[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022138374A1 - データ生成方法、蛍光観察システムおよび情報処理装置 - Google Patents

データ生成方法、蛍光観察システムおよび情報処理装置 Download PDF

Info

Publication number
WO2022138374A1
WO2022138374A1 PCT/JP2021/046262 JP2021046262W WO2022138374A1 WO 2022138374 A1 WO2022138374 A1 WO 2022138374A1 JP 2021046262 W JP2021046262 W JP 2021046262W WO 2022138374 A1 WO2022138374 A1 WO 2022138374A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
fluorescence
wavelength
unit
fluorescent images
Prior art date
Application number
PCT/JP2021/046262
Other languages
English (en)
French (fr)
Inventor
憲治 池田
寛和 辰田
一雅 佐藤
哲朗 桑山
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US18/258,279 priority Critical patent/US20240053267A1/en
Publication of WO2022138374A1 publication Critical patent/WO2022138374A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths

Definitions

  • This disclosure relates to a data generation method, a fluorescence observation system, and an information processing apparatus.
  • a pathological image diagnosis method by fluorescent staining has been proposed as a method excellent in quantitativeness and pleochroism.
  • the fluorescence method is advantageous in that it is easier to multiplex than colored staining and detailed diagnostic information can be obtained.
  • fluorescence imaging other than pathological diagnosis the increase in the number of colors makes it possible to examine various antigens expressed in a sample at once.
  • a fluorescence observation device using a line spectroscope As a configuration for realizing such a pathological image diagnosis method by fluorescence staining, a fluorescence observation device using a line spectroscope has been proposed (for example, Patent Document 1).
  • the line spectroscope irradiates the fluorescently stained pathological specimen with line-shaped line illumination, and the fluorescence excited by the line illumination is separated by the spectroscope and imaged.
  • the captured image data obtained by imaging is, for example, sequentially output according to the line direction by line illumination, and is sequentially repeated according to the wavelength direction by spectroscopy, so that it is continuously and seamlessly output.
  • the pathological specimen is imaged by scanning in the direction perpendicular to the line direction by the line illumination, so that the spectral information about the pathological specimen based on the captured image data is treated as two-dimensional information. Is possible.
  • the captured image data imaged and generated by the line spectroscope is used for image processing and waveform separation processing for the spectral spectrum waveform in the subsequent stage. It is desired to generate captured image data that can be more easily applied to such processing in the subsequent stage and that can be processed at higher speed.
  • An object of the present disclosure is to provide a data generation method, a fluorescence observation system, and an information processing apparatus capable of processing an image captured by using a line spectroscope more easily and at higher speed.
  • a plurality of fluorescent images generated by an image pickup target for each of a plurality of fluorescence wavelengths are imaged for each line for scanning the image pickup target, and the data of the imaged plurality of fluorescence images are collected on the line. It includes an imaging step of acquiring in order of arrangement and a sorting step of changing the order of data of a plurality of fluorescent images acquired by the imaging step from the order of arrangement of lines to the order of arrangement for each of a plurality of fluorescence wavelengths.
  • FIG. 1 is a schematic diagram for explaining line spectroscopy applicable to the embodiment.
  • the fluorescently stained pathological specimen 1000 is irradiated with line-shaped excitation light, for example, by laser light, by line illumination (step S1).
  • the excitation light irradiates the pathological specimen 1000 in a line shape parallel to the x direction.
  • the fluorescent substance by fluorescent staining is excited by irradiation with excitation light and emits fluorescence in a line shape (step S2).
  • This fluorescence is separated by a spectroscope (step S3) and imaged by a camera.
  • the pixels are arranged in a two-dimensional lattice including the pixels arranged in the row direction (in the x direction) and the pixels arranged in the column direction (in the y direction).
  • the captured image data 1010 has a structure including position information in the line direction in the x direction and information on the wavelength ⁇ by spectroscopy in the y direction.
  • the pathological specimen 1000 is moved in the y direction by a predetermined distance (step S4), and the next imaging is performed.
  • the image data 1010 in the next line in the y direction is acquired.
  • the data obtained by stacking the two-dimensional information at each wavelength ⁇ in the direction of the wavelength ⁇ is called a spectral data cube 1020.
  • the spectrum data cube 1020 has a structure including two-dimensional information of the pathological specimen 1000 in the x direction and the y direction, and information of the wavelength ⁇ in the height direction (depth direction).
  • FIG. 2 is a functional block diagram of an example for explaining the function of the fluorescence observation device applicable to the embodiment.
  • the fluorescence observation device 100 includes an observation unit 1, a processing unit 2, and a display unit 3.
  • the observation unit 1 includes an excitation unit 10, a sample stage 20, a spectroscopic imaging unit 30, an observation optical system 40, a scanning mechanism 50, a focus mechanism 60, and a non-fluorescence observation unit 70.
  • the excitation unit 10 irradiates the pathological specimen with a plurality of line illuminations having different wavelengths arranged in parallel to different axes.
  • the sample stage 20 is a stage that supports the pathological specimen, and can be moved in a direction perpendicular to the direction of the line light by the line illumination by the scanning mechanism 50.
  • the spectroscopic imaging unit 30 includes a spectroscope and acquires a fluorescence spectrum (spectral data) of a pathological specimen excited in a line shape by line illumination. That is, the observation unit 1 functions as a line spectroscope that acquires spectroscopic data according to the line illumination.
  • the observation unit 1 captures a plurality of fluorescence images generated by an imaging target (pathological specimen) for each of the plurality of fluorescence wavelengths for each line, and acquires the data of the captured plurality of fluorescence images in the order of the lines. It also functions as an image pickup unit.
  • different axis parallel means that a plurality of line illuminations are different axes and parallel.
  • the different axis means that the axis is not on the same axis, and the distance between the axes is not particularly limited.
  • the term "parallel" is not limited to parallel in a strict sense, but also includes a state of being almost parallel. For example, there may be a deviation from the parallel state due to distortion derived from an optical system such as a lens or manufacturing tolerance, and this case is also regarded as parallel.
  • the excitation unit 10 and the spectroscopic imaging unit 30 are connected to the sample stage 20 via an observation optical system 40 including an objective lens or the like described later.
  • the observation optical system 40 has a function of following the optimum focus by the focus mechanism 60.
  • a non-fluorescent observation unit 70 for dark field observation, bright field observation, or the like may be connected to the observation optical system 40.
  • the fluorescence observation device 100 controls the light source and shutter in the excitation unit 10, controls the movement of the XY stage by the scanning mechanism 50, controls the camera in the spectroscopic imaging unit 30, controls the detector and Z stage in the focus mechanism 60, and controls the non-fluorescence observation unit. It may be connected to the control unit 80 that controls the camera in the 70.
  • the processing unit 2 includes a storage unit 21, a data calibration unit 22, and an image forming unit 23.
  • the storage unit 21 includes a non-volatile storage medium such as a hard disk drive or a flash memory, and a storage control unit that controls writing and reading of data to the storage medium.
  • the storage unit 21 stores spectroscopic data showing the correlation between each wavelength of light emitted by each of the plurality of line illuminations included in the excitation unit 10 and the fluorescence received by the camera of the spectroscopic imaging unit 30. Further, the storage unit 21 stores in advance information indicating a standard spectrum of autofluorescence regarding a sample (pathological specimen) to be observed and information indicating a standard spectrum of a dye alone that stains the sample.
  • the data calibration unit 22 configures the spectral data stored in the storage unit 21 based on the captured image captured by the camera of the spectral imaging unit 30.
  • the image forming unit 23 forms a fluorescent image of the sample based on the spectral data and the interval ⁇ y of the plurality of line illuminations irradiated by the excitation unit 10.
  • the display unit 3 displays, for example, an image based on the fluorescent image formed by the image forming unit 23 on the display.
  • FIG. 3 is a schematic diagram showing the configuration of an example of the observation unit 1 applicable to the embodiment.
  • the excitation unit 10 includes two line illuminations Ex1 and Ex2 that emit light of two wavelengths, respectively.
  • the line illumination Ex1 emits light having a wavelength of 405 nm and light having a wavelength of 561 nm
  • the line illumination Ex2 emits light having a wavelength of 488 nm and light having a wavelength of 645 nm.
  • the excitation unit 10 has a plurality of (four in this example) excitation light sources L1, L2, L3, and L4.
  • Each excitation light source L1 to L4 is composed of a laser light source that outputs laser light having wavelengths of 405 nm, 488 nm, 561 nm, and 645 nm, respectively.
  • the excitation unit 10 includes a plurality of collimator lenses 11, laser line filters 12, dichroic mirrors 13a, 13b, and 13c, a homogenizer 14, a condenser lens 15, and an incident slit 16 so as to correspond to the respective excitation light sources L1 to L4. Further has.
  • the laser light emitted from the excitation light source L1 and the laser light emitted from the excitation light source L3 become parallel light by the collimator lens 11, and then pass through the laser line filter 12 for cutting the base of each wavelength band. Then, it is made coaxial by the dichroic mirror 13a.
  • the two coaxialized laser beams are further beam-formed by a homogenizer 14 such as a fly-eye lens and a condenser lens 15 so as to be line illumination Ex1.
  • the laser light emitted from the excitation light source L2 and the laser light emitted from the excitation light source L4 are also coaxialized by the dichroic mirrors 13b and 13c, and are line-illuminated so as to be line illumination Ex2 having a different axis from the line illumination Ex1. Will be done.
  • the line illuminations Ex1 and Ex2 form a different axis line illumination (primary image) separated by a distance ⁇ y in the incident slit 16 (slit conjugate) having a plurality of slit portions through which each can pass.
  • the observation optical system 40 includes a condenser lens 41, dichroic mirrors 42 and 43, an objective lens 44, a bandpass filter 45, and a condenser lens 46.
  • the line illuminations Ex1 and Ex2 are collimated by the condenser lens 41 paired with the objective lens 44, reflected by the dichroic mirrors 42 and 43, transmitted through the objective lens 44, and irradiated to the sample S on the sample stage 20.
  • the lens includes a condenser lens 41, dichroic mirrors 42 and 43, an objective lens 44, a bandpass filter 45, and a condenser lens 46.
  • FIG. 4 is a schematic diagram showing an example of sample S.
  • FIG. 4 shows a state in which the sample S is viewed from the irradiation direction of the line illuminations Ex1 and Ex2 which are the excitation lights.
  • the sample S is typically composed of a slide including an observation target Sa such as a tissue section as shown in FIG. 4, but of course, it may be other than that.
  • Sample S (observation target Sa) is stained with a plurality of fluorescent dyes.
  • the observation unit 1 magnifies and observes the sample S to a desired magnification.
  • the region A includes the line illuminations Ex1 and Ex2 illuminated on the sample S.
  • FIG. 5 is a schematic diagram showing an enlarged region A in which the sample S is irradiated with the line illuminations Ex1 and Ex2.
  • two line illuminations Ex1 and Ex2 are arranged in the region A, and the imaging areas R1 and R2 of the spectroscopic imaging unit 30 are arranged so as to overlap the line illuminations Ex1 and Ex2, respectively.
  • the two line illuminations Ex1 and Ex2 are parallel to each other in the Z-axis direction and are arranged apart by a predetermined distance ⁇ y in the Y-axis direction.
  • Line illuminations Ex1 and Ex2 are formed on the surface of the sample S as shown in FIG.
  • the fluorescence excited in the sample S by these line illuminations Ex1 and Ex2 is collected by the objective lens 44, reflected by the dichroic mirror 43, and transmitted through the dichroic mirror 42 and the bandpass filter 45 that cuts the excitation light.
  • the light is collected again by the condenser lens 46 and incident on the spectroscopic imaging unit 30.
  • the spectroscopic imaging unit 30 has an observation slit 31, an image pickup element 32, a first prism 33, a mirror 34, a diffraction grating 35 (wavelength dispersion element), and a second prism 36.
  • the image pickup device 32 includes two image pickup devices 32a and 32b.
  • the observation slit 31 is arranged at the condensing point of the condenser lens 46 and has the same number of slits (two in this example) as the number of excitation lines.
  • the fluorescence spectra derived from the two excitation lines that have passed through the observation slit 31 are separated by the first prism 33 and reflected on the lattice plane of the diffraction grating 35 via the mirror 34, so that the fluorescence spectra are further added to the fluorescence spectra of each excitation wavelength. Be separated.
  • the four fluorescence spectra separated in this way are incident on the image pickup elements 32a and 32b via the mirror 34 and the second prism 36, and are represented by the position x in the line direction and the wavelength ⁇ as spectral data. Expanded to data (x, ⁇ ).
  • the spectral data (x, ⁇ ) is a pixel value of a pixel included in the image pickup element 32 at a position x in the row direction and a position at a wavelength ⁇ in the column direction.
  • the spectroscopic data (x, ⁇ ) may be simply described as spectroscopic data.
  • the pixel size (nm / Pixel) of the image pickup devices 32a and 32b is not particularly limited, and is set to, for example, 2 (nm / Pixel) or more and 20 (nm / Pixel) or less.
  • This dispersion value may be realized optically by the pitch of the diffraction grating 35, or may be realized by using the hardware binning of the image pickup devices 32a and 32b.
  • FIGS. 6 and 7 are diagrams schematically showing an example of spectral data (x, ⁇ ) received by one image sensor 32.
  • a method of acquiring spectral data (x, ⁇ ) will be described with reference to FIGS. 6 and 7 when the image pickup device 32 is composed of a single image sensor that commonly receives fluorescence that has passed through the observation slit 31.
  • the fluorescence spectra Fs1 and Fs2 excited by the line illuminations Ex1 and Ex2 are finally imaged in a state of being displaced by an amount proportional to the distance ⁇ y (see FIG. 5) via the spectroscopic optical system (described later).
  • An image is formed on the light receiving surface of the element 32.
  • FIG. 6 is a diagram in which the data Row_a to Row_d obtained in FIG. 6 are rearranged according to the wavelength ⁇ .
  • the data Row_a to Row_d do not necessarily have to be arranged in the order of the wavelength ⁇ . That is, in the image pickup element 32, in the column direction (wavelength ⁇ direction), the wavelength ⁇ and the pixel position may be associated with each other, and each wavelength ⁇ may not be continuous in the column direction.
  • the frame rate of the image sensor 32 can be increased to Row_full / (Low_b-Low_a + Row_d-Low_c) times as high as the data Row_full when the data is read out in full frame.
  • FIG. 8 is a diagram schematically showing an example of spectral data (x, ⁇ ) received by each of the image pickup elements 32a and 32b when a plurality of image pickup elements 32a and 32b are included.
  • the fluorescence spectra Fs1 and Fs2 excited by the line illuminations Ex1 and Ex2 are acquired on the image pickup devices 32a and 32b as shown in FIG. 8 and stored in the storage unit 21 in association with the excitation light. ..
  • a dichroic mirror 42 and a bandpass filter 45 are inserted in the middle of the optical path to prevent the excitation light (line illumination Ex1 and Ex2) from reaching the image pickup device 32.
  • an intermittent IF is generated in the fluorescence spectrum Fs1 imaged on the image pickup device 32 (see FIGS. 6 and 7).
  • Each line illumination Ex1 and Ex2 is not limited to the case where each is composed of a single wavelength, and each may be composed of a plurality of wavelengths.
  • the fluorescence excited by these wavelengths also includes a plurality of spectra.
  • the spectroscopic imaging unit 30 has a wavelength dispersion element for separating the fluorescence into a spectrum derived from the excitation wavelength.
  • the wavelength dispersion element is composed of a diffraction grating, a prism, or the like, and is typically arranged on an optical path between the observation slit 31 and the image pickup element 32.
  • the sample stage 20 and the scanning mechanism 50 form an XY stage and move the sample S in the X-axis direction and the Y-axis direction in order to acquire a fluorescent image of the sample S.
  • dye spectra fluorescence spectra
  • observation target Sa observation target Sa
  • FIG. 9 is a schematic diagram for explaining the movement of the sample S by the XY stage.
  • the photographing region Rs is divided into a plurality of parts in the X-axis direction, the sample S is scanned in the Y-axis direction, then moved in the X-axis direction, and further scanned in the Y-axis direction. Repeated.
  • a single scan can capture a spectroscopic image from a sample excited by several excitation wavelengths.
  • the scanning mechanism 50 typically scans the sample stage 20 in the Y-axis direction. This is not limited to this example, and a plurality of line illuminations Ex1 and Ex2 may be scanned in the Y-axis direction by a galvano mirror arranged in the middle of the optical system. Finally, the spectral data cube 1020 with the three-dimensional data of the coordinates (X, Y, ⁇ ) described with reference to FIG. 1 is acquired for each of the plurality of line illuminations Ex1 and Ex2, respectively.
  • the non-fluorescence observation unit 70 includes a light source 71, a dichroic mirror 43, an objective lens 44, a condenser lens 72, an image pickup element 73, and the like.
  • a light source 71 a dichroic mirror 43
  • an objective lens 44 a condenser lens 72
  • an image pickup element 73 an image pickup element 73, and the like.
  • the light source 71 is arranged on the side facing the objective lens 44 with respect to the sample stage 20, and irradiates the sample S on the sample stage 20 with illumination light from the side opposite to the line illuminations Ex1 and Ex2.
  • the light source 71 illuminates from the outside of the NA (numerical aperture) of the objective lens 44, and the light (dark field image) diffracted by the sample S is passed through the objective lens 44, the dichroic mirror 43, and the condenser lens 72.
  • the image is taken with the image pickup element 73.
  • the non-fluorescent observation unit 70 is not limited to an observation system that acquires a dark-field image, but is an observation system that can acquire a non-fluorescent image such as a bright-field image, a phase difference image, a phase image, and an in-line hologram image. It may be composed of.
  • various observation methods such as a Schlieren method, a phase difference contrast method, a polarization observation method, and an epi-illumination method can be adopted.
  • the position of the illumination light source is not limited to the lower part of the stage, and may be above the stage or around the objective lens. Further, in addition to the method of performing focus control in real time, another method such as a pre-focus map method in which the focus coordinates (Z coordinates) are recorded in advance may be adopted.
  • the line illumination as the excitation light is composed of two line illuminations Ex1 and Ex2, but the present invention is not limited to this, and may be three, four, or five or more. Further, each line illumination may include a plurality of excitation wavelengths selected so as not to deteriorate the color separation performance as much as possible. Even if there is only one line illumination, if it is an excitation light source composed of a plurality of excitation wavelengths and each excitation wavelength is linked and recorded with the Row data earned by the image pickup element, the parallel axes are parallel to each other. Although the resolution is not as high as that, a multicolor spectrum can be obtained.
  • FIG. 10 is a diagram showing a configuration example of a combination of line illumination and excitation light.
  • FIG. 11 is an example flowchart showing the processing executed in the processing unit 2.
  • step S101 the processing unit 2 acquires and stores the spectroscopic data (x, ⁇ ) acquired by the spectroscopic imaging unit 30 by the storage unit 21.
  • the spectral data (x, ⁇ ) acquired here corresponds to the fluorescence spectra Fs1 and Fs2 in the examples of FIGS. 6 and 8.
