[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022242193A1 - 一种柔性光纤带及光缆 - Google Patents

一种柔性光纤带及光缆 Download PDF

Info

Publication number
WO2022242193A1
WO2022242193A1 PCT/CN2022/070005 CN2022070005W WO2022242193A1 WO 2022242193 A1 WO2022242193 A1 WO 2022242193A1 CN 2022070005 W CN2022070005 W CN 2022070005W WO 2022242193 A1 WO2022242193 A1 WO 2022242193A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
ribbon
units
adjacent
flexible
Prior art date
Application number
PCT/CN2022/070005
Other languages
English (en)
French (fr)
Inventor
姚頔
祁庆庆
刘晓红
钱峰
何茂友
胡古月
王雅文
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Priority to MX2023007379A priority Critical patent/MX2023007379A/es
Priority to CA3206845A priority patent/CA3206845A1/en
Priority to GB2309387.5A priority patent/GB2616767A/en
Publication of WO2022242193A1 publication Critical patent/WO2022242193A1/zh
Priority to CONC2023/0007572A priority patent/CO2023007572A2/es

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • G02B6/4404Multi-podded
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • G02B6/08Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images with fibre bundle in form of plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering

Definitions

  • the present application relates to the technical field of optical fiber communication, in particular to a flexible optical fiber ribbon and optical cable.
  • the flexible optical fiber ribbon is a new type of close-packed optical fiber ribbon. Compared with the traditional flat optical fiber ribbon, the new optical fiber cable with flexible optical fiber ribbon can greatly increase the fiber density. In the existing situation of keeping the same outer diameter of the optical cable, the optical cable containing the flexible optical fiber ribbon can effectively solve the key problem of the expansion of the number of optical fiber cores in the traditional optical fiber access network.
  • the flexible optical fiber ribbon can be flexibly wound and arranged and quickly separated because of the non-continuous fixed state between each optical fiber, and more optical fiber cores can be accommodated within the same outer diameter of the optical cable.
  • the current mainstream flexible optical fiber ribbon still has many deficiencies.
  • the resin used to connect the optical fiber and the optical fiber to form an optical fiber ribbon is easily damaged, resulting in poor flatness of the optical fiber ribbon, etc.
  • the embodiment of the present application provides a flexible optical fiber ribbon and an optical cable to solve the problem that in the related art, when the optical fiber ribbon is bent along the width direction, the resin used to connect the optical fiber and the optical fiber into the optical fiber ribbon is easily damaged, so that the optical fiber ribbon is flat. poor degree of problem.
  • a flexible optical fiber ribbon which includes several core ribbon groups, each of which is arranged side by side, and the core ribbon groups include three optical fiber units;
  • the three optical fiber units of the core ribbon group are arranged in parallel, and the optical fiber units on both sides include one optical fiber, and the optical fiber unit in the middle includes at least one optical fiber arranged in parallel and connected;
  • the first connection part includes two connection units respectively located above and below the reference plane;
  • a buffer cavity is formed between two adjacent optical fibers and two connecting units above and below the reference plane.
  • one end of the two connection units of the first connection part is connected to each other to form a closed end of the buffer cavity, and the other ends of the two connection units of the first connection part are spaced apart from each other to form a closed end of the buffer cavity. the open end of the buffer cavity; or,
  • the middle parts of the two connecting units of the first connecting part are connected to each other to form a closed end of the buffer cavity, and the ends of the two connecting units of the first connecting part located on the same side of the closed end are spaced apart from each other, to form the open end of the buffer cavity.
  • the distance L 1 between two adjacent first connecting parts is greater than the length L 2 of the first connecting parts in the fiber length direction.
  • the distance L 1 between two adjacent first connecting parts and the length L 2 of the first connecting parts in the fiber length direction satisfy L 1 : L 2 ⁇ 2:1.
  • two adjacent first connecting parts are arranged staggered in the length direction of the optical fiber.
  • the distance L 3 between two adjacent first connecting parts in the fiber length direction is ⁇ 0.
  • each of the optical fibers is arranged side by side, and two adjacent optical fibers are connected through a second connection part, and along the length direction of the optical fiber, the The second connecting portion extends from one end of the optical fiber to the other end.
  • the first connecting part is made of photocurable resin.
  • the linear expansion coefficient of the photocurable resin at room temperature is less than 8 ⁇ 10 -4 /°C, and the elongation at break is greater than 60%.
  • an optical cable comprising:
  • the embodiment of the present application provides a flexible optical fiber ribbon and an optical cable, which are connected through the first connection part.
  • the first connection part includes two connection units, so that the coating points on the optical fiber are in a state of double-sided coating, and then
  • the optical fiber ribbon can be freely wound in both directions of the upper and lower surfaces, which effectively solves the uneven stress distribution of the surface coating in the bonding area of the two optical fibers caused by the single-sided coating of the resin, and can reduce the potential stress concentration risk of the optical fiber ribbon , reduce the microbending attenuation to improve communication transmission performance.
  • the traction force of the connecting unit in the two directions of the upper and lower surfaces of the flexible optical fiber ribbon is consistent, which can ensure that the flatness of the cross-section of the optical fiber ribbon after unfolding is good, and it is convenient for subsequent batch fusion.
  • the double-sided coating structure Due to the double-sided coating structure, it can also ensure that after the connection unit on one side is pulled and broken, the optical fiber ribbon can still be in a connected state, and it is not easy to disperse, so that it can be restored to a straight state for batch termination.
  • the flexibility and cushioning performance of the first connecting portion can be improved, thereby preventing the first connecting portion from being damaged unintentionally, and avoiding poor flatness of the optical fiber ribbon due to the damage of the first connecting portion.
  • This application adopts a non-enclosed buffer cavity, so that the buffer cavity is connected with the outside atmosphere.
  • the air in the buffer cavity is squeezed out, which ensures the flexibility and cushioning of the first connecting part. , preventing the first connecting portion from being damaged, so that the optical fiber ribbon has better flatness after restoration.
  • the volume of the first connecting part is compressed, which is beneficial to increase the packing density of the optical fiber.
  • the buffer cavity is deformed during the compression process, which can effectively absorb the radial pressure, thereby reducing the risk of potential stress concentration of the optical fiber ribbon and reducing microbending. Attenuation to improve communication transmission performance.
  • FIG. 1 is a schematic structural diagram of a flexible optical fiber ribbon provided by an embodiment of the present application
  • Fig. 2 is A-A direction view among Fig. 1;
  • FIG. 3 is a schematic diagram of a buffer cavity formed by an optical fiber and a first connection part provided by an embodiment of the present application (single open end);
  • Fig. 4 is a schematic diagram of the buffer cavity formed by the optical fiber and the first connection part provided by the embodiment of the present application (double open ends);
  • Fig. 5 is a schematic diagram of the force transmission direction when the optical fiber ribbon provided by the embodiment of the present application is bent.
  • A reference surface; 1, core ribbon group; 2, optical fiber unit; 3, optical fiber; 4, first connection part; 40, connection unit; 5, buffer cavity; 50, closed end; 51, open end; 6.
  • the second connection part
  • the embodiment of the present application provides a flexible optical fiber ribbon and an optical cable, which can solve the problem that the resin used to connect the optical fiber and the optical fiber into an optical fiber ribbon is easily damaged when the optical fiber ribbon is bent along the width direction in the related art, so that the optical fiber ribbon There is a problem of poor flatness.
  • the embodiment of the present application provides a flexible optical fiber ribbon
  • the flexible optical fiber ribbon includes several core ribbon groups 1, each core ribbon group 1 is arranged side by side, and the core ribbon group 1 includes three optical fiber units 2.
  • the three optical fiber units 2 of the core ribbon set 1 are arranged in parallel, and the optical fiber units 2 on both sides include one optical fiber 3 , and the optical fiber unit 2 in the middle includes at least one optical fiber 3 arranged in parallel and connected.
  • Two adjacent core band groups 1 are connected by a plurality of first connecting parts 4 intermittently arranged along the length direction of the optical fiber 3, and between two adjacent optical fiber units 2 in the core band group 1 are also connected by The optical fiber 3 is connected by a plurality of first connecting parts 4 intermittently provided in the longitudinal direction.
  • the first connection part 4 includes two connection units 40 respectively located above and below the reference plane A, and the connection is performed through the first connection part 4.
  • the first connecting part 4 includes two connecting units 40, so that the coating points on the optical fiber 3 are in a state of double-sided coating, so that the optical fiber ribbon can be freely wound in both directions of the upper and lower surfaces, effectively solving the problem of resin single-sided
  • the uneven stress distribution of the coating on the surface of the bonding area of the two optical fibers 3 caused by the coating can reduce the potential stress concentration risk of the optical fiber ribbon, reduce microbend attenuation, and improve communication transmission performance.
  • the traction force of the connecting unit 40 in the two directions of the upper and lower surfaces of the flexible optical fiber ribbon is consistent, which can ensure that the flatness of the cross-section of the optical fiber ribbon after unfolding is good, and it is convenient for subsequent batch fusion.
  • the double-sided coating structure Due to the double-sided coating structure, it can also ensure that after one side of the connecting unit 40 is pulled and broken, the optical fiber ribbon can still be in a connected state and not easy to scatter, so that it can be restored to a straight state for batch termination.
  • a buffer cavity 5 is formed, through which the buffer cavity 5 can improve the stability of the first connection part 4. Flexibility (easy to bend) and cushioning (relaxation), thereby preventing the first connection part 4 from being damaged unintentionally, and avoiding poor flatness of the optical fiber ribbon due to the damage of the first connection part.
  • the present application adopts a non-closed buffer cavity, so that the buffer cavity is connected with the outside atmosphere.
  • the air in the buffer cavity is squeezed out, ensuring that the first connection part
  • the flexibility and cushioning properties of 4 prevent the first connecting portion 4 from being damaged, so that the optical fiber ribbon has better flatness after restoration.
  • the volume of the first connecting part 4 is compressed, which is beneficial to increase the packing density of the optical fiber.
  • the deformation of the buffer cavity 5 during the compression process can effectively absorb the radial pressure, thereby reducing the risk of potential stress concentration of the optical fiber ribbon. Reduce microbending attenuation to improve communication transmission performance.
  • the buffer cavity 5 is filled with air.
  • the buffer cavity 5 is recovered to form an effective support, thereby further ensuring the flatness of the optical fiber after the flexible optical fiber ribbon returns to a straight state, so as to facilitate batch fusion splicing.
  • the non-closed buffer cavity has various forms, such as a single open end form and a double open end form.
  • FIG. 3 in a preferred embodiment, it adopts the form of a single open end, specifically: one end of the two connecting units 40 of the first connecting part 4 is connected to each other to form the closed end 50 of the buffer chamber 5, The other ends of the two connecting units 40 of the first connecting portion 4 are spaced apart from each other to form an open end 51 of the buffer cavity 5 .
  • FIG. 3 in another preferred embodiment, it adopts the form of double open ends, specifically: the middle parts of the two connecting units 40 of the first connecting part 4 are connected to each other to form the closed end 50 of the buffer cavity 5 The ends of the two connection units 40 of the first connection part 4 located on the same side of the closed end 50 are spaced apart from each other to form the open end 51 of the buffer cavity 5 .
  • the distance L 1 between two adjacent first connecting parts 4 is greater than the length L 2 of the first connecting parts 4 in the length direction of the optical fiber 3 .
  • the distance L 1 between two adjacent first connecting parts 4 and the length L 2 of the first connecting parts 4 in the length direction of the optical fiber 3 satisfy L 1 : L 2 ⁇ 2:1.
  • two adjacent first connecting parts 4 are arranged staggered in the length direction of the optical fiber 3, mainly for the purpose of , to increase the overall proportion of the non-connecting portion, so as to improve the overall windability of the optical fiber ribbon.
  • each optical fiber 3 is arranged side by side, and the second connecting part passes between two adjacent optical fibers 3 6 connection, along the length direction of the optical fiber 3, the second connecting part 6 extends from one end of the optical fiber 3 to the other end.
  • the multiple optical fibers 3 included in the optical fiber unit 2 in the middle are in a fully connected structure, and combined with the spaced connection of the first connecting part 4, the optical fiber ribbon is in a partially connected + fully connected structure, which can further ensure that the flexible optical fiber ribbon is restored to a flat state. Fiber flatness after straight state.
  • the partial connection i.e. the first connecting part 4
  • the partial connection can use the buffer cavity 5 and the closed end 50 to release the radial pressure generated by the bending of the bundle to the axial direction.
  • Migrate to play the role of component force which can effectively reduce the risk of stress concentration that may be caused by winding, and reduce the attenuation of microbends. See Figure 5.
  • the direction of the arrow is the direction of force transmission.
  • the first connecting part 4 is made of photocurable resin.
  • the linear expansion coefficient of the photocurable resin at room temperature is less than 8 ⁇ 10 ⁇ 4 /°C, and the elongation at break is greater than 60%.
  • the embodiment of the present application also provides an optical cable, the optical cable includes an outer sheath; and, as provided in the above embodiments, the flexible optical fiber ribbons are accommodated in the outer sheath.
  • connection should be interpreted in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or an internal communication between two components.
  • connection should be interpreted in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or an internal communication between two components.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Insulated Conductors (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种柔性光纤带及光缆,其包括若干个芯带组(1),各芯带组(1)并列配置,芯带组(1)包括三个光纤单元(2);芯带组(1)的三个光纤单元(2)并列配置,位于两侧的光纤单元(2)包括一根光纤(3),位于中间的光纤单元(2)包括并列配置并相连的至少一根光纤(3);相邻的两个芯带组(1)之间,以及芯带组(1)中相邻的两个光纤单元(2)之间,通过沿光纤(3)长度方向间断地设置的多个第一连接部(4)连接;以经过相邻的两根光纤(3)的轴线的平面作为参考面(A),第一连接部(4)包括分别位于参考面(A)上方和下方的两个连接单元(40),在相邻的两根光纤(3),以及参考面(A)上方和下方的两个连接单元(40)之间,形成有缓冲腔(5)。可以解决相关技术中沿宽度方向对光纤(3)带进行弯曲时,树脂容易遭到破坏,使得光纤带存在平整度不佳的问题。

Description

一种柔性光纤带及光缆 技术领域
本申请涉及光纤通信技术领域,特别涉及一种柔性光纤带及光缆。
背景技术
近年来,随着“全光网”建设的有力推进,传统地下接入网建设面临新的挑战。在充分利用原有地下设施的基础上,超大芯数、高纤芯密度光缆需求日益增加,如何在保持光缆原有外径的同时增大光缆的芯数成为业界探索的方向。现有扁平状光纤带因具有高密度、高集成、重量轻,便于多纤续接等功能受到人们的格外重视,广泛应用于超大芯数光缆,但受制于现有扁平光纤带光缆的尺寸,相同芯数下的光缆尺寸也较大,一直无法更加合理有效的利用现有的管道及空间。
柔性光纤带作为一种新型结构的密排光纤带。较之于传统的扁平状光纤带,含柔性光纤带的新型光缆可以大幅提高光纤密度。在保持相同光缆外径的现有情况下,包含柔性光纤带的光缆可以有效解决传统光纤接入网络的光纤芯数扩容的关键问题。柔性光纤带因其各根光纤之间呈非连续固定状态,可以进行柔性卷绕排布并可快速分离,相同光缆外径内可以容纳更多的光纤芯数。
然而,目前主流的柔性光纤带仍存在诸多不足,比如沿宽度方向对光纤带进行弯曲时,用来将光纤与光纤连接成光纤带的树脂容易遭到破坏,使得光纤带存在平整度不佳等缺点,亟需开发新型结构以满足技术要求。
发明内容
本申请实施例提供一种柔性光纤带及光缆,以解决相关技术中沿 宽度方向对光纤带进行弯曲时,用来将光纤与光纤连接成光纤带的树脂容易遭到破坏,使得光纤带存在平整度不佳的问题。
第一方面,提供了一种柔性光纤带,其包括若干个芯带组,各所述芯带组并列配置,所述芯带组包括三个光纤单元;
所述芯带组的三个光纤单元并列配置,且位于两侧的所述光纤单元包括一根光纤,位于中间的所述光纤单元包括并列配置并相连的至少一根光纤;
相邻的两个所述芯带组之间,以及所述芯带组中相邻的两个所述光纤单元之间,通过沿光纤长度方向间断地设置的多个第一连接部连接;
以经过相邻的两根所述光纤的轴线的平面作为参考面,所述第一连接部包括分别位于所述参考面上方和下方的两个连接单元;
在相邻的两根所述光纤,以及所述参考面上方和下方的两个连接单元之间,形成有缓冲腔。
一些实施例中,所述第一连接部的两个连接单元的一端互相连接,以形成所述缓冲腔的封闭端,所述第一连接部的两个连接单元的另一端互相间隔,以形成所述缓冲腔的开口端;或,
所述第一连接部的两个连接单元的中部互相连接,以形成所述缓冲腔的封闭端,所述第一连接部的两个连接单元位于所述封闭端同一侧的端部互相间隔,以形成所述缓冲腔的开口端。
一些实施例中,在相邻的两个所述芯带组之间的第一连接部中,或者在所述芯带组中相邻的两个所述光纤单元之间的第一连接部中,相邻的两个所述第一连接部的间距L 1大于所述第一连接部在光纤长度方向上的长度L 2
一些实施例中,相邻两个所述第一连接部的间距L 1与所述第一连接部在光纤长度方向上的长度L 2满足L 1:L 2≥2:1。
一些实施例中,沿所述柔性光纤带的宽度方向,相邻的两个所述 第一连接部在光纤长度方向上错开布置。
一些实施例中,沿所述柔性光纤带的宽度方向,相邻两个所述第一连接部在光纤长度方向的间距L 3≥0。
一些实施例中,当位于中间的所述光纤单元包括多根光纤时,各所述光纤并列配置,且相邻两个所述光纤之间通过第二连接部连接,沿光纤长度方向,所述第二连接部自所述光纤的一端延伸至另一端。
一些实施例中,所述第一连接部采用光固化树脂。
一些实施例中,所述光固化树脂常温下的线性膨胀系数小于8×10 -4/℃,断裂伸长率大于60%。
第二方面,提供了一种光缆,其包括:
外护套;以及,
若干个如上任一所述的柔性光纤带,所述柔性光纤带容纳在所述外护套内。
本申请提供的技术方案带来的有益效果包括:
本申请实施例提供了一种柔性光纤带及光缆,通过第一连接部进行连接,同时,第一连接部包括两个连接单元,使得光纤上的涂覆点均呈双面涂覆状态,进而使得光纤带可以向上下表面两个方向自由卷绕,有效地解决了树脂单面涂覆所造成两个光纤的粘接区表面涂层应力分布不平均现象,可以降低光纤带的潜在应力集中风险,降低微弯衰耗,以提高通信传输性能。
由于采用双面涂覆结构,使得柔性光纤带上下表面两个方向的连接单元的牵引力保持一致,可保证光纤带展开后的横截面的平整度良好,便于后续批量熔接。
由于采用双面涂覆结构,还可保证在其中一侧连接单元呈受拉状态而断裂后,仍然可以保证光纤带呈连接状态,不易散开,以便于恢复平直状态进行批量端接。
通过缓冲腔,可以提高第一连接部的可挠性及缓冲性,由此防止 第一连接部被无意地破坏,避免因第一连接部被破坏而使得光纤带平整度不佳。
本申请采用非封闭式的缓冲腔,使缓冲腔与外界大气相连通,当光纤带沿宽度方向弯曲时,缓冲腔内的空气被挤出,保证了第一连接部的可挠性及缓冲性,防止第一连接部遭受破坏,使得光纤带在复原后具有较佳的平整度。此外,第一连接部的体积被压缩,有利于提高光纤集装密度,而且,缓冲腔在压缩过程中发生变形,可以有效吸收径向压力,从而降低光纤带的潜在应力集中风险,降低微弯衰耗,以提高通信传输性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的柔性光纤带结构示意图;
图2为图1中A-A向视图;
图3为本申请实施例提供的光纤与第一连接部形成的缓冲腔示意图(单开口端);
图4为本申请实施例提供的光纤与第一连接部形成的缓冲腔示意图(双开口端);
图5为本申请实施例提供的光纤带在弯曲时力的传递方向示意图。
图中:A、参考面;1、芯带组;2、光纤单元;3、光纤;4、第一连接部;40、连接单元;5、缓冲腔;50、封闭端;51、开口端;6、第二连接部。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种柔性光纤带及光缆,其能解决相关技术中沿宽度方向对光纤带进行弯曲时,用来将光纤与光纤连接成光纤带的树脂容易遭到破坏,使得光纤带存在平整度不佳的问题。
参见图1和图2所示,本申请实施例提供了一种柔性光纤带,该柔性光纤带包括若干个芯带组1,各个芯带组1并列配置,芯带组1包括三个光纤单元2。
芯带组1的三个光纤单元2并列配置,且位于两侧的光纤单元2包括一根光纤3,位于中间的光纤单元2包括并列配置并相连的至少一根光纤3。
相邻的两个芯带组1之间,通过沿光纤3长度方向间断地设置的多个第一连接部4连接,芯带组1中相邻的两个光纤单元2之间,也通过沿光纤3长度方向间断地设置的多个第一连接部4连接。
以经过相邻的两根光纤3的轴线的平面作为参考面A,第一连接部4包括分别位于参考面A上方和下方的两个连接单元40,通过第一连接部4进行连接,同时,第一连接部4包括两个连接单元40,使得光纤3上的涂覆点均呈双面涂覆状态,进而使得光纤带可以向上下表面两个方向自由卷绕,有效地解决了树脂单面涂覆所造成两个光纤3的粘接区表面涂层应力分布不平均现象,可以降低光纤带的潜在应力集中风险,降低微弯衰耗,以提高通信传输性能。
由于采用双面涂覆结构,使得柔性光纤带上下表面两个方向的连接单元40的牵引力保持一致,可保证光纤带展开后的横截面的平整 度良好,便于后续批量熔接。
由于采用双面涂覆结构,还可保证在其中一侧连接单元40呈受拉状态而断裂后,仍然可以保证光纤带呈连接状态,不易散开,以便于恢复平直状态进行批量端接。
参见图2所示,在相邻的两根光纤3,以及参考面A上方和下方的两个连接单元40之间,形成有缓冲腔5,通过缓冲腔5,可以提高第一连接部4的可挠性(易弯曲度)及缓冲性(缓和性),由此防止第一连接部4被无意地破坏,避免因第一连接部被破坏而使得光纤带平整度不佳。
申请人在经过长期大量的研究后发现,在制造第一连接部4时,如果使第一连接部4中产生一些封闭的气泡,以形成缓冲腔5,尽管可以在一定程度上提高第一连接部4的可挠性及缓冲性,但是会带来新的问题:一方面,气泡中依然存在气体,在光纤带沿宽度方向弯曲时,气泡会被压缩,且弯曲程度越大,气泡内气体压强越大,所需要的力越大,不利于弯曲操作;另一方面,由于该压强会在径向上抵抗弯曲,会给光纤带带来潜在的应力集中风险。
因此,为了解决上述缺陷,本申请采用非封闭式的缓冲腔,使缓冲腔与外界大气相连通,当光纤带沿宽度方向弯曲时,缓冲腔内的空气被挤出,保证了第一连接部4的可挠性及缓冲性,防止第一连接部4遭受破坏,使得光纤带在复原后具有较佳的平整度。此外,第一连接部4的体积被压缩,有利于提高光纤集装密度,而且,缓冲腔5的在压缩过程中发生变形,可以有效吸收径向压力,从而降低光纤带的潜在应力集中风险,降低微弯衰耗,以提高通信传输性能。
当光纤带恢复平直状态时,缓冲腔5内被充入空气。缓冲腔5复原,以形成有效支撑,从而进一步保证柔性光纤带在恢复平直状态后的光纤平整度,以便于批量熔接。
非封闭式的缓冲腔,有多种形式,比如单开口端形式,也有双开 口端形式。
参见图3所示,在一个优选的实施例中,其采用单开口端形式,具体为:第一连接部4的两个连接单元40的一端互相连接,以形成缓冲腔5的封闭端50,第一连接部4的两个连接单元40的另一端互相间隔,以形成缓冲腔5的开口端51。
参见图3所示,在另一个优选的实施例中,其采用双开口端形式,具体为:第一连接部4的两个连接单元40的中部互相连接,以形成缓冲腔5的封闭端50,第一连接部4的两个连接单元40位于封闭端50同一侧的端部互相间隔,以形成缓冲腔5的开口端51。
在一些优选的实施例中,参见图1所示,在相邻的两个芯带组1之间的第一连接部4中,或者在芯带组1中相邻的两个光纤单元2之间的第一连接部4中,相邻的两个第一连接部4的间距L 1大于第一连接部4在光纤3长度方向上的长度L 2
第一连接部4的间距L 1大于第一连接部4的长度L 2的目的有二:
1)在使用高模量固化树脂,保证连接强度的前提下,增大非连接部的整体占比比例,可以利于光纤带实现高柔性特点,便于卷绕。通常,在保证强度的前提下,L 2越小越好,可尽可能趋向于0。
2)也可减少树脂用量,降低成本。
在一些优选的实施例中,相邻两个第一连接部4的间距L 1与第一连接部4在光纤3长度方向上的长度L 2满足L 1:L 2≥2:1。
在一些优选的实施例中,参见图1所示,沿柔性光纤带的宽度方向,相邻的两个第一连接部4在光纤3长度方向上错开布置,主要是为了在同一光纤带截面上,增大非连接部的整体占比比例,以提高光纤带的整体可卷绕性。
在一些优选的实施例中,参见图1所示,沿柔性光纤带的宽度方向,相邻两个第一连接部4在光纤3长度方向的间距L 3≥0,优选地,L 3=(L 1-L 2)/2。
在一些优选的实施例中,参见图1和2所示,当位于中间的光纤单元2包括多根光纤3时,各光纤3并列配置,且相邻两个光纤3之间通过第二连接部6连接,沿光纤3长度方向,第二连接部6自光纤3的一端延伸至另一端。
中间的光纤单元2包括的多根光纤3,呈全连接结构,并结合第一连接部4这种间隔连接,使得光纤带呈部分连接+完全连接结构,这样更加可以保证柔性光纤带在恢复平直状态后的光纤平整度。
在柔性光纤带发生弯曲时,较之于全连接结构,部分连接处(即第一连接部4)可以利用缓冲腔5和封闭端50将卷束弯曲所产生的径向压力向轴向方向进行迁移,以起到分力作用,从而可以有效降低卷绕所可能产生的应力集中风险,降低微弯衰减,参见图5所示,图中,箭头方向为力的传递方向。
在一些优选的实施例中,第一连接部4采用光固化树脂。
在一些优选的实施例中,光固化树脂常温下的线性膨胀系数小于8×10 -4/℃,断裂伸长率大于60%。
本本申请实施例还提供了一种光缆,该光缆包括外护套;以及,如上述实施例提供的若干个柔性光纤带,柔性光纤带容纳在外护套内。
在本申请的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具 体含义。
需要说明的是,在本申请中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种柔性光纤带,其特征在于:其包括若干个芯带组(1),各所述芯带组(1)并列配置,所述芯带组(1)包括三个光纤单元(2);
    所述芯带组(1)的三个光纤单元(2)并列配置,且位于两侧的所述光纤单元(2)包括一根光纤(3),位于中间的所述光纤单元(2)包括并列配置并相连的至少一根光纤(3);
    相邻的两个所述芯带组(1)之间,以及所述芯带组(1)中相邻的两个所述光纤单元(2)之间,通过沿光纤(3)长度方向间断地设置的多个第一连接部(4)连接;
    以经过相邻的两根所述光纤(3)的轴线的平面作为参考面(A),所述第一连接部(4)包括分别位于所述参考面(A)上方和下方的两个连接单元(40);
    在相邻的两根所述光纤(3),以及所述参考面(A)上方和下方的两个连接单元(40)之间,形成有缓冲腔(5)。
  2. 如权利要求1所述的柔性光纤带,其特征在于:
    所述第一连接部(4)的两个连接单元(40)的一端互相连接,以形成所述缓冲腔(5)的封闭端(50),所述第一连接部(4)的两个连接单元(40)的另一端互相间隔,以形成所述缓冲腔(5)的开口端(51);或,
    所述第一连接部(4)的两个连接单元(40)的中部互相连接,以形成所述缓冲腔(5)的封闭端(50),所述第一连接部(4)的两个连接单元(40)位于所述封闭端(50)同一侧的端部互相间隔,以形成所述缓冲腔(5)的开口端(51)。
  3. 如权利要求1所述的柔性光纤带,其特征在于:
    在相邻的两个所述芯带组(1)之间的第一连接部(4)中,或者在所述芯带组(1)中相邻的两个所述光纤单元(2)之间的第一连接部(4)中,相邻的两个所述第一连接部(4)的间距L 1大于所述第 一连接部(4)在光纤(3)长度方向上的长度L 2
  4. 如权利要求1所述的柔性光纤带,其特征在于:
    相邻两个所述第一连接部(4)的间距L 1与所述第一连接部(4)在光纤(3)长度方向上的长度L 2满足L 1:L 2≥2:1。
  5. 如权利要求1所述的柔性光纤带,其特征在于:
    沿所述柔性光纤带的宽度方向,相邻的两个所述第一连接部(4)在光纤(3)长度方向上错开布置。
  6. 如权利要求5所述的柔性光纤带,其特征在于:
    沿所述柔性光纤带的宽度方向,相邻两个所述第一连接部(4)在光纤(3)长度方向的间距L 3≥0。
  7. 如权利要求1所述的柔性光纤带,其特征在于:
    当位于中间的所述光纤单元(2)包括多根光纤(3)时,各所述光纤(3)并列配置,且相邻两个所述光纤(3)之间通过第二连接部(6)连接,沿光纤(3)长度方向,所述第二连接部(6)自所述光纤(3)的一端延伸至另一端。
  8. 如权利要求1所述的柔性光纤带,其特征在于:所述第一连接部(4)采用光固化树脂。
  9. 如权利要求8所述的柔性光纤带,其特征在于:所述光固化树脂常温下的线性膨胀系数小于8×10 -4/℃,断裂伸长率大于60%。
  10. 一种光缆,其特征在于,其包括:
    外护套;以及,
    若干个如权利要求1至9任一所述的柔性光纤带,所述柔性光纤带容纳在所述外护套内。
PCT/CN2022/070005 2021-05-18 2022-01-01 一种柔性光纤带及光缆 WO2022242193A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2023007379A MX2023007379A (es) 2021-05-18 2022-01-01 Cinta de fibra optica flexible y cable optico.
CA3206845A CA3206845A1 (en) 2021-05-18 2022-01-01 Flexible optical fiber ribbon and optical cable
GB2309387.5A GB2616767A (en) 2021-05-18 2022-01-01 Flexible optical fiber ribbon and optical cable
CONC2023/0007572A CO2023007572A2 (es) 2021-05-18 2023-06-08 Cinta de fibra óptica flexible y cable óptico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110541297.2 2021-05-18
CN202110541297.2A CN113359230B (zh) 2021-05-18 2021-05-18 一种柔性光纤带及光缆

Publications (1)

Publication Number Publication Date
WO2022242193A1 true WO2022242193A1 (zh) 2022-11-24

Family

ID=77526816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070005 WO2022242193A1 (zh) 2021-05-18 2022-01-01 一种柔性光纤带及光缆

Country Status (6)

Country Link
CN (1) CN113359230B (zh)
CA (1) CA3206845A1 (zh)
CO (1) CO2023007572A2 (zh)
GB (1) GB2616767A (zh)
MX (1) MX2023007379A (zh)
WO (1) WO2022242193A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113359230B (zh) * 2021-05-18 2022-04-29 烽火通信科技股份有限公司 一种柔性光纤带及光缆
CN113946025B (zh) * 2021-12-20 2022-03-22 长飞光纤光缆股份有限公司 一种柔性光纤带、高密度光缆及固化树脂应用
CN114265162B (zh) * 2021-12-20 2023-02-28 长飞光纤光缆股份有限公司 一种柔性光纤带及其制造设备和制造方法
CN114217398B (zh) * 2021-12-20 2023-03-24 长飞光纤光缆股份有限公司 柔性光纤带的成型方法及用于实施该成型方法的点胶设备
CN115032739A (zh) * 2022-05-05 2022-09-09 南京华信藤仓光通信有限公司 一种柔性光纤带
CN114637090B (zh) * 2022-05-17 2022-07-22 烽火通信科技股份有限公司 一种光纤结构及带状光缆
CN116699756B (zh) * 2023-08-01 2023-11-07 江苏中天科技股份有限公司 光纤带、光纤带的制造方法以及光缆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603991A (zh) * 2016-02-08 2018-09-28 住友电气工业株式会社 光纤线缆
CN110959127A (zh) * 2017-10-05 2020-04-03 株式会社藤仓 间歇连结型光纤带以及间歇连结型光纤带的制造方法
CN111562656A (zh) * 2019-02-14 2020-08-21 昭和电线电缆系统株式会社 间歇粘接型光纤胶带心线
CN111630426A (zh) * 2018-01-18 2020-09-04 住友电气工业株式会社 光纤带芯线的制造方法及制造装置
WO2021045201A1 (ja) * 2019-09-05 2021-03-11 住友電気工業株式会社 光ファイバテープ心線、光ファイバケーブルおよびコネクタ付光ファイバコード
WO2021084640A1 (ja) * 2019-10-30 2021-05-06 株式会社フジクラ 間欠連結型光ファイバテープ、及び間欠連結型光ファイバテープの製造方法
CN113359230A (zh) * 2021-05-18 2021-09-07 烽火通信科技股份有限公司 一种柔性光纤带及光缆

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341206A (ja) * 2001-05-14 2002-11-27 Nippon Telegr & Teleph Corp <Ntt> 光ファイバテープ及び単心光ファイバへの分割方法
CN102681119B (zh) * 2008-06-30 2015-01-28 日本电信电话株式会社 光纤缆线以及光纤带
JP5117519B2 (ja) * 2010-02-16 2013-01-16 古河電気工業株式会社 光ファイバテープ心線及び光ファイバケーブル
JP5564026B2 (ja) * 2011-10-18 2014-07-30 株式会社フジクラ 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
JP2016075746A (ja) * 2014-10-03 2016-05-12 住友電気工業株式会社 間欠型光ファイバテープ心線及びその製造方法
US11131816B2 (en) * 2017-07-11 2021-09-28 Prysmian S.P.A. Optical fiber ribbon assembly and a method of producing the same
CN116304260A (zh) * 2023-03-20 2023-06-23 深圳绿米联创科技有限公司 环境模型的生成方法、展示方法、装置、设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603991A (zh) * 2016-02-08 2018-09-28 住友电气工业株式会社 光纤线缆
CN110959127A (zh) * 2017-10-05 2020-04-03 株式会社藤仓 间歇连结型光纤带以及间歇连结型光纤带的制造方法
CN111630426A (zh) * 2018-01-18 2020-09-04 住友电气工业株式会社 光纤带芯线的制造方法及制造装置
CN111562656A (zh) * 2019-02-14 2020-08-21 昭和电线电缆系统株式会社 间歇粘接型光纤胶带心线
WO2021045201A1 (ja) * 2019-09-05 2021-03-11 住友電気工業株式会社 光ファイバテープ心線、光ファイバケーブルおよびコネクタ付光ファイバコード
WO2021084640A1 (ja) * 2019-10-30 2021-05-06 株式会社フジクラ 間欠連結型光ファイバテープ、及び間欠連結型光ファイバテープの製造方法
CN113359230A (zh) * 2021-05-18 2021-09-07 烽火通信科技股份有限公司 一种柔性光纤带及光缆

Also Published As

Publication number Publication date
CN113359230B (zh) 2022-04-29
GB2616767A (en) 2023-09-20
CO2023007572A2 (es) 2023-06-30
CA3206845A1 (en) 2022-11-24
MX2023007379A (es) 2023-07-05
CN113359230A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2022242193A1 (zh) 一种柔性光纤带及光缆
CA2087295C (en) Utility optical fiber cable
US8295667B2 (en) Hole arranged photonic crystal fiber for low loss, tight fiber bending applications
AU2018205136A1 (en) Round and small diameter optical cables with a ribbon-like optical fiber structure
WO2016179925A1 (zh) 低烟无卤阻燃低摩擦蝶形引入光缆
JPH10311938A (ja) バッファド・オプティカルファイバ
CN210465792U (zh) 一种易开剥高密度全干式光缆
WO2022242194A1 (zh) 一种光纤带及光缆
WO2013123806A1 (zh) 一种微型易分歧布线光缆
Tsukamoto et al. Ultra-high density optical fiber cable with rollable multicore fiber ribbon
CN101694536B (zh) 一种光子晶体光纤耦合器的制作方法
CN203551854U (zh) 一种改良型全介质自承式光缆
CN208969293U (zh) 一种全干式光缆
CN109031559B (zh) 一种大芯数高密度套管光缆
CN208026932U (zh) 一种带状光纤
CN212111908U (zh) 一种管道式扁平型引入光缆
CN203232186U (zh) 光纤存放装置
CN206348490U (zh) 一种光纤线缆以及网络传输系统
CN209895054U (zh) 一种双8字并联型易拆分光缆
CN211148997U (zh) 可克服剥离凹槽对光纤保护强度影响的自承式蝶形光缆
CN220419739U (zh) 电光调制器
CN110794533A (zh) 可克服剥离凹槽对光纤保护强度影响的自承式蝶形光缆
CN203232187U (zh) 多光纤隔离保护装置
CN215375889U (zh) Opgw档间接续接头盒
CN221175072U (zh) 一种方便快速识别的光纤尾纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: NC2023/0007572

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/007379

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 202309387

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220101

ENP Entry into the national phase

Ref document number: 3206845

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22803531

Country of ref document: EP

Kind code of ref document: A1