WO2022089344A1 - 光学镜头及成像设备 - Google Patents
光学镜头及成像设备 Download PDFInfo
- Publication number
- WO2022089344A1 WO2022089344A1 PCT/CN2021/125993 CN2021125993W WO2022089344A1 WO 2022089344 A1 WO2022089344 A1 WO 2022089344A1 CN 2021125993 W CN2021125993 W CN 2021125993W WO 2022089344 A1 WO2022089344 A1 WO 2022089344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical
- optical lens
- object side
- image side
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 199
- 238000003384 imaging method Methods 0.000 title claims abstract description 51
- 210000001747 pupil Anatomy 0.000 claims description 6
- 230000004075 alteration Effects 0.000 description 40
- 238000010586 diagram Methods 0.000 description 19
- 230000014509 gene expression Effects 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 4
- 210000003128 head Anatomy 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Definitions
- the invention relates to the technical field of lens imaging, in particular to an optical lens and an imaging device.
- the purpose of the present invention is to provide an optical lens and an imaging device to improve the above problems.
- an embodiment of the present invention provides an optical lens, which is composed of seven lenses, and includes a first lens, a second lens, a third lens, a diaphragm, and a fourth lens in sequence from the object side to the imaging surface along the optical axis: a first lens, a second lens, a third lens, a diaphragm, and a fourth lens. , the fifth lens, the sixth lens and the seventh lens.
- the first lens has negative refractive power, its object side is convex, and its image side is concave; the second lens has refractive power, and its object side is concave; the third lens has positive power, and its image side is convex; The lens has positive refractive power, and its object side and image side are convex; the fifth lens has positive power, and its object side is concave and its image side is convex; the sixth lens has negative power, and its object side and image side are convex.
- the seventh lens has a positive refractive power, its object side is convex at the near optical axis, its image side is concave at the near optical axis, and the seventh lens has at least one inflection on the object side and the image side point.
- the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens are all plastic aspherical lenses; the optical lens satisfies the following conditional formula: 6 ⁇ TTL/EPD ⁇ 7 ;
- TTL represents the total optical length of the optical lens
- EPD represents the entrance pupil diameter of the optical lens.
- an embodiment of the present invention further provides an imaging device, including an imaging element and the optical lens provided in the first aspect, where the imaging element is used to convert an optical image formed by the optical lens into an electrical signal.
- the optical lens and imaging device provided by the embodiments of the present application can meet the requirements of large and wide-angle while reasonably matching the lens shape and the reasonable combination of refractive power among the seven lenses with specific refractive power.
- the structure is more compact, thereby better realizing the miniaturization of the optical lens and the balance of high pixels, which can effectively improve the camera experience of the user.
- FIG. 1 is a schematic structural diagram of an optical lens provided by a first embodiment of the application
- FIG. 2 is a field curvature diagram of the optical lens provided by the first embodiment of the present application.
- FIG. 3 is a distortion curve diagram of the optical lens provided by the first embodiment of the present application.
- FIG. 5 is an axial chromatic aberration curve diagram of the optical lens provided by the first embodiment of the present application.
- FIG. 6 is a schematic structural diagram of an optical lens provided by a second embodiment of the present application.
- FIG. 8 is a distortion curve diagram of an optical lens provided by the second embodiment of the present application.
- FIG. 9 is a vertical-axis chromatic aberration curve diagram of an optical lens provided by the second embodiment of the present application.
- FIG. 11 is a schematic structural diagram of an optical lens provided by a third embodiment of the application.
- FIG. 13 is a distortion curve diagram of an optical lens provided by the third embodiment of the application.
- FIG. 16 is a schematic structural diagram of an imaging device provided by a fourth embodiment of the present application.
- An embodiment of the present application provides an optical lens.
- the optical lens includes in sequence from the object side to the image side along the optical axis: a first lens, a second lens, a third lens, a diaphragm, a fourth lens, a fifth lens, a sixth lens
- the image side here refers to the side where the imaging plane is located
- the object side refers to the side opposite to the image side.
- the first lens has negative refractive power, the object side of the first lens is convex, and the image side of the first lens is concave.
- the second lens has optical power, the object side of the second lens is concave, and the image side of the second lens is concave or convex.
- the third lens has positive refractive power, the object side of the third lens is concave or convex, and the image side of the third lens is convex.
- the fourth lens has positive refractive power, and both the object side of the fourth lens and the image side of the fourth lens are convex.
- the fifth lens has positive refractive power, the object side of the fifth lens is concave, and the image side of the fifth lens is convex.
- the sixth lens has negative refractive power, and both the object side of the sixth lens and the image side of the sixth lens are concave.
- the seventh lens has positive refractive power
- the object side of the seventh lens is convex at the near optical axis and has at least one inflection point
- the image side of the seventh lens is concave at the near optical axis and has at least one inflection point ( inflection point).
- the optical lens satisfies the following conditional formula:
- TTL represents the optical total length of the optical lens
- EPD represents the entrance pupil diameter of the optical lens
- the light transmission amount and the total optical length of the optical lens can be reasonably controlled, which is beneficial to increase the light transmission amount on the optical lens, while shortening the optical total length of the optical lens and realizing the miniaturization of the lens.
- the optical lens may also satisfy the following conditional formula:
- f represents the focal length of the optical lens
- DM1 represents the effective semi-diameter of the first lens
- the effective aperture of the first lens can be reasonably controlled, the head size of the optical lens can be reduced, the screen opening area of the portable electronic device can be reduced, the head can be miniaturized, and the portable electronic product can be improved. screen ratio.
- the optical lens may also satisfy the following conditional formula:
- f represents the focal length of the optical lens
- R1 represents the curvature radius of the object side surface of the first lens
- the imaging space depth and effective focal length of the optical lens can be reasonably controlled, which is beneficial to realize the ultra-wide-angle characteristic of the optical lens.
- the optical lens may also satisfy the following conditional formula:
- R2 represents the curvature radius of the image side surface of the first lens
- ⁇ 2 represents the maximum inclination angle of the image side surface of the first lens
- the curvature of the image side surface of the first lens can be reasonably controlled, and the optical power of the first lens can be enhanced, so that the lens can also correct aberrations well under a large aperture, and at the same time, it is beneficial to reduce the subsequent The diameter of the lens and the overall length of the lens.
- the optical lens may also satisfy the following conditional formula:
- f1 represents the focal length of the first lens
- f2 represents the focal length of the second lens
- R2 represents the radius of curvature of the image side of the first lens
- R3 represents the radius of curvature of the object side of the second lens.
- the focal lengths of the first lens and the second lens can be reasonably balanced, so that the focal lengths of the first lens and the second lens can be matched with positive and negative, which is conducive to the correction of chromatic aberration, and can reasonably control the light entering
- the incident angle of the object side of the second lens reduces the sensitivity of the optical lens.
- the optical lens may also satisfy the following conditional formula:
- R3 represents the radius of curvature of the object side of the second lens
- R4 represents the radius of curvature of the image side of the second lens
- R4 represents the radius of curvature of the object side of the third lens
- R5 represents the radius of curvature of the image side of the third lens.
- the surface shapes of the second lens and the third lens can be reasonably controlled, the condensing intensity of the off-axis field of view can be eased, and the aberration of the edge field of view and the center field of view can be reduced. Good for correcting spherical aberration and distortion.
- the optical lens 100 may also satisfy the following conditional formula:
- CT2 represents the center thickness of the second lens
- CT3 represents the center thickness of the third lens
- TTL represents the total optical length of the optical lens
- the central thickness of the second lens and the third lens can be reasonably controlled, and the design of the lens miniaturization and thinning lens can be satisfied, which is conducive to the correction of aberration and f- ⁇ distortion. It can maintain the amount of light, which is conducive to the improvement of relative illuminance.
