WO2022250022A1 - 回転検出装置、回転検出方法および回転検出プログラム - Google Patents
回転検出装置、回転検出方法および回転検出プログラム Download PDFInfo
- Publication number
- WO2022250022A1 WO2022250022A1 PCT/JP2022/021149 JP2022021149W WO2022250022A1 WO 2022250022 A1 WO2022250022 A1 WO 2022250022A1 JP 2022021149 W JP2022021149 W JP 2022021149W WO 2022250022 A1 WO2022250022 A1 WO 2022250022A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotation
- voltage
- rotation detection
- digital signal
- comparator
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 34
- 230000007704 transition Effects 0.000 claims abstract description 9
- 239000004065 semiconductor Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 17
- 230000008569 process Effects 0.000 abstract description 15
- 230000002441 reversible effect Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/30—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/16—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
Definitions
- the present invention relates to a rotation detection device, a rotation detection method, and a rotation detection program.
- the rotation detecting device when detecting the number of revolutions of a rotating body, sequentially holds digital values obtained by converting the output voltage from the potentiometer by an analog-to-digital converter or the like. Determine whether or not one rotation has occurred. A digital value corresponding to the output voltage is also used to detect the amount of rotation (rotational position) of the rotor. Therefore, the higher the resolution of the analog-to-digital converter, the more accurately the rotation detector can detect the amount of rotation.
- the disclosed technique has been made in view of the above problems, and aims to realize detection of the number of revolutions of a rotating body with simple processing and to reduce the capacity of a rotation detection program.
- a rotation detection device includes a comparator that generates a digital signal indicating the magnitude relationship between a voltage output from a potentiometer according to the amount of rotation of a rotating body and a threshold voltage, and a transition of the digital signal. and a control unit that detects the number of revolutions of the rotating body based on the edge.
- FIG. 1 is a block diagram showing an example of a system including a rotation detection device according to a first embodiment
- FIG. 2 is a timing chart showing an example of the operation of the rotation detection device of FIG. 1
- FIG. 3 is a flow chart showing an example of the operation of the rotation detection device when the motor of FIG. 1 is driven
- FIG. FIG. 2 is a block diagram showing an example of the hardware configuration of the rotation detection device of FIG. 1;
- signal lines through which information such as signals is transmitted are denoted by the same reference numerals as signal names
- voltage lines or power supply lines are denoted by the same reference numerals as the voltage names or power supply names.
- FIG. 1 is a block diagram showing an example of a system including the rotation detection device according to the first embodiment.
- the system 1000 shown in FIG. 1 has a rotation sensing device 100 and an actuator 200 .
- the system 1000 is, for example, an in-vehicle air conditioning system such as an HVAC (Heating, Ventilation, and Air Conditioning) system.
- HVAC Heating, Ventilation, and Air Conditioning
- the rotation detection device 100 has a voltage generator 110 , an analog-to-digital converter (ADC) 120 , a comparator (CMP) 130 and a controller 140 .
- the actuator 200 has a motor 210 , a gear (reducer) 220 , a rotating shaft (rotor) 230 and a potentiometer 240 .
- the rotating shaft 230 is an example of a rotating body.
- analog-to-digital converter 120 is also referred to as AD converter 120 .
- the motor 210 is, for example, a stepping motor.
- the motor 210 rotates forward or backward according to a pulse signal from a drive unit (not shown).
- Gear 220 is connected between motor 210 and rotating shaft 230 to reduce the speed of rotation of motor 210 and transmit it to rotating shaft 230 .
- the rotating shaft 230 is connected to, for example, a blade that adjusts the airflow or a valve that adjusts the flow rate of the air.
- the potentiometer 240 is arranged around the rotating shaft 230 . Potentiometer 240 functions as a variable resistor whose resistance value changes according to the rotational position (that is, the amount of rotation) of rotating shaft 230, and divides direct-current voltage DC2 to output voltage V1.
- Voltage generation unit 110 generates DC voltage DC2, threshold voltage VT, power supply voltage VCC, and analog circuit power supply voltage AVCC based on external power supply voltage VDD received from the outside, for example. Generate.
- the threshold voltage VT is set lower than the maximum voltage output by potentiometer 240 (eg, DC2). Threshold voltage VT may be supplied from the outside of rotation detection device 100 . In this case, the voltage generator 110 does not have the function of generating the threshold voltage VT.
- the power supply voltage VCC is used to power digital circuits such as the control unit 140 and the comparator 130 provided in the rotation detection device 100 .
- the power supply voltage AVCC is used as a power supply for the AD converter 120 and the like.
- the AD converter 120 converts the voltage V1 received via the external terminal T11 into a digital value and outputs it as a digital voltage value VD1.
- Comparator 130 compares voltage V1 received via external terminal T12 with threshold voltage VT, and outputs a binary digital signal D1 indicating the magnitude relationship between voltage V1 and threshold voltage VT.
