[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022244362A1 - 二次電池用負極および二次電池 - Google Patents

二次電池用負極および二次電池 Download PDF

Info

Publication number
WO2022244362A1
WO2022244362A1 PCT/JP2022/007290 JP2022007290W WO2022244362A1 WO 2022244362 A1 WO2022244362 A1 WO 2022244362A1 JP 2022007290 W JP2022007290 W JP 2022007290W WO 2022244362 A1 WO2022244362 A1 WO 2022244362A1
Authority
WO
WIPO (PCT)
Prior art keywords
portions
particle
negative electrode
secondary battery
carbon fiber
Prior art date
Application number
PCT/JP2022/007290
Other languages
English (en)
French (fr)
Inventor
陽祐 古池
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023522237A priority Critical patent/JPWO2022244362A1/ja
Priority to CN202280036183.5A priority patent/CN117321787A/zh
Publication of WO2022244362A1 publication Critical patent/WO2022244362A1/ja
Priority to US18/511,047 priority patent/US20240162447A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to negative electrodes for secondary batteries and secondary batteries.
  • the secondary battery includes a positive electrode, a negative electrode, and an electrolyte, and various studies have been made on the configuration of the secondary battery.
  • a porous conductive substrate carbon
  • a conductive material such as carbon nanotubes
  • an active material such as silicon
  • the porosity (porosity) of the negative electrode is defined (see, for example, Patent Document 1).
  • a conductive substrate in which carbon fibers derived from a fibrillar polymer are formed on a carbon paper, and silicon carbide derived from polysilane formed on the conductive substrate. are used (see, for example, Patent Document 2).
  • Copper current collectors and porous silicon having a three-dimensional network structure coated with a conductive substance such as a carbon material are used as materials for forming negative electrodes for lithium ion secondary batteries, and the porous silicon is defined (see, for example, Patent Document 3).
  • JP 2007-335283 A Japanese translation of PCT publication No. 2015-531977 JP 2012-084521 A
  • a negative electrode for a secondary battery and a secondary battery capable of obtaining excellent initial capacity characteristics, excellent swelling characteristics, excellent load characteristics and excellent cycle characteristics are desired.
  • a secondary battery negative electrode includes a plurality of first fiber portions, a plurality of particle portions, and a plurality of second fiber portions, and has a plurality of voids.
  • the plurality of first fiber portions are connected to each other to form a three-dimensional network structure having a plurality of voids, and each of the plurality of first fiber portions contains carbon as a constituent element.
  • the plurality of particle portions covers the surface of each of the plurality of first fiber portions, some of the plurality of particle portions are connected to each other, and each of the plurality of particle portions contains silicon as a constituent element.
  • At least some of the plurality of second fiber portions are connected to surfaces of the plurality of particle portions, and each of the plurality of second fiber portions contains carbon as a constituent element.
  • the average fiber diameter of the plurality of first fiber portions is 50 nm or more and 7000 nm or less
  • the average fiber diameter of the plurality of second fiber portions is 1 nm or more and 200 nm or less
  • the porosity is 42 volume % or more and 73 volume % or less.
  • a secondary battery of an embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolytic solution, and the negative electrode has the same configuration as the negative electrode for a secondary battery of the embodiment of the present technology described above. .
  • the secondary battery negative electrode includes the plurality of first fiber portions, the plurality of particle portions, and the plurality of second fiber portions described above. It has a plurality of voids and satisfies the above-described conditions regarding the average fiber diameter of the plurality of first fiber portions, the average fiber diameter of the plurality of second fiber portions, and the porosity, so that excellent initial Capacitance characteristics, excellent swelling characteristics, excellent load characteristics and excellent cycle characteristics can be obtained.
  • FIG. 2 is a cross-sectional view showing an enlarged configuration of each of the large-diameter carbon fiber portion, the small-diameter carbon fiber portion, and the particle portion shown in FIG. 1;
  • FIG. 4 is an enlarged sectional view showing the configuration of the battery element shown in FIG. 3;
  • FIG. 3 is a schematic diagram showing the configuration of a negative electrode for a secondary battery of Modification 1.
  • FIG. 10 is a schematic diagram showing the configuration of a negative electrode for a secondary battery of Modification 2;
  • FIG. 10 is a schematic diagram showing the configuration of a negative electrode for a secondary battery according to Modification 3;
  • FIG. 11 is a schematic diagram showing another configuration of the secondary battery negative electrode of Modification 3;
  • FIG. 10 is a schematic diagram showing still another configuration of the negative electrode for a secondary battery of Modification 3;
  • FIG. 3 is a block diagram showing the configuration of an application example of a secondary battery;
  • Negative electrode for secondary battery 1-1 Configuration 1-2. Manufacturing method 1-3. Action and effect 2 . Secondary Battery 2-1. Configuration 2-2. Operation 2-3. Manufacturing method 2-4. Action and effect 3. Modification 4. Applications of secondary batteries
  • Negative Electrode for Secondary Battery First, a negative electrode for a secondary battery (hereinafter simply referred to as “negative electrode”) according to an embodiment of the present technology will be described.
  • This negative electrode is used in a secondary battery, which is an electrochemical device.
  • the negative electrode may be used in electrochemical devices other than secondary batteries.
  • the type of other electrochemical device is not particularly limited, but is specifically a capacitor or the like.
  • the negative electrode absorbs and releases an electrode reactant during an electrode reaction in an electrochemical device such as the secondary battery described above.
  • the type of electrode reactant is not particularly limited, but specifically light metals such as alkali metals and alkaline earth metals.
  • Alkali metals include lithium, sodium and potassium, and alkaline earth metals include beryllium, magnesium and calcium.
  • FIG. 1 schematically shows the configuration of a negative electrode 10, which is an example of a negative electrode.
  • FIG. 2 is an enlarged cross-sectional configuration of each of the large-diameter carbon fiber portion 1, the small-diameter carbon fiber portion 2, and the particle portion 3 shown in FIG.
  • FIG. 2 shows cross sections of the large-diameter carbon fiber portion 1, the small-diameter carbon fiber portion 2, and the particle portion 3, which intersect the longitudinal directions of the large-diameter carbon fiber portion 1 and the small-diameter carbon fiber portion 2, respectively.
  • the negative electrode 10 includes a plurality of large-diameter carbon fiber portions 1, a plurality of small-diameter carbon fiber portions 2, a plurality of particle portions 3, and a plurality of voids. 10G. That is, since the negative electrode 10 does not include a current collector such as a metal foil (hereinafter referred to as a "metal current collector"), it is a so-called metal current collector-less electrode.
  • a current collector such as a metal foil (hereinafter referred to as a "metal current collector")
  • the plurality of large-diameter carbon fiber portions 1 are, as shown in FIG. Each of the large-diameter carbon fiber portions 1 has a fiber diameter D1 as shown in FIG. The plurality of large-diameter carbon fiber portions 1 are connected to each other to form a three-dimensional mesh structure having the above-described plurality of voids 10G.
  • FIG. 1 shows a case where each of the plurality of large-diameter carbon fiber portions 1 is linear in order to simplify the illustration.
  • the state (shape) of each of the plurality of large-diameter carbon fiber portions 1 is not particularly limited. state can be.
  • the plurality of large-diameter carbon fiber portions 1 are connected to each other to form a three-dimensional network structure, and more specifically, are randomly entangled with each other.
  • the plurality of large-diameter carbon fiber portions 1 may be bonded to each other via a carbide (not shown) such as a polymer compound, or via one or two or more small-diameter carbon fiber portions 2. They may be connected to each other.
  • the plurality of large-diameter carbon fiber portions 1 have a plurality of connection points, and the large-diameter carbon fiber portions 1 are electrically connected to each other at the connection points.
  • the average fiber diameter AD1 of the plurality of large-diameter carbon fiber portions 1 is 50 nm to 7000 nm. This is because the fiber diameter D1 is sufficiently large in the plurality of large-diameter carbon fiber portions 1 that are the main portion of the negative electrode 10 . As a result, a sufficient conductive network (three-dimensional network structure) is formed inside the negative electrode 10, so that the conductivity of the negative electrode 10 is improved.
  • the procedure for calculating the average fiber diameter AD1 is as described below. First, after recovering the negative electrode 10, the negative electrode 10 is washed using a washing solvent such as dimethyl carbonate. In addition, when the secondary battery provided with the negative electrode 10 is obtained, the negative electrode 10 is recovered by disassembling the secondary battery. Subsequently, the cross section of the negative electrode 10 is exposed by cutting the negative electrode 10 using an ion milling device or the like.
  • a scanning electron microscope (SEM) or a transmission electron microscope (TEM) is used to observe the cross section of the negative electrode 10 to obtain the observation result (observation image) of the cross section.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the fiber diameter D1 of each of the 20 large-diameter carbon fiber portions 1 is measured.
  • an average fiber diameter AD1 is obtained by calculating the average value of the 20 fiber diameters D1.
  • the average fiber length of each of the plurality of large-diameter carbon fiber portions 1 is not particularly limited. This is because if a plurality of large-diameter carbon fiber portions 1 having the average fiber diameter AD1 are connected to each other, a sufficient conductive network (three-dimensional network structure) is formed without depending on the fiber length.
  • Each of the plurality of large-diameter carbon fiber portions 1 contains carbon as a constituent element, and thus contains a so-called carbon-containing material.
  • This carbon-containing material is a general term for materials containing carbon as a constituent element.
  • the plurality of large-diameter carbon fiber portions 1 contain carbon paper. This is because the plurality of large-diameter carbon fiber portions 1 are sufficiently connected to each other and the average fiber diameter AD1 is sufficiently large, so that a sufficient conductive network (three-dimensional network structure) is formed.
  • the plurality of large-diameter carbon fiber portions 1 may be a material in which a plurality of fibrous carbon materials having the average fiber diameter AD1 described above are processed to form a three-dimensional network structure.
  • the type of fibrous carbon material is not particularly limited, but specific examples include vapor grown carbon fiber (VGCF) and carbon nanofiber (CNF).
  • the type of fibrous carbon material may be multi-walled carbon nanotubes (multi-walled carbon nanotubes (MWCNT)) such as double-walled carbon nanotubes (double-walled carbon nanotubes (DWCNT)).
  • the plurality of small-diameter carbon fiber portions 2 are, as shown in FIG.
  • Each of the small-diameter carbon fiber portions 2 has a fiber diameter D2, as shown in FIG.
  • D2 fiber diameter
  • each of the plurality of small-diameter carbon fiber portions 2 is fixed to the surface of the plurality of particle portions 3 , it is connected to the surface of the plurality of particle portions 3 .
  • FIG. 1 shows a case where each of the plurality of small-diameter carbon fiber portions 2 is linear in order to simplify the illustration.
  • the state (shape) of each of the plurality of small-diameter carbon fiber portions 2 is not particularly limited, similarly to the case described above regarding the state of the plurality of large-diameter carbon fiber portions 1 .
  • the negative electrode 10 includes a plurality of large-diameter carbon fiber portions 1 and a plurality of small-diameter carbon fiber portions 2 is that the plurality of large-diameter carbon fiber portions 1 form a conductive network and the plurality of small-diameter carbon fiber portions This is because the portion 2 also forms a dense conductive network, so that the conductivity of the negative electrode 10 is significantly improved.
  • part or all of the plurality of small-diameter carbon fiber portions 2 each include two or more large-diameter carbon fibers through a portion of the plurality of particle portions 3. It is preferably connected to each of the parts 1 . This is because two or more large-diameter carbon fiber portions 1 are electrically connected to each other via the small-diameter carbon fiber portion 2R. As a result, a denser conductive network is formed, so that the conductivity of the negative electrode 10 is further improved.
  • the average fiber diameter AD2 of the plurality of small-diameter carbon fiber portions 2 is smaller than the average fiber diameter AD1 of the plurality of large-diameter carbon fiber portions 1, specifically 1/10000 of the average fiber diameter AD1. to 1/2, preferably 1/300 to 1/5.
  • the average fiber diameter AD2 is 1 nm to 200 nm.
  • the average fiber diameter AD2 is sufficiently smaller than the average fiber diameter AD1. This is because the small-diameter carbon fiber portions 2 are easily dispersed. As a result, a dense conductive network is formed by the plurality of small-diameter carbon fiber portions 2, so that the conductivity of the negative electrode 10 is further improved.
  • the procedure for calculating the average fiber diameter AD2 is to measure the fiber diameter D2 of each of 20 arbitrary small-diameter carbon fiber portions 2, and then take the average value of the 20 fiber diameters D2 as the average fiber diameter AD2. Except for this, the procedure for calculating the average fiber diameter AD1 is the same as described above. However, when the fiber diameter D2 is small, it is preferable to use a TEM rather than a SEM to observe the cross section of the negative electrode 10 .
  • the average fiber length of each of the plurality of small-diameter carbon fiber portions 2 is not particularly limited. This is because if a plurality of small-diameter carbon fiber portions 2 having the average fiber diameter AD2 are present inside the negative electrode 10, a dense conductive network is formed independently of the fiber length.
  • each of the plurality of small-diameter carbon fiber portions 2 contains carbon as a constituent element
  • each of the plurality of large-diameter carbon fiber portions 1 contains a carbon-containing material.
  • each of the plurality of small-diameter carbon fiber portions 2 contains fibrous carbon materials such as carbon nanotubes, vapor grown carbon fibers (VGCF), and carbon nanofibers (CNF). This is because the plurality of small-diameter carbon fiber portions 2 are easily dispersed sufficiently inside the negative electrode 10 and a dense conductive network is easily formed.
  • fibrous carbon materials such as carbon nanotubes, vapor grown carbon fibers (VGCF), and carbon nanofibers (CNF).
  • the type of carbon nanotube is not particularly limited, it may be a single-walled carbon nanotube (single-walled carbon nanotube (SWCNT)) or a multi-walled carbon nanotube (MWCNT).
  • SWCNT single-walled carbon nanotube
  • MWCNT multi-walled carbon nanotube
  • DWCNT double-walled carbon nanotubes
  • each of the plurality of small-diameter carbon fiber portions 2 is preferably one or both of single-walled carbon nanotubes and vapor-grown carbon fibers. This is because the average fiber diameter AD2 is sufficiently small, so that the plurality of small-diameter carbon fiber portions 2 are sufficiently dispersed inside the negative electrode 10 and a denser conductive network is formed.
  • the plurality of particle portions 3 cover the surface of each of the plurality of large-diameter carbon fiber portions 1 and have an average particle diameter AP1.
  • Each of the plurality of particle portions 3 has a particle size P1 as shown in FIG.
  • the plurality of particle portions 3 are so-called primary particles 3A, and some or all of the plurality of particle portions 3 (the plurality of primary particles 3A) are connected to each other. That is, some or all of the plurality of primary particles 3A form a plurality of aggregates (secondary particles 3B) by being densely packed together.
  • a plurality of pores 3G are formed inside the secondary particles 3B, and the pores 3G are gaps between the plurality of primary particles 3A. The inner diameter of this pore 3G is smaller than the inner diameter of the gap 10G.
  • the number of primary particles 3A forming secondary particles 3B is not particularly limited as long as it is two or more. Also, the number of secondary particles 3B is not particularly limited as long as it is two or more.
  • FIG. 2 shows a case where a plurality of secondary particles 3B are formed.
  • the average particle size AP1 described above is the average particle size of the secondary particles 3B.
  • the plurality of particle portions 3 may cover the entire surface of each of the plurality of large-diameter carbon fiber portions 1, or may cover only a portion of the surface of each of the plurality of large-diameter carbon fiber portions 1. You may have In the latter case, the plurality of particle portions 3 may cover the surface of the large-diameter carbon fiber portion 1 at a plurality of locations separated from each other. In order to simplify the illustration, FIG. 1 shows a case where a plurality of particle portions 3 partially cover the surface of each of the plurality of large-diameter carbon fiber portions 1 .
  • each of the plurality of large-diameter carbon fiber portions 1 having a relatively large average fiber diameter AD1 has its surface covered with a plurality of particle portions 3, whereas each of the plurality of large-diameter carbon fiber portions 1 has a relatively small average fiber diameter AD2.
  • the surface of each of the plurality of small-diameter carbon fiber portions 2 having is not covered with the plurality of particle portions 3 .
  • the reason why the negative electrode 10 includes a plurality of particle portions 3 is that the electrode reactant is easily occluded and released while a high energy density is obtained.
  • each of the plurality of particle portions 3 contains a silicon-containing material, which will be described later, a high energy density can be obtained.
  • the plurality of particle portions 3 cover the surface of each of the plurality of large-diameter carbon fiber portions 1, the initial inner diameters of the plurality of gaps 10G formed by the plurality of large-diameter carbon fiber portions 1 are randomly narrowed.
  • a plurality of gaps 10G having different inner diameters are likely to be formed in the completed negative electrode 10, so that the electrode reactant can easily move through the plurality of gaps 10G.
  • the electrode reactant can move smoothly. Therefore, during the electrode reaction of the negative electrode 10, the electrode reactant is easily occluded and released.
  • secondary particles 3B are formed by a plurality of particle portions 3 (primary particles 3A), and a plurality of pores having an inner diameter smaller than the inner diameter of the voids 10G are formed inside the secondary particles 3B.
  • 3G is formed. That is, the negative electrode 10 has two types of spaces with different sizes inside, that is, it has a gap 10G with a relatively large inner diameter and a pore 3G with a relatively small inner diameter.
  • the voids 10G but also the pores 3G are utilized to suppress the expansion and contraction of the particle portion 3, and similarly, not only the voids 10G but also the pores 3G are utilized to produce the electrode reactant. Easier to move.
  • the average particle size AP1 of the plurality of particle portions 3 is not particularly limited, it is preferably from 30 nm to 2000 nm. Since the surface coverage of each of the plurality of large-diameter carbon fiber portions 1 by the plurality of particle portions 3 is sufficiently large, sufficient energy density can be obtained in the negative electrode 10 while ensuring the conductivity of the negative electrode 10. is.
  • the procedure for calculating the average particle diameter AP1 is as described below. First, an observation result (observation image) of the cross section of the negative electrode 10 is acquired by the same procedure as in the case of calculating the average fiber diameter AD1 described above. Subsequently, after selecting arbitrary ten particle portions 3, the particle size P1 of each of the ten particle portions 3 is measured. In addition, when the particle size P1 differs depending on the location in one particle portion 3, the minimum value of the particle size P1 is selected. Finally, an average particle diameter AP1 is obtained by calculating the average value of the ten particle diameters P1.
  • each of the plurality of particle portions 3 contains silicon as a constituent element, and thus contains a so-called silicon-containing material. This is because silicon has an excellent ability to absorb and desorb electrode reactants, so that a high energy density can be obtained.
  • the silicon-containing material is a general term for materials containing silicon as a constituent element. Therefore, the silicon-containing material may be a simple substance of silicon, a silicon alloy, a silicon compound, a mixture of two or more of them, or a material containing one or more of these phases. It's okay. However, the simple substance of silicon may contain trace amounts of impurities. That is, the purity of simple silicon may not be 100%. These impurities include impurities that are unintentionally included in the manufacturing process of elemental silicon and oxides that are unintentionally formed due to oxygen in the atmosphere. The content of impurities in simple silicon is preferably as small as possible, more preferably 5% by weight or less.
  • the silicon alloy contains, as constituent elements other than silicon, any one of metal elements such as tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium, or Contains two or more.
  • the silicon compound contains one or more of nonmetallic elements such as carbon and oxygen as constituent elements other than silicon.
  • the silicon compound may further contain, as constituent elements other than silicon, one or more of the series of metal elements described with respect to the silicon alloy.
  • silicon alloys are Mg2Si , Ni2Si , TiSi2, MoSi2 , CoSi2, NiSi2 , CaSi2 , CrSi2 , Cu5Si , FeSi2 , MnSi2 , NbSi2 , TaSi2 , VSi 2 , WSi2 , ZnSi2 and SiC.
  • the composition of the silicon alloy (mixing ratio of silicon and metal elements) can be changed arbitrarily.
  • silicon compounds include SiB 4 , SiB 6 , Si 3 N 4 , Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2) and LiSiO.
  • the range of v may be 0.2 ⁇ v ⁇ 1.4.
  • the silicon-containing material is preferably silicon alone. This is because a higher energy density can be obtained.
  • the content of silicon in each of the plurality of particle portions 3, that is, the content (purity) of silicon in the silicon-containing material is not particularly limited, but is preferably 80% by weight or more. % to 100% by weight. This is because a significantly high energy density can be obtained.
  • Weight ratio M that is the ratio of the weight M3 of the plurality of particle portions 3 to the sum of the weight M1 of the plurality of large-diameter carbon fiber portions 1, the weight M2 of the plurality of small-diameter carbon fiber portions 2, and the weight M3 of the plurality of particle portions 3 (% by weight) is not particularly limited, but is preferably from 40% by weight to 76% by weight.
  • the procedure for calculating the weight ratio M is as described below. First, after recovering the negative electrode 10, the negative electrode 10 is washed using a washing solvent such as dimethyl carbonate. Subsequently, the weights M1, M2, and M3 are obtained by analyzing the negative electrode 10 using a thermogravimetric differential thermal analysis method (TG-DTA). Any TG-DTA device can be used to analyze the negative electrode 10 .
  • TG-DTA thermogravimetric differential thermal analysis method
  • the weight loss when the heating temperature was increased to about 450° C. became the weight of the electrolyte and the binder, and the heating temperature was increased from about 450° C. to about 1350° C.
  • the amount of weight reduction at this time becomes the weight (weight M1, M2) of the carbon component (the plurality of large-diameter carbon fiber portions 1 and the plurality of small-diameter carbon fiber portions 2).
  • the weight of the residual component becomes the weight (weight M3) of the silicon component (plurality of particles 3).
  • the temperature (approximately 450°C) at which the amount of weight loss caused by the electrolytic solution or the like is detected may vary depending on the type of binder. Specifically, when the binder is polyvinylidene fluoride, the vanishing temperature is approximately 460° C., assuming that the minimum value of the differential curve of DTA is the vanishing temperature.
  • the weight ratio M is calculated based on the above formula.
  • each of the plurality of particle portions 3 may be further covered with a coating layer.
  • the coating layer contains one or more of conductive materials such as carbon-containing materials and metal materials. This is because the conductivity of the negative electrode 10 is further improved. Details regarding the carbon-containing material are provided above.
  • the type of metal material is not particularly limited.
  • a silane coupling agent When forming this coating layer, a silane coupling agent, a polymer-based material, and the like are used. This is to allow the surface of the particle portion 3 to be sufficiently covered with the coating layer. By sufficiently covering the surface of the particle portion 3 with the coating layer, the decomposition reaction of the electrolytic solution on the surface of the particle portion 3 containing the silicon-containing material is suppressed.
  • the negative electrode 10 since the negative electrode 10 includes a three-dimensional network structure formed by a plurality of large-diameter carbon fiber portions 1, it has a plurality of voids 10G.
  • the porosity R of the negative electrode 10 determined based on the plurality of voids 10G is 42% by volume to 73% by volume. Since the existence amount of the plurality of voids 10G inside the negative electrode 10 is optimized, even if each of the plurality of particle portions 3 containing the silicon-containing material expands and contracts during the electrode reaction, the expansion and contraction are caused by the expansion and contraction. This is because the internal stress (strain) generated by the gaps 10G is appropriately relaxed. As a result, the expansion and contraction of the particle portion 3 is suppressed even if the electrode reaction is repeated, and thus the deterioration of the negative electrode 10 is suppressed.
  • the deterioration of the negative electrode 10 includes chipping and cutting of the large-diameter carbon fiber portion 1, chipping and breakage of the small-diameter carbon fiber portion 2, collapse and falling off of the particle portion 3, and the like.
  • the procedure for calculating the porosity R is as described below. After collecting and washing the negative electrode 10 by the same procedure as for calculating the average fiber diameter AD1 described above, a three-dimensional image of the negative electrode 10 is obtained using a focused ion beam scanning electron microscope (FIB-SEM). Then, the porosity R is calculated based on the three-dimensional image using image analysis processing.
  • image analysis processing GeoDict, an innovative material development comprehensive package software manufactured by Math2Market GmbH, can be used.
  • the negative electrode 10 may further contain one or more of other materials.
  • the type of other material is not particularly limited, but specifically, it is a binder and the like. This is because the plurality of large-diameter carbon fiber portions 1, the plurality of small-diameter carbon fiber portions 2, and the plurality of particle portions 3 are strongly connected to each other via the binder, so that a strong conductive network is formed. .
