[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022249598A1 - 情報処理方法、情報処理装置、及びプログラム - Google Patents

情報処理方法、情報処理装置、及びプログラム Download PDF

Info

Publication number
WO2022249598A1
WO2022249598A1 PCT/JP2022/007565 JP2022007565W WO2022249598A1 WO 2022249598 A1 WO2022249598 A1 WO 2022249598A1 JP 2022007565 W JP2022007565 W JP 2022007565W WO 2022249598 A1 WO2022249598 A1 WO 2022249598A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
image data
unit
information processing
value
Prior art date
Application number
PCT/JP2022/007565
Other languages
English (en)
French (fr)
Inventor
憲治 池田
寛和 辰田
和博 中川
咲湖 安川
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US18/560,699 priority Critical patent/US20240354913A1/en
Priority to CN202280036546.5A priority patent/CN117396749A/zh
Priority to JP2023524000A priority patent/JPWO2022249598A1/ja
Publication of WO2022249598A1 publication Critical patent/WO2022249598A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10064Fluorescence image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • the present disclosure relates to an information processing method, an information processing device, and a program.
  • a fluorescence observation device using a line spectroscope has been proposed as a configuration for realizing such a pathological image diagnosis method using fluorescence staining.
  • the line spectroscope irradiates a fluorescently-stained pathological specimen with linear line illumination, and the spectroscope captures an image by dispersing the fluorescence excited by the line illumination.
  • Fluorescence image data obtained by imaging are sequentially output in the line direction of line illumination, for example, and are sequentially output in the wavelength direction of spectroscopy, thereby being output continuously without interruption.
  • the pathological specimen is imaged by scanning in the direction perpendicular to the line direction of the line illumination, so that the spectral information related to the pathological specimen based on the captured image data can be handled as two-dimensional information. becomes possible.
  • the present disclosure provides an information processing method, an information processing apparatus, and a program capable of displaying an image with a more appropriate dynamic range.
  • first image data of a unit area image that is each area obtained by dividing a fluorescence image into a plurality of areas, and a predetermined pixel value range for each of the first image data are shown.
  • a storage step of associating and storing the first value a conversion step of converting a pixel value of a combination image of the selected unit area images based on a representative value selected from first values associated with each combination of the selected unit area images;
  • a method of processing information comprising:
  • the combination of the selected unit area images may correspond to the observation range displayed on the display unit, and the range of the combination of the unit area images may be changed according to the observation range.
  • a display control step of displaying a range corresponding to the observation range on the display unit may be further provided.
  • the observation range may correspond to the observation range of the microscope, and the combination range of the unit area images may be changed according to the magnification of the microscope.
  • the first image data may be image data whose dynamic range is adjusted based on a pixel value range obtained according to a predetermined rule in the original image data of the first image data.
  • a pixel value of the original image data may be obtained by multiplying the representative value associated with the first image data.
  • the storing step includes: second image data having a different size from the area of the first image data, the second image data obtained by redividing the fluorescence image into a plurality of areas; a first value indicating a pixel value range for each of the second image data; may be stored in association with each other.
  • the converting step converts pixel values for the selected combination of second image data based on a representative value selected from respective first values associated with the selected combination of second image data.
  • the pixel value range may be a range based on statistics in the original image data corresponding to the first image data.
  • the statistic may be either the maximum value, the mode value, or the median value.
  • the pixel value range may be a range between the minimum value in the original image data and the statistic.
  • the first image data is data obtained by dividing a pixel value of the original image data corresponding to the unit area image by the first value;
  • the transforming step multiplies each of the first image data in the selected unit area images by the first value corresponding to each of the first image data and the respective first values associated with the combination of the selected unit area images. You may divide by the maximum value of 1 value.
  • a first input step of inputting a calculation method for the statistic a calculation method for the statistic
  • an analysis step of calculating the statistic according to the input of the input unit a data generation step of generating first image data obtained by dividing a fluorescence image into a plurality of regions and a first value indicating a pixel value range for each of the first image data, based on the analysis in the analysis step; may be further provided.
  • the conversion step may select a combination of the first images according to the input of the second input step.
  • the display control step causes the display unit to display a display form regarding the first input step and the second input step; further comprising an operation step of indicating the position of any one of the display forms,
  • the first input step and the second input step may input related information in accordance with instructions in the operation step.
  • the method may further include a data generation step of dividing each of the plurality of fluorescence images into image data and coefficients that are the first values for the image data.
  • the analysis step of performing the cell analysis may be performed based on an image range instructed by the operator.
  • a storage unit that associates and stores first image data obtained by dividing a fluorescence image into a plurality of regions and a first value that indicates a predetermined pixel value range for each of the first image data; a conversion unit that converts a pixel value of a combination image of the selected first images based on a representative value selected from first values associated with each combination of the selected first images;
  • a storing step of associating and storing first image data obtained by dividing a fluorescence image into a plurality of regions and a first value indicating a predetermined pixel value range for each of the first image data; a conversion step of converting pixel values of the selected combination of the first images based on a representative value selected from first values associated with each of the selected combinations of the first images; is provided to the information processing apparatus.
  • FIG. 4 is a schematic diagram for explaining line spectroscopy applicable to the embodiment; 4 is a flowchart showing an example of line spectroscopy processing; 1 is a schematic block diagram of a fluorescence observation device according to an embodiment of the present technology; FIG. The figure which shows an example of the optical system in a fluorescence observation apparatus. Schematic diagram of a pathological specimen to be observed.
  • FIG. 4 is a schematic diagram showing how line illumination illuminates an observation target.
  • FIG. 4 is a diagram for explaining a method of acquiring spectral data when an imaging element in a fluorescence observation device is composed of a single image sensor;
  • FIG. 7 is a diagram showing wavelength characteristics of spectral data acquired in FIG. 6; FIG.
  • FIG. 4 is a diagram for explaining a method of acquiring spectral data when an imaging device is composed of a plurality of image sensors;
  • FIG. 4 is a conceptual diagram for explaining a scanning method of line illumination applied to an observation target;
  • FIG. 4 is a conceptual diagram for explaining three-dimensional data (X, Y, ⁇ ) acquired by a plurality of line illumination;
  • 4 is a table showing the relationship between irradiation lines and wavelengths;
  • 4 is a flowchart showing an example of a procedure of processing executed in an information processing device (processing unit);
  • FIG. 4 is a diagram schematically showing the flow of acquisition processing of spectral data (x, ⁇ ) according to the embodiment; The figure which shows a several unit block typically.
  • FIG. 4 is a diagram for explaining a method of acquiring spectral data when an imaging device is composed of a plurality of image sensors;
  • FIG. 4 is a conceptual diagram for explaining a scanning method of line illumination applied to an observation target;
  • FIG. 4
  • FIG. 15 is a schematic diagram showing an example of spectral data (x, ⁇ ) shown in section (b) of FIG. 14;
  • FIG. 4 is a schematic diagram showing an example of spectral data (x, ⁇ ) in which the order of data arrangement is changed;
  • FIG. 3 is a block diagram showing a configuration example of a gradation processing unit;
  • FIG. 4 is a diagram conceptually explaining a processing example of a gradation processing unit;
  • FIG. 4 is a diagram showing an example of data names corresponding to imaging positions; The figure which shows the example of the data format of each unit rectangular block.
  • FIG. 4 is a diagram showing an image pyramid structure for explaining a processing example of an image group generation unit;
  • FIG. 4 is a diagram showing an example of regenerating a stitching image (WSI) as an image pyramid structure; An example of a display screen generated by the display control unit. The figure which shows the example by which the display area was changed. 4 is a flowchart showing an example of processing by an information processing apparatus;
  • FIG. 2 is a schematic block diagram of a fluorescence observation device according to a second embodiment; The figure which shows typically the example of a process of a 2nd analysis part.
  • FIG. 1 is a schematic diagram for explaining line spectroscopy applicable to the embodiment.
  • FIG. 2 is a flowchart illustrating an example of line spectroscopic processing.
  • a fluorescently stained pathological specimen 1000 is irradiated with linear excitation light, for example laser light, by line illumination (step S1).
  • the pathological specimen 1000 is irradiated with the excitation light in a line shape parallel to the x-direction.
  • the fluorescent substance obtained by fluorescent staining is excited by irradiation with excitation light, and emits fluorescence in a line (step S2).
  • This fluorescence is spectroscopically separated by a spectroscope (step S3) and imaged by a camera.
  • the imaging device of the camera has pixels arranged in a two-dimensional lattice pattern including pixels aligned in the row direction (x direction) and pixels aligned in the column direction (y direction). configuration.
  • the captured image data 1010 has a structure including position information in the line direction in the x direction and wavelength ⁇ information by spectroscopy in the y direction.
  • the pathological specimen 1000 is moved in the y direction by a predetermined distance (step S4), and the next imaging is performed.
  • Image data 1010 in the next line in the y direction is acquired by this imaging.
  • two-dimensional information of the fluorescence emitted from the pathological specimen 1000 can be obtained for each wavelength ⁇ (step S5).
  • Data obtained by stacking the two-dimensional information at each wavelength ⁇ in the direction of the wavelength ⁇ is generated as the spectrum data cube 1020 (step S6).
  • data obtained by stacking two-dimensional information at wavelength ⁇ in the direction of wavelength ⁇ is called a spectrum data cube.
  • the spectral data cube 1020 has a structure that includes two-dimensional information of the pathological specimen 1000 in the x and y directions and wavelength ⁇ information in the height direction (depth direction).
  • the spectral information of the pathological specimen 1000 in such a data configuration, it becomes possible to easily perform a two-dimensional analysis of the pathological specimen 1000 .
  • FIG. 3 is a schematic block diagram of a fluorescence observation device according to an embodiment of the present technology
  • FIG. 4 is a diagram showing an example of an optical system in the fluorescence observation device.
  • a fluorescence observation apparatus 100 of this embodiment includes an observation unit 1 , a processing unit (information processing device) 2 , and a display section 3 .
  • the observation unit 1 includes an excitation unit 10 that irradiates a pathological specimen (pathological sample) with a plurality of line illuminations of different wavelengths arranged in parallel with different axes, a stage 20 that supports the pathological specimen, and a pathological specimen that is linearly excited. and a spectral imaging unit 30 that acquires the fluorescence spectrum (spectral data) of the sample.
  • different axes parallel means that the multiple line illuminations are different axes and parallel.
  • Different axes mean not coaxial, and the distance between the axes is not particularly limited.
  • Parallel is not limited to being parallel in a strict sense, but also includes a state of being substantially parallel. For example, there may be distortion derived from an optical system such as a lens, or deviation from a parallel state due to manufacturing tolerances, and such cases are also regarded as parallel.
  • the information processing device 2 Based on the fluorescence spectrum of the pathological specimen (hereinafter also referred to as sample S) acquired by the observation unit 1, the information processing device 2 typically forms an image of the pathological specimen or outputs the distribution of the fluorescence spectrum. do.
  • the image here refers to the composition ratio of the dyes that compose the spectrum, the autofluorescence derived from the sample, the waveform converted to RGB (red, green, and blue) colors, the luminance distribution of a specific wavelength band, and the like.
  • the two-dimensional image information generated based on the fluorescence spectrum may be referred to as a fluorescence image.
  • the information processing device 2 corresponds to the information processing device.
  • the display unit 3 is, for example, a liquid crystal monitor.
  • the input unit 4 is, for example, a pointing device, keyboard, touch panel, or other operating device. If the input unit 4 includes a touch panel, the touch panel can be integrated with the display unit 3 .
  • the excitation unit 10 and the spectral imaging unit 30 are connected to the stage 20 via an observation optical system 40 such as an objective lens 44 .
  • the observation optical system 40 has an autofocus (AF) function that follows the optimum focus by a focus mechanism 60 .
  • the observation optical system 40 may be connected to a non-fluorescent observation section 70 for dark-field observation, bright-field observation, or the like.
  • the fluorescence observation device 100 controls an excitation unit (LD and shutter control), an XY stage that is a scanning mechanism, a spectral imaging unit (camera), a focus mechanism (detector and Z stage), a non-fluorescence observation unit (camera), and the like. It may be connected to the control unit 80 that
  • the pumping unit 10 includes a plurality of light sources L1, L2, . . . capable of outputting light of a plurality of pumping wavelengths Ex1, Ex2, .
  • a plurality of light sources are typically composed of light-emitting diodes (LEDs), laser diodes (LDs), mercury lamps, and the like, and each light is converted into line illumination to irradiate the sample S on the stage 20 .
  • FIG. 5 is a schematic diagram of a pathological specimen to be observed.
  • FIG. 6 is a schematic diagram showing how line illumination is applied to an observation target.
  • the sample S is typically composed of a slide containing an observation target Sa such as a tissue section as shown in FIG.
  • a sample S (observation target Sa) is stained with a plurality of fluorescent dyes.
  • the observation unit 1 enlarges the sample S to a desired magnification and observes it.
  • the illumination unit has a plurality of line illuminations (two (Ex1, Ex2) in the example shown) arranged so as to overlap each illumination area.
  • Imaging areas R1 and R2 of the spectral imaging unit 30 are arranged.
  • the two line illuminations Ex1 and Ex2 are each parallel to the Z-axis direction and arranged a predetermined distance ( ⁇ y) apart in the Y-axis direction.
  • the imaging areas R1 and R2 respectively correspond to the slit sections of the observation slit 31 (see FIG. 4) in the spectral imaging section 30.
  • the same number of slits of the spectral imaging unit 30 as that of the line illumination are arranged.
  • the line width of illumination is wider than the slit width in FIG. If the illumination line width is larger than the slit width, the alignment margin of the excitation unit 10 with respect to the spectral imaging unit 30 can be increased.
  • the wavelengths forming the first line illumination Ex1 and the wavelengths forming the second line illumination Ex2 are different from each other. Line-shaped fluorescence excited by these line illuminations Ex1 and Ex2 is observed in the spectroscopic imaging section 30 via the observation optical system 40 .
  • the spectroscopic imaging unit 30 includes an observation slit 31 having a plurality of slits through which fluorescence excited by a plurality of line illuminations can pass, and at least one imaging device 32 capable of individually receiving the fluorescence that has passed through the observation slit 31. and A two-dimensional imager such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) is adopted as the imaging device 32 .
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the spectral imaging unit 30 acquires fluorescence spectral data (x, ⁇ ) from the line illuminations Ex1 and Ex2, using the pixel array in one direction (for example, the vertical direction) of the imaging device 32 as a wavelength channel.
  • the obtained spectroscopic data (x, ⁇ ) are recorded in the information processing device 2 in a state in which the excitation wavelength from which the spectroscopic data is excited is linked.
  • the information processing device 2 can be realized by hardware elements used in a computer such as a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), and necessary software. Instead of or in addition to the CPU, PLD (Programmable Logic Device) such as FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), and other ASIC (Application Specific Integrated Circuit) may be used. good.
  • the information processing device 2 has a storage section 21 , a data configuration section 22 , an image forming section 23 and a gradation processing section 24 .
  • the information processing device 2 can configure the functions of a data configuration section 22 , an image forming section 23 and a gradation processing section 24 by executing a program stored in the storage section 21 . Note that the data configuration unit 22, the image forming unit 23, and the gradation processing unit 24 may be configured by circuits.
  • the information processing device 2 has a storage unit 21 that stores spectral data representing the correlation between the wavelengths of the plurality of line illuminations Ex1 and Ex2 and the fluorescence received by the imaging device 32.
  • a storage device such as a non-volatile semiconductor memory or a hard disk drive is used for the storage unit 21, and the standard spectrum of the autofluorescence related to the sample S and the standard spectrum of the single dye that stains the sample S are stored in advance.
  • Spectroscopic data (x, ⁇ ) received by the imaging device 32 is acquired, for example, as shown in FIGS. 7 and 8 and stored in the storage unit 21 .
  • a storage unit for storing the autofluorescence of the sample S and the standard spectrum of the dye alone and a storage unit for storing the spectroscopic data (measured spectrum) of the sample S acquired by the imaging element 32 are shared by the storage unit 21.
  • the storage unit 21 it is not limited to this, and may be configured with separate storage units.
  • FIG. 7 is a diagram for explaining a method of acquiring spectral data when the imaging device in the fluorescence observation device 100 is composed of a single image sensor.
  • FIG. 8 is a diagram showing wavelength characteristics of spectral data acquired in FIG. In this example, the fluorescence spectra Fs1 and Fs2 excited by the line illuminations Ex1 and Ex2 are passed through the spectroscopic optical system (described later), and finally the image pickup device in a state shifted by an amount proportional to ⁇ y (see FIG. 6). An image is formed on the light receiving surface of 32 .
  • FIG. 9 is a diagram for explaining a method of acquiring spectral data when the imaging device is composed of a plurality of image sensors.
  • FIG. 10A and 10B are conceptual diagrams for explaining a scanning method of line illumination applied to an observation target.
  • FIG. 11 is a conceptual diagram for explaining three-dimensional data (X, Y, ⁇ ) acquired by a plurality of line illuminations.
  • the fluorescence observation apparatus 100 will be described in more detail below with reference to FIGS. 7 to 11.
  • FIG. 11 is a conceptual diagram for explaining three-dimensional data (X, Y, ⁇ ) acquired by a plurality of line illuminations.
  • the fluorescence observation apparatus 100 will be described in more detail below with reference to FIGS. 7 to 11.
  • the frame rate of the image pickup device 32 can be increased by Row_full/(Row_b-Row_a+Row_d-Row_c) times as high as in full-frame readout.
  • a dichroic mirror 42 and a bandpass filter 45 are inserted in the optical path to prevent the excitation light (Ex1, Ex2) from reaching the imaging element 32.
  • an intermittent portion IF is generated in the fluorescence spectrum Fs1 imaged on the imaging device 32 (see FIGS. 7 and 8). By excluding such an intermittent portion IF from the readout area, the frame rate can be further improved.
  • the imaging device 32 may include a plurality of imaging devices 32a and 32b each capable of receiving fluorescence that has passed through the observation slit 31.
  • the fluorescence spectra Fs1 and Fs2 excited by the line illuminations Ex1 and Ex2 are obtained on the imaging elements 32a and 32b as shown in FIG.
  • the line illuminations Ex1 and Ex2 are not limited to being configured with a single wavelength, and each may be configured with a plurality of wavelengths. If the line illuminations Ex1, Ex2 each consist of multiple wavelengths, the fluorescence excited by them also contains multiple spectra.
  • the spectroscopic imaging unit 30 has a wavelength dispersive element for separating the fluorescence into spectra derived from the excitation wavelengths.
  • the wavelength dispersive element is composed of a diffraction grating, a prism, or the like, and is typically arranged on the optical path between the observation slit 31 and the imaging element 32 .
  • the observation unit 1 further includes a scanning mechanism 50 that scans the stage 20 with the plurality of line illuminations Ex1 and Ex2 in the Y-axis direction, that is, in the arrangement direction of the line illuminations Ex1 and Ex2.
  • a scanning mechanism 50 that scans the stage 20 with the plurality of line illuminations Ex1 and Ex2 in the Y-axis direction, that is, in the arrangement direction of the line illuminations Ex1 and Ex2.
  • the photographing region Rs is divided into a plurality of parts in the X-axis direction, the sample S is scanned in the Y-axis direction, then moved in the X-axis direction, and further scanned in the Y-axis direction. The action of doing is repeated.
  • a single scan can capture spectroscopic images from a sample excited by several excitation wavelengths.
  • the scanning mechanism 50 typically scans the stage 20 in the Y-axis direction, but a plurality of line illuminations Ex1 and Ex2 may be scanned in the Y-axis direction by a galvanomirror arranged in the middle of the optical system. .
  • three-dimensional data of (X, Y, ⁇ ) as shown in FIG. 11 are acquired for each of the plurality of line illuminations Ex1 and Ex2. Since the three-dimensional data derived from each of the line illuminations Ex1 and Ex2 is data whose coordinates are shifted by ⁇ y about the Y axis, correction is performed based on the value of ⁇ y recorded in advance or the value of ⁇ y calculated from the output of the imaging device 32. is output.
  • the line illumination as the excitation light is composed of two, but it is not limited to this, and may be three, four, or five or more.
  • Each line illumination may also include multiple excitation wavelengths selected to minimize degradation of color separation performance. Even if there is only one line illumination, if the excitation light source is composed of multiple excitation wavelengths and each excitation wavelength is associated with the row data obtained by the image pickup device and recorded, a different axis parallel It does not give as much resolution, but it does give a polychromatic spectrum.
