WO2022222926A1 - 光学镜头及成像设备 - Google Patents
光学镜头及成像设备 Download PDFInfo
- Publication number
- WO2022222926A1 WO2022222926A1 PCT/CN2022/087694 CN2022087694W WO2022222926A1 WO 2022222926 A1 WO2022222926 A1 WO 2022222926A1 CN 2022087694 W CN2022087694 W CN 2022087694W WO 2022222926 A1 WO2022222926 A1 WO 2022222926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical
- object side
- optical lens
- image side
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 186
- 238000003384 imaging method Methods 0.000 title claims abstract description 33
- 238000000926 separation method Methods 0.000 claims description 6
- 101000655622 Homo sapiens Testicular haploid expressed gene protein Proteins 0.000 claims description 5
- 102100032332 Testicular haploid expressed gene protein Human genes 0.000 claims description 5
- 230000004075 alteration Effects 0.000 description 38
- 238000010586 diagram Methods 0.000 description 16
- 201000009310 astigmatism Diseases 0.000 description 15
- 230000009286 beneficial effect Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Definitions
- the invention relates to the technical field of lens imaging, in particular to an optical lens and an imaging device.
- the purpose of the present invention is to provide an optical lens and an imaging device, which at least have the advantages of small overall volume, overall length, and high pixels.
- an embodiment of the present invention provides an optical lens, which sequentially includes from the object side to the image side along the optical axis: a diaphragm, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens Lens, filter; wherein, the first lens has positive refractive power, its object side is convex, the image side is concave at the near optical axis and has at least one inflection point; the second lens has negative refractive power, its object The side is concave at the near optical axis and has at least one inflection point, and the image side is concave; the third lens has positive power, the object side is convex, and the image side is concave; the fourth lens has negative power, its The object side is concave and the image side is convex; the fifth lens has positive power, the object side is concave at the near optical axis, and the image side is convex; the sixth lens has negative power, and its object side is
- an embodiment of the present invention further provides an imaging device, including an imaging element and the optical lens provided in the first aspect, where the imaging element is used to convert an optical image formed by the optical lens into an electrical signal.
- the optical lens provided by the present invention adopts six lenses with specific refractive power, and adopts specific surface shape collocation and reasonable power distribution, so that the structure is more compact while satisfying high pixels, so that it is more compact.
- the lens miniaturization and high pixel balance are well achieved.
- FIG. 1 is a schematic structural diagram of an optical lens in a first embodiment of the present invention
- Fig. 2 is the astigmatism curve diagram of the optical lens in the first embodiment of the present invention.
- Fig. 3 is the distortion curve diagram of the optical lens in the first embodiment of the present invention.
- Fig. 4 is the vertical axis chromatic aberration curve diagram of the optical lens in the first embodiment of the present invention.
- Fig. 5 is the axial chromatic aberration curve diagram of the optical lens in the first embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of an optical lens in a second embodiment of the present invention.
- Fig. 8 is the distortion curve diagram of the optical lens in the second embodiment of the present invention.
- FIG. 9 is a vertical-axis chromatic aberration curve diagram of an optical lens in a second embodiment of the present invention.
- Fig. 10 is the axial chromatic aberration curve diagram of the optical lens in the second embodiment of the present invention.
- FIG. 11 is a schematic structural diagram of an optical lens in a third embodiment of the present invention.
- FIG. 13 is a distortion curve diagram of an optical lens in a third embodiment of the present invention.
- FIG. 14 is a vertical-axis chromatic aberration curve diagram of an optical lens in a third embodiment of the present invention.
- FIG. 1 a structural diagram of an optical lens 100 is provided for an embodiment of the present invention. From the object side to the image side along the optical axis, it includes: a diaphragm ST, a first lens L1, a second lens L2, a third lens Lens L3, fourth lens L4, fifth lens L5, sixth lens L6, filter G; wherein, the first lens L1 has positive refractive power, its object side S1 is convex, and the image side S2 is at the near optical axis.
- the second lens L2 has negative refractive power, its object side S3 is concave at the near optical axis and has at least one inflection point, and the image side S4 is concave;
- the third lens L3 has positive light Power, its object side S5 is convex at the near optical axis, and the image side S6 is concave;
- the fourth lens L4 has negative refractive power, its object side S7 is concave, and the image side S8 is convex;
- the fifth lens L5 has positive light Power, its object side S9 is concave at the near optical axis, and the image side S10 is convex;
- the sixth lens L6 has negative refractive power, its object side S11 is concave at the near optical axis, and the image side S12 is at the near optical axis. is concave and has at least one inflection point.
- the optical lens satisfies the following conditional formula:
- TTL represents the distance on the optical axis from the object side of the first lens to the imaging surface of the optical lens
- IH represents the actual half-image height of the optical lens on the imaging surface
- f represents the optical lens Effective focal length. Satisfying the conditional formula (1), the effective focal length and the total optical length of the optical lens can be reasonably controlled, which is beneficial to realize the balance between the short total optical length and the high pixels of the optical lens.
- the optical lens satisfies the following conditional formula:
- R5 represents the curvature radius of the object side surface of the third lens
- R6 represents the curvature radius of the image side surface of the third lens.
- the shape of the third lens can be limited, which is beneficial to the molding of the third lens, and the degree of deflection of the light passing through the lens can be eased, which is beneficial to reduce aberrations.
- R7 represents the radius of curvature of the object side of the fourth lens
- R8 represents the radius of curvature of the image side of the fourth lens.
- the shape of the fourth lens can be limited, which is beneficial to the molding of the third lens, and is beneficial to the correction of the aberration problem of the off-axis picture angle.