- the optical lens may also satisfy the following conditional formula:
- f 456 represents the combined focal length of the fourth lens, the fifth lens and the sixth lens
- f4 represents the focal length of the fourth lens
- f5 represents the focal length of the fifth lens
- f6 represents the focal length of the sixth lens.
- the balanced distribution of the power of the fourth lens, the fifth lens and the sixth lens can be achieved, and the fourth lens to the sixth lens have a positive combination
- the optical power is beneficial to correct the aberration of the optical lens and improve the resolution of the optical lens.
- the optical lens may also satisfy the following conditional formula:
- CT4 represents the center thickness of the fourth lens
- CT5 represents the center thickness of the fifth lens
- CT6 represents the center thickness of the sixth lens
- TTL represents the total optical length of the optical lens
- the center thickness of the fourth lens to the sixth lens after the diaphragm can be reasonably allocated, the total length of the lens can be reduced, and at the same time, the collocation of each lens can be reasonably controlled to reduce the sensitivity of the optical lens.
- the optical lens may also satisfy the following conditional formula:
- R13 represents the curvature radius of the object side of the seventh lens
- R14 represents the curvature radius of the image side of the seventh lens
- ⁇ 14 represents the maximum inclination angle of the image side of the seventh lens.
- the conditional expressions (15) and (16) are satisfied, by reasonably controlling the curvature radius of the object side and the image side of the seventh lens, the distribution of the incident angle of light can be effectively controlled, the matching degree of the optical lens and the imaging chip can be improved, and the optical lens can be improved. At the same time, the curvature of the image side surface of the seventh lens can be reasonably controlled to reduce the generation of ghost images of the optical lens.
- the optical lens may also satisfy the following conditional formula:
- CRA represents the chief ray incident angle of the optical lens
- BFL represents the distance between the image side of the seventh lens and the imaging surface on the optical axis, also called the optical back focus
- TTL represents the total optical length of the optical lens.
- the incident angle of the chief ray and the optical back focus of the optical lens can be reasonably controlled, the imaging quality of the lens can be improved, and at the same time, the overall length can be shortened and the miniaturization of the optical lens can be realized.
- the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens may be aspherical lenses.
- the above lenses are all made of plastic aspherical lenses. .
- the use of aspherical lenses can effectively reduce the number of lenses, correct aberrations, and provide better optical performance.
- each aspherical surface type of the optical lens may satisfy the following equation:
- z is the distance vector height from the vertex of the aspheric surface when the aspheric surface is at the position of height h along the optical axis
- c is the paraxial curvature radius of the surface
- k is the quadratic surface coefficient conic
- a 2i is the 2i order Aspheric surface shape coefficient.
- the optical lens provided by the embodiment of the present invention adopts seven lenses with a specific refractive power to reasonably match the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens
- the combination of the best lens shape and focal power can make the structure of the optical lens more compact under the premise that the lens has a large wide angle, better realize the balance of the miniaturization of the lens and the high pixel, and can effectively improve the user's camera experience.
- the present invention will be further described below with a plurality of embodiments.
- the thickness, radius of curvature, and material selection of each lens in the optical lens are different.
- FIG. 1 is a schematic structural diagram of an optical lens 100 according to a first embodiment of the present invention.
- the optical lens 100 includes in sequence from the object side to the imaging surface S15 along the optical axis: a first lens L1 , a second lens L2 , a first lens Three lenses L3, diaphragm ST, fourth lens L4, fifth lens L5, sixth lens L6, and seventh lens L7.
- the first lens L1 has negative refractive power, the object side S1 of the first lens L1 is convex, and the image side S2 of the first lens L1 is concave.
- the second lens L2 has positive refractive power, the object side S3 of the second lens L2 is concave, and the image side S4 of the second lens L2 is convex.
- the third lens L3 has positive refractive power, the object side S5 of the third lens L3 is concave, and the image side S6 of the third lens L3 is convex.
- the fourth lens L4 has positive refractive power, and both the object side S7 of the fourth lens L4 and the image side S8 of the fourth lens L4 are convex surfaces.
- the fifth lens L5 has positive refractive power, the object side S9 of the fifth lens L5 is concave, and the image side S10 of the fifth lens L5 is convex.
- the sixth lens L6 has negative refractive power, and both the object side S11 of the sixth lens L6 and the image side S12 of the sixth lens L6 are concave.
- the seventh lens L7 has positive refractive power, the object side S13 of the seventh lens L7 is convex at the near optical axis, and the image side S14 of the seventh lens L7 is concave at the near optical axis; in this embodiment, the seventh lens
- the vertical distance between the inflection point of the object side S13 of L7 and the optical axis is 1.13 mm, and the vertical distance of the inflection point of the image side S14 of the seventh lens L7 and the optical axis is 1.19 mm.
- the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the seventh lens L7 are all plastic aspherical lenses.
- Table 2 the surface coefficients of each aspherical surface of the optical lens 100 provided by the first embodiment of the present invention are shown in Table 2:
- FIG. 2 , FIG. 3 , FIG. 4 and FIG. 5 are respectively a field curvature graph, a distortion graph, a vertical chromatic aberration graph, and an axial chromatic aberration graph of the optical lens 100 .
- the field curvature curve of FIG. 2 represents the degree of curvature of the meridional image plane and the sagittal image plane.
- the horizontal axis represents the offset (unit: mm)
- the vertical axis represents the field angle (unit: degree). It can be seen from FIG. 2 that the curvature of field of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.5mm, indicating that the field curvature of the optical lens 100 is well corrected.
- the distortion curve of FIG. 3 represents the distortion at different image heights on the imaging plane S17.
- the horizontal axis represents the f- ⁇ distortion percentage
- the vertical axis represents the field angle (unit: degree). It can be seen from FIG. 3 that the f- ⁇ distortion at different image heights on the imaging surface S17 is controlled within ⁇ 5%, which indicates that the distortion of the optical lens 100 has been well corrected.
- the vertical-axis chromatic aberration curve in FIG. 4 represents the chromatic aberration of the longest wavelength and the shortest wavelength at different image heights on the imaging plane S17.
- the horizontal axis in FIG. 4 represents the vertical axis chromatic aberration value (unit: um) of each wavelength relative to the central wavelength, and the vertical axis represents the normalized viewing angle. It can be seen from FIG. 4 that the vertical chromatic aberration between the longest wavelength and the shortest wavelength is controlled within ⁇ 2um, which indicates that the vertical chromatic aberration of the optical lens 100 is well corrected.
- the axial chromatic aberration curve of FIG. 5 represents the aberration on the optical axis at the imaging plane S17.
- the vertical axis in FIG. 5 represents the spherical value (unit: mm), and the horizontal axis represents the normalized pupil radius (unit: mm). It can be seen from FIG. 5 that the offset of the axial chromatic aberration is controlled within ⁇ 0.02mm, indicating that the optical lens 100 can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
- FIG. 6 is a schematic structural diagram of an optical lens 200 provided by a second embodiment of the present invention.
- the optical lens 200 in this embodiment has substantially the same structure as the optical lens 100 provided by the first embodiment, and the main differences are
- the second lens L2 in the optical lens 200 has negative refractive power, the image side S4 of the second lens L2 is concave, the object side S5 of the third lens L3 is convex, and the curvature radius and material selection of each lens are different.
- the vertical distance between the inflection point of the object side S13 of the seventh lens L7 and the optical axis is 1.08 mm
- the vertical distance between the inflection point of the image side S14 of the seventh lens L7 and the optical axis is 1.16mm.
