[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022209165A1 - 情報処理装置、情報処理方法、及びレーダ測定システム - Google Patents

情報処理装置、情報処理方法、及びレーダ測定システム Download PDF

Info

Publication number
WO2022209165A1
WO2022209165A1 PCT/JP2022/001611 JP2022001611W WO2022209165A1 WO 2022209165 A1 WO2022209165 A1 WO 2022209165A1 JP 2022001611 W JP2022001611 W JP 2022001611W WO 2022209165 A1 WO2022209165 A1 WO 2022209165A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
information processing
vehicle
driving scene
radar devices
Prior art date
Application number
PCT/JP2022/001611
Other languages
English (en)
French (fr)
Inventor
一貴 平石
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2022209165A1 publication Critical patent/WO2022209165A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present technology relates to an information processing device, an information processing method, and a radar measurement system applicable to radar measurement using a plurality of radar devices.
  • Patent Document 1 describes a multi-radar system that integrates data measured by multiple radars to detect a target.
  • two radars are synchronously driven so that their transmission timings are the same.
  • the target detection results obtained from each radar are synthesized by the integrated processing device.
  • the signal-to-noise ratio is improved, and it is possible to improve the target detection performance (paragraphs [0030] [0041] of the specification of Patent Document 1. [0065] FIG. 1, etc.).
  • an object of the present technology is to provide an information processing device, an information processing method, and a radar measurement system capable of achieving sufficient measurement accuracy while reducing the processing load required for radar measurement. That's what it is.
  • an information processing apparatus includes a determination section and an operation control section.
  • the determination unit determines a driving scene of a vehicle equipped with a plurality of radar devices.
  • the operation control unit controls the order of operating the plurality of radar devices according to the determined driving scene.
  • This information processing device determines the driving scene of a vehicle equipped with multiple radar devices, and controls the order in which each radar device is operated based on the results. As a result, for example, each radar device operates in an order suitable for the driving scene, so unnecessary measurements and the like can be suppressed. As a result, sufficient measurement accuracy can be achieved while reducing the processing load required for radar measurement.
  • the operation control unit may set operation timings of the plurality of radar devices.
  • the operation control unit may set the operation timings so that operation periods for each of the plurality of radar devices do not overlap.
  • the operation control unit may set the operation timings so that the operation periods of some of the radar devices overlap.
  • the determination unit may determine the driving scene based on at least one of information measured using the plurality of radar devices or information measured using another sensor mounted on the vehicle. good.
  • the operation control unit sets a relatively high operation frequency of a radar device among the plurality of radar devices that measures a space in which an object at risk of colliding with the vehicle is assumed in the determined driving scene. You may
  • the plurality of radar devices may include a front radar device capable of measuring the front of the vehicle and another radar device having a different measurement range from the front radar device.
  • the operation control unit sets the operation frequency of the front radar device higher than the operation frequency of the other radar devices when the scene in which the vehicle travels forward is determined as the driving scene.
  • the plurality of radar devices may include a rear radar device capable of measuring the area behind the vehicle and another radar device having a measurement range different from that of the rear radar device.
  • the operation control unit may set the operation frequency of the rear radar device higher than the operation frequency of the other radar devices. good.
  • the plurality of radar devices may include a side radar device capable of measuring a side of the vehicle and another radar device having a measurement range different from that of the side radar device.
  • the operation control unit may set the operation frequency of the side radar device higher than the operation frequency of the other radar devices. good.
  • the information processing device may further comprise an adjustment unit that adjusts the operating parameters of each of the plurality of radar devices according to the processing load related to the data output from each of the plurality of radar devices.
  • the operating parameters may include at least one of a frame rate of radar measurement by the radar device, a sampling number of data output from the radar device, and parameters relating to radar waves emitted by the radar device.
  • the adjustment unit may determine whether to adjust the operation parameter based on the processing load.
  • the processing load may be the processing time required to process data output from the radar device.
  • the adjustment unit may adjust the operation parameter when the processing time does not fit within the frame rate of radar measurement by the radar device.
  • the operating parameters may include a first parameter and a second parameter.
  • the adjustment unit calculates a change in measurement accuracy expected when the first parameter is adjusted, and adjusts the second parameter when the change in measurement accuracy exceeds an allowable range.
  • the adjustment unit may select the operation parameter to be adjusted according to the driving scene.
  • the plurality of radar devices may be FMCW radar devices.
  • An information processing method is an information processing method executed by a computer system, and includes determining a driving scene of a vehicle equipped with a plurality of radar devices. The order of operating the plurality of radar devices is controlled according to the determined driving scene.
  • a radar measurement system includes a plurality of radar devices, a determination section, and an operation control section.
  • the plurality of radar devices are mounted on a vehicle.
  • the determination unit determines a driving scene of the vehicle.
  • the operation control unit controls the order of operating the plurality of radar devices according to the determined driving scene.
  • FIG. 1 is a schematic diagram showing a configuration example of a radar control system according to an embodiment of the present technology
  • FIG. 1 is a block diagram showing a functional configuration example of a radar control system
  • FIG. It is a schematic diagram explaining the radar measurement of a FMCW system. It is a schematic diagram explaining the calculation method of the angle by a radar measurement.
  • FIG. 3 is a schematic diagram for explaining a measurement routine for a plurality of radar devices; 4 is a flow chart showing an operation example of the radar control system;
  • FIG. 4 is a schematic diagram showing an example of the order of operations of the radar device according to the driving scene;
  • FIG. 5 is a schematic diagram showing another example of the order of operations of the radar device according to the driving scene;
  • FIG. 1 is a schematic diagram showing a configuration example of a radar control system according to an embodiment of the present technology.
  • FIG. 2 is a block diagram showing a functional configuration example of the radar control system 100.
  • the radar control system 100 is a system that controls a plurality of radar devices 20 mounted on the vehicle 10 and integrates the output of each radar device 20 to sense the surroundings of the vehicle 10 .
  • the radar control system 100 has multiple radar devices 20 , a storage unit 25 and a controller 30 .
  • the radar control system 100 corresponds to a radar measurement system.
  • the plurality of radar devices 20 is a device that performs radar measurement by irradiating a radar wave 1 (transmission wave) and measuring the reflected wave. As shown in FIG. 1, a plurality of radar devices 20 are mounted on respective parts of a vehicle 10 so as to have different detection ranges. In the example shown in FIG. 1, as the plurality of radar devices 20, radar devices 20a to 20e are provided in the vehicle .
  • the radar device 20a is provided near the center of the front part of the vehicle body so as to measure the front (right front) of the vehicle 10.
  • the radar device 20b is provided on the left side of the front part of the vehicle body so as to measure the front left side of the vehicle 10
  • the radar device 20c is provided on the right side of the front part of the vehicle body so as to measure the front right side of the vehicle 10. be done.
  • the radar device 20d is provided on the left side of the rear portion of the vehicle body so as to measure the rear left side of the vehicle 10
  • the radar device 20e is provided on the right side of the rear portion of the vehicle body so as to measure the rear right side of the vehicle 10.
  • the detection ranges of the radar devices 20a to 20e may partially overlap.
  • the detection ranges of the radar device 20a that measures the front and the detection ranges of the radar devices 20b and 20c that measure the left and right front may overlap, or the detection ranges of the radar devices 20d and 20e that measure the left and right rear may overlap each other. good too.
  • a configuration may be used in which the detection ranges of the radar devices 20a to 20e do not overlap.
  • the radar devices 20a, 20b, and 20c are set so that at least part of the detection range includes the front side of the vehicle 10.
  • the radar devices 20a, 20b, and 20c are examples of front radar devices capable of measuring the front of the vehicle.
  • the radar devices 20d and 20e are set so that at least part of the detection range includes the rear side of the vehicle 10.
  • the radar devices 20d and 20e are examples of front radar devices capable of measuring the front of the vehicle.
  • the detection ranges of the radar devices 20b and 20d are set to include at least a portion of the left side of the vehicle 10
  • the detection ranges of the radar devices 20c and 20e are set to include at least a portion of the right side of the vehicle 10.
  • the radar devices 20b, 20c, 20d, and 20e are examples of side radar devices capable of measuring the sides of the vehicle.
  • the number of radar devices 20 mounted on the vehicle 10 and the set detection range are not limited and may be set arbitrarily.
  • radar devices 20 for measuring the right side and left side of the vehicle 10 may be provided on the left and right sides of the vehicle body.
  • a radar device 20 for measuring the rear of the vehicle 10 may be provided at the rear center of the vehicle body.
  • FMCW radar devices are used as the plurality of radar devices 20 .
  • a frequency-modulated continuous wave is used as a radar wave.
  • the radar wave band is typically a millimeter wave band, and for example, millimeter waves such as 76 GHz band and 79 GHz band are used. Of course, radar waves of other bands may be used.
  • an FMCW radar wave transmission wave
  • a radar wave reflected wave
  • An IF signal intermediate frequency signal
  • This IF signal is digitized by an ADC (Analog to Digital Converter) and output to the controller 30 .
  • FIG. 3 is a schematic diagram for explaining FMCW radar measurement.
  • FIG. 3 shows a schematic graph showing the radar wave 1 of the FMCW system.
  • the horizontal axis of the graph is time t, and the vertical axis is frequency F.
  • the solid line graph is the transmitted wave 2 emitted from the radar device 20, and the dotted line graph is the reflected wave 3 reflected by surrounding objects.
  • the FMCW radar wave 1 is a radio wave (chirp) modulated such that the frequency linearly changes during the period T0.
  • an up-chirp radar wave 1 in which the frequency F linearly increases during one cycle is used.
  • a down-chirp radar wave 1 or the like in which the frequency F linearly decreases during one cycle may be used.
  • the reflected wave 3 becomes a radio wave whose entire chirp is delayed with respect to the transmitted wave 2 by reciprocating the distance D to the reflection point.
  • the reflection point is moving, for example, the distance D measured from each chirp (reflected wave 3) changes according to the speed of the reflection point. Therefore, it is possible to calculate the velocity of the target including the reflection point from the difference between the frequency differences ⁇ F and ⁇ F' in the adjacent chirps. In practice, the velocity of the object is calculated by detecting changes in ⁇ F in multiple chirps.
  • the distance and speed to the object are calculated from the transmitted wave 2, the reflected wave 3, and the frequency difference ⁇ F.
  • the reflected wave 3 is actually received in a state in which a plurality of radio waves reflected at different distances overlap each other.
  • an IF signal having a plurality of frequency components corresponding to each frequency difference ⁇ F is generated.
  • the controller 30 calculates distances and velocities for a plurality of targets.
  • FIG. 4 is a schematic diagram illustrating a method of calculating an angle by radar measurement.
  • FIG. 4 schematically shows a plurality of antennas 22 (antenna array) provided on the measurement surface 21 of the radar device 20. As shown in FIG. Although a one-dimensional antenna array is illustrated here, the antenna array is actually arranged two-dimensionally.
  • the radar wave 1 (reflected wave 3) reflected at the reflection point enters the measurement surface 21 at an incident angle ⁇ .
  • the controller 30 calculates the incident angle .theta.
  • the radar device 20 it is possible to detect the distance, speed, and angle of an object within the detection range.
  • Each part of the vehicle 10 is provided with a radar device 20 having performance (distance resolution, maximum detectable distance, speed resolution, maximum detectable speed, angular resolution, maximum detectable angle), for example, according to the purpose.
  • a radar device 20 having performance (distance resolution, maximum detectable distance, speed resolution, maximum detectable speed, angular resolution, maximum detectable angle), for example, according to the purpose.
  • the radar device 20a a device that can detect relatively far is used.
  • the radar devices 20b to 20e for example, devices with high range resolution and wide detection angles are used.
  • the radar device 20 for example, a modularized device such as MMIC (Monolithic Microwave Integrated Circuit) is used.
  • MMIC Monitoring Microwave Integrated Circuit
  • the specific type and configuration of the radar device 20 are not limited.
  • the storage unit 25 is a non-volatile storage device.
  • a recording medium using a solid device such as SSD (Solid State Drive) or a magnetic recording medium such as HDD (Hard Disk Drive) is used.
  • the type of recording medium used as the storage unit 25 is not limited, and any recording medium that records data non-temporarily may be used.
  • a driving scene list 26 , an operation mode list 27 , processing parameters 28 , and detection data 29 are stored in the storage unit 25 .
  • the driving scene list 26 is a list of data recording, for example, combinations of conditions (threshold values, etc.) that each driving scene satisfies for each driving scene of the vehicle 10 .
  • the operation mode list 27 is, for example, a list of data recording operation parameters set to the radar device 20 in each operation mode for each operation mode of the radar device 20 .
  • the processing parameters 28 are, for example, data in which parameters being used by the radar device 20 and the controller 30 (for example, operating parameters set in the radar device 20, etc.) are recorded.
  • the detection data 29 is data measured by each radar device 20 and sent to the controller 30 (a radar information signal processing unit 32 described later). ).
  • the driving scene list 26, operation mode list 27, processing parameters 28, and detection data 29 will be specifically described later.
  • the storage unit 25 also stores a control program for controlling the overall operation of the radar control system 100 .
  • the control program is a program according to the present embodiment, and the storage unit 25 corresponds to a computer-readable recording medium in which the program is recorded.
  • the storage unit 25 stores arbitrary data necessary for the operation of the radar control system 100 .
  • the controller 30 controls the operation of each block of the radar control system 100.
  • the controller 30 has a hardware configuration necessary for a computer, such as a CPU and memory (RAM, ROM). Various processes are executed by the CPU loading the control program stored in the storage unit 25 into the RAM and executing it.
  • the controller 30 corresponds to an information processing device.
  • controller 30 a device such as a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array) or other ASIC (Application Specific Integrated Circuit) may be used.
  • a processor such as a GPU (Graphics Processing Unit) may be used as the controller 30 .
  • the CPU of the controller 30 executes the program according to the present embodiment so that functional blocks include a radar information acquisition unit 31, a radar information signal processing unit 32, a detection result output unit 33, and a driving scene determination unit 34. , an operation timing control unit 35, a processing time measurement unit 36, an operation parameter adjustment unit 37, and a radar control unit 38 are realized. These functional blocks execute the information processing method according to the present embodiment. In order to implement each functional block, dedicated hardware such as an IC (integrated circuit) may be used as appropriate.
  • IC integrated circuit
  • the radar information acquisition unit 31 functions as an input interface that acquires raw data measured by a plurality of radar devices 20 . For example, digitized IF signal data (Raw data) output from each radar device 20 is appropriately read.
  • the radar information signal processing unit 32 analyzes the data acquired by the radar information acquisition unit 31 and calculates detection data 29 .
  • detection data 29 for example, data representing distances, velocities, angles, etc. of objects existing around the vehicle 10 are calculated.
  • the distance, speed, angle, etc. of moving objects other vehicles, bicycles, pedestrians, etc.
  • the distance and angle of obstacles (guard rails, curbs, etc.) around the vehicle 10 are detected.
  • data representing the shape, type, number, distribution, etc. of objects may be calculated.
  • the radar information signal processing unit 32 processes the RaW data, for example, each time each radar device 20 performs measurement. Specifically, when raw data is read, FFT (Fast Fourier Transform) is performed on the data to detect frequency component data. Then, based on the frequency component data, the distance, speed, and angle of each object with respect to the reflection position are calculated as detection data 29 (see FIGS. 3 and 4, etc.).
  • FFT Fast Fourier Transform
  • the detection data 29 may be calculated by integrating the measurement results of each radar device 20 .
  • data obtained by mapping the positions (distances and angles) of surrounding objects around the vehicle 10, data obtained by estimating the shape and moving direction of each object, and the like are calculated as the detection data 29, for example.
  • a method or the like for calculating the detection data 29 is not limited, and any algorithm applied to radar measurement, for example, may be used.
  • the calculated detection data 29 are stored in the storage unit 25 .
  • the detection result output unit 33 reads the detection data 29 stored in the storage unit 25 and outputs it to a processing block that performs processing using the detection data 29 and other arithmetic devices as appropriate.
  • the detection result output unit 33 provides the detection data 29 to a system that performs automatic operation.
  • the detection data 29 is used for calculation processing of the travel route of the vehicle 10 and the like.
  • the detection data 29 is provided to a system that assists the driver in driving. In this case, the detection data 29 is used for the process of notifying the driver of the approach of other vehicles or obstacles.
  • the driving scene determination unit 34 determines the driving scene of the vehicle 10 on which the multiple radar devices 20 are mounted.
  • the driving scene includes, for example, various scenes (situations) that occur when the vehicle 10 is driving.
  • the driving scene determination unit 34 corresponds to a determination unit.
  • the driving scene determination unit 34 determines at least one current driving scene of the vehicle 10 from among the multiple classified driving scenes. For example, the driving scene list 26 stored in the storage unit 25 is read, and it is determined whether or not the current state of the vehicle 10 satisfies the conditions of each driving scene included in the list. Then, a driving scene that applies to the current state is determined.
  • the type of scene set as the driving scene is not limited.
  • a normal driving scene in which the vehicle 10 drives forward, a lane change scene, a parking scene, or the like is set as the driving scene.
  • a scene of stopping, a scene of starting motion, a scene of turning left or right, a scene of U-turn motion, a scene of backward motion, a scene of high-speed driving, etc. may be set as driving scenes.
  • the time scene may be set according to the circumstances of the surrounding environment of the vehicle 10 .
  • a traffic scene, a scene of driving at an intersection or a pedestrian crossing, a scene of driving in a merging lane or a separating lane, a scene of driving on a slope, a scene of driving on a winding road, etc. are set as driving scenes.
  • the driving scene is not limited, and for example, driving scenes (night scenes and snowy road scenes) may be appropriately set according to the outside temperature, weather, road surface conditions, time of day, season, and the like.