  • This binder contains one or more of polymer compounds, specific examples of which are polyimide, polyvinylidene fluoride, polyacrylic acid, styrene-butadiene rubber, and carboxymethyl cellulose. and so on.
  • polymer compounds specific examples of which are polyimide, polyvinylidene fluoride, polyacrylic acid, styrene-butadiene rubber, and carboxymethyl cellulose. and so on.
  • some of the plurality of small-diameter carbon fiber portions 2 may be free without being linked to the surface of the particle portion 3 .
  • This negative electrode 10 is manufactured by the procedure described below. Here, a case of using carbon paper as the plurality of large-diameter carbon fiber portions 1 will be described.
  • carbon paper which is a plurality of large-diameter carbon fiber portions 1
  • a three-dimensional network structure having a plurality of voids 10G is formed.
  • the silicon-containing material powder is put into the solvent.
  • the silicon-containing material powder is dispersed in the solvent to prepare a first dispersion.
  • This solvent may be an aqueous solvent or a non-aqueous solvent (organic solvent).
  • a binder may be added to the solvent. Details regarding this binder are as described above.
  • a plurality of small-diameter carbon fiber portions 2 are put into another solvent.
  • the plurality of small-diameter carbon fiber portions 2 are dispersed in the solvent to prepare a second dispersion.
  • a binder may be added to the solvent. Details regarding each of the solvent and binder are provided above.
  • This dispersion liquid contains a plurality of small-diameter carbon fiber portions 2 together with the silicon-containing material powder, as described above.
  • the dispersion liquid is dried.
  • the inside of the plurality of large-diameter carbon fiber portions 1 is impregnated with the dispersion liquid, so that the silicon-containing material powder is fixed on the surface of each of the plurality of large-diameter carbon fiber portions 1, and the plurality of small-diameter carbon fibers Part 2 adheres to the surface of the powder of silicon-containing material.
  • the plurality of large-diameter carbon fiber portions 1 may be immersed in the dispersion.
  • the inner diameters of some or all of the plurality of voids 10G are reduced.
  • the porosity R) of is reduced.
  • the initial porosity R is set to be sufficiently large, even if a plurality of particle portions 3 are formed, some or all of the plurality of voids 10G remain without disappearing.
  • the porosity R can be calculated even after the particle portion 3 is formed. That is, the porosity R can be controlled by adjusting the concentration of the silicon-containing material in the first dispersion.
  • the negative electrode 10 including a plurality of large-diameter carbon fiber portions 1, a plurality of small-diameter carbon fiber portions 2, and a plurality of particle portions 3 is produced.
  • the plurality of small-diameter carbon fiber portions 2 When connecting a plurality of small-diameter carbon fiber portions 2 to the surfaces of the plurality of particle portions 3, the plurality of small-diameter carbon fiber portions 2 are indirectly formed on the surfaces of the plurality of particle portions 3 using a dispersion liquid.
  • the plurality of small-diameter carbon fiber portions 2 may be directly formed on the surfaces of the plurality of particle portions 3 .
  • the plurality of small-diameter carbon fiber portions 2 are grown using chemical vapor deposition (CVD) or the like. As a result, each of the plurality of small-diameter carbon fiber portions 2 is firmly connected to the surfaces of the plurality of particle portions 3, so that a strong conductive network is formed.
  • the negative electrode 10 is pressed using a press or the like, and then the negative electrode 10 is fired.
  • the porosity R can be controlled by adjusting the press pressure.
  • the firing temperature can be set arbitrarily.
  • the negative electrode 10 including a plurality of large-diameter carbon fiber portions 1, a plurality of small-diameter carbon fiber portions 2, a plurality of particle portions 3, and having a plurality of voids 10G.
  • the weight ratio M can be controlled by adjusting the concentration of the silicon-containing material in the first dispersion and the concentration of the plurality of small-diameter carbon fiber portions 2 in the second dispersion. is.
  • a plurality of carbon fiber portions 1 having the plurality of particle portions 3 formed thereon are obtained.
  • a paper manufacturing process using a large-diameter carbon fiber portion 1 and a plurality of small-diameter carbon fiber portions 2 may be used.
  • a wet process such as papermaking may be used, or a dry process using a web or the like may be used.
  • the negative electrode 10 including a plurality of large-diameter carbon fiber portions 1, a plurality of small-diameter carbon fiber portions 2 and a plurality of particle portions 3 and having a plurality of voids 10G is produced.
  • this negative electrode 10 includes a plurality of large-diameter carbon fiber portions 1, a plurality of small-diameter carbon fiber portions 2, and a plurality of particle portions 3, and has a plurality of voids 10G.
  • Each of the fiber portion 1 and the plurality of small-diameter carbon fiber portions 2 contains a carbon-containing material
  • each of the plurality of particle portions 3 contains a silicon-containing material
  • each of the average fiber diameters AD1 and AD2 and the porosity R are appropriate. , resulting in a series of effects that are described below.
  • a plurality of large-diameter carbon fiber portions 1 containing a conductive carbon-containing material form a conductive network (three-dimensional network structure), and a conductive carbon-containing material is also formed.
  • a dense conductive network is also formed by the plurality of small-diameter carbon fiber portions 2 containing material.
  • each of the plurality of particle portions 3 contains a silicon-containing material that is excellent in absorbing and releasing the electrode reactant, a high energy density can be obtained.
  • each of the plurality of particle portions 3 contains a silicon-containing material
  • the internal stress generated inside the negative electrode 10 during the electrode reaction that is, during the expansion and contraction of each of the plurality of particle portions 3, may Since the space 10G is used for relaxation, expansion and contraction of the negative electrode 10 are suppressed. This suppresses deterioration of the negative electrode 10 due to internal stress generated during expansion and contraction of each of the plurality of particle portions 3 .
  • the content of silicon in the silicon-containing material is high, the expansion and contraction of the negative electrode 10 is sufficiently suppressed, so deterioration of the negative electrode 10 is effectively suppressed.
  • secondary particles 3B are formed by a plurality of particle portions 3 (primary particles 3A), and a plurality of pores 3G are formed inside the secondary particles 3B. Not only the gaps 10G but also the pores 3G are used to suppress the expansion and contraction of the particle part 3, and similarly the electrode reactants are easily moved by using not only the gaps 10G but also the pores 3G.
  • the expansion and contraction of the negative electrode 10 is suppressed during the electrode reaction while ensuring the energy density and the absorption and release properties of the electrode reactant, and the discharge capacity is less likely to decrease even if the electrode reaction is repeated. Become. Therefore, in a secondary battery using negative electrode 10, excellent initial capacity characteristics, excellent swelling characteristics, excellent load characteristics, and excellent cycle characteristics can be obtained.
  • the negative electrode 10 described above does not require a metal current collector, it is possible to reduce the weight and increase the weight energy density (Wh/kg) as compared with the case where the metal current collector is used. You can also let
  • the weight ratio M is 40% by weight to 76% by weight
  • the weight of the carbon component (the plurality of large-diameter carbon fiber portions 1 and the plurality of small-diameter carbon fiber portions 2) and the silicon component (the plurality of particles) in the negative electrode 10 The relationship with the weight of part 3) is optimized. Therefore, a sufficient energy density can be obtained while the conductivity is ensured, so that a higher effect can be obtained.
  • each of the plurality of particle portions 3 is 80% by weight or more, a significantly high energy density can be obtained while ensuring conductivity, so that a higher effect can be obtained. can.
  • the two or more large-diameter carbon fiber portions 1 are electrically connected to each other via small-diameter carbon fiber portions 2 . Therefore, a denser conductive network is formed, and a higher effect can be obtained.
  • the conductive network tends to be sparse. Moreover, since the particle portion 3 containing the silicon-containing material expands and contracts during the electrode reaction, the conductive network is likely to be broken. However, as described above, some or all of the plurality of small-diameter carbon fiber portions 2 are connected to each of the two or more small-diameter carbon fiber portions 2 via a portion of the plurality of particle portions 3. When there is, a dense conductive network is likely to be formed, and the conductive network is less likely to be broken.
  • the average particle size AP1 of the plurality of particle portions 3 is 30 nm to 2000 nm, a sufficient energy density can be obtained while ensuring electrical conductivity, so a higher effect can be obtained.
  • the plurality of large-diameter carbon fiber portions 1 contain carbon paper, the plurality of large-diameter carbon fiber portions 1 are sufficiently connected to each other, and the average fiber diameter AD1 is sufficiently large. Therefore, since a sufficient conductive network (three-dimensional network structure) is formed, a higher effect can be obtained.
  • the average fiber diameter AD2 is sufficiently small. Therefore, the plurality of small-diameter carbon fiber portions 2 can be sufficiently dispersed in the interior of the negative electrode 10, and a denser conductive network can be easily formed, so that a higher effect can be obtained.
  • the secondary battery described here is, as described above, a secondary battery in which the battery capacity is obtained by utilizing the absorption and release of the electrode reactant. I have.
  • the type of electrode reactant is not particularly limited as described above.
  • lithium ion secondary battery A secondary battery whose battery capacity is obtained by utilizing the absorption and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is intercalated and deintercalated in an ionic state.
  • the charge capacity of the negative electrode is larger than the discharge capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent electrode reactants from depositing on the surface of the negative electrode during charging.
  • FIG. 3 shows a perspective configuration of a secondary battery.
  • FIG. 4 is an enlarged sectional view of the battery element 30 shown in FIG. However, FIG. 3 shows a state in which the exterior film 20 and the battery element 30 are separated from each other, and FIG. 4 shows only part of the battery element 30 . 1 and 2, which have already been described, and the constituent elements of the negative electrode 10, which have already been described.
  • this secondary battery includes an exterior film 20, a battery element 30, a positive electrode lead 41, a negative electrode lead 42, and sealing films 51 and 52.
  • the secondary battery described here is a laminated film type secondary battery using a flexible (or flexible) exterior film 20 .
  • the exterior film 20 is a flexible exterior member that houses the battery element 30, and has a sealed bag-like structure with the battery element 30 housed inside. is doing. Therefore, the exterior film 20 accommodates the electrolytic solution together with the positive electrode 31 and the negative electrode 32, which will be described later.
  • the exterior film 20 is a single film-like member and is folded in the folding direction F.
  • the exterior film 20 is provided with a recessed portion 20U (so-called deep drawn portion) for housing the battery element 30 .
  • the exterior film 20 is a three-layer laminate film in which a fusion layer, a metal layer, and a surface protection layer are laminated in this order from the inside, and when the exterior film 20 is folded, they face each other. Outer peripheral edge portions of the fusion layer are fused together.
  • the fusible layer contains a polymer compound such as polypropylene.
  • the metal layer contains a metal material such as aluminum.
  • the surface protective layer contains a polymer compound such as nylon.
  • the configuration (number of layers) of the exterior film 20 is not particularly limited, and may be one layer, two layers, or four layers or more.
  • the battery element 30 is a power generating element including a positive electrode 31, a negative electrode 32, a separator 33 and an electrolytic solution (not shown), as shown in FIGS. there is
  • the battery element 30 is a so-called laminated electrode body
  • the positive electrode 31 and the negative electrode 32 are laminated with the separator 33 interposed therebetween.
  • the number of laminations of each of the positive electrode 31, the negative electrode 32 and the separator 33 is not particularly limited.
  • a plurality of positive electrodes 31 and a plurality of negative electrodes 32 are alternately stacked with separators 33 interposed therebetween.
  • the positive electrode 31 includes a positive electrode current collector 31A and a positive electrode active material layer 31B, as shown in FIG.
  • the positive electrode current collector 31A has a pair of surfaces on which the positive electrode active material layer 31B is provided.
  • the positive electrode current collector 31A contains a conductive material such as a metal material, and a specific example of the metal material is aluminum.
  • the positive electrode current collector 31A includes protruding portions 31AT not provided with the positive electrode active material layer 31B, and the plurality of protruding portions 31AT are formed in the shape of a single lead. are joined together.
  • the projecting portion 31AT is integrated with portions other than the projecting portion 31AT.
  • the projecting portion 31AT is separate from the portion other than the projecting portion 31AT, it may be joined to the portion other than the projecting portion 31AT.
  • the positive electrode active material layer 31B contains one or more of positive electrode active materials capable of intercalating and deintercalating lithium. However, the positive electrode active material layer 31B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductor.
  • the positive electrode active material layer 31B is provided on both sides of the positive electrode current collector 31A.
  • the positive electrode active material layer 31B may be provided only on one side of the positive electrode current collector 31A on the side where the positive electrode 31 faces the negative electrode 32 .
  • a method for forming the positive electrode active material layer 31B is not particularly limited, but specifically, one or more of coating methods and the like are used.
  • the type of positive electrode active material is not particularly limited, it is specifically a lithium-containing compound.
  • This lithium-containing compound is a compound containing lithium and one or more transition metal elements as constituent elements, and may further contain one or more other elements as constituent elements.
  • the type of the other element is not particularly limited as long as it is an element other than lithium and transition metal elements, but specifically, it is an element belonging to Groups 2 to 15 in the long period periodic table.
  • the type of lithium-containing compound is not particularly limited, but specific examples include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds.
  • oxides include LiNiO2 , LiCoO2 , LiCo0.98Al0.01Mg0.01O2 , LiNi0.5Co0.2Mn0.3O2 , LiNi0.8Co0.15Al0.05O2 , LiNi0.33Co0.33Mn0.33Mn0.33O2 .
  • 1.2Mn0.52Co0.175Ni0.1O2 Li1.15 ( Mn0.65Ni0.22Co0.13 ) O2 and LiMn2O4 .
  • _ _ Specific examples of phosphoric acid compounds include LiFePO4 , LiMnPO4 , LiFe0.5Mn0.5PO4 and LiFe0.3Mn0.7PO4 .
  • the positive electrode binder contains one or more of synthetic rubber and polymer compounds.
  • synthetic rubbers include styrene-butadiene rubber, fluororubber, and ethylene propylene diene.
  • polymer compounds include polyvinylidene fluoride, polyimide and carboxymethylcellulose.
  • the positive electrode conductive agent contains one or more of conductive materials such as carbon materials, and specific examples of the carbon materials include graphite, carbon black, acetylene black, ketjen black, and carbon nanotubes. and so on.
  • the conductive material may be a metal material, a polymer compound, or the like.
  • the negative electrode 32 faces the positive electrode 31 with the separator 33 interposed therebetween, and is capable of intercalating and deintercalating lithium. Since this negative electrode 32 has the same structure as the negative electrode 10 described above, it includes a plurality of large-diameter carbon fiber portions 1 , a plurality of small-diameter carbon fiber portions 2 and a plurality of particle portions 3 . In this negative electrode 32 , lithium is mainly intercalated and deintercalated in each of the plurality of particle portions 3 . However, lithium may be absorbed and discharged not only in each of the plurality of particle portions 3 but also in one or both of the plurality of large-diameter carbon fiber portions 1 and the plurality of small-diameter carbon fiber portions 2 .
  • the negative electrode 32 includes projections 31AT made of part of the large-diameter carbon fiber portions 1 not provided with the plurality of particle portions 3.
  • the projections 31AT are They are joined together so as to form a single lead.
  • the separator 33 is an insulating porous film interposed between the positive electrode 31 and the negative electrode 32, as shown in FIG. Allows lithium ions to pass through.
  • This separator 33 contains a polymer compound such as polyethylene.
  • the electrolyte is impregnated in each of the positive electrode 31, the negative electrode 32 and the separator 33, and contains a solvent and an electrolyte salt.
  • the solvent contains one or more of non-aqueous solvents (organic solvents) such as a carbonate-based compound, a carboxylic acid ester-based compound, and a lactone-based compound, and includes the non-aqueous solvent.
  • non-aqueous solvents organic solvents
  • the electrolytic solution is a so-called non-aqueous electrolytic solution.
  • the carbonate compounds include cyclic carbonates and chain carbonates.
  • cyclic carbonates include ethylene carbonate and propylene carbonate.
  • chain carbonates include dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate.
  • the carboxylic acid ester compound is a chain carboxylic acid ester or the like.
  • chain carboxylic acid esters include methyl acetate, ethyl acetate, trimethyl methyl acetate, methyl propionate, ethyl propionate and propyl propionate.
  • Lactone-based compounds include lactones. Specific examples of lactones include ⁇ -butyrolactone and ⁇ -valerolactone.
  • the electrolyte salt contains one or more of light metal salts such as lithium salts.
  • lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium bis(fluorosulfonyl)imide (LiN(FSO 2 ) 2 ), bis(trifluoromethanesulfonyl ) imidelithium (LiN( CF3SO2 ) 2 ), lithium bis(oxalato)borate (LiB ( C2O4 ) 2 ), lithium difluoro ( oxalato)borate (LiB ( C2O4 )F2) , lithium monofluorophosphate (Li 2 PFO 3 ) and lithium difluorophosphate (LiPF 2 O 2 ).
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium bis(fluorosulfonyl)imide
  • LiN(CF3SO2 ) 2 bis(trifluoromethanesulfonyl ) imidelithium
  • the content of the electrolyte salt is not particularly limited, but specifically, it is 0.3 mol/kg to 3.0 mol/kg with respect to the solvent. This is because high ionic conductivity can be obtained.
  • the electrode solution may further contain one or more of additives.
  • additives are not particularly limited, but specific examples include unsaturated cyclic carbonates, halogenated carbonates, phosphoric acid esters, acid anhydrides, nitrile compounds and isocyanate compounds.
  • unsaturated cyclic carbonates include vinylene carbonate, vinylethylene carbonate and methyleneethylene carbonate.
  • halogenated carbonates include halogenated cyclic carbonates and halogenated chain carbonates.
  • halogenated cyclic carbonates include ethylene monofluorocarbonate and ethylene difluorocarbonate.
  • a specific example of the halogenated chain carbonate is fluoromethyl methyl carbonate and the like.
  • Specific examples of phosphate esters include trimethyl phosphate and triethyl phosphate.
  • the acid anhydrides include dicarboxylic anhydrides, disulfonic anhydrides and carboxylic sulfonic anhydrides.
  • dicarboxylic anhydrides include succinic anhydride.
  • disulfonic anhydrides include ethanedisulfonic anhydride.
  • carboxylic acid sulfonic anhydrides include sulfobenzoic anhydride.
  • Nitrile compounds include mononitrile compounds, dinitrile compounds and trinitrile compounds. Specific examples of mononitrile compounds include acetonitrile. Specific examples of dinitrile compounds include succinonitrile. Specific examples of trinitrile compounds include 1,2,3-propanetricarbonitrile. Specific examples of isocyanate compounds include hexamethylene diisocyanate.
  • the positive electrode lead 41 is a positive electrode terminal connected to a joint of the plurality of projecting portions 31AT of the positive electrode 31, and is led out from the inside of the exterior film 20 to the outside.
  • the positive electrode lead 41 contains a conductive material such as a metal material, and a specific example of the metal material is aluminum.
  • the shape of the positive electrode lead 41 is not particularly limited, but specifically, it is either a thin plate shape, a mesh shape, or the like.
  • the negative electrode lead 42 is a negative electrode terminal connected to a joined body of a plurality of projecting portions 32AT of the negative electrode 32, as shown in FIG. Among them, the negative electrode lead 42 is preferably connected to the large-diameter carbon fiber portion 1 of the negative electrode 32 . This is because electrical conductivity between the negative electrode 32 and the negative electrode lead 42 is improved.
  • the negative electrode lead 42 contains a conductive material such as a metal material, and a specific example of the metal material is copper.
  • the lead-out direction of the negative lead 42 is the same as the lead-out direction of the positive lead 41 .
  • the details regarding the shape of the negative electrode lead 42 are the same as the details regarding the shape of the positive electrode lead 41 .
  • sealing film 51 is inserted between the packaging film 20 and the positive electrode lead 41
  • the sealing film 52 is inserted between the packaging film 20 and the negative electrode lead 42 .
  • one or both of the sealing films 51 and 52 may be omitted.
  • the sealing film 51 is a sealing member that prevents outside air from entering the exterior film 20 . Further, the sealing film 51 contains a polymer compound such as polyolefin having adhesiveness to the positive electrode lead 41, and a specific example of the polyolefin is polypropylene.
  • the configuration of the sealing film 52 is the same as the configuration of the sealing film 51 except that it is a sealing member having adhesion to the negative electrode lead 42 . That is, the sealing film 52 contains a polymer compound such as polyolefin that has adhesiveness to the negative electrode lead 42 .
  • a pasty positive electrode mixture slurry is prepared by putting a mixture (positive electrode mixture) in which a positive electrode active material, a positive electrode binder, and a positive electrode conductor are mixed together into a solvent.
  • This solvent may be an aqueous solvent or an organic solvent.
  • the cathode active material layer 31B is formed by applying the cathode mixture slurry to both surfaces of the cathode current collector 31A including the projections 31AT (excluding the projections 31AT).
  • the cathode active material layer 31B is compression-molded using a roll press or the like. In this case, the positive electrode active material layer 31B may be heated, or compression molding may be repeated multiple times. As a result, the cathode active material layers 31B are formed on both surfaces of the cathode current collector 31A, so that the cathode 31 is produced.
  • the negative electrode 32 including the projecting portion 32AT is manufactured by the same procedure as the manufacturing procedure of the negative electrode 10 described above.
  • the positive electrode 31 and the negative electrode 32 are alternately laminated with the separator 33 interposed to prepare a laminate (not shown).
  • This laminate has the same structure as the battery element 30 except that the positive electrode 31, the negative electrode 32, and the separator 33 are not impregnated with the electrolytic solution.
  • the plurality of projecting portions 31AT are joined together, and the plurality of projecting portions 32AT are joined together.
  • the positive electrode lead 41 is joined to the joined body of the plurality of projecting portions 31AT, and the negative electrode lead 42 is connected to the joined body of the plurality of projecting portions 32AT.
  • the exterior films 20 (bonding layer/metal layer/surface protective layer) are folded to face each other. Subsequently, by using a heat-sealing method or the like to join the outer peripheral edges of two sides of the exterior films 20 (fusion layer) that face each other, it is laminated inside the bag-like exterior film 20. accommodate the body.
  • the sealing film 51 is inserted between the exterior film 20 and the positive electrode lead 41 and the sealing film 52 is inserted between the exterior film 20 and the negative electrode lead 42 .
  • the laminate is impregnated with the electrolytic solution, so that the battery element 30, which is a laminated electrode assembly, is produced. Accordingly, the battery element 30 is enclosed inside the bag-shaped exterior film 20, so that the secondary battery is assembled.
  • the secondary battery after assembly is charged and discharged.
  • Various conditions such as environmental temperature, number of charge/discharge times (number of cycles), and charge/discharge conditions can be arbitrarily set.
  • films are formed on the respective surfaces of the positive electrode 31 and the negative electrode 32, so that the state of the secondary battery is electrochemically stabilized.
  • a secondary battery is completed.
  • the negative electrode 32 has the same configuration as the negative electrode 10 described above. Therefore, for the same reason as described for the negative electrode 10, excellent initial capacity characteristics, excellent swelling characteristics, excellent load characteristics, and excellent cycle characteristics can be obtained.
  • the secondary battery is a lithium-ion secondary battery
  • a sufficient battery capacity can be stably obtained by utilizing the absorption and release of lithium, so a higher effect can be obtained.
  • some or all of the plurality of particle portions 3 may include the central portion 3X and the covering portion 3Y.
  • the covering portion 3Y has a thickness T.
  • FIG. 5 unlike FIG. 2, only the particle portion 3 is shown enlarged.
  • the central portion 3X has the same configuration as the particle portion 3 (primary particles 3A) shown in FIG. 2, and therefore contains a silicon-containing material.
  • the covering portion 3Y covers the surface of the central portion 3X.
  • the covering portion 3Y may cover the entire surface of the central portion 3X, or may cover only a part of the surface of the covering portion 3Y. In the latter case, the covering portion 3Y may cover the surface of the central portion 3X at a plurality of locations separated from each other.
  • FIG. 5 shows a case where the covering portion 3Y covers the entire surface of the central portion 3X for the sake of simplification of the illustration.
  • the covering portion 3Y may contain one or more of carbon-containing materials.
  • carbon-containing materials include amorphous carbon and graphite.
  • the average thickness AT of the covering portion 3Y is not particularly limited and can be set arbitrarily.