  • the storage unit 21 stores in advance the autofluorescence related to the sample S and the standard spectrum of the dye alone.
  • the processing unit 2 improves the recording frame rate by extracting only the wavelength region of interest from the pixel array in the wavelength direction of the image pickup device 32 from the storage unit 21.
  • the wavelength region of interest corresponds to, for example, the range of visible light (380 (nm) to 780 (nm)) or the wavelength range determined by the emission wavelength of the dye dyed with the sample.
  • the wavelength region other than the wavelength region of interest includes, for example, a sensor region having light of an unnecessary wavelength, a sensor region having no apparent signal, and an excitation wavelength to be cut by a dichroic mirror 42 or a bandpass filter 45 in the middle of the optical path. Areas and the like can be mentioned. Further, the wavelength region of interest on the sensor may be switched depending on the situation of line illumination. For example, when the excitation wavelength used for line illumination is small, the wavelength region on the sensor is also limited, and the frame rate can be increased by the limited amount.
  • the processing unit 2 converts the spectral data (x, ⁇ ) stored in the storage unit 21 by the data calibration unit 22 from the pixel data to the wavelength ⁇ , and all the spectral data are common discrete discretes. Calibrate so that the output is complemented by wavelength units with values ((nm), ( ⁇ m), etc.).
  • the pixel data (x, ⁇ ) is not always neatly aligned with the pixel sequence of the image sensor 32, and may be distorted due to a slight inclination or distortion of the optical system. Therefore, for example, when a pixel is converted into wavelength units using a light source having a known wavelength, it is converted into a different wavelength ((nm) value) at all x-coordinates. Since the handling of data is complicated in this state, the data is converted into integer-aligned data by the complement method (for example, linear interpolation or spline interpolation) in step S102.
  • the complement method for example, linear interpolation or spline interpolation
  • the processing unit 2 is uniformly output by the data calibration unit 22 by using an arbitrary light source and its representative spectrum (average spectrum or spectral radiance of the light source) in order to eliminate this unevenness. ..
  • the processing unit 2 is uniformly output by the data calibration unit 22 by using an arbitrary light source and its representative spectrum (average spectrum or spectral radiance of the light source) in order to eliminate this unevenness. ..
  • the processing unit 2 is uniformly output by the data calibration unit 22 by using an arbitrary light source and its representative spectrum (average spectrum or spectral radiance of the light source) in order to eliminate this unevenness. ..
  • the approximate calculated amount value of the number of fluorescent dyes can be output from the sensitivity-calibrated luminance value.
  • spectral radiance W / (sr ⁇ m2 ⁇ nm)
  • the sensitivity of the image sensor 32 corresponding to each wavelength is also corrected.
  • the dye is stable in the same lot, it can be reused by taking a picture once.
  • the fluorescence spectrum intensity per dye molecule is given in advance, it is possible to output an approximate value of the number of fluorescent dye molecules converted from the sensitivity-calibrated luminance value. This value is highly quantitative because the autofluorescent component is also separated.
  • the above processing is similarly executed for the illumination range by the line illuminations Ex1 and Ex2 in the sample S scanned in the Y-axis direction.
  • spectroscopic data (x, y, ⁇ ) of each fluorescence spectrum can be obtained for the entire range of the sample S.
  • the obtained spectral data (x, y, ⁇ ) is stored in the storage unit 21.
  • the processing unit 2 has the spectral data (x, y, ⁇ ) stored in the storage unit 21 by the image forming unit 23, or the spectral data (x, y) calibrated by the data calibration unit 22. , ⁇ ) and the distance corresponding to the distance ⁇ y between the axes of the line illuminations Ex1 and Ex2, the fluorescence image of the sample S is formed.
  • the image forming unit 23 forms an image in which the detection coordinates of the image pickup device 32 are corrected by a value corresponding to the distance ⁇ y of the intervals between the plurality of line illuminations Ex1 and Ex2 as a fluorescent image.
  • the three-dimensional data derived from each line illumination Ex1 and Ex2 is the data whose coordinates are shifted by the distance ⁇ y with respect to the Y axis, it is set to the value of the distance ⁇ y recorded in advance or the distance ⁇ y calculated from the output of the image pickup element 32. It is corrected based on and output.
  • the difference in the detected coordinates in the image sensor 32 is corrected so that the three-dimensional data derived from each line illumination Ex1 and Ex2 are the data on the same coordinates.
  • the processing unit 2 executes a process (stitching) for connecting the captured images into one large image (WSI: Whole slide imaging) by the image forming unit 23. Thereby, a pathological image regarding the multiplexed sample S (observation target Sa) can be acquired.
  • the formed fluorescence image is output to the display unit 3.
  • the processing unit 2 is based on the spectroscopic data (measurement spectrum) imaged by the image forming unit 23 based on the autofluorescence of the sample S and the standard spectra of the dye alone stored in advance in the storage unit 21.
  • the autofluorescence of sample S and the component distribution of the dye are separated and calculated.
  • a calculation method for the separation calculation a least squares method, a weighted least squares method, or the like can be adopted, and a coefficient is calculated so that the captured spectral data becomes the linear sum of the standard spectra.
  • the calculated coefficient distribution is stored in the storage unit 21 and output to the display unit 3 to be displayed as an image.
  • FIG. 12 is a schematic diagram showing a specific example of the fluorescence spectrum acquired by the spectroscopic imaging unit 30.
  • the spectroscopic imaging unit 30 acquires a fluorescence spectrum for each line obtained by scanning the sample S in the Y-axis direction, for example.
  • sample S contains four fluorescent materials, DAPI, CK / AF488, PgR / AF594, and ER / AF647, each with an excitation wavelength of 392 (nm). Irradiated with excitation light having (Section A in FIG. 2), 470 (nm) (Section B in FIG. 2), 549 (nm) (Section C in FIG. 2), 628 (nm) (Section D in FIG. 2). A specific example of the fluorescence spectrum acquired in this case is shown.
  • the spectroscopic imaging unit 30 passes each acquired fluorescence spectrum to the processing unit 2.
  • the processing unit 2 stores each fluorescence spectrum passed from the spectroscopic imaging unit 30 in the storage unit 21.
  • the processing unit 2 generates a linked fluorescence spectrum by, for example, connecting at least a part of a plurality of fluorescence spectra acquired by the spectroscopic imaging unit 30 and stored in the storage unit 21 in the wavelength direction by the image forming unit 23.
  • FIG. 13 is a schematic diagram for explaining the connection of fluorescence spectra by the image forming unit 23.
  • sections A to D correspond to sections A to D in FIG. 12 described above, respectively.
  • the image forming unit 23 includes data having a predetermined width in each fluorescence spectrum so as to include the maximum value of the fluorescence intensity in each of the four fluorescence spectra acquired by the spectral imaging unit 30 shown in sections A to D of FIG. To extract.
  • the width of the wavelength band from which the image forming unit 23 extracts data can be determined based on reagent information, excitation wavelength, fluorescence wavelength, or the like, and may be different for each fluorescent substance. In other words, the width of the wavelength band from which the image forming unit 23 extracts data may be different for each of the fluorescence spectra shown in sections A to D of FIG.
  • the image forming unit 23 generates one linked fluorescence spectrum by linking the extracted data to each other in the wavelength direction.
  • the image forming unit 23 connects a plurality of fluorescence spectra acquired for each position on the line in the line where the sample S is scanned in the Y-axis direction by the spectroscopic imaging unit 30, for example, for each position on the line. do. For example, when four fluorescence spectra are acquired at a position x on a certain line, the four fluorescence spectra are concatenated to generate a concatenated fluorescence spectrum at the position x of the line.
  • the linked fluorescence spectrum is composed of data extracted from a plurality of fluorescence spectra, the wavelengths are not continuous at the boundary of each linked data.
  • the image forming unit 23 performs the above-mentioned connection after adjusting the intensity of the excitation light corresponding to each of the plurality of fluorescence spectra based on the intensity of the excitation light (in other words, after correcting the plurality of fluorescence spectra). More specifically, the image forming unit 23 divides each fluorescence spectrum by the excitation power density, which is the intensity of the excitation light, to make the intensity of the excitation light corresponding to each of the plurality of fluorescence spectra uniform, and then, as described above. Make a connection. As a result, the fluorescence spectrum when irradiated with excitation light of the same intensity can be obtained.
  • the intensity of the irradiated excitation light is different, the intensity of the spectrum absorbed by the sample S (hereinafter referred to as “absorption spectrum”) also differs depending on the intensity. Therefore, as described above, the absorption spectrum can be appropriately evaluated by aligning the intensities of the excitation light corresponding to each of the plurality of fluorescence spectra.
  • FIG. 14 is a block diagram showing an example of the hardware configuration of the processing unit 2 applicable to the embodiment.
  • the processing unit 2 includes a CPU 200, a bridge 201, a memory 202, a storage device 203, a GPGPU (General-Purpose computing on Graphics Processing Units) board 204, and a grabber board 205, and each of these parts.
  • a bus 210 so as to be communicable with each other.
  • the processing unit 2 can apply the configuration of a computer as a general information processing device.
  • the storage device 203 is a non-volatile storage medium such as a hard disk drive or a flash memory, and corresponds to at least a part of the storage unit 21 of FIG. 2, for example.
  • the storage device 203 stains the program for operating the CPU 200, the spectroscopic data (x, ⁇ ) acquired by the spectroscopic imaging unit 30, information showing the standard spectrum of autofluorescence regarding the sample to be observed, and the sample. Information indicating the standard spectrum of the dye alone is stored in advance.
  • the memory 202 is, for example, a RAM (Random Access Memory). Memory 202 may be further included as part of the storage unit 21. The memory 202 may further have a function as a ROM (Read Only Memory). Further, the memory 202 can store a program for operating the CPU 200.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the CPU 200 is connected to the memory 202 via the bridge 201.
  • the CPU 200 controls the overall operation of the processing unit 2 by using the memory 202 as a work memory according to a program stored in the storage device 203, for example.
  • the storage unit 21 storage control unit
  • the data calibration unit 22 and the image forming unit 23 in the processing unit 2 described with reference to FIG. 2 are mainly stored in the memory 202.
  • Each of them is configured as a module, for example, on the area.
  • the grabber board 205 acquires the spectroscopic data (x, ⁇ ) passed from the spectroscopic imaging unit 30 and / or read from the storage unit 21 as image data.
  • the GPGPU board 204 undertakes part or all of the processing of the spectroscopic data (x, ⁇ ) by the CPU 200 under the control of the CPU 200.
  • the sample S irradiated with a plurality of excitation lights having different wavelengths is scanned in the Y-axis direction, and the spectral data (x, ⁇ ) is converted in the order of arrangement for each of a plurality of fluorescence wavelengths. More specifically, the spectral data (x, ⁇ ) for each line of the acquired plurality of fluorescence wavelengths is collected by the plurality of scanned lines and expressed by the coordinates (x, y) for each fluorescence wavelength. It is converted into image data based on two-dimensional information for the sample S.
  • the image processing in the subsequent stage can be further performed. It can be easily and speeded up.
  • FIG. 15 is a diagram schematically showing the flow of the acquisition process of the spectral data (x, ⁇ ) according to the embodiment.
  • configuration example 2 of FIG. 10 will be applied as a configuration example of a combination of line illumination and excitation light using two image pickup devices 32a and 32b.
  • Each spectroscopic data (x, ⁇ ) corresponding to nm) and 638 (nm) shall be acquired.
  • the number of pixels corresponding to one line of scanning is set to 2440 (pix), and the scanning position is moved in the X-axis direction for each scan of 610 lines in the Y-axis direction.
  • Section (a) of FIG. 15 shows an example of spectral data (x, ⁇ ) acquired in the first line of the scan (also described as “1Ln” in the figure).
  • the structure 302 corresponding to the sample S described above is sandwiched and fixed between the slide glass 300 and the cover glass 301, and is placed on the sample stage 20 with the slide glass 300 as the lower surface.
  • the region 310 in the figure shows an area irradiated with four laser beams (excitation light) by the line illuminations Ex1 and Ex2.
  • the horizontal direction (row direction) in the figure indicates the position on the scan line
  • the vertical direction (column direction) indicates the wavelength
  • Each spectral data (x, ⁇ ) is associated with the position in the column direction of the image sensor 32a.
  • the wavelength ⁇ does not have to be continuous in the column direction of the image pickup device 32a. That is, the wavelength of the spectral data (x, ⁇ ) according to the spectral wavelength (1) and the wavelength of the spectral data (x, ⁇ ) according to the spectral wavelength (3) are not continuous including the blank portion between them. good.
  • the data in the wavelength region of each spectral data (x, ⁇ ) is selectively read out, and the other regions (the other regions ( The data (shown as a blank part in the figure) is not read.
  • the spectral data (x, ⁇ ) in the wavelength region of the spectral wavelength (1) and the spectral data (x, ⁇ ) in the wavelength region of the spectral wavelength (3) are acquired, respectively.
  • the acquired spectral data (x, ⁇ ) in each wavelength region is stored in the storage unit 21 as each spectral data (x, ⁇ ) in the first line.
  • Section (b) of FIG. 15 shows an example in which scanning up to the 610th line (also described as “610Ln” in the figure) is completed at the same scanning position in the X-axis direction as that of section (a).
  • the storage unit 21 stores spectral data (x, ⁇ ) in the wavelength region of each spectral wavelength (1) to (4) for 610 lines for each line.
  • the scan of the 611th line (also described as “611Ln in the figure) is performed.
  • the scan of the 611th line is performed.
  • the position in the X-axis direction of the scan is moved, and the position in the Y-axis direction is reset, for example.
  • FIG. 16 is a schematic diagram showing an example of the spectroscopic data (x, ⁇ ) stored in the storage unit 21 at the time when the scan of the 610th line (the scan of the line 610 is completed) shown in the section (b) of FIG.
  • the spectral data (x, ⁇ ) is a block indicating the position on the line in the horizontal direction in the figure and the number of spectral wavelengths in the vertical direction in the figure for each scan line. It is stored in the storage unit 21 as a frame 400, and a unit block is formed by the frame 400 for 610 lines.
  • the arrows in the frame 400 indicate the storage when the C language, which is one of the programming languages, or a language similar to the C language is used for the access to the storage unit 21.
  • the direction of the memory access in the part 21 is shown. In the example of FIG. 16, access is made in the horizontal direction of the frame 400 (ie, in the position direction of the line), and this is repeated in the vertical direction of the frame 400 (that is, in the direction of the number of spectral wavelengths).
  • the number of spectral wavelengths corresponds to the number of channels when the spectral wavelength region is divided into a plurality of channels.
  • the spectral data (x, ⁇ ) was read out in the order of the data shown in FIG.
  • the order of the data shown in FIG. 16 does not correspond to the two-dimensional information in the structure 302 on the slide glass 300 in the arrangement of the pixels in the frame 400. Therefore, it is not easy to handle the spectral data (x, ⁇ ) of the structure 302 as two-dimensional information for the structure 302.
  • the frame 400 corresponding to the scan of the first line is shown as the 0th frame
  • the frame 400 corresponding to the scan of the 610th line is shown as the 609th frame.
  • the processing unit 2 arranges the spectral data (x, ⁇ ) in each wavelength region stored for each line by, for example, the image forming unit 23 in the order of the spectral wavelengths (1) to (4). Convert in order.
  • FIG. 17 is a schematic diagram showing an example of spectroscopic data (x, ⁇ ) in which the order of data arrangement is changed according to the embodiment.
  • the spectroscopic data (x, ⁇ ) indicates the order of the data in the horizontal direction in the figure for each spectral wavelength from the order shown in FIG. It is converted in the order in which the scan lines are shown in the vertical direction in the figure and stored in the storage unit 21.
  • the frame 401 including the horizontal 2440 (pix) and the vertical 610 lines in the figure is referred to as a unit rectangular block.
  • the unit rectangular block (frame 401) according to the embodiment directly obtains the spectral data (x, ⁇ ) of the structure 302 with respect to the structure 302 as compared with the frame 400 shown in FIG. It can be treated as dimensional information. Therefore, by applying the processing unit 2 according to the embodiment, it is easier to perform image processing, spectral spectrum waveform separation processing (color separation processing), and the like on the captured image data acquired by the line spectroscope (observation unit 1). It is possible to process at high speed.
  • the left figure of FIG. 18 shows the orientation of the unit block described with reference to FIG. 16 transposed.
  • the wavelength connection is performed, for example, by connecting the spectral data (x, ⁇ ) of each spectral wavelength (1) to (4) at a certain position x in a certain scan line in the wavelength direction. .. Therefore, as shown in the left figure of FIG. 18, the unit block stored in the storage unit 21 is accessed horizontally on the figure as shown by an arrow in the figure, and each spectral data (x) is accessed. , ⁇ ) will be read.
  • the right figure of FIG. 18 schematically shows a state in which each spectral data (x, ⁇ ) read in this way is connected in the wavelength direction.
  • the linked fluorescence spectrum (connected spectral data) in which the spectral data (x, ⁇ ) at the position x in the scan line is linked in the wavelength direction is the number of pixels (2440 (pix)) for each line of the 610 line. )) Minutes are generated and stored in the storage unit 21.
  • the spectral data (x, ⁇ ) of the spectral wavelengths (1) to (4) corresponding to the excitation wavelengths (1) to (4) are arranged in the order of wavelength connection in the horizontal direction in the figure.
  • the number of pixels ⁇ 610 lines are arranged in the vertical direction.
  • the spectral data (x, ⁇ ) is read out by the memory access in the vertical direction in the figure, as shown in the left figure of FIG. This is an access in a direction different from the normal memory access direction in the storage unit 21. Therefore, the reading process becomes complicated, and it is difficult to increase the reading speed. Further, if the spectral data (x, ⁇ ) for the number of spectral wavelengths is not prepared, the data for one line cannot be stored in the storage unit 21, and it is difficult to increase the processing speed from this point as well. .. As described above, wavelength connection by the existing technique is difficult to realize by simple memory coupling and cannot be said to be efficient.
  • 19A and 19B are schematic diagrams showing more specifically the data arrangement of an example of spectroscopic data (x, ⁇ ) by the existing technique.
  • the excitation wavelengths (1) to (4) are assumed to be, for example, 405 (nm), 488 (nm), 532 (nm) and 638 (nm), respectively.
  • the wavelength regions of the spectral wavelengths (1) to (4) according to the excitation wavelengths (1) to (4) are divided into 112CH (channel), 92CH, 80CH and 51CH, respectively, and the divided wavelength channels are respectively.
  • the brightness value of fluorescence is measured in.
  • the measured values of each channel (WL1, WL2, ..., WL112) of the spectral wavelength (1) corresponding to the excitation wavelength (1) are arranged.
  • the blocks n_1, n_1, ..., N_2440 are repeated for 610 lines to form a unit block corresponding to the excitation wavelength (1).
  • each channel of the spectral wavelength (2) corresponding to the excitation wavelength (2).
  • the measured values of (WL1, WL2, ..., WL92) are arranged.
