[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022201932A1 - タービン、及びガスタービン - Google Patents

タービン、及びガスタービン Download PDF

Info

Publication number
WO2022201932A1
WO2022201932A1 PCT/JP2022/005097 JP2022005097W WO2022201932A1 WO 2022201932 A1 WO2022201932 A1 WO 2022201932A1 JP 2022005097 W JP2022005097 W JP 2022005097W WO 2022201932 A1 WO2022201932 A1 WO 2022201932A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
turbine
inclined surface
axial direction
rotor blade
Prior art date
Application number
PCT/JP2022/005097
Other languages
English (en)
French (fr)
Inventor
和也 西村
貴志 檜山
Original Assignee
三菱パワー株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社, 三菱重工業株式会社 filed Critical 三菱パワー株式会社
Priority to JP2023508754A priority Critical patent/JPWO2022201932A1/ja
Priority to KR1020237029308A priority patent/KR20230133916A/ko
Priority to DE112022000513.0T priority patent/DE112022000513T5/de
Priority to CN202280017692.3A priority patent/CN116940747A/zh
Publication of WO2022201932A1 publication Critical patent/WO2022201932A1/ja
Priority to US18/240,655 priority patent/US20230408090A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines

Definitions

  • a gas turbine consists of a compressor that generates compressed air, a combustor that mixes and burns fuel in the compressed air to generate high-temperature and high-pressure combustion gas, a turbine that is driven by the combustion gas, and exhaust gas from the turbine. and a tubular diffuser that guides the As exemplified in Patent Document 1 below, the diffuser forms an exhaust flow path between an inner cylinder extending along the axis of the gas turbine and the inner cylinder by being provided on the outer peripheral side of the inner cylinder. It has an outer cylinder and struts connecting the inner and outer cylinders.
  • the diameter of the outer cylinder gradually increases toward the downstream side. That is, the inner peripheral surface of the outer cylinder is inclined with respect to the axis in a cross-sectional view including the axis. As a result, the flow of exhaust gas from the turbine is decelerated halfway through the diffuser to restore static pressure.
  • the present disclosure has been made to solve the above problems, and an object thereof is to provide a turbine and a gas turbine in which performance is further improved by reducing pressure loss.
  • a turbine according to the present disclosure includes a turbine rotor that extends along an axis and is rotatable around the axis, a turbine casing that covers the turbine rotor from the outer peripheral side, and an outer peripheral surface of the turbine rotor.
  • the plurality of turbine rotor blades a plurality of turbine rotor blades arranged in the circumferential direction of the axis above, and a plurality of turbine rotor blade rows arranged in the axial direction; a plurality of rows of turbine stator vanes arranged in the axial direction so as to be adjacent to each other on one side in the axial direction and arranged in the circumferential direction; and the plurality of turbine rotor blades a diffuser that is provided on the other side in the axial direction of the row of final stage rotor blades that is the farthest in the other side in the axial direction among the rows, and that forms an exhaust flow path through which exhaust gas flows from one side to the other side in the axial direction; , wherein the diffuser includes an inner cylinder extending along the axis, an outer cylinder covering the inner cylinder from an outer peripheral side and forming the exhaust flow path between the inner cylinder and the exhaust flow path.
  • a first inclined surface extending radially outward from the inside toward the other side from the inlet of the flow channel is provided, and the first inclined surface is positioned with respect to the axis in a cross-sectional view including the axis.
  • An angle of 16° or more and 24° or less, and in the turbine rotor blades of the last stage rotor blade cascade, the throat width at the radially outer end with respect to the axis is set larger than the throat width at the intermediate part in the radial direction.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a gas turbine according to an embodiment of the present disclosure
  • FIG. 1 is an enlarged cross-sectional view of a main part of a gas turbine according to an embodiment of the present disclosure
  • FIG. 1 is a perspective view showing a configuration of a final stage rotor blade cascade according to an embodiment of the present disclosure
  • FIG. 4 is a radial view of the final stage rotor blade cascade according to the embodiment of the present disclosure, and is an explanatory diagram showing the throat width and the outflow angle at the tip-side end and the hub-side end.
  • 4 is a view of the final stage rotor blade cascade according to the embodiment of the present disclosure as seen from the radial direction, and is an explanatory diagram showing the throat width and the outflow angle at the intermediate portion; 4 is a graph showing the rotor blade relative outflow angle in the height direction of the final stage rotor blade cascade. 4 is a graph showing the outlet absolute total pressure of the final stage rotor blade cascade in the height direction of the last stage rotor blade cascade.
  • FIG. 1 A gas turbine 10 according to an embodiment of the present disclosure will be described below with reference to FIGS. 1 to 7.
  • the gas turbine 10 includes a compressor 20, a combustor 30, a turbine 40, and a diffuser 60.
  • the compressor 20 compresses the air A taken in from the outside to generate high-pressure compressed air.
  • the combustor 30 mixes and combusts the fuel F with the compressed air to generate a high-temperature, high-pressure combustion gas G.
  • Turbine 40 is rotationally driven by combustion gas G. As shown in FIG.
  • the compressor 20 has a compressor rotor 21 , a compressor casing 25 and a plurality of compressor stator blade rows 26 .
  • the compressor rotor 21 has a compressor rotating shaft 22 and a plurality of compressor rotor blade rows 23 .
  • the compressor rotating shaft 22 extends along the axis Ac and is rotatable around the axis Ac.
  • a plurality of compressor rotor blade rows 23 are arranged along the outer peripheral surface of the compressor rotating shaft 22 at intervals in the direction of the axis Ac.
  • each compressor rotor blade row 23 has a plurality of compressor rotor blades arranged in the circumferential direction along the outer peripheral surface of the compressor rotating shaft 22 .
  • the compressor casing 25 has a cylindrical shape that covers the compressor rotor 21 from the outer peripheral side.
  • a plurality of compressor stator vane rows 26 arranged in the direction of the axis Ac are provided on the inner peripheral surface of the compressor rotor 21 .
  • the compressor rotor blade rows 23 and the compressor stator blade rows 26 are alternately arranged in the direction of the axis Ac. More specifically, one compressor stator blade row 26 is provided on one side of one compressor rotor blade row 23 in the direction of the axis Ac.
  • the intermediate casing 16 is connected to the other side of the compressor casing 25 in the direction of the axis Ac.
  • a combustor 30 is arranged in this intermediate casing 16 .
  • the turbine 40 has a turbine rotor 41 , a turbine casing 45 and a plurality of turbine stator vane rows 46 .
  • the turbine rotor 41 has a turbine rotating shaft 42 and a plurality of turbine rotor blade rows 43 .
  • the turbine rotating shaft 42 extends along the axis Ac and is rotatable around the axis Ac.
  • a plurality of turbine rotor blade rows 43 are arranged along the outer peripheral surface of the turbine rotating shaft 42 at intervals in the direction of the axis Ac.
  • each turbine rotor blade row 43 has a plurality of turbine rotor blades arranged in the circumferential direction along the outer peripheral surface of the turbine rotating shaft 42 .
  • the turbine rotor blade row 43 on the othermost side in the axis Ac direction is a final stage rotor blade row 43A.
  • the turbine rotor blades included in the final stage rotor blade row 43A are referred to as the final stage rotor blade row 50 .
  • the compressor rotor 21 and the turbine rotor 41 described above form the gas turbine rotor 11 by being coaxially connected along the axis Ac.
  • the compressor casing 25 , the intermediate casing 16 and the turbine casing 45 are coaxially connected along the axis Ac to form the gas turbine casing 15 .
  • the gas turbine rotor 11 is integrally rotatable around the axis Ac inside the gas turbine casing 15 .
  • the side on which the compressor 20 is located when viewed from the turbine 40 that is, one side in the direction of the axis line Ac
  • the opposite side that is, the other side in the direction of the axis line Ac
  • the diffuser 60 is provided to reduce the flow velocity of the exhaust gas (exhaust gas) discharged from the turbine 40 to recover the static pressure.
  • the diffuser 60 is connected downstream of the turbine casing 45 .
  • the diffuser 60 has an inner cylinder 62 , an outer cylinder 61 , a plurality of struts 63 and a plurality of manholes 64 .
  • the inner cylinder 62 extends along the axis Ac.
  • a bearing device 80 (described later) for rotatably supporting the gas turbine rotor 11 is housed inside the inner cylinder 62 .
  • the outer diameter of the inner cylinder 62 is constant from the upstream side to the downstream side. It is also possible to employ a configuration in which the outer diameter of the inner cylinder 62 gradually decreases from the upstream side toward the downstream side.
  • the outer cylinder 61 has a tubular shape that covers the inner cylinder 62 from the outer peripheral side.
  • a space between the outer cylinder 61 and the inner cylinder 62 serves as an exhaust passage E through which the exhaust discharged from the turbine 40 flows.
  • the inner diameter of the outer cylinder 61 gradually increases from the upstream side toward the downstream side. Therefore, the flow channel cross-sectional area of the exhaust flow channel E gradually expands toward the downstream side.
  • the outer cylinder 61 and the inner cylinder 62 are radially connected by struts 63 . That is, the struts 63 support the outer cylinder 61 with respect to the inner cylinder 62 from the radially inner side.