  • a procedure for calculating the average thickness AT of the covering portion 3Y is as described below. First, an observation result (observation image) of the cross section of the negative electrode 10 is acquired by the same procedure as in the case of calculating the average fiber diameter AD1 described above. Subsequently, after selecting arbitrary 20 covering portions 3Y, the thickness T of each of the 20 covering portions 3Y is measured. If the thickness of one covering portion 3Y differs depending on the location, the maximum value of the thickness T is selected. Finally, an average value of 20 thicknesses T is calculated to obtain an average thickness AT.
  • a coating portion 3Y is formed by depositing a carbon-containing material on the surface of the portion 3X.
  • the type of vapor phase method is not particularly limited, but specifically, one or more of vacuum deposition, CVD, sputtering, and the like.
  • the covering portion 3Y may contain one or more of ion conductive materials.
  • ionically conductive materials are solid electrolytes such as lithium phosphate nitrate and lithium phosphate.
  • the composition of this lithium phosphate oxynitride is not particularly limited, it is specifically Li 3.30 PO 3.90 N 0.17 or the like.
  • a specific example of the ion conductive material is a gel electrolyte in which an electrolytic solution is retained by a matrix polymer compound.
  • the composition of the electrolytic solution is as described above.
  • Specific examples of matrix polymer compounds include polyethylene oxide and polyvinylidene fluoride.
  • a procedure for forming a plurality of particle portions 3 including the central portion 3X and the covering portion 3Y (ion conductive material) is as described below.
  • the covering portion 3Y is directly formed on each surface of the plurality of central portions 3X using a vapor phase method such as sputtering.
  • a gel electrolyte is used as the ion-conductive material, a solution containing a diluent solvent is applied to the surface of each of the plurality of central portions 3X together with the electrolyte and the matrix polymer compound, and then the solution is dried.
  • a plurality of central portions 3X may be immersed in the solution.
  • the ionic conductivity of the electrode reactant is improved by using the ionic conductive material in each of the plurality of particle portions 3, so that a higher effect can be obtained.
  • the negative electrode 10 can be applied to an all-solid-state battery by using a plurality of particle parts 3 in which the coating part 3Y contains an ion-conductive material. This is because the expansion and contraction of the negative electrode 10 is suppressed, thereby suppressing an increase in interfacial resistance between the negative electrode 10 and the solid electrolyte. As a result, in the all-solid-state battery, it is possible to ensure safety and improve energy density at the same time.
  • some or all of the plurality of particle portions 3 may include the inner coating portion 3Y1 and the outer coating portion 3Y2 together with the central portion 3X. good.
  • the configuration of the central part 3X is as described above.
  • One of the inner covering portion 3Y1 and the outer covering portion 3Y2 contains a carbon-containing material, and the other of the inner covering portion 3Y1 and the outer covering portion 3Y2 contains an ion conductive material. That is, the inner covering portion 3Y1 may contain the carbon-containing material, and the outer covering portion 3Y2 may contain the ion conductive material. Alternatively, the inner covering portion 3Y1 may contain the ion conductive material and the outer covering portion 3Y2 may contain the carbon-containing material.
  • each of the carbon-containing material and the ion-conducting material Details of each of the carbon-containing material and the ion-conducting material are provided above. Details of the average thickness of the inner covering portion 3Y1 and the average thickness of the outer covering portion 3Y2 are the same as those of the average thickness AT described above. Furthermore, the method of forming each of the inner covering portion 3Y1 and the outer covering portion 3Y2 is the same as the method of forming the covering portion 3Y.
  • both the conductivity and the ionic conductivity are improved in each of the plurality of particle portions 3, so that even higher effects can be obtained.
  • FIG. 2 [Modification 3] 7 to 9 corresponding to FIG. 2, some or all of the plurality of particle portions 3 (primary particles 3A) are part of the plurality of small-diameter carbon fiber portions 2 and a plurality of Composite secondary particles 3BP containing one or both of the ion-conducting materials 4 may be formed.
  • the composite secondary particles 3BP have a particle size P2.
  • FIGS. 7 to 9 unlike FIG. 2, only the particle portion 3 (composite secondary particles 3BP) is shown enlarged.
  • a plurality of particle portions 3 are granulated together with some of the plurality of small-diameter carbon fiber portions, the plurality of particle portions In the composite secondary particles 3BP formed by 3, a plurality of primary particles 3A and a plurality of small-diameter carbon fiber portions 2 may be entangled with each other. Thereby, the plurality of primary particles 3A are electrically connected to each other and physically connected to each other through the plurality of small-diameter carbon fiber portions 2 .
  • the average particle diameter AP2 of the composite secondary particles 3BP is not particularly limited, it is preferably from 300 nm to 10000 nm. This is because the expansion and contraction of the particle portion 3 is sufficiently suppressed while the conductivity is ensured, and the electrode reactant is sufficiently easily moved.
  • the procedure for calculating the average particle diameter AP2 is, after measuring the particle diameter P2 of arbitrary 10 composite secondary particles 3BP, the average value of the 10 particle diameters P2 is the average particle diameter AP2. , is the same as the procedure for calculating the average particle size AP1 described above.
  • the composite secondary particles 3BP containing a plurality of small-diameter carbon fiber portions 2 After preparing a dispersion containing a plurality of particle portions 3, a plurality of small-diameter carbon fiber portions 2 and a solvent for dilution, spray Spray the dispersion using the dry method. Details regarding the solvent are given above.
  • the dispersion may contain a binder, the details of which are given above.
  • composite secondary particles containing multiple ion-conductive materials Composite secondary particles containing multiple ion-conductive materials
  • primary particles 3A since a plurality of particle portions 3 (primary particles 3A) are granulated together with a plurality of ion conductive materials 4, the composite two particles formed by the plurality of particle portions 3 In the secondary particles 3BP, two or more primary particles 3A may be electrically connected to each other and physically connected to each other via one or more ion-conductive materials 4 .
  • the average particle diameter AP2 of the composite secondary particles 3BP is preferably 300 nm to 10000 nm.
  • the ion conductivity of the negative electrode 10 is stably improved.
  • the composite secondary particles 3BP formed by the plurality of particle portions 3 may contain both the plurality of small-diameter carbon fiber portions 2 and the plurality of ion-conductive materials 4 . Details regarding the configuration of the composite secondary particles 3BP containing each of the plurality of small-diameter carbon fiber portions 2 and the plurality of ion conductive materials 4 are as described above (see FIGS. 7 and 8).
  • the average particle diameter AP2 of the composite secondary particles 3BP is preferably 300 nm to 10000 nm.
  • the conductivity and ion conductivity of the negative electrode 10 are stabilized. improves.
  • the configuration of the particle portion 3 (primary particles 3A) shown in FIGS. 5 and 6 and the configuration of the composite secondary particles 3BP shown in FIGS. may be combined with each other.
  • a plurality of particle portions 3 (primary particles 3A) shown in FIG. 5 may form composite secondary particles 3BP shown in FIGS.
  • a plurality of particle portions 3 (primary particles 3A) may form the composite secondary particles 3BP shown in FIGS. 7 to 9, or both may be mixed. Similar effects can be obtained in these cases as well.
  • a separator 33 which is a porous membrane, was used. However, although not specifically illustrated here, instead of the separator 33, a laminated separator including a polymer compound layer may be used.
  • a laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer provided on one or both sides of the porous membrane. This is because the adhesiveness of the separator to each of the positive electrode 31 and the negative electrode 32 is improved, so that the winding misalignment of the battery element 30 is suppressed. As a result, even if a decomposition reaction of the electrolytic solution occurs, the secondary battery is less likely to swell.
  • the configuration of the porous membrane is the same as the configuration of the porous membrane described for the separator 33 .
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because polyvinylidene fluoride or the like has excellent physical strength and is electrochemically stable.
  • One or both of the porous film and the polymer compound layer may contain one or more of a plurality of insulating particles. This is because the safety (heat resistance) of the secondary battery is improved because the plurality of insulating particles promote heat dissipation when the secondary battery generates heat.
  • the insulating particles include one or both of inorganic particles and resin particles. Specific examples of inorganic particles are particles such as aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of resin particles are particles of acrylic resins, styrene resins, and the like.
  • the precursor solution is applied to one or both sides of the porous membrane.
  • the porous membrane may be immersed in the precursor solution.
  • the precursor solution may contain a plurality of insulating particles.
  • the positive electrode 31 and the negative electrode 32 are alternately laminated via the separator 33 and the electrolyte layer.
  • an electrolyte layer is interposed between the positive electrode 31 and the separator 33 and an electrolyte layer is interposed between the negative electrode 32 and the separator 33 .
  • the electrolyte layer may be interposed only between the positive electrode 31 and the separator 33 , or may be interposed only between the negative electrode 32 and the separator 33 .
  • the electrolyte layer contains a polymer compound together with an electrolytic solution, and the electrolytic solution is held by the polymer compound. This is because leakage of the electrolytic solution is prevented.
  • the composition of the electrolytic solution is as described above.
  • Polymer compounds include polyvinylidene fluoride and the like.
  • a secondary battery used as a power source may be a main power source for electronic devices and electric vehicles, or may be an auxiliary power source.
  • a main power source is a power source that is preferentially used regardless of the presence or absence of other power sources.
  • An auxiliary power supply is a power supply that is used in place of the main power supply or that is switched from the main power supply.
  • Secondary battery applications are as follows. Electronic devices such as video cameras, digital still cameras, mobile phones, laptop computers, headphone stereos, portable radios and portable information terminals. Backup power and storage devices such as memory cards. Power tools such as power drills and power saws. It is a battery pack mounted on an electronic device. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). It is a power storage system such as a home or industrial battery system that stores power in preparation for emergencies. In these uses, one secondary battery may be used, or a plurality of secondary batteries may be used.
  • the battery pack may use a single cell or an assembled battery.
  • An electric vehicle is a vehicle that operates (runs) using a secondary battery as a drive power source, and may be a hybrid vehicle that also includes a drive source other than the secondary battery.
  • electric power stored in a secondary battery which is an electric power storage source, can be used to use electric appliances for home use.
  • FIG. 10 shows the block configuration of the battery pack.
  • the battery pack described here is a battery pack (a so-called soft pack) using one secondary battery, and is mounted in an electronic device such as a smart phone.
  • This battery pack includes a power supply 61 and a circuit board 62, as shown in FIG.
  • This circuit board 62 is connected to a power supply 61 and includes a positive terminal 63 , a negative terminal 64 and a temperature detection terminal 65 .
  • the power supply 61 includes one secondary battery.
  • the positive lead is connected to the positive terminal 63 and the negative lead is connected to the negative terminal 64 .
  • This power source 61 is connected to the outside through a positive terminal 63 and a negative terminal 64, and thus can be charged and discharged.
  • the circuit board 62 includes a control section 66 , a switch 67 , a thermal resistance (PTC) element 68 and a temperature detection section 69 .
  • the PTC element 68 may be omitted.
  • the control unit 66 includes a central processing unit (CPU), memory, etc., and controls the operation of the entire battery pack. This control unit 66 detects and controls the use state of the power source 61 as necessary.
  • CPU central processing unit
  • memory etc.
  • the overcharge detection voltage is not particularly limited, but is specifically 4.2 ⁇ 0.05V, and the overdischarge detection voltage is not particularly limited, but is specifically 2.4 ⁇ 0.1V. is.
  • the switch 67 includes a charge control switch, a discharge control switch, a charge diode, a discharge diode, and the like, and switches connection/disconnection between the power supply 61 and an external device according to instructions from the control unit 66 .
  • the switch 67 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, etc., and the charge/discharge current is detected based on the ON resistance of the switch 67 .
  • MOSFET field effect transistor
  • the temperature detection unit 69 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 61 using the temperature detection terminal 65 , and outputs the temperature measurement result to the control unit 66 .
  • the measurement result of the temperature measured by the temperature detection unit 69 is used when the control unit 66 performs charging/discharging control at the time of abnormal heat generation and when the control unit 66 performs correction processing when calculating the remaining capacity.
  • Examples 1 to 7 and Comparative Examples 1 and 2> After manufacturing the secondary battery, the characteristics of the secondary battery were evaluated.
  • two types of secondary batteries (a first secondary battery and a second secondary battery) were produced in order to evaluate the characteristics of secondary batteries.
  • First secondary batteries (Examples 1 to 7) were produced according to the procedure described below.
  • a positive electrode active material LiNi 0.8 Co 0.15 Al 0.05 O 2
  • a positive electrode binder polyvinylidene fluoride
  • a positive electrode conductive agent Ketjenblack
  • the average fiber diameter AD1 (nm) of the plurality of large-diameter carbon fiber portions 1 is as shown in Table 1.
  • a dispersion was prepared by mixing together the first dispersion containing the silicon-containing material and the second dispersion containing the carbon-containing material (plurality of small-diameter carbon fiber portions 2).
  • the second dispersion includes a plurality of small-diameter carbon fiber portions 2 (single-wall carbon nanotubes (SWCNT) or vapor-grown carbon fibers (VGCF)), a binder (polyvinylidene fluoride), a solvent (organic solvent N -methyl-2-pyrrolidone) were mixed together and then the solvent was stirred using a rotation-revolution mixer.
  • the average fiber diameter AD2 (nm) of the plurality of small-diameter carbon fiber portions 2 is as shown in Table 1.
  • the dispersion liquid to the plurality of large-diameter carbon fiber portions 1 (excluding the protrusions 32AT), the dispersion is dispersed inside the three-dimensional network structure formed by the plurality of large-diameter carbon fiber portions 1. impregnated with liquid.
  • the powder of the silicon-containing material was fixed to the surface of each of the plurality of large-diameter carbon fiber portions 1, so that a plurality of particle portions 3 were formed, and a plurality of small-diameter carbon fiber portions 3 were formed on the surfaces of the plurality of particle portions 3. Since the fiber portion 2 was fixed, the plurality of small-diameter carbon fiber portions 2 were connected to the surfaces of the plurality of particle portions 3 .
  • the porosity R (% by volume) was changed as shown in Table 1 by adjusting the press pressure.
  • a negative electrode 32 including a plurality of large-diameter carbon fiber portions 1, a plurality of small-diameter carbon fiber portions 2 and a plurality of particle portions 3 and having a plurality of voids 10G was completed.
  • the concentration of the silicon-containing material in the first dispersion and the concentration of the plurality of small-diameter carbon fiber portions 2 in the second dispersion were each adjusted to obtain the values shown in Table 1.
  • the weight ratio M (% by weight) was changed.
  • the positive electrode lead 41 (aluminum foil) was joined to the projecting portion 31AT, and the negative electrode lead 42 (copper foil) was joined to the projecting portion 32AT.
  • the exterior film 20 (bonding layer/metal layer/surface protective layer) so as to sandwich the laminate accommodated inside the recess 20U, one of the exterior films 20 (bonding layer)
  • the laminate was housed inside the bag-shaped exterior film 20 by heat-sealing the outer peripheral edges of the two sides to each other.
  • An aluminum laminate film laminated in order was used.
  • the laminate was impregnated with the electrolytic solution, and the battery element 30 was produced. Accordingly, since the battery element 30 was sealed inside the exterior film 20, the first secondary battery was assembled.
  • the thickness of the material layer 31B was adjusted.
  • constant-current charging was performed at a current of 0.1C until the voltage reached 4.2V
  • constant-voltage charging was performed at the voltage of 4.2V until the current reached 0.025C.
  • constant current discharge was performed at a current of 0.1C until the voltage reached 2.0V.
  • 0.1C is a current value that can completely discharge the battery capacity (theoretical capacity) in 10 hours
  • 0.025C is a current value that completely discharges the battery capacity in 40 hours.
  • the first secondary battery using the positive electrode 31 as a counter electrode for the negative electrode 32 is a so-called full cell
  • the second secondary battery using a lithium metal plate as a counter electrode for the negative electrode 32 is a so-called half cell. be.
  • This carbon nanotube dispersion contains 0.8 parts by mass of carbon nanotubes (the plurality of small-diameter carbon fiber portions 2 described above) and 4.2 parts by mass of a dispersion medium (polyvinylidene fluoride).
  • the negative electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and then the organic solvent was stirred using a rotation/revolution mixer to prepare a pasty negative electrode mixture slurry.
  • the porosity R of the negative electrode active material layer was changed as shown in Table 1 by adjusting the press pressure.
  • the second secondary battery (half cell) was used to evaluate the initial capacity characteristics
  • the first secondary battery full cell was used to evaluate swelling characteristics, load characteristics, and cycle characteristics. evaluated each.
  • the positive electrode 31 and the negative electrode 32 are brought into close contact with each other with the separator 33 interposed therebetween.
  • the secondary battery was charged and discharged while the Note that the total weight of the negative electrode 32 described above includes the weight of the metal current collector when a metal current collector is used, whereas when the metal current collector is not used, It does not include the weight of its metal current collector.
  • constant-current charging was performed at a current of 0.1C until the voltage reached 0.005V, and then constant-voltage charging was performed at the voltage of 0.005V until the current reached 0.01C.
  • constant current discharge was performed at a current of 0.1C until the voltage reached 1.5V.
  • 0.01C is a current value that can discharge the battery capacity in 100 hours.
  • the secondary battery was charged, and then the thickness of the secondary battery (thickness after charging) was measured.
  • the secondary battery is charged while the positive electrode 31 and the negative electrode 32 are brought into close contact with each other through the separator 33 by applying pressure to the secondary battery, as in the case of evaluating the initial capacity characteristics described above.
  • constant-current charging was performed at a current of 0.1C until the voltage reached 4.2V, and then constant-voltage charging was performed at the voltage of 4.2V until the current reached 0.01C.
  • swelling rate (%) [(thickness after charging ⁇ thickness before charging)/thickness before charging] ⁇ 100 is used as an index for evaluating swelling characteristics. rate was calculated.
  • constant-current charging was performed at a current of 0.2C until the voltage reached 4.2V, and then constant-voltage charging was performed at the voltage of 4.2V until the current reached 0.025C.
  • constant current discharge was performed at a current of 0.2C until the voltage reached 2.5V.
  • 0.2C is a current value that can discharge the battery capacity in 5 hours.
  • the discharge capacity (second cycle discharge capacity) was measured by charging and discharging the secondary battery for one cycle in the same environment.
  • the charge/discharge conditions were the same as the charge/discharge conditions for the first cycle, except that the current during charging and the current during discharging were each changed to 5C.
  • 5C is a current value that can discharge the battery capacity in 0.2 hours.
  • load retention rate (second cycle discharge capacity/first cycle discharge capacity) x 100. .
  • capacity retention rate (%) (discharge capacity at 200th cycle/discharge capacity at 1st cycle) x 100. .
  • the swelling rate was sufficiently reduced, and the initial capacity, load retention rate, and capacity retention rate were each sufficiently increased.
  • the average particle size AP was 30 nm to 2000 nm, the swelling rate was sufficiently reduced, and the initial capacity, load retention rate, and capacity retention rate were each sufficiently increased.
  • Examples 8 to 11 As shown in Table 2, a secondary battery was fabricated in the same manner as in Example 1, except that a plurality of particle portions 3 including a central portion 3X and a covering portion 3Y were formed in the step of fabricating the negative electrode 32. After that, the characteristics of the secondary battery were evaluated.
  • a carbon-containing material or an ion-conducting material was used as the material for forming the covering portion 3Y, and a solid electrolyte or a gel electrolyte was used as the ion-conducting material.
  • Amorphous carbon (AC) was used as the carbon-containing material.
  • Lithium phosphate nitrate (Li 3.30 PO 3.90 N 0.17 ) or lithium phosphate (Li 3 PO 4 ) was used as the ion conductive material (solid electrolyte).
  • a mixture of an electrolytic solution and a matrix polymer compound (polyvinylidene fluoride (PVDF)) was used as the gel electrolyte. In this gel electrolyte, the electrolytic solution is held by a matrix polymer compound.
  • Table 2 shows the average thickness AT (nm) of the covering portion 3Y.
  • the covering portion 3Y forms a plurality of particle portions 3 containing a carbon-containing material
  • the coating portion 3Y forms a plurality of particle portions 3 containing a solid electrolyte (lithium phosphate)
  • the covering portion 3Y forms a plurality of particle portions 3 containing a gel electrolyte (electrolyte solution and matrix polymer compound)
  • an electrolyte salt lithium hexafluorophosphate
  • a solvent ethylene carbonate and propylene carbonate
  • the solvent was stirred to prepare an electrolytic solution.
  • a precursor solution was prepared by mixing the electrolytic solution and the matrix polymer compound (polyvinylidene fluoride) with each other.
  • Example 2 when a plurality of particle portions 3 including the central portion 3X and the coating portion 3Y are used (Examples 8 to 11), when the coating portion 3Y is not used (Example 1) Compared to , each of the initial capacity, the load retention rate, and the capacity retention rate increased, or each of the load retention rate and the capacity retention rate increased, while an increase in swelling rate was sufficiently suppressed.
  • Examples 12 to 16> As shown in Table 3, the same procedure as in Example 1, except that composite secondary particles 3BP containing a plurality of small-diameter carbon fiber portions 2 were formed as each of the plurality of particle portions 3 in the manufacturing process of the negative electrode 32. After producing a secondary battery, the characteristics of the secondary battery were evaluated.
  • a plurality of small-diameter carbon fiber portions 2 SWCNT
  • a binder polyacrylic Lithium oxide
  • the dispersion liquid was sprayed using a spray dryer, and the sprayed product (granules) was dried.
  • Example Compared to 1 when the composite secondary particles 3BP containing a plurality of small-diameter carbon fiber portions 2 were used (Examples 12 to 16), when the composite secondary particles 3BP were not used (Example Compared to 1), any one or more of the initial capacity, swelling rate, load retention rate, and capacity retention rate were improved.
  • the composite secondary particles 3BP when the average particle diameter AP2 was 100 nm to 10000 nm, the swelling rate was sufficiently reduced, and the initial capacity, the load retention rate, and the capacity retention rate were sufficiently improved. Increased.
  • Examples 17 to 21 As shown in Table 4, the same procedure as in Example 1 was performed except that composite secondary particles 3BP containing an ion-conductive material (gel electrolyte) were formed as each of the plurality of particle portions 3 in the step of manufacturing the negative electrode 32. After the secondary battery was produced according to the procedure, the characteristics of the secondary battery were evaluated.
  • composite secondary particles 3BP containing an ion-conductive material gel electrolyte
  • an electrolyte salt lithium hexafluorophosphate
  • a solvent ethylene carbonate and propylene carbonate
  • an electrolyte solution was prepared.
  • a precursor solution was prepared by mixing the electrolytic solution and the matrix polymer compound (polyvinylidene fluoride) with each other.
  • the negative electrode 32 (negative electrode 10) contains a plurality of large-diameter carbon fiber portions 1, a plurality of small-diameter carbon fiber portions 2 and a plurality of particle portions 3, and a plurality of voids 10G.
  • Each of the plurality of large-diameter carbon fiber portions 1 and the plurality of small-diameter carbon fiber portions 2 contains a carbon-containing material
  • each of the plurality of particle portions 3 contains a silicon-containing material
  • the battery structure of the secondary battery is a laminate film type.
  • the battery structure of the secondary battery is not particularly limited, and other battery structures such as cylindrical, square, coin, and button types may be used.
  • the element structure of the battery element is a laminated type.
  • the element structure of the battery element is not particularly limited, other element structures such as a wound type and a 90-fold type may be used.
  • the positive electrode and the negative electrode are wound with a separator interposed therebetween, and in the 90-fold type, the positive electrode and the negative electrode are folded in a zigzag while facing each other with the separator interposed therebetween.
  • the electrode reactant is lithium has been described, but the electrode reactant is not particularly limited.
  • the electrode reactants may be other alkali metals such as sodium and potassium, or alkaline earth metals such as beryllium, magnesium and calcium, as described above.
  • the electrode reactant may be other light metals such as aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池は、正極と、複数の第1繊維部、複数の粒子部および複数の第2繊維部を含むと共に複数の空隙を有する負極と、電解液とを備える。複数の第1繊維部は互いに連結されることにより複数の空隙を有する3次元網目構造を形成し、その複数の第1繊維部のそれぞれは炭素を構成元素として含む。複数の粒子部は複数の第1繊維部のそれぞれの表面を被覆し、その複数の粒子部のうちの一部は互いに連結され、その複数の粒子部のそれぞれはケイ素を構成元素として含む。複数の第2繊維部のうちの少なくとも一部は複数の粒子部の表面に連結され、その複数の第2繊維部のそれぞれは炭素を構成元素として含む。複数の第1繊維部の平均繊維径は50nm以上7000nm以下であり、複数の第2繊維部の平均繊維径は1nm以上200nm以下であり、負極の空隙率は42体積%以上73体積%以下である。