  • Each unit block corresponding to each of these excitation wavelengths (1) to (4) is sequentially connected as shown by a dotted line in the figure and stored in the storage unit 21. Since each of the excitation wavelengths (1) to (4) has a different number of wavelength channels, the sizes of the blocks n_1, n_2, ..., And n_2440 also differ in each of the excitation wavelengths (1) to (4).
  • FIG. 19B is a schematic diagram showing an example of performing wavelength connection based on the data arrangement described in FIG. 19A.
  • wavelength connection is performed, for example, by connecting the spectral data (x, ⁇ ) of each spectral wavelength (1) to (4) at a certain position x in a certain scan line in the wavelength direction. .. Therefore, in the existing technique that does not rearrange the data described with reference to FIG. 16, the lines and pixels of the respective excitation wavelengths (1) to (4) are shown in the section (a) of FIG. 19B surrounded by a dotted line.
  • Wavelength connection is performed by arranging the blocks corresponding to the positions in the order of the wavelengths to be connected.
  • Section (b) of FIG. 19B schematically shows an image in which wavelengths are connected in this way.
  • each unit rectangular block corresponding to each of the excitation wavelengths (1) to (4) has a spectral wavelength corresponding to each of the excitation wavelengths (1) to (4). In the order of, they are connected vertically in the figure. Wavelength connection is performed by reading each of the combined unit rectangular blocks in the coupling direction, that is, in the vertical direction in the figure.
  • 21A and 21B are schematic views showing more specifically the data arrangement of an example of the spectroscopic data (x, ⁇ ) according to the embodiment. Similar to FIG. 19A, the excitation wavelengths (1) to (4) are, for example, 405 (nm), 488 (nm), 532 (nm) and 638 (nm), respectively, and the wavelengths (1) to (4) are raised. It is assumed that the wavelength regions of the respective spectral wavelengths (1) to (4) are divided into 112CH (channel), 92CH, 80CH and 51CH, respectively.
  • each block 1_WLm, 2_WLm for each line obtained by scanning is used for the first channel (WL1) of the spectral wavelength (1) corresponding to the excitation wavelength (1).
  • the excitation wavelengths (3) and (4) the excitation wavelengths (3) and (4).
  • each unit length block corresponding to each excitation wavelength (1) to (4) is repeated for the number of channels of the spectral wavelength, are sequentially connected as shown by a dotted line in the figure, and are stored in a storage unit. It is stored in 21. Since each excitation wavelength (1) to (4) has a different number of wavelength channels, the size of the block in which each unit rectangular block is repeated for the number of channels of the spectral wavelength is the size of each excitation wavelength (1) to (4). ) Is different. On the other hand, since each unit rectangular block is composed of spectral data (x, ⁇ ) of the same channel CH for each line, it has the same size at each excitation wavelength (1) to (4).
  • FIG. 21B is a schematic diagram showing an example of performing wavelength connection based on the data arrangement described with reference to FIG. 19A.
  • blocks in which spectral data (x, ⁇ ) are arranged according to positions on each line are arranged in the order of each line for the same channel CH to form a unit rectangular block, and this unit rectangular block is formed.
  • the blocks are arranged in the order of channel CH, and data for each excitation wavelength (1) to (4) is formed. Therefore, the wavelength linkage is included in each unit rectangular block corresponding to each channel CH in each data of each excitation wavelength (1) to (4), as schematically shown in section (a) of FIG. 21B. This is performed by reading out each spectral data (x, ⁇ ) of the target position on the target line from each block of the target line.
  • Section (b) of FIG. 21B schematically shows an image in which wavelengths are connected in this way.
  • each pixel (2440 (pix)) of the line obtained by scanning is aligned in the row direction of the image (horizontal direction in the figure) by the number of lines (610 lines), and this row is the total excitation wavelength (1) to (1).
  • each block of the target line included in each unit rectangular block corresponding to each channel CH has the same size. Therefore, the memory access to the storage unit 21 is easy, and it is efficient with respect to the above-mentioned example of the existing technique.
  • 22A to 22F are schematic views for explaining the flow of processing according to the embodiment.
  • the spectroscopic data (x, ⁇ ) for one line obtained by the spectroscopic imaging unit 30 is taken into the grabber board 205 in the processing unit 2, and the bus is taken from the grabber board 205. It is transferred to the CPU 200 via 210 (corresponding to step S10, for example, step S101 in FIG. 11).
  • the spectral data (x, ⁇ ) is transferred to the memory 202 via the bridge 201 in the CPU 200 and stored in the memory as image data 410.
  • the image data 410 corresponds to the frame 400 described with reference to FIG. 16, which indicates the position on the line in the horizontal direction and the number of spectral wavelengths in the vertical direction.
  • the CPU 200 reads out the image data 410 stored in the memory 202 via the bridge 201 and executes the wavelength conversion process (corresponding to step S11, for example, step S102 in FIG. 11). ..
  • the CPU 200 converts the data into wavelength and luminance value data at that wavelength according to the position y of the data in the column direction at the position x in the row direction of the image data 410.
  • the CPU 200 transfers the data converted into the wavelength and the luminance value to the memory 202 via the bridge 201. This data transferred to the memory 202 is stored in the memory 202 as wavelength conversion data 411.
  • the process of step S11 is executed for each scan line.
  • step S11 When the process in step S11 is repeated for 610 lines by scanning, the CPU 200 reads out the wavelength conversion data 411 from the memory 202 via the bridge 201 as shown in FIG. 22C, and as described with reference to FIG. The data is rearranged (step S12). This sorting process is executed for each unit-long block in the image order (pixel order) in the unit-long block.
  • the data sorting process by the CPU 200 is executed by, for example, the function of the storage unit 21 shown in FIG.
  • the CPU 200 transfers the rearranged data to the memory 202 via the bridge 201.
  • This data transferred to the memory 202 is stored in the memory 202 as the sorting data 412.
  • the rearrangement data 412 includes a unit length block indicating a position on the line in the horizontal direction and a line in the vertical direction as described with reference to FIG. 17 for the number of spectral wavelengths.
  • step S12 When the processing by step S12 is completed for all the unit rectangular blocks, as shown in FIG. 22D, the CPU 200 reads the rearranged data 412 from the memory 202 via the bridge 201, and is described above in units of unit rectangular blocks. Wavelength connection processing is performed (corresponding to step S13, for example, step S105 in FIG. 11). The CPU 200 transfers the wavelength-connected wavelength-connected data 413 to the memory 202 via the bridge 201. The wavelength connection data 413 is stored in the memory 202.
  • the CPU 200 reads the wavelength connection data 413 from the memory 202 in units of unit rectangular blocks via the bridge 201.
  • the CPU 200 transfers the wavelength connection data 413 read from the memory 202 to the GPGPU board 204 via the bridge 201 and the bus 210 (step S14).
  • the GPGPU board 204 executes a color separation process on the transferred wavelength connection data 413 in units of unit rectangular blocks (corresponding to step S107 in FIG. 11).
  • the color separation process is, for example, a process of separating the fluorescent component due to the autofluorescence of the tissue 302 and / or the fluorescent component due to the adjacent wavelength region from the fluorescence detected by irradiating the tissue 302 with excitation light. include.
  • the GPGPU board 204 passes the color separation data 414 obtained by performing color separation on the wavelength connection data 413 to the CPU 200 via the bus 210 (step S15).
  • the CPU 200 transfers the color separation data 414 transferred from the GPGPU board 204 to the memory 202 via the bridge 201.
  • the color separation data 414 is stored in the memory 202.
  • the CPU 200 reads the wavelength connection data 413 and the color separation data 414 from the memory 202 in units of unit rectangular blocks via the bridge 201.
  • the CPU 200 transfers the wavelength connection data 413 and the color separation data 414 read from the memory 202 to the storage device 203 via the bus 210 (step S16, step S17).
  • the wavelength connection data 413 and the color separation data 414 are stored in the storage device 203 in units of unit rectangular blocks (corresponding to step S108 in FIG. 11).
  • the wavelength connection data 413 and the color separation data 414 are stored in the storage device 203, for example, in the format shown in the section (a) of FIG. 21B, respectively.
  • FIG. 23 is a diagram showing an example of a data format according to the existing technique.
  • the data includes a header portion, a wavelength portion and a main body portion.
  • the header part includes each item of identifier, version, width (pixel), height (pixel), and wavelength CH number, and a blank is provided as a spare.
  • the data type of the identifier is a fixed-length character string "char" and the data length is 4 bytes
  • the data type of the version, width (pixel), height (pixel), and number of wavelength channels is the numerical data type "int”.
  • the data length is 4 bytes.
  • the width (pixel) is a fixed value
  • the height (pixel) is a hardware-dependent value.
  • the number of wavelength channels is a value determined by the imaging conditions.
  • the wavelength section stores the corresponding wavelengths of each wavelength CH whose data type is the numerical data type "int" and whose data length is 4 bytes.
  • Number # 1 is the minimum wavelength and number # n is the maximum wavelength. Between the minimum wavelength and the maximum wavelength, the wavelength of each wavelength CH is shown in association with the number.
  • the main body stores data (luminance value) for each line, pixel (pixel) and wavelength CH.
  • the data in the main body is repetitive data that is repeated for each line, pixel, and wavelength CH.
  • the data type of each data in the main body is a single-precision floating-point number type "float", and the data length is 4 bytes (32 bits).
  • FIG. 24 is a diagram showing an example of a data format according to the embodiment.
  • a scaling factor portion is added to the data format of FIG. 23, and the data type of the main body portion is changed. Since the header and the wavelength part are the same as the data format according to the existing technique shown in FIG. 23, the description thereof is omitted here.
  • the scaling factor stores the conversion coefficient to luminance for each wavelength CH stored in the main body.
  • the coefficient for each wavelength CH is stored as data having a data type of single precision floating point number type "float" and a data length of 4 bytes (32 bits).
  • Number # 1 is the minimum wavelength
  • number # n is the maximum wavelength
  • each wavelength CH is assigned in association with the number between the minimum wavelength and the maximum wavelength.
  • Coefficients are stored for each wavelength CH from the minimum wavelength to the maximum wavelength.
  • the main body stores data (luminance value) for each line, pixel (pixel) and wavelength CH in the same manner as the data format by the existing technique shown in FIG. 23.
  • the data in the main body is repetitive data that is repeated for each line, pixel, and wavelength CH.
  • the data type of each data in the main body is an integer type "ushort (unsigned short)", and the data length is 2 bytes (8 bits).
  • the data for each line, pixel, and wavelength CH which is stored as data having a data length of 4 bytes by the single-precision floating-point number type "float", is stored.
  • the scaling factor (coefficient) and the main body are divided and stored.
  • the scaling factor is stored as data having a data length of 4 bytes by the single-precision floating-point number type "float”
  • the data for each line, pixel (pixel) and wavelength CH in the main body is stored by the integer type "ushort”. It is stored as data with a data length of 2 bytes.
  • the accuracy of the original data can be restored by multiplying the data in the main body by the corresponding coefficient of the wavelength CH in the scaling factor.
  • the amount of data to be stored can be reduced by dividing the data into a coefficient and the main body and making the data length of each data stored in the main body shorter than the data length in the coefficient.
  • the data format applicable to the embodiment is not limited to the example shown in FIG. 24.
  • the data for each line, pixel, and wavelength CH has a scaling factor (coefficient) based on the data with a data length of 4 bytes by the single-precision floating-point number type "float" and a data length by the integer type "ushort".
  • a 2-byte offset value and a main body portion (data for each line, pixel (pixel) and wavelength CH) having a data length of 2 bytes according to the integer type "ushort" may be divided so that a negative value can be expressed.
  • a BSQ (Band Sequential) format in which image data is stored band by band is known.
  • image data is stored in a file at the bit depth at the time of acquisition.
  • this BSQ format is satisfactory in terms of bit accuracy. is not.
  • the spectral data (x, ⁇ ) can be stored and stored in units of unit rectangular blocks. Therefore, it is always possible to save in a fixed data size. By fixing the data size for storage, the unit of processing in the subsequent stage such as color separation is determined, and the processing in the subsequent stage becomes easy.
  • the data length by the single-precision floating-point number type “float” for each line, pixel, and wavelength CH, which increases the data size is 4 bytes.
  • the data is divided into a scaling factor (coefficient) for each spectral wavelength and a main body and stored.
  • the scaling factor is data having a data length of 4 bytes by the single-precision floating-point number type "float", and the main body is data having a data length of 2 bytes by the integer type "ushort".
  • the amount of data to be stored can be reduced. Further, since the data size per data is suppressed, it becomes easy to handle in post-stage processing such as color separation and data transfer.
  • the order of data arrangement in the unit rectangular block which is the processing unit, is "number of pixels per line (number of pixels) x number of lines", and by connecting this for the number of spectral wavelengths, color separation in the subsequent stage can be performed. It is possible to improve efficiency in terms of compression processing, memory access, and the like. In addition, the number of antibodies can be quantified.
  • the image to be compressed is basically two-dimensional information based on image order, that is, width x height. It becomes.
  • the spectral data (x, ⁇ ) is converted into two-dimensional information based on the width (position on the line) and the height (line), so that the compression process is easy.
  • image processing using two-dimensional information due to fluorescence of the tissue 302 on the slide glass 300 is performed, and pixel data is read according to the memory access direction in the storage unit 21. Can be executed with. Therefore, it is possible to speed up memory access for image processing.
  • the frame according to the embodiment is composed of two-dimensional information due to the fluorescence of the tissue 302 on the slide glass 300, image processing for the two-dimensional information can be executed in parallel. Therefore, for example, parallel processing can be performed by making the processor multi-core for image processing, and the processing speed can be further increased.
  • the time required to create a unit block is shortened as follows in the embodiment as compared with the existing technique as an actual measurement example. Will be done. Excitation wavelength shortened from 405 (nm): 467 (ms) to 345 (ms) Excitation wavelength shortened from 488 (nm): 382 (ms) to 336 (ms) Excitation wavelength shortened to 532 (nm): 333 (ms) Reduced from 249 (ms) Excitation wavelength reduced from 638 (nm): 224 (ms) to 168 (ms)
  • the time required for wavelength connection is 345 (ms) in the existing technique, whereas it is 3 ⁇ 10 -6 (ms) in the embodiment, which is approximately 1 ⁇ 10 8 times shorter. ..
  • the present technology can also have the following configurations.
  • a plurality of fluorescent images generated by an imaging target for each of the plurality of fluorescence wavelengths are imaged for each line for scanning the imaging target, and the data of the plurality of fluorescent images captured is acquired in the order of the lines.
  • Data generation methods including.
  • the imaging step is The data of the plurality of fluorescence images are acquired in an order based on the combination of the plurality of pixels per line and the plurality of fluorescence wavelengths.
  • the sorting step is The order of the data of the plurality of fluorescent images acquired by the imaging step is changed based on the combination of the plurality of pixels per line and the plurality of lines obtained by the scan.
  • (3) A storage step of storing the data of the plurality of fluorescent images whose rearrangement order has been changed in the rearrangement step in a storage medium is further included.
  • the division step is From the data of the plurality of fluorescent images, the offset portion for expressing a negative value is further divided.
  • the storage step is The data of the plurality of fluorescent images divided into the main body portion, the coefficient portion, and the offset portion in the division step is stored in the storage medium.
  • the storage step is The data of the plurality of fluorescent images is stored in the storage medium for each fixed size block.
  • the storage step is The data of the plurality of fluorescence images is stored in the storage medium for each block in which the data of the plurality of fluorescence images are collected for each channel of the plurality of fluorescence wavelengths.
  • the data generation method according to (7) above.
  • a linking step of reading data of the plurality of fluorescent images stored in the storage medium from the storage medium for each fluorescence wavelength included in the plurality of fluorescence wavelengths and connecting them.
  • the data generation method according to any one of (3) to (8) above, further comprising.
  • a separation step of separating the autofluorescence by the imaging target and / or the fluorescence component of each of the data of the plurality of fluorescent images from the data of the plurality of fluorescent images stored in the storage medium.
  • the data generation method according to any one of (3) to (9) above, further comprising.
  • the storage step is The plurality of fluorescent images are stored in the storage medium by connecting the plurality of fluorescence wavelengths in order.
  • the data generation method according to any one of (3) to (10) above.
  • (12) A plurality of fluorescent images generated by an imaging target for each of the plurality of fluorescence wavelengths are imaged for each line for scanning the imaging target, and the data of the plurality of fluorescent images captured is acquired in the order of the lines.
  • Department and A rearrangement unit that changes the arrangement order of the data of the plurality of fluorescence images acquired by the imaging unit from the arrangement order of the lines to the arrangement order of each of the plurality of fluorescence wavelengths.
  • An image processing unit that performs image processing on the data of the plurality of fluorescent images whose rearrangement order has been changed in the sorting unit, and an image processing unit.
  • Fluorescence observation system (13) Further including a storage unit for storing the data of the plurality of fluorescent images whose rearrangement order has been changed in the rearrangement unit in the storage medium. The fluorescence observation system according to (12) above.
  • the image processing unit Image processing is performed in which the data of the plurality of fluorescent images stored in the storage medium is read out from the storage medium for each fluorescence wavelength included in the plurality of fluorescence wavelengths and concatenated.
  • the fluorescence observation system according to (13) above.
  • the image processing unit Image processing is performed to separate the autofluorescent component of the imaging target from the data of the plurality of fluorescent images stored in the storage medium.
  • the fluorescence observation system according to (13) or (14).
  • a plurality of fluorescent images generated by an imaging target for each of the plurality of fluorescence wavelengths are imaged for each line for scanning the imaging target, and the data of the plurality of fluorescent images captured is acquired in the order of the lines.
  • a rearrangement unit that changes the arrangement order of the data of the plurality of fluorescence images output by the unit from the arrangement order of the lines to the arrangement order for each of the plurality of fluorescence wavelengths.
  • An image processing unit that performs image processing on the data of the plurality of fluorescent images whose rearrangement order has been changed in the sorting unit, and an image processing unit.
  • An information processing device equipped with 17.
  • the image processing unit The image processing is performed to separate the autofluorescence by the imaging target and / or the fluorescence component of each of the data of the plurality of fluorescent images from the data of the plurality of fluorescent images stored in the storage medium.
  • the information processing apparatus according to (17) or (18).