  • FIG. 12 is a table showing the relationship between irradiation lines and wavelengths. For example, a configuration as shown in FIG. 12 may be adopted.
  • observation unit Next, details of the observation unit 1 will be described with reference to FIG. Here, an example in which the observation unit 1 is configured in configuration example 2 in FIG. 12 will be described.
  • the excitation unit 10 has a plurality (four in this example) of excitation light sources L1, L2, L3, and L4.
  • Each of the excitation light sources L1 to L4 is composed of a laser light source that outputs laser light with wavelengths of 405 nm, 488 nm, 561 nm and 645 nm, respectively.
  • the excitation unit 10 includes a plurality of collimator lenses 11 and laser line filters 12, dichroic mirrors 13a, 13b, and 13c, a homogenizer 14, a condenser lens 15, and an entrance slit 16 so as to correspond to the excitation light sources L1 to L4. further has
  • the laser light emitted from the excitation light source L1 and the laser light emitted from the excitation light source L3 are collimated by a collimator lens 11, respectively, and then transmitted through a laser line filter 12 for cutting the skirt of each wavelength band. and are made coaxial by the dichroic mirror 13a.
  • the two coaxial laser beams are further beam-shaped by a homogenizer 14 such as a fly-eye lens and a condenser lens 15 to form line illumination Ex1.
  • the laser light emitted from the excitation light source L2 and the laser light emitted from the excitation light source L4 are coaxially coaxial with each other by the dichroic mirrors 13b and 13c, and are line-illuminated to form a line illumination Ex2 having a different axis from the line illumination Ex1. be done.
  • the line illuminations Ex1 and Ex2 form off-axis line illuminations (primary images) separated by .DELTA.y in the entrance slit 16 (slit conjugate) having a plurality of slits each passable.
  • the observation optical system 40 has a condenser lens 41 , dichroic mirrors 42 and 43 , an objective lens 44 , a bandpass filter 45 and a condenser lens 46 .
  • the line illuminations Ex1 and Ex2 are collimated by a condenser lens 41 paired with an objective lens 44, reflected by dichroic mirrors 42 and 43, transmitted through the objective lens 44, and irradiated onto the sample S.
  • Illumination as shown in FIG. 6 is formed on the sample S surface. Fluorescence excited by these illuminations is collected by the objective lens 44, reflected by the dichroic mirror 43, transmitted through the dichroic mirror 42 and the bandpass filter 45 that cuts the excitation light, and collected again by the condenser lens 46. and enters the spectral imaging unit 30 .
  • the spectral imaging unit 30 has an observation slit 31, imaging elements 32 (32a, 32b), a first prism 33, a mirror 34, a diffraction grating 35 (wavelength dispersion element), and a second prism .
  • the observation slit 31 is arranged at the condensing point of the condenser lens 46 and has the same number of slit parts as the number of excitation lines.
  • the fluorescence spectra derived from the two excitation lines that have passed through the observation slit 31 are separated by the first prism 33 and reflected by the grating surfaces of the diffraction grating 35 via the mirrors 34, respectively, so that the fluorescence spectra of the excitation wavelengths are further divided into separated.
  • the four fluorescence spectra thus separated are incident on the imaging elements 32a and 32b via the mirror 34 and the second prism 36, and developed into (x, ⁇ ) information as spectral data.
  • the pixel size (nm/Pixel) of the imaging elements 32a and 32b is not particularly limited, and is set to 2 nm or more and 20 nm or less, for example. This dispersion value may be realized by the pitch of the diffraction grating 35 or optically, or by hardware binning of the imaging elements 32a and 32b.
  • the stage 20 and the scanning mechanism 50 constitute an XY stage, which moves the sample S in the X-axis direction and the Y-axis direction in order to acquire a fluorescence image of the sample S.
  • XY stage which moves the sample S in the X-axis direction and the Y-axis direction in order to acquire a fluorescence image of the sample S.
  • WSI Whole slide imaging
  • the operation of scanning the sample S in the Y-axis direction, then moving in the X-axis direction, and then scanning in the Y-axis direction is repeated (see FIG. 10).
  • the non-fluorescence observation section 70 is composed of a light source 71, a dichroic mirror 43, an objective lens 44, a condenser lens 72, an imaging device 73, and the like.
  • FIG. 4 shows an observation system using dark field illumination.
  • the light source 71 is arranged below the stage 20 and irradiates the sample S on the stage 20 with illumination light from the side opposite to the line illuminations Ex1 and Ex2.
  • the light source 71 illuminates from outside the NA (numerical aperture) of the objective lens 44 , and the light (dark field image) diffracted by the sample S passes through the objective lens 44 , the dichroic mirror 43 and the condenser lens 72 . Then, the image sensor 73 takes a picture.
  • dark field illumination even seemingly transparent samples such as fluorescently stained samples can be observed with contrast.
  • the non-fluorescent observation unit 70 is not limited to an observation system that acquires a dark field image, but is an observation system capable of acquiring non-fluorescent images such as bright field images, phase contrast images, phase images, and in-line hologram images. may consist of For example, various observation methods such as the Schlieren method, the phase contrast method, the polarizing observation method, and the epi-illumination method can be employed as methods for obtaining non-fluorescent images.
  • the position of the illumination light source is not limited to below the stage, and may be above the stage or around the objective lens. In addition to the method of performing focus control in real time, other methods such as a pre-focus map method in which focus coordinates (Z coordinates) are recorded in advance may be employed.
  • FIG. 13 is a flowchart showing an example of the procedure of processing executed in the information processing device (processing unit) 2.
  • FIG. Details of the gradation processing unit 24 (see FIG. 3) will be described later.
  • the storage unit 21 stores the spectral data (fluorescence spectra Fs1 and Fs2 (see FIGS. 7 and 8)) acquired by the spectral imaging unit 30. (Step 101).
  • the storage unit 21 stores in advance the autofluorescence of the sample S and the standard spectrum of the dye alone.
  • the storage unit 21 improves the recording frame rate by extracting only the wavelength region of interest from the pixel array of the imaging device 32 in the wavelength direction.
  • the wavelength region of interest corresponds to, for example, the visible light range (380 nm to 780 nm) or the wavelength range determined by the emission wavelength of the dye that dyes the sample.
  • Wavelength regions other than the wavelength region of interest include, for example, sensor regions where there is light of unnecessary wavelengths, sensor regions where there is clearly no signal, and excitation wavelengths to be cut by the dichroic mirror 42 or bandpass filter 45 in the optical path. area, etc.
  • the wavelength region of interest on the sensor may be switched depending on the line illumination situation. For example, when fewer excitation wavelengths are used for line illumination, the wavelength range on the sensor is also limited, and the limited frame rate can be increased.
  • the data calibration unit 22 converts the spectral data stored in the storage unit 21 from the pixel data (x, ⁇ ) into wavelengths, and all the spectral data have common discrete values in wavelength units ([nm], [ ⁇ m], etc.) to be output (step 102).
  • the pixel data (x, ⁇ ) are not necessarily aligned neatly with the pixel rows of the imaging device 32, and may be distorted due to slight tilt or distortion of the optical system. Therefore, for example, conversion from pixels to wavelength units using a light source with a known wavelength results in conversion to different wavelengths (nm values) for all x-coordinates. In this state, handling of the data is complicated, so the data is converted into integer-aligned data by a interpolation method (for example, linear interpolation or spline interpolation) (step 102).
  • a interpolation method for example, linear interpolation or spline interpolation
  • the data calibration unit 22 uses an arbitrary light source and its representative spectrum (average spectrum or spectral radiance of the light source) to uniformize and output (step 103). Uniformity eliminates instrumental differences, and in spectrum waveform analysis, it is possible to reduce the trouble of measuring individual component spectra each time. Furthermore, it is also possible to output an approximate quantification value of the number of fluorescent dyes from the luminance values whose sensitivities have been calibrated.
  • the sensitivity of the imaging device 32 corresponding to each wavelength is also corrected.
  • the sensitivity of the imaging device 32 corresponding to each wavelength is also corrected.
  • the above processing is similarly executed for the illumination range by the line illuminations Ex1 and Ex2 on the sample S scanned in the Y-axis direction. Thereby, spectral data (x, y, ⁇ ) of each fluorescence spectrum are obtained for the entire range of the sample S.
  • FIG. The obtained spectral data (x, y, ⁇ ) are stored in the storage unit 21 .
  • the image forming unit 23 Based on the spectral data stored in the storage unit 21 (or the spectral data calibrated by the data calibrating unit 22) and the interval corresponding to the axial distance ( ⁇ y) between the excitation lines Ex1 and Ex2, the image forming unit 23 , form a fluorescence image of the sample S (step 104).
  • the image forming unit 23 forms, as a fluorescence image, an image in which the detection coordinates of the imaging device 32 are corrected by a value corresponding to the interval ( ⁇ y) between the plurality of line illuminations Ex1 and Ex2.
  • the three-dimensional data derived from each of the line illuminations Ex1 and Ex2 is data whose coordinates are shifted by ⁇ y about the Y axis, so correction is made based on the value of ⁇ y recorded in advance or the value of ⁇ y calculated from the output of the imaging device 32. and output.
  • the difference in coordinates detected by the imaging device 32 is corrected so that the three-dimensional data derived from the line illuminations Ex1 and Ex2 are data on the same coordinates.
  • the image forming unit 23 executes processing (stitching) for connecting the captured images into one large image (WSI) (step 105). Thereby, a pathological image of the multiplexed sample S (observation target Sa) can be acquired.
  • the formed fluorescence image is output to the display unit 3 (step 106).
  • the image forming unit 23 extracts the components of the autofluorescence and dye of the sample S from the photographed spectral data (measurement spectrum) based on the standard spectra of the autofluorescence and dye alone of the sample S stored in advance in the storage unit 21 . Calculate the distribution separately.
  • a calculation method a method of least squares, a method of weighted least squares, or the like can be adopted, and coefficients are calculated so that the captured spectroscopic data becomes a linear sum of the above standard spectra.
  • the calculated distribution of the coefficients is stored in the storage unit 21 and output to the display unit 3 to be displayed as an image (steps 107 and 108).
  • FIG. 14 is a diagram schematically showing the flow of acquisition processing of spectral data (x, ⁇ ) according to the embodiment.
  • configuration example 2 in FIG. 10 is applied as a configuration example of a combination of line illumination and excitation light using two imaging elements 32a and 32b.
  • the number of pixels corresponding to one scanning line is 2440 [pix], and the scanning position is moved in the X-axis direction for each scanning of 610 lines in the Y-axis direction.
  • Section (a) of FIG. 14 shows an example of spectral data (x, ⁇ ) acquired in the first line of scanning (also described as “1Ln” in the figure).
  • a tissue 302 corresponding to the sample S described above is sandwiched and fixed between a slide glass 300 and a cover glass 301 and placed on the sample stage 20 with the slide glass 300 as the bottom surface.
  • a region 310 in the drawing indicates an area irradiated with four laser beams (excitation light) from the line illuminations Ex1 and Ex2.
  • the horizontal direction (row direction) in the drawing indicates the position in the scanning line
  • the vertical direction (column direction) indicates the wavelength
  • Each spectral data (x, ⁇ ) is associated with a position in the column direction of the imaging element 32a.
  • the wavelength ⁇ does not have to be continuous in the column direction of the imaging element 32a. That is, the wavelength of the spectral data (x, ⁇ ) based on the spectral wavelength (1) and the wavelength of the spectral data (x, ⁇ ) based on the spectral wavelength (3) must not be continuous including the blank portion between them. good.
  • each spectroscopic data (x, ⁇ ) is data (brightness value )including.
  • the data within the wavelength region of each spectral data (x, ⁇ ) is selectively read out, and the other regions ( ) are not read out.
  • spectral data (x, ⁇ ) in the wavelength region of spectral wavelength (1) and spectral data (x, ⁇ ) in the wavelength region of spectral wavelength (3) are acquired.
  • the acquired spectral data (x, ⁇ ) of each wavelength region is stored in the storage unit 21 as each spectral data (x, ⁇ ) of the first line.
  • Section (b) of FIG. 14 shows an example in which scanning up to the 610th line (also described as “610Ln” in the drawing) is completed at the same scanning position in the X-axis direction as in section (a).
  • spectral data (x, ⁇ ) in the wavelength regions of spectral wavelengths (1) to (4) for 610 lines are stored line by line in the storage unit 21.
  • the 611th line (also described as "611Ln” in the drawing) is scanned as shown in section (c) of Fig. 14. In this example, the 611th line is scanned.
  • the scanning position in the X-axis direction is moved, and the position in the Y-axis direction is reset, for example.
  • FIG. 15 is a diagram schematically showing a plurality of unit blocks 400 and 500.
  • the photographing region Rs is divided into a plurality of parts in the X-axis direction, and the operation of scanning the sample S in the Y-axis direction, moving in the X-axis direction, and further scanning in the Y-axis direction is repeated.
  • the imaging region Rs is further composed of a plurality of unit blocks 400 and 500 .
  • data for the 610th line shown in section (b) of FIG. 14 is called a unit block as a basic unit.
  • FIG. 16 is a schematic diagram showing an example of spectral data (x, ⁇ ) stored in the storage unit 21 when the scanning of the 610th line shown in section (b) of FIG. 14 is completed.
  • the spectral data (x, ⁇ ) indicates the position on the line in the horizontal direction in the drawing, and the block indicating the number of spectral wavelengths in the vertical direction in the drawing. It is stored in the storage unit 21 as a frame 40f.
  • a unit block 400 (see FIG. 15) is formed by a frame 40f of 610 lines.
  • the arrow in the frame 40f indicates the memory when the C language, which is one of the programming languages, or a language conforming to the C language is used to access the storage unit 21.
  • the direction of memory access in the unit 21 is shown. In the example of FIG. 16, access is made in the horizontal direction of the frame 40f (that is, the line position direction), and this is repeated in the vertical direction of the frame 40f (that is, the direction of the number of spectral wavelengths).
  • the number of spectral wavelengths corresponds to the number of channels when the spectral wavelength region is divided into a plurality of channels.
  • the information processing apparatus 2 arranges the order of the spectral data (x, ⁇ ) of each wavelength region stored for each line by the image forming unit 23, for each spectral wavelength (1) to (4). Convert to sort order.
  • FIG. 17 is a schematic diagram showing an example of spectral data (x, ⁇ ) in which the data arrangement order is changed, according to the embodiment.
  • the spectroscopic data (x, ⁇ ) indicates the order of the data, for each spectroscopic wavelength, the position on the line in the horizontal direction in the figure, and the scanning line in the vertical direction in the figure. , and stored in the storage unit 21 .
  • the arrangement order of data in unit rectangular blocks according to the embodiment is such that the arrangement of pixels in frames 400a, 400b, . . . It corresponds to dimensional information. 16, the unit rectangular blocks 400a, 400b, . It can be treated as two-dimensional information within the unit block 400 for the tissue 302 . Therefore, by applying the information processing apparatus 2 according to the embodiment, image processing, spectral waveform separation processing (color separation processing), and the like for captured image data acquired by the line spectroscope (observation unit 1) can be performed more easily. and can be processed at high speed.
  • FIG. 18 is a block diagram showing a configuration example of the gradation processing section 24 according to this embodiment.
  • the gradation processing unit 24 includes an image group generation unit 240, a statistic calculation unit 242, an SF (scaling factor) generation unit 244, a first analysis unit 246, and a gradation conversion unit. 248 and a display control unit 250 .
  • the two-dimensional information displayed on the display unit 3 is called an image, or the range of this two-dimensional information is called an image, and the data used for displaying the image is called image data or simply data. called.
  • the image data according to the present embodiment is a numerical value related to at least one of the luminance value and the output value in units of the number of antibodies.
  • FIG. 19 is a diagram conceptually explaining a processing example of the gradation processing unit 24 according to this embodiment.
  • FIG. 20 is a diagram showing an example of data names corresponding to imaging positions. As shown in FIG. 20, data names are allocated corresponding to, for example, unit block areas 200 . This makes it possible to allocate data names corresponding to two-dimensional positions in the row direction (block_num) and the column direction (obi_num), for example, to the imaging data of each unit block.
  • each unit block 400, 500 As shown in FIG. 19 again, first, all imaged data (see FIGS. 15 and 16) for each unit block 400, 500, . As shown in FIG. 20, each of these unit blocks 400, 500, . . . dat, and the data corresponding to the unit block 500 is 01_02. dat is allocated. Although only the unit blocks 400 and 500 are shown in FIG. 19 to simplify the explanation, the unit blocks 400, 500, . . . n are processed.
  • the imaging data 01_01. dat is subjected to color separation processing by the image forming section 23 as described above, and separated into unit rectangular blocks 400a, 400b, 400n (see FIG. 17).
  • imaging data 01 — 02 . dat is separated into unit rectangular blocks 500a, 500b, and 500n by the image forming section 23 by color separation processing.
  • the imaging data for all unit blocks are separated into unit rectangular blocks corresponding to dyes by color separation processing.
  • a data name is assigned to the data of each unit rectangular block according to the rule shown in FIG.
  • the image forming section 23 performs a stitching process on the unit rectangular blocks 400a, 400b, .
  • the image group generation unit 240 re-divides each piece of stitched and color-separated data into minimum segments to generate a mipmap (MIPmap).
  • MIPmap mipmap
  • Data names are assigned to these minimum sections according to the rules shown in FIG.
  • the minimum section of the stitched image is calculated as the unit blocks 400sa, 400sb, 500sa, and 500sb, but it is not limited to this.
  • FIGS. 20 and 21 to be described later for example, it may be re-divided into square regions.
  • an image group pre-calculated so as to complement the main texture image is referred to as a mipmap. Details of the mipmap will be described later with reference to FIGS.
  • the statistic calculation unit 242 calculates the statistic Stv for the image data (luminance data) in each unit rectangular block unit block 400sa, 400sb, 500sa, and 500sb.
  • the statistic Stv is the maximum value, minimum value, median value, mode value, and the like.
  • the image data is, for example, float32 and is, for example, 32 bits.
  • the SF generator 242 uses the statistic Stv calculated by the statistic calculator 242 to calculate a scaling factor (Sf) for each unit rectangular block 400sa, 400sb, 500sa, 500sb, . Then, the SF generation unit 242 stores the scaling factor (Sf) in the storage unit 21.
  • Sf scaling factor
  • the scaling factor Sf is, for example, the difference between the maximum value maxv and the minimum value minv of the image data (brightness data) in each of the unit rectangular blocks 400sa, 400sb, 500sa, 500sb, as shown in formula (1). It is a value divided by the size dsz.
  • the data size of the original image data is 32 bits of float32. Note that in the present embodiment, the image data before being divided by the scaling factor Sf is referred to as original image data.
  • the original image data has, for example, a 32-bit data size of float32, as described above. This data size corresponds to the pixel value.
  • a region with strong fluorescence is calculated with a scaling factor Sf of 5
  • a region without fluorescence is calculated with a scaling factor Sf of 0.1.
  • the scaling factor Sf corresponds to the dynamic range in the original image data of each unit rectangular block 400sa, 400sb, 500sa, 500sb, .
  • the minimum value minv is assumed to be 0 below, it is not limited to this. Note that the scaling factor according to this embodiment corresponds to the first value.
  • the first analysis unit 246 extracts the subject area from the image. Then, the statistic calculator 242 calculates the statistic Stv using the original image data in the subject area, and the SF generator 242 calculates the scaling factor Sf based on the statistic Stv.
  • the gradation conversion unit 248 divides the original image data of each unit rectangular block 400sa, 400sb, 500sa, 500sb, .
  • the first image data processed by the gradation conversion unit 248 is normalized by the pixel value range, which is the difference between the maximum value maxv and the minimum value minv.
  • the image data obtained by dividing the pixel values of the original image data by the scaling factor Sf will be referred to as first image data.
  • the first image data is, for example, in a short16 data format.
  • the scaling factor Sf is greater than 1, the dynamic range of the second image data is compressed, and when the scaling factor Sf is less than 1, the dynamic range of the second image data is expanded.
  • the scaling factor Sf is, for example, float32 and has 32 bits.
  • the scaling factor Sf is similarly calculated for the unit rectangular blocks 400a, 400b, which are the color separation data, and the gradation conversion unit 248 converts the gradation of the original image data with the scaling factor Sf. to generate the first image data.
  • FIG. 21 is a diagram showing an example of the data format of each unit rectangular block 400sa, 400sb, 500sa, 500sb, .
  • Each image data is converted from float32 to ushort16 16 bits to compress the storage capacity.
  • the data of the unit rectangular blocks 400a, 400b, . . . are stored in the storage unit 21 in, for example, Tiff (Tagged Image File Format) format.
  • Tiff Tagged Image File Format
  • Each original image data is converted from float32 to ushort16 first image data to compress storage capacity. Since the scaling factor Sf is recorded in the footer, it can be read from the storage section 21 without reading the image data.
  • the first image data after being divided by the scaling factor Sf and the scaling factor Sf are associated with each other in, for example, the Tiff format and stored in the storage unit 21 .
  • the first image data is compressed from 32 bits to 16 bits. Since this first image data has its dynamic range adjusted, the entire image can be visualized when displayed on the display section 3 .
  • by multiplying the first image data by the corresponding scaling factor Sf it is possible to obtain the pixel values of the original image data while maintaining the information content.
  • FIG. 22 is a diagram showing an image pyramid structure for explaining a processing example of the image group generation unit 240.
  • the image group generator 240 generates the image pyramid structure 500 using stitching images (WSI), for example.
  • WSI stitching images
  • the image pyramid structure 500 is a group of images generated with a plurality of different resolutions for a stitched image (WSI) obtained by stitching the unit rectangular blocks 400a, 500a, . . . is.
  • WSI stitched image
  • the largest size image is placed, and at the top L1, the smallest size image is placed.
  • the resolution of the largest size image is, for example, 50 ⁇ 50 (Kpixels) or 40 ⁇ 60 (Kpixels).