Description

二次電池用負極および二次電池
 本技術は、二次電池用負極および二次電池に関する。
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度が得られる電源として二次電池の開発が進められている。この二次電池は、正極および負極と共に電解質を備えており、その二次電池の構成に関しては、様々な検討がなされている。
 具体的には、リチウムイオン二次電池用負極の形成材料として、多孔質導電性基材(炭素)と、導電材(カーボンナノチューブなど)と、活物質(ケイ素など)とが用いられていると共に、その負極の多孔度(空隙率)が規定されている(例えば、特許文献1参照。)。
 リチウムイオン二次電池用負極の形成材料として、カーボンペーパーの上にフィブリル状ポリマー由来の炭素繊維が形成された導電性基材と、その導電性基材の上に形成されたポリシラン由来の炭化ケイ素とが用いられている(例えば、特許文献2参照。)。
 リチウムイオン二次電池用負極の形成材料として、銅集電体と、炭素材料などの導電性物質により被覆された3次元網目構造を有する多孔質ケイ素とが用いられていると共に、その多孔質ケイ素の平均空隙率が規定されている(例えば、特許文献3参照。)。
特開2007-335283号公報 特表2015-531977号公報 特開2012-084521号公報
 二次電池の構成に関して様々な検討がなされているが、その二次電池の初回容量特性、膨れ特性、負荷特性およびサイクル特性は未だ十分でないため、改善の余地がある。
 そこで、優れた初回容量特性、優れた膨れ特性、優れた負荷特性および優れたサイクル特性を得ることが可能である二次電池用負極および二次電池が望まれている。
 本技術の一実施形態の二次電池用負極は、複数の第1繊維部、複数の粒子部および複数の第2繊維部を含むと共に複数の空隙を有するものである。複数の第1繊維部は互いに連結されることにより複数の空隙を有する3次元網目構造を形成し、その複数の第1繊維部のそれぞれは炭素を構成元素として含む。複数の粒子部は複数の第1繊維部のそれぞれの表面を被覆し、その複数の粒子部のうちの一部は互いに連結され、その複数の粒子部のそれぞれはケイ素を構成元素として含む。複数の第2繊維部のうちの少なくとも一部は複数の粒子部の表面に連結され、その複数の第2繊維部のそれぞれは炭素を構成元素として含む。複数の第1繊維部の平均繊維径は50nm以上7000nm以下であり、複数の第2繊維部の平均繊維径は1nm以上200nm以下であり、空隙率は42体積%以上73体積%以下である。
 本技術の一実施形態の二次電池は、正極と負極と電解液とを備え、その負極が上記した本技術の一実施形態の二次電池用負極の構成と同様の構成を有するものである。
 上記した「複数の第1繊維部の平均繊維径」、「複数の第2繊維部の平均繊維径」および「空隙率」のそれぞれの詳細(定義および算出手順など)に関しては、後述する。
 本技術の一実施形態の二次電池用負極または二次電池によれば、その二次電池用負極が上記した複数の第1繊維部、複数の粒子部および複数の第2繊維部を含んでいると共に複数の空隙を有しており、その複数の第1繊維部の平均繊維径、複数の第2繊維部の平均繊維径および空隙率に関して上記した条件が満たされているので、優れた初回容量特性、優れた膨れ特性、優れた負荷特性および優れたサイクル特性を得ることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の一実施形態における二次電池用負極の構成を表す模式図である。 図1に示した大径炭素繊維部、小径炭素繊維部および粒子部のそれぞれの構成を拡大して表す断面図である。 本技術の一実施形態における二次電池の構成を表す斜視図である。 図3に示した電池素子の構成を拡大して表す断面図である。 変形例1の二次電池用負極の構成を表す模式図である。 変形例2の二次電池用負極の構成を表す模式図である。 変形例3の二次電池用負極の構成を表す模式図である。 変形例3の二次電池用負極の他の構成を表す模式図である。 変形例3の二次電池用負極のさらに他の構成を表す模式図である。 二次電池の適用例の構成を表すブロック図である。
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池用負極
  1-1.構成
  1-2.製造方法
  1-3.作用および効果
 2.二次電池
  2-1.構成
  2-2.動作
  2-3.製造方法
  2-4.作用および効果
 3.変形例
 4.二次電池の用途
<1.二次電池用負極>
 まず、本技術の一実施形態の二次電池用負極(以下、単に「負極」と呼称する。)に関して説明する。
 この負極は、電気化学デバイスである二次電池に用いられる。ただし、負極は、二次電池以外の他の電気化学デバイスに用いられてもよい。他の電気化学デバイスの種類は、特に限定されないが、具体的には、キャパシタなどである。
 また、負極は、上記した二次電池などの電気化学デバイスにおいて、電極反応時において電極反応物質を吸蔵放出する。電極反応物質の種類は、特に限定されないが、具体的には、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属は、ベリリウム、マグネシウムおよびカルシウムなどである。
<1-1.構成>
 図1は、負極の一例である負極10の構成を模式的に表している。図2は、図1に示した大径炭素繊維部1、小径炭素繊維部2および粒子部3のそれぞれの断面構成を拡大している。
 ただし、図2では、1本の大径炭素繊維部1および1本の小径炭素繊維部2と共に、その1本の大径炭素繊維部1の表面を被覆する複数の粒子部3を示している。また、図2では、大径炭素繊維部1および小径炭素繊維部2のそれぞれの長手方向と交差する大径炭素繊維部1、小径炭素繊維部2および粒子部3のそれぞれの断面を示している。
 この負極10は、図1および図2に示したように、複数の大径炭素繊維部1と、複数の小径炭素繊維部2と、複数の粒子部3とを含んでいると共に、複数の空隙10Gを有している。すなわち、負極10は、金属箔などの集電体(以下、「金属集電体」と呼称する。)を含んでいないため、いわゆる金属集電体レスの電極である。
[複数の大径炭素繊維部]
 複数の大径炭素繊維部1は、図1に示したように、複数の小径炭素繊維部2の平均繊維径AD2よりも大きい平均繊維径AD1を有する複数の第1繊維部であり、その複数の大径炭素繊維部1のそれぞれは、図2に示したように、繊維径D1を有している。この複数の大径炭素繊維部1は、互いに連結されることにより、上記した複数の空隙10Gを有する3次元網目構造を形成している。
 図1では、図示内容を簡略化するために、複数の大径炭素繊維部1のそれぞれが直線状である場合を示している。しかしながら、複数の大径炭素繊維部1のそれぞれの状態(形状)は、特に限定されないため、直線状に限られず、湾曲状でもよいし、分岐状でもよいし、それらの2種類以上が混在した状態でもよい。
 ここでは、複数の大径炭素繊維部1は、上記したように、3次元網目構造を形成するために互いに連結されており、より具体的には、互いにランダムに絡み合っている。なお、複数の大径炭素繊維部1は、高分子化合物などの炭化物(図示せず)を介して互いに結合されていてもよいし、1本または2本以上の小径炭素繊維部2を介して互いに連結されていてもよい。これにより、複数の大径炭素繊維部1は、複数の連結点を有しており、その連結点では、大径炭素繊維部1同士が互いに電気的に導通している。
 複数の大径炭素繊維部1の平均繊維径AD1は、50nm~7000nmである。負極10の主要部である複数の大径炭素繊維部1において、繊維径D1が十分に大きくなるからである。これにより、負極10の内部において十分な導電ネットワーク(3次元網目構造)が形成されるため、その負極10の導電性が向上する。
 平均繊維径AD1を算出する手順は、以下で説明する通りである。最初に、負極10を回収したのち、炭酸ジメチルなどの洗浄用溶媒を用いて負極10を洗浄する。なお、負極10を備えた二次電池を取得した場合には、その二次電池を解体することにより、負極10を回収する。続いて、イオンミリング装置などを用いて負極10を切断することにより、その負極10の断面を露出させる。
 続いて、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いて負極10の断面を観察することにより、その断面の観察結果(観察画像)を取得する。これにより、観察画像中において複数の大径炭素繊維部1を識別可能になる。加速電圧および倍率などの観察条件は、任意に設定可能である。
 続いて、任意の20個の大径炭素繊維部1を選択したのち、その20個の大径炭素繊維部1のそれぞれの繊維径D1を測定する。最後に、20個の繊維径D1の平均値を算出することにより、平均繊維径AD1とする。
 なお、複数の大径炭素繊維部1のそれぞれの平均繊維長は、特に限定されない。上記した平均繊維径AD1を有する複数の大径炭素繊維部1が互いに連結されていれば、繊維長に依存せずに十分な導電ネットワーク(3次元網目構造)が形成されるからである。
 複数の大径炭素繊維部1のそれぞれは、炭素を構成元素として含んでいるため、いわゆる炭素含有材料を含んでいる。この炭素含有材料は、炭素を構成元素として含む材料の総称である。
 具体的には、複数の大径炭素繊維部1は、カーボンペーパーを含んでいる。複数の大径炭素繊維部1が互いに十分に連結されると共に、平均繊維径AD1が十分に大きくなるため、十分な導電ネットワーク(3次元網目構造)が形成されるからである。
 ただし、複数の大径炭素繊維部1は、上記した平均繊維径AD1を有する複数の繊維状炭素材料が3次元網目構造を形成するように加工された材料でもよい。この繊維状炭素材料の種類は、特に限定されないが、具体的には、気相成長炭素繊維(VGCF)およびカーボンナノファイバー(CNF)などである。この他、繊維状炭素材料の種類は、二層カーボンナノチューブ(ダブルウォールカーボンナノチューブ(DWCNT))などの多層カーボンナノチューブ(マルチウォールカーボンナノチューブ(MWCNT))でもよい。
[複数の小径炭素繊維部]
 複数の小径炭素繊維部2は、図1に示したように、複数の大径炭素繊維部1の平均繊維径AD1よりも小さい平均繊維径AD2を有する複数の第2繊維部であり、その複数の小径炭素繊維部2のそれぞれは、図2に示したように、繊維径D2を有している。ここでは、複数の小径炭素繊維部2のそれぞれは、複数の粒子部3の表面に定着しているため、その複数の粒子部3の表面に連結されている。
 図1では、図示内容を簡略化するために、複数の小径炭素繊維部2のそれぞれが直線状である場合を示している。しかしながら、複数の小径炭素繊維部2のそれぞれの状態(形状)は、上記した複数の大径炭素繊維部1の状態に関して説明した場合と同様に、特に限定されない。
 負極10が複数の大径炭素繊維部1と共に複数の小径炭素繊維部2を含んでいるのは、その複数の大径炭素繊維部1により導電ネットワークが形成される上、その複数の小径炭素繊維部2により緻密な導電ネットワークも形成されるため、その負極10の導電性が著しく向上するからである。
 中でも、複数の小径炭素繊維部2のうちの一部または全部(複数の小径炭素繊維部2R)のそれぞれは、複数の粒子部3のうちの一部を介して2本以上の大径炭素繊維部1のそれぞれに連結されていることが好ましい。2本以上の大径炭素繊維部1が小径炭素繊維部2Rを介して互いに電気的に接続されるからである。これにより、より緻密な導電ネットワークが形成されるため、負極10の導電性がより向上する。
 複数の小径炭素繊維部2の平均繊維径AD2は、上記した複数の大径炭素繊維部1の平均繊維径AD1よりも小さくなっており、具体的には、その平均繊維径AD1の1/10000~1/2であり、好ましくは1/300~1/5である。
 より具体的には、平均繊維径AD2は、1nm~200nmである。複数の大径炭素繊維部1と複数の小径炭素繊維部2とが共存している系において、平均繊維径AD2が平均繊維径AD1に対して十分に小さくなるため、負極10の内部において複数の小径炭素繊維部2が分散されやすくなるからである。これにより、複数の小径炭素繊維部2により緻密な導電ネットワークが形成されるため、その負極10の導電性がより向上する。
 平均繊維径AD2を算出する手順は、任意の20個の小径炭素繊維部2のそれぞれの繊維径D2を測定したのち、その20個の繊維径D2の平均値を平均繊維径AD2とすることを除いて、上記した平均繊維径AD1を算出する手順と同様である。ただし、繊維径D2が小さい場合には、負極10の断面を観察するためにSEMよりもTEMを用いることが好ましい。
 なお、複数の小径炭素繊維部2のそれぞれの平均繊維長は、特に限定されない。上記した平均繊維径AD2を有する複数の小径炭素繊維部2が負極10の内部に存在していれば、繊維長に依存せずに緻密な導電ネットワークが形成されるからである。
 複数の小径炭素繊維部2のそれぞれは、炭素を構成元素として含んでいるため、複数の大径炭素繊維部1のそれぞれと同様に炭素含有材料を含んでいる。
 具体的には、複数の小径炭素繊維部2のそれぞれは、カーボンナノチューブ、気相成長炭素繊維(VGCF)およびカーボンナノファイバー(CNF)などの繊維状炭素材料を含んでいる。負極10の内部において複数の小径炭素繊維部2が十分に分散されやすくなると共に、緻密な導電ネットワークが形成されやすくなるからである。
 カーボンナノチューブの種類は、特に限定されないため、単層カーボンナノチューブ(シングルウォールカーボンナノチューブ(SWCNT))でもよいし、多層カーボンナノチューブ(MWCNT)でもよい。多層カーボンナノチューブの具体例は、二層カーボンナノチューブ(DWCNT)などである。
 中でも、複数の小径炭素繊維部2のそれぞれは、単層カーボンナノチューブおよび気相成長炭素繊維のうちの一方または双方であることが好ましい。平均繊維径AD2が十分に小さくなるため、負極10の内部において複数の小径炭素繊維部2が十分に分散されると共に、より緻密な導電ネットワークが形成されるからである。
[複数の粒子部]
 複数の粒子部3は、図1に示したように、複数の大径炭素繊維部1のそれぞれの表面を被覆しており、平均粒径AP1を有している。この複数の粒子部3のそれぞれは、図2に示したように、粒径P1を有している。
 ここで、複数の粒子部3は、いわゆる一次粒子3Aであり、その複数の粒子部3のうちの一部または全部(複数の一次粒子3A)は、互いに連結されている。すなわち、複数の一次粒子3Aのうちの一部または全部は、互いに密集することにより、複数の集合体(二次粒子3B)を形成している。この二次粒子3Bの内部には、複数の細孔3Gが形成されており、その細孔3Gは、複数の一次粒子3A間の隙間である。この細孔3Gの内径は、空隙10Gの内径よりも小さくなっている。
 なお、二次粒子3Bを形成している一次粒子3Aの数は、2個以上であれば、特に限定されない。また、二次粒子3Bの数は、2個以上であれば、特に限定されない。図2では、複数の二次粒子3Bが形成されている場合を示している。
 上記した粒径P1は、二次粒子3Bの粒径であるため、上記した平均粒径AP1は、二次粒子3Bの平均粒径である。
 この複数の粒子部3は、複数の大径炭素繊維部1のそれぞれの表面の全体を被覆していてもよいし、その複数の大径炭素繊維部1のそれぞれの表面の一部だけを被覆していてもよい。後者の場合において、複数の粒子部3は、互いに離隔された複数の場所において大径炭素繊維部1の表面を被覆していてもよい。図1では、図示内容を簡略化するために、複数の粒子部3が複数の大径炭素繊維部1のそれぞれの表面の一部を被覆している場合を示している。
 これにより、相対的に大きい平均繊維径AD1を有する複数の大径炭素繊維部1のそれぞれは、複数の粒子部3により表面を被覆されているのに対して、相対的に小さい平均繊維径AD2を有する複数の小径炭素繊維部2のそれぞれは、複数の粒子部3により表面を被覆されていない。
 負極10が複数の粒子部3を含んでいるのは、高いエネルギー密度が得られながら、電極反応物質が吸蔵放出されやすくなるからである。
 詳細には、複数の粒子部3のそれぞれが後述するケイ素含有材料を含んでいるため、高いエネルギー密度が得られる。
 しかも、複数の粒子部3が複数の大径炭素繊維部1のそれぞれの表面を被覆しているため、その複数の大径炭素繊維部1により形成されていた複数の空隙10Gの当初の内径がランダムに狭まっている。これにより、完成後の負極10では、互いに異なる内径を有する複数の空隙10Gが形成されやすくなるため、その複数の空隙10Gを経由して電極反応物質が移動しやすくなる。この場合には、特に、電極反応時の電流値が増加しても、電極反応物質が円滑に移動しやすくなる。よって、負極10の電極反応時において電極反応物質が吸蔵放出されやすくなる。
 この場合には、特に、複数の粒子部3(一次粒子3A)により二次粒子3Bが形成されており、その二次粒子3Bの内部に空隙10Gの内径よりも小さい内径を有する複数の細孔3Gが形成されている。すなわち、負極10は、互いにサイズが異なる2種類の空間を内部に有しており、すなわち相対的に大きい内径の空隙10Gと相対的に小さい内径の細孔3Gとを有している。これにより、電極反応時において、空隙10Gだけでなく細孔3Gも利用して粒子部3の膨張収縮が抑制されると共に、同様に空隙10Gだけでなく細孔3Gも利用して電極反応物質が移動しやすくなる。
 複数の粒子部3の平均粒径AP1は、特に限定されないが、中でも、30nm~2000nmであることが好ましい。複数の粒子部3による複数の大径炭素繊維部1のそれぞれの表面の被覆量が十分に大きくなるため、負極10の導電性が担保されながら、その負極10において十分なエネルギー密度が得られるからである。
 平均粒径AP1を算出する手順は、以下で説明する通りである。最初に、上記した平均繊維径AD1を算出する場合と同様の手順により、負極10の断面の観察結果(観察画像)を取得する。続いて、任意の10個の粒子部3を選択したのち、その10個の粒子部3のそれぞれの粒径P1を測定する。なお、1個の粒子部3において場所に応じて粒径P1が異なる場合には、その粒径P1の最小値を選択する。最後に、10個の粒径P1の平均値を算出することにより、平均粒径AP1とする。
 また、複数の粒子部3のそれぞれは、ケイ素を構成元素として含んでいるため、いわゆるケイ素含有材料を含んでいる。ケイ素は優れた電極反応物質の吸蔵放出能力を有しているため、高いエネルギー密度が得られるからである。
 このケイ素含有材料は、ケイ素を構成元素として含む材料の総称である。このため、ケイ素含有材料は、ケイ素単体でもよいし、ケイ素合金でもよいし、ケイ素化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの1種類または2種類以上の相を含む材料でもよい。ただし、ケイ素単体は、微量の不純物を含んでいてもよい。すなわち、ケイ素単体の純度は、100%でなくてもよい。この不純物は、ケイ素単体の製造工程において意図せずに含まれる不純物および大気中の酸素に起因して意図せずに形成される酸化物などである。ケイ素単体中における不純物の含有量は、できるだけ小さいことが好ましく、5重量%以下であることがより好ましい。
 ケイ素合金は、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどの金属元素のうちのいずれか1種類または2種類以上を含んでいる。ケイ素化合物は、ケイ素以外の構成元素として、炭素および酸素などの非金属元素のうちのいずれか1種類または2種類以上を含んでいる。ただし、ケイ素化合物は、ケイ素以外の構成元素として、さらに、ケイ素合金に関して説明した一連の金属元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
 ケイ素合金の具体例は、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSiおよびSiCなどである。ただし、ケイ素合金の組成(ケイ素と金属元素との混合比)は、任意に変更可能である。
 ケイ素化合物の具体例は、SiB、SiB、Si、SiO、SiO(0<v≦2)およびLiSiOなどである。ただし、vの範囲は、0.2<v<1.4でもよい。
 中でも、ケイ素含有材料は、ケイ素単体であることが好ましい。より高いエネルギー密度が得られるからである。この場合において、複数の粒子部3のそれぞれにおけるケイ素の含有量、すなわちケイ素含有材料におけるケイ素の含有量(純度)は、特に限定されないが、中でも、80重量%以上であることが好ましく、80重量%~100重量%であることがより好ましい。著しく高いエネルギー密度が得られるからである。
 複数の大径炭素繊維部1の重量M1と複数の小径炭素繊維部2の重量M2と複数の粒子部3の重量M3との和に対する複数の粒子部3の重量M3の割合である重量割合M(重量%)は、特に限定されないが、中でも、40重量%~76重量%であることが好ましい。負極10中において炭素成分(複数の大径炭素繊維部1および複数の小径炭素繊維部2)の重量とケイ素成分(複数の粒子部3)の重量との関係が適正化されるため、導電性が担保されながら、十分なエネルギー密度が得られるからである。この重量割合Mは、M=[M3/(M1+M2+M3)]×100という計算式に基づいて算出される。
 重量割合Mを算出する手順は、以下で説明する通りである。最初に、負極10を回収したのち、炭酸ジメチルなどの洗浄用溶媒を用いて負極10を洗浄する。続いて、熱重量示差熱分析法(TG-DTA)を用いて負極10を分析することにより、重量M1,M2,M3を求める。なお、負極10を分析するためには、任意のTG-DTA装置を使用可能である。
 この負極10の分析では、加熱温度を約450℃まで上昇させた際の重量減少分が電解液および結着剤などの重量になると共に、加熱温度を約450℃~約1350℃まで上昇させた際の重量減少分が炭素成分(複数の大径炭素繊維部1および複数の小径炭素繊維部2)の重量(重量M1,M2)になる。これにより、残留成分の重量がケイ素成分(複数の粒子部3)の重量(重量M3)になる。
 なお、上記した電解液などに起因する重量減少分が検出される温度(=約450℃)は、結着剤の種類に応じて変動する場合がある。具体的には、結着剤がポリフッ化ビニリデンである場合には、DTAの微分曲線の極小値を消失温度とすると、その消失温度は約460℃になる。
 最後に、重量M1,M2,M3を用いて、上記した計算式に基づいて重量割合Mを算出する。
 なお、ここでは具体的に図示しないが、複数の粒子部3のそれぞれの表面のうちの一部または全部は、さらに被覆層により被覆されていてもよい。この被覆層は、炭素含有材料および金属材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。負極10の導電性がより向上するからである。炭素含有材料に関する詳細は、上記した通りである。金属材料の種類は、特に限定されない。
 この被覆層を形成する場合には、シランカップリング剤およびポリマー系材料などが用いられる。被覆層を用いて粒子部3の表面を十分に被覆可能にするためである。被覆層を用いて粒子部3の表面の十分に被覆することにより、ケイ素含有材料を含んでいる粒子部3の表面における電解液の分解反応が抑制される。
[空隙率]
 上記したように、負極10は、複数の大径炭素繊維部1により形成された3次元網目構造を含んでいるため、複数の空隙10Gを有している。