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本開示に係るデータ生成方法は、複数の蛍光波長それぞれについて撮像対象により生成された複数の蛍光画像を、撮像対象をスキャンするライン毎に撮像し、撮像した複数の蛍光画像のデータを、ラインの並び順で取得する撮像工程(S10)と、撮像工程により取得された複数の蛍光画像のデータの並び順を、ラインの並び順から複数の蛍光波長毎の並び順に変更する並び替え工程(S12)と、を含む。

Description

データ生成方法、蛍光観察システムおよび情報処理装置
 本開示は、データ生成方法、蛍光観察システムおよび情報処理装置に関する。
 病理画像の診断において、定量性や多色性に優れた手法として、蛍光染色による病理画像診断法が提案されている。蛍光手法によると、着色染色に比べて多重化が容易で、詳細な診断情報が得られる点で有利である。病理診断以外の蛍光イメージングにおいても、色数の増加は、サンプルに発現するさまざまな抗原を一度に調べることを可能とする。
 このような、蛍光染色による病理画像診断法を実現するための構成として、ライン分光器を用いた蛍光観察装置が提案されている(例えば特許文献1)。ライン分光器は、蛍光染色された病理標本に対してライン状のライン照明を照射し、ライン照明により励起された蛍光を分光器により分光して撮像する。撮像で得られる撮像画像データは、例えばライン照明によるライン方向に従い順次に出力され、それが分光による波長方向に従い順次に繰り返されることで、連続的に途切れ無く出力される。
 また、蛍光観察装置において、病理標本の撮像を、ライン照明によるライン方向に対して垂直方向にスキャンして行うことで、撮像画像データに基づいた病理標本に関する分光情報を、2次元情報として扱うことが可能となる。
国際公開第2019/230878号
 ライン分光器により撮像され生成された撮像画像データは、後段における、画像処理や、分光スペクトル波形に対する波形分離処理などに供される。このような後段における処理に対してより容易に適用でき、且つ、より高速な処理が可能な撮像画像データの生成が望まれている。
 本開示は、ライン分光器を用いて撮像された撮像画像をより容易および高速に処理可能なデータ生成方法、蛍光観察システムおよび情報処理装置を提供することを目的とする。
 本開示に係るデータ生成方法は、複数の蛍光波長それぞれについて撮像対象により生成された複数の蛍光画像を、撮像対象をスキャンするライン毎に撮像し、撮像した複数の蛍光画像のデータを、ラインの並び順で取得する撮像工程と撮像工程により取得された複数の蛍光画像のデータの並び順を、ラインの並び順から複数の蛍光波長毎の並び順に変更する並び替え工程と、を含む。
実施形態に適用可能なライン分光を説明するための模式図である。 実施形態に適用可能な蛍光観察装置の機能を説明するための一例の機能ブロック図である。 実施形態に適用可能な観察ユニットの一例の構成を示す模式図である。 サンプルの例を示す模式図である。 サンプルにライン照明が照射された領域を拡大して示す模式図である。 1つの撮像素子で受光された分光データの例を模式的に示す図である。 1つの撮像素子で受光された分光データの例を模式的に示す図である。 複数の撮像素子を含む場合の、各撮像素子で受光された分光データの例を模式的に示す図である。 X-Yステージによるサンプルの移動を説明するための模式図である。 ライン照明と励起光の組み合わせの構成例を示す図である。 処理ユニットにおいて実行される処理を示す一例のフローチャートである。 分光イメージング部により取得された蛍光スペクトルの具体例を示す模式図である。 画像形成部による蛍光スペクトルの連結を説明するための模式図である。 実施形態に適用可能な処理ユニットのハードウェア構成の例を示すブロック図である。 実施形態に係る分光データの取得処理の流れを概略的に示す図である。 第610ライン目のスキャンが終了した時点で記憶部に記憶される分光データの例を示す模式図である。 実施形態に係る、データの並び順が変更された分光データの例を示す模式図である。 既存技術による波長連結処理について説明するための模式図である。 既存技術による分光データの一例のデータ配列をより具体的に示す模式図である。 既存技術による分光データの一例のデータ配列をより具体的に示す模式図である。 実施形態に係る波長連結について説明するための模式図である。 実施形態に係る分光データの一例のデータ配列をより具体的に示す模式図である。 実施形態に係る分光データの一例のデータ配列をより具体的に示す模式図である。 実施形態に係る処理の流れについて説明するための模式図である。 実施形態に係る処理の流れについて説明するための模式図である。 実施形態に係る処理の流れについて説明するための模式図である。 実施形態に係る処理の流れについて説明するための模式図である。 実施形態に係る処理の流れについて説明するための模式図である。 実施形態に係る処理の流れについて説明するための模式図である。 既存技術によるデータフォーマットの例を示す図である。 実施形態に係るデータフォーマットの例を示す図である。
 以下、本開示の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態において、同一の部位には同一の符号を付することにより、重複する説明を省略する。
 以下、本開示の実施形態について、下記の順序に従って説明する。
1.ライン分光の概略
2.本開示の実施形態に適用可能な技術
 2-1.ライン分光を実現するための構成例
 2-2.ライン分光による処理例
 2-3.波長連結について
 2-4.ハードウェア構成例
3.本開示の実施形態
 3-1.実施形態の概要
 3-2.取得データ例およびデータの並び替え
 3-3.波長連結について
  3-3-1.既存技術による波長連結
  3-3-2.実施形態による波長連結
  3-3-3.実施形態に係る処理の流れ
 3-4.データフォーマット例
  3-4-1.既存技術によるデータフォーマット例
  3-4-2.実施形態に係るデータフォーマット例
4.実施形態に係る効果
(1.ライン分光の概略)
 本開示の実施形態の説明に先立って、理解を容易とするために、ライン分光について概略的に説明する。図1は、実施形態に適用可能なライン分光を説明するための模式図である。蛍光染色された病理標本1000に対して、ライン照明により、例えばレーザ光によるライン状の励起光を照射する(ステップS1)。図1の例では、励起光は、x方向に平行なライン形状で病理標本1000に照射されている。
 病理標本1000において、蛍光染色による蛍光物質が励起光の照射により励起され、ライン状に蛍光を発光する(ステップS2)。この蛍光は、分光器により分光され(ステップS3)、カメラにより撮像される。ここで、カメラの撮像素子は、行方向(x方向とする)に整列される画素と、列方向(y方向とする)に整列される画素と、を含む2次元格子状に画素が配列された構成を有する。撮像された画像データ1010は、x方向にライン方向の位置情報を含み、y方向に分光による波長λの情報を含む構造となる。
 1ラインの励起光照射による撮像が終了すると、例えば病理標本1000をy方向に所定距離だけ移動させて(ステップS4)、次の撮像を行う。この撮像により、y方向の次のラインにおける画像データ1010が取得される。この動作を所定回数繰り返して実行することで、各波長λについて、病理標本1000から発せられる蛍光の2次元情報を取得することができる(ステップS5)。各波長λにおける2次元情報を波長λの方向に積層したデータを、スペクトルデータキューブ1020と呼ぶ。
 スペクトルデータキューブ1020は、図1の例では、x方向およびy方向に病理標本1000の2次元情報を含み、高さ方向(深さ方向)に波長λの情報を含む構造となっている。病理標本1000による分光情報を、このようなデータ構成とすることで、病理標本1000に対する2次元的な解析を容易に実行することが可能となる。
(2.本開示の実施形態に適用可能な技術)
 次に、本開示の実施形態に適用可能な技術について説明する。
(2-1.ライン分光を実現するための構成例)
 先ず、上述したようなライン分光を実現するための構成例について説明する。図2は、実施形態に適用可能な蛍光観察装置の機能を説明するための一例の機能ブロック図である。図2において、蛍光観察装置100は、観察ユニット1と、処理ユニット2と、表示部3と、を有する。
 観察ユニット1は、励起部10と、サンプルステージ20と、分光イメージング部30と、観察光学系40と、走査機構50と、フォーカス機構60と、非蛍光観察部70と、を含む。
 励起部10は、異軸平行に配置された波長の異なる複数のライン照明を病理標本に照射する。サンプルステージ20は、病理標本を支持するステージであって、走査機構50により、ライン照明によるライン光の方向に対して垂直方向に移動させることができる。分光イメージング部30は、分光器を含み、ライン照明によりライン状に励起された病理標本の蛍光スペクトル(分光データ)を取得する。すなわち、観察ユニット1は、ライン照明に応じた分光データを取得するライン分光器として機能する。
 また、観察ユニット1は、複数の蛍光波長それぞれについて撮像対象(病理標本)により生成された複数の蛍光画像をライン毎に撮像し、撮像した複数の蛍光画像のデータをラインの並び順で取得する撮像部としても機能する。
 ここで、異軸平行とは、複数のライン照明が異軸かつ平行であることをいう。異軸とは、同軸上に無いことをいい、軸間の距離は特に限定されない。平行とは、厳密な意味での平行に限られず、ほぼ平行である状態も含む。例えば、レンズ等の光学系由来のディストーションや製造公差による平行状態からの逸脱があってもよく、この場合も平行とみなす。
 サンプルステージ20に対して、後述する対物レンズなどを含む観察光学系40を介して、励起部10と分光イメージング部30とが接続されている。観察光学系40は、フォーカス機構60によって最適な焦点に追従する機能を持っている。観察光学系40には、暗視野観察、明視野観察などの非蛍光観察部70が接続されてもよい。
 蛍光観察装置100は、励起部10における光源やシャッタの制御、走査機構50によるXYステージの移動制御、分光イメージング部30におけるカメラ制御、フォーカス機構60における検出器とZステージの制御、非蛍光観察部70におけるカメラ制御などを行う制御部80と接続されていてもよい。
 処理ユニット2は、記憶部21と、データ校正部22と、画像形成部23と、を含む。
 記憶部21は、例えばハードディスクドライブやフラッシュメモリといった不揮発性の記憶媒体と、当該記憶媒体に対するデータの書き込みおよび読み出しを制御する記憶制御部と、を含む。記憶部21は、励起部10が含む複数のライン照明それぞれにより射出される光の各波長と、分光イメージング部30のカメラで受光された蛍光との相関を示す分光データが記憶される。また、記憶部21には、観察対象となるサンプル(病理標本)に関する自家蛍光の標準スペクトルを示す情報や、サンプルを染色する色素単体の標準スペクトルを示す情報が予め記憶される。
 データ校正部22は、分光イメージング部30のカメラで撮像された撮像画像に基づき記憶部21に記憶された分光データの構成を行う。画像形成部23は、分光データと、励起部10により照射された複数のライン照明の間隔Δyとに基づき、サンプルの蛍光画像を形成する。
 表示部3は、例えば画像形成部23で形成された蛍光画像に基づく画像をディスプレイに表示させる。
 図3は、実施形態に適用可能な観察ユニット1の一例の構成を示す模式図である。ここでは、励起部10がそれぞれ2波長の発光を行う2つのライン照明Ex1およびEx2を含むものとして説明する。例えば、ライン照明Ex1が波長405nmの光と波長561nmの光とを発光し、ライン照明Ex2が波長488nmの光と、波長645nmの光とを発光する。
 励起部10は、複数(この例では4つ)の励起光源L1,L2,L3,L4を有する。各励起光源L1~L4は、波長がそれぞれ405nm、488nm、561nm及び645nmのレーザ光を出力するレーザ光源で構成される。
 励起部10は、各励起光源L1~L4に対応するように複数のコリメータレンズ11およびレーザラインフィルタ12と、ダイクロイックミラー13a、13bおよび13cと、ホモジナイザ14と、コンデンサレンズ15と、入射スリット16と、をさらに有する。
 励起光源L1から出射されるレーザ光と励起光源L3から出射されるレーザ光は、それぞれコリメータレンズ11によって平行光になった後、各々の波長帯域の裾野をカットするためのレーザラインフィルタ12を透過し、ダイクロイックミラー13aによって同軸にされる。同軸化された2つのレーザ光は、さらに、ライン照明Ex1となるべくフライアイレンズなどのホモジナイザ14とコンデンサレンズ15によってビーム成形される。
 励起光源L2から出射されるレーザ光と励起光源L4から出射されるレーザ光も同様にダイクロイックミラー13bおよび13cによって同軸化され、ライン照明Ex1とは異軸のライン照明Ex2となるようにライン照明化される。ライン照明Ex1およびEx2は、各々が通過可能な複数のスリット部を有する入射スリット16(スリット共役)において距離Δyだけ離れた異軸ライン照明(1次像)を形成する。
 この1次像は、観察光学系40を介してサンプルステージ20上のサンプルSに照射される。観察光学系40は、コンデンサレンズ41と、ダイクロイックミラー42,43と、対物レンズ44と、バンドパスフィルタ45と、コンデンサレンズ46とを有する。ライン照明Ex1およびEx2は、対物レンズ44と対になったコンデンサレンズ41で平行光にされ、ダイクロイックミラー42および43により反射されて対物レンズ44を透過し、サンプルステージ20上のサンプルSに照射される。
 図4は、サンプルSの例を示す模式図である。図4では、サンプルSを励起光であるライン照明Ex1およびEx2の照射方向から見た様子が示されている。サンプルSは、典型的には、図4に示すような組織切片等の観察対象Saを含むスライドで構成されるが、勿論それ以外であってもよい。サンプルS(観察対象Sa)は、複数の蛍光色素によって染色されている。観察ユニット1は、サンプルSを所望の倍率に拡大して観察する。
 図4において、領域Aは、サンプルSに照射されたライン照明Ex1およびEx2を含む。図5は、サンプルSにライン照明Ex1およびEx2が照射される領域Aを拡大して示す模式図である。図5の例では、領域Aに2つのライン照明Ex1およびEx2が配置されており、それぞれのライン照明Ex1およびEx2に重なるように、分光イメージング部30の撮影エリアR1およびR2が配置される。2つのライン照明Ex1およびEx2は、それぞれZ軸方向に平行であり、Y軸方向に所定の距離Δyだけ離れて配置される。
 サンプルSの表面において、図5に示したようにライン照明Ex1およびEx2が形成される。これらのライン照明Ex1およびEx2によってサンプルSにおいて励起された蛍光は、対物レンズ44によって集光され、ダイクロイックミラー43に反射され、ダイクロイックミラー42と、励起光をカットするバンドパスフィルタ45とを透過し、コンデンサレンズ46で再び集光されて、分光イメージング部30に入射される。
 分光イメージング部30は、観測スリット31と、撮像素子32と、第1プリズム33と、ミラー34と、回折格子35(波長分散素子)と、第2プリズム36とを有する。図3の例では、撮像素子32は、2つの撮像素子32aおよび32bを含んで構成されている。
 観測スリット31は、コンデンサレンズ46の集光点に配置され、励起ライン数と同じ数(この例では2本)のスリット部を有する。観測スリット31を通過した2つの励起ライン由来の蛍光スペクトルは、第1プリズム33で分離され、それぞれミラー34を介して回折格子35の格子面で反射することにより、励起波長各々の蛍光スペクトルにさらに分離される。
 このようにして分離された4つの蛍光スペクトルは、ミラー34および第2プリズム36を介して撮像素子32aおよび32bに入射され、分光データとして、ライン方向の位置xと、波長λにより表現される分光データ(x,λ)に展開される。分光データ(x,λ)は、撮像素子32に含まれる画素のうち、行方向において位置x、列方向において波長λの位置の画素の画素値である。なお、以下において、分光データ(x,λ)は、単に分光データとして記述されることがある。
 なお、撮像素子32aおよび32bの画素サイズ(nm/Pixel)は特に限定されず、例えば、2(nm/Pixel)以上20(nm/Pixel)以下に設定される。この分散値は、回折格子35のピッチや光学的に実現しても良いし、撮像素子32aおよび32bのハードウェアビニングを使って実現しても良い。
 図6および図7は、1つの撮像素子32で受光された分光データ(x,λ)の例を模式的に示す図である。図6および図7を用いて、撮像素子32が観測スリット31を通過した蛍光を共通に受光する単一のイメージセンサで構成される場合の分光データ(x,λ)の取得方法について説明する。この例において、ライン照明Ex1およびEx2によって励起された蛍光スペクトルFs1およびFs2は、分光光学系(後述)を介して、最終的に距離Δy(図5参照)に比例する量だけずれた状態で撮像素子32の受光面に結像される。
 図6に示すように、ライン照明Ex1から得られる情報がデータRow_aおよびRow_bとして、ライン照明Ex2から得られる情報がデータRow_cおよびRow_dとして、それぞれ例えば記憶部21に記憶される。図7は、図6で得られるデータRow_a~Row_dを波長λに従い並べ直した図である。このように、撮像素子32上では、各データRow_a~Row_dが必ずしも波長λの順番に並んでいる必要は無い。すなわち、撮像素子32において、列方向(波長λ方向)は、波長λと画素位置とが対応付けられていればよく、各波長λが列方向に連続していなくてよい。
 また、撮像素子32において、各データRow_a~Row_dの領域以外のデータ(図中で黒く塗り潰した領域のデータ)は読み出さない。これにより、撮像素子32のフレームレートは、フルフレームで読み出す場合のデータをデータRow_fullとすると、Row_full/(Row_b-Row_a+Row_d-Row_c)倍、高速にすることができる。