  • the operation timing control unit 35 controls the order of operating the plurality of radar devices 20 according to the driving scene determined by the driving scene determination unit 34 .
  • the order of operating the plurality of radar devices 20 is, for example, the order of performing radar measurement by each radar device 20 . Therefore, in the operation timing control unit 35, the order of performing the operation of emitting the transmission wave 2 and receiving the reflected wave 3 is set according to the driving scene.
  • the operation timing control section 35 corresponds to an operation control section.
  • the order of operating the radar devices 20a to 20e is set. Measurements by the radar devices 20a to 20e are repeated in the order set by the operation timing control section 35 until the driving scene changes.
  • the order in which the plurality of radar devices 20 are operated is referred to as a measurement routine. Therefore, it can be said that the operation timing control section 35 sets the measurement routine according to the current driving scene.
  • a method of setting the order (measurement routine) of operating each radar device 20 according to the driving scene will be described later in detail with reference to FIGS. 7 and 8 and the like.
  • FIG. 5 is a schematic diagram for explaining the measurement routine of a plurality of radar devices 20.
  • FIG. FIG. 5 schematically shows an example of a measurement routine for the radar devices 20a-20e.
  • the order of operation periods T of the radar devices 20 represents the measurement routine.
  • the operation period T is, for example, the period during which each radar device 20 performs radar measurement.
  • a period from when the radar device 20 emits a radar wave to when it processes Raw data is referred to as one operation period. That is, as shown in FIG. 5, the operation period T includes a signal measurement period during which radar waves are actually emitted and the reflected waves are received, and a data processing period for processing Raw data. That is, the processing performed during the operation period T is the processing for one frame in which one radar measurement (signal measurement and data processing) is performed by the radar device 20, and the reciprocal of the operation period T is the frame rate fr.
  • the operation periods of the radar devices 20a, 20b, 20c, 20d, and 20e are hereinafter denoted as Ta, Tb, Tc, Td, and Te, respectively.
  • measurement is first performed by the radar device 20a.
  • a second measurement is performed by the radar device 20a.
  • the radar device 20b, the radar device 20c, the radar device 20d, and the radar device 20e each perform one measurement in this order. In this way, a setting may be made such that the same radar device 20 is assigned to operate two or more times in one measurement routine.
  • the operation timing control unit 35 sets the operation timings ⁇ of the plurality of radar devices 20 .
  • the operation timing t is, for example, the timing at which the measurement operation of each radar device 20 is started, that is, the timing at which the operation period T starts.
  • the operation timing ⁇ it becomes possible to accurately and flexibly set the measurement routine. For example, in the example shown in FIG. 5, operation timings ⁇ a1 and ⁇ a2 for starting the first and second measurement operations of the radar device 20a are set. Operation timings ⁇ b, ⁇ c, ⁇ d, and ⁇ e of the radar device 20b, the radar device 20c, the radar device 20d, and the radar device 20e are set, respectively.
  • the method for setting the operation timing ⁇ is not limited, and for example, the next operation timing ⁇ may be set after confirming the completion of the immediately preceding operation period T.
  • the operation timings ⁇ of the radar devices 20 may be collectively set according to the frame rate fr. A certain waiting time or the like may be appropriately provided after the immediately preceding operation period T is completed. Also, the frame rate fr may be set to a different value for each radar device 20 .
  • the processing time measurement unit 36 measures the processing time required for processing the data (raw data) measured by each radar device 20 each time the measurement of each radar device 20 is performed. That is, the processing time is the time required to process data output from one radar device. Specifically, in the radar information signal processing section 32 described above, the time from when the raw data is read until the detection data 29 is calculated is measured. For example, a certain period (data processing period shown in FIG. 5) is set in advance for calculating the detection data 29 . Separately from this, the processing time measuring unit 36 measures the time required until the detection data 29 is actually calculated as the processing time.
  • the operating parameter adjuster 37 adjusts the operating parameters of each of the plurality of radar devices 20 according to the processing load related to data output from each of the plurality of radar devices 20 . For example, when the processing load is high, the operating parameters are adjusted to reduce the processing load. Further, for example, the operation parameters are adjusted so that the processing can be continued appropriately even when the processing load is high.
  • the operating parameter adjuster 37 corresponds to the adjuster.
  • the processing load is, for example, the load of analysis processing performed to calculate the detection data 29 based on the raw data read from the radar device 20 . More specifically, it is the load applied to the processing executed by the radar information signal processing section 32 described above.
  • the processing time calculated by the processing time measuring unit 36 is used as the processing load. That is, the time required for analysis processing is used as a parameter representing the load.
  • the utilization rate of the CPU, the occupancy rate of the memory, or the like may be used.
  • any parameter representing processing load may be used.
  • An operation parameter is, for example, a parameter that is set for each radar device 20 and that controls the operation of the radar device 20 .
  • the parameters adjusted by the operating parameter adjuster 37 are used for the next measurement by the radar device 20 . This makes it possible to reduce the processing load and to continue the radar measurement properly.
  • the operating parameters to be adjusted include the frame rate fr of radar measurement by the radar device 20 .
  • the frame rate fr corresponds to the reciprocal of the operating period T of radar measurements (signal measurement and data processing).
  • the operating parameters also include the number of samples of data (raw data) output from the radar device 20 .
  • the raw data sampling number is, for example, the sampling number (sampling rate) set in the ADC that digitizes the IF signal that is a mixture of the transmitted wave 2 and the reflected wave 3.
  • Parameters for radar wave 1 are included.
  • the parameters related to the radar wave 1 are parameters for setting the waveform, period, intensity, etc. of the radar wave 1, for example. For example, as described with reference to FIG.
  • the FMCW-modulated radar wave 1 becomes a chirp in which the frequency continuously changes during a constant period T0.
  • a radar wave 1 containing a plurality of chirps is emitted.
  • the number of chirps emitted as the radar wave 1 (the number of chirps) is adjusted as an operating parameter.
  • the operating parameter adjuster 37 determines whether to adjust the operating parameter based on the processing load. For example, if the processing load is low enough, it is assumed that radar measurements are being made properly and no adjustments are made to the operating parameters. On the other hand, when the processing load is high, it may be difficult to continue processing at the required speed. In such a case, processing is executed to reduce the processing load by adjusting the operating parameters.
  • the operation parameter adjustment unit 37 selects an appropriate operation mode from the operation mode list 27 according to the state of the processing load, the driving scene, and the like.
  • each operating parameter is adjusted to a value preset for the selected operating mode.
  • the operation parameter adjustment unit determines the operation mode of the radar device 20 .
  • each operation parameter may be individually adjusted without using the operation mode list 27 .
  • the radar control unit 38 communicates with a plurality of radar devices 20 and controls the operation of each radar device 20 . Specifically, each radar device 20 is operated in accordance with the operation timing ⁇ calculated by the operation timing control section 35 . Also, the operating parameters adjusted by the operating parameter adjuster 37 are set in each radar device 20 . Note that when the frame rate fr is adjusted as an operation parameter, the operation timing ⁇ may be set according to the frame rate fr.
  • FIG. 6 is a flowchart showing an operation example of the radar control system 100. As shown in FIG. The flowchart shown in FIG. 6 is a loop process that is repeatedly executed while the vehicle 10 is operating, for example.
  • the operation timing ⁇ of the radar device 20 to be operated next is set according to the driving scene of the vehicle 10 .
  • the order of operating the plurality of radar devices 20 is controlled.
  • the operating parameters of the radar device 20 that has already been operated are adjusted. For example, in the background of the processing shown in FIG. 6, radar measurements are performed by a plurality of radar devices 20, and detection data 29 are sequentially calculated.
  • the normal driving scene is selected by the driving scene determination unit 34 (step 101).
  • the normal driving scene is set as a preset initial scene.
  • the operation timing control unit 35 sets the order of operating each radar device 20 in the normal driving scene (see FIG. 6).
  • radar measurement is performed by each radar device 20 according to the order set at this time.
  • the driving scene determination section 34 determines the driving scene based on the information measured using the plurality of radar devices 20 .
  • information measured using a plurality of radar devices 20 is information calculated as detection data 29 .
  • the detection data 29 may be data from several frames before, which is already stored in the storage unit 25, in addition to the data calculated immediately before.
  • a driving scene that meets the conditions is appropriately determined.
  • the detection data 29 is used for this determination.
  • driving scenes a normal driving scene, a lane change scene, and a parking scene will be described as examples.
  • the normal running scene is a scene in which the vehicle 10 runs forward, and is a scene in which the attitude of the vehicle 10 hardly changes.
  • the state in which the vehicle 10 travels forward is, for example, a scene in which the vehicle 10 moves forward without making a course change such as a right turn, a left turn, or a lane change.
  • a scene in which the vehicle continuously travels within one diagonal line is a normal driving scene.
  • a speed condition may be added as a normal driving scene. In this case, for example, a state in which the vehicle 10 is moving forward at a speed equal to or higher than a certain speed (for example, 10 km/h or higher) is set as the normal driving scene.
  • the driving scene determination unit 34 determines that the current driving scene is the normal driving scene, for example, when the speed of the vehicle 10 is above a certain level and the direction of the other vehicle is within the threshold range.
  • a lane change scene is, for example, a scene in which the vehicle 10 is traveling forward at a speed higher than a certain level, and the attitude of the vehicle 10 changes. In this case, it is conceivable that the direction of other vehicles existing around the vehicle 10 changes.
  • the driving scene determination unit 34 determines that the current driving scene is a lane change scene, for example, when the speed of the vehicle 10 is above a certain level and the direction of the other vehicle changes beyond the threshold range.
  • a parking scene is, for example, a scene in which the vehicle 10 moves forward/backward at a relatively low speed while the vehicle 10 has an obstacle near it, and changes its posture significantly. For example, when the distance to an obstacle near the vehicle 10 is less than a threshold, the orientation of the obstacle changes beyond the threshold range, and the speed of the vehicle 10 is less than the threshold First, it is determined that the current driving scene is the parking scene.
  • the driving scene may be determined based on information measured using other sensors mounted on the vehicle 10 .
  • data from an in-vehicle camera or the like may be used for determination of a normal driving scene or a lane change scene.
  • the operation (ON/OFF) of a direction indicator, a gyro sensor such as an IMU, or the like may be used to determine a lane change scene.
  • a steering angle sensor that detects the steering angle of the steering wheel
  • a speed sensor that detects the speed of the vehicle 10
  • a GPS sensor an illuminance sensor, a temperature sensor, and the like
  • the driving scene may be determined by integrating information measured by a plurality of radar devices 20 and information measured using other sensors.
  • the operation timing ⁇ of the radar device 20 to be operated next is controlled by the operation timing control unit 35 according to the driving scene of the vehicle 10 (step 103). Specifically, the radar device 20 to be operated next is selected from the order (measurement routine) corresponding to the driving scene determined by the driving scene determination unit 34 . Then, the irradiation timing (operation timing ⁇ ) of the radar wave 1 suitable for the driving scene is set for the selected radar device 20 .
  • the radar device 20 to be operated next is selected and the operation timing ⁇ is set according to the order set for the driving scene.
  • the radar device 20 to be operated next is selected and the operation timing ⁇ is set according to the order set for the newly determined driving scene.
  • the radar device 20 set at the beginning of the newly determined driving scene measurement routine is selected.
  • the radar device 20 to be operated next may be selected by referring to the radar device 20 that was operating immediately before.
  • the operating parameter adjuster 37 determines whether or not to adjust the operating parameter (step 104).
  • the operating parameters of the radar device 20 that has already been operated (typically, the radar device 20 that was operated immediately before) are adjusted.
  • the operating parameters are adjusted when the processing time required for processing data output from one radar device 20 does not fit within the frame rate fr of radar measurement by the radar device 20 . That is, if the processing is not completed within the preset operating period T, the operating parameters are adjusted.
  • the radar device 20 is set with an operation period T (frame rate fr).
  • the operation period T includes the data processing period.
  • the assumed data processing period Analysis may not be completed in some cases. That is, data processing may not be completed within one frame.
  • step 104 it is determined whether or not the processing time measured by the processing time measuring unit is equal to or shorter than the data processing period. For example, if the processing time is less than or equal to the data processing period (Yes in step 104), it is assumed that the raw data output from the radar device 20 can be processed within one frame, and the operation parameters are not adjusted, and step 106 is executed. If the processing time is sufficiently short (for example, 50% of the data processing period), the values of the operation parameters adjusted in step 105, which will be described later, may be set to the values before adjustment. In this case, the values before adjustment are obtained by referring to the processing parameters 28 and the like stored in the storage unit 25 .
  • step 105 the operation parameters of the radar device 20 are adjusted based on the assumption that the raw data output from the radar device 20 cannot be processed within one frame.
  • the operation parameter adjustment unit 37 adjusts the operation parameter of the radar device 20 that cannot be processed within one frame.
  • the operating parameters for example, at least one of the frame rate fr of radar measurement by the radar device 20, the sampling number of data (raw data) output from the radar device 20, and the chirp number of the radar wave 1 emitted by the radar device 20 is controlled. be done. Of these, the number of samplings and the number of chirps are radar parameters set in the radar device 20 itself. Further, when adjusting the operating parameters, for example, determination of the operating mode, accuracy evaluation when the adjusted parameters are used, and the like are executed. This point will be described in detail later.
  • step 106 it is determined whether or not to continue radar measurement by the plurality of radar devices 20 (radar control system 100) (step 106). For example, if it is determined to continue the radar measurement (Yes in step 106), the process returns to step 102 and the driving scene is determined again. Further, when the driving of the vehicle 10 is finished, it is determined that the radar measurement is completed, and the process shown in FIG. 6 is finished (No in step 106). In this way, the radar control system 100 is a system that continues to output target detection results while controlling appropriate radar operation timings and operation modes (operation parameters) according to driving scenes.
  • the operation timing control unit 35 sets the operation timing ⁇ so that the operation periods T for each of the plurality of radar devices 20 do not overlap. That is, the order (measurement routine) of operating the radar devices 20a to 20e is set so that when measurement by one radar device 20 is completed, measurement by the next radar device 20 is started. In this case, measurements by two or more radar devices 20 are not performed at the same timing. This makes it possible to sufficiently reduce the processing load of the analysis processing executed by the radar information signal processing section 32 .
  • the measurement routine (operation timing t) is set so that an object approaching the vehicle 10 and having a risk of colliding with the vehicle 10 can be appropriately detected.
  • the operation timing control unit 35 determines the operation frequency of the radar device 20 that measures the space in which an object at risk of colliding with the vehicle 10 is assumed in the determined driving scene, among the plurality of radar devices 20. Set relatively high.
  • the operation frequency is, for example, the frequency with which the radar device 20 is operated within a certain period of time.
  • the frequency of operation of the radar device 20 is the number of times the same radar device 20 is operated in the measurement routine.
  • the operation frequency of the radar device 20 that measures a space in which an object with a risk of collision is not assumed is relatively low. As a result, the radar measurement can be properly continued without unnecessarily increasing the processing load of the entire system.
  • FIG. 7 is a schematic diagram showing an example of the order of operations of the radar device 20 according to the driving scene.
  • the order in which the radar devices 20a to 20e are operated in each driving scene is schematically illustrated using operation periods Ta to Te of the respective radar devices 20a to 20e.
  • the order of these is the order of repeating the measurement routine corresponding to each driving scene.
  • FIG. 7A shows the order in which the radar devices 20a to 20e are operated in a normal driving scene.
  • a normal driving scene it is necessary to pay attention to approaching vehicles in front of the vehicle 10 in the traveling direction of the vehicle 10 and pedestrians passing through the space in front of the vehicle 10 .
  • an object in front of the vehicle 10 (a forward vehicle, a pedestrian, etc.) becomes an object that has a risk of colliding with the vehicle 10 .
  • the operation frequency of the front radar devices (radar devices 20a, 20b, and 20c) capable of measuring the front of the vehicle 10 is set relatively high.
  • the order of the operation periods Ta to Te in the measurement routine is set to Ta, Tb, Tc, Ta, Tb, Tc, Td, and Te. That is, the radar measurement is performed twice by the front radar devices (radar devices 20a, 20b, and 20c), and the measurement is performed once by the other radar devices (radar devices 20d and 20e). In a normal driving scene, such a measurement routine is repeated.
  • the operating frequency of the forward radar device is set higher than the operating frequencies of the other radar devices.
  • the radar measurement is focused on the space in front of the vehicle 10 to which attention should be paid during normal running.
  • all the radar devices 20a to 20e operate in the order shown in FIG. 7A. This makes it possible to measure not only the front of the vehicle 10 but also the entire surrounding environment of the vehicle 10 including the rear and sides of the vehicle 10 .
  • the operating frequency of the radar devices 20d and 20e for measuring the rear of the vehicle 10 is set relatively low. As a result, it is possible to avoid a situation in which the area behind the vehicle 10 is unnecessarily measured, and it is possible to suppress the overall processing load.
  • FIG. 7B shows the order in which the radar devices 20a to 20e are operated in a lane change scene.
  • the lane change scene since the lane in which the vehicle 10 travels changes, it is necessary to be careful when approaching a vehicle behind the vehicle 10 or the like existing in the space behind the vehicle 10 .
  • an object behind the vehicle 10 (such as a forward vehicle) is an object that has a risk of colliding with the vehicle 10 .