  • the smallest size image is, for example, 256 ⁇ 256 (pixel) or 256 ⁇ 512 (pixel).
  • one tile that is a component area of an image area is called a unit area image. Note that the unit area image may have any size and shape.
  • the same display unit 3 displays these images at, for example, 100% (respectively with the same number of physical dots as the number of pixels of those images), the largest size image Ln is displayed the largest, The image L1 with the smallest size is displayed in the smallest size.
  • the display range of the display unit 106 is shown as D.
  • the entire image group forming the image pyramid structure 50 may be generated by a known compression method, or may be generated by a known compression method when generating thumbnail images, for example.
  • FIG. 23 is a diagram showing an example of regenerating the stitching image (WSI) of the wavelength bands of dyes 1 to n in FIG. 19 as an image pyramid structure. That is, it is a diagram showing an example in which the image group generation unit 240 regenerates the stitched image (WSI) for each pigment generated by the image formation unit 23 as an image pyramid structure. For ease of explanation, three levels are shown, but are not limited to this. In the image pyramid structure of dye 1, each unit area image at the L3 level is associated with, for example, scaling factors Sf3-1 to Sf3-n as Tiff data. , the pixel values are converted into the first image data.
  • each small image at the L2 level is associated with, for example, scaling factors Sf2-1 to Sf2-n as Tiff data. is converted.
  • the L1 level small image is associated with, for example, a scaling factor Sf1 as Tiff data, and the original image data is converted to the first image data by the gradation conversion unit 248 in terms of pixel values.
  • a similar process is performed for the stitched images of the wavelength bands of dyes 2-n.
  • These image pyramid structure data are stored in the storage unit 21 as mipmaps in, for example, Tiff (Tagged Image File Format) format.
  • FIG. 24 is an example of a display screen generated by the display control unit 250.
  • the display area 3000 displays the main observation image whose dynamic range has been adjusted based on the scaling factor Sf.
  • a thumbnail image area 3010 displays an entire image of the observation range.
  • An area 3020 indicates a range within the entire image (subnail image) in which the display area 3000 is displayed. In the sub-nail image area 3010, for example, an image of the non-fluorescent observation part (camera) captured by the image sensor 73 may be displayed.
  • the sub-nail image area 3010 for example, an image of the non-fluorescent observation part (camera) captured by the image sensor 73 may be displayed.
  • the selected wavelength operation area section 3030 is an input section for inputting the wavelength range of the displayed image, for example, the wavelengths corresponding to the dyes 1 to n, according to the instruction of the operation section 4.
  • Magnification operation area section 3040 is an input section for inputting a value for changing the display magnification according to an instruction from operation section 4 .
  • a horizontal operation area section 3060 is an input section for inputting a value for changing the horizontal selection position of the image according to an instruction from the operation section 4 .
  • a vertical operation area section 3080 is an input section for inputting a value for changing the vertical selection position of an image according to an instruction from the operation section 4 .
  • a display area 3100 displays the scaling factor Sf of the main observation image.
  • a display area 3120 is an input section for selecting a scaling factor value according to instructions from the operation section 4 .
  • the scaling factor value corresponds to the dynamic range as described above. For example, it corresponds to the maximum pixel value maxv (see formula 1).
  • a display area 3140 is an input section for selecting an algorithm for calculating the scaling factor Sf according to instructions from the operation section 4 . Note that the display control unit 250 may further display the file paths of the observation image, the overall image, and the like.
  • the display control unit 250 reads the mipmap image of the corresponding dye n from the storage unit 21 according to the input of the selected wavelength operation area unit 3030 .
  • the display control unit 250 displays a level L1 image when the instruction input to the magnification operation area unit 3040 is less than the first threshold, and displays a level L2 image when the instruction input is greater than or equal to the first threshold. An image of level L3 is displayed when the instruction input is greater than or equal to the second threshold.
  • the display control section 250 displays the display area D (see FIG. 22) selected by the horizontal operation area section 3060 and the vertical operation area section 3080 in the display area 3000 as the main observation image.
  • the pixel value of the image data of each unit area image is recalculated by the gradation conversion unit 248 using the scaling factor Sf associated with each unit area image included in the display area D.
  • FIG. 25 is a diagram showing an example in which the display area D is changed from D10 to D20 by input processing via the horizontal operation area section 3060 and the vertical operation area section 3080.
  • FIG. 25 is a diagram showing an example in which the display area D is changed from D10 to D20 by input processing via the horizontal operation area section 3060 and the vertical operation area section 3080.
  • the image data of the area D10 is normalized by dividing by the maximum scaling factor MAX_Sf (1, 2, 5, 6). Thereby, the brightness of the image data of the area D10 is displayed more appropriately.
  • the scaling factor Sf is calculated by the above equation (1)
  • the value of the image data of each unit area image is the maximum value and the minimum value of the original image data of each unit area image included in the area D10. Normalized between values.
  • the dynamic range of the first image data within the region D10 is readjusted by using the scaling factors Sf1, Sf2, SF5, and Sf6, making it possible to visually recognize all of the first image data within the region D10. Become.
  • recalculation by the statistic calculation unit 242 becomes unnecessary, and the dynamic range can be adjusted in a shorter time according to the domain conversion.
  • the display control unit 250 displays the maximum value MAX_Sf (1, 2, 5, 6) in the display area 3100 . This allows the operator to more easily recognize how much the dynamic range has been compressed or expanded.
  • the scaling factors Sf1, Sf2, SF5, Sf6, and Sf7 stored in association with each unit area image are read from the storage unit 21. Then, as shown in equation (3), the first image data of each unit area image is multiplied by the corresponding scaling factors Sf1, Sf2, SF5, Sf6, and Sf7, respectively, and the maximum scaling factor MAX_Sf(1, 2, 5, 6, 7).
  • Pixel value after rescaling (each Sf ⁇ pixel value before rescaling)/MAX_Sf(1, 2, 5, 6, 7) Equation (3)
  • Scaling factor Sf1 corresponding to the first image data of each unit area image , Sf2, SF5, Sf6, and Sf7 are converted into pixel values of the original image data, and divided by the maximum value MAX_Sf (1, 2, 5, 6, 7) of the scaling factor to obtain the first pixel value of the area D20.
  • the image data are normalized again. Thereby, the brightness of the image data of the area D10 is displayed more appropriately.
  • display control section 250 displays maximum value MAX_Sf (1, 2, 5, 6, 7) in display area 3100 . This allows the operator to more easily recognize how much the dynamic range has been compressed or expanded.
  • Display control unit 250 uses the value of scaling factor MSf input via display area 312 when manual is selected in an arithmetic algorithm corresponding to display area 3140, which will be described later, to calculate equation (4). Recalculate using .
  • Pixel value after rescaling (Each Sf ⁇ Pixel value before rescaling)/MSf (4)
  • display control section 250 displays scaling factor MSf in display area 3100 .
  • the original image data after color separation and after stitching is assumed to be output in units of the number of float32 antibodies, for example.
  • the scaling factors can be compared with each other when visually recognizing an area that straddles a plurality of basic area images as shown in FIG. , and ushort16 (0-65535) to adjust the display dynamic range.
  • the stitching image WSI means the level L1 image.
  • ROI means a selected area image.
  • the maximum value MAX means that the statistic used when calculating the scaling factor Sf is the maximum value.
  • the average value Ave means that the statistic used when calculating the scaling factor Sf is the average value.
  • the mode value Mode means that the statistic used when calculating the scaling factor Sf is the mode value.
  • the tissue region Sf means using the scaling factor Sf calculated from the selected image region and the image subject region extracted by the first analysis unit 246 . In this case, for example, the maximum value is used as the statistic.
  • a mipmap corresponding to the scaling factor Sf generated by the SF generator 242 using the maximum value is read from the storage unit 21 .
  • a mipmap corresponding to the scaling factor Sf generated by the SF generator 242 using the average value is read from the storage unit 21 .
  • the mode value Mode is selected, a mipmap corresponding to the scaling factor Sf generated by the SF generation unit 242 using the mode value is read from the storage unit 21 .
  • the first algorithm reconverts the pixel values of the display image by the scaling factor L1Sf of the level L1 image, as shown in equation (5).
  • the maximum value is used for the scaling factor L1Sf.
  • Pixel value after rescaling (each Sf ⁇ pixel value before rescaling)/L1Sf (5)
  • the level L1 image is You can restrict the display. In this case, no recalculation is required.
  • the second algorithm reconverts the pixel values of the display image by the average value L1av of the level L1 image, as shown in equation (6).
  • the second algorithm (Ave (WSI)) reconverts the pixel values of the display image by the average value L1av of the level L1 image, as shown in equation (6).
  • the average value L1av is used, it is possible to observe the information of the entire image while suppressing the information of the fluorescent region, which is the high luminance region.
  • the display may be limited to the level L1 image. In this case, no recalculation is required.
  • Pixel value after rescaling (each Sf ⁇ pixel value before rescaling)/L1av Equation (6)
  • the third algorithm reconverts the pixel values of the display image using the mode value L1mod of the level L1 image, as shown in equation (7).
  • the mode L1mod when used, it is possible to observe information based on the pixels included most in the image while suppressing the information in the fluorescent region, which is a high luminance region.
  • the display when a WSI-related algorithm is selected in the display area 3100, the display may be limited to the level L1 image. In this case, no recalculation is required.
  • Pixel value after rescaling (each Sf ⁇ pixel value before rescaling)/L1mod (7)
  • the fourth algorithm ((MAX(ROI)) reconverts the pixel values of the display image by the maximum value ROImax of the scaling factor Sf in the selected basic region image, as shown in equation (8).
  • the statistic is the maximum value, as described above.
  • Pixel value after rescaling (each Sf ⁇ pixel value before rescaling)/ROImax Equation (8)
  • the fifth algorithm ((Ave(ROI)) reconverts the pixel values of the display image by the maximum value ROIAvemax of the scaling factor Sf in the selected basic region image, as shown in equation (9).
  • the sixth algorithm ((Mode (ROI)) reconverts the pixel values of the display image by the maximum value ROIModemax of the scaling factor Sf in the selected basic region image, as shown in equation (10).
  • the seventh algorithm (tissue area Sf) reconverts the pixel values of the display image by the maximum value Sfmax of the scaling factor Sf in the selected basic area image, as shown in equation (11).
  • the eighth algorithm uses the function Sf( ⁇ ) of the representative value ⁇ of the wavelength selected by the input of the selected wavelength operation region 303 as shown in equation (12), and the pixel of the display image is Reconvert the value.
  • the ninth algorithm manual, reproduces the pixel values of the display image using the value of the scaling factor MSf input via the display area 312, as shown in equation (4) above. Algorithm to convert.
  • FIG. 26 is a flowchart showing a processing example of the information processing device 2.
  • FIG. Here, a case will be described in which the display area 3100 is restricted to display a level L1 image when a WSI-related algorithm is selected.
  • the display control unit 250 acquires the algorithm (see FIG. 24) selected by the operator via the display area 3100 (step S200). Subsequently, the display control unit 250 reads the mipmap corresponding to the selected algorithm from the storage unit 21 (step S202). In this case, if the corresponding mipmap is not stored in the storage unit 21, the display control unit 250 causes the image group generation unit 240 to generate the corresponding mipmap.
  • the display control unit 250 determines whether the selected algorithm (see FIG. 24) is WSI-related (step S204). If it is determined to be WSI related (yes in step S204), the display control unit 250 starts processing related to the selected algorithm (step S206).
  • the display control unit 250 displays the level L1 image.
  • the dynamic range of the main observation image is adjusted according to the statistics based on the original image data (step S208). In this case, since the dynamic range of the first image data of the level L1 image has already been adjusted, no recalculation is necessary.
  • the display control unit 250 adjusts the main observation image based on the statistic calculated within the image data in the tissue region in the image. Adjust the dynamic range (step S210). In this case, since the dynamic range of the first image data of the level L1 image has already been adjusted, no recalculation is necessary.
  • the display control unit 250 controls the scaling factor MSf input via the display area 312 as shown in the above equation (4). is used to reconvert the pixel values of the first image data in the level L1 image, which is the display image (step S212).
  • the display control unit 250 uses the function Sf( ⁇ ) of the representative value ⁇ of the selected wavelength according to the input of the image selection wavelength operation area unit 303. , reconverts the pixel values of the first image data in the level L1 image, which is the display image. (Step S214).
  • the display control unit 250 determines that the selected algorithm (see FIG. 24) is not related to WSI (no in step S204)
  • the display control unit 250 controls the operation unit 4 via the magnification operation area unit 3040. acquires the input display magnification (step S216).
  • the display control unit 250 selects the image levels L1 to Ln used for displaying the main observation image from the mipmap according to the display magnification (step S218).
  • the display control section 250 displays the display areas selected by the horizontal operation area section 3060 and the vertical operation area section 3080 as frames 302 (see FIG. 24) in the sub-nail image 301 (step S220).
  • the display control unit 250 determines whether the selected algorithm (see FIG. 24) is related to the seventh algorithm (tissue region Sf) (step S222). If it is determined that the seventh algorithm (tissue region Sf) is not relevant (yes in step S222), the display control unit 250 starts processing related to the selected algorithm, 5 algorithm ((Ave (ROI)) and sixth algorithm ((Mode (ROI))), the first image data is recalculated, and the image within the frame 302 (see FIG. 24) with the adjusted dynamic range is displayed on the display unit 3 as the main observation image (step S224).
  • 5 algorithm ((Ave (ROI))
  • sixth algorithm ((Mode (ROI))
  • the display control unit 250 controls the scaling factor MSf input via the display area 312 as shown in the above equation (4). is used to reconvert the pixel values of the first image data in each basic region image included in the frame 302 (see FIG. 24), which is the display image, and displayed on the display unit 3 (step S226).
  • the display control unit 250 determines that the selected algorithm (see FIG. 24) is related to the seventh algorithm (tissue region Sf) (no in step S222), the image within the tissue region in the image Based on the statistics calculated in the data, the dynamic range of the main observation image is adjusted (step S228).
  • the image data to be displayed on the display unit 3 may be, for example, linear conversion (linear) of the luminance value of 0-655535 which is ushort16, log conversion (Logarithm), biexponential conversion (Biexponential conversion). ), or the like, and may be displayed.
  • each basic area image which is a small area compared to the stitching image (WSI) reduces the display dynamic range. Adjustment is possible. This makes it possible to improve the visibility of the captured image. Furthermore, it becomes easy to compare the scaling factors Sf of the adjacent basic area images and unify the scaling factors Sf. As a result, rescaling based on the unified scaling factor Sf makes it possible to align the display dynamic ranges of the plurality of basic region images at a higher speed.
  • the first image data of the unit area image which is each area obtained by dividing the fluorescence image into a plurality of areas, is associated with the scaling factor Sf indicating the pixel value range for each first image data. and stored in the storage unit 21 as a mipmap (MIPMAP).
  • MIPMAP mipmap
  • the pixel values of the selected unit area image combination image are converted based on the representative value selected from among the scaling factors Sf associated with each of the unit area image combinations in the selected area D. becomes possible. Therefore, the dynamic range of the selected unit area image is readjusted by using the scaling factor Sf, and all the image data in the area D can be viewed with a predetermined dynamic range.
  • the information processing apparatus 2 according to the second embodiment is different from the information processing apparatus 2 according to the first embodiment in that it further includes a second analysis unit that performs cell analysis such as cell counting. Differences from the information processing apparatus 2 according to the first embodiment will be described below.
  • FIG. 27 is a schematic block diagram of a fluorescence observation device according to the second embodiment. As shown in FIG. 27 , the information processing device 2 further includes a second analysis section 26 .
  • FIG. 28 is a diagram schematically showing a processing example of the second analysis unit 26.
  • a stitching process is performed to join images captured by the image forming unit 23 into one large stitched image (WSI), and the image group generating unit 240 generates a mipmap (MIPmap). do.
  • MIPmap mipmap
  • the minimum sections of the stitched image are calculated as unit blocks (basic region images) 400sa, 400sb, 500sa, and 500sb.
  • the display control unit 250 converts each basic area image within the field of view (display area D) selected by the horizontal operation area unit 3060 and the vertical operation area unit 3080 (see FIG. 24) to the associated sampling factor Sf. scaled and stored in the storage unit 21 as basic area images) 400sa_2, 400sb_2, 500sa_2, 500sb_2, .
  • the second analysis unit 26 determines the analysis field after stitching, performs manual rescaling within the field of view with a multi-dye image, outputs the image, and then performs cell analysis such as cell counting.
  • an operator can perform analysis using an image rescaled within an arbitrary field of view. As a result, it is possible to analyze the area in which the intention of the operator is reflected.
  • the information processing apparatus 2 according to Modification 1 of the second embodiment differs from the information processing apparatus 2 according to the second embodiment in that the second analysis unit 26 that performs cell analysis such as cell counting automatically performs analysis processing. Differences from the information processing apparatus 2 according to the second embodiment will be described below.
  • FIG. 29 is a diagram schematically showing a processing example of the second analysis unit 26 according to Modification 1 of the second embodiment.
  • the second analysis unit 26 according to Modification 1 of the second embodiment performs automatic rescaling and After image output, cell analysis such as cell counting is performed.
  • the second analysis unit 26 automatically detects the region where the tissue to be observed exists, and can perform analysis using an image automatically rescaled using the scaling factor of the region. Become.
  • the second analysis unit 26 which performs cell analysis such as cell counting, performs automatic analysis processing after automatic rescaling by the eighth algorithm (auto). It is different from the second analysis unit 26 according to Modification 1 of the second embodiment. Differences from the information processing apparatus 2 according to Modification 2 of the second embodiment will be described below.
  • FIG. 30 is a diagram schematically showing a processing example of the second analysis unit 26 according to modification 2 of the second embodiment.
  • the second analysis unit 26 according to Modification 2 of the second embodiment performs Auto rescaling. That is, the function Sf ( ⁇ ), which is the rescaling factor, collects the data of the scaling factor Sf accumulated from the past imaging results, and stores it in the storage unit 31 as a database as the scaling factor Sf for dye and cell analysis. It is accumulated.
  • past processing data are collected, dyes and scaling factors Sf for cell analysis are accumulated as a database, and after stitching, rescaling is performed using the scaling factor Sf of the database as it is. Save the image. This makes it possible to omit the rescaling processing flow for analysis.
  • this technique can take the following structures.
  • a method of processing information comprising:
  • the combination of the selected unit area images corresponds to an observation range to be displayed on a display unit, and the range of the combination of the unit area images is changed according to the observation range. information processing method.
  • the first image data is image data with a dynamic range adjusted based on a pixel value range obtained according to a predetermined rule in the original image data of the first image data. Information processing method described.
  • the storing step includes: second image data having a different size from the area of the first image data, the second image data obtained by redividing the fluorescence image into a plurality of areas; a first value indicating a pixel value range for each of the second image data; The information processing method according to (6), further storing in association with .
  • the converting step converts pixel values for the selected combination of second image data based on a representative value selected from respective first values associated with the selected combination of second image data.
  • the first image data is data obtained by dividing a pixel value of the original image data corresponding to the unit area image by the first value;
  • the transforming step multiplies each of the first image data in the selected unit area images by the first value corresponding to each of the first image data and the respective first values associated with the combination of the selected unit area images.
  • (13) a first input step of inputting a calculation method for the statistic; an analysis step of calculating the statistic according to the input of the input unit; a data generation step of generating first image data obtained by dividing a fluorescence image into a plurality of regions and a first value indicating a pixel value range for each of the first image data, based on the analysis in the analysis step;
  • the display control step causes the display unit to display a display form regarding the first input step and the second input step; further comprising an operation step of indicating the position of any one of the display forms,
  • the fluorescence image is one of a plurality of fluorescence images generated by an imaging subject for each of a plurality of fluorescence wavelengths;
  • a storage unit that associates and stores first image data obtained by dividing a fluorescence image into a plurality of regions and a first value indicating a predetermined pixel value range for each of the first image data; a conversion unit that converts pixel values of a combination image of the selected first images based on a representative value selected from first values associated with each combination of the selected first images; An information processing device.
  • 2 information device (processing unit), 3: display unit, 21: storage unit, 248: gradation conversion unit, 250: display control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