 なお、図3の例のように、観測スリット31を通過した蛍光をそれぞれ受光可能な複数の撮像素子32aおよび32bを含んでもよい。図8は、複数の撮像素子32aおよび32bを含む場合の、各撮像素子32aおよび32bで受光された分光データ(x,λ)の例を模式的に示す図である。この場合、各ライン照明Ex1およびEx2によって励起される各蛍光スペクトルFs1およびFs2は、撮像素子32a,32b上に図8に示すように取得され、記憶部21に励起光と紐づけて記憶される。
 また、図3に示すように、光路の途中にダイクロイックミラー42やバンドパスフィルタ45が挿入され、励起光(ライン照明Ex1およびEx2)が撮像素子32に到達しないようにされている。この場合、撮像素子32上に結像する蛍光スペクトルFs1には間欠部IFが生じる(図6および図7参照)。このような間欠部IFも読出し領域から除外することによって、さらにフレームレートを向上させることができる。
 各ライン照明Ex1およびEx2は、それぞれ単一の波長で構成される場合に限られず、それぞれが複数の波長で構成されてもよい。ライン照明Ex1およびEx2がそれぞれ複数の波長で構成される場合、これらで励起される蛍光もそれぞれ複数のスペクトルを含む。この場合、分光イメージング部30は、当該蛍光を励起波長に由来するスペクトルに分離するための波長分散素子を有する。波長分散素子は、回折格子やプリズムなどで構成され、典型的には、観測スリット31と撮像素子32との間の光路上に配置される。
 なお、サンプルステージ20および走査機構50は、X-Yステージを構成し、サンプルSの蛍光画像を取得するため、サンプルSをX軸方向およびY軸方向へ移動させる。走査機構50を用いることで、サンプルS(観察対象Sa)上において空間的に距離Δyだけ離れた、それぞれ異なる励起波長で励起された色素スペクトル(蛍光スペクトル)を、Y軸方向に連続的に取得することができる。
 図9は、X-YステージによるサンプルSの移動を説明するための模式図である。図9の例では、撮影領域RsがX軸方向に複数に分割され、Y軸方向にサンプルSをスキャンし、その後、X軸方向に移動し、さらにY軸方向へのスキャンを行うといった動作が繰り返される。1回のスキャンで数種の励起波長によって励起されたサンプル由来の分光スペクトルイメージを撮影することができる。
 走査機構50は、典型的には、サンプルステージ20がY軸方向に走査される。これはこの例に限定されず、光学系の途中に配置されたガルバノミラーによって複数のライン照明Ex1およびEx2がY軸方向に走査されてもよい。最終的に、図1を用いて説明した、座標(X、Y、λ)の3次元データによるスペクトルデータキューブ1020が、複数のライン照明Ex1およびEx2についてそれぞれ取得される。各ライン照明Ex1およびEx2由来の3次元データは、Y軸について距離Δyだけ座標がシフトしたデータになるので、予め記憶された距離Δy、または、撮像素子32の出力から計算される距離Δyの値に基づいて、補正され出力される。
 図3の説明に戻り、非蛍光観察部70は、光源71、ダイクロイックミラー43、対物レンズ44、コンデンサレンズ72、撮像素子73などにより構成される。非蛍光観察部70においては、図3の例では、暗視野照明による観察系を示している。
 光源71は、サンプルステージ20に対して対物レンズ44と対向する側に配置され、サンプルステージ20上のサンプルSに対して、ライン照明Ex1,Ex2とは反対側から照明光を照射する。暗視野照明の場合、光源71は、対物レンズ44のNA(開口数)の外側から照明し、サンプルSで回折した光(暗視野像)を対物レンズ44、ダイクロイックミラー43およびコンデンサレンズ72を介して撮像素子73で撮影する。暗視野照明を用いることで、蛍光染色サンプルのような一見透明なサンプルであってもコントラストを付けて観察することができる。
 なお、この暗視野像を蛍光と同時に観察して、リアルタイムのフォーカスに使ってもよい。この場合、照明波長は、蛍光観察に影響のない波長を選択すればよい。非蛍光観察部70は、暗視野画像を取得する観察系に限られず、明視野画像、位相差画像、位相像、インラインホログラム(In-line hologram)画像などの非蛍光画像を取得可能な観察系で構成されてもよい。例えば、非蛍光画像の取得方法として、シュリーレン法、位相差コントラスト法、偏光観察法、落射照明法などの種々の観察法が採用可能である。照明用光源の位置もステージの下方に限られず、ステージの上方や対物レンズの周りにあってもよい。また、リアルタイムでフォーカス制御を行う方式だけでなく、予めフォーカス座標(Z座標)を記録しておくプレフォーカスマップ方式等の他の方式が採用されてもよい。
 なお、上述では、励起光としてのライン照明は、ライン照明Ex1およびEx2の2本で構成されたが、これに限定されず、3本、4本あるいは5本以上であってもよい。またそれぞれのライン照明は、色分離性能がなるべく劣化しないように選択された複数の励起波長を含んでもよい。またライン照明が1本であっても、複数の励起波長から構成される励起光源で、かつそれぞれの励起波長と、撮像素子で所得されるRowデータとを紐づけて記録すれば、異軸平行ほどの分離能は得られないが、多色スペクトルを得ることができる。
 図10は、ライン照明と励起光の組み合わせの構成例を示す図である。図10において、構成例1は、ライン照明Ex1、Ex2、Ex3およびEx4に、それぞれ単独の波長λ=405(nm)、488(nm)、532(nm)および638(nm)を割り当てた例である。構成例2は、各ライン照明Ex1およびEx2に、それぞれ2つの波長λ=405(nm)および532(nm)、ならびに、波長λ=488(nm)および638(nm)を割り当てた例である。また、構成例3は、1つのライン照明Ex1に、4つの波長λ=405(nm)、532(nm)、488(nm)および638(nm)を割り当てた例である。上述した図3の構成では、構成例2が適用されている。
(2-2.ライン分光による処理例)
 次に、ライン分光による処理の例について説明する。図11は、処理ユニット2において実行される処理を示す一例のフローチャートである。
 ステップS101で、処理ユニット2は、記憶部21により、分光イメージング部30で取得した分光データ(x,λ)を取得し、記憶する。ここで取得される分光データ(x,λ)は、図6および図8の例では、蛍光スペクトルFs1およびFs2に相当する。記憶部21には、サンプルSに関する自家蛍光や色素単体の標準スペクトルが予め格納されている。
 処理ユニット2は、記憶部21から、撮像素子32の波長方向の画素アレイから注目波長領域のみを抽出することによって、記録フレームレートを向上させる。注目波長領域とは、例えば、可視光の範囲(380(nm)~780(nm))、あるいは、サンプルを染色した色素の発光波長によって決まる波長範囲に相当する。
 注目波長領域以外の波長領域としては、例えば、不要な波長の光があるセンサ領域や明らかに信号のないセンサ領域、光路途中にあるダイクロイックミラー42やバンドパスフィルタ45でカットされるべき励起波長の領域などが挙げられる。さらに、そのセンサ上の注目波長領域は、ライン照明の状況によって切り替えられてもよい。例えば、ライン照明に使われる励起波長が少ないときは、センサ上の波長領域も制限され、制限した分、フレームレートを高速化させることができる。
 次のステップS102で、処理ユニット2は、データ校正部22により、記憶部21に記憶された分光データ(x,λ)を、画素データから波長λに換算し、全てのスペクトルデータが共通の離散値を持った波長単位((nm)、(μm)など)に補完されて出力されるよう校正する。
 画素データ(x、λ)は、撮像素子32の画素列に綺麗に整列すると限られず、僅かな傾きや光学系のディストーションによって歪められている場合がある。したがって、例えば波長既知の光源を用いてピクセルから波長単位に変換すると、すべてのx座標において異なる波長((nm)値)に換算されてしまう。この状態ではデータの扱いが煩雑であるため、データは、ステップS102において、補完法(例えば、線形補完やスプライン補完)によって整数に整列されたデータに変換される。
 さらに、ライン照明の長軸方向(X軸方向)の感度ムラが発生する場合がある。感度ムラは照明のムラや、スリット幅のバラつきによって発生し、撮影画像の輝度ムラに繋がる。次のステップS103で、処理ユニット2は、データ校正部22により、このムラを解消するため、任意の光源とその代表スペクトル(平均スペクトルや光源の分光放射輝度)を用いて、均一化して出力する。均一化することによって機差がなくなり、スペクトルの波形解析において、個々の成分スペクトルを毎回測定する手間を削減することができる。さらに、感度校正された輝度値から蛍光色素数の概算定量値も出力することができる。
 校正されたスペクトルに分光放射輝度(W/(sr・m2 ・nm))を採用すれば、各波長に相当する撮像素子32の感度も補正される。このように、基準となるスペクトルに校正することによって、色分離計算に用いる基準スペクトルを機器毎に測定する必要がなくなる。同じロットで安定的な色素であれば、1度撮影すれば流用が可能になる。さらに、色素1分子あたりの蛍光スペクトル強度が予め与えられていれば、感度校正された輝度値から換算した蛍光色素分子数の概算値を出力できる。この値は自家蛍光成分も分離されており、定量性が高い。
 以上の処理は、Y軸方向に走査されるサンプルSにおけるライン照明Ex1およびEx2による照明範囲について同様に実行される。これにより、サンプルSの全範囲について各蛍光スペクトルの分光データ(x,y,λ)が得られる。得られた分光データ(x,y,λ)は、記憶部21に記憶される。
 次のステップS104で、処理ユニット2は、画像形成部23により、記憶部21に記憶された分光データ(x,y,λ)、あるいは、データ校正部22によって校正された分光データ(x,y,λ)と、ライン照明Ex1およびEx2の軸間の距離Δyに相当する間隔とに基づいて、サンプルSの蛍光画像を形成する。例えば、画像形成部23は、蛍光画像として、複数のライン照明Ex1およびEx2の間隔の距離Δyに相当する値で撮像素子32の検出座標が補正された画像を形成する。
 各ライン照明Ex1およびEx2由来の3次元データは、Y軸について距離Δyだけ座標がシフトしたデータになるので、予め記録された距離Δy、または撮像素子32の出力から計算される距離Δyの値に基づいて補正され、出力される。ここでは、各ライン照明Ex1およびEx2由来の3次元データが同一座標上のデータとなるように、撮像素子32での検出座標の相違が補正される。
 次のステップS105で、処理ユニット2は、画像形成部23により、撮影した画像を繋げて1つの大きな画像(WSI:Whole slide imaging)にするための処理(スティッチング)を実行する。これにより、多重化されたサンプルS(観察対象Sa)に関する病理画像を取得することができる。次のステップS106で、形成された蛍光画像が表示部3に出力される。
 次のステップS107で、処理ユニット2は、画像形成部23により、記憶部21に予め記憶されたサンプルSの自家蛍光および色素単体の各標準スペクトルに基づき、撮像された分光データ(測定スペクトル)からサンプルSの自家蛍光及び色素の成分分布を分離計算する。分離計算の演算方法としては、最小二乗法、重み付け最小二乗法などが採用可能であり、撮像された分光データが上記標準スペクトルの線形和になるような係数を計算する。次のステップS108で、算出された係数の分布は、記憶部21に記憶されると共に、表示部3へ出力されて画像として表示される。
(2-3.波長連結について)
 上述したように、実施形態に適用可能な観察ユニット1では、1つのサンプルSに対して、それぞれ波長の異なる複数の励起光を照射することにより、それぞれ波長領域の異なる複数の蛍光スペクトルが取得される。この、1つのサンプルSから取得された複数の蛍光スペクトルのそれぞれを単独で扱うことは、効率的ではない。そのため、1つのサンプルSから取得された複数の蛍光スペクトルを、波長方向に連結させて、一纏まりのデータとして扱うことが可能なようにする。
 図12は、分光イメージング部30により取得された蛍光スペクトルの具体例を示す模式図である。分光イメージング部30は、例えば、サンプルSをY軸方向にスキャンさせたライン毎に、蛍光スペクトルを取得する。図2のセクションA、B、CおよびDでは、サンプルSに、DAPI、CK/AF488、PgR/AF594、およびER/AF647という4種の蛍光物質が含まれ、それぞれの励起波長として392(nm)(図2のセクションA)、470(nm)(図2のセクションB)、549(nm)(図2のセクションC)、628(nm)(図2のセクションD)を有する励起光が照射された場合に取得された蛍光スペクトルの具体例が示されている。
 なお、蛍光発光のためにエネルギーが放出されることにより、蛍光波長は励起波長よりも長波長側にシフトしている点に留意されたい(ストークスシフト)。また、サンプルSに含まれる蛍光物質、および照射される励起光の励起波長は、上述の例に限定されない。分光イメージング部30は、取得した各蛍光スペクトルを処理ユニット2に渡す。処理ユニット2は、分光イメージング部30から渡された各蛍光スペクトルを、記憶部21に記憶する。
 処理ユニット2は、例えば画像形成部23により、分光イメージング部30により取得され記憶部21に記憶された複数の蛍光スペクトルの少なくとも一部を波長方向に連結して、連結蛍光スペクトルを生成する。
 図13は、画像形成部23による蛍光スペクトルの連結を説明するための模式図である。図13において、セクションA~Dは、上述の図12におけるセクションA~Dにそれぞれ対応している。
 例えば、画像形成部23は、図13のセクションA~Dに示す、分光イメージング部30により取得された4つの蛍光スペクトルそれぞれにおける蛍光強度の最大値を含むように、各蛍光スペクトルにおける所定幅のデータを抽出する。画像形成部23がデータを抽出する波長帯域の幅は、試薬情報、励起波長または蛍光波長等に基づいて決定され得るもので、各蛍光物質についてそれぞれ異なっていてもよい。換言すると、画像形成部23がデータを抽出する波長帯域の幅は、図13のセクションA~Dに示された蛍光スペクトルそれぞれで異なっていてもよい。
 画像形成部23は、図13のセクションEに示すように、抽出したデータを波長方向に互いに連結することで一つの連結蛍光スペクトルを生成する。このとき、画像形成部23は、分光イメージング部30によりサンプルSをY軸方向にスキャンさせたラインにおいてライン上の位置毎にそれぞれ取得された複数の蛍光スペクトルを、例えばライン上の位置毎に連結する。例えば、あるライン上の位置xにおいて4つの蛍光スペクトルが取得された場合、この4つの蛍光スペクトルを連結し、当該ラインの位置xにおける連結蛍光スペクトルを生成する。
 なお、連結蛍光スペクトルは、複数の蛍光スペクトルから抽出されたデータによって構成されるため、連結された各データの境界では波長が連続していない点に留意されたい。
 画像形成部23は、励起光の強度に基づいて、複数の蛍光スペクトルそれぞれに対応する励起光の強度を揃えた後に(換言すると、複数の蛍光スペクトルを補正した後に)、上述した連結を行う。より具体的には、画像形成部23は、励起光の強度である励起パワー密度で各蛍光スペクトルを除算することで、複数の蛍光スペクトルそれぞれに対応する励起光の強度を揃えた後に、上述の連結を行う。これによって、同一強度の励起光が照射された場合の蛍光スペクトルが求められる。また、照射される励起光の強度が異なる場合、その強度に応じてサンプルSに吸収されるスペクトル(以降、「吸収スペクトル」と呼称する)の強度も異なる。したがって、上述のように、複数の蛍光スペクトルそれぞれに対応する励起光の強度が揃えられることで、吸収スペクトルを適切に評価することができる。
(2-4.ハードウェア構成例)
 次に、実施形態に適用可能な、処理ユニット2のハードウェア構成例について説明する。図14は、実施形態に適用可能な処理ユニット2のハードウェア構成の例を示すブロック図である。図14において、処理ユニット2は、CPU200と、ブリッジ201と、メモリ202と、ストレージ装置203と、GPGPU(General-Purpose computing on Graphics Processing Units)ボード204と、グラバーボード205と、を含み、これら各部がバス210により互いに通信可能に接続されて構成される。このように、処理ユニット2は、一般的な情報処理装置としてのコンピュータの構成を適用することができる。
 ストレージ装置203は、例えばハードディスクドライブやフラッシュメモリといった不揮発性の記憶媒体であり、例えば図2の記憶部21の少なくとも一部に対応する。ストレージ装置203は、CPU200が動作するためのプログラムや、分光イメージング部30により取得された分光データ(x,λ)、観察対象となるサンプルに関する自家蛍光の標準スペクトルを示す情報や、サンプルを染色する色素単体の標準スペクトルを示す情報が予め記憶される。
 メモリ202は、例えばRAM(Random Access Memory)である。記憶部21の一部として、メモリ202をさらに含めてもよい。メモリ202は、ROM(Read Only Memory)としての機能をさらに有していてもよい。また、メモリ202は、CPU200が動作するためのプログラムを記憶させることができる。
 CPU200は、ブリッジ201を介してメモリ202と接続される。CPU200は、例えばストレージ装置203に記憶されるプログラムに従い、メモリ202をワークメモリとして用いて、この処理ユニット2の全体の動作を制御する。例えば、CPU200は、実施形態に係るプログラムが実行されることにより、図2において説明した処理ユニット2における記憶部21(記憶制御部)、データ校正部22および画像形成部23をメモリ202における主記憶領域上に、それぞれ例えばモジュールとして構成する。