- the optical lens satisfies the following conditional formula:
- SAG3.1 represents the sag of the inflection point on the object side of the second lens
- SAG3 represents the sag at the effective aperture on the object side of the second lens. Satisfying the conditional formula (4), the surface shape of the object side surface of the second lens can be reasonably controlled, which is beneficial to correct the distortion of the off-axis field of view and improve the resolution of the optical lens.
- the optical lens satisfies the following conditional formula:
- f represents the effective focal length of the optical lens
- f1 represents the focal length of the first lens
- f2 represents the effective focal length of the second lens
- f3 represents the focal length of the third lens
- f123 represents the first lens to the combined focal length of the third lens combination. Satisfying the conditional expressions (5), (6) and (7) can reasonably allocate the focal length of each lens, which is beneficial to reduce advanced aberrations, and at the same time, is beneficial to reduce the total optical length of the optical lens.
- the optical lens satisfies the following conditional formula:
- R5 represents the curvature radius of the object side surface of the third lens
- R6 represents the curvature radius of the image side surface of the third lens.
- the optical lens satisfies the following conditional formula:
- SAG4 represents the sag height at the effective aperture on the image side of the second lens
- SAG6 represents the sag height at the effective aperture on the image side of the third lens. Satisfying the conditional formula (9) can reasonably control the trend of light in the off-axis field of view, which is beneficial to reduce the aberration between the off-axis field of view and the central field of view, and improve the resolution quality of the optical lens.
- the optical lens satisfies the following conditional formula:
- R9 represents the radius of curvature of the object side of the fifth lens
- R10 represents the radius of curvature of the image side of the fifth lens
- f5 represents the focal length of the fifth lens. Satisfying the conditional expressions (10) and (11) enables the object side surface and the image side surface of the fifth lens to have curvature values in the same direction, which is beneficial for correcting the field curvature of the optical lens.
- the optical lens satisfies the following conditional formula:
- f3 represents the focal length of the third lens
- f5 represents the focal length of the fifth lens
- f6 represents the focal length of the sixth lens. Satisfying the conditional formula (12) can reasonably match the focal lengths of the third lens, the fifth lens and the sixth lens, which is beneficial to reduce the total optical length of the optical lens and realize the miniaturization of the system.
- the optical lens satisfies the following conditional formula:
- R11 represents the radius of curvature of the object side surface of the six lenses
- R12 represents the radius of curvature of the image side surface of the sixth lens. Satisfying the conditional formula (13), the surface shape of the sixth lens can be reasonably controlled, which is beneficial to improve the matching degree of the optical lens and the sensor, and improve the resolution quality of the optical lens.
- the optical lens satisfies the following conditional formula:
- ET45 represents the separation distance between the fourth lens and the fifth lens parallel to the optical axis at the effective aperture
- ET56 represents the fifth lens and the sixth lens parallel to the optical axis at the effective aperture
- CT5 represents the center thickness of the fifth lens
- CT45 represents the separation distance between the fourth lens and the fifth lens on the optical axis
- CT56 represents the fifth lens and the sixth lens
- TTL represents the distance from the object side of the first lens to the imaging surface on the optical axis.
- the interval between the fourth lens and the sixth lens can be reasonably controlled, which is beneficial to reduce the sensitivity of the optical lens, and at the same time make the optical lens
- the structure is more compact, which is beneficial to shorten the total length of the optical lens.
- the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens are all plastic aspherical lenses.
- z is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis
- c is the paraxial curvature of the surface
- k is the quadratic surface coefficient
- a 2i is the aspheric surface of order 2i face coefficient.
- the thickness, radius of curvature, and material selection of each lens in the optical lens are different.
- each lens in the optical lens 100 provided by the first embodiment of the present invention is shown in Table 1, where R represents the radius of curvature, d represents the optical surface distance, Nd represents the d-line refractive index of the material, and Vd represents the Abbe of the material number.
- the vertical distance between the inflection point on the object side of the second lens L2 and the optical axis is 0.72 mm.
- Reasonable control of the inflection point position can reduce ghost image energy and improve the resolution quality of the optical lens.
- Table 2 shows the surface shape coefficients of each aspherical surface of the optical lens 100 in this embodiment.
- FIG. 2 graphs of the astigmatism curve, optical distortion, vertical chromatic aberration and axial chromatic aberration of the optical lens 100 are shown in FIG. 2 , FIG. 3 , FIG. 4 and FIG. 5 , respectively.
- FIG. 2 shows the astigmatism curve of the optical lens 100 in this embodiment, which indicates the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from the figure that the astigmatism of the image planes in the two directions is controlled at ⁇ 0.03mm It will be explained that the astigmatism correction of the optical lens 100 is good.
- FIG. 3 shows the optical distortion curve of the optical lens 100 of this embodiment, which represents the distortion at different image heights on the imaging surface. It can be seen from the figure that the optical distortion is controlled within 2.0%, indicating that the distortion of the optical lens 100 is good 's correction.
- FIG. 4 shows the vertical-axis chromatic aberration curve of the optical lens 100, which represents the chromatic aberration of the longest wavelength and the shortest wavelength at different image heights on the imaging plane. It can be seen from the figure that the vertical-axis chromatic aberration is controlled within ⁇ 1.0um.
- the optical lens can effectively correct the aberrations of the fringe field of view and the secondary spectrum of the entire image plane.