  • the strut 63 is provided at an intermediate position of the exhaust flow path E in the direction of the axis Ac. A detailed arrangement of the struts 63 will be described later.
  • a plurality of struts 63 are arranged at intervals in the circumferential direction. Each strut 63 extends radially between the inner peripheral surface of the outer cylinder 61 and the outer peripheral surface of the inner cylinder 62 .
  • the strut 63 preferably has a streamlined cross-sectional shape extending from the upstream side to the downstream side when viewed in the radial direction.
  • Manholes 64 are provided downstream of the struts 63 at intervals in the direction of the axis Ac.
  • the manhole 64 extends radially between the outer cylinder 61 and the inner cylinder 62 .
  • a plurality of manholes 64 are arranged at intervals in the circumferential direction.
  • Various pipes and wiring are housed inside the manhole 64 .
  • the final stage rotor blade cascade 50 has a disk 70 and a rotor blade main body 50H. Disk 70 is attached to turbine rotating shaft 42 .
  • the disc 70 has a disc shape centered on the axis Ac.
  • a rotor blade main body 50H is provided on the outer peripheral surface 70A of the disk 70 .
  • the rotor blade main body 50H extends radially outward from the outer peripheral surface 70A.
  • the rotor blade main body 50H has an airfoil cross-sectional shape when viewed from the radial direction.
  • the edge of the moving blade body 50H facing the upstream side is the leading edge 50A.
  • the edge of the moving blade body 50H facing the downstream side is the trailing edge 50B.
  • the end face facing radially outward of the moving blade main body 50H is a tip end face 50C.
  • the tip-side end surface 50C extends from the radially inner side to the outer side as it goes from the upstream side to the downstream side. That is, the chip-side end surface 50C is inclined at an angle ⁇ 1 with respect to the axis Ac in a cross-sectional view including the axis Ac.
  • This angle ⁇ 1 is appropriately set within a range of 20° or more and 25° or less.
  • the tip-side end surface 50C faces the inner peripheral surface 45A of the turbine casing 45 with a gap in the radial direction.
  • the inner peripheral surface 45A has an inner diameter that gradually increases from the upstream side toward the downstream side.
  • the radially inner end of the moving blade main body 50H serves as a hub-side end surface 50D.
  • the hub-side end surface 50D is in contact with the outer peripheral surface 70A of the disk 70.
  • a blade root having serration-like unevenness is formed radially inward of the hub-side end surface 50D.
  • the disk 70 is formed with grooves corresponding to the uneven shape. The uneven shape formed on the blade root and the inner surface of the groove are engaged to support the moving blade main body 50H so as not to fall off.
  • the inner cylinder 62 of the diffuser 60 covers the shaft end of the turbine rotating shaft 42 from the outer peripheral side.
  • a bearing device 80 is provided inside the inner cylinder 62 .
  • the bearing device 80 rotatably supports the turbine rotating shaft 42 .
  • a specific example of the bearing device 80 provided at this position is a journal bearing.
  • the journal bearings support radial loads from the turbine rotating shaft 42 .
  • a surface of the inner cylinder 62 facing the outer peripheral side is an outer peripheral surface 62A.
  • the outer peripheral surface 62A is located at the same radial position as the outer peripheral surface 70A of the disk 70 described above. It should be noted that the term "same" as used herein means substantially the same, and design tolerances and manufacturing errors are allowed.
  • the inner peripheral surface of the outer cylinder 61 is formed by a first inclined surface 61A and a second inclined surface 61B.
  • the first inclined surface 61A is connected to the downstream side of the inner peripheral surface 45A of the turbine casing 45 .
  • the first inclined surface 61A extends radially outward from the inner side as it goes from the upstream side to the downstream side. That is, the first inclined surface 61A is inclined at an angle ⁇ 2 with respect to the axis Ac in a cross-sectional view including the axis Ac. This angle ⁇ 2 is appropriately determined within the range of 16° or more and 24° or less.
  • the difference between the angle ⁇ 1 formed by the tip-side end face 50C of the blade body 50H with respect to the axis Ac and the angle ⁇ 2 formed by the first inclined surface 61A with respect to the axis Ac is 0° or more and 5° or less. range.
  • the second inclined surface 61B continues downstream of the first inclined surface 61A. Like the first inclined surface 61A, the second inclined surface 61B extends from the radially inner side to the outer side as it goes from the upstream side to the downstream side. That is, the second inclined surface 61B is inclined with respect to the axis Ac.
  • the angle formed by the second inclined surface 61B with respect to the axis Ac is smaller than the angle ⁇ 2 formed with the first inclined surface 61A with respect to the axis Ac. More specifically, this angle is preferably about 8°.
  • the upstream edge of the strut 63 described above is a strut leading edge 63A, and the downstream edge is a strut trailing edge 63B.
  • the strut leading edge 63A is positioned on the first inclined surface 61A.
  • the strut trailing edge 63B is located on the second inclined surface 61B. That is, the strut 63 is arranged across the first inclined surface 61A and the second inclined surface 61B in the direction of the axis Ac.
  • the cross-sectional area (cross-sectional area seen from the direction of the axis Ac) of the exhaust flow path E at the inlet (upstream end) of the diffuser 60 is S1.
  • the cross-sectional area (cross-sectional area seen from the direction of the axis Ac) of the exhaust passage E at the strut front edge 63A is S2. That is, the cross-sectional areas S1 and S2 refer to areas of annular regions surrounded by the outer peripheral surface 62A of the inner cylinder 62 and the inner peripheral surface (the first inclined surface 61A) of the outer cylinder 61 .
  • the ratio (area ratio) between the cross-sectional area S1 and the cross-sectional area S2 is preferably in the range of 1.25 or more and 1.40 or less. More desirably, this area ratio is in the range of 1.28 or more and 1.37 or less. Most preferably, this area ratio is 1.30. In realizing the ratio of the cross-sectional areas described above, it is not necessary to consider the reduction in area due to the fillet portion formed in the mounting portion of the strut 63 .
  • the rotor blade main body 50H has an airfoil cross-sectional shape when viewed from the radial direction. That is, the rotor blade main body 50H is curved to one side in the circumferential direction from the leading edge 50A toward the trailing edge 50B.
  • a surface of the moving blade main body 50H facing one side in the circumferential direction is a pressure surface 50P.
  • the pressure surface 50P is curved and recessed toward the other side in the circumferential direction.
  • a surface of the rotor blade main body 50H facing the other side in the circumferential direction (that is, a surface facing forward in the rotational direction of the turbine rotating shaft 42) is a suction surface 50N.
  • the negative pressure surface 50N is curved and convex toward the other side in the circumferential direction.
  • the tip-side end surface 50C and the hub-side end surface 50D differ in cross-sectional shape from the intermediate position (intermediate portion 50M) in the radial direction.
  • the throat width at the tip end face 50C and the hub end face 50D is defined as A1.
  • ⁇ 3 be the outflow angle at the tip-side end surface 50C and the hub-side end surface 50D.
  • the width of the throat at the intermediate portion 50M is assumed to be A2.
  • ⁇ 4 be the outflow angle at the intermediate portion 50M.
  • the throat width A1 at the tip-side end surface 50C and the hub-side end surface 50D is set larger than the throat width A2 at the intermediate portion 50M.
  • the throat width referred to here refers to the width of the passage at the position (throat position) where the separation distance between the pair of rotor blade main bodies 50H adjacent to each other in the circumferential direction is the smallest.
  • the throat width gradually decreases from the tip-side end surface 50C toward the intermediate portion 50M, and gradually increases from the intermediate portion 50M toward the hub-side end surface 50D.
  • the outflow angle ⁇ 3 at the tip-side end surface 50C and the hub-side end surface 50D is set smaller than the outflow angle ⁇ 4 at the intermediate portion 50M.
  • the outflow angle referred to here refers to the angle formed by the flow that has passed between a pair of rotor blade bodies 50H adjacent to each other with respect to the axis Ac.
  • the outflow angle gradually increases from the tip-side end surface 50C toward the intermediate portion 50M, and gradually decreases from the intermediate portion 50M toward the hub-side end surface 50D.
  • the conventional rotor blade was set so that the outflow angle gradually decreased from the tip side to the hub side.
  • the outflow angle gradually increases from the tip side toward the hub side and then gradually decreases toward the hub side. is set.
  • the tip side and the hub side have smaller outflow angles than the intermediate portion 50M. That is, the tip side and the hub side have a larger throat width than the intermediate portion 50M.
  • Compressed air is directed to a combustor 30 located downstream of the compressor 20 .
  • combustion gas G is generated by mixing fuel F with this compressed air and burning it.
  • Combustion gas G is led to turbine 40 located downstream of combustor 30 .
  • the combustion gas G contacts the turbine stationary blade row 46 and the turbine rotor blade row 43 .
  • the turbine stator blade row 46 changes the flow direction of the combustion gas G to optimize the inflow angle to the turbine rotor blade row 43 on the downstream side.
  • the combustion gas G gives rotational energy to the turbine rotor 41 via the turbine rotor blade rows 43 when flowing around the turbine rotor blade rows 43 . This causes the gas turbine rotor 11 to rotate about the axis Ac.