- the voltage V1 input to the AD converter 120 and the voltage V1 input to the comparator 130 are supplied to the rotation detection device 100 via different external terminals T11 and T12. Thereby, it is possible to suppress mutual interference between the voltage V1 input to the AD converter 120 and the voltage V1 input to the comparator 130 . As a result, deterioration in the detection accuracy of AD converter 120 and comparator 130 can be prevented.
- the control unit 140 detects the rotational position (absolute position) of the rotating shaft 230 based on the digital voltage value VD1 from the AD converter 120 .
- Control unit 140 detects the number of revolutions of rotation shaft 230 based on digital signal D ⁇ b>1 from comparator 130 and information indicating the rotation direction of rotation shaft 230 received from the driving unit that controls the rotation of motor 210 .
- An example of the operation of controller 140 is shown in FIG.
- FIG. 2 is a timing chart showing an example of the operation of the rotation detection device 100 of FIG.
- the waveforms shown in FIG. 2 represent the case where the rotary shaft 230 in FIG. 1 rotates forward.
- the waveform is obtained by reversing the left and right of the time axis.
- the operation when rotating shaft 230 rotates forward will be mainly described.
- the potentiometer 240 outputs a voltage V1 of 0 V when the rotating shaft 230 is within a predetermined rotation angle range (initial position). Potentiometer 240 outputs voltage V1 (maximum value is Vmax) according to the displaced rotation angle until the rotation angle reaches the maximum when rotation shaft 230 is rotated and deviates from the initial position. Potentiometer 240 outputs a voltage V1 of 0V when the rotation angle of rotating shaft 230 returns from the maximum position to the initial position.
- the potentiometer 240 when the rotating shaft 230 rotates, gradually increases the voltage V1 from 0 V to Vmax, then sets it to 0 V, and maintains 0 V while the rotating shaft 230 is in the initial position. As a result, potentiometer 240 outputs triangular voltage V1.
- Comparator 130 outputs a low level (logic value 0) digital signal D1 when voltage V1 output from potentiometer 240 is lower than threshold voltage VT.
- the comparator 130 outputs a high level (logical value 1) digital signal D1 when the voltage V1 is equal to or higher than the threshold voltage VT.
- the comparator 130 generates a transition edge of the digital signal D1 each time the voltage V1 crosses the threshold voltage VT. More specifically, the comparator 130 changes the digital signal D1 from low level to high level when the voltage V1 becomes higher than the threshold voltage VT. The comparator 130 changes the digital signal D1 from high level to low level when the voltage V1 becomes lower than the threshold voltage VT.
- the transition edge of the digital signal D1 is a rising edge, which is a transition from low level to high level, or a falling edge, which is a transition from high level to low level.
- the AD converter 120 converts the voltage V1 output from the potentiometer 240 into a digital voltage value VD1. Note that the stepped waveform of the digital voltage value VD1 shown in FIG. Determined.
- control unit 140 When the drive unit drives the motor 210 in the forward rotation direction, the control unit 140 in FIG. to detect When the drive unit drives the motor 210 in the reverse rotation direction, the control unit 140 detects one rotation (orbit) of the rotating shaft 230 in synchronization with the rising edge of the digital signal D1 output from the comparator 130 .
- circulation detection control by the control unit 140 will be described with reference to FIG.
- FIG. 3 is a flowchart showing an example of the operation of the rotation detection device 100 when the motor 210 of FIG. 1 is driven.
- FIG. 3 is implemented by a rotation detection program executed by the control unit 140 of the rotation detection device 100.
- FIG. FIG. 3 shows an example of a rotation detection method. The flow shown in FIG. 3 is started based on receiving a notification to start rotation from the driving unit that controls the rotation of motor 210 while rotating shaft 230 is at a predetermined initial position.
- step S10 the control unit 140 acquires information indicating the rotation direction of the rotating shaft 230 from the driving unit.
- the control unit 140 may hold the obtained information indicating the rotation direction in a holding unit such as a register.
- step S12 the control unit 140 initializes a holding unit such as a register that holds the number of laps to a positive value (3 or 5, etc.), and initializes a holding unit such as a register that holds the logic value of the digital signal D1. Initialize to 0.
- the number of revolutions can be treated as a positive value even when the number of revolutions is decreased during reverse rotation of the rotating shaft 230 .
- control unit 140 may initialize a holding unit such as a register that holds the number of laps to 0. In this case, the control unit 140 can determine the number of rotations of forward rotation when the number of rotations is a positive value, and can determine the number of rotations of reverse rotation when the number of rotations is a negative value.
- step S14 the control unit 140 acquires the digital voltage value VD1 output from the AD converter 120.
- step S16 the control unit 140 detects the rotational position of the rotating shaft 230 based on the acquired digital voltage value VD1, and notifies the driving unit or the like of information indicating the detected rotational position.