- FIG. 5 shows the axial chromatic aberration curve of the optical lens 100, which represents the aberration on the optical axis at the imaging surface. It can be seen from the figure that the offset of the axial chromatic aberration is controlled within ⁇ 0.03 mm, indicating that the optical lens 100 The axial chromatic aberration is well corrected.
- the optical lens provided by the second embodiment of the present invention has substantially the same structure as the optical lens 100 in the first embodiment, and the difference lies in the curvature radius and material selection of each lens.
- the vertical distance between the inflection point on the object side of the second lens L2 and the optical axis is 0.835mm.
- Reasonably controlling the position of the inflection point can reduce ghost image energy and improve the resolution quality of the optical lens.
- Table 4 shows the surface shape coefficients of each aspherical surface of the optical lens in this embodiment.
- graphs of the astigmatism curve, optical distortion, vertical chromatic aberration and axial chromatic aberration of the optical lens 100 are shown in FIG. 6 , FIG. 7 , FIG. 8 and FIG. 9 , respectively.
- FIG. 7 shows the astigmatism curve of the optical lens 100 in this embodiment. It can be seen from the figure that the astigmatism of the image planes in two directions is controlled within ⁇ 0.03 mm, indicating that the astigmatism of the optical lens 100 is well corrected.
- FIG. 8 shows the optical distortion curve of the optical lens 100 of the present embodiment. It can be seen from the figure that the optical distortion is controlled within 2.0%, indicating that the distortion of the optical lens 100 is well corrected.
- FIG. 9 shows the vertical-axis chromatic aberration curve of the optical lens 100. It can be seen from the figure that the vertical-axis chromatic aberration is controlled within ⁇ 1.5um, indicating that the optical lens can effectively correct the aberration of the edge field of view and the two grade spectrum.
- FIG. 10 shows the axial chromatic aberration curve of the optical lens 100. It can be seen from the figure that the offset of the axial chromatic aberration is controlled within ⁇ 0.03 mm, indicating that the axial chromatic aberration of the optical lens 100 is well corrected.
- the structure of the optical lens in the third embodiment of the present invention is basically the same as that of the optical lens 100 in the first embodiment, and the difference lies in the curvature radius and material selection of each lens.
- the vertical distance between the inflection point on the object side of the second lens L2 and the optical axis is 0.915mm.
- Reasonable control of the inflection point position can reduce ghost image energy and improve the resolution quality of the optical lens.
- Table 6 shows the surface shape coefficients of each aspherical surface of the optical lens 100 in this embodiment.
- the graphs of the astigmatism curve, optical distortion, vertical chromatic aberration and axial chromatic aberration of the optical lens 100 are shown in FIG. 12 , FIG. 13 , FIG. 14 and FIG. 15 , respectively.
- FIG. 12 shows the astigmatism curve of the optical lens 100 in this embodiment. It can be seen from the figure that the astigmatism of the image surfaces in two directions is controlled within ⁇ 0.04mm, indicating that the astigmatism of the optical lens 100 is well corrected.
- FIG. 13 shows the optical distortion curve of the optical lens 100 of the present embodiment. It can be seen from the figure that the optical distortion is controlled within 2.0%, indicating that the distortion of the optical lens 100 is well corrected.
- FIG. 14 shows the vertical-axis chromatic aberration curve of the optical lens 100. It can be seen from the figure that the vertical-axis chromatic aberration is controlled within ⁇ 2.0um, indicating that the optical lens can effectively correct the aberration of the fringe field of view and the chromatic aberration of the entire image plane. grade spectrum.
- FIG. 15 shows the axial chromatic aberration curve of the optical lens 100. It can be seen from the figure that the offset of the axial chromatic aberration is controlled within ⁇ 0.03 mm, indicating that the axial chromatic aberration of the optical lens 100 is well corrected.
- Table 7 is the optical characteristics corresponding to the above three embodiments, mainly including the effective focal length f of the system, the aperture number F#, the entrance pupil diameter EPD, the optical total length TTL and the field of view angle 2 ⁇ , as well as the numerical values corresponding to each of the above conditional expressions.
- Example Example 1 Example 2 Example 3 f(mm) 5.5020 5.5060 5.5080 F# 2.0 2.0 2.0 TTL(mm) 6.1 6.101 6.1 2 ⁇ (°) 85 85 85 EPD(mm) 2.6840 2.6860 2.6870 (TTL/IH)*f 6.5030 6.5078 6.5101 SAG3.1–SAG3 -0.0771 -0.0601 -0.0540 f1/f3 0.2299 0.2158 0.1809 (f2+f3)/f 1.8412 2.0639 2.8609 f123/f 1.0278 1.0486 1.0000 (R5+R6)/(R5-R6) -5.8087 -6.2421 -12.4808 (R7+R8)/(R7-R8) -9.7326 -8.0913 -6.4534 SAG4+SAG6 0.2220 0.1456 0.2055 R9/f5 -2.4009 -3.2486 -2.3243 R10/R9 0.1887 0.1434 0.1902 (f5-f6)/
- the optical lens provided by the embodiment of the present invention has the following advantages:
- the optical lens provided by the embodiment of the present invention has a relatively large aperture (F.no ⁇ 2.0) on the one hand due to the reasonable setting of the diaphragm and the shape of each lens, which meets the requirement of large aperture; on the other hand, the overall length of the lens is relatively long. Short and small in size, it can better meet the development trend of thin and light smartphones.
- the field angle of the optical lens provided by the embodiment of the present invention can reach 85°, which can effectively correct optical distortion, control the distortion to be less than 2.0%, and can meet the needs of high-definition imaging with a large field angle.
- An imaging device provided in this embodiment includes the optical lens and the imaging element in any of the foregoing embodiments.