- Table 4 the surface shape coefficients of each aspherical surface of the optical lens 200 provided by the second embodiment of the present invention are shown in Table 4:
- FIG. 7 , FIG. 8 , FIG. 9 and FIG. 10 are respectively a field curvature graph, a distortion graph, a vertical chromatic aberration graph, and an axial chromatic aberration graph of the optical lens 200 .
- FIG. 7 shows the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from FIG. 7 that the curvature of field of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.1 mm, indicating that the field curvature of the optical lens 200 is well corrected.
- FIG. 8 shows the distortion at different image heights on the imaging plane S17.
- the f- ⁇ distortion at different image heights on the imaging surface S17 is controlled within ⁇ 5%, indicating that the distortion of the optical lens 200 is well corrected.
- FIG. 9 shows the chromatic aberration of the longest wavelength and the shortest wavelength at different image heights on the imaging plane S17. It can be seen from FIG. 9 that the vertical chromatic aberration between the longest wavelength and the shortest wavelength is controlled within ⁇ 2um, which indicates that the vertical chromatic aberration of the optical lens 200 is well corrected.
- FIG. 10 shows aberrations on the optical axis at the imaging plane S17. It can be seen from FIG. 10 that the offset of the axial chromatic aberration is controlled within ⁇ 0.03mm, indicating that the optical lens 200 can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
- FIG. 11 is a schematic structural diagram of an optical lens 300 provided by a third embodiment of the present invention.
- the optical lens 300 in this embodiment has substantially the same structure as the optical lens 100 provided by the first embodiment, and the main differences are
- the second lens L2 in the optical lens 300 has negative refractive power, the image side S4 of the second lens L2 is concave, the object side S5 of the third lens L3 is convex, and the curvature radius and material selection of each lens are different.
- the vertical distance between the inflection point of the object side S13 of the seventh lens L7 and the optical axis is 1.15 mm
- the vertical distance between the inflection point of the image side S14 of the seventh lens L7 and the optical axis is 1.21mm.
- Table 6 the surface shape coefficients of each aspherical surface of the optical lens 300 in the third embodiment of the present invention are shown in Table 6:
- FIG. 12 , FIG. 13 , FIG. 14 and FIG. 15 are the field curvature graph, the distortion graph, the vertical chromatic aberration graph and the axial chromatic aberration graph of the optical lens 300 , respectively.
- FIG. 12 shows the degree of curvature of the meridional image plane and the sagittal image plane. It can be seen from FIG. 12 that the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.1 mm, indicating that the field curvature of the optical lens 300 is well corrected.
- FIG. 13 shows the distortion at different image heights on the imaging plane S17.
- the f- ⁇ distortion at different image heights on the imaging surface S17 is controlled within ⁇ 5%, indicating that the distortion of the optical lens 300 has been well corrected.
- FIG. 14 shows the chromatic aberration at different image heights on the imaging plane between the longest wavelength and the shortest wavelength. It can be seen from FIG. 14 that the vertical axis chromatic aberration of the longest wavelength and the shortest wavelength is controlled within ⁇ 2.0um, indicating that the vertical axis chromatic aberration of the optical lens 300 is well corrected.
- FIG. 15 shows aberrations on the optical axis at the imaging plane S17. It can be seen from FIG. 15 that the offset of the axial chromatic aberration at the imaging plane S17 is controlled within ⁇ 0.01 mm, indicating that the optical lens 300 can effectively correct the aberration of the fringe field of view and the secondary spectrum of the entire image plane.
- the optical characteristics mainly include the focal length f of the optical lens, the aperture number F#, the entrance pupil diameter EPD, the optical total length TTL and the field of view angle FOV, as well as the relevant values corresponding to each of the aforementioned conditional expressions.
- the optical lens 100 provided by the embodiment of the present invention has the following advantages:
- the optical lens 100 Due to the reasonable setting of the diaphragm and the shape of each lens, on the one hand, the optical lens 100 has a smaller entrance pupil diameter (EPD ⁇ 0.84mm), so that the outer diameter of the head of the lens can be made smaller to meet the requirements of high screen
- the overall length of the optical lens 100 is shorter (TTL ⁇ 5.7mm) and the volume is reduced, which can better meet the development trend of portable smart electronic products, such as mobile phones.
- the field of view of the optical lens 100 can reach 150°, which can effectively correct optical distortion, control the f- ⁇ distortion to be less than ⁇ 5%, and can meet the needs of large field of view and high-definition imaging.
- Embodiments of the present application further provide an imaging device 400.
- the imaging device 400 includes an imaging element 410 and an optical lens (eg, the optical lens 100) in any of the foregoing embodiments.
- the imaging element 410 may be a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) image sensor, or may be a CCD (Charge Coupled Device, charge coupled device) image sensor.
- CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
- CCD Charge Coupled Device, charge coupled device
- the imaging device 400 may be a camera, a mobile terminal, or any other electronic device loaded with the optical lens 100 , and the mobile terminal may be a terminal device such as a smart phone, a smart tablet, and a smart reader.
- the imaging device 400 provided by the embodiment of the present application includes the optical lens 100. Since the optical lens 100 has the advantages of a small outer diameter of the head, a wide viewing angle, and high imaging quality, the imaging device 400 with the optical lens 100 also has a small size and a wide viewing angle. , the advantages of high imaging quality.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种光学镜头(100)及成像设备(400),光学镜头(100)沿光轴从物侧到成像面(S15)依次包括第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、光阑(ST)、第四透镜(L4)、第五透镜(L5)、第六透镜(L6)及第七透镜(L7)。第一透镜(L1)具有负光焦度,物侧面(S1)为凸面,像侧面(S2)为凹面;第二透镜(L2)具有光焦度,物侧面(S3)在为凹面;第三透镜(L3)具有正光焦度,像侧面(S6)为凸面;第四透镜(L4)具有正光焦度,物侧面(S7)和像侧面(S8)均为凸面;第五透镜(L5)具有正光焦度,物侧面(S9)为凹面,像侧面(S10)为凸面;第六透镜(L6)具有负光焦度,物侧面(S11)和像侧面(S12)均为凹面;第七透镜(L7)具有正光焦度,物侧面(S13)在近光轴处为凸面且具有反曲点,像侧面(S14)在近光轴处为凹面且具有反曲点。光学镜头(100)具有超大广角且结构紧凑,光学畸变极小,实现超大广角、镜头小型化和高像素均衡。
Description
交叉引用
本申请要求2020年10月26日递交的发明名称为:“光学镜头及成像设备”的申请号2020111588116的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
本发明涉及透镜成像技术领域,特别涉及一种光学镜头及成像设备。
近年来摄像镜头在各领域都有广泛应用,尤其包括超广角镜头、鱼眼镜头在内的广角镜头在越来越多的场合发挥着重要作用。在摄像方面,广角镜头具有短焦大视场特点,能够产生较大的桶形畸变,以创造特殊效果,给观察者带来强烈的视觉冲击。在测量方面,广角镜头利用大视场特点单次成像可获得更多的数据,以捕捉更多的场景信息。与此同时,市场对镜头的小型化要求也越来越高。然而,镜头尺寸的减小对镜头的成像质量影响很大,尤其是对于大视场广角镜头。因此,需要一种兼具大视场角和小型化的高质量成像镜头。
发明内容
基于此,本发明的目的是提供一种光学镜头及成像设备,以改善上述问题。
本发明实施例通过以下技术方案实现上述的目的。
第一方面,本发明实施例提供一种光学镜头,由七片透镜组成,沿光轴从物侧到成像面依次包括:第一透镜、第二透镜、第三透镜、光阑、第四透镜、第五透镜、第六透镜及第七透镜。第一透镜具有负光焦度,其物侧面为凸面、像侧面为凹面;第二透镜具有光焦度,其物侧面为凹面;第三透镜具有正光焦度,其像侧面为凸面;第四透镜具有正光焦度,其物侧面和像侧面均为凸面;第五透镜具有正光焦度,其物侧面为凹面、像侧面为凸面;第六透镜具有负光焦度,其物侧面和像侧面均为凹面;第七透镜具有正光焦度,其物侧面在近光轴处为凸面,其像侧面在近光轴处为凹面,且第七透镜的物侧面和像侧面均具有至少一个反曲点。其中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜均为塑胶非球面镜片;光学镜头满足以下条件式:6<TTL/EPD<7;其中,TTL表示光学镜头的光学总长,EPD表示光学镜头的入瞳直径。
第二方面,本发明实施例还提供一种成像设备,包括成像元件及第一方面提供的光学镜头,成像元件用于将光学镜头形成的光学图像转换为电信号。
相比于现有技术,本申请实施例提供的光学镜头及成像设备,通过合理的搭配七个 具有特定屈折力的透镜之间的镜片形状和合理的光焦度组合,在满足大广角的同时结构更加紧凑,从而较好地实现了光学镜头的小型化和高像素的均衡,能够有效提升用户的摄像体验。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅为本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请第一实施例提供的光学镜头的结构示意图;
图2为本申请第一实施例提供的光学镜头的场曲曲线图;
图3为本申请第一实施例提供的光学镜头的畸变曲线图;
图4为本申请第一实施例提供的光学镜头的垂轴色差曲线图;
图5为本申请第一实施例提供的光学镜头的轴向色差曲线图;
图6为本申请第二实施例提供的光学镜头的结构示意图;
图7为本申请第二实施例提供的光学镜头的场曲曲线图;
图8为本申请第二实施例提供的光学镜头的畸变曲线图;
图9为本申请第二实施例提供的光学镜头的垂轴色差曲线图;
图10为本申请第二实施例提供的光学镜头的轴向色差曲线图;
图11为本申请第三实施例提供的光学镜头的结构示意图;
图12为本申请第三实施例提供的光学镜头的场曲曲线图;
图13为本申请第三实施例提供的光学镜头的畸变曲线图;
图14为本申请第三实施例提供的光学镜头的垂轴色差曲线图;
图15为本申请第三实施例提供的光学镜头的轴向色差曲线图;
图16为本申请第四实施例提供的成像设备的结构示意图。
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中为本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
本申请实施例提供一种光学镜头,该光学镜头沿光轴从物侧到像侧依次包括:第一透镜,第二透镜,第三透镜,光阑,第四透镜,第五透镜,第六透镜,第七透镜及滤光片,这里的像侧即指成像面所在的一侧,物侧为与像侧相对的一侧。
第一透镜具有负光焦度,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面。
第二透镜具有光焦度,第二透镜的物侧面为凹面,第二透镜的像侧面为凹面或者凸面。
第三透镜具有正光焦度,第三透镜的物侧面为凹面或者凸面,第三透镜的像侧面为凸面。
第四透镜具有正光焦度,第四透镜的物侧面和第四透镜的像侧面均为凸面。
第五透镜具有正光焦度,第五透镜的物侧面为凹面,第五透镜的像侧面为凸面。
第六透镜具有负光焦度,第六透镜的物侧面和第六透镜的像侧面均为凹面。
第七透镜具有正光焦度,第七透镜的物侧面在近光轴处为凸面且具有至少一个反曲点,第七透镜的像侧面在近光轴处为凹面且具有至少一个反曲点(inflection point)。
在一些可选的实施例中,光学镜头满足以下条件式:
6<TTL/EPD<7; (1)
其中,TTL表示光学镜头的光学总长,EPD表示光学镜头的入瞳直径。
满足条件式(1)时,能够合理地控制光学镜头的通光量和光学总长,有利于增加光学镜头上的通光量,同时缩短光学镜头的光学总长,实现镜头的小型化。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