- step S18 the control unit 140 acquires the logical value of the digital signal D1 output from the comparator 130.
- the control unit 140 holds the logical value of the digital signal D1 acquired last time in a holding unit such as a register.
- the logical value 0 initialized in step S12 is treated as the logical value of the previously obtained digital signal D1.
- the logic value of the digital signal D1 is also referred to as logic value D1.
- step S20 the control unit 140 determines whether the rotation direction of the rotating shaft 230 is forward rotation or reverse rotation based on the information acquired in step S10. If the rotation direction is forward rotation, the process proceeds to step S22. If the rotation direction is reverse rotation, the process proceeds to step S26.
- step S22 the control unit 140 determines whether the digital signal D1 has changed from logical value 1 to logical value 0 based on the logical value D1 acquired in step S18 and the logical value D1 acquired last time.
- the process proceeds to step S24. If the digital signal D1 has not changed from the logical value 1 to the logical value 0, the rotation of the rotating shaft 230 has not been detected, so the process proceeds to step S30.
- step S24 the control unit 140 detects that the rotating shaft 230 has made one rotation in the forward rotation direction, so it increases the number of revolutions by one, and the process proceeds to step S30. For example, the control unit 140 notifies the driving unit or the like of the updated number of laps.
- step S26 the control unit 140 determines whether the digital signal D1 has changed from logical value 0 to logical value 1 based on the logical value D1 acquired in step S18 and the logical value D1 acquired last time.
- the digital signal D1 changes from the logical value 0 to the logical value 1
- the rotation of the rotary shaft 230 is detected, so the process proceeds to step S28. If the digital signal D1 has not changed from the logical value 0 to the logical value 1, the rotation of the rotary shaft 230 has not been detected, so the process proceeds to step S30.
- step S28 the control unit 140 detects that the rotating shaft 230 has rotated once in the reverse rotation direction, so it decreases the number of revolutions by 1, and the process proceeds to step S30.
- the control unit 140 notifies the driving unit or the like of the updated number of laps.
- the control unit 140 may increase the number of revolutions by one based on one rotation of the rotating shaft 230 in the reverse rotation direction. In this case, the control unit 140 can recognize the rotation direction and the number of rotations even when the number of rotations is increased by 1 regardless of the direction of rotation.
- step S30 if the control unit 140 continues the operation of detecting rotation of the rotating shaft 230, the process proceeds to step S14.
- the control unit 140 stops detecting the rotation of the rotating shaft 230 the control unit 140 ends the processing shown in FIG.
- control unit 140 can detect the number of revolutions of the rotating shaft 230 by the operation shown in FIG. At this time, the control unit 140 holds the logical value of the digital signal D1 acquired last time and compares it with the logical value of the digital signal D1 acquired this time to detect that the rotation shaft 230 has made one rotation. , and the number of revolutions of the rotating shaft 230 can be counted.
- the detection process can be simplified compared to the process of detecting that the rotary shaft 230 has made one rotation based on the tendency of changes in the plurality of past digital voltage values VD1.
- the capacity of the rotation detection program for detecting the number of revolutions of the rotating shaft 230 can be reduced.
- the digital voltage value VD1 is not used to detect the number of turns of the rotating shaft 230, even if the resolution of the AD converter 120 is increased, it is possible to prevent the process of detecting the number of turns from becoming complicated.
- control unit 140 may have a holding unit such as a register that holds the number of rotations of forward rotation and the number of rotations of reverse rotation. In this case, for example, even when the rotary shaft 230 rotates in the forward direction and then in the reverse direction, the number of revolutions of the forward rotation and the number of reverse rotations can be retained so as to be identifiable.
- FIG. 4 is a block diagram showing an example of the hardware configuration of the rotation detection device 100 of FIG.
- the rotation detection device 100 has a microcomputer 150 .
- the microcomputer 150 is a so-called one-chip microcomputer (semiconductor chip).
- the microcomputer 150 has a CPU 10, a ROM (Read Only Memory) 20, a RAM (Random Access Memory) 30, an AD converter 120, a comparator 130, and a voltage generator 110, which are interconnected via a bus BUS.
- the ROM 20 stores a rotation detection program. Note that the voltage generator 110 may be arranged outside the microcomputer 150 .
- the CPU 10 controls the overall operation of the rotation detection device 100 and executes the rotation detection program, thereby realizing the functions of the control unit 140 in FIG.
- the CPU 10 is an example of a computer.
- the CPU 10 acquires the digital voltage value VD1 output from the AD converter 120 and the logic value of the digital signal D1 output from the comparator 130 via the bus BUS. Then, the CPU 10 executes the operation of detecting the rotational position and the number of revolutions of the rotating shaft 230 shown in FIG.