- the imaging element may be a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) image sensor, or may be a CCD (Charge Coupled Device, charge coupled device) image sensor.
- CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
- CCD Charge Coupled Device, charge coupled device
- the imaging device may be a camera, a mobile terminal, or any other electronic device equipped with an optical lens
- the mobile terminal may be a terminal device such as a smart phone, a smart tablet, and a smart reader.
- the imaging device provided in this embodiment includes an optical lens. Since the optical lens has the advantages of small overall volume, wide viewing angle, high imaging quality, and high production yield, the imaging device has the advantages of low ghost image energy, wide viewing angle, high imaging quality, and high productivity. The advantage of high yield.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明提供了一种光学镜头及成像设备,该光学镜头从物侧到像侧依次包括:光阑;具有正光焦度的第一透镜,其物侧面为凸面,像侧面在近光轴处为凹面且具有至少一个反曲点;具有负光焦度的第二透镜,其物侧面在近光轴处为凹面且具有至少一个反曲点,像侧面为凹面;具有正光焦度的第三透镜,其物侧面为凸面,像侧面为凹面;具有负光焦度的第四透镜,其物侧面为凹面,像侧面为凸面;具有正光焦度的第五透镜,其物侧面在近光轴处为凹面,像侧面为凸面;具有负光焦度的第六透镜,其物侧面在近光轴处为凹面,像侧面在近光轴处为凹面且具有至少一个反曲点。该光学镜头的头部外径小、总长短,能够更好的满足镜头的面积和体积小型化。
Description
相关申请的交叉引用
本申请要求于2021年04月20日提交的申请号为CN202110423092.4的中国申请的优先权,其在此出于所有目的通过引用将其全部内容并入本文。
本发明涉及透镜成像技术领域,特别涉及一种光学镜头及成像设备。
目前,随着便携式电子设备(如智能手机、相机)的普及,加上社交、视频、直播类软件的流行,人们对于摄影的喜爱程度越来越高,摄像镜头已经成为了电子设备的标配,摄像镜头甚至已经成为消费者购买电子设备时首要考虑的指标。
随着移动信息技术的不断发展,手机等便携式电子设备也在朝着轻薄化、全面屏、超高清成像等方向发展,这就对搭载在便携式电子设备上的摄像镜头提出了更高的要求。近几年,随着消费者对手机全面屏的热衷,前置镜头除了高像素的需求外,更加追求视觉上的简约;但是现有的摄像镜头由于头部外径及整体体积较大。
发明内容
基于此,本发明的目的是提供一种光学镜头及成像设备,至少具有整体体积较小、总长短、像素高等优点。
本发明实施例通过以下技术方案实现上述的目的。
一方面,本发明实施例提供一种光学镜头,沿光轴从物侧到像侧依次包括:光阑,第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,滤光片;其中,第一透镜具有正光焦度,其物侧面为凸面,像侧面在近光轴处为凹面且具有至少一个反曲点;第二透镜具有负光焦度,其物侧面在近光轴处为凹面且具有至少一个反曲点,像侧面为凹面;第三透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;第四透镜具有负光焦度,其物侧面为凹面,像侧面为凸面;第五透镜具有正光焦度,其物侧面在近光轴处为凹面,像侧面为凸面;第六透镜具有负光焦度,其物侧面在近光轴处为凹面,像侧面在近光轴处为凹面且具有至少一个反曲点;所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均为非球面镜片。
第二方面,本发明实施例还提供一种成像设备,包括成像元件及第一方面提供的光学镜头,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学镜头采用六片具有特定屈折力的镜片,并且采用特定的表面形状搭配和合理的光焦度分配,在满足高像素的同时结构更加紧凑,从而较好地实现了镜头小型化和高像素的均衡。
图1为本发明第一实施例中的光学镜头的结构示意图;
图2为本发明第一实施例中的光学镜头的像散曲线图;
图3为本发明第一实施例中的光学镜头的畸变曲线图;
图4为本发明第一实施例中的光学镜头的垂轴色差曲线图;
图5为本发明第一实施例中的光学镜头的轴向色差曲线图;
图6为本发明第二实施例中的光学镜头的结构示意图;
图7为本发明第二实施例中的光学镜头的像散曲线图;
图8为本发明第二实施例中的光学镜头的畸变曲线图;
图9为本发明第二实施例中的光学镜头的垂轴色差曲线图;
图10为本发明第二实施例中光学镜头的轴向色差曲线图;
图11为本发明第三实施例中的光学镜头的结构示意图;
图12为本发明第三实施例中的光学镜头的像散曲线图:
图13为本发明第三实施例中的光学镜头的畸变曲线图;
图14为本发明第三实施例中的光学镜头的垂轴色差曲线图;
图15为本发明第三实施例中的光学镜头的轴向色差曲线图;
主要元件符号说明:
光阑 | ST | 第一透镜 | L1 |
第二透镜 | L2 | 第三透镜 | L3 |
第四透镜 | L4 | 第五透镜 | L5 |
第六透镜 | L6 | 滤光片 | G |
第一透镜的物侧面 | S1 | 第一透镜的像侧面 | S2 |
第二透镜的物侧面 | S3 | 第二透镜的像侧面 | S4 |