 グラバーボード205は、分光イメージング部30から渡された、および/または、記憶部21から読み出された分光データ(x,λ)を、画像データとして取得する。GPGPUボード204は、CPU200の制御に従い、CPU200による分光データ(x,λ)に対する処理の一部または全部を請け負う。
(3.本開示の実施形態)
(3-1.実施形態の概要)
 次に、本開示の実施形態について説明する。実施形態では、波長が異なる複数の励起光が照射されたサンプルSをY軸方向にスキャンし、スキャンによるラインの並び順で取得された、複数の蛍光波長それぞれによるライン毎の分光データ(x,λ)を、複数の蛍光波長毎の並び順に変換する。より具体的には、取得した複数の蛍光波長それぞれによるライン毎の分光データ(x,λ)を、スキャンを行った複数のラインで纏めて、蛍光波長毎に、座標(x,y)で表現される、サンプルSに対する2次元情報による画像データに変換する。このように、ライン方向の位置情報と波長λとによる分光データ(x,λ)を、サンプルSの面に対応する2次元情報による画像データに変換することで、後段での画像処理などをより容易且つ高速化することができる。
 図15は、実施形態に係る分光データ(x,λ)の取得処理の流れを概略的に示す図である。以下では、2つの撮像素子32aおよび32bを用い、ライン照明と励起光の組み合わせの構成例として、図10の構成例2を適用する。撮像素子32aでライン照明Ex1による励起波長λ=405(nm)および532(nm)に応じた各分光データ(x,λ)を取得し、撮像素子32bでライン照明Ex2による励起波長λ=488(nm)および638(nm)に応じた各分光データ(x,λ)を取得するものとする。また、スキャンの1ラインに対応する画素数を2440(pix)とし、Y軸方向への610ライン分のスキャン毎に、スキャン位置をX軸方向に移動させるものとする。
 図15のセクション(a)は、スキャンの第1ライン目(図では「1Ln」とも記述)で取得される分光データ(x,λ)の例を示している。上述したサンプルSに対応する組織302は、スライドガラス300とカバーガラス301とに挟んで固定され、スライドガラス300を下面として、サンプルステージ20に載置される。図中の領域310は、ライン照明Ex1およびEx2による4本のレーザ光(励起光)が照射されるエリアを示している。
 また、撮像素子32aおよび32bにおいて、図の水平方向(行方向)がスキャンのラインにおける位置を示し、垂直方向(列方向)が波長を示している。
 撮像素子32aにおいて、それぞれ励起波長λ=405(nm)および532(nm)に応じた分光波長(1)および(3)に応じた複数の蛍光画像(分光データ(x,λ))が取得される。ここで取得される各分光データ(x,λ)は、例えば分光波長(1)の例では、励起波長λ=405(nm)に応じた蛍光光度の最大値を含む所定の波長領域(適宜、分光波長領域と呼ぶ)のデータ(輝度値)を含む。
 それぞれの分光データ(x,λ)は、撮像素子32aの列方向の位置に対応付けられる。このとき、波長λは、撮像素子32aの列方向において連続していなくて良い。すなわち、分光波長(1)による分光データ(x,λ)の波長と、分光波長(3)による分光データ(x,λ)の波長は、それらの間の空白部分を含めて連続していなくて良い。
 同様に、撮像素子32bにおいて、それぞれ励起波長λ=488(nm)および638(nm)による分光波長(2)および(4)による分光データ(x,λ)が取得される。ここで、各分光データ(x,λ)は、例えば分光波長(1)の例では、励起波長λ=405(nm)に応じた蛍光光度の最大値を含む所定の波長領域のデータ(輝度値)を含む。
 ここで、図6および図8を用いて説明したように、撮像素子32aおよび32bにおいて、各分光データ(x,λ)の波長領域内のデータが選択的に読み出され、それ以外の領域(図中に空白部分として示す)のデータは読み出されない。例えば、撮像素子32aの例では、分光波長(1)の波長領域の分光データ(x,λ)と、分光波長(3)の波長領域の分光データ(x,λ)とがそれぞれ取得される。取得された各波長領域の分光データ(x,λ)は、第1ライン目の各分光データ(x,λ)として、それぞれ記憶部21に記憶される。
 図15のセクション(b)は、セクション(a)とX軸方向について同一のスキャン位置において、第610ライン目(図では「610Lnとも記述)までのスキャンが終了した場合の例を示している。このとき、記憶部21には、610ライン分の各分光波長(1)~(4)の波長領域の分光データ(x,λ)が、ライン毎に記憶されている。610ライン分の読み出しおよび記憶部21に対する記憶が終了すると、図15のセクション(c)に示すように、第611ライン目(図では「611Lnとも記述)のスキャンが行われる。この例では、第611ライン目のスキャンは、スキャンのX軸方向の位置を移動させると共に、Y軸方向の位置を例えばリセットして実行される。
(3-2.取得データ例およびデータの並び替え)
 次に、実施形態に係る取得データおよびデータの並び替えについて説明する。図16は、図15のセクション(b)に示した、第610ライン目(のスキャンが終了した時点で記憶部21に記憶される分光データ(x,λ)の例を示す模式図である。図16に示されるように、分光データ(x,λ)は、スキャンのライン毎に、図中の水平方向にライン上の位置を示し、図中の垂直方向に分光波長の数を示すブロックをフレーム400として、記憶部21に記憶される。そして、610ライン分のフレーム400により単位ブロックが形成される。
 なお、この図16および以下の同様の図において、フレーム400内の矢印は、記憶部21に対するアクセスに、プログラム言語の一つであるC言語またはC言語に準じた言語を用いた場合の、記憶部21におけるメモリアクセスの方向を示している。図16の例では、フレーム400の水平方向(すなわち、ラインの位置方向)に向けてアクセスがなされ、これがフレーム400の垂直方向(すなわち分光波長数の方向)に向けて繰り返される。
 なお、分光波長数は、分光波長領域を複数のチャネルに分割した場合のチャネル数に対応する。
 既存技術においては、この図16に示すデータの並び順で、分光データ(x,λ)の読み出しを行っていた。この場合、この図16に示すデータの並び順は、フレーム400内における画素の配列が、スライドガラス300上の組織302における2次元情報に対応していない。そのため、当該組織302の分光データ(x,λ)を、当該組織302に対する2次元情報として扱うことが容易ではなかった。
 なお、図16では、第1ライン目のスキャンに対応するフレーム400を第0フレームとし、第610ライン目のスキャンに対応するフレーム400を第609フレームとして示している。
 実施形態では、処理ユニット2は、例えば画像形成部23により、ライン毎に記憶される各波長領域の分光データ(x,λ)の並び順を、分光波長(1)~(4)毎の並び順に変換する。
 図17は、実施形態に係る、データの並び順が変更された分光データ(x,λ)の例を示す模式図である。図17に示されるように、分光データ(x,λ)は、データの並び順を、図16に示した並び順から、分光波長毎に、図中の水平方向にライン上の位置を示し、図中の垂直方向にスキャンのラインを示す並び順に変換されて記憶部21に記憶される。ここで、図中の水平方向の2440(pix)と、垂直方向の610ラインとからなるフレーム401を、単位長方ブロックと呼ぶ。
 この図17に示す、実施形態に係る単位長方ブロックによるデータの並び順は、フレーム401内における画素の配列が、スライドガラス300上の組織302における2次元情報に対応している。そのため、実施形態に係る単位長方ブロック(フレーム401)は、図16に示したフレーム400と比較して、当該組織302の分光データ(x,λ)を、直接的に、当該組織302に対する2次元情報として扱うことができる。したがって、実施形態に係る処理ユニット2を適用することで、ライン分光器(観察ユニット1)により取得された撮像画像データに対する画像処理や分光スペクトル波形分離処理(色分離処理)などを、より容易および高速に処理することが可能となる。
(3-3.波長連結について)
 次に、実施形態に係る波長連結処理について説明する。
(3-3-1.既存技術による波長連結)
 先ず、図18を用いて、既存技術による波長連結処理について説明する。図18の左図は、図16を用いて説明した単位ブロックの向きを転置して示している。上述したように、波長連結は、例えばあるスキャンのラインにおけるある位置xの、各分光波長(1)~(4)による各分光データ(x,λ)を、波長方向に連結することで行われる。したがって、図18の左図に示すように、記憶部21に記憶される単位ブロックに対して、図中に矢印で示されるように、図上で水平方向にアクセスして、各分光データ(x,λ)を読み出すことになる。
 図18の右図は、こうして読み出された各分光データ(x,λ)を波長方向に連結した様子を模式的に示している。このように、スキャンのラインにおける位置xの各分光データ(x,λ)が波長方向に連結された連結蛍光スペクトル(連結分光データ)が、610ラインの各ライン毎に、画素数(2440(pix))分、生成され、記憶部21に記憶される。より具体的には、励起波長(1)~(4)にそれぞれ対応する分光波長(1)~(4)の分光データ(x,λ)が、図中において水平方向に向け波長連結の順に並べられ、垂直方向に画素数×610ライン、並べられている。
 このとき、記憶部21においては、分光データ(x,λ)の読み出しが、図18の左図に示されるように、図中における垂直方向のメモリアクセスにより行われる。これは、記憶部21における通常のメモリアクセス方向と異なる方向のアクセスとなる。そのため、読み出し処理が複雑になり、読み出し速度の高速化が難しい。また、分光波長数分の分光データ(x,λ)が揃わないと、記憶部21に対して1行分のデータを記憶させることができず、この点からも、処理速度の高速化が難しい。このように、既存技術による波長連結は、単純なメモリ結合では実現が難しく、効率的とはいえない。
 図19Aおよび図19Bは、既存技術による分光データ(x,λ)の一例のデータ配列をより具体的に示す模式図である。図19Aにおいて、励起波長(1)~(4)は、それぞれ例えば405(nm)、488(nm)、532(nm)および638(nm)であるとする。また、励起波長(1)~(4)それぞれによる各分光波長(1)~(4)の波長領域は、それぞれ112CH(チャネル)、92CH、80CHおよび51CHに分割され、分割されたそれぞれの波長チャネルにおいて蛍光の輝度値が計測される。
 図19Aの例では、例えば励起波長(1)の第1ライン目では、当該第1ライン目の各画素(pix)にそれぞれ対応する各ブロックn_1、n_2、…、n_2440(n=1)に対し、当該励起波長(1)に対応する分光波長(1)の各チャネル(WL1、WL2、…、WL112)の計測値が配置される。このブロックn_1、n_2、…、n_2440が610ライン分繰り返されて、励起波長(1)に対応する単位ブロックが形成される。
 励起波長(2)についても同様にして、第nライン目の各画素にそれぞれ対応する各ブロックn_1、n_2、…、n_2440に対し、励起波長(2)に対応する分光波長(2)の各チャネル(WL1、WL2、…、WL92)の計測値が配置される。このブロックn_1、n_2、…、n_2440が610ライン分繰り返されて(n=1~610)、励起波長(2)に対応する単位ブロックが形成される。励起波長(3)および(4)についても同様である。
 これら、各励起波長(1)~(4)に対応する各単位ブロックが、図中に点線で示されるように順次接続されて、記憶部21に記憶される。なお、各励起波長(1)~(4)は、波長チャネル数が異なるため、ブロックn_1、n_2、…、n_2440のサイズも、各励起波長(1)~(4)で異なる。
 図19Bは、図19Aで説明したデータ配列に基づき波長連結を行う例を示す模式図である。上述もしたが、波長連結は、例えばあるスキャンのラインにおけるある位置xの、各分光波長(1)~(4)による各分光データ(x,λ)を、波長方向に連結することで行われる。そのため、図16を用いて説明したデータの並び替えを行わない既存技術では、図19Bのセクション(a)に点線で囲って示すように、各励起波長(1)~(4)のラインおよび画素位置が対応するブロックを、連結する波長順に並べることで、波長連結を行う。
 図19Bのセクション(b)に、このように波長連結した画像を概略的に示す。この場合、画像の行方向(図中における水平方向)に、スキャンによるライン上の1画素における、335CH(=112CH+92CH+80CH+51CH)分の輝度値が整列し、これが2440(pix)×610ライン分繰り返された画像が形成される。
 この既存技術による波長連結では、記憶部21に記憶から単位ブロック毎に飛び飛びに分光データ(x,λ)を読み出す必要がある。また、各単位ブロックに含まれる各ブロックのサイズも異なっている。そのため、記憶部21におけるメモリアクセスが複雑になり、効率的とはいえない。
(3-3-2.実施形態による波長連結)
 次に、図20を用いて、実施形態に係る波長連結について説明する。図20の左図は、上述した図17と同一の図である。図20の右図は、図20の左図において矢印で示される方向に読み出された各分光データ(x,λ)を波長方向に連結した様子を模式的に示している。この場合、図20の右図に示されるように、励起波長(1)~(4)にそれぞれ対応する各単位長方ブロックを、各励起波長(1)~(4)にそれぞれ対応する分光波長の順に、図中で垂直方向に結合させる。波長連結は、この結合された各単位長方ブロックを、結合方向、すなわち図中で垂直方向に読み出すことで行われる。
 このように、実施形態によれば、各単位長方ブロックを波長方向に単純に結合することで、波長連結のためのデータ配列を得ることができ、効率的である。
 図21Aおよび図21Bは、実施形態に係る分光データ(x,λ)の一例のデータ配列をより具体的に示す模式図である。図19Aと同様に、励起波長(1)~(4)は、それぞれ例えば405(nm)、488(nm)、532(nm)および638(nm)であり、起波長(1)~(4)それぞれによる各分光波長(1)~(4)の波長領域は、それぞれ112CH(チャネル)、92CH、80CHおよび51CHに分割されるものとする。
 図21Aの例では、例えば励起波長(1)において、当該励起波長(1)に対応する分光波長(1)の第1チャネル(WL1)に対し、それぞれスキャンによるライン毎の各ブロック1_WLm、2_WLm、…、610_WLm(m=1)に対し、当該励起波長(1)に対応する分光波長(1)の各ライン上の位置(1、2、…、2440)の計測値が配置される。このブロック1_WLm、2_WLm、…、610_WLmが610ライン分繰り返されて(m=1~610)、励起波長(1)の第1チャネルに対する単位長方ブロックが形成される。そして、この単位長方ブロックが励起波長(1)における分光波長(1)のチャネル数(=115CH)分繰り返される。
 励起波長(2)についても同様にして、当該励起波長(2)に対応する分光波長(2)の第1チャネル(WL1)に対し、それぞれスキャンによるライン毎の各ブロック1_WLm、2_WLm、…、610_WLm(m=1)に対し、当該励起波長(2)に対応する分光波長(2)の各ライン上の位置(1、2、…、2440)の計測値が配置される。このブロック1_WLm、2_WLm、…、610_WLmが610ライン分繰り返されて(m=1~610)、励起波長(2)の第1チャネルに対する単位長方ブロックが形成される。そして、この単位長方ブロックが励起波長(2)における分光波長(2)のチャネル数(=92CH)分繰り返される。励起波長(3)および(4)についても同様である。
 これら、各励起波長(1)~(4)に対応する、各単位長方ブロックが分光波長のチャネル数分繰り返されたブロックが、図中に点線で示されるように順次接続されて、記憶部21に記憶される。なお、各励起波長(1)~(4)は、波長チャネル数が異なるため、各単位長方ブロックが分光波長のチャネル数分繰り返されたブロックのサイズは、各励起波長(1)~(4)で異なる。一方、各単位長方ブロックは、各ライン毎の同一のチャネルCHの分光データ(x,λ)により構成されるため、各励起波長(1)~(4)で同一のサイズとなる。
 図21Bは、図19Aで説明したデータ配列に基づき波長連結を行う例を示す模式図である。実施形態では、分光データ(x,λ)が、同一のチャネルCHについて、各ライン上の位置に応じて並べられたブロックが各ライン順に並べられて単位長方ブロックが形成され、この単位長方ブロックがチャネルCH順に並べられて、各励起波長(1)~(4)それぞれのデータが形成される。そのため、波長連結は、図21Bのセクション(a)に模式的に示されるように、各励起波長(1)~(4)それぞれのデータにおいて、各チャネルCHに対応する各単位長方ブロックに含まれる、対象のラインの各ブロックから、当該ライン上の対象の位置の各分光データ(x,λ)を読み出すことで行われる。
 図21Bのセクション(b)に、このように波長連結した画像を概略的に示す。この場合、画像の行方向(図中における水平方向)に、スキャンによるラインの各画素(2440(pix))がライン数(610ライン)分整列され、この行が全励起波長(1)~(4)によるチャネルCH数(波長チャネルCH=335CH)分繰り返された画像が形成される。
 実施形態では、各チャネルCHに対応する各単位長方ブロックに含まれる、対象のラインの各ブロックは、サイズが共通とされている。そのため、記憶部21に対するメモリアクセスが容易であり、上述した既存技術の例に対して効率的である。
(3-3-3.実施形態に係る処理の流れ)
 次に、実施形態に係る処理の流れについて説明する。図22A~図22Fは、実施形態に係る処理の流れについて説明するための模式図である。先ず、図22Aに示されるように、分光イメージング部30で取得された、スキャンによる1ライン分の分光データ(x,λ)が、処理ユニット2においてグラバーボード205に取り込まれ、グラバーボード205からバス210を介してCPU200に転送される(ステップS10、例えば図11のステップS101に対応)。分光データ(x,λ)は、CPU200においてブリッジ201を介してメモリ202に転送され、画像データ410としてメモリに記憶される。この画像データ410は、図16を用いて説明した、水平方向にライン上の位置を示し、垂直方向に分光波長の数を示す、フレーム400に対応する。