  • the operation frequency of the rear radar devices (radar devices 20d and 20e) capable of measuring the area behind the vehicle 10 is set relatively high.
  • the radar devices 20d and 20e are arranged so as to be able to measure the oblique rear of the vehicle, it is possible to reliably detect a vehicle or the like approaching behind in the destination lane.
  • the order of the operation periods Ta to Te in the measurement routine is set to Ta, Tb, Tc, Td, Te, Td, Te. That is, radar measurement is performed twice by the rear radar devices (radar devices 20d and 20e), and measurement is performed once by the other radar devices (radar devices 20a, 20b, and 20c). In a lane change scene, such a measurement routine is repeated.
  • the operation frequency of the rear radar device is set higher than the operation frequency of the other radar devices.
  • the radar measurement is focused on the space behind the vehicle 10 to which attention should be paid when changing lanes.
  • the number of radar measurements for the space ahead of the vehicle 10, that is, the operation frequency of the radar devices 20a, 20b, and 20c is set relatively low. In this way, by increasing the number of left and right rear radar measurements and reducing the number of front radar measurements, it is possible to improve the detection performance behind the vehicle 10 without increasing the processing load on the processor. becomes.
  • the operation order of the radar device 20 is set so that the measurement is focused on the rear of the moving side.
  • the direction in which the vehicle 10 moves when changing lanes can be estimated from information such as ON/OFF of a direction indicator, steering angle of a steering wheel, line of sight of the driver, and the like.
  • the operation frequency of the radar device 20d for measuring the left rear of the vehicle 10 is set relatively high, and the operation frequency of the other radar device 20e is set relatively low. be done.
  • the operation frequency of the radar device 20e for measuring the right rear of the vehicle 10 is set relatively high. As a result, it is possible to reliably detect the vehicle behind traveling in the destination lane and sufficiently suppress the overall processing load.
  • FIG. 7C shows the order in which the radar devices 20a to 20e are operated in the parking scene.
  • the parking scene it is necessary to pay attention to approaching obstacles (other vehicles, walls, fences, pedestrians, etc.) that exist in the left and right spaces of the vehicle 10, compared to normal driving.
  • an object on the side of the vehicle 10 (such as a forward vehicle) is an object that has a risk of colliding with the vehicle 10 .
  • the operation frequency of the side radar devices capable of measuring the sides of the vehicle 10 is set relatively high.
  • the order of the operation periods Ta to Te in the measurement routine is set to Ta, Tb, Tc, Td, Te, Tb, Tc, Td, Te. That is, radar measurement is performed twice by the side radar devices (radar devices 20b, 20c, 20d, and 20e), and measurement is performed once by the other radar device (radar device 20a). Such a measurement routine is repeated in the parking scene.
  • the operation frequency of the side radar device is set higher than the operation frequency of the other radar devices.
  • the radar measurement is focused on the left and right spaces of the vehicle 10 to which attention should be paid when the vehicle is parked.
  • the operation frequency of the radar device 20a targeting the front of the vehicle 10 is set relatively low. In this way, in the parking scene, by increasing the number of radar measurements on the left and right sides of the vehicle 10 and decreasing the number of radar measurements on the front side, obstacles on the left and right sides of the vehicle 10 can be detected with high accuracy and parking is possible. It is possible to improve the space detection performance.
  • the order of operating the plurality of radar devices 20a to 20e is not limited to the example shown in FIG.
  • a scene of stopping a scene of starting motion, a scene of turning left or right, a scene of U-turn motion, a scene of backward motion, a scene of high-speed driving, a traffic jam scene, a scene of driving at an intersection or a pedestrian crossing.
  • a measurement routine may be appropriately set according to various driving scenes such as driving in a merging lane or a separating lane, driving on a slope, driving on a curving road, nighttime, and snowy road.
  • FIG. 8 is a schematic diagram showing another example of the order of operations of the radar device 20 according to the driving scene.
  • the operation timing ⁇ is set by the operation timing control unit 35 so that the operation periods T of some of the radar devices 20 overlap. That is, the order (measurement routine) of operating the radar devices 20a to 20e is set so that two or more radar devices 20 perform measurements at the same timing.
  • the processing power of the CPU is sufficiently high, it is possible to simultaneously perform analysis processing on raw data output from two or more radar devices 20 in parallel.
  • radar measurements signal measurement and data processing
  • two or more radar devices 20 may be performed such that their operation periods T overlap.
  • the number of times of measurement per unit time is increased, and it is possible to sufficiently improve the accuracy of detecting a moving object, for example.
  • FIGS. 8A to 8C schematically show the order of operations set so that the operation periods T of the two radar devices 20 overlap, using the operation periods Ta to Te of the respective radar devices 20a to 20e. It is Here, the order of operating the radar devices 20 (Ta, Tb, Tc, Ta, Tb, Tc, Td, Te) in the normal driving scene described with reference to FIG. T has been changed to overlap. Note that the measurement routines applied to the lane change scene, parking scene, etc. shown in FIGS. 7B and 7C may be modified according to the following description.
  • operation timings ⁇ are set such that operation periods T overlap for some pairs of radar devices 20 among the radar devices 20a to 20e.
  • the order is described as "T1/T2".
  • the start timings of T1 and T2 are substantially simultaneous.
  • the order of the operation periods Ta to Te in the measurement routine is set to Ta, (Tb/Tc), Ta, (Tb/Tc), and (Td/Te). That is, the radar measurement by the radar device 20a is performed independently.
  • Radar measurements by the radar devices 20b and 20c directed to the left front and right front and radar measurements by the radar devices 20d and 20e directed to the left rear and right rear are performed substantially simultaneously. As a result, for example, it is possible to simultaneously monitor a relatively wide range of the left and right front (or left and right rear) of the vehicle 10 . Further, since the radar device 20a performs data processing independently, it is possible to improve the processing time, for example.
  • the operation timing ⁇ is set such that the operation periods T overlap in all radar measurements.
  • the start timings of the overlapping operation periods T are substantially the same.
  • the order of the operation periods Ta to Te in the measurement routine is set to (Ta/Tb), (Tc/Ta), (Tb/Tc), and (Td/Te).
  • radar measurements for two units are always executed, and the time required to complete one measurement routine is shorter than the measurement routine shown in FIG. 8A.
  • FIG. 8C shows an example in which the measurement routine shown in FIG. 8B is set such that the start timings of the overlapping operation periods T are shifted.
  • the order of the operation periods Ta to Te in the measurement routine is set to (Ta/Tb), (Tc/Ta), (Tb/Tc), and (Td/Te).
  • (Ta/Tb) which is executed first, is set so that the start timing of Tb is delayed from Ta by a certain time.
  • Tc/Ta) to be executed next Tc is set so as to overlap with Tb executed immediately before, and Ta is set after a certain time from Tc.
  • (Tb/Tc) and (Td/Te) are also set such that the operation periods T are delayed from each other by a certain time.
  • the operation period T is divided into a signal measurement period in which the radar wave 1 is emitted and the reflected wave 3 is measured, and a data processing period in which the measured signal is analyzed.
  • the measurement routine shown in FIG. 8C for example, it is possible to set the operation timing ⁇ such that the signal measurement of the next radar device 20 is performed while the data processing of the radar device 20 operated immediately before is being performed. .
  • the operating parameters of the radar device 20 that are adjusted in step 105 of FIG. 6 are described below.
  • the amount of calculation for the distance and velocity of an object is determined by the number of samples of Raw data and the number of chirps of radar wave 1, and is substantially constant. becomes.
  • the amount of calculation for estimating the angle of an object varies depending on the number of detected objects. This is for angle estimation with each object included in the distance and speed detection results as a target.
  • the frame rate fr is reduced (the period T is lengthened), or the number of samplings or chirps is increased in order to properly continue the radar measurement. Processing such as reduction is performed. Note that when angle estimation is performed in all directions, a substantially constant processing load is generated regardless of the number of targets. Even in such a case, it is effective to appropriately adjust the frame rate fr, the number of samples, and the number of chirps in order to properly calculate the distance, speed, angle, etc. of the target within the required time. be.
  • the frame rate fr corresponds to the number of measurements per unit time when repeating radar measurements. Therefore, when detecting a moving target (moving object) or the like, the moving object detection accuracy is improved by setting a high frame rate fr. Conversely, when a low frame rate fr is set, the time allocated to one radar measurement becomes longer, so that it is possible to secure time for data processing.
  • the number of samplings is the number of samplings for the IF signal obtained by mixing the transmitted wave 2 and the reflected wave 3 generated by the radar device 20 . Therefore, when the number of samplings is large, a digital signal (raw data) that reproduces the IF signal in detail can be generated. As a result, the frequency difference between the transmitted wave 2 and the reflected wave 3 can be calculated with high accuracy, and the distance resolution is improved (see FIG. 3). Conversely, if a small number of samplings is set, the number of raw data points is reduced, so the processing load can be reduced.
  • the number of chirps is the number of chirps used as the transmission waves 2 generated by the radar device 20 .
  • the number of chirps is large, the number of samples of the frequency difference between the transmitted wave 2 and the reflected wave 3 can be increased. This makes it possible to accurately calculate the frequency difference ( ⁇ F and ⁇ F′) between adjacent chirps, improving the velocity resolution (see FIG. 3).
  • the number of times of repeated processing performed for each chirp is reduced, so it is possible to reduce the processing load.
  • Frame rate Motion detection accuracy
  • Sampling count Range resolution
  • Chirp count Velocity resolution
  • the frame rate fr, the number of samplings, and the number of chirps are adjusted by the operation parameter adjustment unit 37 in consideration of such characteristics. Specifically, the measurement accuracy that occurs when the operating parameter is changed is evaluated, and if the decrease in measurement accuracy is acceptable, the operating parameter is adjusted. Other operating parameters are also controlled if the degradation in measurement accuracy is unacceptable.
  • the amount of decrease in measurement accuracy that occurs when the frame rate fr is lowered is calculated. If the amount of decrease in measurement accuracy falls within the allowable range, the frame rate fr is reduced and radar measurement is performed. Also, if the amount of decrease in measurement accuracy does not fall within the permissible range, the number of samplings and the number of chirps are reduced, and radar measurement is performed with reduced range resolution and velocity resolution.
  • the allowable range is set based on, for example, the accuracy range allowed in an application (for example, an automatic driving system, a driving support system, etc.) that uses the detection data 29 measured by the radar device 20 . Further, for example, the allowable range may be set according to the degree of importance of each measurement accuracy (moving object detection accuracy, distance resolution, speed resolution, etc.) in the current driving scene.
  • the operation parameter adjustment unit 37 calculates the expected change in measurement accuracy when the frame rate fr is adjusted. adjusted.
  • the frame rate fr corresponds to the first parameter and the sampling number (or chirp number) corresponds to the second parameter.
  • the method of adjusting the frame rate fr, the number of samples, and the number of chirps is not limited. For example, a default adjustment value may be used, or an adjustment value may be appropriately set according to the processing load value or the like.
  • the measurement accuracy when the sampling number is adjusted may be calculated. In this case, if the change in measurement accuracy exceeds the allowable range, the frame rate fr or the number of chirps is adjusted. Similarly, the measurement accuracy may be calculated when the number of chirps is adjusted. In this case, if the change in measurement accuracy exceeds the allowable range, the frame rate fr or the number of samples is adjusted. In addition, there are no restrictions on the operating parameters whose measurement accuracy is estimated during adjustment.
  • the operating parameters to be adjusted may be selected according to the driving scene of the vehicle 10 .
  • data designating operation parameters to be adjusted, data of adjustment values to be set for the operation parameters to be adjusted, and the like are read from the operation mode list 27 .
  • an example of adjusting the operation parameter in each driving scene will be described.
  • a traffic jam scene is determined in which the vehicle 10 is traveling on a congested road.
  • both the vehicle 10 and the surrounding vehicles are moving at low speed, there is no need to detect a high-speed moving object, and the frame rate is reduced.
  • moving objects with various velocities are densely packed, the number of samples that affects range resolution and the number of chirps that affect velocity resolution are maintained. This makes it possible to reliably detect a large number of targets.
  • the controller 30 determines the driving scene of the vehicle 10 equipped with a plurality of radar devices 20, and controls the order of operating each radar device 20 based on the result.
  • each radar device operates in an order suitable for the driving scene, so unnecessary measurements and the like can be suppressed.
  • sufficient measurement accuracy can be achieved while reducing the processing load required for radar measurement.
  • the order of operating the plurality of radar devices 20 is controlled according to the driving scene of the vehicle 10 . This makes it possible to allocate each radar device 20 so as to focus on measuring a space where the risk of collision or the like is high in each driving scene. Conversely, the processing load required for radar measurement can be reduced by relatively lowering the measurement frequency for the radar device 20 that measures a low-risk space.
  • each radar device 20 is adjusted according to the processing load. As a result, it is possible to operate each radar device 20 by setting operation parameters that reduce the processing load. The operating parameters are also controlled to ensure the measurement accuracy required for radar measurements. As a result, even when the driving scene changes, for example, it is possible to realize stable radar measurement while maintaining the measurement accuracy required for each driving scene.
  • the timing of radar operation suitable for the driving environment and the radar operation mode (operation parameter) are considered, including the processing capacity of the processor. can be set as follows. This makes it possible to realize highly reliable automatic driving systems, driving support systems, and the like.
  • the FMCW radar system was mainly explained. Not limited to this, for example, Doppler radar, pulse radar, or the like may be used. Even in such a case, by appropriately controlling the order in which the plurality of radar devices are operated, it is possible to reduce the processing load required for radar measurement and achieve sufficient measurement accuracy.
  • a determination unit that determines a driving scene of a vehicle equipped with a plurality of radar devices;
  • An information processing apparatus comprising: an operation control unit that controls an order in which the plurality of radar devices are operated according to the determined driving scene.
  • the information processing device according to (1) The information processing device, wherein the operation control unit sets operation timings of the plurality of radar devices.
  • the information processing device according to (2) The information processing device, wherein the operation control unit sets the operation timings so that operation periods for each of the plurality of radar devices do not overlap.
  • the information processing device determines the driving scene based on at least one of information measured using the plurality of radar devices and information measured using another sensor mounted on the vehicle.
  • the operation control unit sets a relatively high operation frequency of a radar device among the plurality of radar devices that measures a space in which an object at risk of colliding with the vehicle is assumed in the determined driving scene.
  • the information processing device includes a front radar device capable of measuring the front of the vehicle and another radar device having a different measurement range from the front radar device, The operation control unit sets the operating frequency of the forward radar device to be higher than the operating frequency of the other radar devices when the driving scene is determined to be a scene in which the vehicle is traveling forward. .
  • the information processing device includes a rear radar device capable of measuring the rear of the vehicle and another radar device having a different measurement range from the rear radar device, The operation control unit sets the operation frequency of the rear radar device to be higher than the operation frequency of the other radar devices when it is determined that the vehicle changes lanes as the driving scene.
  • the information processing device includes a side radar device capable of measuring the side of the vehicle and another radar device having a different measurement range from the side radar device,
  • the operation control unit sets the operation frequency of the side radar device higher than the operation frequency of the other radar device when the scene in which the vehicle is parked is determined as the driving scene.
  • the information processing device according to at least one of (1) to (9), further comprising: An information processing apparatus comprising an adjustment unit that adjusts an operation parameter of each of the plurality of radar devices according to a processing load related to data output from each of the plurality of radar devices.
  • the information processing device includes at least one of a frame rate of radar measurement by the radar device, a sampling number of data output from the radar device, and parameters relating to radar waves emitted by the radar device.
  • the information processing device includes at least one of a frame rate of radar measurement by the radar device, a sampling number of data output from the radar device, and parameters relating to radar waves emitted by the radar device.
  • the information processing device includes at least one of a frame rate of radar measurement by the radar device, a sampling number of data output from the radar device, and parameters relating to radar waves emitted by the radar device.
  • the information processing device includes (10) or (11), The information processing apparatus, wherein the adjustment unit determines whether or not to adjust the operation parameter based on the processing load.
  • the processing load is the processing time required to process data output from the radar device, The adjustment unit adjusts the operation parameter when the processing time does not fit within a frame rate of radar measurement by the radar device. Information processing device.
  • the information processing device according to at least one of (10) to (13), the operating parameters include a first parameter and a second parameter;
  • the adjustment unit calculates a change in measurement accuracy expected when the first parameter is adjusted, and adjusts the second parameter when the change in measurement accuracy exceeds an allowable range. .
  • the information processing device according to at least one of (10) to (14), The information processing device, wherein the adjustment unit selects the operation parameter to be adjusted according to the driving scene.
  • the information processing device according to at least one of (1) to (15), The information processing device, wherein the plurality of radar devices are FMCW radar devices.
  • determining a driving scene of a vehicle equipped with a plurality of radar devices An information processing method, wherein a computer system controls the order of operating the plurality of radar devices according to the determined driving scene.
  • a plurality of radar devices mounted on a vehicle; a determination unit that determines a driving scene of the vehicle; a radar measurement system comprising: an operation control unit that controls the order in which the plurality of radar devices are operated according to the determined driving scene.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本技術の一形態に係る情報処理装置は、判定部と、動作制御部とを具備する。前記判定部は、複数のレーダ装置が搭載された車両の走行シーンを判定する。前記動作制御部は、前記判定された前記走行シーンに応じて、前記複数のレーダ装置を動作させる順番を制御する。