第三透镜的物侧面 | S5 | 第三透镜的像侧面 | S6 |
第四透镜的物侧面 | S7 | 第四透镜的像侧面 | S8 |
第五透镜的物侧面 | S9 | 第五透镜的像侧面 | S10 |
第六透镜的物侧面 | S11 | 第六透镜的像侧面 | S12 |
滤光片的物侧面 | S13 | 滤光片的像侧面 | S14 |
成像面 | S15 |
如下具体实施方式将结合上述附图进一步说明本发明。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
如图1所示,为本发明实施例提供了一种光学镜头100的结构图,沿光轴从物侧到像侧依次包括:光阑ST,第一透镜L1,第二透镜L2,第三透镜L3,第四透镜L4,第五透镜L5,第六透镜L6,滤光片G;其中,第一透镜L1具有正光焦度,其物侧面S1为凸面,像侧面S2在近光轴处为凹面且具有至少一个反曲点;第二透镜L2具有负光焦度,其物侧面S3在近光轴处为凹面且具有至少一个反曲点,像侧面S4为凹面;第三透镜L3具有正光焦度,其物侧面S5在近光轴处为凸面,像侧面S6为凹面;第四透镜L4具有负光焦度,其物侧面S7为凹面,像侧面S8为凸面;第五透镜L5具有正光焦度,其物侧面S9在近光轴处为凹面,像侧面S10为凸面;第六透镜L6具有负光焦度,其物侧面S11在近光轴处为凹面,像侧面S12在近光轴处为凹面且具有至少一个反曲点。
在一些实施方式中,光学镜头满足以下条件式:
6.5<(TTL/IH)*f<6.6; (1)
其中,TTL表示所述第一透镜的物侧面至所述光学镜头的成像面在光轴上的距离,IH表示所述光学镜头在成像面上的实际半像高,f表示所述光学镜头的有效焦距。满足条件式(1),能够合理地控制所述光学镜头的有效焦距和光学总长,有利于实现所述光学镜头具有较短的光学总长和高像素的均衡。
在一些实施方式中,光学镜头满足以下条件式:
-13<(R5+R6)/(R5-R6)<-5 (2)
-10<(R7+R8)/(R7-R8)<-6 (3)
其中,R5表示所述第三透镜物侧面的曲率半径,R6表示所述第三透镜像侧面的曲率半径。满足条件式(2),能够限定第三透镜的形状有利于第三透镜的成型,并且可以缓和光线经过透镜的偏折程度,有利于减小像差。R7表示所述第四透镜物侧面的曲率半径,R8表示所述第四透镜像侧面的曲率半径。满足条件式(3),能够限定第四透镜的形状有利于第三透镜的成型,且有利于补正轴外画角的像差问题。
在一些实施方式中,光学镜头满足以下条件式:
-0.08mm<SAG3.1–SAG3<-0.05mm; (4)
SAG3.1表示所述第二透镜物侧面的反曲点的矢高,SAG3表示所述第二透镜物侧面有效口径处的矢高。满足条件式(4),能够合理控制所述第二透镜物侧面的面型,有利于矫正轴外视场的畸变,提高 所述光学镜头的解像力。
在一些实施方式中,光学镜头满足以下条件式:
0.1<f1/f3<0.3; (5)
1.5<(f2+f3)/f<3.0; (6)
0.9<f123/f<1.1; (7)
其中,f表示所述光学镜头的有效焦距,f1表示所述第一透镜的焦距,f2表示所述第二透镜的有效焦距,f3表示所述第三透镜的焦距,f123表示所述第一透镜至所述第三透镜组合的组合焦距。满足条件式(5)、(6)和(7),能够合理分配各透镜的焦距,有利于降低高级像差,同时,有利于减小光学镜头的光学总长。
在一些实施方式中,光学镜头满足以下条件式:
-13<(R5+R6)/(R5-R6)<-5; (8)
其中,R5表示所述第三透镜物侧面的曲率半径,R6表示所述第三透镜像侧面的曲率半径。满足条件式(8),能够合理控制所述第三透镜像侧面的面型,使得所述第三透镜具有较大的正焦距,有利于校正所述光学镜头的球差,同时,有利于减小后续透镜的口径和总长,实现所述光学镜头小型化。
在一些实施方式中,光学镜头满足以下条件式:
0.1mm<SAG4+SAG6<0.3mm; (9)
其中,SAG4表示所述第二透镜像侧面有效口径处的矢高,SAG6表示所述第三透镜像侧面有效口径处的矢高。满足条件式(9),能够合理控制轴外视场光线的走势,有利于减小轴外视场与中心视场的像差,提高所述光学镜头的解像品质。
在一些实施方式中,光学镜头满足以下条件式:
-4<R9/f5<-2; (10)
0.12<R10/R9<0.2; (11)
其中,R9表示所述第五透镜物侧面的曲率半径,R10表示所述第五透镜像侧面的曲率半径,f5表示所述第五透镜的焦距。满足条件式(10)和(11),能够使所述第五透镜的物侧面和像侧面具有同方向曲率值,有利于校正所述光学镜头的场曲。
在一些实施方式中,光学镜头满足以下条件式:
0.3<(f5-f6)/f3<0.6; (12)
其中,f3表示所述第三透镜的焦距,f5表示所述第五透镜的焦距,f6表示所述第六透镜的焦距。满足条件式(12),能够使所述第三透镜、所述第五透镜和所述第六透镜的焦距合理搭配,有利于减小光学镜头的光学总长、实现系统的小型化。
在一些实施方式中,光学镜头满足以下条件式:
-4<R12/R11<-2; (13)
其中,R11表示所述六透镜物侧面的曲率半径,R12表示所述第六透镜像侧面的曲率半径。满足条件式(13),能够合理控制所述第六透镜的面型,有利于提高所述光学镜头与传感器的匹配度,提高所述光学镜头的解像质量。
在一些实施方式中,所述光学镜头满足以下条件式:
1.5<(ET45+EC56)/CT5<1.85; (14)
0.2<(CT45+CT56)/TTL<0.3; (15)
其中,ET45表示所述第四透镜和所述第五透镜在有效口径处平行于光轴上的间隔距离,ET56表示所述第五透镜和所述第六透镜在在有效口径处平行于光轴上的间隔距离,CT5表示所述第五透镜的中心厚度,CT45表示所述第四透镜和所述第五透镜在光轴上的间隔距离,CT56表示所述第五透镜和所述第六透镜在光轴上的间隔距离,TTL表示所述第一透镜的物侧面至所述成像面在光轴上的距离。满足条件式(14)及(15),能够合理地控制所述第四透镜至所述第六透镜各透镜之间的间隔,有利于降低所述光学镜头的敏感度,同时使所述光学镜头结构更加紧凑,有利于缩短所述光学镜头的总长。
在一些实施方式中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜均为塑胶非球面镜片。
本发明各个实施例中非球面镜头的表面形状均满足下列方程:
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率,k为二次曲面系数,A