[課題]より適切なダイナミックレンジにより画像を表示可能な情報処理方法、情報処理装置、及びプログラムを提供する。 [解決手段]蛍光画像を複数に分割した各領域である単位領域画像の第1画像データと、前記第1画像データ毎の所定の画素値範囲を示す第1値を関連付けて記憶する記憶工程と、選択された前記単位領域画像の組み合わせのそれぞれに関連付けられた第1値のなかから選択された代表値に基づき、前記選択された前記単位領域画像の組み合わせ画像の画素値を変換する変換工程と、を備える。

Description

情報処理方法、情報処理装置、及びプログラム
 本開示は、情報処理方法、情報処理装置、及びプログラムに関する。
 病理画像の診断において、定量性や多色性に優れた手法として、蛍光染色による病理画像診断法が提案されている。蛍光手法によると、着色染色に比べて多重化が容易で、詳細な診断情報が得られる点で有利である。病理診断以外の蛍光イメージングにおいても、色数の増加は、サンプルに発現するさまざまな抗原を一度に調べることを可能とする。
 このような、蛍光染色による病理画像診断法を実現するための構成として、ライン分光器を用いた蛍光観察装置が提案されている。ライン分光器は、蛍光染色された病理標本に対してライン状のライン照明を照射し、ライン照明により励起された蛍光を分光器により分光して撮像する。撮像で得られる蛍光画像データは、例えばライン照明によるライン方向に従い順次に出力され、それが分光による波長方向に従い順次に繰り返されることで、連続的に途切れ無く出力される。
 また、蛍光観察装置において、病理標本の撮像を、ライン照明によるライン方向に対して垂直方向にスキャンして行うことで、撮像画像データに基づいた病理標本に関する分光情報を、2次元情報として扱うことが可能となる。
国際公開第2019/230878号公報
 ところが、蛍光画像は、明視野照明画像と比べると、明るさが予測しづらく、ダイナミックレンジが広くなる。このため、明視野照明画像のように画像全体に対して一様な輝度表示を行うと、場所によっては、必要な信号を視認できない場合が生じる恐れがある。そこで、本開示では、より適切なダイナミックレンジにより画像を表示可能な情報処理方法、情報処理装置、及びプログラムを提供するものである。
 上記の課題を解決するために、本開示によれば、蛍光画像を複数に分割した各領域である単位領域画像の第1画像データと、前記第1画像データ毎の所定の画素値範囲を示す第1値を関連付けて記憶する記憶工程と、
 選択された前記単位領域画像の組み合わせのそれぞれに関連付けられた第1値のなかから選択された代表値に基づき、前記選択された前記単位領域画像の組み合わせ画像の画素値を変換する変換工程と、
 を備える、情報処理方法が提供される。
 前記選択された前記単位領域画像の組み合わせは、表示部に表示させる観察範囲に対応し、観察範囲に応じて、前記単位領域画像の組合せの範囲が変更されてもよい。
 前記観察範囲に対応する範囲を前記表示部に表示させる表示制御工程を更に備えてもよい。
 前記観察範囲は、顕微鏡の観察範囲に対応し、前記顕微鏡の倍率に応じて、前記単位領域画像の組合せの範囲が変更されてもよい。
 前記第1画像データは、前記第1画像データの原画像データにおいて所定の規則で取得された画素値範囲に基づき、ダイナミックレンジの範囲が調整された画像データであってもよい。
 前記第1画像データと関連付けられた前記代表値との乗算により、前記原画像データの画素値が得られてもよい。
 前記記憶工程は、
 前記第1画像データの領域と大きさが異なる第2画像データであって、前記蛍光画像を複数の領域に再分割した第2画像データと、
 前記第2画像データ毎の画素値範囲を示す第1値と、
 を関連付けて更に記憶してもよい。
 前記顕微鏡の倍率が所定値を越えた場合に、前記観察範囲に対応する前記第2画像データの組合せが選択され、
 前記変換工程は、前記選択された前記第2画像データの組み合わせに関連付けられたそれぞれの第1値から選択された代表値に基づき、前記選択された前記第2画像データの組み合わせに対する画素値を変換してもよい。
 前記画素値範囲は、前記第1画像データに対応する前記原画像データにおける統計量に基づく範囲であってもよい。
 前記統計量は、最大値、最頻値、中央値のいずれかであってもよい。
 前記画素値範囲は、前記原画像データにおける最小値と、前記統計量との範囲であってもよい。
 前記第1画像データは、前記単位領域画像に対応する前記原画像データの画素値を前記第1値で除算したデータあり、
 前記変換工程は、前記選択された前記単位領域画像における前記第1画像データのそれぞれに対応する前記第1値を乗算し、前記選択された前記単位領域画像の組み合わせに関連付けられたそれぞれの前記第1値の最大値で除算してもよい。
 前記統計量の演算方法を入力する第1入力工程と、
 前記入力部の入力に応じて、前記統計量を演算する解析工程と、
 前記解析工程の解析に基づき、蛍光画像を複数の領域に分割した第1画像データと、前記第1画像データ毎の画素値範囲を示す第1値を生成するデータ生成工程と、
 を更に備えてもよい。
 前記表示倍率、及び前記観察範囲の少なくともいずれかに関する情報を更に入力する第2入力工程を更に備え、
 前記変換工程は、前記第2入力工程の入力に応じて、前記第1画像の組み合わせを選択してもよい。
 前記表示制御工程は、前記第1入力工程、及び前記第2入力工程に関する表示形態を前記表示部に表示させ、
 前記表示形態のいずれかの位置を指示する操作工程を更に備え、
 前記第1入力工程、及び前記第2入力工程は、前記操作工程における指示に応じて関連する情報を入力してもよい。
 前記蛍光画像は、複数の蛍光波長それぞれについて、撮像対象により生成された複数の蛍光画像のうちの1つであり、
 前記複数の蛍光画像のそれぞれを、画像データと、前記画像データに対する前記第1値である係数と、に分割するデータ生成工程を更に備えてもよい。
 前記変換工程で変換された画素値に基づき、細胞解析を行う解析工程を更に備え、
 前記細胞解析を行う解析工程は、操作者に指示された範囲の画像範囲に基づき行われてもよい。
 本開示によれば、
 蛍光画像を複数の領域に分割した第1画像データと、前記第1画像データ毎の所定の画素値範囲を示す第1値を関連付けて記憶する記憶部と、
 選択された前記第1画像の組み合わせのそれぞれに関連付けられた第1値のなかから選択された代表値に基づき、前記選択された前記第1画像の組み合わせ画像の画素値を変換する変換部と、
 を備える、情報処理装置が提供される。
 本開示によれば、蛍光画像を複数の領域に分割した第1画像データと、前記第1画像データ毎の所定の画素値範囲を示す第1値を関連付けて記憶する記憶工程と、
 選択された前記第1画像の組み合わせのそれぞれに関連付けられた第1値のなかから選択された代表値に基づき、前記選択された前記第1画像の組み合わせ画像の画素値を変換する変換工程と、
 を情報処理装置に実行させるプログラムが提供される。
実施形態に適用可能なライン分光を説明するための模式図。 ライン分光の処理例を示すフローチャート。 本技術の一実施形態に係る蛍光観察装置の概略ブロック図。 蛍光観察装置における光学系の一例を示す図。 観察対象である病理標本の概略図。 観察対象に照射されるライン照明の様子を示す概略図。 蛍光観察装置における撮像素子が単一のイメージセンサで構成される場合の分光データの取得方法を説明する図。 図6で取得される分光データの波長特性を示す図。 撮像素子が複数のイメージセンサで構成される場合の分光データの取得方法を説明する図。 観察対象に照射されるライン照明の走査方法を説明する概念図。 複数のライン照明で取得される3次元データ(X、Y、λ)を説明する概念図。 照射ラインと波長との関係を示す表。 情報処理装置(処理ユニット)において実行される処理の手順の一例を示すフローチャート。 実施形態に係る分光データ(x、λ)の取得処理の流れを概略的に示す図。 複数の単位ブロックを模式的示す図。 図14のセクション(b)に示した、分光データ(x、λ)の例を示す模式図。 データの並び順が変更された分光データ(x、λ)の例を示す模式図。 階調処理部の構成例を示すブロック図。 階調処理部の処理例を概念的に説明する図。 撮像位置に対応するデータ名の例を示す図。 各単位長方ブロックのデータ形式の例を示す図。 画像群生成部の処理例を説明するための画像ピラミッド構造を示す図。 スティッチング画像(WSI)を画像ピラミッド構造として再生成した例を示す図。 表示制御部の生成する表示画面例。 表示領域が変更された例を示す図。 情報処理装置の処理例を示すフローチャート。 第2実施形態に係る蛍光観察装置の概略ブロック図。 第2解析部の処理例を模式的に示す図。 第2実施形態の変形例1に係る第2解析部の処理例を模式的に示す図。 第2実施形態の変形例2に係る第2解析部の処理例を模式的に示す図。
 以下、図面を参照して、情報処理方法、情報処理装置、及びプログラムの実施形態について説明する。以下では、情報処理方法、情報処理装置、及びプログラムの主要な構成部分を中心に説明するが、情報処理方法、情報処理装置、及びプログラムには、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。
(第1実施形態)
 本開示の実施形態の説明に先立って、理解を容易とするために、ライン分光について図1を参照しつつ、図2に基づき概略的に説明する。図1は、実施形態に適用可能なライン分光を説明するための模式図である。図2は、ライン分光の処理例を示すフローチャートである。図2に示すように、蛍光染色された病理標本1000に対して、ライン照明により、例えばレーザ光によるライン状の励起光を照射する(ステップS1)。図1の例では、励起光は、x方向に平行なライン形状で病理標本1000に照射されている。
 病理標本1000において、蛍光染色による蛍光物質が励起光の照射により励起され、ライン状に蛍光を発光する(ステップS2)。この蛍光は、分光器により分光され(ステップS3)、カメラにより撮像される。ここで、カメラの撮像素子は、行方向(x方向とする)に整列される画素と、列方向(y方向とする)に整列される画素と、を含む2次元格子状に画素が配列された構成を有する。撮像された画像データ1010は、x方向にライン方向の位置情報を含み、y方向に分光による波長λの情報を含む構造となる。
 1ラインの励起光照射による撮像が終了すると、例えば病理標本1000をy方向に所定距離だけ移動させて(ステップS4)、次の撮像を行う。この撮像により、y方向の次のラインにおける画像データ1010が取得される。この動作を所定回数繰り返して実行することで、各波長λについて、病理標本1000から発せられる蛍光の2次元情報を取得することができる(ステップS5)。各波長λにおける2次元情報を波長λの方向に積層したデータを、スペクトルデータキューブ1020として生成する(ステップS6)。なお、本実施形態では、波長λにおける2次元情報を波長λの方向に積層したデータを、スペクトルデータキューブと称する。
 スペクトルデータキューブ1020は、図1の例では、x方向およびy方向に病理標本1000の2次元情報を含み、高さ方向(深さ方向)に波長λの情報を含む構造となっている。病理標本1000による分光情報を、このようなデータ構成とすることで、病理標本1000に対する2次元的な解析を容易に実行することが可能となる。
 図3は、本技術の一実施形態に係る蛍光観察装置の概略ブロック図、図4は、蛍光観察装置における光学系の一例を示す図である。
[全体構成]
  本実施形態の蛍光観察装置100は、観察ユニット1と、処理ユニット(情報処理装置)2と、表示部3とを備える。観察ユニット1は、異軸平行に配置された波長の異なる複数のライン照明を病理標本(病理サンプル)に照射する励起部10と、病理標本を支持するステージ20と、ライン状に励起された病理標本の蛍光スペクトル(分光データ)を取得する分光イメージング部30とを有する。
 ここで、異軸平行とは、複数のライン照明が異軸かつ平行であることをいう。異軸とは、同軸上にないことをいい、軸間の距離は特に限定されない。平行とは、厳密な意味での平行に限られず、ほぼ平行である状態も含む。例えば、レンズ等の光学系由来のディストーションや製造公差による平行状態からの逸脱があってもよく、この場合も平行とみなす。
 情報処理装置2は、観察ユニット1によって取得された病理標本(以下、サンプルSともいう)の蛍光スペクトルに基づいて、典型的には、病理標本の画像を形成し、あるいは蛍光スペクトルの分布を出力する。ここでいう画像とは、そのスペクトルを構成する色素やサンプル由来の自家蛍光などの構成比率、波形からRGB(赤緑青)カラーに変換されたもの、特定の波長帯の輝度分布などをいう。なお、本実施系形態では、蛍光スペクトルに基づいて生成された2次元の画像情報を蛍光画像と称する場合がある。なお、本実施形態に係る情報処理装置2が情報処理装置に対応する。
 表示部3は、例えば液晶モニタである。入力部4は、例えばポインティングデバイス、キーボード、タッチパネル、その他の操作装置である。入力部4がタッチパネルを含む場合、そのタッチパネルは表示部3と一体となり得る。
 ステージ20に対して、対物レンズ44などの観察光学系40を介して、励起部10と分光イメージング部30が接続されている。観察光学系40はフォーカス機構60によって最適な焦点に追従するオートフォーカス(AF)機能を持っている。観察光学系40には、暗視野観察、明視野観察などの非蛍光観察部70が接続されてもよい。
 蛍光観察装置100は、励起部(LDやシャッターの制御)、走査機構であるXYステージ、分光イメージング部(カメラ)、フォーカス機構(検出器とZステージ)、非蛍光観察部(カメラ)などを制御する制御部80と接続されていてもよい。
 励起部10は複数の励起波長Ex1、Ex2、・・・の光を出力することができる複数の光源L1、L2、・・・を備える。複数の光源は、典型的には、発光ダイオード(LED)、レーザダイオード(LD)、水銀ランプなどで構成され、それぞれの光がライン照明化され、ステージ20のサンプルSに照射される。
 図5は、観察対象である病理標本の概略図である。図6は、観察対象に照射されるライン照明の様子を示す概略図である。
 サンプルSは、典型的には、図5に示すような組織切片等の観察対象Saを含むスライドで構成されるが、勿論それ以外であってもよい。サンプルS(観察対象Sa)は、複数の蛍光色素によって染色されている。観察ユニット1は、サンプルSを所望の倍率に拡大して観察する。図5のAの部分を拡大すると、照明部は図6に示すように、ライン照明が複数(図示の例では2つ(Ex1、Ex2))配置されており、それぞれの照明エリアに重なるように分光イメージング部30の撮影エリアR1、R2が配置される。2つのライン照明Ex1、Ex2はそれぞれZ軸方向に平行であり、Y軸方向に所定の距離(Δy)離れて配置される。
 撮影エリアR1、R2は、分光イメージング部30における観測スリット31(図4参照)の各スリット部にそれぞれ対応する。つまり、分光イメージング部30のスリット部もライン照明と同数配置される。図6では照明のライン幅の方がスリット幅よりも広くなっているが、これらの大小関係はどちらであってもよい。照明のライン幅がスリット幅よりも大きい場合、分光イメージング部30に対する励起部10の位置合わせマージンを大きくすることができる。
 1つめのライン照明Ex1を構成する波長と、2つめのライン照明Ex2を構成する波長は相互に異なっている。これらライン照明Ex1、Ex2により励起されるライン状の蛍光は、観察光学系40を介して分光イメージング部30において観測される。
 分光イメージング部30は、複数のライン照明によって励起された蛍光がそれぞれ通過可能な複数のスリット部を有する観測スリット31と、観測スリット31を通過した蛍光を個々に受光可能な少なくとも1つの撮像素子32とを有する。撮像素子32には、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)などの2次元イメージャが採用される。観測スリット31を光路上に配置することで、それぞれのラインで励起された蛍光スペクトルを重なりなく検出することができる。
 分光イメージング部30は、それぞれのライン照明Ex1、Ex2から、撮像素子32の1方向(例えば垂直方向)の画素アレイを波長のチャンネルとして利用した蛍光の分光データ(x、λ)を取得する。得られた分光データ(x、λ)は、それぞれどの励起波長から励起された分光データであるかが紐づけられた状態で情報処理装置2に記録される。
 情報処理装置2は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等のコンピュータに用いられるハードウェア要素および必要なソフトウェアにより実現され得る。CPUに代えて、またはこれに加えて、FPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)、あるいは、DSP(Digital Signal Processor)、その他ASIC(Application Specific Integrated Circuit)等が用いられてもよい。情報処理装置2は、記憶部21と、データ構成部22と、画像形成部23と、階調処理部24とを有する。この情報処理装置2は、記憶部21に記憶されるプログラムを実行することにより、データ構成部22と、画像形成部23と、階調処理部24との機能を構成することが可能である。なお、データ構成部22と、画像形成部23と、階調処理部24とを回路により構成してもよい。
 情報処理装置2は、複数のライン照明Ex1、Ex2の波長と撮像素子32で受光された蛍光との相関を表す分光データを記憶する記憶部21を有する。記憶部21には、不揮発性半導体メモリ、ハードディスクドライブ等の記憶装置が用いられ、サンプルSに関する自家蛍光の標準スペクトル、サンプルSを染色する色素単体の標準スペクトルがあらかじめ格納されている。撮像素子32で受光した分光データ(x、λ)は、例えば、図7及び図8に示すように取得されて、記憶部21に記憶される。本実施形態では、サンプルSの自家蛍光及び色素単体の標準スペクトルを記憶する記憶部と撮像素子32で取得されるサンプルSの分光データ(測定スペクトル)を記憶する記憶部とが共通の記憶部21で構成されるが、これに限られず、別々の記憶部で構成されてもよい。
 図7は、蛍光観察装置100における撮像素子が単一のイメージセンサで構成される場合の分光データの取得方法を説明する図である。図8は、図6で取得される分光データの波長特性を示す図である。この例において、ライン照明Ex1、Ex2によって励起された蛍光スペクトルFs1、Fs2は、分光光学系(後述)を介して、最終的にΔy(図6参照)に比例する量だけずれた状態で撮像素子32の受光面に結像される。図9は、撮像素子が複数のイメージセンサで構成される場合の分光データの取得方法を説明する図である。図10は、観察対象に照射されるライン照明の走査方法を説明する概念図である。図11は、複数のライン照明で取得される3次元データ(X、Y、λ)を説明する概念図である。以下に、図7乃至図11を参照しつつ、蛍光観察装置100についてより詳細に説明する。
 図7に示すように、ライン照明Ex1から得られる情報はRow_a、Row_bとして、ライン照明Ex2から得られる情報はRow_c、Row_dとして、それぞれ記録される。これらの領域以外のデータは読み出さない。それによって撮像素子32のフレームレートはフルフレームで読み出す場合の、Row_full/(Row_b-Row_a+Row_d-Row_c)倍早くすること出来る。
 再び図4に示すように、光路の途中にダイクロイックミラー42やバンドパスフィルタ45が挿入され、励起光(Ex1、Ex2)が撮像素子32に到達しないようにする。この場合、撮像素子32上に結像する蛍光スペクトルFs1には間欠部IFが生じる(図7、図8参照)。このような間欠部IFも読出し領域から除外することによって、さらにフレームレートを向上させることができる。
 図4に示すように、撮像素子32は、観測スリット31を通過した蛍光をそれぞれ受光可能な複数の撮像素子32a、32bを含んでもよい。この場合、各ライン照明Ex1、Ex2によって励起される蛍光スペクトルFs1、Fs2は、撮像素子32a、32b上に図9に示すように取得され、記憶部21に励起光と紐づけて記憶される。
 ライン照明Ex1、Ex2は単一の波長で構成される場合に限られず、それぞれが複数の波長で構成されてもよい。ライン照明Ex1、Ex2がそれぞれ複数の波長で構成される場合、これらで励起される蛍光もそれぞれ複数のスペクトルを含む。この場合、分光イメージング部30は、当該蛍光を励起波長に由来するスペクトルに分離するための波長分散素子を有する。波長分散素子は、回折格子やプリズムなどで構成され、典型的には、観測スリット31と撮像素子32との間の光路上に配置される。