- the control unit 140 holds the logical value of the digital signal D1 acquired last time, and compares it with the logical value of the digital signal D1 acquired this time to determine that the rotating shaft 230 has made one rotation. and the number of revolutions of the rotating shaft 230 can be detected. Therefore, the detection process can be simpler than the process of detecting that the rotary shaft 230 has made one rotation based on the change tendency of the plurality of past digital voltage values VD1. As a result, the capacity of the rotation detection program for detecting the number of revolutions of the rotating shaft 230 can be reduced.
- the control unit 140 can detect the rotational position of the rotary shaft 230 based on the digital voltage value VD1 output by the AD converter 120 according to the voltage V1 from the potentiometer 240.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
回転検出装置は、回転体の回転量に応じてポテンショメータから出力される電圧としきい値電圧との大小関係を示すデジタル信号を生成するコンパレータと、前記デジタル信号の遷移エッジに基づいて、前記回転体の周回数を検出する制御部と、を有する。これにより、回転体の周回数の検出を簡易な処理で実現し、回転検出プログラムの容量を削減することができる。
Description
本発明は、回転検出装置、回転検出方法および回転検出プログラムに関する。
ポテンショメータによる連続回転軸の位置検出において、2つのポテンショメータを配置することで検出不能な位置をなくす手法が知られている(特許文献1参照)。回転体の位置制御を行う磁気軸受の制御装置において、センサによる回転体の1回転の検出毎にカウント値をリセットし、リセット直前のカウント値に基づいて回転体の周回数を検出し、回転体の位置制御を行う手法が知られている(特許文献2参照)。
例えば、回転体の周回数を検出する場合、回転検出装置は、ポテンショメータからの出力電圧をアナログデジタル変換器等により変換したデジタル値を順次保持し、保持したデジタル値の変化の傾向により回転体が1回転したか否かを判定する。出力電圧に対応するデジタル値は、回転体の回転量(回転位置)の検出にも使用される。このため、アナログデジタル変換器の分解能が高いほど、回転検出装置は、回転量を高い精度で検出することができる。
しかしながら、アナログデジタル変換器の分解能が高いほど、保持すべきデジタル値のデータ量は増加する。また、デジタル値のデータ量が増加すると、デジタル値の変化量が微少になり、変化のパターンが複雑になる。このため、デジタル値の変化の傾向を判定するための処理が複雑になり、回転体の周回数を検出する回転検出プログラムの容量が増加してしまう。
開示の技術は、上記の課題に鑑みてなされたものであり、回転体の周回数の検出を簡易な処理で実現し、回転検出プログラムの容量を削減することを目的とする。
本開示の一実施形態では、回転検出装置は、回転体の回転量に応じてポテンショメータから出力される電圧としきい値電圧との大小関係を示すデジタル信号を生成するコンパレータと、前記デジタル信号の遷移エッジに基づいて、前記回転体の周回数を検出する制御部と、有することを特徴とする。
回転体の周回数の検出を簡易な処理で実現し、回転検出プログラムの容量を削減することができる。
以下、図面を参照して発明を実施するための形態について説明する。以下では、信号等の情報が伝達される信号線には、信号名と同じ符号を使用し、電圧線または電源線には、電圧名または電源名と同じ符号を使用する。
図1は、第1の実施形態に係る回転検出装置を含むシステムの一例を示すブロック図である。図1に示すシステム1000は、回転検出装置100およびアクチュエータ200を有する。特に限定されないが、例えば、システム1000は、HVAC(Heating, Ventilation, and Air Conditioning)システム等の車載用の空調システムである。
回転検出装置100は、電圧生成部110、アナログデジタル変換器(ADC)120、コンパレータ(CMP)130および制御部140を有する。アクチュエータ200は、モータ210、ギヤ(減速機)220、回転軸(ロータ)230およびポテンショメータ240を有する。回転軸230は、回転体の一例である。以下では、アナログデジタル変換器120は、AD変換器120とも称される。
モータ210は、例えば、ステッピングモータである。モータ210は、図示しない駆動部からのパルス信号により、正回転または逆回転する。ギヤ220は、モータ210と回転軸230との間に接続され、モータ210の回転を減速して回転軸230に伝える。回転軸230は、例えば、気流を調整する羽根または空気の流量を調整する弁等に接続される。
ポテンショメータ240は、回転軸230の周囲に配置される。ポテンショメータ240は、回転軸230の回転位置(すなわち、回転量)に応じて抵抗値が変化する可変抵抗として機能し、直流電圧DC2を分圧して電圧V1として出力する。