 この複数の空隙10Gに基づいて決定される負極10の空隙率Rは、42体積%~73体積%である。負極10の内部における複数の空隙10Gの存在量が適正化されるため、ケイ素含有材料を含んでいる複数の粒子部3のそれぞれが電極反応時において膨張収縮しても、その膨張収縮に起因して発生した内部応力(歪み)が複数の空隙10Gを利用して適正に緩和されるからである。これにより、電極反応が繰り返されても粒子部3の膨張収縮が抑制されるため、負極10の劣化が抑制される。この負極10の劣化とは、大径炭素繊維部1の欠損および切断、小径炭素繊維部2の欠損および破損、ならびに粒子部3の崩壊および脱落などである。
 空隙率Rを算出する手順は、以下で説明する通りである。上記した平均繊維径AD1を算出する場合と同様の手順により、負極10を回収および洗浄したのち、集束イオンビーム走査型電子顕微鏡(FIB-SEM)を用いて負極10の3次元画像を取得することにより、画像解析処理を用いて3次元画像に基づいて空隙率Rを算出する。この画像解析処理では、Math2Market GmbH社製の革新的材料開発総合パッケージソフトウェア GeoDictを使用可能である。
[他の材料]
 なお、負極10は、さらに、他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
 他の材料の種類は、特に限定されないが、具体的には、結着剤などである。複数の大径炭素繊維部1、複数の小径炭素繊維部2および複数の粒子部3のそれぞれが結着剤を介して互いに強固に連結されるため、強固な導電ネットワークが形成されるからである。
 この結着剤は、高分子化合物のうちのいずれか1種類または2種類以上を含んでおり、その高分子化合物の具体例は、ポリイミド、ポリフッ化ビニリデン、ポリアクリル酸、スチレンブタジエンゴムおよびカルボキシメチルセルロースなどである。負極10が結着剤を含んでいる場合には、複数の小径炭素繊維部2のうちの一部が粒子部3の表面に連結されておらずに遊離していてもよい。
<1-2.製造方法>
 この負極10は、以下で説明する手順により製造される。ここでは、複数の大径炭素繊維部1としてカーボンペーパーを用いる場合に関して説明する。
 最初に、複数の大径炭素繊維部1であるカーボンペーパーを準備する。このカーボンペーパーでは、複数の大径炭素繊維部1が互いに連結されているため、複数の空隙10Gを有する3次元網目構造が形成されている。
 続いて、溶媒中にケイ素含有材料の粉末を投入する。これにより、溶媒中においてケイ素含有材料の粉末が分散されるため、第1分散液が調製される。この溶媒は、水性溶媒でもよいし、非水溶媒(有機溶剤)でもよい。この場合には、溶媒中に結着剤を添加してもよい。この結着剤に関する詳細は、上記した通りである。
 続いて、他の溶媒中に複数の小径炭素繊維部2を投入する。これにより、溶媒中において複数の小径炭素繊維部2が分散されるため、第2分散液が調製される。この場合には、溶媒中に結着剤を添加してもよい。溶媒および結着剤のそれぞれに関する詳細は、上記した通りである。
 続いて、第1分散液と第2分散液とを互いに混合させることにより、分散液を調製する。この分散液は、上記したように、ケイ素含有材料の粉末と共に複数の小径炭素繊維部2を含んでいる。
 続いて、複数の大径炭素繊維部1に分散液を塗布したのち、その分散液を乾燥させる。これにより、複数の大径炭素繊維部1の内部に分散液が含浸されるため、ケイ素含有材料の粉末が複数の大径炭素繊維部1のそれぞれの表面に定着すると共に、複数の小径炭素繊維部2がケイ素含有材料の粉末の表面に定着する。よって、複数の大径炭素繊維部1のそれぞれの表面を被覆する複数の粒子部3が形成されると共に、複数の小径炭素繊維部2が複数の粒子部3の表面に連結される。ただし、複数の大径炭素繊維部1に分散液を塗布する代わりに、その分散液中に複数の大径炭素繊維部1を浸漬させてもよい。
 この複数の粒子部3が形成される場合には、複数の空隙10Gのうちの一部または全部の内径が減少するため、その複数の粒子部3が形成される前の空隙率R(いわゆる初期の空隙率R)は減少する。しかしながら、初期の空隙率Rが十分に大きくなるように設定されていれば、複数の粒子部3が形成されても複数の空隙10Gの一部または全部は消失せずに残存するため、その複数の粒子部3の形成後においても空隙率Rを算出可能である。すなわち、第1分散液中におけるケイ素含有材料の濃度を調整することにより、空隙率Rを制御可能である。
 これにより、複数の大径炭素繊維部1、複数の小径炭素繊維部2および複数の粒子部3を含む負極10が作製される。
 なお、複数の粒子部3の表面に複数の小径炭素繊維部2を連結させる場合には、分散液を用いて複数の粒子部3の表面に複数の小径炭素繊維部2を間接的に形成する代わりに、その複数の粒子部3の表面に複数の小径炭素繊維部2を直接的に形成してもよい。この場合には、複数の粒子部3の表面に金属触媒を配置したのち、化学気相成長法(CVD)などを用いて複数の小径炭素繊維部2を成長させる。これにより、複数の粒子部3の表面に対して複数の小径炭素繊維部2のそれぞれが強固に連結されるため、強固な導電ネットワークが形成される。
 最後に、必要に応じて、プレス機などを用いて負極10をプレスしたのち、その負極10を焼成する。この場合には、プレス圧を調整することにより、空隙率Rを制御可能である。焼成温度は、任意に設定可能である。
 これにより、複数の大径炭素繊維部1、複数の小径炭素繊維部2および複数の粒子部3を含むと共に複数の空隙10Gを有する負極10が完成する。この負極10を作製する場合には、第1分散液中におけるケイ素含有材料の濃度および第2分散液中における複数の小径炭素繊維部2の濃度などを調整することにより、重量割合Mを制御可能である。
 なお、負極10を作製する場合には、上記した手順により、複数の粒子部3が形成された複数の大径炭素繊維部1を得たのち、その複数の粒子部3が形成された複数の大径炭素繊維部1と複数の小径炭素繊維部2とを用いた製紙プロセスを用いてもよい。この場合には、紙漉きなどの湿式プロセスを用いてもよいし、ウェブなどを用いた乾式プロセスを用いてもよい。この場合においても、複数の大径炭素繊維部1、複数の小径炭素繊維部2および複数の粒子部3を含むと共に複数の空隙10Gを有する負極10が作製される。
<1-3.作用および効果>
 この負極10によれば、複数の大径炭素繊維部1、複数の小径炭素繊維部2および複数の粒子部3を含んでいると共に複数の空隙10Gを有しており、その複数の大径炭素繊維部1および複数の小径炭素繊維部2のそれぞれが炭素含有材料を含んでおり、その複数の粒子部3のそれぞれがケイ素含有材料を含んでおり、平均繊維径AD1,AD2および空隙率Rに関して上記した条件(AD1=50nm~7000nm、AD2=1nm~200nmおよびR=42体積%~73体積%)が満たされている。
 この場合には、上記したように、複数の大径炭素繊維部1、複数の小径炭素繊維部2および複数の粒子部3を含む系において平均繊維径AD1,AD2および空隙率Rのそれぞれが適正化されるため、以下で説明する一連の作用が得られる。
 第1に、負極10の内部において、導電性の炭素含有材料を含んでいる複数の大径炭素繊維部1により導電ネットワーク(3次元網目構造)が形成されると共に、同様に導電性の炭素含有材料を含んでいる複数の小径炭素繊維部2により緻密な導電ネットワークも形成される。
 第2に、複数の粒子部3のそれぞれが電極反応物質の吸蔵放出性に優れたケイ素含有材料を含んでいるため、高いエネルギー密度が得られる。
 第3に、複数の粒子部3が複数の大径炭素繊維部1のそれぞれの表面を被覆することにより、互いに異なる内径を有する複数の空隙10Gが形成されるため、その複数の空隙10Gを経由して電極反応物質が移動しやすくなる。これにより、電極反応時の電流値が増加しても、電極反応物質が吸蔵放出されやすくなる。
 第4に、複数の粒子部3のそれぞれがケイ素含有材料を含んでいても、電極反応時、すなわち複数の粒子部3のそれぞれの膨張収縮時において負極10の内部に発生した内部応力が複数の空隙10Gを利用して緩和されるため、その負極10の膨張収縮が抑制される。これにより、複数の粒子部3のそれぞれの膨張収縮時に発生した内部応力に起因する負極10の劣化が抑制される。この場合には、特に、ケイ素含有材料中におけるケイ素の含有量が大きくても、負極10の膨張収縮が十分に抑制されるため、その負極10の劣化が効果的に抑制される。
 第5に、複数の粒子部3(一次粒子3A)により二次粒子3Bが形成されており、その二次粒子3Bの内部に複数の細孔3Gが形成されているため、電極反応時において、空隙10Gだけでなく細孔3Gも利用して粒子部3の膨張収縮が抑制されると共に、同様に空隙10Gだけでなく細孔3Gも利用して電極反応物質が移動しやすくなる。
 これらのことから、エネルギー密度および電極反応物質の吸蔵放出性のそれぞれが担保されながら、電極反応時において負極10の膨張収縮が抑制されると共に、電極反応が繰り返されても放電容量が減少しにくくなる。よって、負極10を用いた二次電池において、優れた初回容量特性、優れた膨れ特性、優れた負荷特性および優れたサイクル特性を得ることができる。
 なお、上記した負極10では、金属集電体が不要であるため、その金属集電体を用いる場合と比較して、軽量化を図ることができると共に、重量エネルギー密度(Wh/kg)を増加させることもできる。
 特に、重量割合Mが40重量%~76重量%であれば、負極10中において炭素成分(複数の大径炭素繊維部1および複数の小径炭素繊維部2)の重量とケイ素成分(複数の粒子部3)の重量との関係が適正化される。よって、導電性が担保されながら十分なエネルギー密度が得られるため、より高い効果を得ることができる。
 また、複数の粒子部3のそれぞれ(ケイ素含有材料)におけるケイ素の含有量が80重量%以上であれば、導電性が担保されながら著しく高いエネルギー密度が得られるため、より高い効果を得ることができる。
 また、複数の小径炭素繊維部2のうちの一部または全部が複数の粒子部3のうちの一部を介して2本以上の大径炭素繊維部1のそれぞれに連結されていれば、その2本以上の大径炭素繊維部1が小径炭素繊維部2を介して互いに電気的に接続される。よって、より緻密な導電ネットワークが形成されるため、より高い効果を得ることができる。
 ここで、空隙率Rが上記した大きな値(=42体積%~73体積%)を有している場合には、導電ネットワークが疎らになりやすい。しかも、ケイ素含有材料を含んでいる粒子部3が電極反応時において膨張収縮するため、導電ネットワークが断絶されやすい。しかしながら、上記したように、複数の小径炭素繊維部2のうちの一部または全部が複数の粒子部3のうちの一部を介して2本以上の小径炭素繊維部2のそれぞれに連結されていると、緻密な導電ネットワークが形成されやすくなると共に、その導電ネットワークが断絶されにくくなる。
 また、複数の粒子部3の平均粒径AP1が30nm~2000nmであれば、導電性が担保されながら十分なエネルギー密度が得られるため、より高い効果を得ることができる。
 また、複数の大径炭素繊維部1がカーボンペーパーを含んでいれば、その複数の大径炭素繊維部1が互いに十分に連結されると共に、平均繊維径AD1が十分に大きくなる。よって、十分な導電ネットワーク(3次元網目構造)が形成されるため、より高い効果を得ることができる。
 また、複数の小径炭素繊維部2が単層カーボンナノチューブおよび気相成長炭素繊維のうちの一方または双方を含んでいれば、平均繊維径AD2が十分に小さくなる。よって、負極10の内部において複数の小径炭素繊維部2が十分に分散されやすくなると共に、より緻密な導電ネットワークが形成されやすくなるため、より高い効果を得ることができる。
<2.二次電池>
 次に、本技術の一実施形態の二次電池、より具体的には上記した負極10を用いた二次電池の一例に関して説明する。
 ここで説明する二次電池は、上記したように、電極反応物質の吸蔵放出を利用して電池容量が得られる二次電池であり、正極、負極およびセパレータと共に、液状の電解質である電解液を備えている。電極反応物質の種類は、上記したように、特に限定されない。
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵放出される。
 この場合には、負極の充電容量が正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。充電途中において負極の表面に電極反応物質が析出することを防止するためである。
<2-1.構成>
 図3は、二次電池の斜視構成を表している。図4は、図3に示した電池素子30の断面構成を拡大している。ただし、図3では、外装フィルム20と電池素子30とが互いに分離された状態を示していると共に、図4では、電池素子30の一部だけを示している。以下では、随時、既に説明した図1および図2を参照すると共に、既に説明した負極10の構成要素を引用する。
 この二次電池は、図3および図4に示したように、外装フィルム20と、電池素子30と、正極リード41と、負極リード42と、封止フィルム51,52とを備えている。ここで説明する二次電池は、可撓性(または柔軟性)を有する外装フィルム20を用いたラミネートフィルム型の二次電池である。
[外装フィルム]
 外装フィルム20は、図3に示したように、電池素子30を収納する可撓性の外装部材であり、その電池素子30が内部に収納された状態において封止された袋状の構造を有している。このため、外装フィルム20は、後述する正極31および負極32と共に電解液を収納している。
 ここでは、外装フィルム20は、1枚のフィルム状の部材であり、折り畳み方向Fに折り畳まれている。この外装フィルム20には、電池素子30を収容するための窪み部20U(いわゆる深絞り部)が設けられている。
 具体的には、外装フィルム20は、融着層、金属層および表面保護層が内側からこの順に積層された3層のラミネートフィルムであり、その外装フィルム20が折り畳まれた状態において、互いに対向する融着層のうちの外周縁部同士が互いに融着されている。融着層は、ポリプロピレンなどの高分子化合物を含んでいる。金属層は、アルミニウムなどの金属材料を含んでいる。表面保護層は、ナイロンなどの高分子化合物を含んでいる。
 ただし、外装フィルム20の構成(層数)は、特に、限定されないため、1層または2層でもよいし、4層以上でもよい。
[電池素子]
 電池素子30は、図3および図4に示したように、正極31、負極32、セパレータ33および電解液(図示せず)を含んでいる発電素子であり、外装フィルム20の内部に収納されている。
 この電池素子30は、いわゆる積層電極体であるため、正極31および負極32は、セパレータ33を介して互いに積層されている。正極31、負極32およびセパレータ33のそれぞれの積層数は、特に限定されない。ここでは、複数の正極31および複数の負極32がセパレータ33を介して交互に積層されている。
(正極)
 正極31は、図4に示したように、正極集電体31Aおよび正極活物質層31Bを含んでいる。
 正極集電体31Aは、正極活物質層31Bが設けられる一対の面を有している。この正極集電体31Aは、金属材料などの導電性材料を含んでおり、その金属材料の具体例は、アルミニウムなどである。
 なお、正極集電体31Aは、図3に示したように、正極活物質層31Bが設けられていない突出部31ATを含んでおり、複数の突出部31ATは、1本のリード状となるように互いに接合されている。ここでは、突出部31ATは、その突出部31AT以外の部分と一体化されている。ただし、突出部31ATは、その突出部31AT以外の部分と別体化されているため、その突出部31AT以外の部分に接合されていてもよい。
 正極活物質層31Bは、リチウムを吸蔵放出可能である正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層31Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
 ここでは、正極活物質層31Bは、正極集電体31Aの両面に設けられている。ただし、正極活物質層31Bは、正極31が負極32に対向する側において正極集電体31Aの片面だけに設けられていてもよい。正極活物質層31Bの形成方法は、特に限定されないが、具体的には、塗布法などのうちのいずれか1種類または2種類以上である。
 正極活物質の種類は、特に限定されないが、具体的には、リチウム含有化合物などである。このリチウム含有化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物であり、さらに、1種類または2種類以上の他元素を構成元素として含んでいてもよい。他元素の種類は、リチウムおよび遷移金属元素のそれぞれ以外の元素であれば、特に限定されないが、具体的には、長周期型周期表中の2族~15族に属する元素である。リチウム含有化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。
 酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 、Li1.15(Mn0.65Ni0.22Co0.13)OおよびLiMnなどである。リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムの具体例は、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物の具体例は、ポリフッ化ビニリデン、ポリイミドおよびカルボキシメチルセルロースなどである。
 正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その炭素材料の具体例は、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラックおよびカーボンナノチューブなどである。ただし、導電性材料は、金属材料および高分子化合物などでもよい。
(負極)
 負極32は、図4に示したように、セパレータ33を介して正極31に対向しており、リチウムを吸蔵放出可能である。この負極32は、上記した負極10の構成と同様の構成を有しているため、複数の大径炭素繊維部1、複数の小径炭素繊維部2および複数の粒子部3を含んでいる。この負極32では、主に、複数の粒子部3のそれぞれにおいてリチウムが吸蔵放出される。ただし、複数の粒子部3のそれぞれだけでなく、複数の大径炭素繊維部1および複数の小径炭素繊維部2のうちの一方または双方においてもリチウムが吸蔵放出されてもよい。
 なお、負極32は、図3に示したように、複数の粒子部3が設けられていない一部の大径炭素繊維部1からなる突出部31ATを含んでおり、複数の突出部31ATは、1本のリード状となるように互いに接合されている。
(セパレータ)
 セパレータ33は、図4に示したように、正極31と負極32との間に介在している絶縁性の多孔質膜であり、その正極31と負極32との接触(短絡)を防止しながらリチウムイオンを通過させる。このセパレータ33は、ポリエチレンなどの高分子化合物を含んでいる。
(電解液)
 電解液は、正極31、負極32およびセパレータ33のそれぞれに含浸されており、溶媒および電解質塩を含んでいる。
 溶媒は、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などの非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。
 炭酸エステル系化合物は、環状炭酸エステルおよび鎖状炭酸エステルなどである。環状炭酸エステルの具体例は、炭酸エチレンおよび炭酸プロピレンなどである。鎖状炭酸エステルの具体例は、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどである。
 カルボン酸エステル系化合物は、鎖状カルボン酸エステルなどである。鎖状カルボン酸エステルの具体例は、酢酸メチル、酢酸エチル、トリメチル酢酸メチル、プロピオン酸メチル、プロピオン酸エチルおよびプロピオン酸プロピルなどである。
 ラクトン系化合物は、ラクトンなどである。ラクトンの具体例は、γ-ブチロラクトンおよびγ-バレロラクトンなどである。
 電解質塩は、リチウム塩などの軽金属塩のうちのいずれか1種類または2種類以上を含んでいる。
 リチウム塩の具体例は、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、ビス(オキサラト)ホウ酸リチウム(LiB(C)、ジフルオロ(オキサラト)ホウ酸リチウム(LiB(C)F)、モノフルオロリン酸リチウム(LiPFO)およびジフルオロリン酸リチウム(LiPF)などである。
 電解質塩の含有量は、特に限定されないが、具体的には、溶媒に対して0.3mol/kg~3.0mol/kgである。高いイオン伝導性が得られるからである。
 なお、電極液は、さらに、添加剤のうちのいずれか1種類または2種類以上を含んでいてもよい。添加剤の種類は、特に限定されないが、具体的には、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、リン酸エステル、酸無水物、ニトリル化合物およびイソシアネート化合物などである。
 不飽和環状炭酸エステルの具体例は、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。ハロゲン化炭酸エステルの具体例は、ハロゲン化環状炭酸エステルおよびハロゲン化鎖状炭酸エステルなどである。ハロゲン化環状炭酸エステルの具体例は、モノフルオロ炭酸エチレンおよびジフルオロ炭酸エチレンなどである。ハロゲン化鎖状炭酸エステルの具体例は、炭酸フルオロメチルメチルなどである。リン酸エステルの具体例は、リン酸トリメチルおよびリン酸トリエチルなどである。
 酸無水物は、ジカルボン酸無水物、ジスルホン酸無水物およびカルボン酸スルホン酸無水物などである。ジカルボン酸無水物の具体例は、無水コハク酸などである。ジスルホン酸無水物の具体例は、無水エタンジスルホン酸などである。カルボン酸スルホン酸無水物の具体例は、無水スルホ安息香酸などである。
 ニトリル化合物は、モノニトリル化合物、ジニトリル化合物およびトリニトリル化合物などである。モノニトリル化合物の具体例は、アセトニトリルなどである。ジニトリル化合物の具体例は、スクシノニトリルなどである。トリニトリル化合物の具体例は、1,2,3-プロパントリカルボニトリルなどである。イソシアネート化合物の具体例は、ヘキサメチレンジイソシアネートなどである。
[正極リード]
 正極リード41は、図3に示したように、正極31のうちの複数の突出部31ATの接合体に接続されている正極端子であり、外装フィルム20の内部から外部に導出されている。この正極リード41は、金属材料などの導電性材料を含んでおり、その金属材料の具体例は、アルミニウムなどである。正極リード41の形状は、特に限定されないが、具体的には、薄板状および網目状などのうちのいずれかである。
[負極リード]
 負極リード42は、図3に示したように、負極32のうちの複数の突出部32ATの接合体に接続されている負極端子であり、外装フィルム20の内部から外部に導出されている。中でも、負極リード42は、負極32のうちの大径炭素繊維部1に接続されていることが好ましい。負極32と負極リード42との電気的導通性が向上するからである。この負極リード42は、金属材料などの導電性材料を含んでおり、その金属材料の具体例は、銅などである。ここでは、負極リード42の導出方向は、正極リード41の導出方向と同様である。負極リード42の形状に関する詳細は、正極リード41の形状に関する詳細と同様である。
[封止フィルム]
 封止フィルム51は、外装フィルム20と正極リード41との間に挿入されていると共に、封止フィルム52は、外装フィルム20と負極リード42との間に挿入されている。ただし、封止フィルム51,52のうちの一方または双方は、省略されてもよい。
 この封止フィルム51は、外装フィルム20の内部に外気などが侵入することを防止する封止部材である。また、封止フィルム51は、正極リード41に対して密着性を有するポリオレフィンなどの高分子化合物を含んでおり、そのポリオレフィンの具体例は、ポリプロピレンなどである。
 封止フィルム52の構成は、負極リード42に対して密着性を有する封止部材であることを除いて、封止フィルム51の構成と同様である。すなわち、封止フィルム52は、負極リード42に対して密着性を有するポリオレフィンなどの高分子化合物を含んでいる。
<2-2.動作>
 二次電池の充電時には、電池素子30において、正極31からリチウムが放出されると共に、そのリチウムが電解液を介して負極32に吸蔵される。一方、二次電池の放電時には、電池素子30において、負極32からリチウムが放出されると共に、そのリチウムが電解液を介して正極31に吸蔵される。これらの充電時および放電時には、リチウムがイオン状態で吸蔵および放出される。
<2-3.製造方法>
 二次電池を製造する場合には、以下で説明する一例の手順により、正極31および負極32のそれぞれを作製すると共に電解液を調製したのち、二次電池を組み立てると共に、その組み立て後の二次電池の安定化処理を行う。
[正極の作製]
 最初に、正極活物質、正極結着剤および正極導電剤が互いに混合された混合物(正極合剤)を溶媒に投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、有機溶剤でもよい。続いて、突出部31ATを含む正極集電体31Aの両面(突出部31ATを除く。)に正極合剤スラリーを塗布することにより、正極活物質層31Bを形成する。最後に、ロールプレス機などを用いて正極活物質層31Bを圧縮成型する。この場合には、正極活物質層31Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。これにより、正極集電体31Aの両面に正極活物質層31Bが形成されるため、正極31が作製される。
[負極の作製]
 上記した負極10の作製手順と同様の手順により、突出部32ATを含む負極32を作製する。
[電解液の調製]
 溶媒に電解質塩を投入する。これにより、溶媒中において電解質塩が分散または溶解されるため、電解液が調製される。
[二次電池の組み立て]
 最初に、セパレータ33を介して正極31および負極32を交互に積層させることにより、積層体(図示せず)を作製する。この積層体は、正極31、負極32およびセパレータ33のそれぞれに電解液が含浸されていないことを除いて、電池素子30の構成と同様の構成を有している。
 続いて、複数の突出部31ATを互いに接合させると共に、複数の突出部32ATを互いに接合させる。続いて、複数の突出部31ATの接合体に正極リード41を接合させると共に、複数の突出部32ATの接合体に負極リード42を接続させる。
 続いて、窪み部20Uの内部に積層体を収容したのち、外装フィルム20(融着層/金属層/表面保護層)を折り畳むことにより、その外装フィルム20同士を互いに対向させる。続いて、熱融着法などを用いて、互いに対向する外装フィルム20(融着層)のうちの2辺の外周縁部同士を互いに接合させることにより、袋状の外装フィルム20の内部に積層体を収納する。
 最後に、袋状の外装フィルム20の内部に電解液を注入したのち、熱融着法などを用いて外装フィルム20(融着層)のうちの残りの1辺の外周縁部同士を互いに接合させる。この場合には、外装フィルム20と正極リード41との間に封止フィルム51を挿入すると共に、その外装フィルム20と負極リード42との間に封止フィルム52を挿入する。
 これにより、積層体に電解液が含浸されるため、積層電極体である電池素子30が作製される。よって、袋状の外装フィルム20の内部に電池素子30が封入されるため、二次電池が組み立てられる。
[二次電池の安定化]
 組み立て後の二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの各種条件は、任意に設定可能である。これにより、正極31および負極32のそれぞれの表面に被膜が形成されるため、二次電池の状態が電気化学的に安定化する。よって、二次電池が完成する。
<2-4.作用および効果>
 この二次電池によれば、負極32が上記した負極10の構成と同様の構成を有している。よって、負極10に関して説明した場合と同様の理由により、優れた初回容量特性、優れた膨れ特性、優れた負荷特性および優れたサイクル特性を得ることができる。
 また、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵放出を利用して十分な電池容量が安定に得られるため、より高い効果を得ることができる。
 これ以外の二次電池に関する作用および効果は、上記した負極10に関する作用および効果と同様である。
<3.変形例>
 次に、変形例に関して説明する。
 上記した負極10および二次電池のそれぞれの構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例のうちの任意の2種類以上は、互いに組み合わされてもよい。
[変形例1]
 図2に対応する図5に示したように、複数の粒子部3(一次粒子3A)のうちの一部または全部は、中心部3Xおよび被覆部3Yを含んでいてもよい。この被覆部3Yは、厚さTを有している。図5では、図2とは異なり、粒子部3だけを拡大して示している。
 中心部3Xは、図2に示した粒子部3(一次粒子3A)の構成と同様の構成を有しているため、ケイ素含有材料を含んでいる。
 被覆部3Yは、中心部3Xの表面を被覆している。この被覆部3Yは、中心部3Xの表面の全体を被覆していてもよいし、その被覆部3Yの表面の一部だけを被覆していてもよい。後者の場合において、被覆部3Yは、互いに離隔された複数の場所において中心部3Xの表面を被覆していてもよい。図5では、図示内容を簡略化するために、被覆部3Yが中心部3Xの表面の全体を被覆している場合を示している。
(被覆部の形成材料=炭素含有材料)
 ここで、被覆部3Yは、炭素含有材料のうちのいずれか1種類または2種類以上を含んでいてもよい。炭素含有材料の具体例は、アモルファスカーボンおよび黒鉛などである。
 被覆部3Yの平均厚さATは、特に限定されないため、任意に設定可能である。被覆部3Yの平均厚さATを算出する手順は、以下で説明する通りである。最初に、上記した平均繊維径AD1を算出する場合と同様の手順により、負極10の断面の観察結果(観察画像)を取得する。続いて、任意の20個の被覆部3Yを選択したのち、その20個の被覆部3Yのそれぞれの厚さTを測定する。なお、1個の被覆部3Yにおいて場所に応じて厚さが異なる場合には、その厚さTの最大値を選択する。最後に、20個の厚さTの平均値を算出することにより、平均厚さATとする。
 この中心部3Xおよび被覆部3Y(炭素含有材料)を含む複数の粒子部3を形成する場合には、その中心部3Xであるケイ素含有材料の粉末を準備したのち、気相法を用いて中心部3Xの表面に炭素含有材料を堆積させることにより、被覆部3Yを形成する。気相法の種類は、特に限定されないが、具体的には、真空蒸着法、CVD法およびスパッタリング法などのうちのいずれか1種類または2種類以上である。
 この場合には、複数の粒子部3のそれぞれの導電性が向上する。よって、負極10の導電性がより向上するため、より高い効果を得ることができる。
(被覆部の形成材料=イオン伝導性材料)
 または、被覆部3Yは、イオン伝導性材料のうちのいずれか1種類または2種類以上を含んでいてもよい。イオン伝導性材料の具体例は、窒化リン酸リチウムおよびリン酸リチウムなどの固体電解質である。この窒化リン酸リチウムの組成は、特に限定されないが、具体的には、Li3.30PO3.900.17などである。
 また、イオン伝導性材料の具体例は、マトリクス高分子化合物により電解液が保持されたゲル電解質である。電解液の構成は、上記した通りである。マトリクス高分子化合物の具体例は、ポリエチレンオキサイドおよびポリフッ化ビニリデンなどである。
 被覆部3Yの平均厚さATに関する詳細は、上記した通りである。
 この中心部3Xおよび被覆部3Y(イオン伝導性材料)を含む複数の粒子部3を形成する手順は、以下で説明する通りである。イオン伝導性材料として固体電解質を用いる場合には、スパッタリング法などの気相法を用いて複数の中心部3Xのそれぞれの表面に被覆部3Yを直接的に形成する。イオン伝導性材料としてゲル電解質を用いる場合には、電解液およびマトリクス高分子化合物と共に希釈用の溶媒を含む溶液を複数の中心部3Xのそれぞれの表面に塗布したのち、その溶液を乾燥させる。ただし、溶液中に複数の中心部3Xを浸漬させてもよい。
 この場合には、複数の粒子部3のそれぞれにおいてイオン伝導性材料を利用して電極反応物質のイオン伝導性が向上するため、より高い効果を得ることができる。
 特に、被覆部3Yがイオン伝導性材料を含んでいる複数の粒子部3を利用することにより、全固体電池に負極10を適用することができる。負極10の膨張収縮が抑制されるため、その負極10と固体電解質との界面抵抗の上昇が抑制されるからである。これにより、全固体電池では、安全性の確保とエネルギー密度の向上とを両立させることができる。
[変形例2]
 図5に対応する図6に示したように、複数の粒子部3(一次粒子3A)のうちの一部または全部は、中心部3Xと共に内側被覆部3Y1および外側被覆部3Y2を含んでいてもよい。
 中心部3Xの構成は、上記した通りである。内側被覆部3Y1および外側被覆部3Y2のうちの一方は、炭素含有材料を含んでいると共に、その内側被覆部3Y1および外側被覆部3Y2のうちの他方は、イオン伝導性材料を含んでいる。すなわち、内側被覆部3Y1が炭素含有材料を含んでおり、外側被覆部3Y2がイオン伝導性材料を含んでいてもよい。または、内側被覆部3Y1がイオン伝導性材料を含んでおり、外側被覆部3Y2が炭素含有材料を含んでいてもよい。
炭素含有材料およびイオン伝導性材料のそれぞれの詳細は、上記した通りである。また、内側被覆部3Y1の平均厚さおよび外側被覆部3Y2の平均厚さのそれぞれに関する詳細は、上記した平均厚さATと同様である。さらに、内側被覆部3Y1および外側被覆部3Y2のそれぞれの形成方法は、被覆部3Yの形成方法と同様である。
 この場合には、複数の粒子部3のそれぞれにおいて導電性が向上すると共にイオン伝導性が向上するため、さらにより高い効果を得ることができる。
[変形例3]
 図2に対応する図7~図9に示したように、複数の粒子部3(一次粒子3A)のうちの一部または全部は、複数の小径炭素繊維部2のうちの一部および複数のイオン伝導性材料4のうちの一方または双方を含む複合二次粒子3BPを形成していてもよい。この複合二次粒子3BPは、粒径P2を有している。図7~図9のそれぞれでは、図2とは異なり、粒子部3(複合二次粒子3BP)だけを拡大して示している。
(複数の小径炭素繊維部を含む複合二次粒子)
 具体的には、図7に示したように、複数の粒子部3(一次粒子3A)が複数の小径炭素繊維部のうちの一部と一緒に造粒されているため、その複数の粒子部3により形成される複合二次粒子3BPでは、複数の一次粒子3Aと複数の小径炭素繊維部2とが互いに絡み合っていてもよい。これにより、複数の一次粒子3Aは、複数の小径炭素繊維部2を介して互いに電気的に接続されていると共に互いに物理的に連結されている。
 この複合二次粒子3BPの平均粒径AP2は、特に限定されないが、中でも、300nm~10000nmであることが好ましい。導電性が担保されながら、粒子部3の膨張収縮が十分に抑制されると共に電極反応物質が十分に移動しやすくなるからである。
 平均粒径AP2を算出する手順は、任意の10個の複合二次粒子3BPの粒径P2を測定したのち、その10個の粒径P2の平均値を平均粒径AP2とすることを除いて、上記した平均粒径AP1を算出する手順と同様である。
 この複数の小径炭素繊維部2を含む複合二次粒子3BPを形成する場合には、複数の粒子部3、複数の小径炭素繊維部2および希釈用の溶媒を含む分散液を調製したのち、スプレードライ法を用いて分散液を噴霧する。溶媒に関する詳細は、上記した通りである。この分散液は、結着剤を含んでいてもよく、その結着剤に関する詳細は、上記した通りである。これにより、分散液を用いて造粒されるため、複数の粒子部3と共に複数の小径炭素繊維部2を含む造粒物(複合二次粒子3BP)が形成される。
 この場合には、複数の粒子部3と複数の小径炭素繊維部2とが互いに強固に連結されるため、負極10の導電性が安定により向上する。
(複数のイオン伝導性材料を含む複合二次粒子)
 また、図8に示したように、複数の粒子部3(一次粒子3A)が複数のイオン伝導性材料4と一緒に造粒されているため、その複数の粒子部3により形成される複合二次粒子3BPでは、2つ以上の一次粒子3Aが1つまたは2つ以上のイオン伝導性材料4を介して互いに電気的に接続されていると共に互いに物理的に連結されていてもよい。
 この複合二次粒子3BPの平均粒径AP2に関する詳細は、図7に示した場合と同様である。すなわち、複合二次粒子3BPの平均粒径AP2は、300nm~10000nmであることが好ましい。
 この複数のイオン伝導性材料4を含む複合二次粒子3BPの形成手順は、複数の小径炭素繊維部2の代わりにイオン伝導性材料を用いることを除いて、図7に示した場合と同様である。
 この場合には、複数の粒子部3と複数のイオン伝導性材料4とが互いに強固に連結されるため、負極10のイオン伝導性が安定により向上する。
(複数の小径炭素繊維部および複数のイオン伝導性材料を含む複合二次粒子)
 さらに、図9に示したように、複数の粒子部3(一次粒子3A)が複数の小径炭素繊維部2のうちの一部および複数のイオン伝導性材料4と一緒に造粒されているため、その複数の粒子部3により形成される複合二次粒子3BPは、複数の小径炭素繊維部2および複数のイオン伝導性材料4の双方を含んでいてもよい。この複数の小径炭素繊維部2および複数のイオン伝導性材料4のそれぞれを含んでいる複合二次粒子3BPの構成に関する詳細は、上記した通りである(図7および図8参照)。
 この複合二次粒子3BPの平均粒径AP2に関する詳細は、図7に示した場合と同様である。すなわち、複合二次粒子3BPの平均粒径AP2は、300nm~10000nmであることが好ましい。
 この複数の小径炭素繊維部2および複数のイオン伝導性材料4を含む複合二次粒子3BPの形成手順は、複数の小径炭素繊維部2に加えてイオン伝導性材料を用いることを除いて、図7に示した場合と同様である。
 この場合には、複数の粒子部3と複数の小径炭素繊維部2と複数のイオン伝導性材料4とが互いに強固に連結されるため、負極10の導電性およびイオン伝導性のそれぞれが安定により向上する。
(他の複合二次粒子)
 ここでは具体的に図示しないが、図5および図6のそれぞれに示した粒子部3(一次粒子3A)の構成と、図7~図9のそれぞれに示した複合二次粒子3BPの構成とが互いに組み合わされてもよい。具体的には、図5に示した複数の粒子部3(一次粒子3A)が図7~図9のそれぞれに示した複合二次粒子3BPを形成していてもよいし、図6に示した複数の粒子部3(一次粒子3A)が図7~図9のそれぞれに示した複合二次粒子3BPを形成していてもよいし、両者が混在していてもよい。これらの場合においても、同様の効果を得ることができる。
[変形例4]
 多孔質膜であるセパレータ33を用いた。しかしながら、ここでは具体的に図示しないが、セパレータ33の代わりに、高分子化合物層を含む積層型のセパレータを用いてもよい。
 具体的には、積層型のセパレータは、一対の面を有する多孔質膜と、その多孔質膜の片面または両面に設けられた高分子化合物層とを含んでいる。正極31および負極32のそれぞれに対するセパレータの密着性が向上するため、電池素子30の巻きずれが抑制されるからである。これにより、電解液の分解反応が発生しても、二次電池が膨れにくくなる。多孔質膜の構成は、セパレータ33に関して説明した多孔質膜の構成と同様である。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。ポリフッ化ビニリデンなどは、物理的強度に優れていると共に、電気化学的に安定だからである。
 なお、多孔質膜および高分子化合物層のうちの一方または双方は、複数の絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。二次電池の発熱時において複数の絶縁性粒子が放熱を促進させるため、その二次電池の安全性(耐熱性)が向上するからである。絶縁性粒子は、無機粒子および樹脂粒子のうちの一方または双方などである。無機粒子の具体例は、酸化アルミニウム、窒化アルミニウム、ベーマイト、酸化ケイ素、酸化チタン、酸化マグネシウムおよび酸化ジルコニウムなどの粒子である。樹脂粒子の具体例は、アクリル樹脂およびスチレン樹脂などの粒子である。
 積層型のセパレータを作製する場合には、高分子化合物および溶媒などを含む前駆溶液を調製したのち、多孔質膜の片面または両面に前駆溶液を塗布する。この場合には、多孔質膜に前駆溶液を塗布する代わりに、その前駆溶液中に多孔質膜を浸漬させてもよい。なお、前駆溶液中に複数の絶縁性粒子を含有させてもよい。
 この積層型のセパレータを用いた場合においても、正極31と負極32との間においてリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、二次電池の安全性が向上するため、より高い効果を得ることができる。
[変形例5]
 液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、電解液の代わりに、ゲル状の電解質である電解質層を用いてもよい。
 電解質層を用いた電池素子30では、セパレータ33および電解質層を介して正極31および負極32が交互に積層されている。この場合には、正極31とセパレータ33との間に電解質層が介在していると共に、負極32とセパレータ33との間に電解質層が介在している。ただし、電解質層は、正極31とセパレータ33との間だけに介在していてもよいし、負極32とセパレータ33との間だけに介在していてもよい。
 具体的には、電解質層は、電解液と共に高分子化合物を含んでおり、その電解液は、高分子化合物により保持されている。電解液の漏液が防止されるからである。電解液の構成は、上記した通りである。高分子化合物は、ポリフッ化ビニリデンなどを含んでいる。電解質層を形成する場合には、電解液、高分子化合物および希釈用の溶媒などを含む前駆溶液を調製したのち、正極31および負極32のそれぞれの片面または両面に前駆溶液を塗布する。溶媒に関する詳細は、上記した通りである。
 この電解質層を用いた場合においても、正極31と負極32との間において電解質層を介してリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、電解液の漏液が防止されるため、より高い効果を得ることができる。
<4.二次電池の用途>
 最後に、二次電池の用途(適用例)に関して説明する。
 二次電池の用途は、特に限定されない。電源として用いられる二次電池は、電子機器および電動車両などの主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源、または主電源から切り替えられる電源である。
 二次電池の用途の具体例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、ヘッドホンステレオ、携帯用ラジオおよび携帯用情報端末などの電子機器である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。電子機器などに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用または産業用のバッテリシステムなどの電力貯蔵システムである。これらの用途では、1個の二次電池が用いられてもよいし、複数個の二次電池が用いられてもよい。
 電池パックでは、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、その二次電池以外の駆動源を併せて備えたハイブリッド自動車でもよい。家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に蓄積された電力を利用して家庭用の電気製品などを使用可能である。
 ここで、二次電池の適用例の一例に関して具体的に説明する。以下で説明する構成は、あくまで一例であるため、適宜、変更可能である。
 図10は、電池パックのブロック構成を表している。ここで説明する電池パックは、1個の二次電池を用いた電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。
 この電池パックは、図10に示したように、電源61と、回路基板62とを備えている。この回路基板62は、電源61に接続されていると共に、正極端子63、負極端子64および温度検出端子65を含んでいる。
 電源61は、1個の二次電池を含んでいる。この二次電池では、正極リードが正極端子63に接続されていると共に、負極リードが負極端子64に接続されている。この電源61は、正極端子63および負極端子64を介して外部と接続されるため、充放電可能である。回路基板62は、制御部66と、スイッチ67と、熱感抵抗(PTC)素子68と、温度検出部69とを含んでいる。ただし、PTC素子68は省略されてもよい。
 制御部66は、中央演算処理装置(CPU)およびメモリなどを含んでおり、電池パック全体の動作を制御する。この制御部66は、必要に応じて電源61の使用状態の検出および制御を行う。
 なお、制御部66は、電源61(二次電池)の電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ67を切断することにより、電源61の電流経路に充電電流が流れないようにする。過充電検出電圧は、特に限定されないが、具体的には、4.2±0.05Vであると共に、過放電検出電圧は、特に限定されないが、具体的には、2.4±0.1Vである。
 スイッチ67は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでおり、制御部66の指示に応じて電源61と外部機器との接続の有無を切り換える。このスイッチ67は、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などを含んでおり、充放電電流は、スイッチ67のON抵抗に基づいて検出される。
 温度検出部69は、サーミスタなどの温度検出素子を含んでおり、温度検出端子65を用いて電源61の温度を測定すると共に、その温度の測定結果を制御部66に出力する。温度検出部69により測定される温度の測定結果は、異常発熱時において制御部66が充放電制御を行う場合および残容量の算出時において制御部66が補正処理を行う場合などに用いられる。
 本技術の実施例に関して説明する。
<実施例1~7および比較例1,2>
 二次電池を作製したのち、その二次電池の特性を評価した。ここでは、二次電池の特性を評価するために、2種類の二次電池(第1二次電池および第2二次電池)を作製した。
[第1二次電池の作製]
 以下で説明する手順により、第1二次電池(実施例1~7)を作製した。この第1二次電池は、図3および図4に示したラミネートフィルム型のリチウムイオン二次電池(電池容量=7mAh~12mAh)である。
 なお、以下の説明では、負極32の作製工程を説明するために、随時、図1および図2に示した負極10の構成要素を引用する。
(正極の作製)
 最初に、正極活物質(LiNi0.8 Co0.15Al0.05)97質量部と、正極結着剤(ポリフッ化ビニリデン)2.2質量部と、正極導電剤(ケッチェンブラック)0.8質量部とを互いに混合させることにより、正極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に正極合剤を投入したのち、自転公転ミキサを用いて溶媒を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて突出部31ATを含む正極集電体31A(アルミニウム箔,厚さ=15μm)の両面(突出部31ATを除く。)に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥(乾燥温度=120℃)させることにより、正極活物質層31Bを形成した。最後に、ハンドプレス機を用いて正極活物質層31Bを圧縮成型した(正極活物質層31Bの体積密度=3.5g/cm)。これにより、突出部31ATを含む正極31が作製された。
(負極の作製)
 最初に、突出部32ATを含む複数の大径炭素繊維部1であるカーボンペーパー(CP,厚さ=50μm)を準備した。このカーボンペーパーは、複数の大径炭素繊維部1により形成された3次元網目構造を有しているため、複数の空隙10Gを有している。複数の空隙10Gのそれぞれの内径は、負極32の完成後における内径よりも大きくなっている。なお、複数の大径炭素繊維部1の平均繊維径AD1(nm)は、表1に示した通りである。
 続いて、ケイ素含有材料を含む第1分散液と、炭素含有材料(複数の小径炭素繊維部2)を含む第2分散液とを互いに混合させることにより、分散液を調製した。
 第1分散液は、ケイ素含有材料の粉末(ケイ素単体(Si),純度=95%)と、結着剤(ポリイミド)と、溶媒(有機溶剤であるN-メチル-2-ピロリドン)とが互いに混合されたのち、自転公転ミキサを用いて溶媒が撹拌されることにより調製された。
 第2分散液は、複数の小径炭素繊維部2(単層カーボンナノチューブ(SWCNT)または気相成長炭素繊維(VGCF))と、結着剤(ポリフッ化ビニリデン)と、溶媒(有機溶剤であるN-メチル-2-ピロリドン)が互いに混合されたのち、自転公転ミキサを用いて溶媒が攪拌されることにより調製された。なお、複数の小径炭素繊維部2の平均繊維径AD2(nm)は、表1に示した通りである。
 分散液の組成(重量比)は、ケイ素含有材料の粉末:結着剤(ポリイミド):複数の小径炭素繊維部2:結着剤(ポリフッ化ビニリデン)=85:10(固形分換算):0.8:4.2とした。
 続いて、複数の大径炭素繊維部1(突出部32ATを除く。)に分散液を塗布することにより、その複数の大径炭素繊維部1により形成されている3次元網目構造の内部に分散液を含浸させた。これにより、ケイ素含有材料の粉末が複数の大径炭素繊維部1のそれぞれの表面に定着されたため、複数の粒子部3が形成されたと共に、その複数の粒子部3の表面に複数の小径炭素繊維部2が定着されたため、その複数の小径炭素繊維部2が複数の粒子部3の表面に連結された。この場合には、複数の粒子部3(一次粒子3A)が互いに連結されたため、複数の二次粒子3Bが形成された。なお、複数の粒子部3(二次粒子3B)の平均粒径AP1(nm)は、表1に示した通りである。よって、突出部32ATを含む負極32が作製された。
 最後に、常温環境中(温度=23℃)において負極32をプレスしたのち、窒素(N2 )雰囲気中において負極32を加熱した(加熱温度=350℃,加熱時間=3時間)。この場合には、プレス圧を調整することにより、表1に示したように、空隙率R(体積%)を変化させた。
 これにより、複数の大径炭素繊維部1、複数の小径炭素繊維部2および複数の粒子部3を含むと共に複数の空隙10Gを有する負極32が完成した。この負極10を作製する場合には、第1分散液中におけるケイ素含有材料の濃度および第2分散液中における複数の小径炭素繊維部2の濃度のそれぞれを調整することにより、表1に示したように、重量割合M(重量%)を変化させた。
(電解液の調製)
 溶媒に電解質塩(六フッ化リン酸リチウム)を添加したのち、その溶媒を撹拌した。この溶媒としては、環状炭酸エステルである炭酸エチレンと、鎖状炭酸エステルである炭酸ジメチルと、添加剤(ハロゲン化環状炭酸エステル)であるモノフルオロ炭酸エチレンとを用いた。溶媒の混合比(重量比)は、炭酸エチレン:炭酸ジメチル:モノフルオロ炭酸エチレン=30:60:10とした。電解質塩の含有量は、溶媒に対して1mol/kgとした。これにより、電解液が調製された。
(第1二次電池の組み立て)
 最初に、セパレータ33(微多孔性ポリエチレンフィルム,厚さ=20μm)を介して、突出部31ATを含む正極31と突出部32ATを含む負極32とを互いに積層させることにより、積層体(正極31/セパレータ33/負極32)を作製した。
 続いて、突出部31ATに正極リード41(アルミニウム箔)を接合させたと共に、突出部32ATに負極リード42(銅箔)を接合させた。
 続いて、窪み部20Uの内部に収容された積層体を挟むように外装フィルム20(融着層/金属層/表面保護層)を折り畳んだのち、その外装フィルム20(融着層)のうちの2辺の外周縁部同士を互いに熱融着させることにより、袋状の外装フィルム20の内部に積層体を収納した。外装フィルム20としては、融着層(ポリプロピレンフィルム,厚さ=30μm)と、金属層(アルミニウム箔,厚さ=40μm)と、表面保護層(ナイロンフィルム,厚さ=25μm)とが内側からこの順に積層されたアルミラミネートフィルムを用いた。
 最後に、袋状の外装フィルム20の内部に電解液を注入したのち、減圧環境中において外装フィルム20(融着層)のうちの残りの1辺の外周縁部同士を互いに熱融着させた。この場合には、外装フィルム20と正極リード41との間に封止フィルム51(ポリプロピレンフィルム,厚さ=5μm)を挿入したと共に、外装フィルム20と負極リード42との間に封止フィルム52(ポリプロピレンフィルム,厚さ=5μm)を挿入した。
 これにより、積層体に電解液が含浸されたため、電池素子30が作製された。よって、外装フィルム20の内部に電池素子30が封入されたため、第1二次電池が組み立てられた。
 なお、第1二次電池を組み立てる場合には、容量比、すなわち負極の充電容量に対する正極充電容量の比(=正極の充電容量/負極の充電容量)が0.7となるように、正極活物質層31Bの厚さを調整した。
(第1二次電池の安定化)
 常温環境中(温度=23℃)において第1二次電池を1サイクル充放電させた。充電時には、0.1Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、その4.2Vの電圧で電流が0.025Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が2.0Vに到達するまで定電流放電した。0.1Cとは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.025Cとは、電池容量を40時間で放電しきる電流値である。
 これにより、正極31および負極32のそれぞれの表面に被膜が形成されたため、第1二次電池の状態が電気化学的に安定化した。よって、第1二次電池が完成した。
[第2二次電池の作製]
 正極31の代わりにリチウム金属板(厚さ=100μm)を用いたことを除いて、上記した第1二次電池の作製手順と同様の手順により、第2二次電池(電池容量=10mAh~15mAh)を作製した。
 ここで、負極32に対する対極として正極31を用いた第1二次電池は、いわゆるフルセルであるのに対して、負極32に対する対極としてリチウム金属板を用いた第2二次電池は、いわゆるハーフセルである。
[比較用の二次電池の作製]
 比較のために、金属集電体を用いて比較用の負極を作製したことを除いて同様の手順により、比較用の2種類の二次電池(比較例1,2)を作製した。
 この負極を作製する場合には、最初に、負極活物質(ケイ素単体(Si),純度=95%,メジアン径D50=50nm)82質量部と、負極結着剤(ポリイミド)10質量部(固形分換算)と、負極導電剤(カーボンブラック)3質量部と、他の負極導電剤(カーボンナノチューブ分散体)5質量部とを互いに混合させることにより、負極合剤とした。このカーボンナノチューブ分散体は、カーボンナノチューブ(上記した複数の小径炭素繊維部2)0.8質量部と、分散媒(ポリフッ化ビニリデン)4.2質量部とを含んでいる。
 続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に負極合剤を投入したのち、自転公転ミキサを用いて有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて金属集電体である負極集電体(銅箔(Cu),厚さ=10μmまたは6μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層を形成した。これにより、負極が組み立てられた。
 最後に、常温環境中(温度=23℃)において負極をプレスしたのち、窒素雰囲気中において負極を加熱した(加熱温度=350℃,加熱時間=3時間)。この場合には、プレス圧を調整することにより、表1に示したように、負極活物質層の空隙率Rを変化させた。
 なお、表1に示した「金属集電体(厚さ)」の欄には、金属集電体の有無と、その金属集電体を用いた場合には材質および厚さ(μm)とを示している。
[二次電池の特性評価]
 二次電池の特性(初回容量特性、膨れ特性、負荷特性およびサイクル特性)を評価したところ、表1に示した結果が得られた。
 この場合には、以下で説明する手順により、第2二次電池(ハーフセル)を用いて初回容量特性を評価したと共に、第1二次電池(フルセル)を用いて膨れ特性、負荷特性およびサイクル特性のそれぞれを評価した。
(初回容量特性)
 常温環境中(温度=23℃)において、二次電池に圧力を付与しながら、その二次電池を1サイクル充放電させることにより、放電容量を測定した。これにより、初回容量(mAh/g)=放電容量(mAh)/負極32の総重量(g)という計算式に基づいて、初回容量特性を評価するための指標である初回容量を算出した。
 この場合には、正極31と負極32とがセパレータ33を介して互いに積層されている方向において二次電池に圧力を付与することにより、そのセパレータ33を介して正極31と負極32とを互いに密着させながら二次電池を充放電させた。なお、上記した負極32の総重量は、金属集電体を用いた場合には、その金属集電体の重量を含んでいるのに対して、金属集電体を用いなかった場合には、その金属集電体の重量を含んでいない。
 充電時には、0.1Cの電流で電圧が0.005Vに到達するまで定電流充電したのち、その0.005Vの電圧で電流が0.01Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が1.5Vに到達するまで定電流放電した。0.01Cとは、電池容量を100時間で放電しきる電流値である。
(膨れ特性)
 最初に、常温環境中(温度=23℃)において、二次電池の厚さ(充電前の厚さ)を測定した。
 続いて、二次電池に圧力を付与しながら、その二次電池を充電させたのち、その二次電池の厚さ(充電後の厚さ)を測定した。
 この場合には、上記した初回容量特性を評価した場合と同様に、二次電池に圧力を付与することにより、セパレータ33を介して正極31と負極32とを互いに密着させながら二次電池を充電させた。充電時には、0.1Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、その4.2Vの電圧で電流が0.01Cに到達するまで定電圧充電した。
 最後に、膨れ率(%)=[(充電後の厚さ-充電前の厚さ)/充電前の厚さ]×100という計算式に基づいて、膨れ特性を評価するための指標である膨れ率を算出した。
(負荷特性)
 最初に、常温環境中(温度=23)において二次電池を1サイクル充放電させることにより、放電容量(1サイクル目の放電容量)を測定した。
 充電時には、0.2Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、その4.2Vの電圧で電流が0.025Cに到達するまで定電圧充電した。放電時には、0.2Cの電流で電圧が2.5Vに到達するまで定電流放電した。0.2Cとは、電池容量を5時間で放電しきる電流値である。
 続いて、同環境中において二次電池を1サイクル充放電させることにより、放電容量(2サイクル目の放電容量)を測定した。充放電条件は、充電時の電流および放電時の電流のそれぞれを5Cに変更したことを除いて、1サイクル目の充放電条件と同様にした。5Cとは、電池容量を0.2時間で放電しきる電流値である。
 最後に、負荷維持率(%)=(2サイクル目の放電容量/1サイクル目の放電容量)×100という計算式に基づいて、負荷特性を評価するための指標である負荷維持率を算出した。
(サイクル特性)
 最初に、常温環境中(温度=23)において二次電池を1サイクル充放電させることにより、放電容量(1サイクル目の放電容量)を測定した。続いて、同環境中において二次電池を199サイクル充放電させることにより、放電容量(200サイクル目の放電容量)を測定した。充放電条件は、上記した負荷特性を評価した場合における1サイクル目の充放電条件と同様にした。
 最後に、容量維持率(%)=(200サイクル目の放電容量/1サイクル目の放電容量)×100という計算式に基づいて、サイクル特性を評価するための指標である容量維持率を算出した。
(特性値の規格化)
 なお、表1に示している初回容量の値は、金属集電体(厚さ=10μmである銅箔)を用いた比較例1の二次電池に関する初回容量の値を100として規格化された値である。このように比較例1の二次電池を基準として規格化された値であることは、膨れ率、負荷維持率および容量維持率のそれぞれの値に関しても同様である。
Figure JPOXMLDOC01-appb-T000001
[考察]
 表1に示したように、初回容量、膨れ率、負荷維持率および容量維持率のそれぞれは、負極の構成に応じて大きく変動した。以下では、比較例1における初回容量、膨れ率、負荷維持率および容量維持率のそれぞれの値を比較基準とする。
 具体的には、金属集電体を用いた場合には、その金属集電体の厚さを小さくすると(比較例2)、初回容量は増加したが、膨れ率が増加したと共に負荷維持率および容量維持率のそれぞれが減少した。
 これに対して、金属集電体を用いずに複数の大径炭素繊維部1、複数の小径炭素繊維部2および複数の粒子部3を用いた場合(実施例1~7)には、平均繊維径AD1,AD2および空隙率Rのそれぞれに関して適正な条件(AD1=50nm~7000nm,AD2=1nm~200nm,R=42体積%~73体積%)が満たされていることにより、初回容量、負荷維持率および容量維持率のそれぞれが増加したと共に、膨れ率が減少した。
 この場合には、特に、重量割合Mが40重量%~76重量%であると、膨れ率が十分に減少したと共に、初回容量、負荷維持率および容量維持率のそれぞれが十分に増加した。また、平均粒径APが30nm~2000nmであると、膨れ率が十分に減少したと共に、初回容量、負荷維持率および容量維持率のそれぞれが十分に増加した。
<実施例8~11>
 表2に示したように、負極32の作製工程において中心部3Xおよび被覆部3Yを含む複数の粒子部3を形成したことを除いて実施例1と同様の手順により、二次電池を作製したのち、その二次電池の特性を評価した。
 被覆部3Yの形成材料としては、炭素含有材料またはイオン伝導性材料を用いたと共に、そのイオン伝導性材料としては、固体電解質またはゲル電解質を用いた。炭素含有材料としては、アモルファスカーボン(AC)を用いた。イオン伝導性材料(固体電解質)としては、窒化リン酸リチウム(Li3.30PO3.900.17)またはリン酸リチウム(LiPO)を用いた。ゲル電解質としては、電解液とマトリクス高分子化合物(ポリフッ化ビニリデン(PVDF))との混合物を用いた。このゲル電解質では、電解液がマトリクス高分子化合物により保持されている。なお、被覆部3Yの平均厚さAT(nm)は、表2に示した通りである。
 被覆部3Yが炭素含有材料を含む複数の粒子部3を形成する場合には、CVD法を用いて、複数の中心部3X(ケイ素含有材料であるケイ素単体,純度=95%)のそれぞれの表面に炭素含有材料(アモルファスカーボン)を堆積させた。
 被覆部3Yが固体電解質(リン酸リチウム)を含む複数の粒子部3を形成する場合には、リン酸リチウムをターゲットとしたスパッタリング法を用いて、複数の中心部3X(ケイ素含有材料であるケイ素単体,純度=95%)のそれぞれの表面にリン酸リチウムを堆積させた。
 被覆部3Yが固体電解質(窒化リン酸リチウム)を含む複数の粒子部3を形成する場合には、リン酸リチウムをターゲットとしたスパッタリング法を用いて、窒素雰囲気中において複数の中心部3X(ケイ素含有材料であるケイ素単体,純度=95%)のそれぞれの表面にリン酸リチウムの窒化物を堆積させた。
 被覆部3Yがゲル電解質(電解液およびマトリクス高分子化合物)を含む複数の粒子部3を形成する場合には、最初に、溶媒(炭酸エチレンおよび炭酸プロピレン)に電解質塩(六フッ化リン酸リチウム)を添加したのち、その溶媒を攪拌することにより、電解液を調製した。続いて、電解液とマトリクス高分子化合物(ポリフッ化ビニリデン)とを互いに混合させることにより、前駆溶液を調製した。この前駆溶液の混合比(重量比)は、炭酸エチレン:炭酸プロピレン:六フッ化リン酸リチウム:ポリフッ化ビニリデン=42:42:13:3とした。最後に、複数の中心部3X(ケイ素含有材料であるケイ素単体,純度=95%)のそれぞれの表面に前駆溶液を塗布したのち、その前駆溶液を乾燥させた。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、中心部3Xおよび被覆部3Yを含む複数の粒子部3を用いた場合(実施例8~11)には、その被覆部3Yを用いなかった場合(実施例1)と比較して、膨れ率の増加が十分に抑えられながら、初回容量、負荷維持率および容量維持率のそれぞれが増加したか、または負荷維持率および容量維持率のそれぞれが増加した。
<実施例12~16>
 表3に示したように、負極32の作製工程において複数の粒子部3のそれぞれとして複数の小径炭素繊維部2を含む複合二次粒子3BPを形成したことを除いて実施例1と同様の手順により、二次電池を作製したのち、その二次電池の特性を評価した。
 この複合二次粒子3BPを形成する場合には、最初に、ケイ素含有材料の粉末(ケイ素単体,純度=95%)と、複数の小径炭素繊維部2(SWCNT)と、結着剤(ポリアクリル酸リチウム)とを溶媒(水性溶媒である純水)に投入したのち、その溶媒を攪拌することにより、分散液を調製した。分散液の混合比(重量比)は、ケイ素含有材料の粉末:複数の小径炭素繊維部2:結着剤=94:1:4とした。続いて、スプレードライ装置を用いて分散液を噴霧したのち、その噴霧物(造粒物)を乾燥させた。
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、複数の小径炭素繊維部2を含む複合二次粒子3BPを用いた場合(実施例12~16)には、その複合二次粒子3BPを用いなかった場合(実施例1)と比較して、初回容量、膨れ率、負荷維持率および容量維持率のうちのいずれか1つまたは2つ以上が改善された。特に、複合二次粒子3BPを用いた場合には、平均粒径AP2が100nm~10000nmであると、膨れ率が十分に減少したと共に、初回容量、負荷維持率および容量維持率のそれぞれが十分に増加した。
<実施例17~21>
 表4に示したように、負極32の作製工程において複数の粒子部3のそれぞれとしてイオン伝導性材料(ゲル電解質)を含む複合二次粒子3BPを形成したことを除いて実施例1と同様の手順により、二次電池を作製したのち、その二次電池の特性を評価した。
 この複合二次粒子3BPを形成する場合には、最初に、溶媒(炭酸エチレンおよび炭酸プロピレン)に電解質塩(六フッ化リン酸リチウム)を添加したのち、その溶媒を攪拌することにより、電解液を調製した。続いて、電解液とマトリクス高分子化合物(ポリフッ化ビニリデン)とを互いに混合させることにより、前駆溶液を調製した。この前駆溶液の混合比(重量比)は、炭酸エチレン:炭酸プロピレン:六フッ化リン酸リチウム:ポリフッ化ビニリデン=42:42:13:3とした。続いて、ケイ素含有材料の粉末(ケイ素単体,純度=95%)と、前駆溶液とを互いに混合させたのち、その前駆溶液を攪拌することにより、分散液を調製した。最後に、スプレードライ装置を用いて分散液を噴霧したのち、その噴霧物(造粒物)を乾燥させた。
Figure JPOXMLDOC01-appb-T000004
 表4に示したように、イオン伝導性材料(ゲル電解質)含む複合二次粒子3BPを用いた場合においても、複数の小径炭素繊維部2を含む複合二次粒子3BPを用いた場合(表3)と同様の結果が得られた。すなわち、イオン伝導性材料を含む複合二次粒子3BPを用いた場合(実施例17~21)には、その複合二次粒子3BPを用いなかった場合(実施例1)と比較して、初回容量、膨れ率、負荷維持率および容量維持率のうちのいずれか1つまたは2つ以上が改善された。特に、複合二次粒子3BPを用いた場合には、平均粒径AP2が100nm~10000nmであると、膨れ率が十分に減少したと共に、初回容量、負荷維持率および容量維持率のそれぞれが十分に増加した。
[まとめ]
 表1~表4に示した結果から、負極32(負極10)が複数の大径炭素繊維部1、複数の小径炭素繊維部2および複数の粒子部3を含んでいると共に複数の空隙10Gを有しており、その複数の大径炭素繊維部1および複数の小径炭素繊維部2のそれぞれが炭素含有材料を含んでおり、その複数の粒子部3のそれぞれがケイ素含有材料を含んでおり、平均繊維径AD1,AD2および空隙率Rに関して上記した適正な条件が満たされていると、初回容量、負荷維持率および容量維持率のそれぞれが増加した共に膨れ率が減少した。よって、二次電池において優れた初回容量特性、優れた膨れ特性、優れた負荷維持率および優れたサイクル特性を得ることができた。
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。
 具体的には、二次電池の電池構造がラミネートフィルム型である場合に関して説明した。しかしながら、二次電池の電池構造は、特に限定されないため、円筒型、角型、コイン型およびボタン型などの他の電池構造でもよい。
 また、電池素子の素子構造が積層型である場合に関して説明した。しかしながら、電池素子の素子構造は、特に限定されないため、巻回型および九十九折り型などの他の素子構造でもよい。巻回型では、正極および負極がセパレータを介して巻回されていると共に、九十九折り型では、正極および負極がセパレータを介して互いに対向しながらジグザグに折り畳まれている。
 さらに、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質は、特に限定されない。具体的には、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。

Claims (13)

  1.  正極と、
     複数の第1繊維部、複数の粒子部および複数の第2繊維部を含むと共に、複数の空隙を有する負極と、
     電解液と
     を備え、
     前記複数の第1繊維部は、互いに連結されることにより前記複数の空隙を有する3次元網目構造を形成し、前記複数の第1繊維部のそれぞれは、炭素を構成元素として含み、
     前記複数の粒子部は、前記複数の第1繊維部のそれぞれの表面を被覆し、前記複数の粒子部のうちの少なくとも一部は、互いに連結され、前記複数の粒子部のそれぞれは、ケイ素を構成元素として含み、
     前記複数の第2繊維部のうちの少なくとも一部は、前記複数の粒子部の表面に連結され、前記複数の第2繊維部のそれぞれは、炭素を構成元素として含み、
     前記複数の第1繊維部の平均繊維径は、50nm以上7000nm以下であり、
     前記複数の第2繊維部の平均繊維径は、1nm以上200nm以下であり、
     前記負極の空隙率は、42体積%以上73体積%以下である、
     二次電池。
  2.  前記複数の第1繊維部の重量と前記複数の粒子部の重量と前記複数の第2繊維部の重量との和に対する前記複数の粒子部の重量の割合は、40重量%以上76重量%以下である、
     請求項1記載の二次電池。
  3.  前記複数の粒子部のそれぞれにおけるケイ素の含有量は、80重量%以上である、
     請求項1または請求項2に記載の二次電池。
  4.  前記複数の第2繊維部のうちの少なくとも一部は、前記複数の粒子部のうちの一部を介して2本以上の前記第1繊維部のそれぞれに連結されている、
     請求項1ないし請求項3のいずれか1項に記載の二次電池。
  5.  前記複数の粒子部のそれぞれは、一次粒子であり、
     前記複数の粒子部のうちの少なくとも一部は、互いに連結されることにより複数の二次粒子を形成しており、
     前記複数の二次粒子の平均粒径は、30nm以上2000nm以下である、
     請求項1ないし請求項4のいずれか1項に記載の二次電池。
  6.  前記複数の粒子部のうちの少なくとも一部は、
     ケイ素を構成元素として含む中心部と、
     前記中心部の表面を被覆すると共に、炭素を構成元素として含む被覆部と
     を含む、請求項1ないし請求項4のいずれか1項に記載の二次電池。
  7.  前記複数の粒子部のうちの少なくとも一部は、
     ケイ素を構成元素として含む中心部と、
     前記中心部の表面を被覆すると共に、イオン伝導性材料を含む被覆部と
     を含む、請求項1ないし請求項4のいずれか1項に記載の二次電池。
  8.  前記イオン伝導性材料は、窒化リン酸リチウムおよびリン酸リチウムのうちの少なくとも一方を含む、
     請求項7記載の二次電池。
  9.  前記複数の粒子部のそれぞれは、一次粒子であり、
     前記複数の粒子部のうちの少なくとも一部は、前記複数の第2繊維部のうちの一部を含む複数の二次粒子を形成しており、
     前記複数の二次粒子の平均粒径は、300nm以上10000nm以下である、
     請求項1ないし請求項8のいずれか1項に記載の二次電池。
  10.  前記複数の粒子部のそれぞれは、一次粒子であり、
     前記複数の粒子部のうちの少なくとも一部は、複数のイオン伝導性材料を含む複数の二次粒子を形成しており、
     前記複数の二次粒子の平均粒径は、300nm以上10000nm以下である、
     請求項1ないし請求項8のいずれか1項に記載の二次電池。
  11.  前記複数の第1繊維部は、カーボンペーパーを含み、
     前記複数の第2繊維部のそれぞれは、単層カーボンナノチューブおよび気相成長炭素繊維のうちの少なくとも一方を含む、
     請求項1ないし請求項10のいずれか1項に記載の二次電池。
  12.  リチウムイオン二次電池である、
     請求項1ないし請求項11のいずれか1項に記載の二次電池。
  13.  複数の第1繊維部、複数の粒子部および複数の第2繊維部を含むと共に、複数の空隙を有し、
     前記複数の第1繊維部は、互いに連結されることにより前記複数の空隙を有する3次元網目構造を形成し、前記複数の第1繊維部のそれぞれは、炭素を構成元素として含み、
     前記複数の粒子部は、前記複数の第1繊維部のそれぞれの表面を被覆し、前記複数の粒子部のうちの少なくとも一部は、互いに連結され、前記複数の粒子部のそれぞれは、ケイ素を構成元素として含み、
     前記複数の第2繊維部のうちの少なくとも一部は、前記複数の粒子部の表面に連結され、前記複数の第2繊維部のそれぞれは、炭素を構成元素として含み、
     前記複数の第1繊維部の平均繊維径は、50nm以上7000nm以下であり、
     前記複数の第2繊維部の平均繊維径は、1nm以上200nm以下であり、
     空隙率は、42体積%以上73体積%以下である、
     二次電池用負極。
PCT/JP2022/007290 2021-05-18 2022-02-22 二次電池用負極および二次電池 WO2022244362A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023522237A JPWO2022244362A1 (ja) 2021-05-18 2022-02-22
CN202280036183.5A CN117321787A (zh) 2021-05-18 2022-02-22 二次电池用负极以及二次电池
US18/511,047 US20240162447A1 (en) 2021-05-18 2023-11-16 Negative Electrode for Secondary Battery, and Secondary Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-084129 2021-05-18
JP2021084129 2021-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/511,047 Continuation US20240162447A1 (en) 2021-05-18 2023-11-16 Negative Electrode for Secondary Battery, and Secondary Battery

Publications (1)

Publication Number Publication Date
WO2022244362A1 true WO2022244362A1 (ja) 2022-11-24

Family

ID=84140875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007290 WO2022244362A1 (ja) 2021-05-18 2022-02-22 二次電池用負極および二次電池

Country Status (4)

Country Link
US (1) US20240162447A1 (ja)
JP (1) JPWO2022244362A1 (ja)
CN (1) CN117321787A (ja)
WO (1) WO2022244362A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335283A (ja) * 2006-06-16 2007-12-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008066128A (ja) * 2006-09-07 2008-03-21 Bridgestone Corp リチウムイオン電池用負極活物質及びその製造方法、リチウムイオン電池用負極、並びにリチウムイオン電池
JP2013089403A (ja) * 2011-10-17 2013-05-13 Mie Univ リチウムイオン二次電池用の負極材料、リチウムイオン二次電池用の負極材料を製造する方法及びリチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335283A (ja) * 2006-06-16 2007-12-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2008066128A (ja) * 2006-09-07 2008-03-21 Bridgestone Corp リチウムイオン電池用負極活物質及びその製造方法、リチウムイオン電池用負極、並びにリチウムイオン電池
JP2013089403A (ja) * 2011-10-17 2013-05-13 Mie Univ リチウムイオン二次電池用の負極材料、リチウムイオン二次電池用の負極材料を製造する方法及びリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AHN SEONGKI, JEONG MOONGOOK, MIYAMOTO KOKI, YOKOSHIMA TOKIHIKO, NARA HIROKI, MOMMA TOSHIYUKI, OSAKA TETSUYA: "Development of Areal Capacity of Si-O-C Composites as Anode for Lithium Secondary Batteries Using 3D-Structured Carbon Paper as a Current Collector", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 164, no. 2, 5 January 2017 (2017-01-05), pages A355 - A359, XP093006436, ISSN: 0013-4651, DOI: 10.1149/2.0981702jes *

Also Published As

Publication number Publication date
JPWO2022244362A1 (ja) 2022-11-24
CN117321787A (zh) 2023-12-29
US20240162447A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP6908058B2 (ja) 二次電池、電池パック、電動車両、電動工具および電子機器
JP7439834B2 (ja) 二次電池用負極および二次電池
JP7156528B2 (ja) 負極活物質、負極および二次電池
WO2017204213A1 (ja) リチウムイオン二次電池
US20230060634A1 (en) Methods for fabricating two-dimensional anode materials
WO2022244363A1 (ja) 二次電池用負極および二次電池
JP7259863B2 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP7107382B2 (ja) 二次電池
WO2023063008A1 (ja) 二次電池
WO2022244362A1 (ja) 二次電池用負極および二次電池
JP7468621B2 (ja) 二次電池
JP7238974B2 (ja) 電極構造体および二次電池
JP7211526B2 (ja) 活物質およびその製造方法、ならびに電極および二次電池
US20210210781A1 (en) Specific electrochemical cell for accumulator operating according to the principle of forming an alloy with the active material of the negative electrode comprising a specific pair of electrodes
WO2021187068A1 (ja) 二次電池
WO2023286579A1 (ja) 二次電池用負極および二次電池
WO2024116532A1 (ja) 二次電池用負極および二次電池
WO2022190863A1 (ja) 二次電池用負極および二次電池
JP7302731B2 (ja) 二次電池
WO2023112576A1 (ja) 二次電池用正極および二次電池
WO2023058603A1 (ja) 二次電池用負極および二次電池
WO2022239699A1 (ja) 二次電池
WO2022172603A1 (ja) 活物質およびその製造方法、ならびに電極および二次電池
WO2024150566A1 (ja) 二次電池用負極および二次電池
WO2024204282A1 (ja) 二次電池用正極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804283

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522237

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280036183.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804283

Country of ref document: EP

Kind code of ref document: A1