1<f/DM1<1.5; (2)
其中,f表示光学镜头的焦距,DM1表示第一透镜的有效半口径。
满足条件式(2)时,能够合理控制第一透镜的有效口径,实现光学镜头的头部尺寸做小,减小便携式电子设备的屏幕开窗面积,实现头部小型化,提高便携式电子产品的屏占比。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
0.5<R1/f<1.5; (3)
其中,f表示光学镜头的焦距,R1表示第一透镜的物侧面的曲率半径。
满足条件式(3)时,通过控制第一透镜的面型及焦距,能够合理控制光学镜头的成像空间深度和有效焦距,有利于实现光学镜头的超大广角特性。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
0.5mm<R2/tan(θ2)<1.2mm; (4)
其中,R2表示第一透镜的像侧面的曲率半径,θ2表示第一透镜的像侧面的最大面倾角。
满足条件式(4)时,能够合理控制第一透镜像侧面的曲度,增强第一透镜的光焦度,使镜头在大孔径下也能很好的校正像差,同时有利于减小后续透镜的口径和镜头的总长。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
-1<f1/f2<2; (5)
-1<R3/R2<0; (6)
其中,f1表示第一透镜的焦距,f2表示第二透镜的焦距,R2表示第一透镜的像侧面的曲率半径,R3表示第二透镜的物侧面的曲率半径。
满足条件式(5)、(6)时,能够合理均衡第一透镜和第二透镜的焦距,使第一透镜和第二透镜的焦距正负搭配,有利于校正色差,同时能够合理控制光线进入第二透镜物侧 面的入射角,降低光学镜头的敏感度。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
-1<(R3+R4)/(R3-R4)<30; (7)
-30<(R5+R6)/(R5-R6)<1; (8)
其中,R3表示第二透镜的物侧面的曲率半径,R4表示第二透镜的像侧面的曲率半径,R4表示第三透镜的物侧面的曲率半径,R5表示第三透镜的像侧面的曲率半径。
满足条件式(7)、(8)时,能够合理控制第二透镜和第三透镜的面型,缓和轴外视场的聚光强度,减小边缘视场与中心视场的像差,有利于校正球差和畸变。
在一些可选的实施例中,光学镜头100还可以满足以下条件式:
0.05<CT2/TTL<0.1; (9)
0.04<CT3/TTL<0.1; (10)
其中,CT2表示第二透镜的中心厚度,CT3表示第三透镜的中心厚度,TTL表示光学镜头的光学总长。
满足条件式(9)、(10)时,能够合理控制第二透镜和第三透镜的中心厚度,满足镜头小型化及薄型化透镜的设计,有利于校正像差和f-θ畸变,同时,能够维持通光量,有利于相对照度的提升。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
1<f
456/f<1.5; (11)
0<f4/f5<0.5; (12)
-6<f5/f6<-3; (13)
其中,f
456表示第四透镜、第五透镜和第六透镜的组合焦距,f4表示第四透镜的焦距,f5表示第五透镜的焦距,f6表示第六透镜的焦距。
满足条件式(11)、(12)、(13)时,能够实现第四透镜、第五透镜和第六透镜的光焦度的平衡分配,并使第四透镜至第六透镜具有正的组合光焦度,有利于校正光学镜头的像差,提高光学镜头的解像力。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
0.2<(CT4+CT5+CT6)/TTL<0.4; (14)
其中,CT4表示第四透镜的中心厚度,CT5表示第五透镜的中心厚度,CT6表示第六透镜的中心厚度,TTL表示光学镜头的光学总长。
满足条件式(14)时,能够合理分配光阑后的第四透镜至第六透镜的中心厚度,降低镜头的总长,同时,能够合理控制各透镜之间的搭配,降低光学镜头的敏感度。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
-50<(R13+R14)/(R13-R14)<-10; (15)
2mm<R14/tan(θ14)<3mm; (16)
其中,R13表示第七透镜的物侧面的曲率半径,R14表示第七透镜的像侧面的曲率半径,θ14表示第七透镜的像侧面的最大面倾角。
满足条件式(15)、(16)时,通过合理控制第七透镜的物侧面和像侧面的曲率半径,能够有效控制光线入射角的分布,提高光学镜头与成像芯片的匹配度,提高光学镜头的 解像质量,同时,能够合理控制第七透镜的像侧面的曲度,减小光学镜头鬼像的产生。
在一些可选的实施例中,光学镜头还可以满足以下条件式:
CRA<33°; (17)
0.1<BFL/TTL<0.2; (18)
其中,CRA表示光学镜头的主光线入射角,BFL表示第七透镜的像侧面与成像面在光轴上的距离,也称作光学后焦,TTL表示光学镜头的光学总长。
满足条件式(17)、(18)时,能够合理控制光学镜头的主光线入射角和光学后焦,提高镜头的成像质量,同时,有利于缩短总长,实现光学镜头的小型化。
作为一种实施方式,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜以及第七透镜可以是非球面镜片,可选的,上述透镜均采用塑胶非球面镜片。采用非球面镜片,可以有效减少镜片的数量,修正像差,提供更好的光学性能。
作为一种实施方式,当光学镜头100中的各个透镜均为非球面透镜时,光学镜头的各个非球面面型可以均满足下列方程:
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为二次曲面系数conic,A
2i为第2i阶的非球面面型系数。
本发明实施例提供的光学镜头通过采用七个具有特定屈折力的透镜,合理搭配第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜及第七透镜之间的镜片形状与光焦度组合,可以满足镜头具有大广角的前提下使得光学镜头的结构更加紧凑,较好的实现了镜头小型化和高像素的均衡,能够有效提升用户的摄像体验。
下面分多个实施例对本发明进行进一步的说明。在以下各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。
第一实施例
请参阅图1,所示为本发明第一实施例提供的光学镜头100的结构示意图,光学镜头100沿光轴从物侧到成像面S15依次包括:第一透镜L1、第二透镜L2、第三透镜L3、光阑ST、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7。
第一透镜L1具有负光焦度,第一透镜L1的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面。
第二透镜L2具有正光焦度,第二透镜L2的物侧面S3为凹面,第二透镜L2的像侧面S4为凸面。
第三透镜L3具有正光焦度,第三透镜L3的物侧面S5为凹面,第三透镜L3的像侧面S6为凸面。
第四透镜L4具有正光焦度,第四透镜L4的物侧面S7和第四透镜L4的像侧面S8均为凸面。
第五透镜L5具有正光焦度,第五透镜L5的物侧面S9为凹面,第五透镜L5的像侧面S10为凸面。
第六透镜L6具有负光焦度,第六透镜L6的物侧面S11和第六透镜L6的像侧面S12均为凹面。
第七透镜L7具有正光焦度,第七透镜L7的物侧面S13在近光轴处为凸面,第七透镜L7的像侧面S14在近光轴处为凹面;在本实施例中,第七透镜L7的物侧面S13的反曲点与光轴的垂直距离为1.13mm,第七透镜L7的像侧面S14的反曲点与光轴的垂直距离为1.19mm。
其中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和第七透镜L7均为塑胶非球面镜片。
请参照表1所示,本发明第一实施例提供的光学镜头100中各个镜片的相关参数如表1所示。
表1
请参照表2所示,本发明第一实施例提供的光学镜头100的各非球面的面型系数如 表2所示:
表2
面号 | k | A 4 | A 6 | A 8 | A 10 | A 12 | A 14 | A 16 |
S1 | -3.50936 | -0.01157 | -0.00812 | -0.00087 | -0.00044 | 0.00043 | 0.00011 | -3.9999E-05 |
S2 | -1.04551 | 0.02290 | 0.01664 | -0.01105 | 0.00711 | -0.04356 | -0.02914 | 0.04644 |
S3 | -0.05392 | 0.04030 | 0.03995 | 0.01397 | -0.03160 | -0.01132 | -0.00508 | -0.00218 |
S4 | -0.52747 | 0.04262 | -0.02004 | 0.16189 | 0.23367 | -0.39063 | -0.72453 | 1.11937 |
S5 | -1.05356 | 0.08762 | 0.03178 | 0.18230 | 0.16752 | -0.43960 | -0.65016 | 1.23255 |
S6 | -4.36914 | 0.03719 | 0.02610 | 0.13868 | 0.23282 | -0.50760 | -0.81147 | 1.35794 |
S7 | 2.90888 | -0.01832 | -0.24935 | -0.39610 | -0.15327 | 0.09535 | 0.17640 | -6.80034 |
S8 | -0.51168 | 0.01597 | 0.05087 | 0.08660 | -0.21764 | 0.17406 | -1.25914 | -0.97933 |
S9 | -0.05086 | 0.02604 | -0.14522 | -0.19556 | 0.41511 | 1.73772 | 1.69614 | -7.38269 |
S10 | 1.33599 | -0.01231 | -0.16919 | 0.17306 | 0.80872 | 0.82255 | 0.57571 | -3.23107 |
S11 | 77.96614 | -0.28960 | 0.25302 | -0.15742 | 0.16034 | 0.49692 | 0.11826 | -3.03137 |