 観測ユニット1はさらに、ステージ20に対して複数のライン照明Ex1、Ex2をY軸方向、つまり、各ライン照明Ex1、Ex2の配列方向に走査する走査機構50を備える。走査機構50を用いることで、サンプルS(観察対象Sa)上において空間的にΔyだけ離れた、それぞれ異なる励起波長で励起された色素スペクトル(蛍光スペクトル)をY軸方向に連続的に記録することができる。この場合、例えば図10に示すように撮影領域RsがX軸方向に複数に分割され、Y軸方向にサンプルSをスキャンし、その後、X軸方向に移動し、さらにY軸方向へのスキャンを行うといった動作が繰り返される。1回のスキャンで数種の励起波長によって励起されたサンプル由来の分光スペクトルイメージを撮影することができる。
 走査機構50は、典型的には、ステージ20がY軸方向に走査されるが、光学系の途中に配置されたガルバノミラーによって複数のライン照明Ex1、Ex2がY軸方向に走査されてもよい。最終的に、図11に示すような(X、Y、λ)の3次元データが複数のライン照明Ex1、Ex2についてそれぞれ取得される。各ライン照明Ex1、Ex2由来の3次元データはY軸についてΔyだけ座標がシフトしたデータになるので、あらかじめ記録されたΔy、または撮像素子32の出力から計算されるΔyの値に基づいて、補正され出力される。
 ここまでの例では励起光としてのライン照明は2本で構成されたが、これに限定されず、3本、4本あるいは5本以上であってもよい。またそれぞれのライン照明は、色分離性能がなるべく劣化しないように選択された複数の励起波長を含んでもよい。またライン照明が1本であっても、複数の励起波長から構成される励起光源で、かつそれぞれの励起波長と、撮像素子で所得されるRowデータとを紐づけて記録すれば、異軸平行ほどの分離能は得られないが、多色スペクトルを得ることができる。図12は、照射ラインと波長との関係を示す表である。例えば図12に示すような構成がとられてもよい。
[観測ユニット]
  続いて、図4を参照して観測ユニット1の詳細について説明する。ここでは、図12における構成例2で観測ユニット1が構成される例について説明する。
 励起部10は、複数(本例では4つ)の励起光源L1、L2、L3、L4を有する。各励起光源L1~L4は、波長がそれぞれ405nm、488nm、561nm及び645nmのレーザ光を出力するレーザ光源で構成される。
 励起部10は、各励起光源L1~L4に対応するように複数のコリメータレンズ11及びレーザラインフィルタ12と、ダイクロイックミラー13a、13b、13cと、ホモジナイザ14と、コンデンサレンズ15と、入射スリット16とをさらに有する。
 励起光源L1から出射されるレーザ光と励起光源L3から出射されるレーザ光は、それぞれコリメータレンズ11によって平行光になった後、各々の波長帯域の裾野をカットするためのレーザラインフィルタ12を透過し、ダイクロイックミラー13aによって同軸にされる。同軸化された2つのレーザ光は、さらに、ライン照明Ex1となるべくフライアイレンズなどのホモジナイザ14とコンデンサレンズ15によってビーム成形される。
 励起光源L2から出射されるレーザ光と励起光源L4から出射されるレーザ光も同様にダイクロイックミラー13b、13cによって同軸化され、ライン照明Ex1とは異軸のライン照明Ex2となるようにライン照明化される。ライン照明Ex1、Ex2は、各々が通過可能な複数のスリット部を有する入射スリット16(スリット共役)においてΔyだけ離れた異軸ライン照明(1次像)を形成する。
 この1次像は、観察光学系40を介してステージ20上のサンプルSに照射される。観察光学系40は、コンデンサレンズ41と、ダイクロイックミラー42、43と、対物レンズ44と、バンドパスフィルタ45と、コンデンサレンズ46とを有する。ライン照明Ex1、Ex2は、対物レンズ44と対になったコンデンサレンズ41で平行光にされ、ダイクロイックミラー42、43を反射して対物レンズ44を透過し、サンプルSに照射される。
 サンプルS面においては図6のような照明が形成される。これらの照明によって励起された蛍光は、対物レンズ44によって集光され、ダイクロイックミラー43を反射し、ダイクロイックミラー42及び励起光をカットするバンドパスフィルタ45を透過し、コンデンサレンズ46で再び集光されて、分光イメージング部30へ入射する。
 分光イメージング部30は、観測スリット31と、撮像素子32(32a、32b)と、第1プリズム33と、ミラー34と、回折格子35(波長分散素子)と、第2プリズム36とを有する。
 観測スリット31は、コンデンサレンズ46の集光点に配置され、励起ライン数と同じ数のスリット部を有する。観測スリット31を通過した2つの励起ライン由来の蛍光スペクトルは、第1プリズム33で分離され、それぞれミラー34を介して回折格子35の格子面で反射することにより、励起波長各々の蛍光スペクトルにさらに分離される。このようにして分離された4つの蛍光スペクトルは、ミラー34及び第2プリズム36を介して撮像素子32a、32bに入射し、分光データとして(x、λ)情報に展開される。
 撮像素子32a、32bの画素サイズ(nm/Pixel)は特に限定されず、例えば、2nm以上20nm以下に設定される。この分散値は、回折格子35のピッチや光学的に実現しても良いし、撮像素子32a、32bのハードウェアビニングをつかって実現しても良い。
 ステージ20及び走査機構50は、X-Yステージを構成し、サンプルSの蛍光画像を取得するため、サンプルSをX軸方向及びY軸方向へ移動させる。WSI(Whole slide imaging)では、Y軸方向にサンプルSをスキャンし、その後、X軸方向に移動し、さらにY軸方向へのスキャンを行うといった動作が繰り返される(図10参照)。
 非蛍光観察部70は、光源71、ダイクロイックミラー43、対物レンズ44、コンデンサレンズ72、撮像素子73などにより構成される。非蛍光観察系においては、図4では、暗視野照明による観察系を示している。
 光源71は、ステージ20の下方に配置され、ステージ20上のサンプルSに対して、ライン照明Ex1、Ex2とは反対側から照明光を照射する。暗視野照明の場合、光源71は、対物レンズ44のNA(開口数)の外側から照明し、サンプルSで回折した光(暗視野像)を対物レンズ44、ダイクロイックミラー43及びコンデンサレンズ72を介して撮像素子73で撮影する。暗視野照明を用いることで、蛍光染色サンプルのような一見透明なサンプルであってもコントラストを付けて観察することができる。
 なお、この暗視野像を蛍光と同時に観察して、リアルタイムのフォーカスに使ってもよい。この場合、照明波長は、蛍光観察に影響のない波長を選択すればよい。非蛍光観察部70は、暗視野画像を取得する観察系に限られず、明視野画像、位相差画像、位相像、インラインホログラム(In-line hologram)画像などの非蛍光画像を取得可能な観察系で構成されてもよい。例えば、非蛍光画像の取得方法として、シュリーレン法、位相差コントラスト法、偏光観察法、落射照明法などの種々の観察法が採用可能である。照明用光源の位置もステージの下方に限られず、ステージの上方や対物レンズの周りにあってもよい。また、リアルタイムでフォーカス制御を行う方式だけでなく、あらかじめフォーカス座標(Z座標)を記録しておくプレフォーカスマップ方式等の他の方式が採用されてもよい。
[本開示の実施形態に適用可能な技術]
 次に、本開示の実施形態に適用可能な技術について説明する。
 図13は、情報処理装置(処理ユニット)2において実行される処理の手順の一例を示すフローチャートである。なお、階調処理部24(図3参照)の詳細は後述する。
 記憶部21は、分光イメージング部30で取得した分光データ(蛍光スペクトルFs1、Fs2(図7、8参照))を記憶する。(ステップ101)。記憶部21には、サンプルSに関する自家蛍光や色素単体の標準スペクトルがあらかじめ格納されている。
 記憶部21は、撮像素子32の波長方向の画素アレイから注目波長領域のみを抽出することによって、記録フレームレートを向上させる。注目波長領域とは、例えば、可視光の範囲(380nm~780nm)、あるいは、サンプルを染色した色素の発光波長によって決まる波長範囲に相当する。
 注目波長領域以外の波長領域としては、例えば、不要な波長の光があるセンサ領域や明らかに信号のないセンサ領域、光路途中にあるダイクロイックミラー42やバンドパスフィルタ45でカットされるべき励起波長の領域などが挙げられる。さらに、そのセンサ上の注目波長領域は、ライン照明の状況によって切り替えられてもよい。例えば、ライン照明に使われる励起波長が少ないときは、センサ上の波長領域も制限され、制限した分、フレームレートを高速化させることができる。
 データ校正部22は、記憶部21に記憶された分光データを、ピクセルデータ(x、λ)から波長に換算し、全てのスペクトルデータが共通の離散値を持った波長単位([nm]、[μm]など)に補完されて出力されるよう校正する(ステップ102)。
 ピクセルデータ(x、λ)は、撮像素子32のピクセル列に綺麗に整列すると限られず、僅かな傾きや光学系のディストーションによって歪められている場合がある。したがって、例えば波長既知の光源を用いてピクセルから波長単位に変換すると、すべてのx座標において異なる波長(nm値)に換算されてしまう。この状態ではデータの扱いが煩雑であるため、データは補完法(例えば、線形補完やスプライン補完)によって整数に整列されたデータに変換される(ステップ102)。
 さらに、ライン照明の長軸方向(X軸方向)の感度ムラが発生する場合がある。感度ムラは照明のムラや、スリット幅のバラつきによって発生し、撮影画像の輝度ムラに繋がる。そこで、データ校正部22は、このムラを解消するため、任意の光源とその代表スペクトル(平均スペクトルや光源の分光放射輝度)を用いて、均一化して出力する(ステップ103)。均一化することによって機差がなくなり、スペクトルの波形解析において、個々の成分スペクトルを毎回測定する手間を削減することができる。さらに、感度校正された輝度値から蛍光色素数の概算定量値も出力することができる。
 校正されたスペクトルに分光放射輝度[W/(sr・m 2・nm)]を採用すれば、各波長に相当する撮像素子32の感度も補正される。このように、基準となるスペクトルに校正することによって、色分離計算に用いる基準スペクトルを機器毎に測定する必要がなくなる。同じロットで安定的な色素であれば、1度撮影すれば流用が可能になる。さらに、色素1分子あたりの蛍光スペクトル強度が予め与えられていれば、感度校正された輝度値から換算した蛍光色素分子数の概算値を出力できる。この値は自家蛍光成分も分離されており、定量性が高い。
 以上の処理は、Y軸方向に走査されるサンプルSにおけるライン照明Ex1、Ex2による照明範囲について同様に実行される。これにより、サンプルSの全範囲について各蛍光スペクトルの分光データ(x、y、λ)が得られる。得られた分光データ(x、y、λ)は、記憶部21に保存される。
 画像形成部23は、記憶部21に記憶された分光データ(あるいはデータ校正部22によって校正された分光データ)と、励起ラインEx1、Ex2の軸間距離(Δy)に相当する間隔とに基づいて、サンプルSの蛍光画像を形成する(ステップ104)。本実施形態において画像形成部23は、蛍光画像として、複数のライン照明Ex1、Ex2の間隔(Δy)に相当する値で撮像素子32の検出座標が補正された画像を形成する。
 各ライン照明Ex1、Ex2由来の3次元データは、Y軸についてΔyだけ座標がシフトしたデータになるので、あらかじめ記録されたΔy、または撮像素子32の出力から計算されるΔyの値に基づいて補正され、出力される。ここでは、各ライン照明Ex1、Ex2由来の3次元データが同一座標上のデータとなるように、撮像素子32での検出座標の相違が補正される。
 画像形成部23は、撮影した画像を繋げて1つの大きな画像(WSI)にするための処理(スティッチング)を実行する(ステップ105)。これにより、多重化されたサンプルS(観察対象Sa)に関する病理画像を取得することができる。形成された蛍光画像は、表示部3に出力される(ステップ106)。
 さらに画像形成部23は、記憶部21にあらかじめ記憶されたサンプルSの自家蛍光及び色素単体の各標準スペクトルを基に、撮影された分光データ(測定スペクトル)からサンプルSの自家蛍光及び色素の成分分布を分離計算する。演算方法としては、最小二乗法、重み付け最小二乗法などが採用可能であり、撮影された分光データが上記標準スペクトルの線形和になるような係数を計算する。算出された係数の分布は、記憶部21に記憶されるとともに、表示部3へ出力されて画像として表示される(ステップ107、108)。
 以上のように本実施形態によれば、観察対象の色素数が増えても撮影時間が増加しない多重蛍光スキャナを提供することができる。
[本開示の実施形態]
 図14は、実施形態に係る分光データ(x、λ)の取得処理の流れを概略的に示す図である。以下では、2つの撮像素子32aおよび32bを用い、ライン照明と励起光の組み合わせの構成例として、図10の構成例2を適用する。撮像素子32aでライン照明Ex1による励起波長λ=405[nm]および532[nm]に応じた各分光データ(x、λ)を取得し、撮像素子32bでライン照明Ex2による励起波長λ=488[nm]および638[nm]に応じた各分光データ(x、λ)を取得するものとする。また、スキャンの1ラインに対応する画素数を2440[pix]とし、Y軸方向への610ライン分のスキャン毎に、スキャン位置をX軸方向に移動させるものとする。
 図14のセクション(a)は、スキャンの第1ライン目(図では「1Ln」とも記述)で取得される分光データ(x、λ)の例を示している。上述したサンプルSに対応する組織302は、スライドガラス300とカバーガラス301とに挟んで固定され、スライドガラス300を下面として、サンプルステージ20に載置される。図中の領域310は、ライン照明Ex1およびEx2による4本のレーザ光(励起光)が照射されるエリアを示している。
 また、撮像素子32aおよび32bにおいて、図の水平方向(行方向)がスキャンのラインにおける位置を示し、垂直方向(列方向)が波長を示している。
 撮像素子32aにおいて、それぞれ励起波長λ=405[nm]および532[nm]に応じた分光波長(1)および(3)に応じた複数の蛍光画像(分光データ(x、λ))が取得される。ここで取得される各分光データ(x、λ)は、例えば分光波長(1)の例では、励起波長λ=405[nm]に応じた蛍光光度の最大値を含む所定の波長領域(適宜、分光波長領域と呼ぶ)のデータ(輝度値)を含む。
 それぞれの分光データ(x、λ)は、撮像素子32aの列方向の位置に対応付けられる。このとき、波長λは、撮像素子32aの列方向において連続していなくて良い。すなわち、分光波長(1)による分光データ(x、λ)の波長と、分光波長(3)による分光データ(x、λ)の波長は、それらの間の空白部分を含めて連続していなくて良い。
 同様に、撮像素子32bにおいて、それぞれ励起波長λ=488[nm]および638[nm]による分光波長(2)および(4)による分光データ(x、λ)が取得される。ここで、各分光データ(x、λ)は、例えば分光波長(1)の例では、励起波長λ=405[nm]に応じた蛍光光度の最大値を含む所定の波長領域のデータ(輝度値)を含む。
 ここで、図4および図6を用いて説明したように、撮像素子32aおよび32bにおいて、各分光データ(x、λ)の波長領域内のデータが選択的に読み出され、それ以外の領域(図中に空白部分として示す)のデータは読み出されない。例えば、撮像素子32aの例では、分光波長(1)の波長領域の分光データ(x、λ)と、分光波長(3)の波長領域の分光データ(x、λ)とがそれぞれ取得される。取得された各波長領域の分光データ(x、λ)は、第1ライン目の各分光データ(x、λ)として、それぞれ記憶部21に記憶される。
 図14のセクション(b)は、セクション(a)とX軸方向について同一のスキャン位置において、第610ライン目(図では「610Lnとも記述)までのスキャンが終了した場合の例を示している。このとき、記憶部21には、610ライン分の各分光波長(1)~(4)の波長領域の分光データ(x、λ)が、ライン毎に記憶されている。610ライン分の読み出しおよび記憶部21に対する記憶が終了すると、図14のセクション(c)に示すように、第611ライン目(図では「611Lnとも記述)のスキャンが行われる。この例では、第611ライン目のスキャンは、スキャンのX軸方向の位置を移動させると共に、Y軸方向の位置を例えばリセットして実行される。
(取得データ例およびデータの並び替え)
 図15は、複数の単位ブロック400、500を模式的示す図である。上述したように、撮影領域RsがX軸方向に複数に分割され、Y軸方向にサンプルSをスキャンし、その後、X軸方向に移動し、さらにY軸方向へのスキャンを行うといった動作が繰り返される。撮影領域Rsは、更に複数の単位ブロック400、500により構成される。例えば、図14のセクション(b)に示した、第610ライン分のデータを基本単位として、単位ブロックと称する。
 次に、実施形態に係る取得データおよびデータの並び替えについて説明する。図16は、図14のセクション(b)に示した、第610ライン目のスキャンが終了した時点で記憶部21に記憶される分光データ(x、λ)の例を示す模式図である。図16に示されるように、分光データ(x、λ)は、スキャンのライン毎に、図中の水平方向にライン上の位置を示し、図中の垂直方向に分光波長の数を示すブロックをフレーム40fとして、記憶部21に記憶される。そして、610ライン分のフレーム40fにより単位ブロック400(図15参照)が形成される。
 なお、この図16および以下の同様の図において、フレーム40f内の矢印は、記憶部21に対するアクセスに、プログラム言語の一つであるC言語またはC言語に準じた言語を用いた場合の、記憶部21におけるメモリアクセスの方向を示している。図16の例では、フレーム40fの水平方向(すなわち、ラインの位置方向)に向けてアクセスがなされ、これがフレーム40fの垂直方向(すなわち分光波長数の方向)に向けて繰り返される。
 なお、分光波長数は、分光波長領域を複数のチャネルに分割した場合のチャネル数に対応する。
 実施形態では、情報処理装置2は、例えば画像形成部23により、ライン毎に記憶される各波長領域の分光データ(x、λ)の並び順を、分光波長(1)~(4)毎の並び順に変換する。
 図17は、実施形態に係る、データの並び順が変更された分光データ(x、λ)の例を示す模式図である。図17に示されるように、分光データ(x、λ)は、データの並び順を、分光波長毎に、図中の水平方向にライン上の位置を示し、図中の垂直方向にスキャンのラインを示す並び順に変換されて記憶部21に記憶される。ここで、図中の水平方向の2440[pix]と、垂直方向の610ラインとからなる各色素1~に対応するフレーム400a、400b、、、400nを、本実施形態では単位長方ブロックと称する。
 この図17に示す、実施形態に係る単位長方ブロックによるデータの並び順は、フレーム400a、400b、、、400n内における画素の配列が、スライドガラス300上の組織302における単位ブロック400内の2次元情報に対応している。このため、実施形態に係る単位長方ブロック400a、400b、、、400nは、図16に示したフレーム40fと比較して、当該組織302の分光データ(x、λ)を、直接的に、当該組織302に対する単位ブロック400内の2次元情報として扱うことができる。したがって、実施形態に係る情報処理装置2を適用することで、ライン分光器(観察ユニット1)により取得された撮像画像データに対する画像処理や分光スペクトル波形分離処理(色分離処理)などを、より容易および高速に処理することが可能となる。
 図18は、本実施形態に係る階調処理部24の構成例を示すブロック図である。図18に示すように、この階調処理部24は、画像群生成部240と、統計量演算部242と、SF(スケーリングファクタ)生成部244と、第1解析部246と、階調変換部248と、表示制御部250とを備える。なお、本実施形態では、表示部3に表示される2次元情報を画像、又は、この2次元情報の範囲を画像と称し、画像を表示するために用いるデータを画像データ、或いは、単にデータと称する。また、本実施形態に係る画像データ、は、輝度値、及び抗体数単位の出力値の少なくともいずれかに関する数値である。