2i为第2i阶的非球面面型系数。
在以下各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。
第一实施例
本发明第一实施例提供的光学镜头100中各个镜片的相关参数如表1所示,其中R代表曲率半径,d代表光学表面间距,Nd代表材料的d线折射率,Vd代表材料的阿贝数。
本实例中,第二透镜L2物侧面的反曲点与光轴的垂直距离为0.72mm,合理控制该反曲点位置,能够减弱鬼像能量,有利于提高所述光学镜头的解像品质。
表1
本实施例中的光学镜头100的各非球面的面型系数如表2所示。
表2
在本实施例中,光学镜头100的象散曲线、光学畸变、垂轴色差和轴向色差的曲线图分别如图2、图3、图4和图5所示。
图2示出了本实施例中光学镜头100的象散曲线,其表示子午像面和弧矢像面的弯曲程度,从图中可看出两个方向像面的象散控制在±0.03mm以内,说明光学镜头100的象散矫正良好。
图3示出了本实施例光学镜头100的光学畸变曲线,其表示成像面上不同像高处的畸变,从图中可以看出光学畸变控制在2.0%以内,说明光学镜头100的畸变得到良好的矫正。
图4示出了光学镜头100的垂轴色差曲线,其表示最长波长与最短波长在成像面上不同像高处的色差,从图中可以看出垂轴色差控制在±1.0um以内,说明该光学镜头能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
图5示出了光学镜头100的轴向色差曲线,其表示成像面处光轴上的像差,从图中可以看出轴向色差的偏移量控制在±0.03mm以内,说明光学镜头100的轴向色差得到良好的矫正。
第二实施例
本发明第二实施例提供的光学镜头与第一实施例中的光学镜头100的结构大抵相同,不同之处在于,各透镜的曲率半径、材料选择不同。
本实例中,第二透镜L2物侧面的反曲点与光轴的垂直距离为0.835mm,合理控制该反曲点位置,能够减弱鬼像能量,有利于提高所述光学镜头的解像品质。
本实施例提供的光学镜头中各个镜片的相关参数如表3所示。
表3
本实施例中的光学镜头的各非球面的面型系数如表4所示。
表4
在本实施例中,光学镜头100的象散曲线、光学畸变、垂轴色差和轴向色差的曲线图分别如图6、图7、图8和图9所示。
图7示出了本实施例中光学镜头100的象散曲线,从图中可看出两个方向像面的象散控制在±0.03mm以内,说明光学镜头100的象散矫正良好。
图8示出了本实施例光学镜头100的光学畸变曲线,从图中可以看出光学畸变控制在2.0%以内,说明光学镜头100的畸变得到良好的矫正。
图9示出了光学镜头100的垂轴色差曲线,从图中可以看出垂轴色差控制在±1.5um以内,说明该光学镜头能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
图10示出了光学镜头100的轴向色差曲线,从图中可以看出轴向色差的偏移量控制在±0.03mm以内,说明光学镜头100的轴向色差得到良好的矫正。
第三实施例
本实发明第三施例中的光学镜头与第一实施例中的光学镜头100的结构大抵相同,不同之处在于,各透镜的曲率半径、材料选择不同。
本实例中,第二透镜L2物侧面的反曲点与光轴的垂直距离为0.915mm,合理控制该反曲点位置,能够减弱鬼像能量,有利于提高所述光学镜头的解像品质。
本实施例提供的光学镜头中各个镜片的相关参数如表5所示。
表5
本实施例中的光学镜头100的各非球面的面型系数如表6所示。
表6
在本实施例中,光学镜头100的象散曲线、光学畸变、垂轴色差和轴向色差的曲线图分别如图12、图13、图14和图15所示。
图12示出了本实施例中光学镜头100的象散曲线,从图中可看出两个方向像面的象散控制在±0.04mm以内,说明光学镜头100的象散矫正良好。
图13示出了本实施例光学镜头100的光学畸变曲线,从图中可以看出光学畸变控制在2.0%以内,说明光学镜头100的畸变得到良好的矫正。
图14示出了光学镜头100的垂轴色差曲线,从图中可以看出垂轴色差控制在±2.0um以内,说明该光学镜头能够有效地矫正边缘视场的像差以及整个像面的二级光谱。
图15示出了光学镜头100的轴向色差曲线,从图中可以看出轴向色差的偏移量控制在±0.03mm以内,说明光学镜头100的轴向色差得到良好的矫正。
表7是上述三个实施例对应的光学特性,主要包括系统的有效焦距f、光圈数F#、入瞳直径EPD、光学总长TTL及视场角2θ,以及与上述每个条件式对应的数值。
表7
实施例 | 实施例1 | 实施例2 | 实施例3 |
f(mm) | 5.5020 | 5.5060 | 5.5080 |
F# | 2.0 | 2.0 | 2.0 |
TTL(mm) | 6.1 | 6.101 | 6.1 |
2θ(°) | 85 | 85 | 85 |
EPD(mm) | 2.6840 | 2.6860 | 2.6870 |
(TTL/IH)*f | 6.5030 | 6.5078 | 6.5101 |
SAG3.1–SAG3 | -0.0771 | -0.0601 | -0.0540 |
f1/f3 | 0.2299 | 0.2158 | 0.1809 |
(f2+f3)/f | 1.8412 | 2.0639 | 2.8609 |
f123/f | 1.0278 | 1.0486 | 1.0000 |
(R5+R6)/(R5-R6) | -5.8087 | -6.2421 | -12.4808 |
(R7+R8)/(R7-R8) | -9.7326 | -8.0913 | -6.4534 |
SAG4+SAG6 | 0.2220 | 0.1456 | 0.2055 |
R9/f5 | -2.4009 | -3.2486 | -2.3243 |
R10/R9 | 0.1887 | 0.1434 | 0.1902 |
(f5-f6)/f3 | 0.4232 | 0.4258 | 0.3906 |
R12/R11 | -2.2127 | -3.0453 | -2.5723 |
(ET45+ET56)/CT5 | 1.5462 | 1.7171 | 1.7106 |
(CT45+CT56)/TTL | 0.2243 | 0.2595 | 0.2714 |
综上,本发明实施例提供的光学镜头具有以下的优点:
(1)本发明实施例提供的光学镜头由于光阑及各透镜形状设置合理,一方面具有较大的光圈(F.no≤2.0),满足大光圈的需求;另一方面,镜头的总长较短,体积小,能够更好的满足智能手机轻薄化的发展趋势。