S12 | -28.51506 | 0.07966 | 0.13871 | -0.09568 | -0.09040 | -0.01424 | 0.08828 | -0.02211 |
S13 | -7.01354 | -0.11892 | 0.01788 | 0.00774 | -0.00085 | -0.00085 | 0.00023 | -1.61116E-05 |
S14 | -5.29427 | -0.10535 | 0.01439 | 0.00266 | -0.00208 | 0.00023 | 2.54278E-05 | -8.5944E-07 |
请参照图2、图3、图4及图5,所示分别为光学镜头100的场曲曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图2的场曲曲线表示子午像面和弧矢像面的弯曲程度。其中,图2中横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度)。从图2中可以看出,子午像面和弧矢像面的场曲控制在±0.5mm以内,说明光学镜头100的场曲校正良好。
图3的畸变曲线表示成像面S17上不同像高处的畸变。其中,图3中横轴表示f-θ畸变百分比,纵轴表示视场角(单位:度)。从图3中可以看出,成像面S17上不同像高处的f-θ畸变控制在±5%以内,说明光学镜头100的畸变得到良好的校正。
图4的垂轴色差曲线表示最长波长与最短波长在成像面S17上不同像高处的色差。其中,图4中横轴表示各波长相对中心波长的垂轴色差值(单位:um),纵轴表示归一化视场角。从图4中可以看出,最长波长与最短波长的垂轴色差控制在±2um以内,说明光学镜头100的垂轴色差得到良好的校正。
图5的轴向色差曲线表示成像面S17处光轴上的像差。其中,图5中纵轴表示球值(单位:mm),横轴表示归一化光瞳半径(单位:mm)。从图5中可以看出,轴向色差的偏移量控制在±0.02mm以内,说明该光学镜头100能够有效地校正边缘视场的像差以及整个像面的二级光谱。
第二实施例
请参阅图6,所示为本发明第二实施例提供的光学镜头200的结构示意图,本实施例中的光学镜头200与第一实施例提供的光学镜头100的结构大致相同,不同之处主要在于,光学镜头200中的第二透镜L2具有负光焦度,第二透镜L2的像侧面S4为凹面,第三透镜L3的物侧面S5为凸面,以及各透镜的曲率半径、材料选择不同。
在本发明第二实施例中,第七透镜L7的物侧面S13的反曲点与光轴的垂直距离为1.08mm,第七透镜L7的像侧面S14的反曲点与光轴的垂直距离为1.16mm。
请参照表3所示,本发明第二实施例提供的光学镜头200中各个镜片的相关参数如表3所示。
表3
请参照表4所示,本发明第二实施例提供的光学镜头200的各非球面的面型系数如表4所示:
表4
面号 | k | A 4 | A 6 | A 8 | A 10 | A 12 | A 14 | A 16 |
S1 | -3.27941 | -0.01004 | -0.00684 | -0.00107 | -0.00058 | 0.00037 | 0.00011 | -3.3573E-05 |
S2 | -1.05433 | 0.02060 | 0.00381 | -0.00344 | 0.00401 | -0.06415 | -0.03836 | 0.05894 |
S3 | 0.38438 | 0.02628 | 0.02104 | 0.00160 | -0.02297 | 0.02476 | 0.04017 | -0.04140 |
S4 | -99.98458 | -0.00415 | 0.00815 | -0.02221 | 0.02423 | 0.08561 | -0.02300 | -0.24837 |
S5 | 27.93201 | 0.00718 | -0.00143 | 0.03234 | -0.01445 | -0.13381 | -0.17255 | -0.09795 |
S6 | -11.60247 | 0.03915 | -0.00236 | 0.14124 | 0.17079 | -0.63221 | -1.06260 | 1.55204 |
S7 | 3.06910 | -0.04195 | -0.30762 | -0.43197 | 0.00490 | 0.47671 | -0.06739 | -15.77346 |
S8 | -0.54385 | 0.02437 | 0.04345 | 0.11402 | -0.18784 | -0.07132 | -1.41934 | 0.24805 |
S9 | -0.48409 | 0.04182 | -0.08701 | -0.17900 | 0.42890 | 1.68646 | 2.00888 | -6.53124 |
S10 | 1.64861 | -0.02470 | -0.17956 | 0.25914 | 0.84897 | 0.89632 | 0.38706 | -3.43763 |
S11 | 71.26034 | -0.28631 | 0.21930 | -0.11170 | 0.17368 | 0.40699 | -0.12100 | -3.84511 |
S12 | -26.38508 | 0.11060 | 0.13455 | -0.08576 | -0.12624 | -0.02660 | 0.08707 | 0.01345 |
S13 | -6.07785 | -0.12708 | 0.01772 | 0.00911 | -0.00077 | -0.00104 | 0.00023 | -8.22436E-06 |
S14 | -4.64106 | -0.11501 | 0.01649 | 0.00265 | -0.00213 | 0.00028 | 1.77232E-05 | -1.70244E-06 |
请参照图7、图8、图9和图10,所示分别为光学镜头200的场曲曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图7表示子午像面和弧矢像面的弯曲程度。从图7中可以看出,子午像面和弧矢像面的场曲控制在±0.1mm以内,说明光学镜头200的场曲校正良好。
图8表示成像面S17上不同像高处的畸变。从图8中可以看出,成像面S17上不同像高处的f-θ畸变控制在±5%以内,说明光学镜头200的畸变得到良好的校正。
图9表示最长波长与最短波长在成像面S17上不同像高处的色差。从图9中可以看出,最长波长与最短波长的垂轴色差控制在±2um以内,说明光学镜头200的垂轴色差得到良好的校正。
图10表示成像面S17处光轴上的像差。从图10中可以看出,轴向色差的偏移量控制在±0.03mm以内,说明该光学镜头200能够有效地校正边缘视场的像差以及整个像面的二级光谱。
第三实施例
请参阅图11,所示为本发明第三实施例提供的光学镜头300的结构示意图,本实施例中的光学镜头300与第一实施例提供的光学镜头100的结构大致相同,不同之处主要在于,光学镜头300中的第二透镜L2具有负光焦度,第二透镜L2的像侧面S4为凹面,第三透镜L3的物侧面S5为凸面,以及各透镜的曲率半径、材料选择不同。
在本发明第三实施例中,第七透镜L7的物侧面S13的反曲点与光轴的垂直距离为1.15mm,第七透镜L7的像侧面S14的反曲点与光轴的垂直距离为1.21mm。
请参照表5所示,本发明第三实施例提供的光学镜头300中各个镜片的相关参数如表5所示。
表5
请参照表6所示,本发明第三实施例中的光学镜头300的各非球面的面型系数如表6所示:
表6
面号 | k | A 4 | A 6 | A 8 | A 10 | A 12 | A 14 | A 16 |
S1 | -3.06626 | -0.01052 | -0.00718 | -0.00114 | -0.00060 | 0.00037 | 0.00011 | -3.29634E-05 |
S2 | -1.10328 | 0.01361 | 0.00092 | -0.01025 | -0.00151 | -0.06666 | -0.03880 | 0.06042 |
S3 | 0.33816 | 0.02751 | 0.02522 | -0.00261 | -0.02933 | 0.02149 | 0.04247 | -0.03070 |
S4 | 50.58251 | -0.01298 | 0.02175 | -0.03366 | -0.01100 | 0.06933 | 0.07641 | 0.23866 |
S5 | 17.89255 | 0.01018 | -0.03045 | 0.02014 | 0.00007 | -0.14594 | -0.33766 | -0.67047 |
S6 | -23.90262 | 0.07037 | 0.01497 | 0.12757 | 0.07416 | -0.91243 | -1.73195 | 0.11374 |
S7 | 3.06722 | -0.05011 | -0.31039 | -0.44318 | -0.02301 | 0.42298 | -0.16510 | -15.89582 |
S8 | -0.32910 | 0.00819 | 0.08597 | 0.22332 | -0.07597 | -0.09580 | -1.77101 | -0.67307 |
S9 | -0.42566 | 0.03989 | -0.07261 | -0.15967 | 0.47267 | 1.73623 | 1.93091 | -7.15822 |
S10 | 1.71768 | -0.03272 | -0.22387 | 0.22457 | 0.78746 | 0.77871 | 0.19455 | -3.39040 |
S11 | 72.97474 | -0.30052 | 0.24090 | -0.20337 | 0.06217 | 0.48871 | 0.16664 | -4.28600 |
S12 | -33.85426 | 0.11265 | 0.14071 | -0.08597 | -0.12298 | -0.01471 | 0.09720 | -0.02091 |
S13 | -5.71786 | -0.12478 | 0.01752 | 0.00892 | -0.00081 | -0.00103 | 0.00024 | -9.12865E-06 |
S14 | -3.21474 | -0.11818 | 0.01547 | 0.00270 | -0.00210 | 0.00029 | 1.82824E-05 | -2.17561E-06 |