電圧生成部110は、例えば、外部から受ける外部電源電圧VDDに基づいて、外部電源電圧VDDより電圧値が低い直流電圧DC2、しきい値電圧VT、電源電圧VCCおよびアナログ回路用の電源電圧AVCCを生成する。しきい値電圧VTは、ポテンショメータ240が出力する最大電圧(例えば、DC2)より低く設定される。なお、しきい値電圧VTは、回転検出装置100の外部から供給されてもよい。この場合、電圧生成部110は、しきい値電圧VTを生成する機能を持たない。電源電圧VCCは、回転検出装置100内に設けられる制御部140およびコンパレータ130等のデジタル回路の電源に使用される。電源電圧AVCCは、AD変換器120等の電源に使用される。
AD変換器120は、外部端子T11を介して受ける電圧V1をデジタル値に変換し、デジタル電圧値VD1として出力する。コンパレータ130は、外部端子T12を介して受ける電圧V1としきい値電圧VTとを比較し、電圧V1としきい値電圧VTとの大小関係を示す2値のデジタル信号D1として出力する。
AD変換器120に入力される電圧V1とコンパレータ130に入力される電圧V1とは、互いに異なる外部端子T11、T12を介して回転検出装置100に供給される。これにより、AD変換器120に入力される電圧V1とコンパレータ130に入力される電圧V1とが相互に干渉することを抑制することができる。この結果、AD変換器120およびコンパレータ130の検出精度の低下を防止することができる。
制御部140は、AD変換器120からのデジタル電圧値VD1に基づいて、回転軸230の回転位置(絶対位置)を検出する。制御部140は、コンパレータ130からのデジタル信号D1と、モータ210の回転を制御する駆動部から受ける回転軸230の回転方向を示す情報とに基づいて、回転軸230の周回数を検出する。制御部140の動作の例は、図3に示される。
図2は、図1の回転検出装置100の動作の一例を示すタイミング図である。例えば、図2に示す波形は、図1の回転軸230が正回転する場合を示す。回転軸230が逆回転する場合、時間軸の左右を逆転させた波形になる。以下では、主に回転軸230が正回転する場合の動作が説明される。
ポテンショメータ240は、回転軸230が所定の回転角の範囲(初期位置)内にある場合、0Vの電圧V1を出力する。ポテンショメータ240は、回転軸230が回転により初期位置から外れた場合、回転角が最大になるまで、変位した回転角に応じた電圧V1(最大値はVmax)を出力する。ポテンショメータ240は、回転軸230の回転角が最大位置から初期位置に戻ったとき、0Vの電圧V1を出力する。
このように、ポテンショメータ240は、回転軸230が回転する場合、電圧V1を0VからVmaxまで徐々に上昇させた後、0Vに設定し、回転軸230が初期位置にある間、0Vを維持する。これにより、ポテンショメータ240は、三角波状の電圧V1を出力する。コンパレータ130は、ポテンショメータ240から出力される電圧V1がしきい値電圧VTより低いときロウレベル(論理値0)のデジタル信号D1を出力する。コンパレータ130は、電圧V1がしきい値電圧VT以上のときハイレベル(論理値1)のデジタル信号D1を出力する。
すなわち、コンパレータ130は、電圧V1がしきい値電圧VTを跨ぐ毎にデジタル信号D1の遷移エッジを生成する。より具体的には、コンパレータ130は、電圧V1がしきい値電圧VTより高くなったとき、デジタル信号D1をロウレベルからハイレベルに変化させる。コンパレータ130は、電圧V1がしきい値電圧VTより低くなったとき、デジタル信号D1をハイレベルからロウレベルに変化させる。このように、デジタル信号D1の遷移エッジは、ロウレベルからハイレベルへの遷移である立ち上がりエッジまたはハイレベルからロウレベルへの遷移である立ち下がりエッジである。
AD変換器120は、ポテンショメータ240から出力される電圧V1をデジタル電圧値VD1に変換する。なお、図2に示すデジタル電圧値VD1の階段状の波形は、説明を分かりやすくするため、ステップ数を少なくしているが、実際の波形のステップ数は、AD変換器120の分解能に応じて決まる。
図1の制御部140は、駆動部がモータ210を正回転方向に駆動している場合、コンパレータ130から出力されるデジタル信号D1の立ち下がりエッジに同期して回転軸230の1回転(周回)を検出する。制御部140は、駆動部がモータ210が逆回転方向に駆動している場合、コンパレータ130から出力されるデジタル信号D1の立ち上がりエッジに同期して回転軸230の1回転(周回)を検出する。制御部140による周回の検出制御の例は、図3で説明される。
図3は、図1のモータ210が駆動されているときの回転検出装置100の動作の一例を示すフロー図である。例えば、図3は、回転検出装置100の制御部140が実行する回転検出プログラムにより実現される。図3は回転検出方法の一例を示す。図3に示すフローは、回転軸230が所定の初期位置にある状態で、モータ210の回転を制御する駆動部から回転を開始する通知を受けたことに基づいて開始される。
まず、ステップS10において、制御部140は、駆動部から回転軸230の回転方向を示す情報を取得する。制御部140は、取得した回転方向を示す情報を、レジスタ等の保持部に保持してもよい。次に、ステップS12において、制御部140は、周回数を保持するレジスタ等の保持部を正値(3または5など)に初期化し、デジタル信号D1の論理値を保持するレジスタ等の保持部を0に初期化する。周回数を正値に初期化することにより、回転軸230の逆回転時に周回数を減少させる場合にも、周回数を正値として扱うことができる。
なお、制御部140は、周回数を保持するレジスタ等の保持部を0に初期化してもよい。この場合、制御部140は、周回数が正値の場合、正回転の周回数と把握することができ、周回数が負値の場合、逆回転の周回数と把握することができる。
次に、ステップS14において、制御部140は、AD変換器120から出力されるデジタル電圧値VD1を取得する。次に、ステップS16において、制御部140は、取得したデジタル電圧値VD1に基づいて回転軸230の回転位置を検出し、検出した回転位置を示す情報を駆動部等に通知する。