  • the exhaust gas discharged from the turbine 40 recovers static pressure while flowing through the diffuser 60, and is then led to other external equipment (not shown).
  • this embodiment adopts the configuration described above.
  • the angle formed by the first inclined surface 61A of the outer cylinder 61 with respect to the axis Ac is 16° or more and 24° or less, which is larger than that of the conventional diffuser. This makes it possible to further reduce the flow velocity of the exhaust gas flowing through the exhaust passage E in the region upstream of the strut 63 . As a result, the flow of exhaust gas flowing around the struts 63 is less likely to be affected by the struts 63 . That is, the pressure loss due to the struts 63 can be further suppressed.
  • the throat width A1 at the radially outer end (tip side) is larger than the throat width A2 at the intermediate portion 50M. This results in a higher total pressure at the radially outer end. Therefore, it is possible to reduce the possibility of flow separation occurring on the first inclined surface 61A.
  • the tip side has a wider throat width than the intermediate portion 50M, the amount of power obtained from the combustion gas of the final stage rotor blade cascade 50 decreases on the tip side.
  • the outflow angle on the intermediate portion 50M side is large (that is, the throat width is small)
  • the amount of power obtained from the combustion gas increases at the intermediate portion 50M.
  • the flow of the exhaust gas tends to separate.
  • the static pressure recovery amount in the diffuser 60 may become small.
  • the total exhaust pressure at the inlet of the diffuser 60 is higher on the tip side than on the intermediate portion 50M of the rotor blade main body 50H. Therefore, it is possible to make the angle ⁇ 2 formed by the first inclined surface 61A with respect to the axis Ac larger than in the conventional case. As a result, the flow of the exhaust gas is less likely to separate in the vicinity of the wall surfaces of the outer cylinder 61 and the inner cylinder 62 . As a result, it becomes possible to further increase the static pressure recovery amount in the diffuser 60 .
  • the throat width A1 at the radially inner (hub side) end is larger than the throat width A2 at the intermediate portion 50M. This increases the total pressure on the hub side as well as on the tip side. Therefore, the possibility of flow separation occurring on the outer peripheral surface 62A of the inner cylinder 62 can be reduced. As a result, the static pressure recovery amount in the diffuser 60 is further increased, and the performance of the gas turbine 10 can be further improved.
  • the flow channel cross-sectional area (cross-sectional area S1) of the diffuser at the upstream end edge (strut leading edge 63A) of the strut 63 and the flow channel cross-sectional area (cross-sectional area S2) at the inlet of the diffuser 60 is set to 1.28 or more and 1.37 or less, which is larger than that of a conventional gas turbine. This makes it possible to further reduce the flow velocity of the exhaust gas in the region on the upstream side of the strut 63 .
  • the tip-side end face 50C extends radially outward from the upstream side to the downstream side when viewed in the circumferential direction.
  • the angle ⁇ 1 formed by the tip-side end surface 50C with respect to the axis Ac is set larger than the angle ⁇ 2 formed by the first inclined surface 61A with respect to the axis Ac.
  • a flow component of the exhaust gas directed radially outward along the tip-side end surface 50C is guided by the first inclined surface 61A located on the downstream side.
  • the flow component is directed toward the first inclined surface 61A from the radially inner side. It adheres so that it can be pressed. As a result, it is possible to further suppress the occurrence of flow separation on the first inclined surface 61A. This makes it possible to avoid the generation of vortices on the first inclined surface 61A.
  • the difference between the angle ⁇ 1 formed by the tip-side end surface 50C with respect to the axis Ac and the angle ⁇ 2 formed by the first inclined surface 61A with respect to the axis Ac is 0° or more and 5° or less.
  • the throat width at the tip-side end surface 50C is made larger than the throat width at the intermediate portion 50M, the total pressure of the exhaust at the tip side can be maintained high.
  • the difference between the angles .theta.1 and .theta.2 can be made smaller than before.
  • the angle ⁇ 1 is greater than the angle ⁇ 2
  • the angle ⁇ 2 formed by the first inclined surface 61A with respect to the axis Ac can be increased to the maximum allowable limit. Thereby, separation of the flow on the first inclined surface 61A can be further suppressed.
  • the strut 63 is arranged across the first inclined surface 61A and the second inclined surface 61B in the direction of the axis Ac.
  • the flow of the exhaust gas is sufficiently decelerated in the region on the side of the first inclined surface 61A.
  • the pressure loss due to the struts 63 can be further reduced.
  • the flow velocity of the exhaust gas can be further reduced in the region on the upstream side of the strut 63 .
  • the pressure loss due to the struts 63 can be further reduced.
  • a turbine 40 according to a first aspect includes a turbine rotor 41 extending along an axis Ac and rotatable around the axis Ac, a turbine casing 45 covering the turbine rotor 41 from the outer peripheral side, and the turbine rotor.
  • 41 having a plurality of turbine rotor blades arranged in the circumferential direction of the axis Ac, a plurality of turbine rotor blade rows 43 arranged in the direction of the axis Ac, and the inner peripheral surface of the turbine casing 45
  • a plurality of turbine stator vanes arranged in the direction of the axis Ac are provided so as to be adjacent to the turbine rotor blade on one side in the direction of the axis Ac and arranged in the direction of the axis Ac.
  • the outer cylinder 61 extends radially from the inlet of the exhaust flow path E on one side in the direction of the axis Ac toward the other side. It has a first inclined surface 61A extending from the inside to the outside, and the first inclined surface 61A forms an angle of 16° or more and 24° or less with respect to the axis Ac in a cross-sectional view including the axis Ac.
  • the throat width A1 at the radially outer end with respect to the axis Ac is set larger than the throat width A2 of the intermediate portion 50M in the radial direction.
  • the angle formed by the first inclined surface 61A with respect to the axis Ac is 16° or more and 24° or less, which is larger than that of the conventional diffuser.
  • the flow velocity of the exhaust gas flowing through the exhaust passage E can be further reduced in the region on one side of the strut 63 in the direction of the axis Ac.
  • the pressure loss due to the struts 63 can be further suppressed.
  • the throat width A1 at the radially outer end is larger than the throat width A2 of the intermediate portion 50M. This results in a higher total pressure at the radially outer end. Therefore, it is possible to reduce the possibility of flow separation occurring on the first inclined surface 61A.
  • the throat width A1 at the radially inner end portion is greater than the throat width A2 at the intermediate portion 50M in the radial direction. is also set large.
  • the throat width A1 at the radially inner end is larger than the throat width A2 of the intermediate portion 50M. This results in a higher total pressure at the radially inner end. Therefore, the possibility of flow separation occurring on the outer peripheral surface 62A of the inner cylinder 62 can be reduced.
  • the cross-sectional area of the diffuser 60 at the edge of the strut 63 on one side in the direction of the axis Ac and the flow path cross-sectional area of the diffuser 60 at the inlet on the one side in the direction of the axis Ac The area ratio to the channel cross-sectional area is 1.28 or more and 1.37 or less.
  • the radially outer tip-side end face 50C extends from one side in the direction of the axis Ac to the other side when viewed from the circumferential direction.
  • the angle ⁇ 1 formed by the tip-side end surface 50C with respect to the axis Ac is set larger than the angle ⁇ 2 formed by the first inclined surface 61A with respect to the axis Ac. ing.
  • the radially outward flow component along the tip-side end surface 50C is guided by the first inclined surface 61A on the other side in the direction of the axis Ac. Since the angle ⁇ 1 formed by the tip-side end surface 50C with respect to the axis Ac is larger than the angle ⁇ 2 formed by the first inclined surface 61A with respect to the axis Ac, the above flow component is pressed against the first inclined surface 61A. close contact. As a result, flow separation on the first inclined surface 61A can be further suppressed.
  • the difference between the angle ⁇ 1 formed by the tip end surface 50C with respect to the axis Ac and the angle ⁇ 2 formed by the first inclined surface 61A with respect to the axis Ac is 0. ° or more and 5 ° or less.
  • the outer cylinder 61 extends toward the other side of the first inclined surface 61A in the direction of the axis Ac and extends radially inward from one side to the other side in the direction of the axis Ac.
  • the angle formed by the second inclined surface 61B with respect to the axis Ac in a cross-sectional view including the axis Ac is the first inclined surface 61B with respect to the axis Ac.
  • the strut 63 is arranged across the first inclined surface 61A and the second inclined surface 61B in the direction of the axis Ac.
  • the strut 63 is arranged across the first inclined surface 61A and the second inclined surface 61B. As a result, before contacting the strut 63, the flow of the exhaust gas is sufficiently decelerated in the region on the side of the first inclined surface 61A. As a result, the pressure loss due to the struts 63 can be further reduced.
  • a gas turbine 10 includes a compressor 20 that compresses air A to generate high-pressure air, a combustor 30 that mixes fuel with the high-pressure air to generate combustion gas G, a turbine 40 driven by combustion gases G;
  • the gas turbine 10 with further improved performance can be provided by further reducing the pressure loss in the diffuser 60 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