Description

情報処理装置、情報処理方法、及びレーダ測定システム
 本技術は、複数のレーダ装置を用いたレーダ測定に適用可能な情報処理装置、情報処理方法、及びレーダ測定システムに関する。
 特許文献1には、複数のレーダで測定されたデータを統合してターゲットを検出するマルチレーダシステムについて記載されている。このシステムでは、各々の送信タイミングが同じになるように2つのレーダが同期して駆動される。そして各レーダから得られたターゲットの検出結果が、統合処理装置により合成される。このように各レーダを同期して測定を行うことで信号対雑音比が向上し、ターゲットの検出性能を向上させることが可能となっている(特許文献1の明細書段落[0030][0041][0065]図1等)。
特開2018-59895号公報
 近年では、複数のレーダ装置を車両に搭載して高度なセンシングを行う技術が開発されており、ドライバーの運転支援や自動運転等の分野での応用が期待されている。一方でレーダ装置を増やすことで処理負荷が増大する点が懸念される。このため、レーダ測定に要する処理負荷を軽減しつつ十分な測定精度を実現することが可能な技術が求められている。
 以上のような事情に鑑み、本技術の目的は、レーダ測定に要する処理負荷を軽減しつつ十分な測定精度を実現することが可能な情報処理装置、情報処理方法、及びレーダ測定システムを提供することにある。
 上記目的を達成するため、本技術の一形態に係る情報処理装置は、判定部と、動作制御部とを具備する。
 前記判定部は、複数のレーダ装置が搭載された車両の走行シーンを判定する。
 前記動作制御部は、前記判定された前記走行シーンに応じて、前記複数のレーダ装置を動作させる順番を制御する。
 この情報処理装置では、複数のレーダ装置を搭載した車両の走行シーンが判定され、その結果をもとに各レーダ装置を動作させる順番が制御される。これにより、例えば各レーダ装置は走行シーンに適した順番で動作するため、不要な測定等を抑制することが可能となる。この結果、レーダ測定に要する処理負荷を軽減しつつ十分な測定精度を実現することが可能となる。
 前記動作制御部は、前記複数のレーダ装置の動作タイミングを設定してもよい。
 前記動作制御部は、前記複数のレーダ装置の各々に関する動作期間が重複しないように前記動作タイミングを設定してもよい。
 前記動作制御部は、前記複数のレーダ装置のうち、一部の前記レーダ装置に関する動作期間が重複するように前記動作タイミングを設定してもよい。
 前記判定部は、前記複数のレーダ装置を用いて測定される情報、又は前記車両に搭載された他のセンサを用いて測定される情報の少なくとも一方に基づいて、前記走行シーンを判定してもよい。
 前記動作制御部は、前記複数のレーダ装置のうち、前記判定された前記走行シーンにおいて前記車両に衝突するリスクのある物体が想定される空間を測定するレーダ装置の動作頻度を相対的に高く設定してもよい。
 前記複数のレーダ装置は、前記車両の前方を測定可能な前方レーダ装置と、前記前方レーダ装置とは測定範囲が異なる他のレーダ装置とを含んでもよい。この場合、前記動作制御部は、前記走行シーンとして前記車両が前方への走行を行うシーンが判定された場合、前記前方レーダ装置の動作頻度を前記他のレーダ装置の動作頻度よりも高く設定してもよい。
 前記複数のレーダ装置は、前記車両の後方を測定可能な後方レーダ装置と、前記後方レーダ装置とは測定範囲が異なる他のレーダ装置とを含んでもよい。この場合、前記動作制御部は、前記走行シーンとして前記車両が車線変更を行うシーンが判定された場合、前記後方レーダ装置の動作頻度を前記他のレーダ装置の動作頻度よりも高く設定してもよい。
 前記複数のレーダ装置は、前記車両の側方を測定可能な側方レーダ装置と、前記側方レーダ装置とは測定範囲が異なる他のレーダ装置とを含んでもよい。この場合、前記動作制御部は、前記走行シーンとして前記車両が駐車を行うシーンが判定された場合、前記側方レーダ装置の動作頻度を前記他のレーダ装置の動作頻度よりも高く設定してもよい。
 前記情報処理装置は、さらに、前記複数のレーダ装置の各々から出力されるデータに関する処理負荷に応じて、前記複数のレーダ装置の各々の動作パラメータを調整する調整部を具備してもよい。
 前記動作パラメータは、前記レーダ装置によるレーダ測定のフレームレート、前記レーダ装置から出力されるデータのサンプリング数、及び前記レーダ装置が照射するレーダ波に関するパラメータの少なくとも1つを含んでもよい。
 前記調整部は、前記処理負荷に基づいて、前記動作パラメータを調整するか否かを判定してもよい。
 前記処理負荷は、前記レーダ装置から出力されるデータの処理にかかる処理時間であってもよい。この場合、前記調整部は、前記処理時間が前記レーダ装置によるレーダ測定のフレームレートに収まらない場合に、前記動作パラメータを調整してもよい。
 前記動作パラメータは、第1のパラメータと第2のパラメータとを含んでもよい。この場合、前記調整部は、前記第1のパラメータを調整した場合に想定される測定精度の変化を算出し、前記測定精度の変化が許容範囲を超えた場合、前記第2のパラメータを調整してもよい。
 前記調整部は、前記走行シーンに応じて、調整対象となる前記動作パラメータを選択してもよい。
 前記複数のレーダ装置は、FMCW方式のレーダ装置であってもよい。
 本技術の一形態に係る情報処理方法は、コンピュータシステムにより実行される情報処理方法であって、複数のレーダ装置が搭載された車両の走行シーンを判定することを含む。
 前記判定された前記走行シーンに応じて、前記複数のレーダ装置を動作させる順番が制御される。
 本技術の一形態に係るレーダ測定システムは、複数のレーダ装置と、判定部と、動作制御部とを具備する。
 前記複数のレーダ装置は、車両に搭載される。
 前記判定部は、前記車両の走行シーンを判定する。
 前記動作制御部は、前記判定された前記走行シーンに応じて、前記複数のレーダ装置を動作させる順番を制御する。
本技術の一実施形態に係るレーダ統制システムの構成例を示す模式図である。 レーダ統制システムの機能的な構成例を示すブロック図である。 FMCW方式のレーダ測定について説明する模式図である。 レーダ測定による角度の算出方法について説明する模式図である。 複数のレーダ装置の測定ルーチンについて説明するための模式図である。 レーダ統制システムの動作例を示すフローチャートである。 走行シーンに応じたレーダ装置の動作の順番の一例を示す模式図である。 走行シーンに応じたレーダ装置の動作の順番の他の例を示す模式図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 [レーダ統制システムの構成]
 図1は、本技術の一実施形態に係るレーダ統制システムの構成例を示す模式図である。図2は、レーダ統制システム100の機能的な構成例を示すブロック図である。
 レーダ統制システム100は、車両10に搭載された複数のレーダ装置20を制御して、各レーダ装置20の出力を統合して車両10の周辺をセンシングするシステムである。
 図2に示すように、レーダ統制システム100は、複数のレーダ装置20と、記憶部25と、コントローラ30とを有する。本実施形態では、レーダ統制システム100は、レーダ測定システムに相当する。
 複数のレーダ装置20は、レーダ波1(送信波)を照射し、その反射波を測定することでレーダ測定を行う装置である。図1に示すように、複数のレーダ装置20は、互いに異なる検出範囲を持つように車両10の各部にそれぞれ搭載される。図1に示す例では、複数のレーダ装置20として、レーダ装置20a~レーダ装置20eが車両10に設けられる。
 ここでは、レーダ装置20aは、車両10の前方(真正面)を測定するように、車体前部の中心付近に設けられる。また、レーダ装置20bは、車両10の左前方を測定するように、車体前部の左側に設けられ、レーダ装置20cは、車両10の右前方を測定するように、車体前部の右側に設けられる。また、レーダ装置20dは、車両10の左後方を測定するように、車体後部の左側に設けられ、レーダ装置20eは、車両10の右後方を測定するように、車体後部の右側に設けられる。
 各レーダ装置20a~20eの検出範囲は、部分的にオーバーラップしていてもよい。例えば、前方を測定するレーダ装置20aと、左右前方を測定するレーダ装置20b及び20cの検出範囲が重なっていてもよいし、左右後方を測定するレーダ装置20d及び20eの検出範囲が互いに重なっていてもよい。あるいは、各レーダ装置20a~20eの検出範囲が重ならないような構成が用いられてもよい。
 このように、レーダ装置20a、20b、及び20cは、検出範囲の少なくとも一部が車両10の前方側を含むよう設定されている。本実施形態では、レーダ装置20a、20b、及び20cは、車両の前方を測定可能な前方レーダ装置の一例である。
 また、レーダ装置20d及び20eは、検出範囲の少なくとも一部が車両10の後方側を含むよう設定されている。本実施形態では、レーダ装置20d及び20eは、車両の前方を測定可能な前方レーダ装置の一例である。
 また、レーダ装置20b及び20dは、検出範囲の少なくとも一部が車両10の左側を含むよう設定されており、レーダ装置20c及び20eは、検出範囲の少なくとも一部が車両10の右側を含むよう設定されている。本実施形態では、レーダ装置20b、20c、20d、及び20eは、車両の側方を測定可能な側方レーダ装置の一例である。
 この他、車両10に搭載されるレーダ装置20の数や、設定される検出範囲は限定されず、任意に設定されてよい。例えば、車体の左右に車両10の右側方や左側方を測定するレーダ装置20が設けられてもよい。また車体の後部中央に車両10の後方を測定するレーダ装置20が設けられてもよい。
 本実施形態では、複数のレーダ装置20として、FMCW方式のレーダ装置が用いられる。FMCW(Frequency Modulated Continuous Wave)方式では、周波数を変調した連続波をレーダ波として用いる方式である。またレーダ波の帯域は、典型的にはミリ波帯であり、例えば76GHz帯や79GHz帯等のミリ波が用いられる。もちろん他の帯域のレーダ波が用いられてもよい。
 レーダ装置20では、FMCW方式のレーダ波(送信波)が検出範囲にむけて照射され、検出範囲にある物体により反射されたレーダ波(反射波)が受信される。そして送信波と反射波とをミキシングしてIF信号(中間周波数信号)が生成される。このIF信号は、ADC(Analog to Digital Converter)によりデジタル化されて、コントローラ30に出力される。
 図3は、FMCW方式のレーダ測定について説明する模式図である。
 図3には、FMCW方式のレーダ波1を示す模式的なグラフが図示されている。グラフの横軸は時間tであり、縦軸は周波数Fである。また実線のグラフは、レーダ装置20から照射される送信波2であり、点線のグラフは、周辺の物体により反射された反射波3である。
 図3に示すように、FMCW方式のレーダ波1は、周波数が周期T0の間に線形に変化するように変調された電波(チャープ)である。ここでは1周期の間に周波数Fが線形に増加するアップチャープのレーダ波1が用いられる。なお、1周期の間に周波数Fが線形に減少するダウンチャープのレーダ波1等が用いられてもよい。
 また、反射波3は、反射点までの距離Dを往復することで、送信波2に対してチャープ全体が遅れた電波となる。
 送信波2に対する反射波3の遅延時間Δtとレーダ波1の伝搬速度(光速c)から、反射点までの距離Dが表される(D=c・Δt/2)。また遅延時間Δtは、1つのチャープにおける最大周波数及び最小周波数の差分Bと、周期T0と、送信波2と反射波3と周波数差ΔFとを用いてΔt=(T0・ΔF)/Bとなる。すなわち、距離Dは、送信波2と反射波3と周波数差ΔFから算出可能である。
 また、反射点が移動していた場合、例えば各チャープ(反射波3)から測定される距離Dが、反射点の速度に応じて変化する。このため、隣接するチャープにおける周波数差ΔF及びΔF'の差分から、反射点を含む対象の速度を算出可能である。実際には複数のチャープにおけるΔFの変化を検出することで、対象の速度が算出される。
 このようにFMCW方式では、送信波2と反射波3と周波数差ΔFから、対象までの距離と速度とが算出される。
 なお図3に示すグラフでは、1つの反射波3だけを図示しているが、実際には異なる距離で反射された複数の電波が重なりあった状態の反射波3が受信される。このような反射波3と送信波2とをミキシングすることで、各周波数差ΔFに対応する複数の周波数成分を持ったIF信号が生成される。コントローラ30では、このようなIF信号をもとに、複数の対象に対する距離や速度が算出される。
 図4は、レーダ測定による角度の算出方法について説明する模式図である。
 図4には、レーダ装置20の測定面21に設けられる複数のアンテナ22(アンテナアレイ)が模式的に図示されている。ここでは、1次元のアンテナアレイが図示されているが、実際にはアンテナアレイは2次元的に配列される。
 反射点で反射されたレーダ波1(反射波3)が、測定面21に対して入射角θで侵入したとする。この場合、隣接するアンテナ22の間隔をdとすると、隣接するアンテナ22に入射する反射波3の光路は互いにd・sinθだけ変化する。この光路差に応じて、隣接するアンテナ22が受信する反射波3には位相差が発生する。コントローラ30では、このような位相差を検出することで、測定面21に対する反射波3の入射角θ、すなわち測定面21に対する対象の角度が算出される。
 このように、レーダ装置20を用いることで、検出範囲にある物体に対する距離、速度、角度を検出することが可能である。
 車両10の各部には、例えば目的に応じた性能(距離分解能、最大検知距離、速度分解能、最大検知速度、角度分解能、最大検知角度)を備えるレーダ装置20がそれぞれ配置される。例えばレーダ装置20aとしては、比較的遠方まで検出可能な装置が用いられる。また例えばレーダ装置20b~20eとしては、距離分解能が高く、検知角度の広い装置等が用いられる。
 レーダ装置20としては、例えばMMIC(Monolithic Microwave Integrated Circuit)等のモジュール化された装置が用いられる。この他、レーダ装置20の具体的な種類や構成は限定されない。
 図2に戻り、記憶部25は、不揮発性の記憶デバイスである。記憶部25としては、例えばSSD(Solid State Drive)等の固体素子を用いた記録媒体や、HDD(Hard Disk Drive)等の磁気記録媒体が用いられる。この他、記憶部25として用いられる記録媒体の種類等は限定されず、例えば非一時的にデータを記録する任意の記録媒体が用いられてよい。
 記憶部25には、走行シーンリスト26、動作モードリスト27、処理パラメータ28、及び検出データ29が記憶される。
 走行シーンリスト26は、例えば車両10の走行シーンごとに、各走行シーンが満たす条件(閾値等)の組み合わせ等を記録したデータのリストである。
 動作モードリスト27は、例えばレーダ装置20の動作モードごとに、各動作モードにおいてレーダ装置20に設定される動作パラメータを記録したデータのリストである。
 処理パラメータ28は、例えばレーダ装置20やコントローラ30が使用中のパラメータ(例えばレーダ装置20に設定されている動作パラメータ等)が記録されたデータである。
 検出データ29は、各レーダ装置20により測定されたデータをコントローラ30(後述するレーダ情報信号処理部32
)で解析したデータである。
 走行シーンリスト26、動作モードリスト27、処理パラメータ28、及び検出データ29については、後で具体的に説明する。
 また記憶部25には、レーダ統制システム100の全体の動作を制御するための制御プログラムが記憶される。制御プログラムは、本実施形態に係るプログラムであり、記憶部25は、プログラムが記録されているコンピュータが読み取り可能な記録媒体に相当する。この他、記憶部25には、レーダ統制システム100の動作に必要な任意のデータが記憶される。
 コントローラ30は、レーダ統制システム100が有する各ブロックの動作を制御する。コントローラ30は、例えばCPUやメモリ(RAM、ROM)等のコンピュータに必要なハードウェア構成を有する。CPUが記憶部25に記憶されている制御プログラムをRAMにロードして実行することにより、種々の処理が実行される。本実施形態では、コントローラ30は、情報処理装置に相当する。
 コントローラ30として、例えばFPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)、その他ASIC(Application Specific Integrated Circuit)等のデバイスが用いられてもよい。また例えばGPU(Graphics Processing Unit)等のプロセッサがコントローラ30として用いられてもよい。
 本実施形態では、コントローラ30のCPUが本実施形態に係るプログラムを実行することで、機能ブロックとして、レーダ情報取得部31、レーダ情報信号処理部32、検出結果出力部33、走行シーン判定部34、動作タイミング制御部35、処理時間計測部36、動作パラメータ調整部37、及びレーダ制御部38が実現される。そしてこれらの機能ブロックにより、本実施形態に係る情報処理方法が実行される。なお各機能ブロックを実現するために、IC(集積回路)等の専用のハードウェアが適宜用いられてもよい。
 レーダ情報取得部31は、複数のレーダ装置20により測定されたRawデータを取得する入力インターフェースとして機能する。例えば、各レーダ装置20から出力されるデジタル化されたIF信号のデータ(Rawデータ)が適宜読み込まれる。
 レーダ情報信号処理部32は、レーダ情報取得部31により取得されたデータを解析して、検出データ29を算出する。検出データ29としては、例えば車両10の周辺に存在する物体についての距離、速度、角度等を表すデータが算出される。例えば車両10周辺に存在する移動体(他車両、自転車、歩行者等)についての距離、速度、角度等が検出される。また車両10の周辺にある障害物(ガードレール、縁石等)の距離、角度が検出される。
 この他、物体の形状、種類、数、分布等を表すデータが算出されてもよい。
 レーダ情報信号処理部32では、例えば各レーダ装置20が測定を行うたびに、そのRaWデータが処理される。具体的には、Rawデータが読み込まれると、そのデータに対してFFT(Fast Fourier Transform)が実行され、周波数成分のデータが検出される。そして周波数成分のデータに基づいて、各物体の反射位置に対する距離、速度、角度が検出データ29として算出される(図3及び図4等参照)。
 また各レーダ装置20による測定結果を統合して検出データ29が算出されてもよい。この場合、例えば車両10を中心として周辺の物体の位置(距離・角度)をマッピングしたデータや、各物体の形状・移動方向等を推定したデータ等が検出データ29として算出される。検出データ29を算出する方法等は限定されず、例えばレーダ測定に適用される任意のアルゴリズムが用いられてよい。
 算出された検出データ29は記憶部25に格納される。
 検出結果出力部33は、記憶部25に格納された検出データ29を読み込んで、検出データ29を用いた処理を行う処理ブロックや他の演算装置に適宜出力する。例えば、検出結果出力部33は、自動運転を行うシステムに検出データ29を提供する。この場合、検出データ29は、車両10の走行ルートの算出処理等に用いられる。また例えば、ドライバーの運転支援を行うシステムに検出データ29が提供される。この場合、検出データ29は、他車両や障害物との接近等をドライバーに報知する処理等に用いられる。
 走行シーン判定部34は、複数のレーダ装置20が搭載された車両10の走行シーンを判定する。本開示において走行シーンには、例えば車両10が走行する際に発生する様々なシーン(状況)が含まれる。
 本実施形態では、走行シーン判定部34は、判定部に相当する。
 走行シーン判定部34では、複数に分類された走行シーンの中から、現在の車両10の走行シーンが少なくとも1つ判定される。例えば、記憶部25に記憶された走行シーンリスト26が読み込まれ、現在の車両10の状態がリストに含まれる各走行シーンの条件を満たすか否かが判定される。そして現在の状態に当てはまる走行シーンが判定される。
 走行シーンとして設定されるシーンの種類は限定されない。
 例えば、車両10が前方へ走行する通常走行シーンや、車線変更シーン、あるいは駐車シーン等が走行シーンとして設定される。
 また例えば、停車を行うシーン、発進動作を行うシーン、左折や右折を行うシーン、Uターン動作を行うシーン、後退動作を行うシーン、高速走行を行うシーン等が走行シーンとして設定されてもよい。
 また車両10の周辺環境の状況に応じータシーンが設定されてもよい。例えば、渋滞シーン、交差点や横断歩道を走行するシーン、合流車線や分離車線を走行するシーン、坂道を走行するシーン、まがりみちを走行するシーン等が走行シーンとして設定される。
 この他、走行シーンは限定されず、例えば外気温、天候、路面状況、時間帯、季節等に応じた走行シーン(夜間シーンや雪道シーン)等が適宜設定されてもよい。
 動作タイミング制御部35は、走行シーン判定部34により判定された走行シーンに応じて、複数のレーダ装置20を動作させる順番を制御する。ここで複数のレーダ装置20を動作させる順番とは、例えば各レーダ装置20によるレーダ測定を実行する順番である。従って、動作タイミング制御部35では、送信波2を照射してその反射波3を受信する動作を行う順番が、走行シーンに合わせて設定される。
 本実施形態では、動作タイミング制御部35は、動作制御部に相当する。
 例えば、図1に示す例では、レーダ装置20a~20eをそれぞれ動作させる順番が設定される。そして走行シーンが変化するまで、動作タイミング制御部35により設定された順番で各レーダ装置20a~20eによる測定が繰り返される。
 以下では、複数のレーダ装置20を動作させる順番のことを測定ルーチンと記載する。従って、動作タイミング制御部35は、現在の走行シーンに応じて、測定ルーチンを設定するともいえる。走行シーンに応じて各レーダ装置20を動作させる順番(測定ルーチン)を設定する方法については、図7及び図8等を参照して後に詳しく説明する。
 図5は、複数のレーダ装置20の測定ルーチンについて説明するための模式図である。図5には、レーダ装置20a~20eに関する測定ルーチンの一例が模式的に図示されている。ここでは、各レーダ装置20の動作期間Tの順番により、測定ルーチンが表されている。
 動作期間Tとは、例えば、各レーダ装置20によるレーダ測定が行わる期間である。ここでは、レーダ装置20がレーダ波を照射してからRawデータを処理するまでの期間を、1つの動作期間と記載する。すなわち、図5に示すように、動作期間Tには、実際にレーダ波を照射してその反射波を受信する信号測定期間と、Rawデータを処理するためのデータ処理期間とが含まれる。すなわち、動作期間Tに行われる処理は、レーダ装置20による1回のレーダ測定(信号測定及びデータ処理)が行われる1フレーム分の処理となり、動作期間Tの逆数は、フレームレートfrとなる。
 以下では、レーダ装置20a、20b、20c、20d、及び20eの動作期間をそれぞれ、Ta、Tb、Tc、Td、及びTeと記載する。
 図5に示す例では、まずレーダ装置20aによる測定が行われる。次にレーダ装置20aによる2回目の測定が行われる。その後、レーダ装置20b、レーダ装置20c、レーダ装置20d、レーダ装置20eによる測定がこの順番でそれぞれ1回行われる。
 このように、1つの測定ルーチンのなかで、同一のレーダ装置20に2回以上の動作を割り当てるといった設定が行われてもよい。
 動作タイミング制御部35では、複数のレーダ装置20の動作タイミングτが設定される。ここで動作タイミングtとは、例えば各レーダ装置20の測定動作が開始されるタイミング、すなわち動作期間Tの開始タイミングである。動作タイミングτを設定することで、測定ルーチンを精度よく柔軟に設定することが可能となる。
 例えば図5に示す例では、レーダ装置20aの1回目及び2回目の測定動作を開始する動作タイミングτa1及びτa2が設定される。またレーダ装置20b、レーダ装置20c、レーダ装置20d、レーダ装置20eの動作タイミングτb、τc、τd、及びτeがそれぞれ設定される。
 動作タイミングτを設定する方法は限定されず、例えば直前の動作期間Tの完了を確認してから、次の動作タイミングτが設定されてもよい。あるいは、フレームレートfrに応じて各レーダ装置20の動作タイミングτがまとめて設定されてもよい。
 なお、直前の動作期間Tが完了した後に、一定の待機時間等が適宜設けられてもよい。
 また、フレームレートfrは、各レーダ装置20ごとに異なる値に設定されてもよい。
 図2に戻り、処理時間計測部36は、各レーダ装置20が測定したデータ(Rawデータ)の処理に要する処理時間を、各レーダ装置20の測定が行われるたびに計測する。すなわち、処理時間は、一つのレーダ装置から出力されるデータの処理にかかる時間である。
 具体的には、上記したレーダ情報信号処理部32において、Rawデータが読み込まれてから検出データ29が算出されるまでの時間が計測される。例えば、検出データ29を算出するために予め一定の期間が(図5に示すデータ処理期間)が設定されている。これとは別に、処理時間計測部36では、実際に検出データ29が算出されるまでに要した時間が処理時間として計測される。
 動作パラメータ調整部37は、複数のレーダ装置20の各々から出力されるデータに関する処理負荷に応じて、複数のレーダ装置20の各々の動作パラメータを調整する。
 例えば、処理負荷が高い場合に、処理負荷が減少するように動作パラメータが調整される。また例えば、処理負荷が高い場合であっても適正に処理を継続させることが可能となるように動作パラメータが調整される。
 本実施形態では、動作パラメータ調整部37は、調整部に相当する。
 処理負荷は、例えばレーダ装置20から読み込まれたRawデータをもとに検出データ29を算出するために行われる解析処理にかかる負荷である。より詳しくは、上記したレーダ情報信号処理部32で実行される処理にかかる負荷である。
 本実施形態では、処理負荷として、処理時間計測部36により算出された処理時間が用いられる。すなわち、解析処理に要する時間が負荷を表すパラメータとして用いられる。
 なお処理負荷として、CPUの使用率やメモリの占有率等が用いられてもよい。この他、処理負荷を表す任意のパラメータが用いられてよい。
 動作パラメータは、例えば、レーダ装置20ごとに設定され、レーダ装置20の動作を制御するパラメータである。動作パラメータ調整部37により調整されたパラメータは、レーダ装置20による次の測定に用いられる。これにより、処理負荷を減少させることや、レーダ測定を適正に継続することが可能となる。
 調整対象となる動作パラメータには、レーダ装置20によるレーダ測定のフレームレートfrが含まれる。上記したようにフレームレートfrは、レーダ測定(信号測定及びデータ処理)の動作期間Tの逆数に対応する。
 また動作パラメータには、レーダ装置20から出力されるデータ(Rawデータ)のサンプリング数が含まれる。Rawデータのサンプリング数は、例えば送信波2と反射波3とを混合したIF信号をデジタル化するADCに設定されるサンプリング数(サンプリングレート)である
 また動作パラメータには、レーダ装置20が照射するレーダ波1に関するパラメータが含まれる。レーダ波1に関するパラメータとは、例えばレーダ波1の波形、周期、強度等を設定するパラメータである。
 例えば、図3を参照して説明したように、FMCW方式で変調されたレーダ波1は、一定の周期T0の間に周波数が連続的に変化するチャープとなる。レーダ測定では、複数のチャープを含むレーダ波1が照射される。本実施形態では、このようにレーダ波1として照射されるチャープの数(チャープ数)が、動作パラメータとして調整される。
 本実施形態では、動作パラメータ調整部37により、処理負荷に基づいて、動作パラメータを調整するか否かが判定される。
 例えば、処理負荷が十分に低い場合には、レーダ測定が適正に行えているものとして、動作パラメータの調整は行われない。一方で、処理負荷が高い場合には、必要なスピードで処理を継続することが難しい場合がある。このような場合には、動作パラメータを調整して、処理負荷を軽減する処理が実行される。
 動作パラメータの調整には、例えば記憶部25に記憶された動作モードリスト27が用いられる。この場合、動作パラメータ調整部37は、処理負荷の状態や走行シーン等に応じて、動作モードリスト27の中から適正な動作モードが選択される。この場合、各動作パラメータは、選択された動作モードに予め設定されていた値にそれぞれ調整される。このように、動作パラメータ調整部は、レーダ装置20の動作モードを判定するとも言える。
 なお、動作モードリスト27を用いずに、各動作パラメータが個別に調整されてもよい。
 レーダ制御部38は、複数のレーダ装置20と通信し、各レーダ装置20の動作を制御する。具体的には、動作タイミング制御部35により算出された動作タイミングτに合わせて、各レーダ装置20を動作させる。また動作パラメータ調整部37により調整された動作パラメータを各レーダ装置20に設定する。なお、動作パラメータとしてフレームレートfrが調整された場合には、フレームレートfrに合わせて動作タイミングτが設定されてもよい。
 [レーダ統制システムの動作]
 図6は、レーダ統制システム100の動作例を示すフローチャートである。図6に示すフローチャートは、例えば車両10が動作している間、繰り返し実行されるループ処理である。
 この処理では、車両10の走行シーンに応じて、次に動作させるレーダ装置20の動作タイミングτが設定される。これにより、複数のレーダ装置20を動作させる順番が制御される。また、すでに動作させたレーダ装置20について、その動作パラメータが調整される。
 例えば、図6に示す処理のバックグラウンドでは、複数のレーダ装置20によるレーダ測定が実行され、検出データ29が順次算出される。図6に示す処理により設定された、各レーダ装置20を動作させる順番(各レーダ装置20の動作タイミングτ)、及び各レーダ装置20の動作パラメータは、バックグラウンドで動作する複数のレーダ装置20の制御に逐次反映される。
 まず、走行シーン判定部34により、通常走行シーンが選択される(ステップ101)。ここでは、通常走行シーンは予め設定された初期シーンとして設定されたものである。
 この場合、動作タイミング制御部35により、通常走行シーンにおいて各レーダ装置20を動作させる順番(図6参照)が設定される。バックグラウンドでは、この時設定された順番に従って、各レーダ装置20によるレーダ測定が実行される。
 次に、走行シーン判定部34により、現在の走行シーンが判定される(ステップ102)。
 具体的には走行シーン判定部34により、複数のレーダ装置20を用いて測定される情報に基づいて、走行シーンが判定される。ここで、複数のレーダ装置20を用いて測定される情報とは、検出データ29として算出される情報である。なお検出データ29は、直前に算出されたデータの他に、すでに記憶部25に格納されている数フレーム前のデータ等が用いられてもよい。
 例えば、走行シーンリスト26に挙げられた複数の走行シーンの中から、条件に合致する走行シーンが適宜判定される。この判定に、検出データ29が用いられる。
 ここでは、走行シーンとして、通常走行シーン、車線変更シーン、及び駐車シーンを例に挙げて説明する。
 通常走行シーンは、車両10が前方への走行を行うシーンであり、車両10の姿勢がほとんど変化しないようなシーンである。ここで、車両10が前方へ走行する状態とは、例えば車両10が右折、左折、車線変更等の進路変更を行うことなく前進するシーンである。一つの斜線内を継続して走行するようなシーンは、通常走行シーンとなる。なお通常走行シーンとして、速度の条件が加えられてもよい。この場合、例えば車両10が一定以上の速度(例えば10km/h以上等)で前進している状態等が通常走行シーンとして設定される。
 通常走行シーンでは、車両10の周辺に存在する他車両の向きはほとんど変化しないと考えられる。走行シーン判定部34では、例えば車両10の速度が一定以上であり、他車両の向きが閾値範囲に収まっているような場合に、現在の走行シーンが通常走行シーンであると判定する。
 車線変更シーンは、例えば車両10が一定以上の速度で前進走行しており、車両10の姿勢が変化するようなシーンである。この場合、車両10の周辺に存在する他車両の向きが変化すると考えられる。走行シーン判定部34では、例えば車両10の速度が一定以上であり、他車両の向きが閾値範囲を超えて変化した場合に、現在の走行シーンが車線変更シーンであると判定する。
 駐車シーンは、例えば車両10の近くに障害物がある状態で、比較的低い速度で前進・後進し、大きく姿勢を変えるようなシーンである。走行シーン判定部34では、例えば車両10の近くにある障害物までの距離が閾値以下であり、障害物の向きが閾値範囲を超えて変化し、車両10の速度が閾値以下であるような場合に、現在の走行シーンが駐車シーンであると判定する。
 また、車両10に搭載された他のセンサを用いて測定される情報に基づいて、走行シーンが判定されてもよい。例えば、通常走行シーンや車線変更シーンの判定に、車載カメラのデータ等が用いられてもよい。また、車線変更シーンの判定に、方向指示器の動作(ON/OFF)や、IMU等のジャイロセンサ等が用いられてもよい。この他、ハンドルの舵角を検出する舵角センサや、車両10の速度を検出する速度センサ、GPSセンサ、照度センサ、温度センサ等が適宜用いられてよい。車両10に搭載された各種のセンサを用いることで、様々な走行シーンを精度よく判定することが可能となる。
 もちろん、複数のレーダ装置20により測定される情報と、他のセンサを用いて測定される情報とを統合して、走行シーンが判定されてもよい。
 次に、動作タイミング制御部35により、車両10の走行シーンに応じて、次に動作させるレーダ装置20の動作タイミングτが制御される(ステップ103)。具体的には、走行シーン判定部34により判定された走行シーンに対応する順番(測定ルーチン)から、次に動作させるレーダ装置20が選択される。そして選択されたレーダ装置20について、走行シーンに適したレーダ波1の照射タイミング(動作タイミングτ)が設定される。
 例えば走行シーンが変化していない場合には、その走行シーンに設定された順番に従って、次に動作させるレーダ装置20が選択され動作タイミングτが設定される。
 また例えば、走行シーンが変化した場合には、新たに判定された走行シーンに設定された順番に従って、次に動作させるレーダ装置20が選択され動作タイミングτが設定される。例えば新たに判定された走行シーンの測定ルーチンの最初に設定されたレーダ装置20が選択される。あるいは、直前に動作していたレーダ装置20を参照して、次に動作させるレーダ装置20が選択されてもよい。
 次に、動作パラメータ調整部37により、動作パラメータを調整するか否かが判定される(ステップ104)。ここでは、すでに動作させたレーダ装置20(典型的には直前に動作させたレーダ装置20)について、その動作パラメータが調整される。
 本実施形態では、一つのレーダ装置20から出力されるデータの処理にかかる処理時間がレーダ装置20によるレーダ測定のフレームレートfrに収まらない場合に、動作パラメータが調整される。すなわち、予め設定された動作期間Tに処理が完了しない場合に、動作
パラメータが調整される。
 図5を参照して説明したように、レーダ装置20には、動作期間T(フレームレートfr)が設定される。動作期間Tには、データ処理期間が含まれているが、例えばデータ量が多いい場合や、検出される物体の数が多い場合等には、処理負荷が高くなり、想定されたデータ処理期間に解析が完了しない場合がある。すなわち、1フレーム内でデータ処理が完了しない場合がある。
 ステップ104では、処理時間計測部により計測された、処理時間がデータ処理期間以下となっているか否かが判定される。
 例えば、処理時間がデータ処理期間以下である場合(ステップ104のYes)、レーダ装置20から出力されたRawデータが1フレーム内で処理が可能であるとして、動作パラメータは調整されず、ステップ106が実行される。
 なお処理時間が十分に短い場合(例えばデータ処理期間の50%等)には、後述するステップ105で調整された動作パラメータの値が、調整前の値に設定されてもよい。この場合、調整前の値は、記憶部25に記憶された処理パラメータ28等を参照して取得される。
 また例えば、処理時間がデータ処理期間よりも大きい場合(ステップ104のNo)、レーダ装置20から出力されたRawデータが1フレーム内で処理が不可能であるとして、レーダ装置20の動作パラメータが調整される(ステップ105)。
 ステップ105では、動作パラメータ調整部37により、1フレーム内で処理が不可能であるとされたレーダ装置20について、その動作パラメータが調整される。
 動作パラメータとしては、例えばレーダ装置20によるレーダ測定のフレームレートfr、レーダ装置20から出力されるデータ(Rawデータ)のサンプリング数、レーダ装置20が照射するレーダ波1のチャープ数の少なくとも1つが制御される。このうち、サンプリング数及びチャープ数は、レーダ装置20そのものに設定されるレーダパラメータである。
 また動作パラメータを調整する際には、例えば動作モードの判定や、調整したパラメータを用いた場合の精度評価等が実行される。この点については、後に詳しく説明する。
 次に、複数のレーダ装置20(レーダ統制システム100)によるレーダ測定を継続するか否かが判定される(ステップ106)。例えば、レーダ測定を継続すると判定された場合(ステップ106のYes)、ステップ102に戻り、再度走行シーンが判定される。また車両10の運転が終了した場合等には、レーダ測定が完了したと判定され、図6に示す処理が終了する(ステップ106のNo)。
 このように、レーダ統制システム100は、走行シーンに応じた適切なレーダ動作タイミングと、動作モード(動作パラメータ)の制御を行いながら、目標物の検出結果を出力し続けるシステムである。
 [レーダ装置を動作させる順番]
 以下では、図6のステップ103において、車両10の走行シーンに応じて設定されるレーダ装置20の動作の順番について具体的に説明する。
 本実施形態では、動作タイミング制御部35は、複数のレーダ装置20の各々に関する動作期間Tが重複しないように動作タイミングτを設定する。すなわち、各レーダ装置20a~20eを動作させる順番(測定ルーチン)は、1つのレーダ装置20による測定が完了した場合に、次のレーダ装置20による測定が開始されるように設定される。この場合、同じタイミングで2台以上のレーダ装置20による測定が行われることはない。
 これにより、レーダ情報信号処理部32で実行される解析処理の処理負荷を十分に低減することが可能となる。
 各走行シーンでは、車両10の挙動や他の車両等との位置関係が異なる。このため、例えば車両10に接近する物体(あるいは車両10が接近する物体)が想定される方向や範囲は、走行シーンに応じて異なるものとなる。本実施形態では、このように車両10に接近して車両10と衝突するリスクのある物体を適正に検出できるように、測定ルーチン(動作タイミングt)が設定される。
 具体的には、動作タイミング制御部35は、複数のレーダ装置20のうち、判定された走行シーンにおいて車両10に衝突するリスクのある物体が想定される空間を測定するレーダ装置20の動作頻度を相対的に高く設定する。
 ここで、動作頻度とは、例えばレーダ装置20を一定時間内に動作させる頻度である。例えば測定ルーチン内において、同一のレーダ装置20を動作させる回数が、そのレーダ装置20の動作頻度となる。
 これにより、車両10に衝突するリスクのある物体が想定される空間を重点的に測定することが可能となり、衝突するリスクのある物体を確実に検出することが可能となる。また、衝突するリスクのある物体が想定されない空間(例えば車両10の移動方向とは逆方向の空間等)を測定するレーダ装置20については、相対的に動作頻度が下がることになる。この結果、システム全体の処理負荷を不必要に増大させることなく、レーダ測定を適正に継続することが可能となる。
 図7は、走行シーンに応じたレーダ装置20の動作の順番の一例を示す模式図である。ここでは、各走行シーンにおいてレーダ装置20a~20eを動作させる順番が、各レーダ装置20a~20eの動作期間Ta~Teを用いて模式的に図示されている。これらの順番は、各走行シーンに対応する測定ルーチンを繰り返す順番となっている。
 図7Aには、通常走行シーンにおいてレーダ装置20a~20eを動作させる順番が図示されている。通常走行シーンでは、車両10の進行方向となる車両10の前方の空間に存在する前方車両や、車両10の前方の空間を通過する歩行者等に対する接近に注意する必要がある。この場合、車両10の前方にある物体(前方車両や歩行者等)が、車両10に衝突するリスクのある物体となる。
 このため、通常走行シーンでは、車両10の前方を測定可能な前方レーダ装置(レーダ装置20a、20b、及び20c)の動作頻度が相対的に高く設定される。
 例えば図7Aでは、測定ルーチンにおける動作期間Ta~Teの順番が、Ta、Tb、Tc、Ta、Tb、Tc、Td、Teに設定される。すなわち、前方レーダ装置(レーダ装置20a、20b、及び20c)によるレーダ測定が2回実行され、他のレーダ装置(レーダ装置20d及び20e)による測定が1回実行される。通常走行シーンでは、このような測定ルーチンが繰り返される。
 このように、走行シーンとして車両10が通常の走行を行う通常走行シーンが判定された場合、前方レーダ装置の動作頻度が他のレーダ装置の動作頻度よりも高く設定される。
 これにより、通常走行時に注意するべき車両10の前方の空間に対して、重点的にレーダ測定が行われる。この結果、前方車両等に対する検出精度が向上し、安全性を向上することが可能となる。
 また、通常走行時には、全てのレーダ装置20a~20eが図7Aに示す順番で動作する。これにより、車両10の前方のみならず、車両10の後方や側方を含む車両10の周辺環境全体を測定することが可能である。なお、車両10の後方を測定するレーダ装置20d及び20eの動作頻度は相対的に低く設定される。これにより、車両10の後方を不必要に多く測定するといった事態が回避され、全体の処理負荷を抑制することが可能となる。
 図7Bには、車線変更シーンにおいてレーダ装置20a~20eを動作させる順番が図示されている。車線変更シーンでは、車両10が走行するレーンが変わるため、車両10の後方の空間に存在する後方車両等に対する接近に注意する必要がある。この場合、車両10の後方にある物体(前方車両等)が、車両10に衝突するリスクのある物体となる。
 このため、車線変更シーンでは、車両10の後方を測定可能な後方レーダ装置(レーダ装置20d及び20e)の動作頻度が相対的に高く設定される。特に、レーダ装置20d及び20eは、車両の斜め後方を測定可能に配置されているため、移動先のレーンにおいて接近する後方車両等を確実に検出することが可能となる。
 例えば図7Bでは、測定ルーチンにおける動作期間Ta~Teの順番が、Ta、Tb、Tc、Td、Te、Td、Teに設定される。すなわち、後方レーダ装置(レーダ装置20d及び20e)によるレーダ測定が2回実行され、他のレーダ装置(レーダ装置20a、20b、及び20c)による測定が1回実行される。車線変更シーンでは、このような測定ルーチンが繰り返される。
 このように、走行シーンとして車両10が車線変更を行う車線変更シーンが判定された場合、後方レーダ装置の動作頻度が他のレーダ装置の動作頻度よりも高く設定される。
 これにより、車線変更時に注意するべき車両10の後方の空間に対して、重点的にレーダ測定が行われる。また車両10の前方の空間に対するレーダ測定の回数、すなわちレーダ装置20a、20b、及び20cの動作頻度は、相対的に低く設定される。このように、左右後方のレーダ測定の回数を増やし、前方側のレーダ測定の回数を減らすことで、プロセッサでの処理負荷を大きくすることなく、車両10の後方の検出性能を向上させることが可能となる。
 なお、車線変更シーンにおいて、車両10が左側及び右側のどちらに移動するかがわかっている場合には、移動する側の後方を重点的に測定するように、レーダ装置20の動作の順番が設定されてもよい。車線変更時に車両10が移動する方向は、例えば方向指示器のON/OFFや、ハンドルの舵角、ドライバーの視線等の情報から推定可能である。
 例えば、車両10が左斜線変更を行う場合には、車両10の左後方を測定するレーダ装置20dの動作頻度が相対的に高く設定され、他のレーダ装置20eの動作頻度が相対的に低く設定される。同様に、車両10が右斜線変更を行う場合には、車両10の右後方を測定するレーダ装置20eの動作頻度が相対的に高く設定される。
 これにより、移動先のレーンを走行している後方車両を確実に検出するとともに、全体の処理負荷を十分に抑制することが可能となる。
 図7Cには、駐車シーンにおいてレーダ装置20a~20eを動作させる順番が図示されている。駐車シーンでは、通常走行時等と比べて車両10の左右の空間に存在する障害物(他の車両、壁、フェンス、歩行者等)に対する接近に注意する必要がある。この場合、車両10の側方にある物体(前方車両等)が、車両10に衝突するリスクのある物体となる。
 このため、駐車シーンでは、車両10の側方を測定可能な側方レーダ装置(レーダ装置20b、20c、20d、及び20e)の動作頻度が相対的に高く設定される。
 例えば図7Cでは、測定ルーチンにおける動作期間Ta~Teの順番が、Ta、Tb、Tc、Td、Te、Tb、Tc、Td、Teに設定される。すなわち、側方レーダ装置(レーダ装置20b、20c、20d、及び20e)によるレーダ測定が2回実行され、他のレーダ装置(レーダ装置20a)による測定が1回実行される。駐車シーンでは、このような測定ルーチンが繰り返される。
 このように、走行シーンとして車両10が駐車を行う駐車シーンが判定された場合、側方レーダ装置の動作頻度が他のレーダ装置の動作頻度よりも高く設定される。
 これにより、駐車時に注意するべき車両10の左右の空間に対して、重点的にレーダ測定が行われる。また車両10の前方を対象とするレーダ装置20aの動作頻度は、相対的に低く設定される。このように、駐車シーンでは、車両10の左右に対するレーダ測定の回数を多くし、前方に対するレーダ測定の回数を少なくすることで、車両10の左右にある障害物を高精度に検出し、駐車可能スペースの検出性能を向上させることが可能となる。
 なお複数のレーダ装置20a~20eを動作させる順番は、図7に示す例に限定されない。例えば、停車を行うシーン、発進動作を行うシーン、左折や右折を行うシーン、Uターン動作を行うシーン、後退動作を行うシーン、高速走行を行うシーン、渋滞シーン、交差点や横断歩道を走行するシーン、合流車線や分離車線を走行するシーン、坂道を走行するシーン、まがりみちを走行するシーン、夜間シーン、雪道シーン等の各種の走行シーンに応じた測定ルーチンが適宜設定されてよい。
 図8は、走行シーンに応じたレーダ装置20の動作の順番の他の例を示す模式図である。
 図8に示す例では、動作タイミング制御部35により、複数のレーダ装置20のうち、一部のレーダ装置20に関する動作期間Tが重複するように動作タイミングτが設定される。すなわち、各レーダ装置20a~20eを動作させる順番(測定ルーチン)は、同じタイミングで2台以上のレーダ装置20による測定が行われるように設定される。
 例えば、CPUの処理能力が十分に高い場合には、2台以上のレーダ装置20から出力されるRawデータに対する解析処理を同時に並列処理することが可能である。このような場合には、2台以上のレーダ装置20によるレーダ測定(信号測定及びデータ処理)が、その動作期間Tが重なるように実行されてもよい。これにより、単位時間当たりの測定回数が増加し、例えば移動物体に対する検出精度等を十分に向上することが可能となる。
 図8A~図8Cには、2台のレーダ装置20の動作期間Tが重複するように設定された動作の順番が、各レーダ装置20a~20eの動作期間Ta~Teを用いて模式的に図示されている。ここでは、図7Aを参照して説明した通常走行シーンにおけるレーダ装置20を動作させる順番(Ta、Tb、Tc、Ta、Tb、Tc、Td、Te)が、各レーダ装置20a~20eの動作期間Tが重複するように変更されている。
 なお、図7B及び図7Cに示す車線変更シーン及び駐車シーン等に適用される測定ルーチンが、以下の説明に従って変更されてもよい。
 図8Aには、各レーダ装置20a~20eのうち、一部のレーダ装置20のペアについて、動作期間Tが重複するように動作タイミングτが設定される。以下では、2つのレーダ装置20の動作期間T1及びT2が重複する場合、その順番を「T1/T2」と記載する。図8Aでは、T1及びT2の開始タイミングは略同時である。
 例えば図8Aでは、測定ルーチンにおける動作期間Ta~Teの順番が、Ta、(Tb/Tc)、Ta、(Tb/Tc)、(Td/Te)に設定される。すなわち、レーダ装置20aによるレーダ測定は単独で実行される。また左前方及び右前方に向けられたレーダ装置20b及び20cによるレーダ測定と、左後方及び右後方に向けられたレーダ装置20d及び20eによるレーダ測定とが、略同時に実行される。
 これにより、例えば車両10の左右前方(あるいは左右後方)の比較的広い範囲を同時に監視することが可能となる。またレーダ装置20aについては、単独でのデータ処理となるため、例えば処理時間を向上するといったことが可能となる。
 図8Bには、全てのレーダ測定において動作期間Tが重複するように動作タイミングτが設定される。ここでは、重複する動作期間Tの開始タイミングは略同時である。
 例えば図8Bでは、測定ルーチンにおける動作期間Ta~Teの順番が、(Ta/Tb)、(Tc/Ta)、(Tb/Tc)、(Td/Te)に設定される。すなわち、常時2台分のレーダ測定が実行されることになり、1つの測定ルーチンが完了するまでにかかる時間が図8Aに示す測定ルーチンよりも短くなる。これにより、例えば移動物体等に対する検出精度等を十分に向上することが可能となる。
 図8Cには、図8Bに示す測定ルーチンを、互いに重複する動作期間Tの開始タイミングがずれるように設定した例である。
 例えば図8Cでは、測定ルーチンにおける動作期間Ta~Teの順番が、(Ta/Tb)、(Tc/Ta)、(Tb/Tc)、(Td/Te)に設定される。このうち、最初に実行される(Ta/Tb)については、Tbの開始タイミングがTaよりも一定時間遅れて設定される。また次に実行される(Tc/Ta)のうち、Tcは直前に実行されているTbと重複するように設定され、TaはTcよりも一定時間遅れて設定される。同様に、(Tb/Tc)及び(Td/Te)についても、各動作期間Tが互いに一定時間遅れた期間となるようにそれぞれ設定される。
 例えば図5等を参照して説明したように、動作期間Tのレーダ波1を照射して反射波3を測定する信号測定期間と、測定した信号を解析するデータ処理期間とに分けられる。図8Cに示す測定ルーチンでは、例えば、直前に動作させたレーダ装置20のデータ処理を実行している間に、次のレーダ装置20の信号測定を実行するといった動作タイミングτの設定が可能である。これにより、CPUに対する処理負荷を抑制しつつ、移動物体等に対する検出精度等を十分に向上することが可能となる。
 [動作パラメータの調整]
 以下では、図6のステップ105において調整されるレーダ装置20の動作パラメータについて説明する。
 例えば、FMCW方式のレーダ測定の信号処理では、物体の距離及び速度(極座標における距離方向及び速度方向)についての計算量は、例えばRawデータのサンプリング数とレーダ波1のチャープ数とで決まり略一定となる。一方で、物体の角度推定については、その計算量が物体の検出数によって変動する。これは、距離及び速度の検出結果に含まれる各物体をターゲットとして、角度推定を行うためである。
 このため、例えば周辺に目標物となる物体が多く存在するような状況では、レーダ測定を適正に継続するために、フレームレートfrを落とす(期間Tを長くする)か、サンプリング数やチャープ数を減らすといった処理が行われる。
 なお、角度推定が全方向に向けて行われるような場合には、目標物の数に関わらずほぼ一定の処理負荷が生じる。このような場合であっても、目標物の距離、速度、角度等を要求された時間内に適正に算出するために、フレームレートfr、サンプリング数、及びチャープ数を適宜調整する方法が有効である。
 フレームレートfrは、レーダ測定を繰り返し実行する際の単位時間当たりの測定回数に対応する。このため、例えば移動する目標物(動体)等を検出する場合には、高いフレームレートfrを設定することで、動体検出精度が向上する。逆に低いフレームレートfrを設定した場合には、一度のレーダ測定に割り当てられる時間が長くなるため、データ処理の時間を確保することが可能となる。
 サンプリング数は、レーダ装置20で生成される送信波2と反射波3とをミキシングしたIF信号に対するサンプリング数である。このためサンプリング数が大きい場合には、IF信号を詳細に再現するデジタル信号(Rawデータ)を生成できる。これにより、送信波2と反射波3との周波数差を高精度に算出することが可能となり、距離分解能が向上する(図3参照)。逆に小さいサンプリング数を設定した場合には、Rawデータのデータ点が減るため、処理負荷を軽減することが可能となる。
 チャープ数は、レーダ装置20で生成される送信波2として用いるチャープの数である。チャープ数が大きい場合には、送信波2と反射波3との周波数差のサンプル数を増加することができる。これにより、隣接するチャープにおける周波数差(ΔF及びΔF')の差分を精度よく算出することが可能となり、速度分解能が向上する(図3参照)。逆に小さいチャープ数を設定した場合には、チャープごとに行われる繰り返し処理の回数が減るため、処理負荷を軽減することが可能となる。
 このように、フレームレートfr、サンプリング数、及びチャープ数を調整すると、レーダ測定における以下の特性がそれぞれ変化する。
 フレームレート:動体検出精度
 サンプリング数:距離分解能
 チャープ数:速度分解能
 本実施形態では、このような特性をふまえて、動作パラメータ調整部37により、フレームレートfr、サンプリング数、及びチャープ数がそれぞれ調整される。
 具体的には、動作パラメータを変化させた場合に生じる測定精度が評価され、測定精度の低下が許容できる場合には、その動作パラメータが調整される。また測定精度の低下が許容できない場合には、他の動作パラメータが制御される。
 例えば、車両10の周辺の目標物の持つ速度を参照して、フレームレートfrを落とした際に生じる測定精度の低下量が算出される。測定精度の低下量が許容範囲に収まるようであれば、フレームレートfrを落としてレーダ測定が実行される。また、測定精度の低下量が許容範囲に収まらないようであれば、サンプリング数やチャープ数を減らして、距離分解能や速度分解能を落とした状態でレーダ測定が実行される。
 なお、許容範囲は、例えばレーダ装置20により測定された検出データ29を使用するアプリケーション(例えば自動運転システムや運転支援システム等)において許容される精度範囲等に基づいて設定される。
 また例えば、現在の走行シーンにおける各測定精度(動体検出精度、距離分解能、速度分解能等)の重要度に応じて許容範囲が設定されてもよい。
 このように、動作パラメータ調整部37では、フレームレートfrを調整した場合に想定される測定精度の変化が算出され、測定精度の変化が許容範囲を超えた場合、サンプリング数(又はチャープ数)が調整される。
 この場合、フレームレートfrは第1のパラメータに相当し、サンプリング数(又はチャープ数)は第2のパラメータに相当する。
 このように、測定精度の変化を基準に、調整対象となる動作パラメータを設定することで、必要な測定精度を維持したまま、処理負荷を抑制することが可能となる。
 またフレームレートfr、サンプリング数、及びチャープ数を調整する方法は限定されない。例えばデフォルトの調整値が用いられてもよいし、処理負荷の値等に応じて調整値が適宜設定されてもよい。
 なお、フレームレートfrに代えて、サンプリング数を調整した場合の測定精度が算出されてもよい。この場合、測定精度の変化が許容範囲を超えた場合、フレームレートfr又はチャープ数が調整される。
 同様に、チャープ数を調整した場合の測定精度が算出されてもよい。この場合、測定精度の変化が許容範囲を超えた場合、フレームレートfr又はサンプリング数が調整される。
 この他、調整に伴う測定精度の推定対象となる動作パラメータは限定されない。
 また、車両10の走行シーンに応じて、調整の対象となる動作パラメータが選択されてもよい。この場合、例えば走行シーンにおいて、調整の対象となる動作パラメータを指定するデータや、調整の対象となる動作パラメータに設定するべき調整値のデータ等が動作モードリスト27から読み込まれる。
 以下では、各走行シーンにおける動作パラメータの調整例について説明する。
 例えば、車両10が高速道路を走行しているような高速走行シーンが判定されたとする。この場合、車両10自身の速度が高速であり、また車両10の周辺を走行する他車両の速度も高速である。従って、高速走行シーンでは、高速で移動する動物体を精度よく検出することが求められる。このため、動体検出精度に影響するフレームレートfrの値は維持され、代わりにサンプリング数とチャープ数とを削減される。これにより、処理時間を短縮することが可能である。
 また、車両10が駐車を行う駐車シーンが判定されたとする。この場合、車両10自身の速度が低速であり、また車両10の周辺に存在する障害物等はほとんどが停止物である。このように、車両10は低速移動しているため、動体検出精度を向上させる効果は小さい。このため、フレームレートが削減される。これにより、多数の物体が検出された場合でも、処理時間を確保することが可能となる。また、停止物が多いので速度分解能を向上させる効果が小さい。このため、チャープ数が削減される。これにより、処理時間を短縮することが可能である。なお、駐車シーンでは、障害物との距離が近いと考えられる。このため、距離分解能に影響するサンプリング数は維持される。これにより、測距精度を維持しつつ、処理負荷を低減し周辺の目標物を確実に検出することが可能となる。
 また、車両10が渋滞した道路を走行している渋滞シーンが判定されたとする。この場合、車両10も周辺車両も低速移動しているため、高速な動体を検出する必要はなく、フレームレートが削減される。一方で、さまざま速度を持った動体が密集しているため、距離分解能に影響するサンプリング数と、速度分解能に影響するチャープ数は維持される。これにより、多数の目標物を確実に検出することが可能となる。
 以上、本実施形態に係るコントローラ30では、複数のレーダ装置20を搭載した車両10の走行シーンが判定され、その結果をもとに各レーダ装置20を動作させる順番が制御される。これにより、例えば各レーダ装置は走行シーンに適した順番で動作するため、不要な測定等を抑制することが可能となる。この結果、レーダ測定に要する処理負荷を軽減しつつ十分な測定精度を実現することが可能となる。
 複数のレーダを用いる場合に、レーダの測定の順番やパラメータを、目標物の出現位置
等の事前情報に基づいて設定するといった方法が考えられる。しかしながら、複数のレーダを車載レーダとして利用する場合には、静止物も含めると多くの目標物が存在することかから、事前情報等を使って各レーダを制御することは難しい。
 近年では、複数の車載ミリ波レーダを設置して情報を含み合わせる事で、単体のミリ波レーダより高い精度を実現する技術が検討されている。しかしながら、複数レーダの統合処理を行うにはデータ転送、プロセッサの処理能力等、高性能なシステムが必要となり、装置によっては処理が追い付かなくなるといったおそれがある。
 本実施形態では、車両10の走行シーンに応じて、複数のレーダ装置20を動作させる順番が制御される。これにより、各走行シーンにおいて衝突等のリスクが高くなる空間を重点的に測定するように各レーダ装置20を割り当てることが可能となる。逆にリスクの低い空間を測定するレーダ装置20については相対的に測定頻度を下げることで、レーダ測定に要する処理負荷を軽減することが可能となる。
 また、各レーダ装置20の動作パラメータが処理負荷に応じて調整される。これにより、処理負荷を軽減するような動作パラメータを設定して、各レーダ装置20を動作させることが可能となる。また動作パラメータは、レーダ測定に求められる測定精度を確保するように制御される。これにより、例えば走行シーンが変化した場合であっても、各走行シーンで要求される測定精度を維持しつつ、安定したレーダ測定を実現することが可能となる。
 このように、本実施形態では、検出範囲の異なる複数のレーダ装置20を搭載した車載システムにおいて、走行環境に適したレーダ動作のタイミングと、レーダ動作モード(動作パラメータ)をプロセッサの処理能力まで考慮して設定することが可能となる。これにより、信頼性の高い自動運転システムや運転支援システム等を実現することが可能となる。
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
 上記では、主にFMCW方式のレーダ装置について説明した。これに限定されず、例えばドップラーレーダーやパルスレーダー等が用いられてもよい。このような場合であっても、複数のレーダ装置を動作させる順番を適宜制御することで、レーダ測定に要する処理負荷を軽減しつつ十分な測定精度を実現することが可能となる。
 以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。
 本開示において、「同じ」「等しい」「直交」等は、「実質的に同じ」「実質的に等しい」「実質的に直交」等を含む概念とする。例えば「完全に同じ」「完全に等しい」「完全に直交」等を基準とした所定の範囲(例えば±10%の範囲)に含まれる状態も含まれる。
 なお、本技術は以下のような構成も採ることができる。
(1)複数のレーダ装置が搭載された車両の走行シーンを判定する判定部と、
 前記判定された前記走行シーンに応じて、前記複数のレーダ装置を動作させる順番を制御する動作制御部と
 を具備する情報処理装置。
(2)(1)に記載の情報処理装置であって、
 前記動作制御部は、前記複数のレーダ装置の動作タイミングを設定する
 情報処理装置。
(3)(2)に記載の情報処理装置であって、
 前記動作制御部は、前記複数のレーダ装置の各々に関する動作期間が重複しないように前記動作タイミングを設定する
 情報処理装置。
(4)(2)に記載の情報処理装置であって、
 前記動作制御部は、前記複数のレーダ装置のうち、一部の前記レーダ装置に関する動作期間が重複するように前記動作タイミングを設定する
 情報処理装置。
(5)(1)から(4)のうち少なくとも1つに記載の情報処理装置であって、
 前記判定部は、前記複数のレーダ装置を用いて測定される情報、又は前記車両に搭載された他のセンサを用いて測定される情報の少なくとも一方に基づいて、前記走行シーンを判定する
 情報処理装置。
(6)(1)から(5)のうち少なくとも1つに記載の情報処理装置であって、
 前記動作制御部は、前記複数のレーダ装置のうち、前記判定された前記走行シーンにおいて前記車両に衝突するリスクのある物体が想定される空間を測定するレーダ装置の動作頻度を相対的に高く設定する
 情報処理装置。
(7)(6)に記載の情報処理装置であって、
 前記複数のレーダ装置は、前記車両の前方を測定可能な前方レーダ装置と、前記前方レーダ装置とは測定範囲が異なる他のレーダ装置とを含み、
 前記動作制御部は、前記走行シーンとして前記車両が前方への走行を行うシーンが判定された場合、前記前方レーダ装置の動作頻度を前記他のレーダ装置の動作頻度よりも高く設定する
 情報処理装置。
(8)(6)又は(7)に記載の情報処理装置であって、
 前記複数のレーダ装置は、前記車両の後方を測定可能な後方レーダ装置と、前記後方レーダ装置とは測定範囲が異なる他のレーダ装置とを含み、
 前記動作制御部は、前記走行シーンとして前記車両が車線変更を行うシーンが判定された場合、前記後方レーダ装置の動作頻度を前記他のレーダ装置の動作頻度よりも高く設定する
 情報処理装置。
(9)(6)から(8)のうち少なくとも1つに記載の情報処理装置であって、
 前記複数のレーダ装置は、前記車両の側方を測定可能な側方レーダ装置と、前記側方レーダ装置とは測定範囲が異なる他のレーダ装置とを含み、
 前記動作制御部は、前記走行シーンとして前記車両が駐車を行うシーンが判定された場合、前記側方レーダ装置の動作頻度を前記他のレーダ装置の動作頻度よりも高く設定する
 情報処理装置。
(10)(1)から(9)のうち少なくとも1つに記載の情報処理装置であって、さらに、
 前記複数のレーダ装置の各々から出力されるデータに関する処理負荷に応じて、前記複数のレーダ装置の各々の動作パラメータを調整する調整部を具備する
 情報処理装置。
(11)(10)に記載の情報処理装置であって、
 前記動作パラメータは、前記レーダ装置によるレーダ測定のフレームレート、前記レーダ装置から出力されるデータのサンプリング数、及び前記レーダ装置が照射するレーダ波に関するパラメータの少なくとも1つを含む
 情報処理装置。
(12)(10)又は(11)に記載の情報処理装置であって、
 前記調整部は、前記処理負荷に基づいて、前記動作パラメータを調整するか否かを判定する
 情報処理装置。
(13)(12)に記載の情報処理装置であって、
 前記処理負荷は、前記レーダ装置から出力されるデータの処理にかかる処理時間であり、
 前記調整部は、前記処理時間が前記レーダ装置によるレーダ測定のフレームレートに収まらない場合に、前記動作パラメータを調整する
 情報処理装置。
(14)(10)から(13)のうち少なくとも1つに記載の情報処理装置であって、
 前記動作パラメータは、第1のパラメータと第2のパラメータとを含み、
 前記調整部は、前記第1のパラメータを調整した場合に想定される測定精度の変化を算出し、前記測定精度の変化が許容範囲を超えた場合、前記第2のパラメータを調整する
 情報処理装置。
(15)(10)から(14)のうち少なくとも1つに記載の情報処理装置であって、
 前記調整部は、前記走行シーンに応じて、調整対象となる前記動作パラメータを選択する
 情報処理装置。
(16)(1)から(15)のうち少なくとも1つに記載の情報処理装置であって、
 前記複数のレーダ装置は、FMCW方式のレーダ装置である
 情報処理装置。
(17)複数のレーダ装置が搭載された車両の走行シーンを判定し、
 前記判定された前記走行シーンに応じて、前記複数のレーダ装置を動作させる順番を制御する
 ことをコンピュータシステムが実行する情報処理方法。
(18)車両に搭載された複数のレーダ装置と、
 前記車両の走行シーンを判定する判定部と、
 前記判定された前記走行シーンに応じて、前記複数のレーダ装置を動作させる順番を制御する動作制御部と
 を具備するレーダ測定システム
 1…レーダ波
 2…送信波
 3…反射波
 10…車両
 20、20a~20e…レーダ装置
 25…記憶部
 30…コントローラ
 31…レーダ情報取得部
 32…レーダ情報信号処理部
 33…検出結果出力部
 34…走行シーン判定部
 35…動作タイミング制御部
 36…処理時間計測部
 37…動作パラメータ調整部
 38…レーダ制御部
 100…レーダ統制システム

