材の1つであるブームを駆動するブームシリンダのロッド側圧力及びボトム側圧力をそれぞれ検出する複数の圧力センサをさらに備え,
     前記コントローラは,
      前記複数の圧力センサの出力に基づいて前記ブームシリンダの推力を演算し,
      前記ブームシリンダの推力が前記作業装置を支持するために必要な推力と異なるとき,かつ,前記第1姿勢センサの出力が変化したときには,前記車体座標系における前記境界線の位置を補正し,
      前記ブームシリンダの推力が前記作業装置を支持するために必要な推力に一致するとき,または,前記第1姿勢センサの出力が一定のときには,前記車体座標系における前記境界線の位置を保持する
     ことを特徴とする作業機械。
    The work machine of claim 1,
    further comprising a plurality of pressure sensors for respectively detecting rod-side pressure and bottom-side pressure of a boom cylinder that drives the boom, which is one of the plurality of front members;
    The controller is
    calculating the thrust of the boom cylinder based on the outputs of the plurality of pressure sensors;
    correcting the position of the boundary line in the vehicle body coordinate system when the thrust of the boom cylinder differs from the thrust required to support the work device and when the output of the first attitude sensor changes;
    When the thrust of the boom cylinder matches the thrust required to support the work device, or when the output of the first attitude sensor is constant, the position of the boundary line in the vehicle body coordinate system is maintained. A working machine characterized by:
  7.  請求項1の作業機械において,
     前記複数のフロント部材の姿勢をそれぞれ検出する複数の第3姿勢センサをさらに備え,
     前記コントローラは,
      前記複数の第3姿勢センサの出力に基づいて前記車体座標系における前記作業装置の位置を演算し,
      前記車体座標系における前記境界線の補正後の位置と,前記作業装置の位置とに基づいて,前記作業装置と前記境界線との距離を演算し,
      前記作業装置と前記境界線との距離に基づいて,前記作業装置が前記稼働制限領域に侵入することが防止されるように前記作業装置を制御する
     ことを特徴とする作業機械。
    The work machine of claim 1,
    further comprising a plurality of third orientation sensors that respectively detect the orientations of the plurality of front members;
    The controller is
    calculating the position of the working device in the vehicle body coordinate system based on the outputs of the plurality of third attitude sensors;
    calculating a distance between the work device and the boundary line based on the corrected position of the boundary line in the vehicle body coordinate system and the position of the work device;
    A working machine, wherein the working device is controlled so as to prevent the working device from entering the limited operation area based on the distance between the working device and the boundary line.
PCT/JP2022/011129 2021-04-19 2022-03-11 Work machine WO2022224624A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023516332A JP7375260B2 (en) 2021-04-19 2022-03-11 working machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021070573 2021-04-19
JP2021-070573 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022224624A1 true WO2022224624A1 (en) 2022-10-27

Family

ID=83722895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011129 WO2022224624A1 (en) 2021-04-19 2022-03-11 Work machine

Country Status (2)

Country Link
JP (1) JP7375260B2 (en)
WO (1) WO2022224624A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820974A (en) * 1994-07-11 1996-01-23 Hitachi Constr Mach Co Ltd Restricting device for working range of construction machine
JP2009179968A (en) * 2008-01-29 2009-08-13 Hitachi Constr Mach Co Ltd Front controller for hydraulic excavator
WO2011049079A1 (en) * 2009-10-19 2011-04-28 日立建機株式会社 Operation machine
JP2012172427A (en) * 2011-02-22 2012-09-10 Komatsu Ltd Workable range display device of hydraulic shovel and control method for the same
JP2019007175A (en) * 2017-06-21 2019-01-17 住友重機械工業株式会社 Shovel
WO2020049623A1 (en) * 2018-09-03 2020-03-12 日立建機株式会社 Work machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820974A (en) * 1994-07-11 1996-01-23 Hitachi Constr Mach Co Ltd Restricting device for working range of construction machine
JP2009179968A (en) * 2008-01-29 2009-08-13 Hitachi Constr Mach Co Ltd Front controller for hydraulic excavator
WO2011049079A1 (en) * 2009-10-19 2011-04-28 日立建機株式会社 Operation machine
JP2012172427A (en) * 2011-02-22 2012-09-10 Komatsu Ltd Workable range display device of hydraulic shovel and control method for the same
JP2019007175A (en) * 2017-06-21 2019-01-17 住友重機械工業株式会社 Shovel
WO2020049623A1 (en) * 2018-09-03 2020-03-12 日立建機株式会社 Work machine

Also Published As

Publication number Publication date
JP7375260B2 (en) 2023-11-07
JPWO2022224624A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP6502476B2 (en) Display system for work machine and work machine
US11053661B2 (en) Work machine
US9663917B2 (en) Work vehicle, bucket device, and method for obtaining tilt angle
CN110300827B (en) Construction machine
KR20130113515A (en) Excavation control system and construction machinery
JP6872666B2 (en) Work machine
KR20200037351A (en) Working machine
KR20190034648A (en) Working machine
KR20220086671A (en) Control system of working machine, working machine, control method of working machine
WO2020179346A1 (en) Work machine
WO2022186215A1 (en) Work machine
JP2019105160A (en) Display system for work machine, and work machine
US12012716B2 (en) Work machine
WO2022224624A1 (en) Work machine
JP7314429B2 (en) working machine
JP7274671B2 (en) excavator
KR102590162B1 (en) working machine
JP6912687B2 (en) Hydraulic excavator
WO2024171607A1 (en) Work machine
JP7510378B2 (en) Construction Machinery
JP2021152275A (en) Working machine
CN114787455B (en) Work machine control system, work machine, and work machine control method
CN111201350B (en) Working machine
WO2022230417A1 (en) Work machine
WO2024070262A1 (en) Work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023516332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791404

Country of ref document: EP

Kind code of ref document: A1