(2)采用六片具有特定屈折力的塑胶非球面镜片,并且通过特定的表面形状搭配,使得镜头具有超高像素的成像质量,可匹配4800万像素的CMOS芯片清晰成像。
(3)本发明实施例提供的光学镜头的视场角可达85°,可有效修正光学畸变,控制畸变小于2.0%,能够满足大视场角的高清晰成像需要。
本实施例提供的一种成像设备,包括上述任一实施例中的光学镜头及成像元件。成像元件可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备可以是相机、移动终端以及其他任意一种形态的装载了光学镜头的电子设备,移动终端可以是智能手机、智能平板、 智能阅读器等终端设备。
本实施例提供的成像设备包括光学镜头,由于光学镜头具有整体体积较小、广视角、成像品质高及生产良率高的优点,成像设备具有鬼像能量低、广视角、成像品质高及生产良率高的优点。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。
Claims (10)
- 一种光学镜头,其特征在于,沿光轴从物侧到像侧依次包括:光阑,第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,滤光片;所述第一透镜具有正光焦度,其物侧面为凸面,像侧面在近光轴处为凹面且具有至少一个反曲点;所述第二透镜具有负光焦度,其物侧面在近光轴处为凹面且具有至少一个反曲点,像侧面为凹面;所述第三透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;所述第四透镜具有负光焦度,其物侧面为凹面,像侧面为凸面;所述第五透镜具有正光焦度,其物侧面在近光轴处为凹面,像侧面为凸面;所述第六透镜具有负光焦度,其物侧面在近光轴处为凹面,像侧面在近光轴处为凹面且具有至少一个反曲点;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均为非球面镜片。所述光学镜头满足以下条件式:6.5<(TTL/IH)*f<6.6;其中,TTL表示所述第一透镜的物侧面至所述光学镜头的成像面在光轴上的距离,IH表示所述光学镜头在成像面上的实际半像高,f表示所述光学镜头的有效焦距。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:-13<(R5+R6)/(R5-R6)<-5;-10<(R7+R8)/(R7-R8)<-6;其中,R5表示所述第三透镜物侧面的曲率半径,R6表示所述第三透镜像侧面的曲率半径;R7表示所述第四透镜物侧面的曲率半径,R8表示所述第四透镜像侧面的曲率半径。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:-0.08mm<SAG3.1–SAG3<-0.05mm;SAG3.1表示所述第二透镜物侧面的反曲点的矢高,SAG3表示所述第二透镜物侧面有效口径处的矢高。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:0.1<f1/f3<0.3;1.5<(f2+f3)/f<3.0;0.9<f123/f<1.1;其中,f表示所述光学镜头的有效焦距,f1表示所述第一透镜的焦距,f2表示所述第二透镜的有效焦距,f3表示所述第三透镜的焦距,f123表示所述第一透镜至所述第三透镜组合的组合焦距。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:0.1mm<SAG4+SAG6<0.3mm;其中,SAG4表示所述第二透镜像侧面有效口径处的矢高,SAG6表示所述第三透镜像侧面有效口径处的矢高。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:-4<R9/f5<-2;0.12<R10/R9<0.2;其中,R9表示所述第五透镜物侧面的曲率半径,R10表示所述第五透镜像侧面的曲率半径,f5表示所述第五透镜的焦距。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:0.3<(f5-f6)/f3<0.6;其中,f3表示所述第三透镜的焦距,f5表示所述第五透镜的焦距,f6表示所述第六透镜的焦距。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:-4<R12/R11<-2.0;其中,R11表示所述六透镜物侧面的曲率半径,R12表示所述第六透镜像侧面的曲率半径。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:1.5<(ET45+EC56)/CT5<1.85;0.2<(CT45+CT56)/TTL<0.3其中,ET45表示所述第四透镜和所述第五透镜在有效口径处平行于光轴上的间隔距离,ET56表示所述第五透镜和所述第六透镜在在有效口径处平行于光轴上的间隔距离,CT5表示所述第五透镜的中心厚度,CT45表示所述第四透镜和所述第五透镜在光轴上的间隔距离,CT56表示所述第五透镜和所述第六透镜在光轴上的间隔距离,TTL表示所述第一透镜的物侧面至所述成像面在光轴上的距离。
- 一种成像设备,其特征在于,包括成像元件和权利要求1-9任意一项所述的光学镜头,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110423092.4A CN112987262B (zh) | 2021-04-20 | 2021-04-20 | 光学镜头及成像设备 |
CN202110423092.4 | 2021-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022222926A1 true WO2022222926A1 (zh) | 2022-10-27 |
Family
ID=76341313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/087694 WO2022222926A1 (zh) | 2021-04-20 | 2022-04-19 | 光学镜头及成像设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112987262B (zh) |