 ここで、図19乃至図21を参照しつつ、階調処理部24における処理を説明する。図19は、本実施形態に係る階調処理部24の処理例を概念的に説明する図である。図20は、撮像位置に対応するデータ名の例を示す図である。図20で示すように、例えば単位ブロックの領域200に対応させてデータ名が割振られる。これにより、例えば単位ブロック毎の撮像データに対して、行方向(block_num)、及び列方向(obi_num)の二次元位置に対応したデータ名を割振ることが可能となる。
 再び図19に示すように、まず、撮像された単位ブロック400、500、、n毎の全撮像データ(図15、16参照)が、画像形成部23に記憶部21から呼び出される。これらの各単位ブロック400、500、、nは、図20に示すように、撮像位置に応じて、例えば単位ブロック400に対応するデータには01_01.datが割り振られ、単位ブロック500に対応するデータには01_02.datが割り振られる。図19では、説明を簡単にするため、単位ブロック400、500しか図示していないが、単位ブロック400、500、、nが処理される。
 図19に示すように、次に、単位ブロック400の撮像データ01_01.datは、上述のように画像形成部23により、色分離処理が行われ、単位長方ブロック400a、400b、、400n(図17参照)に分離処理される。同様に、単位ブロック500の撮像データ01_02.datは、画像形成部23により、色分離処理により、単位長方ブロック500a、500b、、500nに分離処理される。このように、全ての単位ブロック毎の撮像データは、色分離処理により、色素に対応する単位長方ブロックに分離処理される。そして、各単位長方ブロックのデータには、図20で示す規則に従い、データ名が割り振られる。
 次に、画像形成部23は、撮影した画像を繋げて1つの大きなスティッチ画像(WSI)にするためのスティッチ処理を単位長方ブロック400a、400b、、に対して行う。
 次に、画像群生成部240は、スティッチ処理された色分離処理された各データを最小区分に再分割し、ミップマップ(MIPmap)を生成する。これらの最小区分には、図20で示す規則に従い、データ名が割り振られる。なお、図19では、スティッチ処理された画像の最小区分を単位ブロック400sa、400sb、500sa、500sbとして演算しているが、これに限定されない。例えば、後述する図20、21に示すよう、例えば正方形の領域に再区分してもよい。なお、本実施形態では、3次元コンピュータグラフィックスのテクスチャフィルタリングにおいて、メインとなるテクスチャの画像を補完するように事前計算された画像群をミップマップと称する。ミップマップの詳細は図20、21を用いて後述する。
 統計量演算部242は、各単位長方ブロック単位ブロック400sa、400sb、500sa、500sb内の画像データ(輝度データ)に対する統計量Stvを演算する。統計量Stvは、最大値、最小値、中間値、最頻値等である。画像データは、例えばフロート32(float32)であり、例えば32ビットである。
 SF生成部242は、統計量演算部242が演算した統計量Stvを用いて、各単位長方ブロック400sa、400sb、500sa、500sb、、に対してスケーリングファクタ(Sf)を演算する。そして、SF生成部242は、スケーリングファクタ(Sf)を記憶部21に記憶する。
 スケーリングファクタSfは、例えば(1)式で示すように、各単位長方ブロック400sa、400sb、500sa、500sb、、内の画像データ(輝度データ)の例えば最大値maxvと最小値minvの差分をデータサイズdszで除算した値である。ダイナミックレンジを調整する際の基準となる画素値範囲は、例えばデータサイズdszであり、ushort16(0-65535)=216-1の値であり、16ビットである。原画像データのデータサイズは、フロート32(float32)の32ビットである。なお、本実施形態では、スケーリングファクタSfで除算する前の画像データを原画像データと称する。原画像データは、上述のように、例えばフロート32(float32)の32ビットのデータサイズである。このデータサイズは画素値に対応する。
 これにより、例えば、蛍光の強い領域は、スケーリングファクタSfが5などとなり、蛍光のない領域は、スケーリングファクタSfが0.1などとして演算される。換言すると、スケーリングファクタSfは、各単位長方ブロック400sa、400sb、500sa、500sb、、の原画像データにおけるダイナミックレンジに対応する。以下では、最小値minvを0として説明するが、これに限定されない。なお、本実施形態に係るスケーリングファクタが第1値に対応する。
Figure JPOXMLDOC01-appb-M000001
 第1解析部246は、画像中から被写体領域を抽出する。そして、統計量演算部242は、被写体領域内の原画像データを用いて統計量Stvを演算し、SF生成部242は、統計量Stvに基づき、スケーリングファクタSfを演算する。
 階調変換部248は、スケーリングファクタSfで各単位長方ブロック400sa、400sb、500sa、500sb、、の原画像データを除算し、除算後のデータを記憶部21に記憶する。これらから分かるように、階調変換部248により処理された第1画像データは、最大値maxvと最小値minvとの差分である画素値範囲により正規されている。なお、本実施形態では、原画像データの画素値をスケーリングファクタSfで除算した後の画像データを、第1画像データと称する。第1画像データは、例えばushort16のデータ形式である。
 つまり、スケーリングファクタSfが1よりも大きい場合には、第2画像データのダイナミックレンジは、圧縮され、スケーリングファクタSfが1よりも小さい場合には、第2画像データのダイナミックレンジは、拡大される。一方で、階調変換部248により処理された第1画像データと、対応するスケーリングファクタSfとを、乗算すると、元の原画像データの画素値を得ることが可能である。スケーリングファクタSfは、例えばフロート32(float32)であり、32ビットである。
 色分離データである単位長方ブロック400a、400b、、に対しても、同様にスケーリングファクタSfはスケーリングファクタSfを演算し、階調変換部248は、スケーリングファクタSfで原画像データを階調変換し、第1画像データを生成する。
 図21は、各単位長方ブロック400sa、400sb、500sa、500sb、、のデータ形式の例を示す図である。各単位長方ブロック400sa、400sb、500sa、500sb、、のデータは、例えばTiff(Tagged Image File Format)形式で記憶部21に記憶される。各画像データは、フロート32(float32)からushort16の16ビットに変換され、記憶容量が圧縮される。同様に、単位長方ブロック400a、400b、、のデータは、例えばTiff(Tagged Image File Format)形式で記憶部21に記憶される。各原画像データは、フロート32(float32)からushort16の第1画像データに変換され、記憶容量が圧縮される。スケーリングファクタSfはフッタに記録されるので、画像データを読み出さずに、記憶部21から読み出し可能である。
 このように、スケーリングファクタSfで除算した後の第1画像データと、スケーリングファクタSfとを、例えばTiff形式により関連付けて記憶部21に記憶する。これにより、第1画像データは、32ビットから16ビットに圧縮される。この第1画像データは、ダイナミックレンジが調整されているので、表示部3に表示する場合に全画像を可視化可能となる。一方で、第1画像データと対応するスケーリングファクタSfを乗算すると、原画像データの画素値を得ることが可能であり、情報量も維持される。
 ここで、図22に基づき、画像群生成部240の処理例を説明する。図22は、画像群生成部240の処理例を説明するための画像ピラミッド構造を示す図である。画像群生成部240は、例えばスティッチング画像(WSI)を用いて画像ピラミッド構造500を生成する。
 画像ピラミッド構造500は、画像形成部23が色素毎の各単位長方ブロック400a、500a、、をスティッチング処理により合成したスティッチング画像(WSI)に対して異なる複数の解像度により生成された画像群である。画像ピラミッド構造500の最下Lnには、最も大きいサイズの画像が配置され、最上L1には最も小さいサイズの画像が配置される。最も大きいサイズの画像の解像度は、例えば50×50(Kpixel:キロピクセル)、あるいは40×60(Kpixel)である。最も小さいサイズの画像は、例えば256×256(pixel)、あるいは、256×512(pixel)である。本実施形態では、画像領域の構成領域である1タイルを単位領域画像と称する。なお、単位領域画像は任意の大きさ及び形状で構成してもよい。
 つまり、同じ表示部3が、これらの画像を例えば100%でそれぞれ表示(それらの画像のピクセル数と同じ物理的なドット数でそれぞれ表示)すると、最も大きいサイズの画像Lnが最も大きく表示され、最も小さいサイズの画像L1が最も小さく表示される。ここで、図22では、その表示部106の表示範囲をDとして示している。なお、これらの画像ピラミッド構造50を形成する全体画像群は、公知の圧縮方法により生成されてもよいし、例えばサムネイル画像を生成するときの公知の圧縮方法により生成されてもよい。
 図23は、図19の色素1~nの波長帯のスティッチング画像(WSI)を画像ピラミッド構造として再生成した例を示す図である。すなわち、画像群生成部240が、画像形成部23が生成した色素別のスティッチング画像(WSI)を画像ピラミッド構造として再生成した例を示す図である。説明を簡単にするため、3レベルで図示しているが、これに限定されない。色素1の画像ピラミッド構造では、L3レベルの各単位領域画像には、例えばスケーリングファクタSf3-1~Sf3-nがTiffデータとして関連付けられ、各単位領域画像の原画像データは階調変換部248により、第1画像データに画素値が変換されている。同様に、L2レベルの各小画像には、例えばスケーリングファクタSf2-1~Sf2-nがTiffデータとして関連付けられ、各第1画像データは階調変換部248により、第1画像データに画素値が変換されている。同様に、L1レベルの小画像には、例えばスケーリングファクタSf1がTiffデータとして関連付けられ、原画像データは階調変換部248により、第1画像データに画素値が変換されている。同様の処理が色素2~nの波長帯のスティッチング画像に対して行われる。そして、これらの画像ピラミッド構造のデータはミップマップとして、例えばTiff(Tagged Image File Format)形式で記憶部21に記憶される。
 図24は、表示制御部250の生成する表示画面例である。表示領域3000には、スケーリングファクタSfに基づき、ダイナミックレンジが調整された主観察画像が表示される。サブネール画像領域3010には、観察範囲の全体画像が表示される。領域3020は、表示領域3000が表示されている全体画像(サブネイル画像)の中の範囲を示す。サブネール画像領域3010には、例えば撮像素子73で撮像した非蛍光観察部(カメラ)画像を表示してもよい。
 選択波長操作領域部3030は、操作部4の指示に従い、表示画像の波長範囲、例えば色素1~nに対応する波長を入力する入力部である。倍率操作領域部3040は、操作部4の指示に従い、表示倍率を変更する値を入力する入力部である。水平操作領域部3060は、操作部4の指示に従い、画像の水平方向選択位置を変更する値を入力する入力部である。垂直操作領域部3080は、操作部4の指示に従い画像の垂直方向選択位置を変更する値を入力する入力部である。表示領域3100は、主観察画像のスケーリングファクタSfを表示する。表示領域3120は、スケーリングファクタの値を操作部4の指示に従い選択する入力部である。スケーリングファクタの値は、上述するようにダイナミックレンジに対応する。例えば、画素値の最大値maxv(1式参照)に対応する。表示領域3140は、スケーリングファクタSfの演算アルゴリズムを、操作部4の指示に従い選択する入力部である。なお、表示制御部250は、観察画像、全体画像などのファイルパスを更に表示させてもよい。
 表示制御部250は、選択波長操作領域部3030の入力により、対応する色素nのミップマップ画像を憶部21から呼び込む。この場合、後述する表示領域3140に対応する演算アルゴリズムに従い生成された色素nのミップマップ画像が読み込まれる。
 表示制御部250は、倍率操作領域部3040の指示入力が第1閾値未満である場合にレベルL1の画像を表示し、指示入力が第1閾値以上である場合にレベルL2の画像を表示し、指示入力が第2閾値以上である場合にレベルL3の画像を表示する。
 表示制御部250は、水平操作領域部3060、及び垂直操作領域部3080により選択された表示領域D(図22参照)を主観察画像として表示領域3000に表示する。この場合、表示領域D内に含まれる各単位領域画像に関連付けられるスケーリングファクタSfにより各単位領域画像の画像データの画素値が階調変換部248により再演算される。
 図25は、水平操作領域部3060、及び垂直操作領域部3080を介して入力処理により、表示領域DがD10からD20に変更された例を示す図である。
 先ず、階調変換部248は、領域D10が選択された場合には、各単位領域画像に関連付けられて記憶されるスケーリングファクタSf1、Sf2、SF5、Sf6を記憶部21から読み込む。そして、(2)式に示すように、各単位領域画像の画像データに、対応するスケーリングファクタSf1、Sf2、SF5、Sf6をそれぞれ乗算し、スケーリングファクタの最大値MAX_Sf(1、2、5、6)で除算する。
リスケーリング後の画素値=(各Sf×リスケーリング前の画素値)/MAX_Sf(1、2、5、6)                 (2)式
 各単位領域画像の第1画像データに、対応するスケーリングファクタSf1、Sf2、SF5、Sf6をそれぞれ乗算すると原画像データにおける画素値に変換される。そして、スケーリングファクタの最大値MAX_Sf(1、2、5、6)で除算することにより、領域D10の画像データが正規化される。これにより、領域D10の画像データの輝度がより適切に表示される。例えば、上述の(1)式でスケーリングファクタSfが演算されている場合には、各単位領域画像の画像データの値は、領域D10に含まれる各単位領域画像の原画像データにおける最大値と最小値の間に正規化される。このように、領域D10内の第1画像データのダイナミックレンジがスケーリングファクタSf1、Sf2、SF5、Sf6を用いることにより、再調整され、領域D10内の第1画像データを全て視認することが可能となる。これらから分かるように、統計量演算部242の再演算が不要となり、領域変換に応じてより短時間にダイナミックレンジの調整が可能となる。
 また、表示制御部250は、表示領域3100に最大値MAX_Sf(1、2、5、6)を表示する。これにより、操作者は、ダイナミックレンジがどの程度圧縮されているか、或いは、拡大されているかを、より容易に認識することが可能となる。
 次に、領域D20に変更された場合には、各単位領域画像に関連付けられて記憶されるスケーリングファクタSf1、Sf2、SF5、Sf6、Sf7を記憶部21から読み込む。そして(3)式に示すように、各単位領域画像の第1画像データに、対応するスケーリングファクタSf1、Sf2、SF5、Sf6、Sf7をそれぞれ乗算し、スケーリングファクタの最大値MAX_Sf(1、2、5、6、7)で除算する。
 リスケーリング後の画素値=(各Sf×リスケーリング前画素値)/MAX_Sf(1、2、5、6、7)               (3)式
各単位領域画像の第1画像データに、対応するスケーリングファクタSf1、Sf2、SF5、Sf6、Sf7をそれぞれ乗算すると原画像データの画素値に変換され、スケーリングファクタの最大値MAX_Sf(1、2、5、6、7)で除算することにより、領域D20の第1画像データが再び正規化される。これにより、領域D10の画像データの輝度がより適切に表示される。上述同様に、表示制御部250は、表示領域3100に最大値MAX_Sf(1、2、5、6、7)を表示する。これにより、操作者は、ダイナミックレンジがどの程度圧縮されているか、或いは、拡大されているかを、より容易に認識することが可能となる。
 表示制御部250は、後述する表示領域3140に対応する演算アルゴリズムにおいて、マニュアル(manual)が選択された場合に、表示領域312を介して入力されたスケーリングファクタMSfの値を用いて(4)式を用いて再演算する。
 リスケーリング後の画素値=(各Sf×リスケーリング前画素値)/MSf                             (4)式
上述と同様に、表示制御部250は、表示領域3100にスケーリングファクタMSfを表示する。これにより、操作者は、自信の操作により、ダイナミックレンジがどの程度圧縮されているか、或いは、拡大されているかを、より容易に認識することが可能となる。
 このように、色分離後、およびスティッチ後の原画像データはfloat32の抗体数単位の出力を例えば想定している。これらを基本領域画毎に図21に示すように、ushort16(0-65535)の画像データとfloat32係数(=スケーリングファクタSf)とに分割して記憶部21に保存する。基本領域画(小画像)毎に画像データとスケーリングファクタSfを分割保存しておくことで、図25に示すような複数の基本領域画を跨ぐ領域を視認する場合に、スケーリングファクタ同士を比較し、ushort16(0-65535)への再割り当て(=リスケーリング)をすることで表示ダイナミックレンジの調整が可能となる。
 すなわち、上述のように、Ushort16の画像データとfloat32のスケーリングファクタに分けることにより、積算により元のデータfloat32に復調可能となる。また、基本領域画(小画像)毎に個別のスケーリングファクタSfを用いてushort16画像を保存するため、必要な領域だけで表示ダイナミックレンジの再調整が可能となる。更に、基本領域画(小画像)のフッタにスケーリングファクタSfを追加することで、スケーリングファクタSfだけを容易に参照でき、スケーリングファクタSf同士の比較もより容易となる。
 表示領域312において、スティッチング画像WSIは、レベルL1画像を意味する。ROIは選択された領域画像を意味する。また、最大値MAXは、スケーリングファクタSfを演算する際に用いる統計量が最大値であることを意味する。また、平均値Aveは、スケーリングファクタSfを演算する際に用いる統計量が平均値であることを意味する。また、最頻値Modeは、スケーリングファクタSfを演算する際に用いる統計量が最頻値であることを意味する。組織領域Sfは、選択された画像領域、且つ第1解析部246が抽出した画被写体領域中から演算されたスケーリングファクタSfを用いることを意味する。この場合、統計量としては、例えば最大値が用いられる。
 これにより、最大値MAXが選択された場合には、SF生成部242が最大値を用いて生成したスケーリングファクタSfに対応するミップマップが記憶部21から読み込まれる。同様に、平均値Aveが選択された場合には、SF生成部242が平均値を用いて生成したスケーリングファクタSfに対応するミップマップが記憶部21から読み込まれる。同様に、最頻値Modeが選択された場合には、SF生成部242が最頻値を用いて生成したスケーリングファクタSfに対応するミップマップが記憶部21から読み込まれる。
 すなわち、第1アルゴリズム(MAX(WSI))は、(5)式に示すように、レベルL1画像のスケーリングファクタL1Sfにより、表示画像の画素値を再変換する。この場合、スケーリングファクタL1Sfは、最大値が用いられる。倍率操作領域部3040、水平操作領域部3060、及び垂直操作領域部3080を介して入力処理されている場合には、表示領域に含まれる各単位領域画像に対して、(5)式に従う演算が行われる。これにより、どの範囲の画像を表示させても、統一したダイナミックレンジで表示可能となり、画像のばらつきを抑制可能となる。
 リスケーリング後の画素値=(各Sf×リスケーリング前画素値)/L1Sf                            (5)式
なお、以下の処理において、表示領域3100によりWSI関連のアルゴリズムが選択された場合には、レベルL1画像を表示させるように制限してもよい。この場合、再演算は不要である。