次に、ステップS18において、制御部140は、コンパレータ130から出力されるデジタル信号D1の論理値を取得する。なお、制御部140は、前回取得したデジタル信号D1の論理値をレジスタ等の保持部に保持しておく。初回の処理ループでは、ステップS12で初期化された論理値0が、前回取得したデジタル信号D1の論理値として扱われる。以下では、デジタル信号D1の論理値は、論理値D1とも称される。
次に、ステップS20において、制御部140は、ステップS10で取得した情報に基づいて、回転軸230の回転方向が正回転であるか逆回転であるかを判定する。回転方向が正回転である場合、処理はステップS22に移行される。回転方向が逆回転である場合、処理はステップS26に移行される。
ステップS22において、制御部140は、ステップS18で取得した論理値D1と前回取得した論理値D1とに基づいて、デジタル信号D1が論理値1から論理値0に変化したか否かを判定する。デジタル信号D1が論理値1から論理値0に変化した場合、回転軸230の周回を検出したため、処理はステップS24に移行される。デジタル信号D1が論理値1から論理値0に変化していない場合、回転軸230の周回を検出していないため、処理はステップS30に移行される。
ステップS24において、制御部140は、回転軸230が正回転方向に1回転したことを検出したため、周回数を1だけ増加させ、処理をステップS30に移行する。例えば、制御部140は、更新した周回数を駆動部等に通知する。
ステップS26において、制御部140は、ステップS18で取得した論理値D1と前回取得した論理値D1とに基づいて、デジタル信号D1が論理値0から論理値1に変化したか否かを判定する。デジタル信号D1が論理値0から論理値1に変化した場合、回転軸230の周回を検出したため、処理はステップS28に移行される。デジタル信号D1が論理値0から論理値1に変化していない場合、回転軸230の周回を検出していないため、処理はステップS30に移行される。
ステップS28において、制御部140は、回転軸230が逆回転方向に1回転したことを検出したため、周回数を1だけ減少させ、処理をステップS30に移行する。例えば、制御部140は、更新した周回数を駆動部等に通知する。なお、ステップS10で取得した回転方向が保持部に保持される場合、制御部140は、回転軸230が逆回転方向に1回転したことに基づいて、周回数を1だけ増加させてもよい。この場合、制御部140は、回転方向にかかわりなく周回数を1ずつ増加する場合にも、回転方向と周回数とを認識することができる。
ステップS30において、制御部140は、回転軸230の回転の検出動作を継続する場合、処理をステップS14に移行する。制御部140は、回転軸230の回転の検出動作を停止する場合、図3に示す処理を終了する。
以上、図3に示す動作により、制御部140は、回転軸230の周回数を検出することができる。この際、制御部140は、前回取得したデジタル信号D1の論理値を保持しておき、今回取得したデジタル信号D1の論理値と比較することで、回転軸230が1回転したことを検出することができ、回転軸230の周回数をカウントすることができる。
したがって、過去の複数のデジタル電圧値VD1の変化の傾向に基づいて回転軸230が1回転したことを検出する処理に比べて、検出処理を簡易にすることができる。この結果、回転軸230の周回数を検出する回転検出プログラムの容量を削減することができる。また、回転軸230の周回数の検出にデジタル電圧値VD1を使用しないため、AD変換器120の分解能を高くしても、周回数の検出処理が複雑になることを抑止することができる。
なお、制御部140は、正回転の周回数と逆回転の周回数とをそれぞれ保持するレジスタ等の保持部を有してもよい。この場合、例えば、回転軸230が正回転した後逆回転する場合にも、正回転と逆回転との周回数をそれぞれ識別可能に保持することができる。
図4は、図1の回転検出装置100のハードウェア構成の一例を示すブロック図である。図1と同じ要素については、同じ符号が付される。例えば、回転検出装置100は、マイコン150を有する。特に限定されないが、マイコン150は、いわゆる1チップマイコン(半導体チップ)である。
マイコン150は、バスBUSを介して相互に接続されたCPU10、ROM(Read Only Memory)20、RAM(Random Access Memory)30、AD変換器120およびコンパレータ130と、電圧生成部110とを有する。ROM20には、回転検出プログラムが格納されている。なお、電圧生成部110は、マイコン150の外部に配置されてもよい。
CPU10は、回転検出装置100の全体の動作を制御するとともに、回転検出プログラムを実行することで、図1の制御部140の機能を実現する。CPU10は、コンピュータの一例である。例えば、CPU10は、AD変換器120から出力されるデジタル電圧値VD1と、コンパレータ130から出力されるデジタル信号D1の論理値とを、バスBUSを介して取得する。そして、CPU10は、図3に示した回転軸230の回転位置および周回数の検出動作を実行する。
以上、この実施形態では、制御部140は、前回取得したデジタル信号D1の論理値を保持しておき、今回取得したデジタル信号D1の論理値と比較することで、回転軸230が1回転したことと、回転軸230の周回数とを検出することができる。したがって、過去の複数のデジタル電圧値VD1の変化の傾向に基づいて回転軸230が1回転したことを検出する処理に比べて、検出処理を簡易にすることができる。この結果、回転軸230の周回数を検出する回転検出プログラムの容量を削減することができる。
制御部140は、ポテンショメータ240からの電圧V1に応じてAD変換器120が出力するデジタル電圧値VD1に基づいて、回転軸230の回転位置を検出することができる。