 次に、図22Bに示されるように、CPU200は、メモリ202に記憶される画像データ410をブリッジ201を介して読み出し、波長変換処理を実行する(ステップS11、例えば図11のステップS102に対応)。例えば、CPU200は、画像データ410の行方向の位置xにおける列方向のデータの位置yに応じて、当該データを波長およびその波長での輝度値のデータに変換する。CPU200は、波長および輝度値に変換されたデータを、ブリッジ201を介してメモリ202に転送する。メモリ202に転送されたこのデータは、波長変換データ411としてメモリ202に記憶される。このステップS11の処理は、スキャンのライン毎に実行される。
 ステップS11による処理が、スキャンによる610ライン分、繰り返されると、図22Cに示されるように、CPU200は、ブリッジ201を介してメモリ202から波長変換データ411を読み出し、図17を用いて説明したように、データの並び替えを行う(ステップS12)。この並び替え処理は、単位長方ブロック毎に、単位長方ブロックにおける画像順(画素順)に実行される。このCPU200によるデータの並び替え処理は、例えば図2に示した記憶部21の機能により実行される。
 CPU200は、並び替えたデータを、ブリッジ201を介してメモリ202に転送する。メモリ202に転送されたこのデータは、並び替えデータ412としてメモリ202に記憶される。並び替えデータ412は、図17を用いて説明した、水平方向にライン上の位置を示し、垂直方向にラインを示す単位長方ブロックを分光波長数分、含む。
 ステップS12による処理が、全ての単位長方ブロックについて終了すると、図22Dに示されるように、CPU200は、ブリッジ201を介してメモリ202から並び替えデータ412を読み出し、単位長方ブロック単位で上述した波長連結処理を行う(ステップS13、例えば図11のステップS105に対応)。CPU200は、波長連結された波長連結データ413を、ブリッジ201を介してメモリ202に転送する。波長連結データ413は、メモリ202に記憶される。
 次に、CPU200は、図22Eに示されるように、ブリッジ201を介して、メモリ202から単位長方ブロック単位で波長連結データ413を読み出す。CPU200は、メモリ202から読み出した波長連結データ413を、ブリッジ201およびバス210を介してGPGPUボード204に転送する(ステップS14)。GPGPUボード204は、転送された波長連結データ413に対して、単位長方ブロック単位で色分離処理を実行する(図11のステップS107に対応)。
 色分離処理は、例えば、組織302に対して励起光を照射して検出される蛍光から、当該組織302の自家蛍光による蛍光成分、および/または、隣接する波長領域による蛍光成分を分離する処理を含む。
 GPGPUボード204は、波長連結データ413に対して色分離を実行した色分離データ414を、バス210を介してCPU200に渡す(ステップS15)。CPU200は、GPGPUボード204から転送された色分離データ414を、ブリッジ201を介してメモリ202に転送する。色分離データ414は、メモリ202に記憶される。
 CPU200は、図22Fに示されるように、ブリッジ201を介して、メモリ202から波長連結データ413および色分離データ414を、単位長方ブロック単位で読み出す。CPU200は、メモリ202から読み出した波長連結データ413および色分離データ414を、バス210を介してストレージ装置203に転送する(ステップS16、ステップS17)。波長連結データ413および色分離データ414は、単位長方ブロック単位でストレージ装置203に記憶される(図11のステップS108に対応)。
 波長連結データ413および色分離データ414は、例えば、それぞれ図21Bのセクション(a)に示す形式でストレージ装置203に記憶される。
(3-4.データフォーマット例)
 次に、ストレージ装置203に記憶される波長連結データ413および色分離データ414のデータフォーマットの例について説明する。
(3-4-1.既存技術によるデータフォーマット例)
 図23は、既存技術によるデータフォーマットの例を示す図である。図23において、データは、ヘッダ部、波長部および本体部を含む。
 ヘッダ部は、識別子、バージョン、幅(pixel)、高さ(pixel)、波長CH数の各項目を含み、予備として空欄が設けられている。識別子は、データ型が固定長文字列「char」でデータ長が4バイトとされ、バージョン、幅(pixel)、高さ(pixel)および波長CH数は、それぞれデータ型が数値データ型「int」でデータ長が4バイトとされる。幅(pixel)は固定値であり、高さ(pixel)は、ハードウェアに依存する値である。また、波長CH数は、撮像条件により決まる値である。
 波長部は、それぞれデータ型が数値データ型「int」、データ長が4バイトである各波長CHの対応波長が格納される。番号#1が最小波長であり、番号#nが最大波長である。最小波長と最大波長との間に、番号と関連付けて各波長CHの波長が示される。
 本体部は、ライン、ピクセル(画素)および波長CH毎のデータ(輝度値)が格納される。本体部のデータは、ライン、ピクセル(画素)および波長CH毎に繰り返される繰り返しデータである。本体部の各データは、データ型が単精度浮動小数点数型「float」であり、それぞれデータ長が4バイト(32ビット)とされている。
(3-4-2.実施形態に係るデータフォーマット例)
 図24は、実施形態に係るデータフォーマットの例を示す図である。図24において、データは、図23のデータフォーマットに対してスケーリングファクタ部が追加されると共に、本体部のデータ型が変更されている。ヘッダおよび波長部については、図23に示した既存技術によるデータフォーマットと同一なので、ここでの説明を省略する。
 スケーリングファクタは、本体部に格納される各波長CHに対する輝度への変換係数が格納される。各波長CHに対する係数が、データ型が単精度浮動小数点数型「float」、データ長が4バイト(32ビット)のデータとして格納される。番号#1が最小波長であり、番号#nが最大波長であり、最小波長と最大波長との間に、番号と関連付けて各波長CHが割り当てられる。最小波長から最大波長までの各波長CHに対して、それぞれ係数が格納される。
 本体部は、図23に示した既存技術によるデータフォーマットと同様に、ライン、ピクセル(画素)および波長CH毎のデータ(輝度値)が格納される。本体部のデータは、ライン、ピクセル(画素)および波長CH毎に繰り返される繰り返しデータである。実施形態では、本体部の各データは、データ型が整数型「ushort(unsigned short)」であり、それぞれデータ長が2バイト(8ビット)とされている。
 このように、実施形態では、既存技術においてはデータ長が単精度浮動小数点数型「float」によりデータ長が4バイトのデータとして格納されていたライン、ピクセル(画素)および波長CH毎のデータを、スケーリングファクタ(係数)と、本体部とに分割して記憶する。このとき、スケーリングファクタを単精度浮動小数点数型「float」によるデータ長が4バイトのデータとして格納し、本体部におけるライン、ピクセル(画素)および波長CH毎のデータを、整数型「ushort」によるデータ長が2バイトのデータとして格納している。
 データの使用時には、本体部のデータに対して、スケーリングファクタにおける波長CHが対応する係数を乗じることで、元のデータの精度を復元できる。
 このように、データを係数と本体部とに分割し、本体部に格納される各データのデータ長を係数におけるデータ長より短くすることで、記憶するデータ量を削減することができる。
 なお、実施形態に適用可能なデータフォーマットは、図24に示した例に限定されない。例えば、ライン、ピクセル(画素)および波長CH毎のデータを、単精度浮動小数点数型「float」によるデータ長が4バイトのデータによるスケーリングファクタ(係数)と、整数型「ushort」によるデータ長が2バイトのオフセット値と、整数型「ushort」によるデータ長が2バイトの本体部(ライン、ピクセル(画素)および波長CH毎のデータ)とに分割し、負値を表現可能としてもよい。
 また、画像データの格納フォーマットとして、画像データを1バンドずつ格納するBSQ(Band Sequential)形式が知られている。このBSQ形式では、画像データを、取得時のビット深度でファイルに格納する。実施形態に係る技術分野の場合、抗体数など定量化の観点でデータ取得時のビット深度よりも深いビット深度でのデータ格納が必要となるため、このBSQ形式は、ビット精度面で満足できるものではない。
(4.実施形態に係る効果)
 次に、実施形態に係る効果について説明する。実施形態では、図20、図21Aおよび図21B、ならびに、図22A~図22Fを用いて説明したように、分光データ(x,λ)を単位長方ブロック単位で記憶、保存することができる。そのため、常に決まったデータサイズでの保存が可能となる。保存のデータサイズを固定的とすることで、色分離などの後段における処理の単位が定まり、後段の処理が容易となる。
 また、図24を用いて説明したように、実施形態では、データサイズが大きくなる、ライン、ピクセル(画素)および波長CH毎の、単精度浮動小数点数型「float」によるデータ長が4バイトのデータを、分光波長毎のスケーリングファクタ(係数)と、本体部とに分割して保存している。そして、スケーリングファクタを単精度浮動小数点数型「float」によるデータ長が4バイトのデータとし、本体部を整数型「ushort」によるデータ長が2バイトのデータとしている。これにより、保存するデータ量を削減することができる。また、1データ当たりのデータサイズが抑制されるため、色分離などの後段処理や、データ転送などにおいて扱いが容易となる。
 さらに、処理単位となる単位長方ブロックにおけるデータの並び順を「1ライン当たりの画素数(ピクセル数)×ライン数」とし、これを分光波長数分、接続することで、後段の色分離や圧縮処理、メモリアクセスのなどの点で効率化を図ることが可能となる。また、抗体数などの定量化が可能となる。
 例えば、JPEG(Joint Photographic Experts Group)、JPEG2000、HEVC(High Efficiency Video Codec)などに代表される画像の圧縮フォーマットでは、圧縮対象の画像は、画像順、すなわち幅×高さによる2次元情報が基本となる。実施形態によれば、分光データ(x,λ)が幅(ライン上の位置)と、高さ(ライン)とによる2次元情報に変換されるため、圧縮処理が容易である。
 また、実施形態によれば、図17を用いて説明したように、例えばスライドガラス300上の組織302の蛍光による2次元情報による画像処理を、記憶部21におけるメモリアクセス方向に従い画素データを読み込むことで実行できる。そのため、画像処理のためのメモリアクセスの高速化が可能である。さらに、実施形態に係るフレームは、スライドガラス300上の組織302の蛍光による2次元情報により構成されるため、当該2次元情報に対する画像処理を並列的に実行可能である。したがって、例えば画像処理のためのプロセッサのマルチコア化による並列処理が可能となり、処理のさらなる高速化が可能となる。
 一例として、単位ブロック(実施形態の場合は、波長CH数分の単位長方ブロックを含むブロック)の作成に要する時間は、実測例として、実施形態では既存技術に対して、下記のように短縮される。
励起波長が405(nm):467(ms)から345(ms)に短縮
励起波長が488(nm):382(ms)から336(ms)に短縮
励起波長が532(nm):333(ms)から249(ms)に短縮
励起波長が638(nm):224(ms)から168(ms)に短縮
 また、波長連結に要する時間は、実測例において、既存技術では345(ms)であるのに対し、実施形態では3×10-6(ms)であり、略1×108倍に短縮される。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 複数の蛍光波長それぞれについて撮像対象により生成された複数の蛍光画像を、前記撮像対象をスキャンするライン毎に撮像し、撮像した前記複数の蛍光画像のデータを、前記ラインの並び順で取得する撮像工程と、
 前記撮像工程により取得された前記複数の蛍光画像のデータの並び順を、前記ラインの並び順から前記複数の蛍光波長毎の並び順に変更する並び替え工程と、
を含む、データ生成方法。
(2)
 前記撮像工程は、
 前記複数の蛍光画像のデータを、前記ライン当たりの複数のピクセルと前記複数の蛍光波長との組み合わせに基づく並び順で取得し、
 前記並び替え工程は、
 前記撮像工程により取得された前記複数の蛍光画像のデータの前記並び順を、前記ライン当たりの複数のピクセルと前記スキャンによる複数の前記ラインとの組み合わせに基づく並び順に変更する、
前記(1)に記載のデータ生成方法。
(3)
 前記並び替え工程で並び順が変更された前記複数の蛍光画像のデータを記憶媒体に記憶する記憶工程をさらに含む、
前記(1)または(2)に記載のデータ生成方法。
(4)
 前記複数の蛍光画像のデータのそれぞれを、本体部と、前記本体部に対する係数を含む係数部と、に分割する分割工程、
をさらに含み、
 前記記憶工程は、
 それぞれ前記分割工程で前記係数部と前記本体部とに分割された前記複数の蛍光画像のデータを前記記憶媒体に記憶する、
前記(3)に記載のデータ生成方法。
(5)
 前記本体部に含まれる各データは、前記係数部に含まれる前記係数よりもビット長が短い、
前記(4)に記載のデータ生成方法。
(6)
 前記分割工程は、
 前記複数の蛍光画像のデータから、負値を表現するためのオフセット部をさらに分割し、
 前記記憶工程は、
 それぞれ前記分割工程で前記本体部と前記係数部と前記オフセット部とに分割された前記複数の蛍光画像のデータを前記記憶媒体に記憶する、
前記(4)または(5)に記載のデータ生成方法。
(7)
 前記記憶工程は、
 前記複数の蛍光画像のデータを、固定サイズのブロック毎に前記記憶媒体に記憶する、
前記(3)乃至(6)の何れかに記載のデータ生成方法。
(8)
 前記記憶工程は、
 前記複数の蛍光画像のデータを、前記複数の蛍光波長それぞれのチャネル毎に纏めた前記ブロック毎に、前記記憶媒体に記憶する、
前記(7)に記載のデータ生成方法。
(9)
 前記記憶媒体に記憶された前記複数の蛍光画像のデータを、前記複数の蛍光波長に含まれる蛍光波長毎に前記記憶媒体から読み出して連結する連結工程、
をさらに含む、前記(3)乃至(8)の何れかに記載のデータ生成方法。
(10)
 前記記憶媒体に記憶された前記複数の蛍光画像のデータから、前記撮像対象による自家蛍光および/または前記複数の蛍光画像のデータそれぞれの蛍光の成分を分離する分離工程、
をさらに含む、前記(3)乃至(9)の何れかに記載のデータ生成方法。
(11)
 前記記憶工程は、
 前記複数の蛍光画像を、前記複数の蛍光波長を順に接続して前記記憶媒体に記憶する、
前記(3)乃至(10)の何れかに記載のデータ生成方法。
(12)
 複数の蛍光波長それぞれについて撮像対象により生成された複数の蛍光画像を、前記撮像対象をスキャンするライン毎に撮像し、撮像した前記複数の蛍光画像のデータを、前記ラインの並び順で取得する撮像部と、
 前記撮像部により取得された前記複数の蛍光画像のデータの並び順を、前記ラインの並び順から前記複数の蛍光波長毎の並び順に変更する並び替え部と、
 前記並び替え部で並び順が変更された前記複数の蛍光画像のデータに対して画像処理を行う画像処理部と、
を備える、蛍光観察システム。
(13)
 前記並び替え部で並び順が変更された前記複数の蛍光画像のデータを記憶媒体に記憶する記憶部をさらに含む、
前記(12)に記載の蛍光観察システム。
(14)
 前記画像処理部は、
 前記記憶媒体に記憶された前記複数の蛍光画像のデータを、前記複数の蛍光波長に含まれる蛍光波長毎に前記記憶媒体から読み出して連結する画像処理を行う、
前記(13)に記載の蛍光観察システム。
(15)
 前記画像処理部は、
 前記記憶媒体に記憶された前記複数の蛍光画像のデータから、前記撮像対象による自家蛍光の成分を分離する画像処理を行う、
前記(13)または(14)に記載の蛍光観察システム。
(16)
 複数の蛍光波長それぞれについて撮像対象により生成された複数の蛍光画像を、前記撮像対象をスキャンするライン毎に撮像し、撮像した前記複数の蛍光画像のデータを、前記ラインの並び順で取得する撮像部により出力された前記複数の蛍光画像のデータの並び順を、前記ラインの並び順から前記複数の蛍光波長毎の並び順に変更する並び替え部と、
 前記並び替え部で並び順が変更された前記複数の蛍光画像のデータに対して画像処理を行う画像処理部と、
を備える、情報処理装置。
(17)
 前記並び替え部で並び順が変更された前記複数の蛍光画像のデータを記憶媒体に記憶する記憶部をさらに含む、
前記(16)に記載の情報処理装置。
(18)
 前記画像処理部は、
 前記記憶媒体に記憶された前記複数の蛍光画像のデータを、前記複数の蛍光波長に含まれる蛍光波長毎に前記記憶媒体から読み出して連結する前記画像処理を行う、
前記(17)に記載の情報処理装置。
(19)
 前記画像処理部は、
 前記記憶媒体に記憶された前記複数の蛍光画像のデータから、前記撮像対象による自家蛍光および/または前記複数の蛍光画像のデータそれぞれの蛍光の成分を分離する前記画像処理を行う、
前記(17)または(18)に記載の情報処理装置。
1 観察ユニット
2 処理ユニット
10 励起部
20 サンプルステージ
21 記憶部
22 データ校正部
23 画像形成部
30 分光イメージング部
32,32a,32b 撮像素子
200 CPU
201 ブリッジ
202 メモリ
203 ストレージ装置
302 組織
400,401 フレーム