 同様に、第2アルゴリズム(Ave(WSI))は、(6)式に示すように、レベルL1画像の平均値L1avにより、表示画像の画素値を再変換する。これにより、どの範囲の画像を表示させても、統一したダイナミックレンジで表示可能となり、画像のばらつきを抑制可能となる。また、平均値L1avを用いる場合には、高輝度領域である蛍光領域の情報を抑制しつつ、画像全体の情報を観察することが可能となる。なお、以下の処理において、表示領域3100によりWSI関連のアルゴリズムが選択された場合には、レベルL1画像を表示させるように制限してもよい。この場合、再演算は不要である。
リスケーリング後の画素値=(各Sf×リスケーリング前画素値)/L1av                             (6)式
 同様に、第3アルゴリズム(Mode(WSI))は、(7)式に示すように、レベルL1画像の最頻値L1modにより、表示画像の画素値を再変換する。これにより、どの範囲の画像を表示させても、統一したダイナミックレンジで表示可能となり、画像のばらつきを抑制可能となる。また、最頻値L1modを用いる場合には、高輝度領域である蛍光領域の情報を抑制しつつ、画像なかで最も多く含まれる画素を基準に、情報を観察することが可能となる。なお、以下の処理において、表示領域3100によりWSI関連のアルゴリズムが選択された場合には、レベルL1画像を表示させるように制限してもよい。この場合、再演算は不要である。
リスケーリング後の画素値=(各Sf×リスケーリング前画素値)/L1mod                            (7)式
 同様に、第4アルゴリズム((MAX(ROI))は、(8)式に示すように、選択された基本領域画像中のスケーリングファクタSfの最大値ROImaxにより、表示画像の画素値を再変換する。この場合、上述のように統計量は、最大値である。
リスケーリング後の画素値=(各Sf×リスケーリング前画素値)/ROImax                           (8)式
 同様に、第5アルゴリズム((Ave(ROI))は、(9)式に示すように、選択された基本領域画像中のスケーリングファクタSfの最大値ROIAvemaxにより、表示画像の画素値を再変換する。この場合、上述のように統計量ROIAvemaxは、平均値である。
リスケーリング後の画素値=(各Sf×リスケーリング前画素値)/ROIAvemax                        (9)式
 同様に、第6アルゴリズム((Mode(ROI))は、(10)式に示すように、選択された基本領域画像中のスケーリングファクタSfの最大値ROIModemaxにより、表示画像の画素値を再変換する。この場合、上述のように統計量ROIModemaxは、最頻値である。
リスケーリング後の画素値=(各Sf×リスケーリング前画素値)/ROIModemax                      (10)式
 同様に、第7アルゴリズム(組織領域Sf)は、(11)式に示すように、選択された基本領域画像中のスケーリングファクタSfの最大値Sfmaxにより、表示画像の画素値を再変換する。この場合、上述のように統計量Sfmaxは、各基本領域画像の中の組織領域内の画像データ内で算出された最大値である。
リスケーリング後の画素値=(各Sf×リスケーリング前画素値)/Sfmax                           (11)式
 同様に、第8アルゴリズム(auto)は、(12)式に示すように、選択波長操作領域部303の入力により、選択された波長の代表値λの関数Sf(λ)により、表示画像の画素値を再変換する。このSf(λ)は、過去の撮影実験により定められた値である。すなわち、このSf(λ)は、撮像画像によらず、λに従う値である。なお、Sf(λ)は、代表値λごとに定められる離散値でもよい。
リスケーリング後の画素値=(各Sf×リスケーリング前画素値)/Sf(λ)                           (12)式
 同様に、第9アルゴリズムであるマニュアル(manual)は、上述した(4)式に示すように、表示領域312を介して入力されたスケーリングファクタMSfの値を用いて、表示画像の画素値を再変換するアルゴリズムである。
 図26は、情報処理装置2の処理例を示すフローチャートである。ここでは、表示領域3100によりWSI関連のアルゴリズムが選択された場合には、レベルL1画像を表示させるように、制限されている場合について説明する。
 まず、表示制御部250は、表示領域3100を介して操作者に選択されたアルゴリズ(図24参照)を取得する(ステップS200)。続けて、表示制御部250は、選択されたアルゴリズに対応するミップマップを記憶部21から読み込む(ステップS202)。この場合、表示制御部250は、対応するミップマップが記憶部21に記憶されていない場合、画像群生成部240を介して、対応するミップマップを生成させる。
 次に、表示制御部250は、選択されたアルゴリズ(図24参照)がWSI関連であるか否かを判定する(ステップS204)。WSI関連であると判定する場合(ステップS204のyes)、表示制御部250は、選択されたアルゴリズに関する処理を開始する(ステップS206)。
 続けて、表示制御部250は、選択されたアルゴリズムが第1アルゴリズム(MAX(WSI))、第2アルゴリズム(Ave(WSI))、第3アルゴリズム(Mode(WSI))であれば、レベルL1画像の原画像データに基づく統計量に従い、主観察画像のダイナミックレンジを調整する(ステップS208)。この場合、レベルL1画像の第1画像データのダイナミックレンジは既に調整されているので、再演算は不要である。
 続けて、表示制御部250は、選択されたアルゴリズムが第7アルゴリズム(組織領域Sf)であれば、画像の中の組織領域内の画像データ内で算出された統計量に基づき、主観察画像のダイナミックレンジを調整する(ステップS210)。この場合、レベルL1画像の第1画像データのダイナミックレンジは既に調整されているので、再演算は不要である。
 続けて、表示制御部250は、選択されたアルゴリズムが第9アルゴリズム(マニュアル(manual))であれば、上述した(4)式に示すように、表示領域312を介して入力されたスケーリングファクタMSfの値を用いて、表示画像であるレベルL1画像における第1画像データの画素値を再変換する(ステップS212)。
 続けて、表示制御部250は、選択されたアルゴリズムが第8アルゴリズム(auto)であれば、画選択波長操作領域部303の入力により、選択された波長の代表値λの関数Sf(λ)により、表示画像であるレベルL1画像における第1画像データの画素値を再変換する。(ステップS214)。
 一方で、表示制御部250は、選択されたアルゴリズ(図24参照)がWSI関連でないと判定する場合(ステップS204のno)、表示制御部250は、倍率操作領域部3040を介して操作部4により入力した表示倍率を取得する(ステップS216)。表示制御部250は、表示倍率に応じて、主観察画像の表示に用いる画像レベルL1~Lnをミップマップの中から選択する(ステップS218)。続けて、表示制御部250は、水平操作領域部3060及び垂直操作領域部3080により選択された表示領域を、サブネール画像301中に枠302(図24参照)として、表示する(ステップS220)。
 続けて、表示制御部250は、表示制御部250は、選択されたアルゴリズ(図24参照)が第7アルゴリズム(組織領域Sf)関連であるか否かを判定する(ステップS222)。第7アルゴリズム(組織領域Sf)関連でないとと判定する場合(ステップS222のyes)、表示制御部250は、選択されたアルゴリズに関する処理を開始し、第4アルゴリズム((MAX(ROI))、第5アルゴリズム((Ave(ROI))、及び第6アルゴリズム((Mode(ROI))のいずれかであれば、枠302に含まれる各基本領域画像に関連付けられたスケーリングファクタsfで、第1画像データの画素値を再演算し、ダイナミックレンジを調整した枠302(図24参照)内の画像を主観察画像として表示部3に表示させる(ステップS224)。
 続けて、表示制御部250は、選択されたアルゴリズムが第9アルゴリズム(マニュアル(manual))であれば、上述した(4)式に示すように、表示領域312を介して入力されたスケーリングファクタMSfの値を用いて、表示画像である枠302(図24参照)に含まれる各基本領域画像における第1画像データの画素値を再変換し、表示部3に表示させる(ステップS226)。
 一方で、表示制御部250は、選択されたアルゴリズ(図24参照)が第7アルゴリズム(組織領域Sf)関連であると判定する場合(ステップS222のno)、画像の中の組織領域内の画像データ内で算出された統計量に基づき、主観察画像のダイナミックレンジを調整する(ステップS228)。なお、表示部3に表示させる際の画像データは、例えばushort16である0-655535の輝度値を線形変換(Linear)してもよく、或いは、ログ変換(Logarithm)、バイエクスポーネンシャル変換(Biexponential)、などの非線形変換をして表示させてもよい。
 このように、例えば、抗体数単位で画像間の輝度表示を定量的に比較可能となる。また、スティッチング画像(WSI)を輝度調整すると暗すぎて視認できないような色素・領域が、スティッチング画像(WSI)と比較して小さい領域である各基本領域画像の組み合わせにより、表示ダイナミックレンジを調整することが可能となる。これにより、撮像画像の視認性を向上可能となる。更にまた、隣接する基本領域画像でスケーリングファクタSfを比較して、スケーリングファクタSfをひとつに揃えることが容易となる。これにより、ひとつに揃えたスケーリングファクタSfに基づき、リスケーリングすることにより、より高速に複数の基本領域画像において表示ダイナミックレンジを揃えることができる。
 このように、視認したい領域が暗い色素・領域であったとしても、その色素・領域に適したスケーリングファクタSfを用いて画像データをushort16(0-655535)のサイズに割当てることで、ダイナミックレンジがより適切に調整され、視認可能となる。またそのスケーリングファクタSfを元に復調する(=画像データushort16にスケーリングファクタを積算する)ことで定量性を維持することも可能となる。
 以上説明したように、本実施形態によれば、蛍光画像を複数に分割した各領域である単位領域画像の第1画像データと、第1画像データ毎の画素値範囲を示すスケーリングファクタSfを関連付けてミップマップ(MIPMAP)として記憶部21に記憶することとした。これにより、選択された領域D内の単位領域画像の組み合わせのそれぞれに関連付けられたスケーリングファクタSfのなかから選択された代表値に基づき、選択された単位領域画像の組み合わせ画像の画素値を変換することが可能となる。このため、選択された単位領域画像のダイナミックレンジがスケーリングファクタSfを用いることにより再調整され、領域D内の画像データを全て、所定のダイナミックレンジで、視認することが可能となる。このように、統計量演算部242の再演算が不要となり、観察領域Dの位置変換に応じてより短時間にダイナミックレンジの調整が可能となる。また、ミップマップとして記憶部21に記憶するので、解像度の選択レベルに応じて、主観察に用いる画像レベルL1~Lnをミップマップの中から選択することが可能となり、より高速に、主観察画像のダイナミックレンジを調整して表示部3に表示可能となる。
(第2実施形態)
 第2実施形態に係る情報処理装置2は、細胞カウントなどの細胞解析を行う第2解析部を更に備えることで、第1実施形態に係る情報処理装置2と相違する。以下では、第1実施形態に係る情報処理装置2と相違する点を説明する。
 図27は、第2実施形態に係る蛍光観察装置の概略ブロック図である。図27に示すように、情報処理装置2は、第2解析部26を更に備える。
 図28は、第2解析部26の処理例を模式的に示す図である。図28に示すように、画像形成部23により撮影した画像を繋げて1つの大きなスティッチ画像(WSI)にするためのスティッチ処理が行われ、画像群生成部240は、ミップマップ(MIPmap)を生成する。なお、図28では、スティッチ処理された画像の最小区分を単位ブロック(基本領域画像)400sa、400sb、500sa、500sbとして演算している
 表示制御部250は、は、水平操作領域部3060及び垂直操作領域部3080(図24参照)により選択された視野(表示領域D)内の各基本領域画像を、関連付けられたサンプリングファクタSfにより、スケーリングし、基本領域画像)400sa_2、400sb_2、500sa_2、500sb_2、、として記憶部21に記憶する。
 第2解析部26は、このように、スティッチ後に解析視野を決めて複数色素画像でそれぞれ手動による視野内リスケーリング、画像出力をした後に、細胞カウントなどの細胞解析を行う。
 以上説明したように、本実施形態によれば、操作者(ユーザ)が任意の視野内でリスケーリングした画像を用いて解析が可能となる。これによ、操作者の意図を反映した領域内の解析を行うことができる。
(第2実施形態の変形例1)
 第2実施形態の変形例1に係る情報処理装置2は、細胞カウントなどの細胞解析を行う第2解析部26が自動解析処理する点で第2実施形態に係る情報処理装置2と相違する。以下では、第2実施形態に係る情報処理装置2と相違する点を説明する。
 図29は、第2実施形態の変形例1に係る第2解析部26の処理例を模式的に示す図である。図29に示すように、第2実施形態の変形例1に係る第2解析部26は、複数色素画像でサムネイルの結果(組織の存在確率が最も高い小画像)などを用いて自動リスケーリング及び画像出力した後、細胞カウントなどの細胞解析を行う。このように、本実施形態によれば、第2解析部26が、観察対象組織が存在する領域を自動検出し、その領域のスケーリングファクタを用いて自動リスケーリングした画像を用いて解析が可能となる。
(第2実施形態の変形例2)
 第2実施形態の変形例2に係る情報処理装置2は、細胞カウントなどの細胞解析を行う第2解析部26が第8アルゴリズム(auto)により、自動リスケーリングした後に自動解析処理する点で第2実施形態の変形例1に係る第2解析部26と相違する。以下では、第2実施形態の変形例2に係る情報処理装置2と相違する点を説明する。
 図30は、第2実施形態の変形例2に係る第2解析部26の処理例を模式的に示す図である。図30に示すように、第2実施形態の変形例2に係る第2解析部26は、記憶部31に記憶された情報に基づく、代表値λの関数Sf(λ)(11式参照)で自動リスケーリングする。すなわち、リスケーリングファクタである関数Sf(λ)は、過去の撮像結果により蓄積されたスケーリングファクタSfのデータを取りためて、色素と細胞解析用のスケーリングファクタSfとして、データベースとしての記憶部31に蓄積したものである。
 このように、本実施形態によれば、過去の処理データを取りためて、色素と細胞解析用のスケーリングファクタSfをデータベースとして蓄積し、スティッチ後にそのままデータベースのスケーリングファクタSfを用いてリスケーリングした小画像を保存する。これにより、解析のためのリスケーリング処理フローを省略することが可能となる。
 なお、本技術は以下のような構成を取ることができる。
 (1)蛍光画像を複数に分割した各領域である単位領域画像の第1画像データと、前記第1画像データ毎の所定の画素値範囲を示す第1値を関連付けて記憶する記憶工程と、
 選択された前記単位領域画像の組み合わせのそれぞれに関連付けられた第1値のなかから選択された代表値に基づき、前記選択された前記単位領域画像の組み合わせ画像の画素値を変換する変換工程と、
 を備える、情報処理方法。
 (2)前記選択された前記単位領域画像の組み合わせは、表示部に表示させる観察範囲に対応し、観察範囲に応じて、前記単位領域画像の組合せの範囲が変更される、(1)に記載の情報処理方法。
 (3)前記観察範囲に対応する範囲を前記表示部に表示させる表示制御工程を更に備える、(2)に記載の情報処理方法。
 (4)前記観察範囲は、顕微鏡の観察範囲に対応し、前記顕微鏡の倍率に応じて、前記単位領域画像の組合せの範囲が変更される、(2)又は(3)に記載の情報処理方法。
 (5)前記第1画像データは、前記第1画像データの原画像データにおいて所定の規則で取得された画素値範囲に基づき、ダイナミックレンジの範囲が調整された画像データである、(1)に記載の情報処理方法。
 (6)前記第1画像データと関連付けられた前記代表値との乗算により、前記原画像データの画素値が得られる、(5)に記載の情報処理方法。
 (7)前記記憶工程は、
 前記第1画像データの領域と大きさが異なる第2画像データであって、前記蛍光画像を複数の領域に再分割した第2画像データと、
 前記第2画像データ毎の画素値範囲を示す第1値と、
 を関連付けて更に記憶する、(6)に記載の情報処理方法。
 (8)前記顕微鏡の倍率が所定値を越えた場合に、前記観察範囲に対応する前記第2画像データの組合せが選択され、
 前記変換工程は、前記選択された前記第2画像データの組み合わせに関連付けられたそれぞれの第1値から選択された代表値に基づき、前記選択された前記第2画像データの組み合わせに対する画素値を変換する、(7)に記載の情報処理方法。
 (9)前記画素値範囲は、前記第1画像データに対応する前記原画像データにおける統計量に基づく範囲である、(8)に記載の情報処理方法。
 (10)前記統計量は、最大値、最頻値、中央値のいずれかである、(9)に記載の情報処理方法。
 (11)前記画素値範囲は、前記原画像データにおける最小値と、前記統計量との範囲である、(10)に記載の情報処理方法。
 (12)前記第1画像データは、前記単位領域画像に対応する前記原画像データの画素値を前記第1値で除算したデータあり、
 前記変換工程は、前記選択された前記単位領域画像における前記第1画像データのそれぞれに対応する前記第1値を乗算し、前記選択された前記単位領域画像の組み合わせに関連付けられたそれぞれの前記第1値の最大値で除算する、(11)に記載の情報処理方法。
 (13)前記統計量の演算方法を入力する第1入力工程と、
 前記入力部の入力に応じて、前記統計量を演算する解析工程と、
 前記解析工程の解析に基づき、蛍光画像を複数の領域に分割した第1画像データと、前記第1画像データ毎の画素値範囲を示す第1値を生成するデータ生成工程と、
 を更に備える、(12)に記載の情報処理方法。
 (14)前記表示倍率、及び前記観察範囲の少なくともいずれかに関する情報を更に入力する第2入力工程を更に備え、
 前記変換工程は、前記第2入力工程の入力に応じて、前記第1画像の組み合わせを選択する、
 (13)に記載の情報処理方法。
 (15)前記表示制御工程は、前記第1入力工程、及び前記第2入力工程に関する表示形態を前記表示部に表示させ、
 前記表示形態のいずれかの位置を指示する操作工程を更に備え、
 前記第1入力工程、及び前記第2入力工程は、前記操作工程における指示に応じて関連する情報を入力する、(14)に記載の情報処理方法。
 (16)前記蛍光画像は、複数の蛍光波長それぞれについて、撮像対象により生成された複数の蛍光画像のうちの1つであり、
 前記複数の蛍光画像のそれぞれを、画像データと、前記画像データに対する前記第1値である係数と、に分割するデータ生成工程を更に備える、(15)に記載の情報処理方法。
 (17)前記変換工程で変換された画素値に基づき、細胞解析を行う解析工程を更に備え、前記細胞解析を行う解析工程は、操作者に指示された範囲の画像範囲に基づき行われる、(16)に記載の情報処理方法。
 (18)蛍光画像を複数の領域に分割した第1画像データと、前記第1画像データ毎の所定の画素値範囲を示す第1値を関連付けて記憶する記憶部と、
 選択された前記第1画像の組み合わせのそれぞれに関連付けられた第1値のなかから選択された代表値に基づき、前記選択された前記第1画像の組み合わせ画像の画素値を変換する変換部と、
 を備える、情報処理装置。
 (19)蛍光画像を複数の領域に分割した第1画像データと、前記第1画像データ毎の所定の画素値範囲を示す第1値を関連付けて記憶する記憶工程と、
 選択された前記第1画像の組み合わせのそれぞれに関連付けられた第1値のなかから選択された代表値に基づき、前記選択された前記第1画像の組み合わせ画像の画素値を変換する変換工程と、
 を情報処理装置に実行させるプログラム。
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
 2:情報装置(処理ユニット)、3:表示部、21:記憶部、248:階調変換部、250:表示制御部。