互いに異なる外部端子T11、T12を介して回転検出装置100に電圧V1を供給することで、AD変換器120に入力される電圧V1とコンパレータ130に入力される電圧V1とが相互に干渉することを抑制することができる。この結果、AD変換器120およびコンパレータ130の検出精度の低下を防止することができる。
以上、本発明を実施するための形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、本発明の主旨をそこなわない範囲で、種々の変形・改良が可能である。
本出願は、2021年5月27日に日本国特許庁に出願した特願2021-089154号に基づく優先権を主張し、前記出願に記載された全ての記載内容を援用するものである。
100 回転検出装置
110 電圧生成部
120 アナログデジタル変換器(ADC)
130 コンパレータ(CMP)
140 制御部
150 マイコン
200 アクチュエータ
210 モータ
220 ギヤ
230 回転軸
240 ポテンショメータ
1000 システム
AVCC 電源電圧
D1 デジタル信号
DC2 直流電圧
T11、T12 外部端子
V1 電圧
VCC 電源電圧
VD1 デジタル電圧値
VT しきい値電圧
110 電圧生成部
120 アナログデジタル変換器(ADC)
130 コンパレータ(CMP)
140 制御部
150 マイコン
200 アクチュエータ
210 モータ
220 ギヤ
230 回転軸
240 ポテンショメータ
1000 システム
AVCC 電源電圧
D1 デジタル信号
DC2 直流電圧
T11、T12 外部端子
V1 電圧
VCC 電源電圧
VD1 デジタル電圧値
VT しきい値電圧
Claims (5)
- 回転体の回転量に応じてポテンショメータから出力される電圧としきい値電圧との大小関係を示すデジタル信号を生成するコンパレータと、
前記デジタル信号の遷移エッジに基づいて、前記回転体の周回数を検出する制御部と、
を有することを特徴とする回転検出装置。 - 前記電圧をデジタル値に変換するアナログデジタル変換器を備え、
前記制御部は、前記アナログデジタル変換器から出力されるデジタル値に基づいて、前記回転体の回転量を検出すること
を特徴とする請求項1に記載の回転検出装置。 - 前記電圧を受ける第1端子および第2端子と、前記アナログデジタル変換器、前記コンパレータおよび前記制御部とを含む半導体チップを有し、
前記第1端子は、前記アナログデジタル変換器の入力に接続され、
前記第2端子は、前記コンパレータの入力に接続されること
を特徴とする請求項2に記載の回転検出装置。 - コンパレータにより、回転体の回転量に応じてポテンショメータから出力される電圧としきい値電圧との大小関係を示すデジタル信号を生成し、
制御部により、前記デジタル信号の遷移エッジに基づいて、前記回転体の周回数を検出すること
を特徴とする回転検出方法。 - コンパレータにより生成される、回転体の回転量に応じてポテンショメータから出力される電圧としきい値電圧との大小関係を示すデジタル信号を取得し、
前記デジタル信号の遷移エッジに基づいて、前記回転体の周回数を検出する処理を
コンピュータに実行させることを特徴とする回転検出プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/562,523 US20240247927A1 (en) | 2021-05-27 | 2022-05-23 | Rotation detection device, rotation detection method, and rotation detection program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021089154A JP2022181922A (ja) | 2021-05-27 | 2021-05-27 | 回転検出装置、回転検出方法および回転検出プログラム |
JP2021-089154 | 2021-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022250022A1 true WO2022250022A1 (ja) | 2022-12-01 |
Family
ID=84228842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/021149 WO2022250022A1 (ja) | 2021-05-27 | 2022-05-23 | 回転検出装置、回転検出方法および回転検出プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240247927A1 (ja) |
JP (1) | JP2022181922A (ja) |
WO (1) | WO2022250022A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6435211A (en) * | 1987-07-30 | 1989-02-06 | Asmo Co Ltd | Rotary position detector |
US5027648A (en) * | 1988-07-05 | 1991-07-02 | Siemens Aktiengesellschaft | Method and device for measuring the angle of rotation of the steering shaft of a motor vehicle |
JPH1062203A (ja) * | 1996-08-20 | 1998-03-06 | Matsushita Electric Ind Co Ltd | 位置検出装置 |
JP2007010329A (ja) * | 2005-06-28 | 2007-01-18 | Honda Motor Co Ltd | 回転角検出装置及びこれを用いた電動パワーステアリング装置 |
JP2016085195A (ja) * | 2014-10-29 | 2016-05-19 | パナソニックIpマネジメント株式会社 | レゾルバの回転位置検出装置 |