请参照图12、图13、图14和图15,所示分别为光学镜头300的场曲曲线图、畸变曲线图、垂轴色差曲线图以及轴向色差曲线图。
图12表示子午像面和弧矢像面的弯曲程度。从图12中可以看出,子午像面和弧矢像面的场曲控制在±0.1mm以内,说明光学镜头300的场曲校正良好。
图13表示成像面S17上不同像高处的畸变。从图13中可以看出,成像面S17上不同像高处的f-θ畸变控制在±5%以内,说明光学镜头300的畸变得到良好的校正。
图14表示最长波长与最短波长在成像面上不同像高处的色差。从图14中可以看出,最长波长与最短波长的垂轴色差控制在±2.0um以内,说明光学镜头300的垂轴色差得到良好的校正。
图15表示成像面S17处光轴上的像差。从图15中可以看出,成像面S17处轴向色差的偏移量控制在±0.01mm以内,说明该光学镜头300能够有效地校正边缘视场的像差以及整个像面的二级光谱。
请参照表7,所示是上述三个实施例提供的光学镜头分别对应的光学特性。其中,光学特性主要包括光学镜头的焦距f、光圈数F#、入瞳直径EPD、光学总长TTL及视场角FOV,以及与前述每个条件式对应的相关数值。
表7
第一实施例 | 第二实施例 | 第三实施例 | 备注 | |
f(mm) | 1.837 | 1.830 | 1.834 | |
F# | 2.2 | 2.2 | 2.2 | |
TTL(mm) | 5.47 | 5.684 | 5.646 | |
FOV(°) | 150 | 150 | 150 | |
EPD(mm) | 0.820 | 0.817 | 0.819 | |
IH(mm) | 2.299 | 2.299 | 2.298 | |
TTL/EPD | 6.672 | 6.956 | 6.897 | 条件式(1) |
f/DM1 | 1.134 | 1.086 | 1.056 | 条件式(2) |
R1/f | 1.007 | 1.003 | 0.939 | 条件式(3) |
R2/tan(θ2) | 0.806 | 0.883 | 1.024 | 条件式(4) |
f1/f2 | -0.141 | 1.101 | 1.422 | 条件式(5) |
R3/R2 | -0.482 | -0.479 | -0.437 | 条件式(6) |
(R3+R4)/(R3-R4) | 28.367 | -0.903 | -0.457 | 条件式(7) |
(R5+R6)/(R5-R6) | -29.125 | 0.662 | 0.198 | 条件式(8) |
CT2/TTL | 0.061 | 0.081 | 0.077 | 条件式(9) |
CT3/TTL | 0.048 | 0.063 | 0.069 | 条件式(10) |
f 456/f | 1.219 | 1.308 | 1.210 | 条件式(11) |
f4/f5 | 0.193 | 0.106 | 0.123 | 条件式(12) |
f5/f6 | -3.270 | -5.811 | -4.817 | 条件式(13) |
(CT4+CT5+CT6)/TTL | 0.235 | 0.216 | 0.207 | 条件式(14) |
(R13+R14)/(R13-R14) | -31.780 | -41.959 | -12.844 | 条件式(15) |
R14/tan(θ14) | 2.202 | 2.286 | 2.557 | 条件式(16) |
CRA(°) | 32.45 | 32.62 | 32.71 | 条件式(17) |
BFL/TTL | 0.157 | 0.151 | 0.152 | 条件式(18) |
综上,本发明实施例提供的光学镜头100具有以下的优点:
(1)由于光阑及各透镜形状设置合理,一方面使得光学镜头100具有较小的入瞳直径(EPD<0.84mm),从而使镜头的头部外径可以做得较小,满足高屏占比的需求;另一方面,使得光学镜头100的总长较短(TTL<5.7mm),体积减小,能够更好的满足便携式智能电子产品,例如手机的轻薄化的发展趋势。
(2)采用七个具有特定屈折力的塑胶非球面镜片,并且各个透镜通过特定的表面形状搭配,使得光学镜头100具有超高像素的成像质量。
(3)光学镜头100的视场角可达150°,可有效修正光学畸变,控制f-θ畸变小于±5%,能够满足大视场角且高清晰成像需要。
第四实施例
本申请实施例还提供了一种成像设备400,请参阅图16所示,成像设备400包括成像元件410和上述任一实施例中的光学镜头(例如光学镜头100)。成像元件410可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备400可以是相机、移动终端以及其他任意一种形态的装载了光学镜头100的电子设备,移动终端可以是智能手机、智能平板、智能阅读器等终端设备。
本申请实施例提供的成像设备400包括光学镜头100,由于光学镜头100具有头部外径小、广视角、成像品质高的优点,具有该光学镜头100的成像设备400也具有体积小、广视角、成像品质高的优点。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (12)
- 一种光学镜头,由七片透镜组成,其特征在于,沿光轴从物侧到成像面依次包括:具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;具有光焦度的第二透镜,所述第二透镜的物侧面为凹面,所述第二透镜的像侧面为凹面或者凸面;具有正光焦度的第三透镜,所述第三透镜的物侧面为凹面或者凸面,所述第三透镜的像侧面为凸面;光阑;具有正光焦度的第四透镜,所述第四透镜的物侧面和所述第四透镜的像侧面均为凸面;具有正光焦度的第五透镜,所述第五透镜的物侧面为凹面,所述第五透镜的像侧面为凸面;具有负光焦度的第六透镜,所述第六透镜的物侧面和所述第六透镜的像侧面均为凹面;以及具有正光焦度的第七透镜,所述第七透镜的物侧面在近光轴处为凸面,所述第七透镜的像侧面在近光轴处为凹面,所述第七透镜的物侧面和像侧面均具有至少一个反曲点;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜和所述第七透镜均为塑胶非球面镜片;所述光学镜头满足以下条件式:6<TTL/EPD<7;其中,TTL表示所述光学镜头的光学总长,EPD表示所述光学镜头的入瞳直径。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:1<f/DM1<1.5;其中,f表示所述光学镜头的焦距,DM1表示所述第一透镜的有效半口径。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:0.5<R1/f<1.5;其中,f表示所述光学镜头的焦距,R1表示所述第一透镜的物侧面的曲率半径。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:0.5mm<R2/tan(θ2)<1.2mm;其中,R2表示所述第一透镜的像侧面的曲率半径,θ2表示所述第一透镜的像侧面的最大面倾角。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:-1<f1/f2<2;-1<R3/R2<0;其中,f1表示所述第一透镜的焦距,f2表示所述第二透镜的焦距,R2表示所述第一透镜的像侧面的曲率半径,R3表示所述第二透镜的物侧面的曲率半径。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:-1<(R3+R4)/(R3-R4)<30;-30<(R5+R6)/(R5-R6)<1;其中,R3表示所述第二透镜的物侧面的曲率半径,R4表示所述第二透镜的像侧面的曲率半径,R5表示所述第三透镜的物侧面的曲率半径,R6表示所述第三透镜的像侧面的曲率半径。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:0.05<CT2/TTL<0.1;0.04<CT3/TTL<0.1;其中,CT2表示所述第二透镜的中心厚度,CT3表示所述第三透镜的中心厚度,TTL表示所述光学镜头的光学总长。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:1<f 456/f<1.5;0<f4/f5<0.5;-6<f5/f6<-3;其中,f 456表示所述第四透镜、所述第五透镜和所述第六透镜的组合焦距,f4表示所述第四透镜的焦距,f5表示所述第五透镜的焦距,f6表示所述第六透镜的焦距。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:0.2<(CT4+CT5+CT6)/TTL<0.4;其中,CT4表示所述第四透镜的中心厚度,CT5表示所述第五透镜的中心厚度,CT6 表示所述第六透镜的中心厚度,TTL表示所述光学镜头的光学总长。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:-50<(R13+R14)/(R13-R14)<-10;2mm<R14/tan(θ14)<3mm;其中,R13表示所述第七透镜的物侧面的曲率半径,R14表示所述第七透镜的像侧面的曲率半径,θ14表示所述第七透镜的像侧面的最大面倾角。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下条件式:CRA<33°;0.1<BFL/TTL<0.2;其中,CRA表示所述光学镜头的主光线入射角,BFL表示所述第七透镜的像侧面与所述成像面在光轴上的距离,TTL表示所述光学镜头的光学总长。
- 一种成像设备,其特征在于,包括成像元件和如权利要求1-11任一项所述的光学镜头,所述成像元件用于将所述光学镜头形成的光学图像转换为电信号。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011158811.6 | 2020-10-26 | ||
CN202011158811.6A CN112230371B (zh) | 2020-10-26 | 2020-10-26 | 光学镜头及成像设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022089344A1 true WO2022089344A1 (zh) | 2022-05-05 |
Family