タービンは、タービンロータと、タービンケーシングと、複数のタービン動翼列と、複数のタービン静翼列と、最終段動翼列の軸線方向他方側に設けられ、軸線方向一方側から他方側に向かって排気ガスが流れる排気流路を形成するディフューザと、を備え、ディフューザは、内筒と、内筒との間に排気流路を形成する外筒と、内筒と外筒とを径方向に接続するストラットと、を有し、外筒は、排気流路の入口から軸線方向他方側に向かうに従って径方向内側から外側に延びる第一傾斜面を有し、第一傾斜面は軸線に対して16°以上24°以下の角度をなし、記最終段動翼列のタービン動翼では、軸線に対する径方向外側の端部のスロート幅が、径方向における中間部のスロート幅よりも大きく設定されている。

Description

タービン、及びガスタービン
 本開示は、タービン、及びガスタービンに関する。
 本願は、2021年3月24日に日本に出願された特願2021-050511号について優先権を主張し、その内容をここに援用する。
 ガスタービンは、圧縮空気を生成する圧縮機と、圧縮空気に燃料を混合して燃焼させることで高温高圧の燃焼ガスを生成する燃焼器と、燃焼ガスによって駆動されるタービンと、タービンからの排気を導く筒状のディフューザと、を主に備えている。下記特許文献1に例示されるように、ディフューザは、ガスタービンの軸線に沿って延びる内筒と、この内筒の外周側に設けられることで当該内筒との間に排気流路を形成する外筒と、これら内筒と外筒とを接続するストラットと、を有している。特許文献1に記載されたディフューザでは、外筒は下流側に向かうに従って次第に拡径している。つまり、外筒の内周面は軸線を含む断面視で当該軸線に対して傾斜している。これにより、タービンからの排気の流れは、ディフューザを通過する中途で減速されて静圧回復する。
 ここで、ディフューザ内を流れる際に、排気の流れに圧力損失が生じることが知られている。圧力損失の大部分は上記のストラットが排気の流れに露呈していることによって生じる。ストラットでの圧力損失を抑えてディフューザの性能を向上させるためには、ストラットの上流側で排気の流速を下げることが肝要となる。そのため、外筒の内周面の傾斜角度を可能な限り大きくする必要がある。
特許第6018368号公報
 しかしながら、外筒の内周面の傾斜角度を過度に大きくすると、当該内周面から流れが剥離して渦が発生する虞がある。渦が発生するとディフューザの空力性能が損なわれてしまう。その結果、タービンの性能に影響が及ぶ可能性がある。
 本開示は上記課題を解決するためになされたものであって、圧力損失が低減されることでさらに性能が向上したタービン、及びガスタービンを提供することを目的とする。
 上記課題を解決するために、本開示に係るタービンは、軸線に沿って延びるとともに前記軸線回りに回転可能なタービンロータと、前記タービンロータを外周側から覆うタービンケーシングと、前記タービンロータの外周面上で前記軸線の周方向に配列された複数のタービン動翼を有し、前記軸線方向に配列された複数のタービン動翼列と、前記タービンケーシングの内周面上で前記タービン動翼に対して前記軸線方向一方側に隣り合うように設けられるとともに周方向に配列された複数のタービン静翼を有し、前記軸線方向に配列された複数のタービン静翼列と、前記複数のタービン動翼列のうち、前記軸線方向における最も他方側の最終段動翼列の前記軸線方向他方側に設けられ、前記軸線方向一方側から他方側に向かって排気ガスが流れる排気流路を形成するディフューザと、を備え、前記ディフューザは、前記軸線に沿って延びる内筒と、前記内筒を外周側から覆うとともに、前記内筒との間に前記排気流路を形成する外筒と、前記排気流路の中途位置に設けられ、前記内筒と前記外筒とを径方向に接続するとともに周方向に配列された複数のストラットと、を有し、前記外筒は、前記軸線方向一方側における前記排気流路の入口から他方側に向かうに従って前記軸線を中心とする径方向内側から外側に延びる第一傾斜面を有し、前記第一傾斜面は、前記軸線を含む断面視で前記軸線に対して16°以上24°以下の角度をなし、前記最終段動翼列の前記タービン動翼では、前記軸線に対する径方向外側の端部のスロート幅が、径方向における中間部のスロート幅よりも大きく設定されている。
 本開示によれば、圧力損失が低減されることでさらに性能が向上したタービン、及びガスタービンを提供することができる。
本開示の実施形態に係るガスタービンの概略構成を示す断面図である。 本開示の実施形態に係るガスタービンの要部拡大断面図である。 本開示の実施形態に係る最終段動翼列の構成を示す斜視図である。 本開示の実施形態に係る最終段動翼列を径方向から見た図であって、チップ側の端部、及びハブ側の端部におけるスロート幅と流出角を示す説明図である。 本開示の実施形態に係る最終段動翼列を径方向から見た図であって、中間部におけるスロート幅と流出角を示す説明図である。 最終段動翼列の高さ方向における動翼相対流出角を表すグラフである。 最終段動翼列の高さ方向における最終段動翼列の出口絶対全圧を表すグラフである。
(ガスタービンの構成)
 以下、本開示の実施形態に係るガスタービン10について、図1から図7を参照して説明する。
 図1に示すように、ガスタービン10は、圧縮機20と、燃焼器30と、タービン40と、ディフューザ60と、を備えている。圧縮機20は、外部から取り込んだ空気Aを圧縮して高圧の圧縮空気を生成する。燃焼器30は、圧縮空気に燃料Fを混合して燃焼させることで高温高圧の燃焼ガスGを生成する。タービン40は、燃焼ガスGによって回転駆動される。
 圧縮機20は、圧縮機ロータ21と、圧縮機ケーシング25と、複数の圧縮機静翼列26と、を有している。圧縮機ロータ21は、圧縮機回転軸22と、複数の圧縮機動翼列23と、を有している。圧縮機回転軸22は、軸線Acに沿って延びるとともに、当該軸線Ac回りに回転可能とされている。圧縮機動翼列23は、圧縮機回転軸22の外周面に沿って軸線Ac方向に間隔をあけて複数配列されている。詳しくは図示しないが、それぞれの圧縮機動翼列23は、圧縮機回転軸22の外周面に沿って周方向に配列された複数の圧縮機動翼を有している。
 圧縮機ケーシング25は、圧縮機ロータ21を外周側から覆う筒状をなしている。圧縮機ロータ21の内周面には、軸線Ac方向に配列された複数の圧縮機静翼列26が設けられている。上記の圧縮機動翼列23と圧縮機静翼列26は、軸線Ac方向に交互に配列されている。より詳細には、1つの圧縮機動翼列23の軸線Ac方向一方側に1つの圧縮機静翼列26が設けられている。
 圧縮機ケーシング25の軸線Ac方向他方側には中間車室16が接続されている。燃焼器30は、この中間車室16に配置されている。
 タービン40は、タービンロータ41と、タービンケーシング45と、複数のタービン静翼列46と、を有している。タービンロータ41は、タービン回転軸42と、複数のタービン動翼列43と、を有している。タービン回転軸42は、軸線Acに沿って延びるとともに、当該軸線Ac回りに回転可能とされている。タービン動翼列43は、タービン回転軸42の外周面に沿って軸線Ac方向に間隔をあけて複数配列されている。詳しくは図示しないが、それぞれのタービン動翼列43は、タービン回転軸42の外周面に沿って周方向に配列された複数のタービン動翼を有している。なお、軸線Ac方向に配列された複数のタービン動翼列43のうち、軸線Ac方向における最も他方側のタービン動翼列43は最終段動翼列43Aとされている。また、以下の説明では、この最終段動翼列43Aに含まれるタービン動翼を最終段動翼列50と呼ぶ。
 上述した圧縮機ロータ21とタービンロータ41は、軸線Acに沿って同軸上で接続されることでガスタービンロータ11を形成している。圧縮機ケーシング25と中間車室16とタービンケーシング45は、軸線Acに沿って同軸上に接続されることでガスタービンケーシング15を形成している。ガスタービンロータ11は、ガスタービンケーシング15の内部で軸線Ac回りに一体に回転可能である。なお、以降の説明では、タービン40から見て圧縮機20が位置する側(つまり、軸線Ac方向一方側)を単に「上流側」と呼び、その反対側(つまり、軸線Ac方向他方側)を単に「下流側」と呼ぶことがある。
 ディフューザ60は、タービン40から排出された排気(排気ガス)の流速を下げて静圧回復させるために設けられている。ディフューザ60は、タービンケーシング45の下流側に接続されている。ディフューザ60は、内筒62と、外筒61と、複数のストラット63、及び複数のマンホール64と、を有している。内筒62は、軸線Acに沿って延びている。内筒62の内部には、上記のガスタービンロータ11を回転可能に支持するための軸受装置80(後述)が収容されている。本実施形態では一例として、内筒62の外径が上流側から下流側にかけて一定とされている。なお、内筒62の外径が、上流側から下流側に向かうに従って次第に縮小する構成を採ることも可能である。
 外筒61は、内筒62を外周側から覆う筒状をなしている。外筒61と内筒62との間の空間は、タービン40から排出された排気が流通する排気流路Eとされている。外筒61は、上流側から下流側に向かうに従ってその内径が次第に拡大している。したがって、排気流路Eの流路断面積は下流側に向かうに従って次第に拡大している。
 外筒61と内筒62とは、ストラット63によって径方向に接続されている。つまり、ストラット63は、内筒62に対して外筒61を径方向内側から支持している。ストラット63は、軸線Ac方向における排気流路Eの中途位置に設けられている。ストラット63の詳細な配置については後述する。ストラット63は、周方向に間隔をあけて複数配列されている。それぞれのストラット63は、外筒61の内周面と内筒62の外周面との間にかけて径方向に延びている。また、詳しくは図示しないが、ストラット63は径方向から見て上流側から下流側に向かう流線形の断面形状を有していることが望ましい。
 ストラット63の下流側には、軸線Ac方向に間隔をあけてマンホール64が設けられている。マンホール64は、外筒61と内筒62との間にかけて径方向に延びている。マンホール64は、周方向に間隔をあけて複数配列されている。マンホール64の内部には、各種の配管や配線が収容されている。
(最終段動翼列、及びディフューザの詳細な構成)
 続いて、図2を参照して上述の最終段動翼列50、及びディフューザ60の詳細な構成について説明する。同図に示すように、最終段動翼列50は、ディスク70と、動翼本体50Hと、を有している。ディスク70は、タービン回転軸42に取り付けられている。ディスク70は、軸線Acを中心とする円盤状をなしている。ディスク70の外周面70A上には動翼本体50Hが設けられている。動翼本体50Hは、外周面70Aから径方向外側に向かって延びている。
 詳しくは後述するが、動翼本体50Hは径方向から見て翼型の断面形状を有している。動翼本体50Hにおける上流側を向く端縁は前縁50Aとされている。動翼本体50Hにおける下流側を向く端縁は後縁50Bとされている。動翼本体50Hの径方向外側を向く端面はチップ側端面50Cとされている。チップ側端面50Cは、上流側から下流側に向かうに従って径方向内側から外側に向かって延びている。つまり、チップ側端面50Cは軸線Acを含む断面視で軸線Acに対して角度θ1をなして傾斜している。この角度θ1は、20°以上25°以下の範囲内で適宜設定される。チップ側端面50Cは、タービンケーシング45の内周面45Aに対して径方向に間隔をあけて対向している。内周面45Aは、上流側から下流側に向かうに従って次第に内径が拡大している。
 さらに、動翼本体50Hの径方向内側の端部はハブ側端面50Dとされている。ハブ側端面50Dはディスク70の外周面70Aに当接している。詳しくは図示しないが、ハブ側端面50Dの径方向内側にはセレーション状の凹凸を有する翼根が形成されている。ディスク70にはこの凹凸形状に対応する溝が形成されている。翼根に形成された凹凸形状と溝の内面が係合することで動翼本体50Hを脱落不能に支持されている。
 ディフューザ60の内筒62は、タービン回転軸42の軸端を外周側から覆っている。内筒62の内部には軸受装置80が設けられている。軸受装置80はタービン回転軸42を回転可能に支持する。この位置に設けられる軸受装置80として具体的にはジャーナル軸受が例示される。ジャーナル軸受は、タービン回転軸42による径方向への荷重を支持する。内筒62の外周側を向く面は外周面62Aとされている。この外周面62Aは、上述したディスク70の外周面70Aと径方向において同一の位置にある。なお、ここで言う「同一」とは実質的な同一を指すものであって、設計上の公差や製造上の誤差は許容される。
 外筒61の内周面は、第一傾斜面61Aと、第二傾斜面61Bとによって形成されている。第一傾斜面61Aは、タービンケーシング45の内周面45Aの下流側に接続されている。第一傾斜面61Aは、上流側から下流側に向かうに従って径方向内側から外側に向かって延びている。つまり、第一傾斜面61Aは、軸線Acを含む断面視で軸線Acに対して角度θ2をなして傾斜している。この角度θ2は、16°以上24°以下の範囲内で適宜決定される。したがって、上述した動翼本体50Hのチップ側端面50Cが軸線Acに対してなす角度θ1と、第一傾斜面61Aが軸線Acに対してなす角度θ2との差は、0°以上5°以下の範囲となる。
 第二傾斜面61Bは、第一傾斜面61Aの下流側につらなっている。第二傾斜面61Bは、第一傾斜面61Aと同様に、上流側から下流側に向かうに従って径方向内側から外側に向かって延びている。つまり、第二傾斜面61Bは軸線Acに対して傾斜している。第二傾斜面61Bが軸線Acに対してなす角度は、第一傾斜面61Aが軸線Acに対してなす角度θ2よりも小さい。より具体的にはこの角度は8°程度とされることが望ましい。
 上述したストラット63の上流側の端縁はストラット前縁63Aとされ、下流側の端縁はストラット後縁63Bとされている。ストラット前縁63Aは第一傾斜面61A上に位置している。一方で、ストラット後縁63Bは第二傾斜面61B上に位置している。つまり、ストラット63は、軸線Ac方向において第一傾斜面61Aと第二傾斜面61Bとにまたがって配置されている。
 ここで、ディフューザ60の入口(上流側の端部)における排気流路Eの断面積(軸線Ac方向から見た断面積)をS1とする。さらに、ストラット前縁63Aにおける排気流路Eの断面積(軸線Ac方向から見た断面積)をS2とする。つまり、断面積S1,S2は、内筒62の外周面62Aと、外筒61の内周面(第一傾斜面61A)とによって囲まれる環状の領域の面積を指す。このとき、断面積S1と断面積S2の比(面積比)は、1.25以上1.40以下の範囲であることが望ましい。より望ましくは、この面積比は、1.28以上1.37以下の範囲とされる。最も望ましくは、この面積比は1.30とされる。なお、上記の断面積の比率を実現するに当たっては、ストラット63の取付部に形成されたフィレット部による面積減少分は考慮しなくてよい。
(最終段動翼列のさらなる詳細な構成)
 次に、図3から図6を参照して、最終段動翼列50(動翼本体50H)のさらなる詳細な構成について説明する。図3に示すように、動翼本体50Hは、径方向から見て翼型の断面形状を有している。つまり、動翼本体50Hは、前縁50Aから後縁50Bに向かうに従って周方向一方側に湾曲している。動翼本体50Hの周方向一方側を向く面(つまり、タービン回転軸42の回転方向の後方側を向く面)は、正圧面50Pとされている。正圧面50Pは、周方向他方側に向かって曲面的に凹んでいる。動翼本体50Hの周方向他方側を向く面(つまり、タービン回転軸42の回転方向の前方側を向く面)は、負圧面50Nとされている。負圧面50Nは、周方向他方側に向かって曲面的に凸となっている。
 さらに、この動翼本体50Hでは、チップ側端面50C、及びハブ側端面50Dと、径方向における中間位置(中間部50M)とで、断面形状が異なっている。ここで、図4に示すように、チップ側端面50C、及びハブ側端面50Dにおけるスロート幅をA1とする。また、チップ側端面50C、及びハブ側端面50Dにおける流出角をθ3とする。さらに、図5に示すように、中間部50Mにおけるスロート幅をA2とする。また、中間部50Mにおける流出角をθ4とする。
 このとき、これら図に示すように、チップ側端面50C、及びハブ側端面50Dにおけるスロート幅A1は、中間部50Mにおけるスロート幅A2よりも大きく設定されている。なお、ここで言うスロート幅とは、周方向に互いに隣接する一対の動翼本体50Hの間で最も離間距離が小さくなる位置(スロート位置)における流路幅のことを指す。チップ側端面50Cから中間部50Mに向かうに従ってスロート幅は次第に小さくなり、中間部50Mからハブ側端面50Dに向かうに従ってスロート幅は次第に大きくなる。
 さらに、チップ側端面50C、及びハブ側端面50Dにおける流出角θ3は、中間部50Mにおける流出角θ4よりも小さく設定されている。なお、ここで言う流出角とは、互いに隣接する一対の動翼本体50Hの間を通過した流れが軸線Acに対してなす角度を指す。チップ側端面50Cから中間部50Mに向かうに従って流出角は次第に大きくなり、中間部50Mからハブ側端面50Dに向かうに従って流出角は次第に小さくなる。
 図6の二点鎖線で示すように、従来の動翼ではチップ側からハブ側に向けて流出角が徐々に小さくなるように設定されていた。これに対して、本実施形態に係る動翼本体50Hでは、実線で示すように、流出角がチップ側からハブ側に向けて徐々に大きくなった後にハブ側に向けて徐々に小さくなるように設定されている。このように、動翼本体50Hではチップ側とハブ側で、中間部50Mよりも流出角が小さい。つまり、チップ側とハブ側では中間部50Mよりもスロート幅が大きい。
(作用効果)
 続いて、本実施形態に係るガスタービン10の動作について説明する。ガスタービン10を駆動するに当たっては、まず外部の駆動源によって圧縮機ロータ21に回転力を与える。これにより、圧縮機ロータ21が軸線Ac回りに回転し、圧縮機20に外部の空域Aが取り込まれる。圧縮機20が取り込んだ空気Aは、圧縮機ケーシング25内を上流側から下流側に向かって流れる中途で圧縮機静翼列26、及び圧縮機動翼列23に接触する。圧縮機静翼列26は、空気Aの流れ方向を変更して、下流側の圧縮機動翼列23への流入角度を最適化する。さらに、空気Aは圧縮機動翼列23によって圧送されることで次第に圧力が上昇して圧縮空気となる。圧縮空気は、圧縮機20の下流側に位置する燃焼器30に導かれる。燃焼器30では、この圧縮空気に燃料Fを混合して燃焼させることで燃焼ガスGが生成される。燃焼ガスGは燃焼器30の下流側に位置するタービン40に導かれる。
 タービン40では、燃焼ガスGがタービン静翼列46、及びタービン動翼列43に接触する。タービン静翼列46は燃焼ガスGの流れ方向を変更して、下流側のタービン動翼列43への流入角度を適正化する。さらに、燃焼ガスGはタービン動翼列43の周囲を流れる際に当該タービン動翼列43を介してタービンロータ41に回転エネルギーを与える。これにより、ガスタービンロータ11が軸線Ac回りに回転する。タービン40から排出された排気はディフューザ60を流れる中途で静圧回復した後、外部の他の機器(不図示)に導かれる。
 ここで、ディフューザ60内を流れる際に、排気の流れに圧力損失が生じることが知られている。圧力損失の大部分は上記のストラット63が排気の流れに露呈していることによって生じる。ストラット63での圧力損失を抑えてディフューザ60の性能を向上させるためには、ストラット63の上流側で排気の流速を下げることが肝要となる。そのため、外筒61の内周面の傾斜角度を可能な限り大きくする必要がある。
 しかしながら、外筒61の内周面の傾斜角度を過度に大きくすると、流れが当該内周面に追従しきれず、流れが剥離して渦が発生する虞がある。渦が発生するとディフューザ60の空力性能(静圧回復量)が損なわれてしまう。その結果、ガスタービン10の性能に影響が及ぶ可能性がある。
 そこで、本実施形態では上述のような構成を採っている。上記構成によれば、軸線Acに対して外筒61の第一傾斜面61Aがなす角度が、従来のディフューザよりも大きな16°以上24°以下とされている。これにより、排気流路Eを流れる排気の流速をストラット63よりも上流側の領域でさらに下げることが可能となる。その結果、ストラット63の周囲を流れる排気の流れがストラット63による影響を受けにくくなる。つまり、ストラット63による圧力損失をより一層小さく抑えることができる。
 さらに、最終段動翼列50では、径方向外側の端部(チップ側)のスロート幅A1が中間部50Mのスロート幅A2よりも大きい。これにより、径方向外側の端部での全圧が高くなる。そのため、第一傾斜面61Aで流れの剥離が生じる可能性を低減することもできる。
 より具体的には、チップ側では中間部50Mよりもスロート幅が大きいことから、チップ側では、最終段動翼列50の燃焼ガスからの動力取得量が減少する。一方で、中間部50M側の流出角が大きい(つまり、スロート幅が小さい)ことから、中間部50Mでは燃焼ガスからの動力取得量が増加する。ここで、図7中の二点鎖線で示すように、従来は、最終段動翼列のチップ側からハブ側にかけて、ディフューザ60の入口での排気の全圧がほぼ一定となり、外筒61や内筒62の壁面近傍で排気の流れに剥離が生じやすくなっていた。その結果、ディフューザ60における静圧回復量が小さくなる虞があった。これに対して、本実施形態では、図7中の実線で示すように、動翼本体50Hの中間部50Mに比べてチップ側でディフューザ60の入口での排気の全圧が高くなる。そのため、従来に比べて第一傾斜面61Aが軸線Acに対してなす角度θ2をより大きくすることが可能となる。これにより、外筒61及び内筒62の壁面近傍で排気の流れに剥離がさらに生じにくくなる。その結果、ディフューザ60における静圧回復量をより一層大きくすることが可能となる。