JP2018091747A (ja) * | 2016-12-05 | 2018-06-14 | 株式会社ミツトヨ | エンコーダ及びエンコーダの光源 |
-
2021
- 2021-05-27 JP JP2021089154A patent/JP2022181922A/ja active Pending
-
2022
- 2022-05-23 WO PCT/JP2022/021149 patent/WO2022250022A1/ja active Application Filing
- 2022-05-23 US US18/562,523 patent/US20240247927A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6435211A (en) * | 1987-07-30 | 1989-02-06 | Asmo Co Ltd | Rotary position detector |
US5027648A (en) * | 1988-07-05 | 1991-07-02 | Siemens Aktiengesellschaft | Method and device for measuring the angle of rotation of the steering shaft of a motor vehicle |
JPH1062203A (ja) * | 1996-08-20 | 1998-03-06 | Matsushita Electric Ind Co Ltd | 位置検出装置 |
JP2007010329A (ja) * | 2005-06-28 | 2007-01-18 | Honda Motor Co Ltd | 回転角検出装置及びこれを用いた電動パワーステアリング装置 |
JP2016085195A (ja) * | 2014-10-29 | 2016-05-19 | パナソニックIpマネジメント株式会社 | レゾルバの回転位置検出装置 |
JP2018091747A (ja) * | 2016-12-05 | 2018-06-14 | 株式会社ミツトヨ | エンコーダ及びエンコーダの光源 |
Also Published As
Publication number | Publication date |
---|---|
JP2022181922A (ja) | 2022-12-08 |
US20240247927A1 (en) | 2024-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7253614B2 (en) | Proximity detector having a sequential flow state machine | |
WO2019167763A1 (ja) | 位置推定方法、位置推定装置およびモータモジュール | |
CN115931036B (zh) | 一种磁编码器故障检测方法、装置、电子设备和存储介质 | |
WO2022250022A1 (ja) | 回転検出装置、回転検出方法および回転検出プログラム | |
WO2022259969A1 (ja) | 回転検出装置、回転検出方法および回転検出プログラム | |
US7969115B2 (en) | Motor drive circuit and electronics | |
US9748877B2 (en) | Motor drive circuit and method | |
US6323786B1 (en) | Absolute-value encoder device | |
US9748879B2 (en) | Motor drive controller and control method of motor drive controller | |
JP3251827B2 (ja) | 位置決め装置 | |
US6249096B1 (en) | Apparatus and method for determining commutation time of sensorless brushless direct current (BLDC) motor | |
US5808436A (en) | Starting circuit and starting method for a brushless motor | |
JP5458543B2 (ja) | 回転体駆動制御装置 | |
JP4782434B2 (ja) | 回転検出装置の信号処理装置 | |
US12119777B2 (en) | Control circuit | |
JP3067729B2 (ja) | エンコーダの信号処理方法及び装置 | |
JP4419225B2 (ja) | ロータリーエンコーダ | |
JP2006234504A (ja) | 回転検出装置 | |
JPH04340608A (ja) | 回転軸制御方法および装置 | |
US20050194849A1 (en) | Motors and control methods thereof | |
KR940027283A (ko) | 모터 구동장치 및 그 방법 | |
JP6393246B2 (ja) | モータ駆動制御装置及びモータ駆動制御装置の制御方法 | |
JP2022157384A (ja) | 回転装置 | |
JPH095115A (ja) | 位置検出回路 | |
CN113391087A (zh) | 转速检测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22811292 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18562523 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22811292 Country of ref document: EP Kind code of ref document: A1 |