Claims (18)

  1.  複数のレーダ装置が搭載された車両の走行シーンを判定する判定部と、
     前記判定された前記走行シーンに応じて、前記複数のレーダ装置を動作させる順番を制御する動作制御部と
     を具備する情報処理装置。
  2.  請求項1に記載の情報処理装置であって、
     前記動作制御部は、前記複数のレーダ装置の動作タイミングを設定する
     情報処理装置。
  3.  請求項2に記載の情報処理装置であって、
     前記動作制御部は、前記複数のレーダ装置の各々に関する動作期間が重複しないように前記動作タイミングを設定する
     情報処理装置。
  4.  請求項2に記載の情報処理装置であって、
     前記動作制御部は、前記複数のレーダ装置のうち、一部の前記レーダ装置に関する動作期間が重複するように前記動作タイミングを設定する
     情報処理装置。
  5.  請求項1に記載の情報処理装置であって、
     前記判定部は、前記複数のレーダ装置を用いて測定される情報、又は前記車両に搭載された他のセンサを用いて測定される情報の少なくとも一方に基づいて、前記走行シーンを判定する
     情報処理装置。
  6.  請求項1に記載の情報処理装置であって、
     前記動作制御部は、前記複数のレーダ装置のうち、前記判定された前記走行シーンにおいて前記車両に衝突するリスクのある物体が想定される空間を測定するレーダ装置の動作頻度を相対的に高く設定する
     情報処理装置。
  7.  請求項6に記載の情報処理装置であって、
     前記複数のレーダ装置は、前記車両の前方を測定可能な前方レーダ装置と、前記前方レーダ装置とは測定範囲が異なる他のレーダ装置とを含み、
     前記動作制御部は、前記走行シーンとして前記車両が前方への走行を行うシーンが判定された場合、前記前方レーダ装置の動作頻度を前記他のレーダ装置の動作頻度よりも高く設定する
     情報処理装置。
  8.  請求項6に記載の情報処理装置であって、
     前記複数のレーダ装置は、前記車両の後方を測定可能な後方レーダ装置と、前記後方レーダ装置とは測定範囲が異なる他のレーダ装置とを含み、
     前記動作制御部は、前記走行シーンとして前記車両が車線変更を行うシーンが判定された場合、前記後方レーダ装置の動作頻度を前記他のレーダ装置の動作頻度よりも高く設定する
     情報処理装置。
  9.  請求項6に記載の情報処理装置であって、
     前記複数のレーダ装置は、前記車両の側方を測定可能な側方レーダ装置と、前記側方レーダ装置とは測定範囲が異なる他のレーダ装置とを含み、
     前記動作制御部は、前記走行シーンとして前記車両が駐車を行うシーンが判定された場合、前記側方レーダ装置の動作頻度を前記他のレーダ装置の動作頻度よりも高く設定する
     情報処理装置。
  10.  請求項1に記載の情報処理装置であって、さらに、
     前記複数のレーダ装置の各々から出力されるデータに関する処理負荷に応じて、前記複数のレーダ装置の各々の動作パラメータを調整する調整部を具備する
     情報処理装置。
  11.  請求項10に記載の情報処理装置であって、
     前記動作パラメータは、前記レーダ装置によるレーダ測定のフレームレート、前記レーダ装置から出力されるデータのサンプリング数、及び前記レーダ装置が照射するレーダ波に関するパラメータの少なくとも1つを含む
     情報処理装置。
  12.  請求項11に記載の情報処理装置であって、
     前記調整部は、前記処理負荷に基づいて、前記動作パラメータを調整するか否かを判定する
     情報処理装置。
  13.  請求項12に記載の情報処理装置であって、
     前記処理負荷は、前記レーダ装置から出力されるデータの処理にかかる処理時間であり、
     前記調整部は、前記処理時間が前記レーダ装置によるレーダ測定のフレームレートに収まらない場合に、前記動作パラメータを調整する
     情報処理装置。
  14.  請求項10に記載の情報処理装置であって、
     前記動作パラメータは、第1のパラメータと第2のパラメータとを含み、
     前記調整部は、前記第1のパラメータを調整した場合に想定される測定精度の変化を算出し、前記測定精度の変化が許容範囲を超えた場合、前記第2のパラメータを調整する
     情報処理装置。
  15.  請求項10に記載の情報処理装置であって、
     前記調整部は、前記走行シーンに応じて、調整対象となる前記動作パラメータを選択する
     情報処理装置。
  16.  請求項1に記載の情報処理装置であって、
     前記複数のレーダ装置は、FMCW方式のレーダ装置である
     情報処理装置。
  17.  複数のレーダ装置が搭載された車両の走行シーンを判定し、
     前記判定された前記走行シーンに応じて、前記複数のレーダ装置を動作させる順番を制御する
     ことをコンピュータシステムが実行する情報処理方法。
  18.  車両に搭載された複数のレーダ装置と、
     前記車両の走行シーンを判定する判定部と、
     前記判定された前記走行シーンに応じて、前記複数のレーダ装置を動作させる順番を制御する動作制御部と
     を具備するレーダ測定システム。
PCT/JP2022/001611 2021-03-30 2022-01-18 情報処理装置、情報処理方法、及びレーダ測定システム WO2022209165A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021057818A JP2022154673A (ja) 2021-03-30 2021-03-30 情報処理装置、情報処理方法、及びレーダ測定システム
JP2021-057818 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209165A1 true WO2022209165A1 (ja) 2022-10-06

Family

ID=83458611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001611 WO2022209165A1 (ja) 2021-03-30 2022-01-18 情報処理装置、情報処理方法、及びレーダ測定システム

Country Status (2)

Country Link
JP (1) JP2022154673A (ja)
WO (1) WO2022209165A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317186A (ja) * 2005-05-10 2006-11-24 Denso Corp 障害物検知装置
JP2008152390A (ja) * 2006-12-14 2008-07-03 Toyota Motor Corp 車両用周辺監視装置
US20090254260A1 (en) * 2008-04-07 2009-10-08 Axel Nix Full speed range adaptive cruise control system
JP2018087777A (ja) * 2016-11-29 2018-06-07 シャープ株式会社 走行装置および情報検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317186A (ja) * 2005-05-10 2006-11-24 Denso Corp 障害物検知装置
JP2008152390A (ja) * 2006-12-14 2008-07-03 Toyota Motor Corp 車両用周辺監視装置
US20090254260A1 (en) * 2008-04-07 2009-10-08 Axel Nix Full speed range adaptive cruise control system
JP2018087777A (ja) * 2016-11-29 2018-06-07 シャープ株式会社 走行装置および情報検出方法

Also Published As

Publication number Publication date
JP2022154673A (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
US9116242B2 (en) Map aware adaptive automotive radar
US7663533B2 (en) Radar system for motor vehicles
JP4115638B2 (ja) 物体認識装置
JP4043276B2 (ja) レーダ装置
JP5003674B2 (ja) レーダ装置および移動体
WO2019173155A1 (en) Tailoring sensor emission power to map, vehicle state, and environment
JP2001242242A (ja) 検知性能向上機能を備えたミリ波レーダ装置
CN111002979A (zh) 碰撞避让设备和碰撞避让方法
JP2014227000A (ja) 車両制御装置、その方法およびそのプログラム
JP4281632B2 (ja) 物標検出装置
US12123946B2 (en) Systems and methods for high velocity resolution high update rate radar for autonomous vehicles
JP4518080B2 (ja) 周辺監視装置
US12078714B2 (en) Angular resolution refinement in a vehicle radar for object identification
JPWO2005066656A1 (ja) 車載レーダ装置およびその信号処理方法
JP7153784B2 (ja) 電子機器、電子機器の制御方法、及びプログラム
JP7441807B2 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
WO2022209165A1 (ja) 情報処理装置、情報処理方法、及びレーダ測定システム
WO2020075686A1 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP7307244B2 (ja) 電子機器、電子機器の制御方法、及びプログラム
US20240310478A1 (en) Electronic device, method for controlling electronic device, and program
WO2022113765A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
JP5609184B2 (ja) レーダ装置及び周波数制御プログラム
US20230176181A1 (en) Electronic device, method for controlling electronic device, and program
Lee et al. Map-aware adaptive automotive RADAR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779397

Country of ref document: EP

Kind code of ref document: A1