 さらに、上記構成によれば、最終段動翼列50では、径方向内側(ハブ側)の端部のスロート幅A1が中間部50Mのスロート幅A2よりも大きい。これにより、チップ側に加えてハブ側での全圧も高くなる。そのため、内筒62の外周面62Aで流れの剥離が生じる可能性を低減することができる。その結果、ディフューザ60における静圧回復量がさらに増大し、ガスタービン10の性能をより一層向上させることができる。
 加えて、上記構成では、ストラット63の上流側の端縁(ストラット前縁63A)におけるディフューザの流路断面積(断面積S1)と、ディフューザ60の入口における流路断面積(断面積S2)との面積比は、従来のガスタービンよりも大きな1.28以上1.37以下とされている。これにより、ストラット63の上流側の領域で排気の流速をさらに下げることが可能となる。
 さらに、最終段動翼列50では、チップ側端面50Cが、周方向から見て上流側から下流側に向かうに従って径方向外側に向かって延びている。また、軸線Acに対してチップ側端面50Cがなす角度θ1は、軸線Acに対して第一傾斜面61Aがなす角度θ2よりも大きく設定されている。チップ側端面50Cに沿って径方向外側に向かう排気の流れ成分は、下流側に位置する第一傾斜面61Aによって案内される。軸線Acに対してチップ側端面50Cがなす角度θ1が、軸線Acに対して第一傾斜面61Aがなす角度θ2よりも大きいことから、上記の流れ成分は第一傾斜面61Aに径方向内側から押し付けられるようにして密着する。その結果、第一傾斜面61Aにおける流れの剥離の発生をさらに抑制することができる。これにより、当該第一傾斜面61Aにおける渦の発生を回避することが可能となる。
 また、上記構成では、軸線Acに対してチップ側端面50Cがなす角度θ1と軸線Acに対して第一傾斜面61Aがなす角度θ2の差が、0°以上5°以下である。ここで、上述したように、チップ側端面50Cにおけるスロート幅を中間部50Mにおけるスロート幅よりも大きくしていることからチップ側における排気の全圧を高く維持することができる。これにより、上記角度θ1と角度θ2の差を従来よりも小さくすることが可能となる。言い換えれば、角度θ1が角度θ2よりも大きい限りにおいて、第一傾斜面61Aが軸線Acに対してなす角度θ2を許容される最大限度まで拡大することが可能となる。これにより、第一傾斜面61Aにおける流れの剥離をより一層抑制することができる。
 加えて、上記構成では、ストラット63が軸線Ac方向において第一傾斜面61Aと第二傾斜面61Bとにまたがって配置されている。これにより、当該ストラット63に接触する前に、排気の流れは第一傾斜面61A側の領域で十分に減速された状態となる。その結果、ストラット63による圧力損失をさらに低減することが可能となる。
(その他の実施形態)
 以上、本開示の実施形態について説明した。なお、本開示の要旨を逸脱しない限りにおいて、上記の各構成に種々の変更や改修を施すことが可能である。例えば、上記実施形態では、ストラット63が外筒61の第一傾斜面61Aと第二傾斜面61Bとにまたがって配置されている例について説明した。しかしながら、ストラット63の配置は上記に限定されない。例えば、ストラット63が第二傾斜面61B上にのみ配置されている構成を採ることも可能である。このような構成によれば、第一傾斜面61Aに沿って流れることで、ストラット63よりも上流側の領域で排気の流速をさらに下げることができる。その結果、ストラット63による圧力損失をより一層低減することが可能となる。
 さらに、上記実施形態では、最終段動翼列50のスロート幅、及び流出角についてのみ説明をした。しかしながら、当該最終段動翼列50の上流側に設けられている最終静翼列を、最終段動翼列50と同様のスロート幅、及び流出角を伴って構成することも可能である。
<付記>
 各実施形態に記載のタービン40、及びガスタービン10は、例えば以下のように把握される。
(1)第1の態様に係るタービン40は、軸線Acに沿って延びるとともに前記軸線Ac回りに回転可能なタービンロータ41と、前記タービンロータ41を外周側から覆うタービンケーシング45と、前記タービンロータ41の外周面上で前記軸線Acの周方向に配列された複数のタービン動翼を有し、前記軸線Ac方向に配列された複数のタービン動翼列43と、前記タービンケーシング45の内周面上で前記タービン動翼に対して前記軸線Ac方向一方側に隣り合うように設けられるとともに周方向に配列された複数のタービン静翼を有し、前記軸線Ac方向に配列された複数のタービン静翼列46と、前記複数のタービン動翼列43のうち、前記軸線Ac方向における最も他方側の最終段動翼列43Aの前記軸線Ac方向他方側に設けられ、前記軸線Ac方向一方側から他方側に向かって排気ガスが流れる排気流路Eを形成するディフューザ60と、を備え、前記ディフューザ60は、前記軸線Acに沿って延びる内筒62と、前記内筒62を外周側から覆うとともに、前記内筒62との間に前記排気流路Eを形成する外筒61と、前記排気流路Eの中途位置に設けられ、前記内筒62と前記外筒とを径方向に接続するとともに周方向に配列された複数のストラット63と、を有し、前記外筒61は、前記軸線Ac方向一方側における前記排気流路Eの入口から他方側に向かうに従って前記軸線Acを中心とする径方向内側から外側に延びる第一傾斜面61Aを有し、前記第一傾斜面61Aは、前記軸線Acを含む断面視で前記軸線Acに対して16°以上24°以下の角度をなし、前記最終段動翼列43Aの前記タービン動翼では、前記軸線Acに対する径方向外側の端部のスロート幅A1が、径方向における中間部50Mのスロート幅A2よりも大きく設定されている。
 上記構成によれば、軸線Acに対して第一傾斜面61Aがなす角度が、従来のディフューザよりも大きな16°以上24°以下とされている。これにより、排気流路Eを流れる排気の流速をストラット63よりも軸線Ac方向一方側の領域でさらに下げることが可能となる。その結果、ストラット63による圧力損失をより一層小さく抑えることができる。さらに、最終段動翼列43Aのタービン動翼では、径方向外側の端部のスロート幅A1が中間部50Mのスロート幅A2よりも大きい。これにより、径方向外側の端部での全圧が高くなる。そのため、第一傾斜面61Aで流れの剥離が生じる可能性を低減することもできる。
(2)第2の態様に係るタービン40において、前記最終段動翼列43Aの前記タービン動翼では、径方向内側の端部のスロート幅A1が、径方向における中間部50Mのスロート幅A2よりも大きく設定されている。
 上記構成によれば、最終段動翼列43Aのタービン動翼では、径方向内側の端部のスロート幅A1が中間部50Mのスロート幅A2よりも大きい。これにより、径方向内側の端部での全圧が高くなる。そのため、内筒62の外周面62Aで流れの剥離が生じる可能性を低減することができる。
(3)第3の態様に係るタービン40では、前記ストラット63の前記軸線Ac方向一方側の端縁における前記ディフューザ60の流路断面積と、前記軸線Ac方向一方側の入口における前記ディフューザ60の流路断面積との面積比は、1.28以上1.37以下である。
 上記構成によれば、ストラット63の軸線Ac方向一方側の領域で排気の流速をさらに下げることが可能となる。
(4)第4の態様に係るタービン40において、前記最終段動翼列43Aの前記タービン動翼では、径方向外側のチップ側端面50Cが、周方向から見て前記軸線Ac方向一方側から他方側に向かうに従って径方向外側に向かって延び、前記軸線Acに対して前記チップ側端面50Cがなす角度θ1は、前記軸線Acに対して前記第一傾斜面61Aがなす角度θ2よりも大きく設定されている。
 上記構成によれば、チップ側端面50Cに沿って径方向外側に向かう流れ成分は、軸線Ac方向他方側の第一傾斜面61Aによって案内される。軸線Acに対してチップ側端面50Cがなす角度θ1が、軸線Acに対して第一傾斜面61Aがなす角度θ2よりも大きいことから、上記の流れ成分は第一傾斜面61Aに押し付けられるようにして密着する。その結果、第一傾斜面61Aにおける流れの剥離をさらに抑制することができる。
(5)第5の態様に係るタービン40では、前記軸線Acに対して前記チップ側端面50Cがなす角度θ1と前記軸線Acに対して前記第一傾斜面61Aがなす角度θ2の差が、0°以上5°以下である。
 上記構成によれば、第一傾斜面61Aにおける流れの剥離をより一層抑制することができる。
(6)第6の態様に係るタービン40では、前記外筒61は、前記第一傾斜面61Aの前記軸線Ac方向他方側につらなるとともに前記軸線Ac方向一方側から他方側に向かうに従って径方向内側から外側に延びる第二傾斜面61Bをさらに有し、前記軸線Acを含む断面視で前記軸線Acに対して前記第二傾斜面61Bのなす角度は、前記軸線Acに対して前記第一傾斜面61Aがなす角度θ2よりも小さく、前記ストラット63は前記軸線Ac方向において前記第一傾斜面61Aと前記第二傾斜面61Bとにまたがって配置されている。
 上記構成によれば、ストラット63が第一傾斜面61Aと第二傾斜面61Bとにまたがって配置されている。これにより、当該ストラット63に接触する前に、排気の流れは第一傾斜面61A側の領域で十分に減速された状態となる。その結果、ストラット63による圧力損失をさらに低減することが可能となる。
(7)第7の態様に係るガスタービン10は、空気Aを圧縮した高圧空気を生成する圧縮機20と、前記高圧空気に燃料を混合させて燃焼ガスGを生成する燃焼器30と、前記燃焼ガスGにより駆動されるタービン40と、を備える。
 上記構成によれば、ディフューザ60における圧力損失がさらに低減されることで性能がより一層向上したガスタービン10を提供することができる。
 本開示によれば、圧力損失が低減されることでさらに性能が向上したタービン、及びガスタービンを提供することができる。
10 ガスタービン
11 ガスタービンロータ
15 ガスタービンケーシング
16 中間車室
20 圧縮機
21 圧縮機ロータ
22 圧縮機回転軸
23 圧縮機動翼列
25 圧縮機ケーシング
26 圧縮機静翼列
30 燃焼器
40 タービン
41 タービンロータ
42 タービン回転軸
43 タービン動翼列
43A 最終段動翼列
45 タービンケーシング
45A 内周面
46 タービン静翼列
50 最終段動翼列
50A 前縁
50B 後縁
50C チップ側端面
50D ハブ側端面
50H 動翼本体
50M 中間部
50N 負圧面
50P 正圧面
60 ディフューザ
61 外筒
61A 第一傾斜面
61B 第二傾斜面
62 内筒
62A 外周面
63 ストラット
63A ストラット前縁
63B ストラット後縁
64 マンホール
70 ディスク
70A 外周面
80 軸受装置
Ac 軸線
A 空気
E 排気流路
F 燃料
G 燃焼ガス
θ1,θ2 角度
θ3,θ4 流出角