ID=74109445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/125993 WO2022089344A1 (zh) | 2020-10-26 | 2021-10-25 | 光学镜头及成像设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112230371B (zh) |
WO (1) | WO2022089344A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115951483A (zh) * | 2023-03-15 | 2023-04-11 | 江西联创电子有限公司 | 光学镜头 |
CN116643388A (zh) * | 2023-07-24 | 2023-08-25 | 江西联益光学有限公司 | 光学镜头 |
CN117170069A (zh) * | 2023-11-02 | 2023-12-05 | 江西联创电子有限公司 | 光学镜头 |
CN117289437A (zh) * | 2023-11-27 | 2023-12-26 | 江西联创电子有限公司 | 光学镜头 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112230371B (zh) * | 2020-10-26 | 2022-06-24 | 江西联益光学有限公司 | 光学镜头及成像设备 |
CN114967039A (zh) * | 2021-02-22 | 2022-08-30 | 华为技术有限公司 | 光学镜头、摄像头模组和电子设备 |
TWI792202B (zh) * | 2021-02-26 | 2023-02-11 | 大陸商信泰光學(深圳)有限公司 | 成像鏡頭(五十六) |
CN112987263B (zh) * | 2021-04-27 | 2021-09-10 | 江西联创电子有限公司 | 定焦镜头及成像设备 |
TWI767679B (zh) * | 2021-04-29 | 2022-06-11 | 大陸商信泰光學(深圳)有限公司 | 廣角鏡頭(三十二) |
TWI805073B (zh) * | 2021-11-12 | 2023-06-11 | 大陸商信泰光學(深圳)有限公司 | 廣角鏡頭(三十八) |
CN115128780B (zh) * | 2022-08-30 | 2022-12-16 | 江西联创电子有限公司 | 光学成像镜头及成像设备 |
CN117031702A (zh) * | 2022-11-29 | 2023-11-10 | 东莞市宇瞳光学科技股份有限公司 | 一种低畸变广角镜头 |
CN118671915A (zh) * | 2023-03-15 | 2024-09-20 | 江西联创电子有限公司 | 光学镜头 |
CN115951484B (zh) * | 2023-03-15 | 2023-06-27 | 江西联创电子有限公司 | 光学镜头 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5546232A (en) * | 1993-06-14 | 1996-08-13 | Asahi Kogaku Kogyo Kabushiki Kaisha | Two-group zoom lens |
CN109541780A (zh) * | 2018-11-16 | 2019-03-29 | 江西联创电子有限公司 | 光学镜头及成像设备 |
CN109683279A (zh) * | 2018-12-18 | 2019-04-26 | 中山联合光电科技股份有限公司 | 一种大光圈红外共焦光学系统 |
CN110737073A (zh) * | 2019-10-29 | 2020-01-31 | 广东弘景光电科技股份有限公司 | 广角高像素4k光学系统及其应用的摄像模组 |
CN111650731A (zh) * | 2020-08-10 | 2020-09-11 | 江西联创电子有限公司 | 广角镜头及成像设备 |
CN112230371A (zh) * | 2020-10-26 | 2021-01-15 | 江西联益光学有限公司 | 光学镜头及成像设备 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107783252B (zh) * | 2016-08-29 | 2020-08-11 | 信泰光学(深圳)有限公司 | 成像镜头 |
TWI647510B (zh) * | 2017-08-04 | 2019-01-11 | 先進光電科技股份有限公司 | 光學成像系統 |
-
2020
- 2020-10-26 CN CN202011158811.6A patent/CN112230371B/zh active Active
-
2021
- 2021-10-25 WO PCT/CN2021/125993 patent/WO2022089344A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5546232A (en) * | 1993-06-14 | 1996-08-13 | Asahi Kogaku Kogyo Kabushiki Kaisha | Two-group zoom lens |
CN109541780A (zh) * | 2018-11-16 | 2019-03-29 | 江西联创电子有限公司 | 光学镜头及成像设备 |
CN109683279A (zh) * | 2018-12-18 | 2019-04-26 | 中山联合光电科技股份有限公司 | 一种大光圈红外共焦光学系统 |
CN110737073A (zh) * | 2019-10-29 | 2020-01-31 | 广东弘景光电科技股份有限公司 | 广角高像素4k光学系统及其应用的摄像模组 |
CN111650731A (zh) * | 2020-08-10 | 2020-09-11 | 江西联创电子有限公司 | 广角镜头及成像设备 |
CN112230371A (zh) * | 2020-10-26 | 2021-01-15 | 江西联益光学有限公司 | 光学镜头及成像设备 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115951483A (zh) * | 2023-03-15 | 2023-04-11 | 江西联创电子有限公司 | 光学镜头 |
CN116643388A (zh) * | 2023-07-24 | 2023-08-25 | 江西联益光学有限公司 | 光学镜头 |
CN116643388B (zh) * | 2023-07-24 | 2023-11-14 | 江西联益光学有限公司 | 光学镜头 |
CN117170069A (zh) * | 2023-11-02 | 2023-12-05 | 江西联创电子有限公司 | 光学镜头 |
CN117170069B (zh) * | 2023-11-02 | 2024-03-08 | 江西联创电子有限公司 | 光学镜头 |
CN117289437A (zh) * | 2023-11-27 | 2023-12-26 | 江西联创电子有限公司 | 光学镜头 |
CN117289437B (zh) * | 2023-11-27 | 2024-03-08 | 江西联创电子有限公司 | 光学镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN112230371A (zh) | 2021-01-15 |
CN112230371B (zh) | 2022-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022089344A1 (zh) | 光学镜头及成像设备 | |
WO2022089327A1 (zh) | 光学镜头及成像设备 | |
CN111338060B (zh) | 光学镜头及成像设备 | |
WO2022143647A1 (zh) | 光学镜头及成像设备 | |
US20140185150A1 (en) | Imaging lens and imaging apparatus equipped with the imaging lens | |
WO2021093542A1 (zh) | 光学镜头及成像设备 | |
WO2022222926A1 (zh) | 光学镜头及成像设备 | |
CN114114650B (zh) | 光学镜头及成像设备 | |
CN112014957B (zh) | 光学镜头及成像设备 | |
CN114185157B (zh) | 光学镜头 | |
WO2022199465A1 (zh) | 光学镜头及成像设备 | |
WO2021208277A1 (zh) | 光学镜头及成像设备 | |
WO2022111437A1 (zh) | 光学镜头及成像设备 | |
WO2022105926A1 (zh) | 光学镜头及成像设备 | |
WO2021087661A1 (zh) | 光学透镜组、取像装置及电子装置 | |
CN113433674B (zh) | 光学镜头及成像设备 | |
CN112526730B (zh) | 光学镜头及成像设备 | |
EP3896510A1 (en) | Optical system, image capturing device and electronic device | |
CN212111955U (zh) | 光学系统、镜头模组和电子设备 | |
CN210775999U (zh) | 光学系统、镜头模组和电子设备 | |
CN112505902A (zh) | 广角镜头及成像设备 | |
CN113820835B (zh) | 光学镜头及成像设备 | |
CN211478736U (zh) | 一种光学镜组、摄像头模组及终端 | |
CN113031228B (zh) | 光学镜头及成像设备 | |
WO2021217663A1 (zh) | 光学系统、镜头模组和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21885071 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21885071 Country of ref document: EP Kind code of ref document: A1 |