WO (1) | WO2022222926A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112987262B (zh) * | 2021-04-20 | 2021-08-20 | 江西联益光学有限公司 | 光学镜头及成像设备 |
CN113253432B (zh) * | 2021-06-29 | 2021-10-29 | 江西联益光学有限公司 | 光学镜头 |
CN113253437B (zh) * | 2021-07-16 | 2021-10-29 | 江西联益光学有限公司 | 光学镜头 |
CN114326060B (zh) * | 2022-03-07 | 2022-08-12 | 江西联益光学有限公司 | 光学镜头 |
CN114815154B (zh) * | 2022-04-20 | 2023-08-08 | 江西晶超光学有限公司 | 光学镜头、摄像模组及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104423017A (zh) * | 2013-08-23 | 2015-03-18 | 大立光电股份有限公司 | 光学结像镜片组及取像装置 |
CN111722368A (zh) * | 2020-07-15 | 2020-09-29 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN111781706A (zh) * | 2020-08-05 | 2020-10-16 | 惠州萨至德光电科技有限公司 | 一种大光圈高像素超薄成像镜头 |
CN211786334U (zh) * | 2020-04-26 | 2020-10-27 | 天津欧菲光电有限公司 | 光学系统、摄像模组及电子设备 |
CN112987262A (zh) * | 2021-04-20 | 2021-06-18 | 江西联益光学有限公司 | 光学镜头及成像设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150058972A (ko) * | 2013-11-21 | 2015-05-29 | 삼성전자주식회사 | 촬상 렌즈 시스템 및 이를 채용한 촬상 장치 |
-
2021
- 2021-04-20 CN CN202110423092.4A patent/CN112987262B/zh active Active
-
2022
- 2022-04-19 WO PCT/CN2022/087694 patent/WO2022222926A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104423017A (zh) * | 2013-08-23 | 2015-03-18 | 大立光电股份有限公司 | 光学结像镜片组及取像装置 |
CN211786334U (zh) * | 2020-04-26 | 2020-10-27 | 天津欧菲光电有限公司 | 光学系统、摄像模组及电子设备 |
CN111722368A (zh) * | 2020-07-15 | 2020-09-29 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN111781706A (zh) * | 2020-08-05 | 2020-10-16 | 惠州萨至德光电科技有限公司 | 一种大光圈高像素超薄成像镜头 |
CN112987262A (zh) * | 2021-04-20 | 2021-06-18 | 江西联益光学有限公司 | 光学镜头及成像设备 |
Also Published As
Publication number | Publication date |
---|---|
CN112987262A (zh) | 2021-06-18 |
CN112987262B (zh) | 2021-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022089344A1 (zh) | 光学镜头及成像设备 | |
CN111338060B (zh) | 光学镜头及成像设备 | |
CN110764234B (zh) | 光学镜头及成像设备 | |
WO2022222926A1 (zh) | 光学镜头及成像设备 | |
WO2020140520A1 (zh) | 摄像光学镜头 | |
WO2022143647A1 (zh) | 光学镜头及成像设备 | |
WO2022089327A1 (zh) | 光学镜头及成像设备 | |
WO2022042513A1 (zh) | 光学镜头及成像设备 | |
CN114114650B (zh) | 光学镜头及成像设备 | |
CN109856779B (zh) | 摄像光学镜头 | |
WO2020134294A1 (zh) | 摄像光学镜头 | |
TW201346320A (zh) | 成像透鏡和成像設備 | |
CN112014957B (zh) | 光学镜头及成像设备 | |
WO2020140521A1 (zh) | 摄像光学镜头 | |
WO2022199465A1 (zh) | 光学镜头及成像设备 | |
CN109557643B (zh) | 长焦镜头及移动终端 | |
CN111290106B (zh) | 光学镜头及成像设备 | |
US11378781B2 (en) | Camera optical lens | |
CN111929874B (zh) | 光学镜头及成像设备 | |
CN114185157B (zh) | 光学镜头 | |
US20200041767A1 (en) | Camera optical lens | |
WO2022111437A1 (zh) | 光学镜头及成像设备 | |
WO2022105926A1 (zh) | 光学镜头及成像设备 | |
CN112666687B (zh) | 光学镜头及成像设备 | |
CN210775999U (zh) | 光学系统、镜头模组和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22791033 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22791033 Country of ref document: EP Kind code of ref document: A1 |