Claims (19)

  1.  蛍光画像を複数に分割した各領域である単位領域画像の第1画像データと、前記第1画像データ毎の所定の画素値範囲を示す第1値を関連付けて記憶する記憶工程と、
     選択された前記単位領域画像の組み合わせのそれぞれに関連付けられた第1値のなかから選択された代表値に基づき、前記選択された前記単位領域画像の組み合わせ画像の画素値を変換する変換工程と、
     を備える、情報処理方法。
  2.  前記選択された前記単位領域画像の組み合わせは、表示部に表示させる観察範囲に対応し、観察範囲に応じて、前記単位領域画像の組合せの範囲が変更される、請求項1に記載の情報処理方法。
  3.  前記観察範囲に対応する範囲を前記表示部に表示させる表示制御工程を更に備える、請求項2に記載の情報処理方法。
  4.  前記観察範囲は、顕微鏡の観察範囲に対応し、前記顕微鏡の倍率に応じて、前記単位領域画像の組合せの範囲が変更される、請求項2に記載の情報処理方法。
  5.  前記第1画像データは、前記第1画像データの原画像データにおいて所定の規則で取得された画素値範囲に基づき、ダイナミックレンジの範囲が調整された画像データである、請求項1に記載の情報処理方法。
  6.  前記第1画像データと関連付けられた前記代表値との乗算により、前記原画像データの画素値が得られる、請求項5に記載の情報処理方法。
  7.  前記記憶工程は、
     前記第1画像データの領域と大きさが前記蛍光画像に対して異なる第2画像データであって、前記蛍光画像を複数の領域に再分割した第2画像データと、
     前記第2画像データ毎の画素値範囲を示す第1値と、
     を関連付けて更に記憶する、請求項6に記載の情報処理方法。
  8.  前記顕微鏡の倍率が所定値を越えた場合に、前記観察範囲に対応する前記第2画像データの組合せが選択され、
     前記変換工程は、前記選択された前記第2画像データの組み合わせに関連付けられたそれぞれの第1値から選択された代表値に基づき、前記選択された前記第2画像データの組み合わせに対する画素値を変換する、請求項7に記載の情報処理方法。
  9.  前記画素値範囲は、前記第1画像データに対応する前記原画像データにおける統計量に基づく範囲である、請求項8に記載の情報処理方法。
  10.  前記統計量は、最大値、最頻値、中央値のいずれかである、請求項9に記載の情報処理方法。
  11.  前記画素値範囲は、前記原画像データにおける最小値と、前記統計量との範囲である、請求項10に記載の情報処理方法。
  12.  前記第1画像データは、前記単位領域画像に対応する前記原画像データの画素値を前記第1値で除算したデータあり、
     前記変換工程は、前記選択された前記単位領域画像における前記第1画像データのそれぞれに対応する前記第1値を乗算し、前記選択された前記単位領域画像の組み合わせに関連付けられたそれぞれの前記第1値の最大値で除算する、請求項11に記載の情報処理方法。
  13.  前記統計量の演算方法を入力する第1入力工程と、
     前記入力部の入力に応じて、前記統計量を演算する解析工程と、
     前記解析工程の解析に基づき、蛍光画像を複数の領域に分割した第1画像データと、前記第1画像データ毎の画素値範囲を示す第1値を生成するデータ生成工程と、
     を更に備える、請求項12に記載の情報処理方法。
  14.  前記表示倍率、及び前記観察範囲の少なくともいずれかに関する情報を更に入力する第2入力工程を更に備え、
     前記変換工程は、前記第2入力工程の入力に応じて、前記第1画像の組み合わせを選択する、
     請求項13に記載の情報処理方法。
  15.  前記表示制御工程は、前記第1入力工程、及び前記第2入力工程に関する表示形態を前記表示部に表示させ、
     前記表示形態のいずれかの位置を指示する操作工程を更に備え、
     前記第1入力工程、及び前記第2入力工程は、前記操作工程における指示に応じて関連する情報を入力する、請求項14に記載の情報処理方法。
  16.  前記蛍光画像は、複数の蛍光波長それぞれについて、撮像対象により生成された複数の蛍光画像のうちの1つであり、
     前記複数の蛍光画像のそれぞれを、画像データと、前記画像データに対する前記第1値である係数と、に分割するデータ生成工程を更に備える、請求項15に記載の情報処理方法。
  17.  前記変換工程で変換された画素値に基づき、細胞解析を行う解析工程を更に備え、
     前記細胞解析を行う解析工程は、操作者に指示された範囲の画像範囲に基づき行われる、請求項16に記載の情報処理方法。
  18.  蛍光画像を複数の領域に分割した第1画像データと、前記第1画像データ毎の所定の画素値範囲を示す第1値を関連付けて記憶する記憶部と、
     選択された前記第1画像の組み合わせのそれぞれに関連付けられた第1値のなかから選択された代表値に基づき、前記選択された前記第1画像の組み合わせ画像の画素値を変換する変換部と、
     を備える、情報処理装置。
  19.  蛍光画像を複数の領域に分割した第1画像データと、前記第1画像データ毎の所定の画素値範囲を示す第1値を関連付けて記憶する記憶工程と、
     選択された前記第1画像の組み合わせのそれぞれに関連付けられた第1値のなかから選択された代表値に基づき、前記選択された前記第1画像の組み合わせ画像の画素値を変換する変換工程と、
     を情報処理装置に実行させるプログラム。
PCT/JP2022/007565 2021-05-27 2022-02-24 情報処理方法、情報処理装置、及びプログラム WO2022249598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/560,699 US20240354913A1 (en) 2021-05-27 2022-02-24 Information processing method, information processing device, and program
CN202280036546.5A CN117396749A (zh) 2021-05-27 2022-02-24 信息处理方法、信息处理装置及程序
JP2023524000A JPWO2022249598A1 (ja) 2021-05-27 2022-02-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021089480 2021-05-27
JP2021-089480 2021-05-27

Publications (1)

Publication Number Publication Date
WO2022249598A1 true WO2022249598A1 (ja) 2022-12-01

Family

ID=84229790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007565 WO2022249598A1 (ja) 2021-05-27 2022-02-24 情報処理方法、情報処理装置、及びプログラム

Country Status (4)

Country Link
US (1) US20240354913A1 (ja)
JP (1) JPWO2022249598A1 (ja)
CN (1) CN117396749A (ja)
WO (1) WO2022249598A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157345A1 (ja) * 2015-03-27 2016-10-06 株式会社ニコン 顕微鏡装置、観察方法、及び制御プログラム
JP2017198609A (ja) * 2016-04-28 2017-11-02 凸版印刷株式会社 画像処理方法、画像処理装置、プログラム
WO2019230878A1 (ja) * 2018-05-30 2019-12-05 ソニー株式会社 蛍光観察装置及び蛍光観察方法
JP2020173204A (ja) * 2019-04-12 2020-10-22 コニカミノルタ株式会社 画像処理システム、画像処理方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157345A1 (ja) * 2015-03-27 2016-10-06 株式会社ニコン 顕微鏡装置、観察方法、及び制御プログラム
JP2017198609A (ja) * 2016-04-28 2017-11-02 凸版印刷株式会社 画像処理方法、画像処理装置、プログラム
WO2019230878A1 (ja) * 2018-05-30 2019-12-05 ソニー株式会社 蛍光観察装置及び蛍光観察方法
JP2020173204A (ja) * 2019-04-12 2020-10-22 コニカミノルタ株式会社 画像処理システム、画像処理方法及びプログラム

Also Published As

Publication number Publication date
JPWO2022249598A1 (ja) 2022-12-01
CN117396749A (zh) 2024-01-12
US20240354913A1 (en) 2024-10-24

Similar Documents

Publication Publication Date Title
US11971355B2 (en) Fluorescence observation apparatus and fluorescence observation method
US9575304B2 (en) Pathology slide scanners for fluorescence and brightfield imaging and method of operation
US11269171B2 (en) Spectrally-resolved scanning microscope
US11106026B2 (en) Scanning microscope for 3D imaging using MSIA
US11143855B2 (en) Scanning microscope using pulsed illumination and MSIA
WO2021177446A1 (en) Signal acquisition apparatus, signal acquisition system, and signal acquisition method
JP2013003386A (ja) 撮像装置およびバーチャルスライド装置
WO2022249598A1 (ja) 情報処理方法、情報処理装置、及びプログラム
US11994469B2 (en) Spectroscopic imaging apparatus and fluorescence observation apparatus
WO2022138374A1 (ja) データ生成方法、蛍光観察システムおよび情報処理装置
JP2012189342A (ja) 顕微分光測定装置
US20220413275A1 (en) Microscope device, spectroscope, and microscope system
WO2022080189A1 (ja) 生体試料検出システム、顕微鏡システム、蛍光顕微鏡システム、生体試料検出方法及びプログラム
WO2023189393A1 (ja) 生体試料観察システム、情報処理装置及び画像生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524000

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18560699

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280036546.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810879

Country of ref document: EP

Kind code of ref document: A1