Claims (7)

  1.  軸線に沿って延びるとともに前記軸線回りに回転可能なタービンロータと、
     前記タービンロータを外周側から覆うタービンケーシングと、
     前記タービンロータの外周面上で前記軸線の周方向に配列された複数のタービン動翼を有し、前記軸線方向に配列された複数のタービン動翼列と、
     前記タービンケーシングの内周面上で前記タービン動翼に対して前記軸線方向一方側に隣り合うように設けられるとともに周方向に配列された複数のタービン静翼を有し、前記軸線方向に配列された複数のタービン静翼列と、
     前記複数のタービン動翼列のうち、前記軸線方向における最も他方側の最終段動翼列の前記軸線方向他方側に設けられ、前記軸線方向一方側から他方側に向かって排気ガスが流れる排気流路を形成するディフューザと、
    を備え、
     前記ディフューザは、
     前記軸線に沿って延びる内筒と、
     前記内筒を外周側から覆うとともに、前記内筒との間に前記排気流路を形成する外筒と、
     前記排気流路の中途位置に設けられ、前記内筒と前記外筒とを径方向に接続するとともに周方向に配列された複数のストラットと、
    を有し、
     前記外筒は、前記軸線方向一方側における前記排気流路の入口から他方側に向かうに従って前記軸線を中心とする径方向内側から外側に延びる第一傾斜面を有し、
     前記第一傾斜面は、前記軸線を含む断面視で前記軸線に対して16°以上24°以下の角度をなし、
     前記最終段動翼列の前記タービン動翼では、前記軸線に対する径方向外側の端部のスロート幅が、径方向における中間部のスロート幅よりも大きく設定されているタービン。
  2.  前記最終段動翼列の前記タービン動翼では、径方向内側の端部のスロート幅が、径方向における中間部のスロート幅よりも大きく設定されている請求項1に記載のタービン。
  3.  前記ストラットの前記軸線方向一方側の端縁における前記ディフューザの流路断面積と、前記軸線方向一方側の入口における前記ディフューザの流路断面積との面積比は、1.28以上1.37以下である請求項1又は2に記載のタービン。
  4.  前記最終段動翼列の前記タービン動翼では、径方向外側のチップ側端面が、周方向から見て前記軸線方向一方側から他方側に向かうに従って径方向外側に向かって延び、前記軸線に対して前記チップ側端面がなす角度は、前記軸線に対して前記第一傾斜面がなす角度よりも大きく設定されている請求項1から3のいずれか一項に記載のタービン。
  5.  前記軸線に対して前記チップ側端面がなす角度と前記軸線に対して前記第一傾斜面がなす角度の差が、0°以上5°以下である請求項4に記載のタービン。
  6.  前記外筒は、前記第一傾斜面の前記軸線方向他方側につらなるとともに前記軸線方向一方側から他方側に向かうに従って径方向内側から外側に延びる第二傾斜面をさらに有し、前記軸線を含む断面視で前記軸線に対して前記第二傾斜面のなす角度は、前記軸線に対して前記第一傾斜面がなす角度よりも小さく、前記ストラットは前記軸線方向において前記第一傾斜面と前記第二傾斜面とにまたがって配置されている請求項1から5のいずれか一項に記載のタービン。
  7.  空気を圧縮した高圧空気を生成する圧縮機と、
     前記高圧空気に燃料を混合させて燃焼ガスを生成する燃焼器と、
     前記燃焼ガスにより駆動される請求項1から6のいずれか一項に記載のタービンと、を備えるガスタービン。
PCT/JP2022/005097 2021-03-24 2022-02-09 タービン、及びガスタービン WO2022201932A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023508754A JPWO2022201932A1 (ja) 2021-03-24 2022-02-09
KR1020237029308A KR20230133916A (ko) 2021-03-24 2022-02-09 터빈, 및 가스 터빈
DE112022000513.0T DE112022000513T5 (de) 2021-03-24 2022-02-09 Turbine und gasturbine
CN202280017692.3A CN116940747A (zh) 2021-03-24 2022-02-09 涡轮及燃气涡轮
US18/240,655 US20230408090A1 (en) 2021-03-24 2023-08-31 Turbine and gas turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021050511 2021-03-24
JP2021-050511 2021-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/240,655 Continuation US20230408090A1 (en) 2021-03-24 2023-08-31 Turbine and gas turbine

Publications (1)

Publication Number Publication Date
WO2022201932A1 true WO2022201932A1 (ja) 2022-09-29

Family

ID=83395532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005097 WO2022201932A1 (ja) 2021-03-24 2022-02-09 タービン、及びガスタービン

Country Status (6)

Country Link
US (1) US20230408090A1 (ja)
JP (1) JPWO2022201932A1 (ja)
KR (1) KR20230133916A (ja)
CN (1) CN116940747A (ja)
DE (1) DE112022000513T5 (ja)
WO (1) WO2022201932A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218803A (ja) * 1995-02-14 1996-08-27 Toshiba Corp タービンノズル、タービン動翼及びタービン段落
US20100226767A1 (en) * 2007-03-13 2010-09-09 Sascha Becker Diffuser arrangement
JP2012041925A (ja) * 2010-08-20 2012-03-01 General Electric Co <Ge> 先端流路輪郭
JP2012207648A (ja) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd ガスタービン
JP2015536410A (ja) * 2012-11-19 2015-12-21 ゼネラル・エレクトリック・カンパニイ ガスタービン用の排気ガスディフューザ
JP2017227147A (ja) * 2016-06-21 2017-12-28 三菱重工業株式会社 タービン、ガスタービン

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018368U (ja) 1983-07-14 1985-02-07 防衛庁技術研究本部長 スプ−ル弁
EP2412941A1 (en) * 2010-07-26 2012-02-01 Siemens Aktiengesellschaft Exhaust diffuser for a gas turbine, and method thereof
US20120034064A1 (en) * 2010-08-06 2012-02-09 General Electric Company Contoured axial-radial exhaust diffuser
US9249687B2 (en) * 2010-10-27 2016-02-02 General Electric Company Turbine exhaust diffusion system and method
US9598981B2 (en) * 2013-11-22 2017-03-21 Siemens Energy, Inc. Industrial gas turbine exhaust system diffuser inlet lip
US9512740B2 (en) * 2013-11-22 2016-12-06 Siemens Energy, Inc. Industrial gas turbine exhaust system with area ruled exhaust path
US9644497B2 (en) * 2013-11-22 2017-05-09 Siemens Energy, Inc. Industrial gas turbine exhaust system with splined profile tail cone
US9540956B2 (en) * 2013-11-22 2017-01-10 Siemens Energy, Inc. Industrial gas turbine exhaust system with modular struts and collars
CN107923247B (zh) * 2015-08-12 2020-12-25 通用电气公司 用于涡轮发动机的扩散器和其形成方法
US20170130596A1 (en) * 2015-11-11 2017-05-11 General Electric Company System for integrating sections of a turbine
DE102017121337A1 (de) * 2017-09-14 2019-03-14 Abb Turbo Systems Ag Diffusor einer abgasturbine
US20190170010A1 (en) * 2017-12-04 2019-06-06 General Electric Company Methods, systems and apparatus relating to turbine engine exhaust diffusers
US10422344B1 (en) * 2018-09-13 2019-09-24 Borgwarner Inc. Turbocharger turbine diffuser with deswirl ribs
JP7131519B2 (ja) 2019-09-24 2022-09-06 豊田合成株式会社 観音開き型リッド装置
US20230030721A1 (en) * 2021-07-29 2023-02-02 Solar Turbines Incorporated Narrow, high performance collector design
US11834952B2 (en) * 2022-03-02 2023-12-05 General Electric Company Exhaust frequency mitigation apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218803A (ja) * 1995-02-14 1996-08-27 Toshiba Corp タービンノズル、タービン動翼及びタービン段落
US20100226767A1 (en) * 2007-03-13 2010-09-09 Sascha Becker Diffuser arrangement
JP2012041925A (ja) * 2010-08-20 2012-03-01 General Electric Co <Ge> 先端流路輪郭
JP2012207648A (ja) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd ガスタービン
JP2015536410A (ja) * 2012-11-19 2015-12-21 ゼネラル・エレクトリック・カンパニイ ガスタービン用の排気ガスディフューザ
JP2017227147A (ja) * 2016-06-21 2017-12-28 三菱重工業株式会社 タービン、ガスタービン

Also Published As

Publication number Publication date
DE112022000513T5 (de) 2024-01-25
KR20230133916A (ko) 2023-09-19
JPWO2022201932A1 (ja) 2022-09-29
CN116940747A (zh) 2023-10-24
US20230408090A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
JP6059424B2 (ja) 曲線輪郭軸方向−半径方向ディフューザ
US7665964B2 (en) Turbine
US20120272663A1 (en) Centrifugal compressor assembly with stator vane row
JP5651459B2 (ja) タービンエンジンにおける圧縮機の動作に関するシステム及び装置
JP6017033B2 (ja) 半径流入式軸流タービン及びターボチャージャ
WO2011090083A1 (ja) タービン動翼及びターボ機械
JP2012092837A (ja) タービン排気拡散システムおよび方法
JP2015526691A (ja) 短縮された中間部分を有するガスタービンエンジン
EP2971547B1 (en) Cantilever stator with vortex initiation feature
JP2019052639A (ja) 傾斜した内側バンドフランジを有するタービンノズル
JP6830999B2 (ja) タービン動翼及びガスタービン
JP2015175247A (ja) シュラウド、動翼体、及び回転機械
WO2018159681A1 (ja) タービン及びガスタービン
WO2020250635A1 (ja) 過給機
WO2022201932A1 (ja) タービン、及びガスタービン
JP6821426B2 (ja) ディフューザ、タービン及びガスタービン
EP3196411A2 (en) Flow alignment devices to improve diffuser performance
WO2019167181A1 (ja) 半径流入式タービン及びターボチャージャー
JP6782671B2 (ja) ターボ機械
US20180156236A1 (en) Gas turbine engine bleed configuration
US20240368993A1 (en) Device for sealing and reinjecting a bypass flow for a turbine nozzle
US11814984B2 (en) Rotor and compressor
JP6820735B2 (ja) タービン及びガスタービン
JP2018028297A (ja) 軸流圧縮機の静翼構造
JP2011021575A (ja) 可変ノズル及び可変容量型ターボチャージャ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508754

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112022000513

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20237029308

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280017692.3

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22774733

Country of ref document: EP

Kind code of ref document: A1