Claims (19)

  1.  複数の蛍光波長それぞれについて撮像対象により生成された複数の蛍光画像を、前記撮像対象をスキャンするライン毎に撮像し、撮像した前記複数の蛍光画像のデータを、前記ラインの並び順で取得する撮像工程と、
     前記撮像工程により取得された前記複数の蛍光画像のデータの並び順を、前記ラインの並び順から前記複数の蛍光波長毎の並び順に変更する並び替え工程と、
    を含む、データ生成方法。
  2.  前記撮像工程は、
     前記複数の蛍光画像のデータを、前記ライン当たりの複数のピクセルと前記複数の蛍光波長との組み合わせに基づく並び順で取得し、
     前記並び替え工程は、
     前記撮像工程により取得された前記複数の蛍光画像のデータの前記並び順を、前記ライン当たりの複数のピクセルと前記スキャンによる複数の前記ラインとの組み合わせに基づく並び順に変更する、
    請求項1に記載のデータ生成方法。
  3.  前記並び替え工程で並び順が変更された前記複数の蛍光画像のデータを記憶媒体に記憶する記憶工程をさらに含む、
    請求項1に記載のデータ生成方法。
  4.  前記複数の蛍光画像のデータのそれぞれを、本体部と、前記本体部に対する係数を含む係数部と、に分割する分割工程、
    をさらに含み、
     前記記憶工程は、
     それぞれ前記分割工程で前記係数部と前記本体部とに分割された前記複数の蛍光画像のデータを前記記憶媒体に記憶する、
    請求項3に記載のデータ生成方法。
  5.  前記本体部に含まれる各データは、前記係数部に含まれる前記係数よりもビット長が短い、
    請求項4に記載のデータ生成方法。
  6.  前記分割工程は、
     前記複数の蛍光画像のデータから、負値を表現するためのオフセット部をさらに分割し、
     前記記憶工程は、
     それぞれ前記分割工程で前記本体部と前記係数部と前記オフセット部とに分割された前記複数の蛍光画像のデータを前記記憶媒体に記憶する、
    請求項4に記載のデータ生成方法。
  7.  前記記憶工程は、
     前記複数の蛍光画像のデータを、固定サイズのブロック毎に前記記憶媒体に記憶する、
    請求項3に記載のデータ生成方法。
  8.  前記記憶工程は、
     前記複数の蛍光画像のデータを、前記複数の蛍光波長それぞれのチャネル毎に纏めた前記ブロック毎に、前記記憶媒体に記憶する、
    請求項7に記載のデータ生成方法。
  9.  前記記憶媒体に記憶された前記複数の蛍光画像のデータを、前記複数の蛍光波長に含まれる蛍光波長毎に前記記憶媒体から読み出して連結する連結工程、
    をさらに含む、請求項3に記載のデータ生成方法。
  10.  前記記憶媒体に記憶された前記複数の蛍光画像のデータから、前記撮像対象による自家蛍光および/または前記複数の蛍光画像のデータそれぞれの蛍光の成分を分離する分離工程、
    をさらに含む、請求項3に記載のデータ生成方法。
  11.  前記記憶工程は、
     前記複数の蛍光画像を、前記複数の蛍光波長を順に接続して前記記憶媒体に記憶する、
    請求項3に記載のデータ生成方法。
  12.  複数の蛍光波長それぞれについて撮像対象により生成された複数の蛍光画像を、前記撮像対象をスキャンするライン毎に撮像し、撮像した前記複数の蛍光画像のデータを、前記ラインの並び順で取得する撮像部と、
     前記撮像部により取得された前記複数の蛍光画像のデータの並び順を、前記ラインの並び順から前記複数の蛍光波長毎の並び順に変更する並び替え部と、
     前記並び替え部で並び順が変更された前記複数の蛍光画像のデータに対して画像処理を行う画像処理部と、
    を備える、蛍光観察システム。
  13.  前記並び替え部で並び順が変更された前記複数の蛍光画像のデータを記憶媒体に記憶する記憶部をさらに含む、
    請求項12に記載の蛍光観察システム。
  14.  前記画像処理部は、
     前記記憶媒体に記憶された前記複数の蛍光画像のデータを、前記複数の蛍光波長に含まれる蛍光波長毎に前記記憶媒体から読み出して連結する画像処理を行う、
    請求項13に記載の蛍光観察システム。
  15.  前記画像処理部は、
     前記記憶媒体に記憶された前記複数の蛍光画像のデータから、前記撮像対象による自家蛍光および/または前記複数の蛍光画像のデータそれぞれの蛍光の成分を分離する画像処理を行う、
    請求項13に記載の蛍光観察システム。
  16.  複数の蛍光波長それぞれについて撮像対象により生成された複数の蛍光画像を、前記撮像対象をスキャンするライン毎に撮像し、撮像した前記複数の蛍光画像のデータを、前記ラインの並び順で取得する撮像部により出力された前記複数の蛍光画像のデータの並び順を、前記ラインの並び順から前記複数の蛍光波長毎の並び順に変更する並び替え部と、
     前記並び替え部で並び順が変更された前記複数の蛍光画像のデータに対して画像処理を行う画像処理部と、
    を備える、情報処理装置。
  17.  前記並び替え部で並び順が変更された前記複数の蛍光画像のデータを記憶媒体に記憶する記憶部をさらに含む、
    請求項16に記載の情報処理装置。
  18.  前記画像処理部は、
     前記記憶媒体に記憶された前記複数の蛍光画像のデータを、前記複数の蛍光波長に含まれる蛍光波長毎に前記記憶媒体から読み出して連結する前記画像処理を行う、
    請求項17に記載の情報処理装置。
  19.  前記画像処理部は、
     前記記憶媒体に記憶された前記複数の蛍光画像のデータから、前記撮像対象による自家蛍光および/または前記複数の蛍光画像のデータそれぞれの蛍光の成分を分離する前記画像処理を行う、
    請求項17に記載の情報処理装置。
PCT/JP2021/046262 2020-12-24 2021-12-15 データ生成方法、蛍光観察システムおよび情報処理装置 WO2022138374A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/258,279 US20240053267A1 (en) 2020-12-24 2021-12-15 Data generation method, fluorescence observation system, and information processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-215441 2020-12-24
JP2020215441 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138374A1 true WO2022138374A1 (ja) 2022-06-30

Family

ID=82159204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046262 WO2022138374A1 (ja) 2020-12-24 2021-12-15 データ生成方法、蛍光観察システムおよび情報処理装置

Country Status (2)

Country Link
US (1) US20240053267A1 (ja)
WO (1) WO2022138374A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193177A1 (ja) * 2020-03-27 2021-09-30 ソニーグループ株式会社 顕微鏡システム、撮像方法、および撮像装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230878A1 (ja) * 2018-05-30 2019-12-05 ソニー株式会社 蛍光観察装置及び蛍光観察方法
JP2020112378A (ja) * 2019-01-08 2020-07-27 エバ・ジャパン 株式会社 評価システム及び評価方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230878A1 (ja) * 2018-05-30 2019-12-05 ソニー株式会社 蛍光観察装置及び蛍光観察方法
JP2020112378A (ja) * 2019-01-08 2020-07-27 エバ・ジャパン 株式会社 評価システム及び評価方法

Also Published As

Publication number Publication date
US20240053267A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
JP7424286B2 (ja) 蛍光観察装置及び蛍光観察方法
US10151907B2 (en) Full-color three-dimennsional optical sectioning microscopic imaging system and method based on structured illumination
US20130126755A1 (en) Method and device for simultaneous multi-channel and multi-method acquisition of synchronized parameters in cross-system fluorescence lifetime applications
US20100053743A1 (en) Apparatus for real-time three-dimensional laser scanning microscopy, with detection of single- and multi-photon fluorescence and of higher order harmonics
US20130087718A1 (en) Confocal fluorescence lifetime imaging system
US20230138764A1 (en) Optimized photon collection for light-sheet microscopy
EP2828700A1 (en) Multi-color confocal microscope and imaging methods
WO2022138374A1 (ja) データ生成方法、蛍光観察システムおよび情報処理装置
WO2021177446A1 (en) Signal acquisition apparatus, signal acquisition system, and signal acquisition method
US7586107B2 (en) Photosensor-chip, laser-microscope comprising a photosensor-chip and method for reading a photosensor-chip
CN116249891A (zh) 探测发射光的方法、探测设备和激光扫描显微镜
JP2023517677A (ja) 蛍光スペクトル顕微鏡法のための高スループットスナップショットスペクトル符号化デバイス
US20240241056A1 (en) Methods, systems and apparatus for a multi-spectral structured illumination microscope
WO2021106772A1 (ja) 顕微鏡装置、分光器、および、顕微鏡システム
WO2022249583A1 (ja) 情報処理装置、生体試料観察システム及び画像生成方法
JP2006317261A (ja) 走査型サイトメータの画像処理方法及び装置
WO2022080189A1 (ja) 生体試料検出システム、顕微鏡システム、蛍光顕微鏡システム、生体試料検出方法及びプログラム
WO2022249598A1 (ja) 情報処理方法、情報処理装置、及びプログラム
JP2006527858A (ja) 蛍光検鏡のための方法
Splitter et al. Glossary (Terms Are Defined with Respect to Confocal Imaging)
CN113916859A (zh) 基于光谱解混技术的显微荧光高光谱成像方法
White et al. Fundamentals of fluorescence microscopy
Gao Development of Image Mapping Spectrometer (IMS) for hyperspectral microscopy
JPWO2020239981A5 (ja)
Chen et al. Dynamic reconfigurable spectral imaging microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18258279

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP