[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022137345A1 - 化学架橋アルギン酸を用いた移植用デバイス - Google Patents

化学架橋アルギン酸を用いた移植用デバイス Download PDF

Info

Publication number
WO2022137345A1
WO2022137345A1 PCT/JP2020/047944 JP2020047944W WO2022137345A1 WO 2022137345 A1 WO2022137345 A1 WO 2022137345A1 JP 2020047944 W JP2020047944 W JP 2020047944W WO 2022137345 A1 WO2022137345 A1 WO 2022137345A1
Authority
WO
WIPO (PCT)
Prior art keywords
alginic acid
formula
group
transplantation
solution
Prior art date
Application number
PCT/JP2020/047944
Other languages
English (en)
French (fr)
Inventor
雅之 霜田
久美子 安嶋
正司 古迫
直人 津田
Original Assignee
持田製薬株式会社
国立研究開発法人国立国際医療研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 持田製薬株式会社, 国立研究開発法人国立国際医療研究センター filed Critical 持田製薬株式会社
Priority to JP2022570823A priority Critical patent/JPWO2022137345A1/ja
Priority to CA3202982A priority patent/CA3202982A1/en
Priority to US18/268,427 priority patent/US20240316248A1/en
Priority to KR1020237020727A priority patent/KR20230123959A/ko
Priority to AU2020482526A priority patent/AU2020482526A1/en
Priority to EP20966837.5A priority patent/EP4268855A4/en
Priority to PCT/JP2020/047944 priority patent/WO2022137345A1/ja
Priority to CN202080108152.7A priority patent/CN117042783A/zh
Publication of WO2022137345A1 publication Critical patent/WO2022137345A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/022Artificial gland structures using bioreactors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/39Pancreas; Islets of Langerhans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • C12N5/0677Three-dimensional culture, tissue culture or organ culture; Encapsulated cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/74Alginate

Definitions

  • the present invention relates to a device for transplanting cells or the like into a living body. More specifically, the present invention relates to a transplant device using chemically crosslinked alginic acid, and a method for producing the same.
  • Non-Patent Document 1 Organ Biologic, VOL24, No. 1, pp. 7-12, 2017).
  • pancreatic islets are coated (encapsulated) with a polymer gel or semi-permeable membrane that can be isolated from the recipient's immune cells and can permeate nutrients and insulin, and then transplanted into the body.
  • BAP bioartificial pancreas
  • the technique of artificial pancreas has been studied for a long time (Patent Document 1: Japanese Patent Application Laid-Open No. 55-157502, Patent Document 2: Japanese Patent Application Laid-Open No. 60-258121). Gazette, Patent Document 3: International Publication No. 95/28480, Patent Document 4: International Publication No. 92/19195, Patent Document 5: Japanese Patent Application Laid-Open No. 2017-196150).
  • bioartificial islets are mainly (1) "microcapsule type” in which individual islets are coated with polymer gel or the like, and (2) “macro” in which many islets are coated with polymer gel or semipermeable membrane. It is classified into “capsule type” and (3) "blood perfusion type” in which pancreatic islets are encapsulated in an immunoisolation device or hollow thread module made of a semipermeable membrane and blood is perfused into the device (Non-Patent Document 1). ..
  • the microcapsule type encapsulates individual islets using a polymer gel that can be isolated from immune cells and is permeable to nutrients and insulin, and is transplanted into the body (mainly intraperitoneally) in the same way as normal islet transplantation. It is a technology. It can be isolated from the recipient's immune cells, and because the isolation film is relatively thin, it has the advantage that the permeation time due to diffusion is short, and the permeation of nutrients and the response of cells are accelerated. It is difficult to recover.
  • the blood perfusion type is a technique for perfusing blood into a flow path that separates the pancreatic island with a semi-transparent membrane, and has applied the accumulation of techniques such as artificial dialysis and bio-artificial liver, and many basic studies have been conducted.
  • the problems are that the size of the device is large and the risk of blood clot formation is high, and there is a drawback that blood clots are easily formed and clogged during long-term use, and it has not been put into practical use.
  • the macrocapsule type is an improved technique for the purpose of enabling the removal of pancreatic islets when the function of the islets is reduced, which is a drawback of the microcapsule type.
  • studies on islet transplantation using macrocapsule-type heterologous islets have not yet reported excellent results, and islets such as donor shortage, use of immunosuppressants, and long-term engraftment and functional maintenance of islets.
  • Bioartificial islets using heterologous islets that overcome the problems of transplantation have not yet been found.
  • Non-Patent Document 2 JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, PartB / VOL103B, ISSUE). 5, P1120-1132 (2015)).
  • the document discloses that alginate capsules formed by the click reaction are more stable than ionic cross-linking (C 2+ ) cross-linking.
  • the novel alginic acid derivatives used here are hydrogelled by, for example, chemical cross-linking, and the chemistry thereof.
  • an alginate gel prepared into a flat plate using a cross-linking alginic acid derivative was transplanted into a living body (intraperitoneal of a healthy mouse), the size of the flat plate gel did not change significantly even after 5 weeks, and the gel was dissolved. It maintains its shape and has excellent in vivo stability.
  • the islets in the transplantation device were confirmed to be alive by dithizone staining, it was confirmed that they were sufficiently alive.
  • the device for transplantation removed 10 weeks after transplantation was opened and the alginate gel inside was confirmed, the shape state was maintained.
  • the hydrogel is a thin device having a thickness of less than 500 ⁇ m, the healing rate of the animal transplanted with the device is higher than that of the device having a thickness of 500 ⁇ m or more.
  • the thickness of the hydrogel is less than 500 ⁇ m, the ratio of the oxygen concentration in the central part to the surface of the device is higher than that in the case of a thin device having a thickness of 500 ⁇ m or more.
  • the hydrogel does not disintegrate or is difficult to disintegrate.
  • the islets contained in the hydrogel are less likely to fall off from the gel.
  • novel alginic acid derivatives used herein can be used, for example, for chemical cross-linking formation, i.e., chemical cross-linking.
  • a reactive group that can be used for formation or a complementary reactive group of the reactive group is introduced.
  • the chemical cross-linking formation may occur, for example, between an alginic acid derivative into which a reactive group can be used for chemical cross-linking formation and an alginic acid derivative into which a reactive group complementary to the reactive group has been introduced. .. Both the reactive group and the complementary reactive group of the reactive group may be introduced into one molecule of alginic acid, or may be introduced separately. Further, the chemical cross-linking may be carried out within the molecule of the alginic acid derivative or between the molecules, and the reactive group or another reactive group complementary to the reactive group is introduced. May be done with molecules.
  • the chemical cross-linking is carried out, for example, by a cross-linking reaction by a Huisgen reaction (1,3-bipolar addition cyclization reaction), for example, between the alkyne derivatives of the formulas (HA-I) and (HA-II). It may be carried out, or, for example, between an arginic acid derivative of formula (HA-I) and another molecule having an azido group, or an arginic acid derivative of formula (HA-II) and an alkyne group. It may be done between other molecules that have.
  • the chemical cross-linking formation is carried out by, for example, a cross-linking reaction by a Huisgen reaction (1,3-bipolar addition cyclization reaction), for example, alkyne derivatives of the formulas (HB-I) and (HB-II). It may be carried out between, or, for example, between an arginic acid derivative of formula (HB-I) and another molecule having an azido group, or an arginic acid derivative of formula (HB-II) and an alkyne. It may be carried out between other molecules having a group.
  • Huisgen reaction (1,3-bipolar addition cyclization reaction
  • alkyne derivatives of the formulas (HB-I) and (HB-II for example, alkyne derivatives of the formulas (HB-I) and (HB-II). It may be carried out between, or, for example, between an arginic acid derivative of formula (HB-I) and another molecule having an azido group, or an arginic acid derivative of
  • a device for transplanting cells or the like prepared using an alginic acid derivative gelled by chemical cross-linking, more specifically, for example, a chemistry in which insulin-secreting cells or pancreatic islets are embedded.
  • a device for transplantation including a crosslinked islet gel and, if necessary, a semi-permeable membrane covering the gel, a method for producing the same, and the like are provided.
  • the alginic acid derivative gelled by chemical cross-linking is, for example, a formula (HA-I) in which a cyclic alkyne group or an azido group is introduced into any one or more carboxyl groups of alginic acid via an amide bond and a divalent linker.
  • the alkyne derivative of the formula (HA-II), and the Huisgen reaction (1,3-dipolar addition cyclization reaction) is carried out using the alkyne derivative of the formula (HA-I) and the formula (HA-II).
  • a novel cross-linked alkynic acid is obtained.
  • the alginic acid derivative gelled by chemical cross-linking has, for example, a formula (HB) in which a cyclic alkyne group or an azido group is introduced into any one or more carboxyl groups of alginic acid via an amide bond and a divalent linker.
  • the Huisgen reaction (1,3-dipolar addition cyclization reaction) is carried out using the alkyne derivative of the formula (HB-I) or the formula (HB-II) and the alkyne derivative of the formula (HB-I) and the formula (HB-II). By doing so, a novel crosslinked alkynic acid can be obtained.
  • An exemplary embodiment may be as follows [1-1] to [3-4].
  • the alginic acid derivatives according to the formula (HA-I) and the formula (HB-I) both have the structure of the formula (I) in common. Therefore, the general formulas of the alginic acid derivatives according to the formula (HA-I) and the formula (HB-I) are both represented by the formula (I). Further, in the present specification, the alginic acid derivatives according to the formula (HA-II) and the formula (HB-II) both have the structure of the formula (II) in common. Therefore, the general formulas of the alginic acid derivatives according to the formula (HA-II) and the formula (HB-II) are both represented by the formula (II).
  • the crosslinked alginic acid according to the formula (HA-III-L) and the formula (HB-III-L) both have the structure of the formula (III-L) in common. Therefore, the general formulas of the crosslinked alginic acid according to the formula (HA-III-L) and the formula (HB-III-L) are both represented by the formula (III-L).
  • the first aspect of the present invention may be as follows [1-1] to [1-34].
  • the chemical cross-linking results from a cyclic alkyne group introduced into any one or more carboxyl groups of alginic acid and an azide group introduced into any one or more carboxyl groups of alginic acid.
  • the transplant device according to any one of 1-1] to [1-3].
  • the chemical cross-linking is a chemical cross-linking by the combination of the alginic acid derivatives described in the following (A) and (B), according to any one of the above [1-1] to [1-5].
  • the chemically crosslinked alginic acid derivative has an arbitrary carboxyl group of the first alginic acid and an arbitrary carboxyl group of the second alginic acid as the following formula (HA-III-L):.
  • HA-III-L -CONH- and -NHCO- at both ends represent amide bonds mediated by any carboxyl group of alginic acid
  • -L 1- is the same as the definition in the above aspect [1-6]
  • -L 2- is the same as the definition in the above aspect [1-6]
  • X is the following partial structural formula: It is a cyclic group selected from the group of (in each formula, the outside of the broken line at both ends is not included), and the star mark represents the chiral center], which is a cross-linked alginic acid bonded via the above [1-6].
  • Device for porting is a cyclic group selected from the group of (in each formula, the outside of the broken line at both ends is not included), and the star mark represents the chiral center],
  • the chemical cross-linking is a chemical cross-linking by the combination of the alkyne derivatives described in the following (A) and (B), according to any one of the above [1-1] to [1-5].
  • -L1-1 is any one linker selected from the group of (L1-1), (L1-2a), (L1-2b), (L1-11) or (L1-12).
  • the alginic acid derivative represented by the formula (HB-II) the chemical cross-linking by the combination with the derivative in which —L2— is the linker of (L2-10) is excluded).
  • the chemically crosslinked alginic acid derivative has an arbitrary carboxyl group of the first alginic acid and an arbitrary carboxyl group of the second alginic acid having the following formula (HB-III-L): [In formula (HB-III-L), -CONH- and -NHCO- at both ends represent amide bonds mediated by any carboxyl group of alginic acid; -L 1- is the same as the definition in [1-8] above; -L 2- is the same as the definition in [1-8] above; X is the table below: It is a cross-linked alginic acid bonded via a cyclic group selected from the group of partial structural formulas described in (In each formula, the outside of the broken line at both ends is not included)] (however, in the formula (HB-I)).
  • -L1-1- is any one linker selected from the group of (L1-1), (L1-2a), (L1-2b), (L1-11) or (L1-12).
  • the alginic acid derivative of the formula (HA-I) is the following formula (EX-1- (I) -A-2).
  • the alginic acid derivative of the formula (HA-II) is the following formula (EX-2- (II) -A-2).
  • the transplant device according to the above [1-6] or [1-7].
  • the alginic acid derivative of the formula (HA-I) is the following formula (EX-3- (I) -A-2).
  • the alginic acid derivative of the formula (HA-II) is the following formula (EX-4- (II) -A-2).
  • the transplant device according to the above [1-6] or [1-7].
  • the alginic acid derivative of the formula (HA-I) is the following formula (EX-1- (I) -A-2).
  • the alginic acid derivative of the formula (HA-II) is the following formula (EX-4-2- (II) -A-2).
  • the transplant device according to the above [1-6] or [1-7].
  • the alginic acid derivative of the formula (HA-I) is the following formula (EX-3- (I) -A-2).
  • the alginic acid derivative of the formula (HA-II) is the following formula (EX-2- (II) -A-2).
  • the transplant device according to the above [1-6] or [1-7].
  • the alginic acid derivative of the formula (HA-I) is the following formula (EX-3- (I) -A-2).
  • the alginic acid derivative of the formula (HA-II) is the following formula (EX-4-2- (II) -A-2).
  • the transplant device according to the above [1-6] or [1-7].
  • the insulin-secreting cells or islets are pancreatic islets, islet cells, or ⁇ -cells obtained from a human donor, or arelets, islets, or ⁇ -cells obtained from a pig as a donor.
  • transplantation device according to any one of [1-1] to [1-22] above, wherein the transplantation site of the transplantation device is subcutaneous or intraperitoneal.
  • transplant device according to any one of the above [1-1] to [1-23], wherein the transplant device has a thickness of 0.1 to 5 mm.
  • transplant device according to any one of [1-1] to [1-23], wherein the thickness of the transplant device is 100 ⁇ m or more and less than 1000 ⁇ m.
  • Insulin-secreting cells or pancreatic islets are suspended in a solution of an alginic acid derivative hydrogelated by chemical cross-linking, and the solution in which the insulin-secreting cells or pancreatic islets are suspended is encapsulated in a semipermeable membrane.
  • Portable device is obtained by gelling the alginic acid derivative in the semipermeable membrane by contacting the permeable membrane with a solution containing divalent metal ions.
  • the second aspect of the present invention may be as follows [2-1] to [2-34].
  • the chemical cross-linking is a chemical cross-linking by the combination of the alginic acid derivatives described in the following (A) and (B), according to any one of the above [2-1] to [2-7].
  • the chemically crosslinked alginic acid derivative has an arbitrary carboxyl group of the first alginic acid and an arbitrary carboxyl group of the second alginic acid as the following formula (HA-III-L):.
  • HA-III-L -CONH- and -NHCO- at both ends represent amide bonds mediated by any carboxyl group of alginic acid
  • -L 1- is the same as the definition in the above aspect [2-8]
  • -L 2- is the same as the definition in the above aspect [2-8]
  • X is the following partial structural formula: It is a cyclic group selected from the group of (in each formula, the outside of the broken line at both ends is not included), and the star mark represents the chiral center], which is a cross-linked alginic acid bonded via the above [2-8].
  • Device for porting is a cyclic group selected from the group of (in each formula, the outside of the broken line at both ends is not included), and the star mark represents the chir
  • the chemical cross-linking is a chemical cross-linking by the combination of the alkyne derivatives described in the following (A) and (B), according to any one of the above [2-1] to [2-7].
  • -L1-1 is any one linker selected from the group of (L1-1), (L1-2a), (L1-2b), (L1-11) or (L1-12).
  • the alginic acid derivative represented by the formula (HB-II) the chemical cross-linking by the combination with the derivative in which —L2— is the linker of (L2-10) is excluded).
  • the chemically crosslinked alginic acid derivative has an arbitrary carboxyl group of the first alginic acid and an arbitrary carboxyl group of the second alginic acid having the following formula (HB-III-L): [In formula (HB-III-L), -CONH- and -NHCO- at both ends represent amide bonds mediated by any carboxyl group of alginic acid; -L 1- is the same as the definition in [2-10] above; -L 2- is the same as the definition in [2-10] above; X is the table below: It is a crosslinked alginic acid bonded via [a cyclic group selected from the group of partial structural formulas described in (the outside of the broken line at both ends is not included in each formula)] (however, in the formula (HB-I)).
  • -L1-1- is any one linker selected from the group of (L1-1), (L1-2a), (L1-2b), (L1-11) or (L1-12).
  • the alginic acid derivative of the formula (HA-I) is the following formula (EX-1- (I) -A-2).
  • the alginic acid derivative of the formula (HA-II) is the following formula (EX-2- (II) -A-2).
  • the transplant device according to the above [2-8] or [2-9].
  • the alginic acid derivative of the formula (HA-I) is the following formula (EX-3- (I) -A-2).
  • the alginic acid derivative of the formula (HA-II) is the following formula (EX-4- (II) -A-2).
  • the alginic acid derivative of the formula (HA-I) is the following formula (EX-1- (I) -A-2).
  • the alginic acid derivative of the formula (HA-II) is the following formula (EX-4-2- (II) -A-2).
  • the transplant device according to the above [2-8] or [2-9].
  • the alginic acid derivative of the formula (HA-I) is the following formula (EX-3- (I) -A-2).
  • the alginic acid derivative of the formula (HA-II) is the following formula (EX-2- (II) -A-2).
  • the transplant device according to the above [2-8] or [2-9].
  • the alginic acid derivative of the formula (HA-I) is the following formula (EX-3- (I) -A-2).
  • the alginic acid derivative of the formula (HA-II) is the following formula (EX-4-2- (II) -A-2).
  • the insulin-secreting cells or islets are pancreatic islets, islet cells, or ⁇ -cells obtained from a human donor, or arelets, islets, or ⁇ -cells obtained from a pig as a donor.
  • transplantation device according to any one of [2-1] to [2-24] above, wherein the transplantation site of the transplantation device is subcutaneous or intraperitoneal.
  • transplant device according to any one of [2-1] to [2-25], wherein the thickness of the transplant device is 100 ⁇ m or more and less than 1000 ⁇ m.
  • Insulin-secreting cells or pancreatic islets are suspended in a solution of an alginic acid derivative hydrogelated by chemical cross-linking, and the solution in which the insulin-secreting cells or pancreatic islets are suspended is encapsulated in a semipermeable membrane.
  • Portable device is obtained by gelling the alginic acid derivative in the semipermeable membrane by contacting the permeable membrane with a solution containing divalent metal ions.
  • the third aspect of the present invention may be as follows [3-1] to [3-4].
  • a method for producing a transplantation device containing a hydrogel containing insulin-secreting cells or pancreatic islets which comprises the following steps (a) to (d).
  • Step (c) A step of contacting the solution of the alginic acid derivative obtained in the step (b) with a solution containing divalent metal ions to prepare a gel having a thickness of 0.1 to 5 mm (100 to 5000 ⁇ m).
  • Step (a) As an optional step, a step of removing the pancreas from the living body and separating pancreatic islets
  • Step (c) A step of contacting the solution of the alginic acid derivative obtained in the step (b) with a solution containing divalent metal ions to prepare a gel having a thickness of 100 ⁇ m or more and less than 500 ⁇ m.
  • Step (a) As an optional step, a step of removing the pancreas from the living body and separating pancreatic islets
  • Step (c) A step of enclosing the solution of the alginic acid derivative obtained in the step (b) in a semipermeable membrane.
  • Step (a) As an optional step, a step of removing the pancreas from the living body and separating pancreatic islets
  • Step (e) A step of preparing a gel using the solution of the alginic acid derivative obtained in the step (b) as an arbitrary shape.
  • a method for producing a device for transplantation comprising a hydrogel in which insulin-secreting cells or pancreatic islets are encapsulated, which comprises the following steps (a), (b), (e) and (f).
  • Step (a) As an optional step, a step of removing the pancreas from the living body and separating pancreatic islets
  • Step (e) A step of putting the solution of the alginic acid derivative obtained in the step (b) into an arbitrary container or placing it on an arbitrary surface.
  • a method for producing a transplantation device containing a hydrogel containing insulin-secreting cells or pancreatic islets which comprises the following steps (a) to (c) (f).
  • Step (c) A step of enclosing the solution of the alginic acid derivative obtained in the step (b) in a semipermeable membrane.
  • the present invention provides a new implantable device.
  • the implantable device exhibits at least one or more of the following effects: (1) Excellent biocompatibility and stability, low cytotoxicity, and almost no adhesion or inflammation at the transplant site. (2) The gel is less dissolved and the shape is maintained for a long period of time. (3) It becomes possible to maintain the hypoglycemic effect and regulate blood glucose for a long period of time. (4) After long-term use, the alginate gel in the semipermeable membrane can maintain its shape without dissolving, and can maintain the survival and function of pancreatic islets, and can be used for a long period of time. (5) It is a highly safe medical material that can be replaced, immunoisolated, and has less adhesion and inflammation.
  • More preferred embodiments of the transplant device have excellent transplant performance and functionality, are novel in terms of materials, and can be transplanted into diabetic patients (particularly type I diabetes and insulin-depleted type II diabetes) to provide long-term blood glucose. It is possible to maintain the descent effect and regulate blood sugar. In addition, recovery is possible when the function of insulin-secreting cells or islets in the hydrogel is reduced. Alternatively, regular replacement or additional transplantation is possible. Further, as the insulin-secreting cells or islets enclosed in the hydrogel of the transplantation device, insulin-secreting cells differentiated from stem cells (iPS or the like) or human pancreatic islets can also be used. Therefore, a device of a more preferred embodiment is useful.
  • a device for transplanting cells or the like prepared using an alginic acid derivative gelled by chemical cross-linking, more specifically, for example, a chemistry in which insulin-secreting cells or pancreatic islets are embedded.
  • a transplanting device including a crosslinked islet gel and, if necessary, a semi-permeable membrane covering the gel, a method for producing the same, and the like are provided.
  • the alginic acid derivative gelled by chemical cross-linking is, for example, a formula (HA-I) in which a cyclic alkyne group or an azido group is introduced into any one or more carboxyl groups of alginic acid via an amide bond and a divalent linker.
  • the alkyne derivative of the formula (HA-II), and the Huisgen reaction (1,3-dipolar addition cyclization reaction) is carried out using the alkyne derivative of the formula (HA-I) and the formula (HA-II).
  • a novel cross-linked alkynic acid is obtained.
  • the alginic acid derivative gelled by chemical cross-linking has, for example, a formula (HB) in which a cyclic alkyne group or an azido group is introduced into any one or more carboxyl groups of alginic acid via an amide bond and a divalent linker.
  • the Huisgen reaction (1,3-dipolar addition cyclization reaction) is carried out using the alkyne derivative of the formula (HB-I) or the formula (HB-II) and the alkyne derivative of the formula (HB-I) and the formula (HB-II). By doing so, a novel crosslinked alkynic acid can be obtained.
  • the "transplanting device” is a hydrogel in which insulin-secreting cells or pancreatic islets are encapsulated.
  • the hydrogel is a gel of an alginic acid derivative by chemical cross-linking. Therefore, as the alginic acid derivative, one that can be gelled by chemical cross-linking is used.
  • the shape of the hydrogel in which insulin-secreting cells or pancreatic islets are encapsulated is, for example, a flat plate type.
  • the hydrogel may be further coated with a semipermeable membrane, in which case the hydrogel encapsulating insulin-secreting cells or islets is inserted into the semipermeable membrane.
  • the "insulin-secreting cell” used in the transplantation device means a cell having a function of secreting insulin, and for example, in the cells constituting the pancreatic islet, it means a ⁇ cell secreting insulin.
  • the "insulin-secreting cell” may be a cell having an insulin-secreting function due to differentiation, maturation, modification, or the like, and may be, for example, an iPS cell, an ES cell, or a somatic stem cell (for example, a mesenchymal system). Cells having an insulin secretory function obtained by differentiating stem cells such as stem cells), cells having an insulin secretory function obtained by maturing immature cells and precursor cells, and cells having an insulin secretory function obtained by gene recombination.
  • the differentiation or maturation of the cell includes culturing the cell, that is, the cell obtained by differentiation or maturation may include the cell obtained by culturing.
  • the “islets”, also known as Langerhans islets, are cell masses composed of an average of about 2000 islet cells. Pancreatic islands are 5 cells that secrete glucagon, ⁇ cells that secrete insulin, ⁇ cells that secrete somatostatin, ⁇ cells that secrete grelin, and PP (pancreatic polypeptide) cells that secrete pancreatic polypeptide. Consists of seed cells.
  • “Insulin-secreting cells or islets” are also referred to as cells or tissues having the secretory function of biologically active products.
  • the “islet cell” may be any cell containing at least one of the above five types of cells, but preferably contains at least ⁇ cells.
  • the islet cells may be a mixture containing all of ⁇ cells, ⁇ cells, delta cells, ⁇ cells, and PP cells, or may be in a state contained in islets.
  • the “islet cells” may be those that have become islet cells due to differentiation, maturation, modification, or the like.
  • the "islet cells” include, for example, pancreatic islet cells obtained by differentiating stem cells such as iPS cells, ES cells, and somatic stem cells (for example, mesenchymal stem cells), and immature cells and progenitor cells.
  • pancreatic islet cells obtained by maturing.
  • the "insulin-secreting cells or pancreatic islets (including pancreatic islets)" preferably have a viability and a function capable of recovering the pathological condition of the patient when transplanted into the patient.
  • Functions of insulin-secreting cells, islets or islets cells include, for example, secreting insulin, and it is preferable that glucose responsiveness is maintained even after transplantation.
  • bio-artificial islets are examples of bio-artificial organs.
  • the cells included in the bioartificial islets include the above-mentioned “insulin-secreting cells”, “islets” or “islets cells”, and include, for example, insulin-secreting cells.
  • Insulin-secreting cells are either cells contained in islets collected from humans or pigs, or islets differentiated from stem cells (eg, ES cells, iPS cells, and somatic stem cells (eg, mesenchymal stem cells)). But it may be.
  • the transplantation device of the present invention may use cells other than "insulin-secreting cells, islets and islet cells".
  • the cells other than "insulin-secreting cells, islets and islet cells" any cell can be used as long as it can be used for cell transplantation, and the type thereof is not particularly limited.
  • the cells to be used may be one type or a combination of a plurality of types of cells. Examples of the cells to be used include animal cells, more preferably vertebrate-derived cells, and particularly preferably human-derived cells.
  • the type of vertebrate-derived cells (particularly human-derived cells) may be stem cells (eg, pluripotent cells or somatic stem cells), progenitor cells, or mature cells.
  • an embryonic stem (ES) cell for example, an embryonic stem (ES) cell, a reproductive stem (GS) cell, or an induced pluripotent stem (iPS) cell can be used.
  • somatic stem cells for example, mesenchymal stem cells (MSC), hematopoietic stem cells, sheep membrane cells, umbilical cord blood cells, bone marrow-derived cells, myocardial stem cells, adipose-derived stem cells, or nerve stem cells can be used.
  • progenitor cells and mature cells include skin, dermal, epidermis, muscle, myocardium, nerve, bone, cartilage, endothelial, brain, epithelium, heart, kidney, liver, spleen, oral cavity, corneal marrow, bone marrow, and cord blood.
  • Cells derived from amniotic membrane or hair can be used.
  • human-derived cells include ES cells, iPS cells, MSCs, cartilage cells, osteoblasts, osteoblast precursor cells, interstitial cells, myoblasts, myocardial cells, myocardial blast cells, nerve cells, and hepatocytes.
  • Fibroblasts corneal endothelial cells, vascular endothelial cells, corneal epithelial cells, sheep membrane cells, umbilical cord blood cells, bone marrow-derived cells, or hematopoietic stem cells can be used.
  • the origin of the cell may be either an autologous cell or an allogeneic cell.
  • ES cells iPS cells, mesenchymal stem cells (MSCs) can be used, for example.
  • Donors of "insulin-secreting cells or islets (including islet cells)" are animals, preferably vertebrates, and specific examples include humans, pigs, monkeys, rats or mice, more preferably humans. Or islets. Donors of "insulin-secreting cells, islets or islets cells” are, in some embodiments, pigs from the perspective of resolving the donor shortage.
  • the "insulin secreting cell or pancreatic island (including pancreatic island cell)” may be either a pancreatic island obtained from a donor animal, or an insulin secreting cell or a pancreatic island cell obtained from a donor-derived cell, for example, a human. It may be an insulin secretory cell or pancreatic islet cell differentiated from the derived ES cell or iPS cell.
  • pancreatic islets including pancreatic islets
  • pancreatic islets are derived from pigs, adult porcine islets or embryonic, neonatal, or perinatal porcine islets can be mentioned.
  • the pancreatic islets may be appropriately cultured before use, or pancreatic islets matured from embryonic, neonatal, or perinatal porcine islets may be used.
  • transplantation site is not particularly limited, and examples thereof include subcutaneous, intraperitoneal, intrahepatic, intramuscular, intraocular, and subrenal capsule, but subcutaneous or intraperitoneal transplantation is preferable.
  • the "semipermeable membrane (semipermeable membrane)” is a membrane that allows only molecules or ions of a certain size or less to permeate. It is a system of a solute that does not permeate the semipermeable membrane and a solvent that exhibits permeability. When two solutions of two concentrations are brought into contact with each other via the semipermeable membrane, osmotic pressure is generated and only the solvent permeates.
  • the implantable device described herein may include a semipermeable membrane, or the semipermeable membrane is not essential, i.e., it may not include a semipermeable membrane.
  • the implant device is a hydrogel alone (eg, encapsulated with insulin-secreting cells or islets), i.e., the hydrogel is not coated with a semipermeable membrane.
  • Implantable devices in which the hydrogel is not coated with a semipermeable membrane are preferably biocompatible and stable, have less cytotoxicity, have little adhesion or inflammation at the site of implantation, and have less gel dissolution and shape. It is maintained for a long period of time, and more preferably, it is capable of sustaining a hypoglycemic effect and regulating blood glucose for a long period of time.
  • the hydrogel is coated with a semipermeable membrane.
  • semi-permeable membrane examples include membranes or tubes used for dialysis, and dialysis tubes, cotton cellulose dialysis membranes, regenerated cellulose dialysis membranes, cellulose ester dialysis membranes, etc. can also be used, and the trade name is Cellu-. Examples include Sep T Tubular Membrane (Membrane Filtration Products), Spectra Biotech Membrane (REPLICEN (formerly SPECTRUM)), and Spectra / Pore CE dialysis tube (REPLIGEN (formerly SPECTRUM)).
  • the "semipermeable membrane” is preferably a semipermeable membrane made of cellulose ester. Specific examples include a Spectra / Pore CE dialysis tube (REPLIGEN (formerly SPECTRUM)), which is a dialysis membrane. It is more preferable that the cellulose ester is a polymer of cellulose acetate.
  • the semipermeable membrane used here contains a resin.
  • the semipermeable membrane can be produced, for example, by dissolving at least one kind of resin in a solvent and coagulating the dissolved resin.
  • the resin is not particularly limited.
  • a resin for example, a resin such as an ethylene-vinyl alcohol-based copolymer, a polysulfone-based polymer, a polyacrylonitrile-based polymer, a cellulose-based polymer such as cellulose acetate, a polyamide-based polymer, or a polycarbonate-based polymer can be used. Can be done. More preferably, it is a cellulosic polymer such as cellulose acetate.
  • the semipermeable membrane used here has a "molecular weight cutoff".
  • "Molecular weight cutoff” means the magnitude of the maximum molecular weight that is not substantially blocked. Molecules with a molecular weight above the molecular weight cutoff are substantially prevented from entering and exiting the semipermeable membrane.
  • the "molecular weight cutoff" of the semipermeable membrane used here is preferably 100 kDa (kilodalton).
  • the cutoff value is 100 to 500 Da (Dalton) and 0.5 to 1 kDa with the cutoff value as "MWCO".
  • the cutoff value has a molecular weight cutoff greater than about 500,000 daltons, IgG. Molecules such as and dialysis can enter these semi-transparent membranes, but host cells such as immune cells are blocked from entering the semi-transparent membrane, and insulin and cell nutrients and oxygen are translucent. It will be able to pass through the membrane.
  • the unit Dalton symbol means Da, and 1000 Da means 1 kDa.
  • the thickness of the implantable device is preferably 0.1-5 mm (100-5000 ⁇ m) and preferably 0.1-3 mm (100-3000 ⁇ m). Alternatively, it is preferably 0.5 to 5 mm (500 to 5000 ⁇ m), more preferably 1 to 3 mm (1000 to 3000 ⁇ m).
  • the thickness of the implantable device is 0.15-5 mm (150-5000 ⁇ m) in semipermeable membrane thickness when the hydrogel containing insulin-secreting cells or islets is coated with a semipermeable membrane. , 0.2 to 3 mm (200 to 3000 ⁇ m) is preferable. Alternatively, it is preferably 0.5 to 5 mm (500 to 5000 ⁇ m), more preferably 1 to 3 mm (1000 to 3000 ⁇ m).
  • the thickness of the transplant device is preferably 100 ⁇ m or more and less than 1000 ⁇ m, and preferably 100 ⁇ m or more and less than 500 ⁇ m. Alternatively, it is preferably 150 ⁇ m or more and less than 1000 ⁇ m, and more preferably 150 ⁇ m or more and 500 ⁇ m.
  • the thickness of the transplantation device is preferably 150 ⁇ m or more and less than 1000 ⁇ m, preferably 150 ⁇ m or more. It is more preferably less than 500 ⁇ m. Alternatively, it is preferably 200 ⁇ m or more and less than 1000 ⁇ m, and more preferably 200 ⁇ m or more and 500 ⁇ m.
  • the thickness of the hydrogel is 0.1-5 mm (100-5000 ⁇ m), preferably 0.1-3 mm (100-3000 ⁇ m), preferably 0.1-1 mm (100-3000 ⁇ m). 1000 ⁇ m) is more preferable. Alternatively, it is 0.15 to 5 mm (150 to 5000 ⁇ m), preferably 0.15 to 3 mm (150 to 3000 ⁇ m), and more preferably 0.15 to 1 mm (150 to 1000 ⁇ m). Alternatively, it is 0.2 to 5 mm (200 to 5000 ⁇ m), preferably 0.2 to 3 mm (200 to 3000 ⁇ m), and more preferably 0.2 to 1 mm (200 to 1000 ⁇ m).
  • the implantable device contains a semipermeable membrane
  • the thickness of the hydrogel in the semipermeable membrane may be 0.1-3 mm (100-3000 ⁇ m) and 0.1-2 mm (100-2000 ⁇ m). It is preferably 0.1 to 1 mm (100 to 1000 ⁇ m), more preferably 0.1 to 1 mm (100 to 1000 ⁇ m).
  • it is 0.15 to 3 mm (150 to 3000 ⁇ m), preferably 0.15 to 2 mm (150 to 2000 ⁇ m), and more preferably 0.15 to 1 mm (150 to 1000 ⁇ m).
  • it is 0.2 to 3 mm (200 to 3000 ⁇ m), preferably 0.2 to 2 mm (200 to 2000 ⁇ m), and more preferably 0.2 to 1 mm (200 to 1000 ⁇ m).
  • it is preferably 1 to 3 mm (1000 to 3000 ⁇ m), more preferably 1.5 to 2 mm (1500 to 2000 ⁇ m).
  • the thickness of the hydrogel is preferably 0.1 to 5 mm (100 to 5000 ⁇ m), preferably 0.1 to 3 mm (100 to 3000 ⁇ m), 0. It is more preferably 1 to 1 mm (100 to 1000 ⁇ m).
  • it is 0.15 to 5 mm (150 to 5000 ⁇ m), preferably 0.15 to 3 mm (150 to 3000 ⁇ m), and more preferably 0.15 to 1 mm (150 to 1000 ⁇ m).
  • it is 0.2 to 5 mm (200 to 5000 ⁇ m), preferably 0.2 to 3 mm (200 to 3000 ⁇ m), and more preferably 0.2 to 1 mm (200 to 1000 ⁇ m).
  • it is 0.5 to 5 mm (500 to 5000 ⁇ m), preferably 0.5 to 3 mm (500 to 3000 ⁇ m), and more preferably 0.5 to 1 mm (500 to 1000 ⁇ m).
  • the thickness of the hydrogel is preferably 100 ⁇ m or more and less than 500 ⁇ m, preferably 100 ⁇ m or more and less than 400 ⁇ m, and more preferably 100 ⁇ m or more and less than 300 ⁇ m.
  • it is preferably 150 ⁇ m or more and less than 500 ⁇ m, preferably 150 ⁇ m or more and less than 400 ⁇ m, more preferably 150 ⁇ m or more and less than 300 ⁇ m, and further preferably 200 ⁇ m or more and less than 300 ⁇ m.
  • Such a thickness is the same when the device for transplantation contains a semipermeable membrane and when the device does not contain a semipermeable membrane.
  • the shape of the transplant device is not particularly limited as long as it is a flat plate.
  • the flat plate means a flat plate, and indicates a plate shape having a substantially constant thickness and a large area.
  • Examples of the shape of the plate include flat plate shapes such as polygons such as triangles, quadrangles, and pentagons, and circles.
  • the transplanting device has the above-mentioned thickness and a substantially constant thickness in the entire plate shape.
  • the thickness variation in the plate-shaped transplant device is preferably within ⁇ 20%, more preferably within ⁇ 10%.
  • the thickness of the implantable device is the thickness of the thickest portion of the implantable device.
  • the shape of the transplantation device looks like a rugby ball, and both ends are slightly thin.
  • the center may be thicker than both ends.
  • the thickness of the implant device means the thickness near the center, which is the part of the maximum thickness.
  • the shape of the hydrogel is not particularly limited as long as it is a flat plate.
  • the flat plate means a flat plate, and indicates a plate shape having a substantially constant thickness and a large area. Examples of the shape of the plate include flat plate shapes such as polygons such as triangles, quadrangles, and pentagons, and circles.
  • the hydrogel has the above-mentioned thickness and has a substantially constant thickness in the entire plate shape.
  • the variation in thickness of the hydrogel is preferably within ⁇ 20%, more preferably within ⁇ 10%.
  • the thickness of the hydrogel is the thickness of the thickest portion of the hydrogel.
  • the flat plate hydrogel is, for example, a crosslinked alginic acid gel having a short diameter of 12 to 15 mm, a major diameter of 12 to 18 mm, and a thickness of about 0.1 to 5 mm, and is circular. , Square, hexagon, octagon, etc. can also be taken.
  • the flat plate type hydrogel is expressed by the area, it can be expressed as, for example, 144 to 270 mm 2 .
  • IEQ is an abbreviation for Islet Equivalents, and is an international unit representing the amount of islets, in which pancreatic islets are regarded as spherical and islets with a diameter of 150 ⁇ m are defined as 1 IEQ.
  • one of the conditions for transplanting fresh islets is "islet amount 5000 IEQ / kg (patient weight) or more". I will refer to it here as well.
  • the transplantation device can be appropriately set to the number of pancreatic islets calculated so as to produce a desired therapeutic effect, and can be appropriately set to an appropriate device depending on the weight of the patient, the degree of symptoms, and the like.
  • the amount of insulin secreting cells can also be appropriately set according to the pancreatic islets.
  • step (a): a step of removing the pancreas from a living body and separating pancreatic islets as an optional step means that the step (a) is optional. means.
  • the "living body” is, for example, a human or a non-human mammal, and examples of the non-human mammal include pigs.
  • step (a) is performed, for example, in the case of isolation of porcine pancreatic islets, a known procedure of the present technique, or Shimoda et al. (Shimoda; Cell Transplantation, Vol. 21, pp. 501-508, 2012).
  • Aseptic viable pancreas can be obtained from adult pigs under aseptic conditions and islet cells can be isolated according to the method described in 1 or according to a standard Ricordy technique using the Edmonton protocol. Isolation of other non-human mammalian islets or human islets can also be performed according to the isolation of porcine islets. After that, the isolated pancreatic islets may be used as they are, or may be cultured and used. For the culture of pancreatic islands, for example, according to the method of Noguchi et al.
  • an alginic acid derivative that can be hydrogelized by chemical cross-linking.
  • cells or tissues selected from the group consisting of, for example, the alginic acid derivatives represented by the above-mentioned formulas (I) and (II) are mentioned as being able to be hydrogelized by chemical cross-linking. Can be done.
  • step (b) for example, a 0.1 to 5% by weight aqueous solution or a physiological saline aqueous solution of the alginic acid derivative is prepared, and insulin-secreting cells, islets, cultured pancreatic islet cells, and stem cells are prepared in the solution.
  • Cells or tissues selected from the group consisting of more differentiated islet cells eg, islets obtained in step (a), insulin secreting cells isolated from the islets, or islet cells isolated from the islets).
  • the pancreatic islet cells obtained by culturing the cells are appropriately suspended in a required amount.
  • the "solution of the alginic acid derivative that can be hydrogelized by chemical cross-linking” is represented by, for example, the solution of the alginic acid derivative represented by the above-mentioned formula (HA-I) and the above-mentioned formula (HA-II).
  • HA-I the solution of the alginic acid derivative represented by the above-mentioned formula
  • HA-II the solution of the alginic acid derivative represented by the above-mentioned formula
  • HB-I the above-mentioned formula
  • HB-II above-mentioned formula
  • There are two types of solutions of alginic acid derivatives In this case, in step (b), these two solutions and the solution in which cells or tissues are mixed with them are prepared separately without mixing. At this time, the cells or tissues may be miscible with only one of the two solutions, or may be miscible with both.
  • step (c) the solution of the alginic acid derivative obtained in step (b) is brought into contact with a solution containing divalent metal ions to have a thickness of 0.1 to 5 mm (100 to 5000 ⁇ m) or a thickness of 100 ⁇ m.
  • a solution containing divalent metal ions to have a thickness of 0.1 to 5 mm (100 to 5000 ⁇ m) or a thickness of 100 ⁇ m.
  • the solution of the alginic acid derivative obtained in the step (b) in which the cells or tissues (for example, pancreatic islands) are suspended is gelled.
  • the solution of the alginic acid derivative of the formula (HA-I) or the formula (HB-I) and the solution of the alginic acid derivative represented by the formula (HA-II) or the formula (HB-II) are subjected to the respective chemistry.
  • each dose may be appropriately mixed.
  • ionic cross-linking proceeds and chemical cross-linking also proceeds, so that a gel can be prepared. More specifically, the gel can be produced in the same manner as in [Production of flat plate-type alginate gel] ⁇ general preparation method> described in Example 5 described later.
  • step (d): as an optional step of coating the gel obtained in step (c) with a semipermeable membrane means that step (d) is optional.
  • the gel obtained in the step (c) is coated with a semipermeable membrane by a method known in the art or a method similar thereto.
  • the gel is inserted into a semipermeable membrane (eg, a semipermeable membrane tube with one end sealed) and coated by sealing the other end.
  • step (c): the step of encapsulating the solution of the alginic acid derivative obtained in step (b) in a semipermeable membrane is obtained in step (b) in which cells or tissues (for example, pancreatic islands) are suspended.
  • the solution of the alginic acid derivative obtained is coated with a semipermeable membrane by a method known in the art or a method similar thereto.
  • the solution of the alginic acid derivative of the formula (HA-I) or the formula (HB-I) and the solution of the alginic acid derivative represented by the formula (HA-II) or the formula (HB-II) are subjected to the respective chemistry.
  • each dose may be appropriately mixed.
  • the mixed solution in which the cells or tissues (eg, islets) are suspended is then inserted into a semipermeable membrane (eg, a semipermeable membrane tube with one end sealed) and coated by sealing the other end. ..
  • a semipermeable membrane eg, a semipermeable membrane tube with one end sealed
  • the step (d) the step of contacting the semipermeable membrane obtained in the step (c) with a solution containing divalent metal ions to gel the alginic acid solution in the semipermeable membrane
  • the step ( The semipermeable membrane containing the alginic acid solution obtained in c) is brought into contact with a solution containing divalent metal ions to gel the alginic acid solution in the semipermeable membrane.
  • the device obtained in step (d) may be washed with a solvent such as physiological saline. Further, it may be cultured in a medium for a predetermined period of time.
  • Step (e): The solution of the alginic acid derivative obtained in the step (b) is optional.
  • a solution of the alginic acid derivative obtained in step (b) in which cells or tissues (for example, pancreatic islands) are suspended is used as a method known in the art.
  • it is kept in a certain shape using an arbitrary container, surface, etc., and gelled by the progress of chemical cross-linking.
  • the arbitrary container refers to a container capable of holding the solution in a constant shape, and examples thereof include a semipermeable membrane, a beaker, or a petri dish, and a semipermeable membrane is preferable.
  • the arbitrary surface refers to a surface on which the solution can be placed in a fixed shape, and examples thereof include a semipermeable membrane surface, a plastic surface, or a glass surface, and a semipermeable membrane surface is preferable.
  • a solution of an alginic acid derivative to prepare a gel having a thickness of 0.1 to 5 mm (100 to 5000 ⁇ m) the solution held in an arbitrary container, surface or semipermeable membrane is chemically cross-linked. It means to gel.
  • the gel may be prepared by simultaneously advancing ionic cross-linking and chemical cross-linking by contacting with a solution containing divalent metal ions, and advancing only chemical cross-linking without contacting with divalent metal ions or the solution thereof. , You may make a gel.
  • the solution containing "divalent metal ion" used in the transplantation device examples include a solution containing calcium ion, barium ion, strontium ion and the like.
  • a solution containing calcium ions or barium ions is preferable, and a solution containing calcium ions is more preferable.
  • the solution containing the divalent metal ion can be obtained, for example, by dissolving a salt of the divalent metal ion in a solvent.
  • the salt of the divalent metal ion include calcium chloride, barium chloride, strontium chloride and the like.
  • the solvent include water, physiological saline, and HEPES buffer.
  • the solution containing divalent metal ions is a solution containing calcium ions, preferably an aqueous solution containing calcium chloride. It is desirable to appropriately adjust the amount of the solution containing the divalent metal ion according to the amount of the alginic acid derivative used, the molecular weight and the like.
  • the hydrogel in the device can be prepared by encapsulating the solution of the alginic acid derivative in the semipermeable membrane and then contacting it with a divalent metal ion solution. Either it may be gelled before being encapsulated in the membrane and then encapsulated in the semipermeable membrane in the latter half.
  • contact means immersing a semipermeable membrane containing a solution of an alginic acid derivative in a divalent metal ion solution, applying a divalent metal ion solution to the semipermeable membrane containing a solution of an alginic acid derivative, and the like. Can be mentioned.
  • Hydrogel used for transplantation devices refers to a polymer having a three-dimensional network structure that is insoluble in water and a swollen body due to the water.
  • hydrogel may be simply referred to as gel.
  • the molecular weight of the molecule that can pass through the network structure of this gel can be changed greatly and freely. That is, it is conceivable that the mesh structure of the gel has a small mesh when the concentration of the polymer is high, and a large mesh when the concentration of the polymer is low. If the mesh of the network structure is too large, antibodies and the like will invade the network structure. In this case, rejection of insulin-secreting cells or islets in the gel is likely to occur. Rejection inhibits the production of necessary substances such as insulin.
  • the material of hydrogel consists of the following polymers.
  • collagen hyaluronan, gelatin, fibronectin, elastin, tenacin, laminin, bitronectin, polypeptide, heparan sulfate, chondroitin, chondroitin sulfate, keratane, keratane sulfate, dermatin sulfate, carrageenan, heparin, chitin, chitosan, alginate, alginate derivative.
  • an alginic acid derivative is preferable from the viewpoint of biocompatibility, long-term engraftment of pancreatic islets, maintenance of function, and the like.
  • alginic acid in the present specification, when referring to alginic acid, at least one alginic acid (sometimes referred to as "alginic acids") selected from the group consisting of alginic acid, alginic acid esters, and salts thereof (for example, sodium alginate) is referred to as alginic acid.
  • alginic acid used may be of natural or synthetic origin, but is preferably of natural origin.
  • Preferred alginic acids are bioabsorbable polysaccharides extracted from brown algae such as Lessonia, Macrocystis, Laminaria, Ascophyllum, Derbilia, Ecklonia cava, Arame, Combu and D-mannuronic acid (M).
  • It is a polymer in which two types of uronic acid, L-gluuronic acid (G), are linearly polymerized. More specifically, the homopolymer fraction of D-mannuronic acid (MM fraction), the homopolymer fraction of L-gluuronic acid (GG fraction), and the random arrangement of D-mannuronic acid and L-gluuronic acid. It is a block copolymer in which the resulting fractions (M / G fractions) are arbitrarily bonded.
  • alginic acid may be referred to as (ALG) -COOH, with alginic acid as (ALG) and one of any carboxyl groups of alginic acid as -COOH.
  • the alginate is sodium alginate.
  • the sodium alginate commercially available sodium alginate can be used.
  • the sodium alginate is the sodium alginate of A-1, A-2, A-3, B-1, B-2, and B-3 described in the table below (publisher: Mochida Pharmaceutical Co., Ltd.). Co., Ltd.) is used.
  • the viscosity, weight average molecular weight and M / G ratio of each 1 w / w% aqueous solution of sodium alginate are shown in the table below.
  • the physical property values of the sodium alginate A-1, A-2, A-3, B-1, B-2, and B-3 were measured by the following various methods.
  • the measuring method is not limited to the method, but each physical property value may differ from the above depending on the measuring method.
  • Da (Dalton) may be added as a unit in the molecular weights of alginic acid, alginic acid derivatives, crosslinked alginic acid, and crosslinked alginic acid.
  • the composition ratio (M / G ratio) of D-mannuronic acid and L-gluuronic acid of alginic acids differs mainly depending on the type of organism from which seaweeds are derived, and is also affected by the habitat and season of the organism. , From a high G type with an M / G ratio of about 0.2 to a high M type with an M / G ratio of about 5. It is known that the gelling ability of alginic acids and the properties of the produced gel are affected by the M / G ratio, and generally, the gel strength increases when the G ratio is high.
  • the M / G ratio also affects the hardness, brittleness, water absorption, flexibility, etc. of the gel.
  • the M / G ratio of the alginic acids and / or salts thereof used is usually 0.2 to 4.0, more preferably 0.4 to 3.0, still more preferably 0.5 to 3.0. be.
  • the numerical range indicated by using “-” indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • alginic acid ester and “alginate” used in the present specification are not particularly limited, but in order to react with a cross-linking agent, it is necessary that they do not have a functional group that inhibits the cross-linking reaction.
  • Preferred examples of the alginic acid ester include propylene glycol alginate.
  • examples of alginate include a monovalent salt of alginic acid and a divalent salt of alginic acid.
  • the monovalent salt of alginic acid is preferably sodium alginate, potassium alginate, ammonium alginate, etc., more preferably sodium alginate or potassium alginate, and particularly preferably sodium alginate.
  • Preferred examples of the divalent salt of alginic acid include calcium alginate, magnesium alginate, barium alginate, strontium alginate, and the like.
  • Alginic acid is a high molecular weight polysaccharide and it is difficult to accurately determine its molecular weight, but it generally has a weight average molecular weight of 10 to 10 million, preferably 10,000 to 8 million, and more preferably 20,000 to 3 million. Is the range of. It is known that in the measurement of the molecular weight of a polymer substance derived from a natural product, the value may differ depending on the measurement method.
  • the weight average molecular weight measured by gel permeation chromatography (GPC) or gel filtration chromatography (collectively referred to as size exclusion chromatography) is preferably 100,000 or more, more preferably 500,000 or more, and also. It is preferably 5 million or less, more preferably 3 million or less. The preferred range is 100,000 to 5 million, more preferably 150,000 to 3 million.
  • the absolute weight average molecular weight can be measured.
  • the weight average molecular weight (absolute molecular weight) measured by the GPC-MALS method is preferably 10,000 or more, more preferably 50,000 or more, still more preferably 60,000 or more, and preferably 1 million or less, more preferably 80. It is 10,000 or less, more preferably 700,000 or less, and particularly preferably 500,000 or less.
  • the preferred range is 10,000 to 1,000,000, more preferably 50,000 to 800,000, still more preferably 60,000 to 700,000, and particularly preferably 60,000 to 500,000.
  • a measurement error of 10% to 20% may occur.
  • the value may fluctuate in the range of 320,000 to 480,000 for 400,000, 400,000 to 600,000 for 500,000, and 800,000 to 1.2 million for 1 million.
  • the molecular weight of alginic acids can be measured according to a conventional method.
  • Typical conditions when gel filtration chromatography is used for molecular weight measurement are as described in Examples of the present specification described later.
  • the column for example, Superose6 Increase10 / 300 GL column (GE Healthcare Science Co., Ltd.) can be used, and as a developing solvent, for example, a 10 mmol / L phosphate buffer solution (pH 7.4) containing 0.15 mol / L NaCl.
  • bluedextran, tyroglobulin, ferritin, aldolase, conalbumin, obalbumin, ribonuclease A and aprotinin can be used as molecular weight standards.
  • the viscosity of alginic acid used in the present specification is not particularly limited, but when the viscosity is measured as an aqueous solution of 1 w / w% alginic acid, it is preferably 10 mPa ⁇ s to 1000 mPa ⁇ s, more preferably 50 mPa ⁇ s. It is s to 800 mPa ⁇ s.
  • the viscosity of the aqueous solution of alginic acid can be measured according to a conventional method.
  • a co-axis double-cylindrical rotational viscometer, a single cylindrical rotational viscometer (Brookfield type viscometer), a cone-plate type rotational viscometer (cone plate type viscometer), etc. of the rotational viscometer method are used. Can be measured. It is preferable to follow the viscosity measurement method of the Japanese Pharmacopoeia (16th edition). More preferably, a cone plate type viscometer is used.
  • Alginic acids initially have a large molecular weight and high viscosity when extracted from brown algae, but in the process of drying and refining by heat, the molecular weight becomes small and the viscosity becomes low.
  • Alginic acids having different molecular weights can be produced by methods such as controlling conditions such as temperature in the production process, selecting brown algae as raw materials, and fractionating the molecular weight in the production process. Further, it is also possible to obtain alginic acid having a desired molecular weight by mixing with another lot of alginic acid having a different molecular weight or viscosity.
  • the alginic acid used herein is alginic acid that has not been treated with low endotoxin in some embodiments, or alginic acid that has been treated with low endotoxin in some other embodiments.
  • Low endotoxin means that the endotoxin level is low enough not to cause inflammation or fever. More preferably, it is alginic acid treated with low endotoxin.
  • the low endotoxin treatment can be performed by a known method or a method similar thereto.
  • the method of Suga et al. For purifying sodium hyaluronate see, for example, JP-A-9-324001
  • the method of Yoshida et al. For purifying ⁇ 1,3-glucan (eg, JP-A-8-269102).
  • William et al.'S method for purifying biopolymer salts such as alginate and gellan gum (see, eg, JP-A-2002-530440)
  • James et al.'S method for purifying polysaccharides eg, international publication.
  • the method of Lewis et al. See, eg, US Pat. No.
  • Low endotoxin treatment is not limited to these, but for cleaning, filtration with filters (endotoxin removal filter, charged filter, etc.), ultrafiltration, columns (endotoxin adsorption affinity column, gel filtration column, column with ion exchange resin, etc.).
  • the endotoxin level can be confirmed by a known method, and can be measured by, for example, a method using Limulus reagent (LAL), a method using Endospecy (registered trademark) ES-24S set (Seikagaku Corporation), or the like. ..
  • LAL Limulus reagent
  • Endospecy registered trademark
  • ES-24S set Seikagaku Corporation
  • the method for treating endotoxin used is not particularly limited, but as a result, the endotoxin content of alginic acids should be 500 endotoxin units (EU) / g or less when the endotoxin is measured with the Limulus reagent (LAL). Is more preferable, and more preferably 100 EU / g or less, particularly preferably 50 EU / g or less, and particularly preferably 30 EU / g or less.
  • Sodium alginate treated with low endotoxin can be obtained from commercial products such as Sea Matrix (registered trademark) (Mochida Pharmaceutical Co., Ltd.) and PRONOVA TM UP LVG (FMCBioPolymer).
  • alginic Acid Derivatives Provided herein are novel alginic acid derivatives.
  • the alginic acid derivative is a reactive group in the Huisgen reaction or a reactive group complementary to the reactive group via an amide bond and a divalent linker to any one or more carboxyl groups of the alginic acid.
  • the following formula (HA-I) or formula (HB-I): Alginic acid represented by [the definitions of (ALG), -L1- , and Akn in the formula (HA-I) or the formula (HB-I) are the same as the definitions in the first aspect described above, respectively].
  • a plurality of (for example, 1 to 10 or 1 to 5) may be substituted with the selected group.
  • novel alginic acid derivative in the present specification is the formula (HA-I) or the formula (HB-I), and the alginic acid derivative represented by the formula (HA-II) or the formula (HB-II) is, for example, the following formula. It is possible to manufacture by the method of.
  • the weight average molecular weight of the alginic acid derivative represented by the formula (HA-I), the formula (HA-II), the formula (HB-I) or the formula (HB-II) in the present specification is 100,000 Da to 3 million Da. Yes, preferably 300,000 Da to 2.5 million Da, and more preferably 500,000 Da to 2 million Da.
  • the molecular weights of both alginic acid derivatives can be determined by the method described later.
  • the Akn-L1 - NH-group of the formula (HA-I) or the formula (HB-I) does not have to be bonded to all the carboxyl groups of the alginic acid constituent unit, and the formula ( The N3-L2-NH - group of HA-II) or formula (HB- II ) need not be attached to all carboxyl groups of the alginic acid building block.
  • the Akn-L1 - NH-group of the formula (HA-I) or the formula (HB-I) is referred to as a reactive group
  • the N of the formula (HA-II) or the formula (HB-II) is used.
  • the 3 -L2 - NH-group is a complementary reactive group.
  • the Akn of the formula (HA-I) or the formula (HB-I) is referred to as a reactive group
  • the -L1 -NH-group is a complementary reactive group.
  • the introduction rate of the reactive group or the complementary reactive group is 0.1% to 30% or 1% to 30%, preferably 2% to 20%, respectively, more preferably. Is 3% to 10%.
  • the introduction rate of the reactive group or the complementary reactive group is expressed as a percentage of the number of uronic acid monosaccharide units into which each reactive group has been introduced among the uronic acid monosaccharide units which are repeating units of alginic acids. It is the value that was set.
  • Reactive groups or complementary reactions in alginic acid derivatives (formula (HA-I), formula (HA-II), formula (HB-I) or formula (HB-II)) herein, unless otherwise noted.
  • The% used for the introduction rate of the sex group means mol%.
  • the introduction rate of each reactive group or complementary reactive group can be determined by the method described in Examples described later.
  • the cyclic alkyne group (Akn) in the formula (HA-I) or the formula (HB-I) and the azide group in the formula (HA-II) or the formula (HB-II) are triazoled by the Huisgen reaction. It forms a ring, which forms a crosslink.
  • the Huisgen reaction (1,3-dipolar addition cyclization reaction) is a condensation reaction between compounds having a terminal azide group and a terminal alkyne group as shown in the following formula.
  • a disubstituted 1,2,3-triazole ring is obtained in good yield, and it has a feature that no extra by-product is generated. It is considered that a 1,4- or 1,5-disubstituted triazole ring can be formed in the reaction, but a regioselective triazole ring can be obtained by using a copper catalyst.
  • the Huisgen reaction is an azide compound having substituted primary azide, secondary azide, tertiary azide, aromatic azide, etc., and a terminal or cyclic alkyne which is a complementary reactive group of the azide group.
  • a compound having a group can be used.
  • various functional groups for example, ester group, carboxyl group, alkenyl group, hydroxyl group, amino group, etc. should be substituted in the reaction substrate. Is possible.
  • 1,2,3-triazoles are short-term, easily, and efficiently without the use of copper catalysts to produce unwanted by-products and avoid copper-catalyzed cytotoxicity.
  • the cyclic alkyne group (cyclooctyl group) described in the first aspect described above is used as the alkyne group of the Huisgen reaction.
  • Cross-linked alginic acid is mediated by (i) a divalent metal ionic bond, (ii) a chemical bond, or (iii) a divalent metal ionic bond and a chemical bond. There is something. Any cross-linked alginic acid has the property of forming a gel-like to semi-solid, and in some cases, sponge-like morphology.
  • Cross-linked alginic acid via a divalent metal ion bond proceeds at an ultrafast speed and is reversible, whereas cross-linked alginic acid via a chemical bond proceeds slowly under relatively mild conditions. And it is irreversible.
  • the physical properties of the crosslinked alginic acid are adjusted by, for example, changing the concentration of the aqueous solution containing the divalent metal ion to be used (for example, the calcium chloride aqueous solution) or the introduction rate of the reactive group introduced into the alginic acid. Is possible.
  • alginic acid structures can be produced.
  • an ionic cross-linking reaction a specific structure can be instantly formed from an alginic acid solution, and a cross-linking reaction by a chemical bond is used to strengthen the structure of the structure (for example, to obtain long-term stability, etc.). It is possible to do.
  • a crosslinked alginic acid structure via both a divalent metal ionic bond and a chemical bond the divalent metal ion incorporated by the ionic bonding was reversibly released, and only the bridging by the chemical bond remained. It is also possible to create a structure.
  • the crosslinked alginic acid structure using the alginic acid derivative in the preferred embodiment has stability because it contains crosslinks by chemical bonds, and has a longer shape than the crosslinked alginic acid structure having only ion crosslinks using sodium alginate. It can be maintained for a period of time, which is advantageous.
  • the crosslinked alginic acid of a certain aspect can be obtained by mixing the alginic acid derivatives of the above formula (HA-I) and the above formula (HA-II) and carrying out the Huisgen reaction. Further, the crosslinked alginic acid of a certain aspect can be obtained by mixing the alginic acid derivatives of the above formula (HB-I) and the above formula (HB-II) and carrying out a Huisgen reaction.
  • Alginic acid forms a three-dimensional network structure via chemical cross-linking (cross-linking with a triazole ring formed from an alkyne group and an azido group).
  • the preferred alginic acid derivative is one in which the stability of the crosslinked alginic acid after cross-linking is improved.
  • the crosslinked alginic acid has the following formula (HA-III-L) or formula (HB-III-L) between any carboxyl group of the first alginic acid and any carboxyl group of the second alginic acid.
  • formula (HA-III-L) or formula (HB-III-L) -CONH- and -NHCO- at both ends represent amide bonds mediated by any carboxyl group of alginic acid; -L1- , -L 2- and X are the same as the definitions in the first aspect, respectively] to be crosslinked alginic acid amide-bonded.
  • the arginic acid derivative of the formula (HA-I) or the formula (HB-I) and the arginic acid derivative of the formula (HA-II) or the formula (HB-II) in preparing the crosslinked arginic acid is the weight ratio of the derivative of the formula (HA-I) or the formula (HB-I) to the derivative of the formula (HA-II) or the formula (HB-II), for example, 1 to 1.5: 1. , Preferably 1.2 to 1.5: 1, or 1 to 1.2: 1, more preferably 1: 1.
  • the arginic acid derivative of the formula (HA-II) or the formula (HB-II) and the arginic acid derivative of the formula (HA-I) or the formula (HB-I) in preparing the crosslinked arginic acid is the weight ratio of the derivative of the formula (HA-II) or the formula (HB-II) to the derivative of the formula (HA-I) or the formula (HB-I), for example, 1 to 4.0: 1. , Preferably 1.5 to 4.0: 1, or 1.2 to 1.5: 1, or 1 to 1.2: 1, more preferably 1: 1.
  • the arginic acid derivative of the formula (HA-I) or the formula (HB-I) and the arginic acid derivative of the formula (HA-II) or the formula (HB-II) in preparing the crosslinked arginic acid is more preferably the introduction rate (mol%) of the reactive group of the alginic acid derivative of the formula (HA-I) or the formula (HB-I) and the alginic acid derivative of the formula (HA-II) or the formula (HB-II).
  • Ratio for example, 1 to 1.5: 1, preferably 1.2 to 1.5: 1, or 1 to 1.2: 1, more preferably 1: 1.
  • the arginic acid derivative of the formula (HA-II) or the formula (HB-II) and the arginic acid derivative of the formula (HA-I) or the formula (HB-I) in preparing the crosslinked arginic acid is more preferably the introduction rate (mol%) of the reactive group of the alginic acid derivative of the formula (HA-II) or the formula (HB-II) and the alginic acid derivative of the formula (HA-I) or the formula (HB-I).
  • Ratio for example, 1 to 4.0: 1, preferably 1.5 to 4.0: 1, or 1.2 to 1.5: 1, or 1 to 1.2: 1, more preferably. It is 1: 1.
  • the alginic acid derivative of the formula (HA-I) or the formula (HB-I) is converted into the alginic acid derivative of the formula (HA-II) or the formula (HB-II) into the formula (HA-II) or the formula (HA-II). It is also possible to replace the alginic acid derivative of (HB-II) with the derivative of the formula (HA-I) or the formula (HB-I), respectively.
  • Cross-linked alginic acid does not need to have all the carboxyl groups of the constituent units of alginic acid having the above-mentioned formula (HA-III-L) or formula (HB-III-L) cross-linking.
  • the introduction rate (also referred to as the crosslinking rate) of the crosslinking represented by the above formula (HA-III-L) or the above formula (HB-III-L) is, for example, 0.1 to 80%, 0.3 to 0.3 to It ranges from 60%, 0.5 to 30%, or 1.0 to 10%.
  • the concentration of the alginic acid derivative of the formula (HA-I), the formula (HA-II), the formula (HB-I) or the formula (HB-II) in the Huisgen reaction for obtaining the crosslinked alginic acid is usually 1 to 500 mg / mL. Yes, preferably in the range of 5-100 mg / mL.
  • the reaction temperature of the Huisgen reaction is usually an outside temperature of 4 to 60 ° C, preferably an outside temperature of 15 to 40 ° C.
  • the stirring time for forming the crosslinked alginic acid (hydrogel) is, for example, several seconds to 24 hours, several seconds to 12 hours, several seconds to 30 minutes, or several seconds to 10 minutes.
  • the reaction solvent or reaction solution used for the Huisgen reaction is not particularly limited, but is, for example, tap water, pure water (for example, distilled water, ion-exchanged water, RO water, RO-EDI water, etc.), ultrapure water, cells.
  • pure water for example, distilled water, ion-exchanged water, RO water, RO-EDI water, etc.
  • ultrapure water examples thereof include a culture medium, phosphate buffered physiological saline (PBS), physiological saline, HEPES buffer, and the like, and ultrapure water is preferable.
  • the cross-linked alginic acid of some embodiments is a cross-linked alginic acid comprising a chemical cross-linking by a triazole ring formed by the Huisgen reaction as a cross-linking and an ionic cross-linking partially formed by calcium ions.
  • cross-linked alginic acid structure can be obtained by a method including subjecting the alginic acid derivative to a cross-linking reaction.
  • it can be prepared by the following method, but is not limited to these.
  • a mixed solution of an alginic acid derivative of the formula (HA-I) or the formula (HB-I) and an alginic acid derivative of the formula (HA-II) or the formula (HB-II) obtained by mixing the alginic acid derivative is a divalent metal ion.
  • chemical cross-linking cross-linking by a triazole ring formed from an alkin group and an azido group by the Huisgen reaction
  • ionic cross-linking cross-linking partially formed by divalent metal ions
  • a crosslinked alginic acid structure which is a specific structure, can be obtained.
  • a specific structure partially crosslinked can be obtained by dropping a solution containing an alginic acid derivative of the formula (HA-I) or the formula (HB-I) into a solution containing a divalent metal ion.
  • a structure such as a gel obtained above to a solution containing an alginic acid derivative of the above formula (HA-II) or formula (HB-II)
  • further crosslinking is performed on the surface of the structure or the like.
  • Huisgen reaction By carrying out the reaction (Huisgen reaction), a crosslinked alginic acid structure can be obtained.
  • the alginic acid derivative of the formula (HA-I) or the formula (HB-I) is converted into the alginic acid derivative of the formula (HA-II) or the formula (HB-II) into the formula (HA-II) or the formula (HA-II). It is also possible to replace the alginic acid derivative of HB-II) with the alginic acid derivative of the formula (HA-I) or the formula (HB-I), respectively.
  • the divalent metal ion used in the above method is not particularly limited, and examples thereof include calcium ion, magnesium ion, barium ion, strontium ion, zinc ion and the like, and calcium ion is preferable.
  • the solution containing calcium ions used in the above method is not particularly limited, and examples thereof include aqueous solutions such as an aqueous solution of calcium chloride, an aqueous solution of calcium carbonate, and an aqueous solution of calcium gluconate, and an aqueous solution of calcium chloride is preferable.
  • the calcium ion concentration of the solution containing calcium ions used in the above method is not particularly limited, but examples thereof include 1 mM to 1 M, preferably 5 mM to 500 mM, and more preferably 10 mM to 300 mM.
  • the solvent or solution used in the above method is also not particularly limited, but is, for example, tap water, pure water (for example, distilled water, ion-exchanged water, RO water, RO-EDI water, etc.), ultrapure water, cell culture medium. , Phosphoric acid buffered physiological saline (PBS), physiological saline, HEPES buffer and the like, preferably ultrapure water.
  • tap water pure water (for example, distilled water, ion-exchanged water, RO water, RO-EDI water, etc.), ultrapure water, cell culture medium.
  • pure water for example, distilled water, ion-exchanged water, RO water, RO-EDI water, etc.
  • ultrapure water cell culture medium.
  • PBS Phosphoric acid buffered physiological saline
  • HEPES buffer physiological saline
  • ultrapure water preferably ultrapure water.
  • cross-linked alginic acid structures include, for example, fibrous structures, fibers, beads, gels, substantially spherical gels, and the like.
  • the preferred cross-linked alginic acid structure is one with improved stability.
  • the crosslinked alginic acid structure may have an ability to hold the contents inside the crosslinked alginic acid structure (content holding property).
  • the physical characteristics of the alginate gel can be adjusted by the physical characteristics such as hardness, elasticity, repulsive force, tearing force, and stress at break.
  • biocompatibility of alginic acid derivative or cross-linked alginic acid structure has biocompatibility.
  • biocompatibility refers to biocompatibility produced using biomaterials (here, for example, arginic acid derivatives represented by the formulas (HA-I) and (HA-II), and both arginic acid derivatives. It has biocompatibility with the property of not causing a reaction such as an interaction between a cross-linked alginic acid structure) and a living body, a local reaction of a tissue adjacent to the biological material, or a systemic reaction. That is.
  • the biocompatibility of the alginic acid derivative or the crosslinked alginic acid structure will be confirmed in the examples of biocompatibility described later.
  • Stability of the crosslinked alginic acid structure The stability of the crosslinked alginic acid structure can be confirmed by, for example, measuring the gel stability, and the permeability can be confirmed by measuring the gel transmittance.
  • Phosphate buffered saline PBS
  • concentration of alginic acid leaked into the PBS ⁇ g / mL
  • the value obtained by dividing the measured alginic acid concentration by the total alginic acid concentration obtained by decomposing the crosslinked alginic acid structure gel as a percentage is defined as the disintegration rate.
  • the gel stability can be determined by the method described in Examples described later.
  • the gel disintegration rate of the crosslinked alginic acid structure is preferably 0% to 90%, more preferably 0% to 70%, still more preferably 0% to 50%.
  • the stability of the crosslinked alginic acid structure means that the lower the concentration of alginic acid leaked into the aqueous solution, that is, the lower the gel disintegration rate, the higher the stability.
  • a cross-linked alginic acid structure gel containing fluorescein isothiocyanate-dextran is prepared, physiological saline is added to the gel in a container, and the concentration of dextran leaked into the physiological saline is measured.
  • the gel permeability is the value obtained by dividing the measured dextran concentration by the total dextran concentration obtained by decomposing the fluorescein isothiocyanate-dextran-encapsulating cross-linked arginic acid structure gel.
  • the gel transmittance can be determined by the method described in Examples described later.
  • the gel permeability of the crosslinked alginic acid 24 hours after the addition of the physiological saline solution is preferably 0% to 90%, more preferably 0% to 70%, and further preferably 0% to 70% when containing dextran having a molecular weight of 2 million, for example. It is preferably 0% to 50%. Further, when dextran having a molecular weight of 150,000 is included, for example, if the purpose of use of the crosslinked alginic acid structure gel is to release / produce a protein or an antibody, it is preferably 1% to 100%, more preferably 10. % To 100%, more preferably 30% to 100%. If the purpose of use is an immune septum, it is preferably 0% to 90%, more preferably 0% to 70%, and even more preferably 0% to 50%.
  • the permeability of the crosslinked alginic acid structure means that the lower the transmittance, the lower the permeability of the content and the extragel substance, and the higher the transmittance, the higher the permeability of the content and the extragel substance. means.
  • the transmittance of the gel can be adjusted by the molecular weight and concentration of alginic acid used, the type and introduction rate of cross-linking groups to be introduced into alginic acid, the type and concentration of divalent metal ions used for gelation, or a combination thereof. be.
  • a crosslinked alginic acid structure gel containing fluorescein isothiocyanate-dextran as a content can be prepared by the following method.
  • alginic Acid Derivative Synthesis Method The alginic acid derivative represented by the formula (HA-I) or the formula (HA-II) can be produced by referring to PCT / JP2019 / 023478 (filed on June 13, 2019).
  • Alginic Acid derivatives can be used for producing devices for transplantation as described above.
  • alginic acid derivatives can be used in place of traditional alginic acid in a wide range of fields such as food, medicine, cosmetics, textiles and papermaking.
  • Preferred uses of the alginic acid derivative or the crosslinked alginic acid structure are specifically for medical use such as a wound dressing, a postoperative adhesion preventive material, a substrate for sustained release of a drug, a substrate for cell culture, and a substrate for cell transplantation. Materials are mentioned.
  • Examples of the shape of the crosslinked alginic acid structure when used as a medical material include tubular, fibrous, fiber, beads, gel, and substantially spherical gel, and beads, gel, and substantially spherical gel are preferable. It is more preferable to use a substantially spherical gel.
  • a particularly preferred embodiment of the implant device using an alginic acid derivative is excellent in biocompatibility and stability, has low cytotoxicity, has little adhesion or inflammation at the transplant site, and dissolves the gel (with or without a semipermeable membrane). It is possible to maintain the shape for a long period of time, maintain the hypoglycemic effect for a long period of time, and regulate blood glucose.
  • the cure rate in the present invention means that a hydrogel containing insulin-secreting cells or pancreatic islets or a transplantation device containing the hydrogel is transplanted into a diabetic patient or a diabetic model animal, and a predetermined period of time has elapsed after the transplantation. In, it is expressed by the ratio of the number of treated cases to the number of transplanted cases.
  • a hydrogel in which insulin-secreting cells or pancreatic islets are encapsulated or a transplantation device containing the hydrogel is transplanted into a plurality of diabetes model mice obtained by the method of Example 7, and during a predetermined period after transplantation.
  • the case where the blood glucose level is 300 mg / dL or less is defined as a cured mouse, and is represented by the ratio of the cured mouse to the diabetes model mouse.
  • the cure rate is, for example, 20% or more, preferably 35% or more, and more preferably 50% or more two weeks after transplantation. Alternatively, it is 20% or more, preferably 35% or more, more preferably 50% or more one month after transplantation.
  • the oxygen permeability in the present invention is expressed as the ratio of the central oxygen concentration when the surface oxygen concentration of the hydrogel containing insulin-secreting cells or pancreatic islets or the transplantation device containing the hydrogel is 100%. Will be done.
  • the central portion means a substantially central portion in any of the vertical direction, the horizontal direction, and the thickness direction.
  • the oxygen permeability may be calculated by measuring the hydrogel or the device, or may be calculated by calculation. When calculating by measurement, for example, a needle type oxygen meter (OXY-1 ST trace) manufactured by PreSens can be used, and the calculation can be performed from the measured values of the surface oxygen concentration and the central oxygen concentration.
  • the oxygen permeability does not have to be 0%, for example, 1 to 100%, preferably 10 to 100%, more preferably 25 to 100%, still more preferably 50 to 100%, and particularly preferably 75 to 100%. be. Further, it is preferably 25 to 50%, more preferably 50 to 75%, and particularly preferably 75 to 100%.
  • the substance permeability in the present invention means a hydrogel in which insulin-secreting cells or pancreatic islets are encapsulated, or a transplant device containing the hydrogel in which a predetermined substance is encapsulated and left in a stirred solution for a predetermined time. It means the material permeability from the hydrogel or the device for transplantation.
  • the substance include glucose, insulin and the like.
  • insulin permeability or glucose permeability when 500 mg of human insulin or 250 mg of glucose is encapsulated in a hydrogel or a device for transplantation and stirred in 40 mL of 0.01 Tween 20-containing physiological saline at room temperature for 24 hours can be mentioned.
  • the insulin permeability is 50% or more, preferably 70% or more, and more preferably 80% or more.
  • the glucose permeability is 50% or more, preferably 70% or more, and more preferably 80% or more.
  • the hydrogel of the present invention has little or no breakage, decomposition or dissolution even when shaken under predetermined conditions.
  • a shaking incubator for example, medium-sized constant temperature shaking.
  • a tofu incubator Tetec Co., Ltd., Bio-Shaker (registered trademark) BR-43FL / MR
  • the mixture was shaken under the conditions of a reciprocating shaking method with an amplitude of 25 mm and a shaking speed of 180 rpm while maintaining the temperature at 37 ° C. Occasionally, there is little or no breakage, decomposition or dissolution.
  • Low decomposition or dissolution of hydrogel means that, for example, when alginic acid in the hydrogel is 100% and the proportion of alginic acid eluted in the solution when shaken under the above conditions is the disintegration rate, the disintegration rate is 40. % Or less, preferably 20% or less, more preferably 10% or less.
  • the disintegration rate is 30% or less, preferably 20% or less, more preferably 10% or less.
  • the disintegration rate is 30% or less, preferably 20% or less, more preferably 10% or less.
  • the cells in the hydrogel do not fall off or are less likely to fall off even when shaken under predetermined conditions.
  • the number of cells shedding from the hydrogel is small is, for example, when the number of cells in the hydrogel at the start of the test is 100% and the percentage of cells shedding from the hydrogel when shaken under the above conditions is defined as the shedding rate.
  • the dropout rate is 30% or less, preferably 20% or less, and more preferably 10% or less. In particular, it refers to a case where the dropout rate when shaken for 24 hours under the above conditions is 30% or less, preferably 20% or less, and more preferably 10% or less.
  • JEOL JNM-ECX400 FT-NMR (JEOL Ltd.) was used for the measurement of the nuclear magnetic resonance spectrum (NMR).
  • Liquid chromatography-mass spectrometry spectrum (LC-Mass) was measured by the following method.
  • [UPLC] Using a Waters AQUITY UPLC system and a BEH C18 column (2.1 mm x 50 mm, 1.7 ⁇ m) (Waters), acetonitrile: 0.05% trifluoroacetic acid aqueous solution 5:95 (0 minutes) to 95: 5 Mobile phase and gradient conditions from (1.0 min) to 95: 5 (1.6 min) to 5:95 (2.0 min) were used.
  • the pattern of the NMR signal is s for singlet, d for doublet, t for triplet, q for quartet, m for multiplet, br for broad, J for coupling constant, Hz for hertz, CDCl 3 .
  • Means deuterated chloroform, DMSO - D 6 means deuterated dimethyl sulfoxide, and D2 O means heavy water.
  • signals that cannot be confirmed because they are broadband, such as hydroxyl group (OH), amino group (NH 2 ), and carboxyl group (COOH) protons, are not described in the data.
  • M means molecular weight
  • RT means retention time
  • [M + H] + and [M + Na] + mean molecular ion peaks.
  • the "room temperature” in the examples usually indicates a temperature of about 0 ° C to about 35 ° C.
  • the reactive substituent introduction rate (mol%) in the examples was introduced with respect to the number of moles of monosaccharides (gluronic acid and mannuronic acid) constituting alginic acid calculated from 1 H - NMR (D2O). It shall indicate the ratio of the number of moles of the reactive substituent.
  • sodium alginate showing the physical property values shown in Table 10 was used as the sodium alginate before the reactive group or the complementary reactive group was introduced.
  • Table 12 shows the physical property values (specifically, the physical properties of the reactive group-introduced alginic acid derivatives (Example 1a, Example 2a) obtained in (Example 1) to (Example 4-2). , Reactive group introduction rate (mol%), molecular weight, and weight average molecular weight (10,000 Da)).
  • Example 1 Synthesis of dibenzocyclooctyne-amino group-introduced alginic acid (Example 1a, Example 1b, Example 1c, Example 1d, and Example 1e):
  • Example 1a Synthesis of dibenzocyclooctyne-amino group-introduced alginic acid (EX1- (I) -A-2a): 4- (4,6-dimethoxy-1,3,5-triazine-2-yl)-in an aqueous solution (43.6 mL) of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd .: A-2) prepared to 1% by weight. 4-Methylmorpholinium chloride (DMT-MM) (111.65 mg), 1 molar concentration-sodium alginate (403.5 ⁇ L) was added.
  • DMT-MM 4-Methylmorpholinium chloride
  • the introduction rate of the reactive substituent was 6.9 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent was 5.0 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent was 2.3 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent was 2.4 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent was 2.2 mol% (NMR integration ratio).
  • Example 2 Synthesis of 4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group-introduced alginic acid (Example 2a, Example 2b, Example 2c, Example 2d, and Example 2e):
  • Example 2 Lithium hydroxide monohydrate (0.25 g) was added to a methanol (4.4 mL) solution of the compound EX2-IM-1 (0.44 g) obtained in ⁇ Step 1>. , 60 ° C. for 3 hours and 30 minutes. 1N-hydrochloric acid (5 mL) was added to the reaction mixture, and the mixture was extracted 3 times with ethyl acetate (10 mL). The organic layer was washed successively with water (5 mL) and saturated brine (5 mL), dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the introduction rate of the reactive substituent (4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group) was 6.1 mol% (NMR integration ratio).
  • the white solid was dissolved in 80 mL of water, freeze-dried, and then dried at 40 ° C. for 23 hours to obtain the title compound EX3- (II) -A-2b (1.19 g) as a white amorphous substance.
  • the white solid was dissolved in 80 mL of water, freeze-dried, and then dried at 40 ° C. for 22 hours to obtain the title compound EX2- (II) -A-2c (1.15 g) as a white amorphous substance.
  • the introduction rate of the reactive substituent (4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group) was 2.3 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent (4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group) was 2.3 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent (4- (2-aminoethoxy) -N- (3-azidopropyl) benzamide group) was 2.4 mol% (NMR integration ratio).
  • Example 3 To a 1,4-dioxane solution (3.5 mL) of the compound EX3-IM-1 (0.5 g) obtained in ⁇ Step 1> under water-cooled stirring, 4N-hydrogen chloride. / 1,4-dioxane (3.5 mL) was added, and the mixture was stirred at room temperature for 3 hours. After adding diisopropyl ether (40 mL) to the reaction solution, the precipitate was filtered to obtain the title compound EX3-IM-2 (0.36 g) as a white solid.
  • Example 3 With respect to the mixture of the compound EX3-IM-3 (0.18 g) and methanol (1.8 mL) obtained in ⁇ Step 3>, potassium carbonate (0.126) was stirred under ice-cooling. g) An aqueous solution (0.9 mL) was added dropwise, and the mixture was stirred at room temperature for 17 hours and 30 minutes. Methanol was distilled off under reduced pressure, and the mixture was extracted 3 times with ethyl acetate (5 mL). The organic layer was washed with saturated brine (5 mL) and then dried over anhydrous sodium sulfate. After filtering the organic layer, the solvent was distilled off under reduced pressure to obtain the title crude compound EX3-IM-4 (0.13 g) as a pale yellow oil.
  • the introduction rate of the reactive substituent (N- (4- (aminomethyl) benzyl) -2- (cyclooct-2-in-1-yloxy) acetamide group) was 3.7 mol% (NMR integration ratio).
  • the introduction rate of the reactive substituent (N- (4- (aminomethyl) benzyl) -2- (cyclooct-2-in-1-yloxy) acetamide group) was 2.0 mol% (NMR integration ratio).
  • tert-butyl (2-aminoethyl) carbamate [CAS: 57260-73-8] (825 mg) and pyridine (1.04 mL) It was added to a methylene chloride (7.0 mL) solution under ice-water cooling, and stirred at room temperature for 1 hour.
  • the reaction solution is diluted with tert-butyl methyl ether (30 mL), water (10 mL), saturated layered water (5 mL), 0.5N-citric acid (twice with 5 mL), water (5 mL), saturated saline. It was washed sequentially with water (5 mL).
  • Example 4 The compound (EX4-IM-1,500 mg) obtained in ⁇ Step 1> was suspended in 1,4-dioxane (1.5 mL). 4 Predetermined-hydrogen chloride / dioxane solution (3.5 mL) was added under ice-water cooling, and the mixture was stirred at room temperature for 2.5 hours. Diisopropyl ether (10.5 mL) was added to the reaction mixture, and the mixture was stirred at room temperature for 50 minutes. The solid was filtered, washed with diisopropyl ether, and dried under reduced pressure to give the title compound EX4-IM-2 (365 mg) as a light beige solid.
  • the introduction rate of the reactive group was 5.3 mol% (NMR integration ratio).
  • Example 4-2 In the compound (EX4-2-IM-1,670 mg) obtained in ⁇ Step 1>, 4 default-hydrogen chloride / 1,4-dioxane (4.7 mL) under ice-water cooling. ) was added, and the mixture was stirred at room temperature for 2 hours. Diisopropyl ether (14 mL) was added to the reaction mixture, and the mixture was stirred for 30 minutes. The obtained solid was collected by filtration, washed with diisopropyl ether, and dried under reduced pressure to give the title compound EX4-2-IM-2 (604 mg) as a light beige solid.
  • the introduction rate of the reactive group was 2.72 mol% (NMR integration ratio).
  • Reactive group or complementary reactive group introduction rate means the number of reactive groups or complementary reactive groups introduced per uronic acid monosaccharide unit, which is a repeating unit of alginic acid, expressed as a percentage. do.
  • the reactive group or complementary reactive group introduction rate (mol%) was calculated by the integral ratio of 1 H-NMR.
  • the amount of alginic acid required to calculate the introduction rate is measured by the carbazole sulfate method using a calibration curve, and the amount of the reactive group or complementary reactive group is measured by the absorbance measurement method using a calibration curve. You can also do it.
  • the molecular weight of alginic acid into which a reactive group or a complementary reactive group has been introduced is bluedextran (molecular weight 2 million Da, SIGMA), tyroglobulin (molecular weight 66,900 Da, GE Healthcare Science) ferritin (molecular weight). 440,000 Da, GE Healthcare Science) Aldolase (molecular weight 158,000 Da, GE Healthcare Science), Conalbumin (molecular weight 75,000 Da, GE Healthcare Science), Obalbumin (molecular weight 4.4) 10,000 Da, GE Healthcare Science), Ribonuclease A (Molecular Weight 137,000 Da, GE Healthcare Science) and Aprotinin (Molecular Weight 6500 Da, GE Healthcare Science) are used as standard products and are reactive groups or complementary.
  • the molecular weight (Mi) at the elution time i of the previously obtained chromatogram was calculated. Then, the absorbance at the elution time i was read and used as Hi. From these data, the weight average molecular weight (Mw) was calculated from the following formula.
  • Alginic acid of Example 1 (a, b, c): 1.5 wt% physiological saline solution (solutions of Examples 5-1a, 5-1b, and Example 5-1c) Alginic acid of Example 2 (a, b, c): 3.0 wt% physiological saline solution (solutions of Example 5-2a, Example 5-2b, Example 5-2c) Alginic acid of Example 3 (a): 1.5 wt% physiological saline solution (solution of Example 5-3a) Alginic acid of Example 4: 3.0 wt% physiological saline solution (solution of Example 5-4)
  • a 1.0 wt% physiological saline aqueous solution is prepared and sterilized by filtration using MILLEX GV 0.22 ⁇ m (Millipore, 0.22 ⁇ m, Cat.
  • Example 1 Alginic acid of Example 1 (d): 1.0 wt% physiological saline solution (solution of Example 5-1d) Alginic acid of Example 2 (d): 1.0 wt% physiological saline solution (solution of Example 5-2d) Alginic acid of Example 3 (b): 1.0 wt% physiological saline solution (solution of Example 5-3b) Alginic acid of Example 4-2 (a): 1.0 wt% physiological saline solution (solution of Example 5-5a) Alginic acid of Example 1 (e): 0.5 wt% physiological saline solution (solution of Example 5-1e) Alginic acid of Example 2 (e): 0.5 wt% physiological saline solution (solution of Example 5-2e) Alginic acid of Example 3 (c): 0.5 wt% physiological saline solution (solution of Example 5-3b) Alginic acid of Example 4-2 (b): 0.5 wt% physiological saline solution (solution
  • the solution of Example 5-1 (a, b, c) and the solution of Example 5-2 (a, b, c) are combined, and the solution of Example 5-3a and the solution of Example 5 are combined.
  • a chemically crosslinked alginic acid gel is obtained by combining alginic acid prepared in Example 1 (d) or Example 3 (b) with alginic acid prepared in Example 2 (d) or Example 4-2 (a).
  • Example 5-1d and the solution of Example 5-2d are combined, the solution of Example 5-1d and the solution of Example 5-5a are combined, and the solution of Example 5-3b is combined.
  • the solution and the solution of Example 5-2d are combined, and the solution of Example 5-3b and the solution of Example 5-5a are combined.
  • a chemically crosslinked alginic acid gel is obtained by combining alginic acid prepared in Example 1 (e) or Example 3 (c) with alginic acid prepared in Example 2 (e) or Example 4-2 (b).
  • the solution of Example 5-1e and the solution of Example 5-2e are combined, the solution of Example 5-1e and the solution of Example 5-5b are combined, and the solution of Example 5-3c is combined.
  • the solution and the solution of Example 5-2e are combined, and the solution of Example 5-3c and the solution of Example 5-5b are combined.
  • the flat plate gel is, for example, an alginate gel having a short diameter of 12 to 15 mm, a long diameter of 12 to 18 mm, and a thickness of about 0.5 to 5 mm, and is circular, quadrangular, or hexagonal. It is also possible to take an octagon or the like, and it is not particularly limited.
  • Example 6-1 Production of flat plate-type alginate gel for transplantation
  • a flat plate-type alginate gel was produced using a 55 mmol / L calcium chloride aqueous solution according to the "production of a flat plate-type alginate gel" described in Example 5.
  • the alginate solution was prepared to 1% by weight, an aqueous solution of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd .: B-2), an aqueous solution of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd .: A-2), a solution of Example 5-1b and Examples.
  • the following flat plate type alginate gel was prepared using.
  • the prepared alginate gel on a flat plate was cultured overnight in D-MEM medium. The next day, it was replaced with a serum-free D-MEM medium, further replaced with physiological saline, and allowed to stand for 1 hour or longer to obtain an alginate gel for transplantation into animals.
  • Example 6-1a An aqueous solution of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd .: B-2) prepared to 1% by weight was used to obtain an alginate gel on a flat plate having a short diameter (12 mm), a long diameter (15 mm) and a thickness (5 mm). A photograph of this flat plate-type alginate gel is shown as FIG. 1 (a).
  • Example 6-1b Short diameter (12 mm) -long diameter (12 mm) -thickness (4 mm) flat plate using a solution obtained by mixing the solution of Example 5-1b and the solution of Example 5-2b at a ratio of 2: 1 (volume ratio). An upper alginate gel was obtained. The chemical cross-linking group was adjusted to a concentration of 1%. A photograph of this flat plate-type alginate gel is shown as FIG. 2 (a).
  • Example 6-1c Short diameter (12 mm) -long diameter (12 mm) -thickness (4 mm) flat plate using a solution obtained by mixing the solution of Example 5-1b and the solution of Example 5-2b at a ratio of 2: 1 (volume ratio). An upper alginate gel was obtained. The chemical cross-linking group was adjusted to a concentration of 2%. A photograph of this flat plate-type alginate gel is shown as FIG. 3 (a).
  • Example 6-1d Using an aqueous solution of sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd .: A-2) prepared to 1% by weight, a short diameter (about 12 mm) -long diameter (about 12 mm) -thickness (about 4 mm) alginate gel on a flat plate was prepared. Obtained.
  • Example 6-1e Short diameter (about 12 mm) -long diameter (about 12 mm) -thickness (about 4 mm) using a solution in which the solution of Example 5-1d and the solution of Example 5-2d were mixed at a ratio of 1: 1 (volume ratio). ) On a flat plate, an alginate gel was obtained. The chemical cross-linking group was adjusted to a concentration of 1%.
  • Example 6-1f Short diameter (about 12 mm) -long diameter (about 12 mm) -thickness (about 4 mm) using a solution in which the solution of Example 5-1d and the solution of Example 5-5a were mixed at a ratio of 1: 1 (volume ratio). ) On a flat plate, an alginate gel was obtained. The chemical cross-linking group was adjusted to a concentration of 1%.
  • Example 6-1g Short diameter (about 12 mm) -long diameter (about 12 mm) -thickness (about 4 mm) using a solution in which the solution of Example 5-3b and the solution of Example 5-2d were mixed at a ratio of 1: 1 (volume ratio). ) On a flat plate, an alginate gel was obtained. The chemical cross-linking group was adjusted to a concentration of 1%.
  • Example 6-1h Short diameter (about 12 mm) -long diameter (about 12 mm) -thickness (about 4 mm) using a solution in which the solution of Example 5-3b and the solution of Example 5-5a were mixed at a ratio of 1: 1 (volume ratio). ) On a flat plate, an alginate gel was obtained. The chemical cross-linking group was adjusted to a concentration of 1%.
  • Example 6-2 Transplantation test of flat plate alginate gel into animals
  • Each alginate gel prepared in Examples 6-1a to 6-1c was transplanted into the abdominal cavity of healthy mouse C57BL / 6NCr. After 5 weeks, the abdomen was opened and the gel was removed, and the state of the gel was confirmed. Intra-abdominal adhesions and inflammation were also confirmed.
  • each alginate gel prepared in Examples 6-1d to h was transplanted into the abdominal cavity of healthy mouse C57BL / 6NCr. After 1, 2, or 4 weeks, the abdomen was opened and the gel was removed, and the state of the gel was confirmed. Intra-abdominal adhesions and inflammation were also confirmed.
  • Alginate gel of Example 6-1a The extracted alginate gel did not maintain its original shape, was disjointed, and the amount of remaining gel that could be confirmed was small. A photograph of that state is shown as FIG. 1 (b). Alginate gel of Example 6-1b: The removed alginate gel did not change the size of the gel. A photograph of that state is shown as FIG. 2 (b). Alginate gel of Example 6-1c: The extracted alginate gel was cracked, but the original shape was almost maintained, and the size of the gel did not change. A photograph of that state is shown as FIG. 3 (b).
  • Example 6-1d alginate gel The alginate gel removed after 1 week did not maintain its original shape, was disjointed, and the amount of remaining gel that could be confirmed was small.
  • Alginate gel of Example 6-1f There was no change in gel size in any of the alginate gels removed after 1 week, 2 weeks, and 4 weeks.
  • Example 6-1 g of alginate gel There was no change in gel size in any of the alginate gels removed after 1 week and 2 weeks. The alginate gel removed after 4 weeks was cracked, but the original shape was almost maintained, and the gel size did not change.
  • Alginate gel of Example 6-1h There was no change in gel size in any of the alginate gels removed after 1 week and 2 weeks. The alginate gel removed after 4 weeks was cracked, but the original shape was almost maintained, and the gel size did not change.
  • the alginate gels of Examples 6-1a, 6-1b, and 6-1c were transplanted, and when the abdomen was opened and confirmed 5 weeks later, there was no adhesion or inflammation between the intra-abdominal organs. There were no adhesions or inflammation in the omentum or intestinal membrane in which the gel was buried. There were no adhesions or inflammation in the liver to which the disjointed gel had adhered.
  • Example 6-1d The alginate gels of Example 6-1d, Example 6-1f, Example 6-1g, and Example 6-1h were transplanted, and the abdomen was opened and confirmed after 1 week, 2 weeks, and 4 weeks. There were no adhesions or inflammation between the intra-abdominal organs. There were no adhesions or inflammation in the omentum or intestinal membrane in which the gel was buried. There were no adhesions or inflammation in the liver to which the disjointed gel had adhered.
  • Example 6-3 Cell survival confirmation test of flat plate-type alginate gel
  • MIN6 cells (5 ⁇ 10 6 cells), which are cell lines of pancreatic islet Langerhans ⁇ cells, were used in Examples 6-1a, 6-1b, 6-1c, 6-1d, and 6-. 1e, Example 6-1f, Example 6-1g, Example 6-1h
  • the arginate gel was prepared, and the arginate gel was prepared and used in D-MEM medium for 3 to 4 weeks. After culturing, the survival of MIN6 cells was confirmed under a microscope.
  • Example 6-1a Alginate gels of Example 6-1a, Example 6-1b, Example 6-1c, Example 6-1d, Example 6-1e, Example 6-1f, Example 6-1g, Example 6-1h Cell proliferation was good in the medium, and it was observed that the cells were sufficiently alive under the microscope.
  • Example 1b with an introduction rate of 5.0 mol% and Example 2b with an introduction rate of 4.9 mol% 1.5% by weight of the physiological saline solution of Example 5-1b and 3.0 were used, respectively. Adjust the aqueous physiological saline solution of Example 5-2b in% by weight.
  • a 2% by weight alginic acid solution having a crosslinking group introduction rate of 5 mol% can be prepared.
  • the solutions of Examples 5-1b and 5-2b are diluted 2-fold and 4-fold to prepare solutions, which are mixed at a ratio of 2: 1 (volume ratio) to prepare a solution.
  • the mixed solution of the 2-fold diluted solution is used as the solution of Example 7-1, and the mixed solution of the 4-fold diluted solution is used as the solution of Example 7-2. Further, in the same manner, the solution of Example 5-1c and the solution of Example 5-2c were mixed at a ratio of 2: 1 (volume ratio), and the mixed solution of the 4-fold diluted solution was used in Example 7-3. Make it a solution.
  • Example 7-1a Transplant device prepared using 100 ⁇ L of the solution of Example 7-1
  • Example 7-1b Transplant device prepared using 200 ⁇ L of the solution of Example 7-1
  • Example 7-1b Transplant device prepared using 100 ⁇ L of the solution of Example 7-2
  • Example 7-2b Transplant device prepared using 200 ⁇ L of the solution of Example 7-2
  • Example 7-3a Example 7-3 Transplant device prepared using 100 ⁇ L of solution
  • Example 7-3b Transplant device prepared using 200 ⁇ L of solution of Example 7-3
  • the pancreatic island pellet dispensed into one device was suspended in the alginic acid solution (B1) of Example 5-1b. Later, the solutions of Examples 7-1a, 7-1b, 7-1b, and 7.2b were mixed with the alginic acid solution (C1) of Example 5-2b to suspend the porcine pancreatic islands. And said.
  • the alginic acid solution (B1) of Example 5-1b and the alginic acid solution (C1) of Example 5-2b were prepared with physiological saline according to the pellet amount (10 to 30 ⁇ L) of the pig pancreatic islet amount of 10000IEQ per device.
  • the concentration was adjusted. Further, in order to prepare a 100 ⁇ L or 200 ⁇ L porcine pancreatic island-containing 0.5% by weight to 1.0% by weight alginic acid solution, the pancreatic island pellet dispensed into the alginic acid solution (B1) of Example 5-1c for one device was added. After suspension, it was mixed with the alginic acid solution (C1) of Example 5-2c to prepare the solutions of Examples 7-3a and 7-3b in which the porcine pancreatic island was suspended.
  • the alginic acid solution (B1) of Example 5-1c and the alginic acid solution (C1) of Example 5-2c were prepared with physiological saline according to the pellet amount (10 to 30 ⁇ L) of the pig pancreatic islet amount of 10000IEQ per device. The concentration was adjusted.
  • the alginic acid solution containing porcine pancreatic islands prepared as Examples 7-1a, 7-2a, 7-2b and 7-3b was rapidly subjected to a semipermeable membrane (Spectrum dialysis tube "Spectra / Pore CE (Spectra / Pore CE)”. Enclosed in (fractional molecular weight 100,000) ”) (after heat-sealing one end of the semipermeable membrane, put an alginic acid solution and enclose it with a titanium clip), and soak it in a 55 mmol / LCaCl 2 solution for 10 to 15 minutes. The alginic acid solution inside was gelled.
  • the transplanting device was washed with physiological saline for 3 minutes and cultured overnight in the transplanting medium (M199-nicotinamide-FBS + P / S). Then, it was soaked in a serum-free medium for transplantation (M199 + P / S) for 30 minutes, and then soaked in physiological saline for pre-transplantation + P / S for 30 minutes and washed to obtain a device for transplantation into mice.
  • a photograph of the prepared transplant device is shown in FIG. 4-1.
  • Administration method / transplantation method Anesthetized by intraperitoneal administration of 0.25 to 0.3 mL of a three-kind mixed anesthetic (domitol / midazolam / betorfar), abdominal shaving and disinfection under anesthesia, a midline incision of about 2 cm in the abdomen, and a device for transplantation after washing. It was simply placed in the abdominal cavity and transplanted without fixation. After transplantation, the abdomen was closed and 0.25 to 0.3 mL of a medetomidine antagonist (antisedan) was subcutaneously injected to awaken the patient. The surgery was performed by keeping the mice warm on a heat pad. No administration of immunosuppressants. No administration of fluid replacement, antibiotics, anti-inflammatory agents, etc.
  • a three-kind mixed anesthetic domitol / midazolam / betorfar
  • abdominal shaving and disinfection under anesthesia a midline incision of about 2 cm in the abdomen
  • a device for transplantation after washing It was simply
  • Blood glucose / weight measurement method Blood glucose levels were measured before and every few days after transplantation at regular times during the day. Blood glucose was measured with a drop of blood from a scalpel cut in the tail using the Glutest Neo Alpha and Glutest Neo sensors. Body weight was measured with an electronic balance immediately before blood glucose measurement. The blood glucose level of the device-transplanted mice was less than 300 mg / dL as an individual whose diabetes was cured. The blood glucose level fluctuations up to day 75 after transplantation when the transplantation device of Example 7-2a was used are shown in FIG. 5-1 and the body weight fluctuations are shown in FIG. 6-1. In addition, changes in blood glucose level up to day 305 after transplantation are shown in Fig. 5-2, and changes in body weight are shown in Fig. 6-2.
  • transplantation device was taken out and transplanted to another diabetes model mouse (here, the device was transplanted to the diabetes model mouse, the transplanted device was taken out after a predetermined period of time, and the removed device was taken out to another.
  • Transplanting into a diabetic model mouse is called "relay transplantation"
  • blood glucose level fluctuations up to day 26 after relay transplantation are shown in Fig. 5-3
  • body weight fluctuations are shown in Fig. 6-3.
  • # 1 and # 2 mean numbers for identifying the transplanted mouse solids, respectively.
  • There was no abnormality in body weight fluctuation and the blood glucose level was maintained at a normal level for 75 days.
  • body weight fluctuation for 305 days after transplantation and 26 days after further relay transplantation and the blood glucose level was maintained normally.
  • Example 7-2b As for the blood glucose level fluctuation when the transplant device of Example 7-2b was used, there was no abnormality in the body weight fluctuation as in Example 7-2a, and the blood glucose level was maintained at a normal value for 75 days.
  • the blood glucose level fluctuations up to day 305 after transplantation when the transplantation device of Example 7-2b was used are shown in FIG. 7-1, and the body weight fluctuations are shown in FIG. 8-1.
  • the transplantation device was taken out on day 305 after transplantation and transplanted to another diabetes model mouse, and the fluctuation of blood glucose level and the fluctuation of body weight up to day 26 after relay transplantation are shown in FIG. 7-2 and the change in body weight in FIG. 8-2.
  • For 305 days after transplantation and 26 days after further relay transplantation there were no abnormalities in body weight fluctuations, and blood glucose levels were maintained normally.
  • Example 7-3b As for the blood glucose level fluctuation when the transplant device of Example 7-3b was used, there was no abnormality in the body weight fluctuation as in Example 7-2a, and the blood glucose level was maintained at a normal value for 75 days.
  • the blood glucose level fluctuations up to day 305 after transplantation when the transplantation device of Example 7-3b was used are shown in FIG. 9-1, and the body weight fluctuations are shown in FIG. 10-1.
  • the transplantation device was taken out and transplanted to another diabetes model mouse, and the blood glucose level fluctuations up to day 26 after the relay transplantation were shown in FIG. 9-2 and the body weight fluctuations were shown in FIG. 10-2.
  • # 2 and # 3 the device was removed in the middle and the test was completed.
  • 305 days after transplantation and 26 days after further relay transplantation there were no abnormalities in body weight fluctuations, and blood glucose levels were maintained normally.
  • transplantation device In the preparation of the transplantation device, a transplantation device in which pancreatic islets were encapsulated in a semipermeable membrane was prepared without using an alginate derivative. When transplanted into mice by the same method as in the above-mentioned [Evaluation of transplantation device (transplantation test)], no hypoglycemic effect was observed in diabetic mice.
  • tissue reactivity was evaluated as follows. A few weeks after the transplant, or after the blood glucose level rises at any time, the device transplanted mouse is anesthetized with a three-kind mixed anesthetic, the abdomen is disinfected under anesthesia, the abdomen is incised about 4 cm in the middle, and the transplanted device is inserted between the intraperitoneal organs. looked for. If a part of the device is seen between the organs, slowly remove it with tweezers and check whether the device can be removed by itself. Observe the surface condition of the removed device. ⁇ Observation items> 1. 1. Examine the surface of the device for angiogenesis.
  • angiogenesis observe whether it is at the level of capillaries or even thick blood vessels. 2. 2. Next, observe whether they are adhered to or connected to organs, peritoneum, omentum, etc. Investigate whether the organ can be exfoliated slowly or sharply. 3. 3. If it is directly adhered to an organ, check which part of the device (whole surface, part, side, device crease, sealing part, etc.) is adhered. 4. Check if there is inflammation on the organ side. * After removing the device, the abdomen is closed. Subcutaneous injection of antagonist is awakened. Surgery is performed by keeping the mouse warm on a heat pad.
  • Example 7-1a When the transplantation device of Example 7-1a was used, the device was removed 10 weeks after the transplantation, and the tissue reactivity was observed. As a result, (1) no angiogenesis was formed on the surface of the device, and (2) the device was found. It did not adhere to the organs, peritoneum, omentum, etc., (3) the organs could be bluntly detached, did not adhere directly to the organs, and (4) no inflammation was observed on the organ side. ..
  • pancreatic islet cells The appearance of the viable pancreatic islet cells in the excised device is stained as follows, that is, (a) staining of pancreatic islet cells with DISZONE, (b) staining of pancreatic islet cells with DISZONE, and (c) fluorescent staining of live cells with FDA. , (D) After fluorescent staining of dead cells with PI, pancreatic islet cells dispersed in alginate gel without staining were observed under a microscope. As a result, it was confirmed that the islet cells were sufficiently alive in the device.
  • the excised device was opened and the shape of the alginate gel in the device was confirmed. As a result, it was clarified that the shape of the alginate gel in the transplant device placed in the living body for a long period of time was maintained.
  • Example 8 [Preparation of transplant device] In the same manner as in Example 7, the solution of Example 5-1c and the solution of Example 5-2c were mixed at a ratio of 2: 1 (volume ratio), and a mixed solution of a 4-fold diluted solution was used in Example 8. Make it a solution.
  • Example 8 The transplantation devices prepared with the solutions of Example 8 (100 ⁇ L, 75 ⁇ L, 50 ⁇ L) are as follows. ⁇ Porting device>
  • Example 8-1 Transplant device prepared using 100 ⁇ L of the solution of Example 8
  • Example 8-2 Transplant device prepared using 75 ⁇ L of the solution of Example 8
  • Example 8-3 Example 8 Transplant device prepared with 50 ⁇ L of solution
  • the pancreatic island pellet dispensed into one device was suspended in the alginic acid solution (B1) of Example 5-1c, and then the example. It was mixed with the alginic acid solution (C1) of 5-2c to obtain the solution of Example 8 in which the porcine pancreatic island was suspended.
  • the alginic acid solution (B1) of Example 5-1b and the alginic acid solution (C1) of Example 5-2b were prepared with physiological saline according to the pellet amount (10 to 30 ⁇ L) of the pig pancreatic islet amount of 10000IEQ per device. The concentration was adjusted.
  • the alginic acid solution containing porcine pancreatic island prepared as Example 8 was rapidly encapsulated in a semipermeable membrane (dialysis tube "Spectra / Pore CE (molecular weight cut-off 100,000)" manufactured by Spectrum Co., Ltd.) (one end of the semipermeable membrane was heat-sealed). After that, an alginic acid solution was added, and the other end was heat-sealed and sealed) and immersed in a 55 mmol / LCaCl 2 solution for 10 to 15 minutes to gel the alginic acid solution in the device.
  • a semipermeable membrane dialysis tube "Spectra / Pore CE (molecular weight cut-off 100,000)" manufactured by Spectrum Co., Ltd.
  • the transplanting device was washed with physiological saline for 3 minutes and cultured overnight in the transplanting medium (M199-nicotinamide-FBS + P / S). Then, it was soaked in a serum-free medium for transplantation (M199 + P / S) for 30 minutes, and then soaked in physiological saline for pre-transplantation + P / S for 30 minutes and washed to obtain a device for transplantation into mice.
  • a photograph of the prepared transplant device is shown in FIG. 4-2.
  • Example 8-1 length about 10 mm ⁇ width about 20 mm ⁇ thickness about 0.5 mm (500 ⁇ m)
  • Example 8-2 length about 10 mm ⁇ width about 20 mm ⁇ thickness about 0.375 mm (375 ⁇ m)
  • Example 8-3 length about 10 mm ⁇ width about 20 mm ⁇ thickness about 0.25 mm (250 ⁇ m)
  • the blood glucose level fluctuations up to day 178 after transplantation when the transplantation device of Example 8-3 was used are shown in FIG. 11-4, and the body weight fluctuations are shown in FIG. 12-4.
  • the device for transplantation was taken out on day 178 after transplantation, and the fluctuation of blood glucose level up to day 40 after relay transplantation was shown in FIG. 11-5, and the fluctuation of body weight was shown in FIG. 12-5.
  • the indications represented by # and numbers mean the numbers that identify the transplanted mouse individuals, respectively.
  • There was no abnormality in body weight fluctuation and the blood glucose level was maintained at a normal level for 178 days.
  • the blood glucose level was maintained normally.
  • GsIs was performed on the removed device, and it was confirmed that the device had insulin secretory capacity.
  • Example 9 Evaluation of transplantation device by intraperitoneal transplantation into diabetes model mice 3
  • the following devices were prepared according to the method of Example 7.
  • Example 9-1 Transplant device prepared using 200 ⁇ L of a sodium alginate (manufactured by Mochida Pharmaceutical Co., Ltd .: B-2) aqueous solution prepared in an amount of 1% by weight
  • Example 9-2 The same method as in Example 7-1.
  • Example 9-3 Device for transplantation prepared using 200 ⁇ L of the solution prepared in Example 9-3: Device for transplantation prepared using 200 ⁇ L of the solution prepared in the same manner as in Example 7-2
  • Example 9-4 Example 7-2 Transplant device prepared using 100 ⁇ L of solution prepared in the same manner as in Example 9-5: Transplant device prepared using 200 ⁇ L of solution prepared in the same manner as in Example 7-3
  • Example 9-6 Implementation Transplant device prepared using 100 ⁇ L of solution prepared in the same manner as in Example 7-3
  • Example 9-7 Transplant device prepared using 50 ⁇ L of solution prepared in the same manner as in Example 7-3.
  • Example 9-1 Length about 10 mm ⁇ width about 20 mm ⁇ thickness about 1 mm (1000 ⁇ m)
  • Example 9-4 Length about 10 mm x Width about 20 mm x Thickness about 0.5 mm (500 ⁇ m)
  • Example 9-7 length about 10 mm ⁇ width about 20 mm ⁇ thickness about 0.25 mm (250 ⁇ m)
  • the transplantation test was performed according to Example 7.
  • the devices of Examples 9-1 to 9-7 were transplanted into a plurality of diabetes model mice, respectively.
  • Mice whose blood glucose level was 300 mg / dL or less for 178 days after transplantation (however, it is allowed to exceed 300 mg / dL up to 3 times during the period) are defined as cured mice, and are cured for the number of transplanted diabetes model mice. When the number of mice was calculated as the cure rate, the following results were obtained.
  • the cure rate of the diabetic model mouse was higher in the transplantation device containing the hydrogel produced by the alginic acid derivative of the present invention than in the transplantation device containing the hydrogel produced by the natural alginic acid. Further, it was confirmed that the thinner the thickness of the hydrogel, the higher the healing rate, and in this example, the healing rate is about 40% when the thickness is 500 ⁇ m or more, while the healing rate is improved to about 62% when the thickness is 250 ⁇ m. Was done.
  • the cure rate of Example 9-2 is 0.0%, it is caused by the small number of N, and as the number of N increases, the cure rate reaches the level described in Example 9-3. Is expected to be.
  • MIN6 cells 2.5 ⁇ 10 6 cells
  • pancreatic islet Langerhans ⁇ cells which are cell lines of pancreatic islet Langerhans ⁇ cells
  • a device was produced by a method according to Example 7.
  • a solution of 2% A-2 alginic acid diluted 4-fold was used as the solution of Example 10-1.
  • a solution obtained by mixing the solution of Example 5-1e and the solution of Example 5-2e at a ratio of 1: 1 (volume ratio) was used as the solution of Example 10-2.
  • a solution obtained by mixing the solution of Example 5-1e and the solution of Example 5-5b at a ratio of 1: 1 (volume ratio) was used as the solution of Example 10-3.
  • Example 10-5 a solution obtained by mixing the solution of Example 5-3c and the solution of Example 5-2e at a ratio of 1: 1 (volume ratio) was used as the solution of Example 10-4. Further, a solution obtained by mixing the solution of Example 5-3c and the solution of Example 5-5b at a ratio of 1: 1 (volume ratio) was used as the solution of Example 10-5. All of Examples 10-2 to 10-5 have a concentration of 0.5% as a chemical cross-linking group.
  • the transplantation devices prepared with the solutions of Examples 10-1 to 10-5 are as follows. ⁇ Porting device>
  • Example 10-1 Transplant device prepared using 50 ⁇ L of the solution of Example 10-1
  • Example 10-2 Transplant device prepared using 50 ⁇ L of the solution of Example 10-2
  • Example 10-3 Transplant device prepared using 50 ⁇ L of the solution of Example 10-3
  • Example 10-4 Transplant device prepared using 50 ⁇ L of the solution of Example 10-4
  • Example 10-5 Example 10-5 Transplant device prepared with 50 ⁇ L of solution
  • FIG. 14-4 The blood glucose level fluctuations up to day 17 after transplantation when the transplantation device of Example 10-5 was used are shown in FIG. 13-5, and the body weight fluctuations are shown in FIG. 14-5.
  • the indications represented by # and numbers mean the numbers that identify the transplanted mouse individuals, respectively. There was no abnormality in body weight fluctuation, and the blood glucose level was maintained at a normal level for 12 to 17 days.
  • tissue reactivity was evaluated according to Example 7.
  • the transplantation device of Examples 10-1 to 5 When the transplantation device of Examples 10-1 to 5 was used, the device was removed 2 weeks after the transplantation, and the tissue reactivity was observed. As a result, (1) no angiogenesis was formed on the surface of the device, and (2) The device is not adhered to the organ, peritoneum, omentum, etc., (3) the organ can be bluntly detached, is not directly adhered to the organ, and (4) inflammation is observed on the organ side. I didn't.
  • Example 11-1 For a hydrogel having a length of 10 mm and a width of 20 mm, the oxygen permeability of Example 11-1 is 1 mm, Example 11-2 is 0.5 mm, and Example 11-3 is 0.25 mm under the following conditions.
  • a simulation was performed. In the simulation, the oxygen concentration on the surface of the hydrogel is uniform and always constant, the specific respiration rate of the cells is always constant, the volume of the cells is ignored, and the oxygen is consumed uniformly in the hydrogel. It was assumed that oxygen diffusion would occur evenly from the entire surface of the gel to the center.
  • FIGS. 15-1 represent hydrogels
  • FIGS. 15-2 to 15-4 show oxygen permeability in the cross section indicated by the black arrow.
  • the legend is shown in FIG. 15-2, and the displayed contents are the same in FIGS. 15-3 to 15-4.
  • FIG. 15-2 shows a hydrogel having a thickness of 1 mm according to Example 11-1, and the oxygen permeability of the surface was 100 to 75%, while the oxygen permeability of the central portion was 25% or less. ..
  • FIG. 15-3 shows Example 11-2
  • the oxygen permeability in the central portion is improved to 50 to 25%
  • FIG. 15-4 showing Example 11-3 the oxygen permeability is improved to 50 to 25%.
  • the thickness By setting the thickness to 0.25 mm, the oxygen permeability in the central portion was 75 to 50%, which was more than half of the oxygen concentration on the surface.
  • Example 12 Evaluation of substance permeability from transplantation device [Preparation of transplantation device] Using Example 1e with an introduction rate of 2.2 mol% and Example 2e with an introduction rate of 2.4 mol%, an aqueous solution of 2% by weight of Example 12-1e and 2% by weight of Example 12 were used, respectively. An aqueous solution of -2e was prepared. A physiological saline solution was used to prepare the aqueous solution. By mixing the solution of Example 12-1e and the solution of Example 12-2e at a ratio of 1: 1 (volume ratio), a 2% by weight alginic acid solution can be prepared.
  • the edges were heat-sealed and encapsulated) and soaked in 55 mmol / LCaCl2 solution for 10-15 minutes to gel the alginic acid solution in the device.
  • the final concentration of alginic acid was 0.5%.
  • the transplantation device prepared with such a solution was used as a hydrogel of Example 12-1 (containing insulin) and Example 12-2 (containing glucose).
  • Hydrogel size length 10 mm x width 20 mm x thickness approx. 0.25 mm
  • Example 12-1 or Example 12-2 was stirred in 40 mL of a 0.01% Tween 20-containing physiological saline solution at room temperature for 24 hours, and the insulin concentration or glucose concentration in the external solution was measured to obtain a hydrogel.
  • the human insulin permeability or glucose permeability was determined when the enclosed human insulin or glucose was diffused into a physiological saline solution as 100%.
  • the insulin concentration in the external solution up to 24 hours after the start of the test when the transplant device of Example 12 was used is shown in FIG. 16-1, and the glucose concentration is shown in FIG. 16-2. It was confirmed that both human insulin and glucose were rapidly permeated, and 100% was permeated by stirring for 24 hours, confirming that the implantable device of the present invention was excellent in permeation of human insulin and glucose.
  • Example 13 Evaluation of hydrogel disintegration [Preparation of transplantation device] First, the following physiological saline solutions of Examples 13-1 to 13-5 were prepared.
  • Example 13-1 After preparing a solution of Example 13-1 using 50 ⁇ L, it is rapidly encapsulated in a semipermeable membrane (Spectrum's dialysis tube “Spectra / Pore CE (molecular weight cut off: 100,000)”). After heat-sealing one end of the semipermeable membrane, add an alginic acid solution, heat-seal the other side to enclose it), and soak it in a 55 mmol / LCaCl 2 solution for 10 to 15 minutes to immerse the alginic acid solution in the device. Gelled.
  • a semipermeable membrane Spectrum's dialysis tube “Spectra / Pore CE (molecular weight cut off: 100,000). After heat-sealing one end of the semipermeable membrane, add an alginic acid solution, heat-seal the other side to enclose it), and soak it in a 55 mmol / LCaCl 2 solution for 10 to 15 minutes to immerse the alginic acid solution
  • Example 13-2 A transplant device prepared in the same manner as in Example 13-1 after preparing using 200 ⁇ L of the solution of Example 13-2.
  • 13-3a Transplant device prepared in the same manner as in Example 13-1 after preparing using 50 ⁇ L of the solution of Example 13-3
  • Example 13-3b Using 100 ⁇ L of the solution of Example 13-3.
  • Example 13-3c Prepared in the same manner as in Example 13-1 after preparing using 200 ⁇ L of the solution of Example 13-3.
  • Example 13-4 A device for transplantation prepared in the same manner as in Example 13-1 after preparing using 200 ⁇ L of the solution of Example 13-4
  • Example 13-5a Example 13-5.
  • Example 13-5b After preparing the solution of Example 13-5 using 100 ⁇ L
  • Example 13-1 Transplant device prepared in the same manner as in Example 13-5c: A transplant device prepared in the same manner as in Example 13-1 after preparing using 200 ⁇ L of the solution of Example 13-5.
  • the device for transplantation was recovered and treated with lyase to dissolve the alginic acid gel, and then the concentration of alginic acid in the residual gel was quantified.
  • the alginic acid content in the device from the alginic acid concentration in the external liquid at the end of the test and the alginic acid concentration in the residual gel, and calculate from the alginic acid concentration confirmed from the external liquid after the start of each test when this is set to 100%.
  • the content of alginic acid leaked from the device was calculated as the disintegration rate.
  • FIG. 17 shows the disintegration rate up to 96 hours after the start of the test when the transplantation device of Example 13 was used.
  • Table 15 shows the disintegration rates 24 hours and 96 hours after the start of the test.
  • the alginic acid in the hydrogel was rapidly dissolved and the hydrogel was disintegrated. It was confirmed that the device for transplantation has excellent stability because almost no alginic acid elution was observed and the hydrogel did not disintegrate.
  • Example 14 Model test of cell shedding from alginate gel
  • the prepared transplant devices are as follows. ⁇ Porting device> Example 14-1: Prepared by adding 5 ⁇ L of a solution of polystyrene beads (106-125 ⁇ m, Polyscience, cat No. 19824) as a substitute for pancreatic islet cells to 45 ⁇ L of the solution of Example 13-1, and then rapidly half. Enclosed in a translucent membrane (Spectrum dialysis tube "Spectra / Pore CE (fractional molecular weight 100,000)”) (After heat-sealing one end of the semi-transparent membrane, add an alginic acid solution and heat-seal the other side as well.
  • Spectrum dialysis tube “Spectra / Pore CE (fractional molecular weight 100,000)
  • Example 14-2 Prepared by adding 5 ⁇ L of polystyrene beads instead of pancreatic islet cells to 45 ⁇ L of the solution of Example 13-3a, and then Example 14-. Transplant device made in the same way as 1.
  • ⁇ Test method Add three transplanting devices of any of Examples 14-1 to 2 to 12 mL of a 37 ° C. physiological saline solution in a 15 mL conical tube, and add a medium-sized constant temperature shaking incubator (Tietech Co., Ltd., Bio-Shaker (registered trademark)). Using BR-43FL (MR), the mixture was shaken under the conditions of a reciprocating shaking method with an amplitude of 25 mm and a shaking speed of 180 rpm while maintaining the temperature at 37 ° C. Twenty-four hours after the start of the test, the external liquid was collected, and the polystyrene beads that had fallen into the external liquid were observed under a microscope.
  • a medium-sized constant temperature shaking incubator Tetech Co., Ltd., Bio-Shaker (registered trademark)
  • FIG. 18-1 shows photographs of the external fluid observed 24 hours after the start of the test when the transplantation device of Example 14-1 was used, and 24 hours after the start of the test when the transplantation device of Example 14-2 was used.
  • the later photographs of the external liquid observation are shown in FIG. 18-2, respectively.
  • the transplantation device using the natural alginic acid of Example 14-1 a large number of beads were observed in the external solution, and it was confirmed that most of the microbeads were shed 24 hours after the start of the test.
  • the microbeads were hardly shed (the shedding rate is considered to be 10% or less), and the encapsulated cells were considered not to be shed for a long period of time and were stable. It was confirmed that it was excellent in sex.
  • the transplantation device of the preferred embodiment exhibits at least one or more of the following effects.
  • the gel is less dissolved and the shape is maintained for a long period of time.
  • the alginate gel in the semipermeable membrane can maintain its shape without dissolving, and can maintain the survival and function of pancreatic islets, and can be used for a long period of time.
  • It can be exchanged, can be immunoisolated, has less adhesion, inflammation, etc., and is a highly safe medical material.
  • the hydrogel is a thin device having a thickness of less than 500 ⁇ m
  • the healing rate of the animal transplanted with the device is higher than that of the device having a thickness of 500 ⁇ m or more.
  • the ratio of the oxygen concentration in the central portion to the surface of the device is higher than in the case of a thin device having a thickness of 500 ⁇ m or more.
  • the hydrogel does not disintegrate or is difficult to disintegrate.
  • the islets contained in the hydrogel are less likely to fall off from the gel.
  • More preferred embodiments of the transplant device have excellent transplant performance and functionality, are novel in terms of materials, and can be transplanted into diabetic patients (particularly type I diabetes and insulin-depleted type II diabetes) to provide long-term blood glucose. It is possible to maintain the descent effect and regulate blood sugar. In addition, recovery is possible when the function of insulin-secreting cells or islets in the hydrogel is reduced. Alternatively, regular replacement or additional transplantation is possible. Further, as the insulin-secreting cells or islets enclosed in the hydrogel of the transplantation device, insulin-secreting cells differentiated from stem cells (iPS or the like) or human pancreatic islets can also be used. Therefore, a more preferred embodiment of the implantable device is useful.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Diabetes (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Physiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

ここでは、インスリン分泌細胞又は膵島が封入されたハイドロゲルを含む移植用デバイスであって、前記ハイドロゲルがアルギン酸誘導体を化学架橋によりゲル化したものである、移植用デバイスが提供される。これにより、新規な移植用デバイスが提供される。

Description

化学架橋アルギン酸を用いた移植用デバイス
 本発明は、細胞などを生体に移植するためのデバイスに関する。より具体的には、化学架橋アルギン酸を用いた移植用デバイス、及びその製造方法に関する。
 I型糖尿病の治療法としては、従来のインスリン注射や膵臓移植の他、国内外で膵島移植も実施されてきているものの、特に国内ではドナー不足等の問題もあり、未だ少数例に限られている。ブタ膵島を用いた異種移植は、このドナー不足を解消する有効な技術にはなり得るが、同種移植も異種移植の場合も、免疫による拒絶反応は避けられず、長期に亘る免疫抑制剤の服用が必須となり、それによる合併症の危険性や残存する移植膵島の悪影響の可能性も報告されている(非特許文献1:Organ Biology,VOL24,No.1,7-12頁,2017)。
 これを解決する技術として、レシピエントの免疫細胞等からは隔離可能で、栄養分やインスリン等は透過可能な高分子ゲルや半透膜等で膵島を被覆(カプセル化)し、体内に移植するバイオ人工膵臓(bioartificial pancreas(BAP)、バイオ人工膵島ともいう)の技術が以前より検討されてきている(特許文献1:特開昭55-157502号公報、特許文献2:特開昭60-258121号公報、特許文献3:国際公開第95/28480号パンフレット、特許文献4:国際公開第92/19195号パンフレット、特許文献5:特開2017-196150号公報)。
 バイオ人工膵島の種類については、主に(1)個々の膵島を高分子ゲル等で被覆した「ミクロカプセル型」、(2)多数の膵島を高分子ゲルや半透膜等で被覆した「マクロカプセル型」、(3)半透膜で作製された免疫隔離デバイスや中空糸モジュール等に膵島を封入し,デバイス中に血液を灌流させる「血液灌流型」に分類される(非特許文献1)。
 ミクロカプセル型は,免疫細胞からの隔離が可能で栄養分やインスリン等は透過可能な高分子ゲルを用いて個々の膵島をカプセル化し,通常の膵島移植と同様に体内(主として腹腔内)に移植する技術である。レシピエントの免疫細胞から隔離できる上、比較的隔離膜厚が薄いために拡散による透過時間が短く、栄養分の透過や細胞の応答が早くなるというメリットがあるが、膵島の機能が低下した際に回収することは困難である。
 血液灌流型は,膵島を半透膜で隔離した流路に血液を灌流させる技術で,人工透析やバイオ人工肝臓等の技術の蓄積を応用しており、多数の基礎研究が行われてきたが、装置サイズが大きくなることや血栓形成のリスクが大きいことが課題であり、長期使用時に血栓を作って詰まり易いという欠点があり、実用化には至っていない。
 マクロカプセル型は,ミクロカプセル型の欠点、即ち,膵島の機能低下時の摘出を可能にする目的で改良された技術である。しかしながら、マクロカプセル型の異種膵島を使った膵島移植における研究では、優れた成績を示すものはまだ報告されてなく、ドナー不足、免疫抑制剤の使用、膵島の長期生着・機能維持等の膵島移植における問題点を克服する、異種膵島を用いたバイオ人工膵島は未だ見出されていない。
 クリック反応を用いたアルギン酸ヒドロゲルカプセルの合成とそれらの安定性、水膨潤および拡散のイオン架橋アルギン酸塩カプセルとの比較に関する報告がある(非特許文献2:JOURNAL OF BIOMEDICAL MATERIALS RESEARCH,PartB/VOL103B,ISSUE 5,P1120-1132(2015))。当該文献には、クリック反応で形成されるアルギン酸カプセルはイオン架橋(C2+)架橋より安定であることが開示されている。
特開昭55-157502号公報 特開昭60-258121号公報 国際公開第95/28480号パンフレット 国際公開第92/19195パンフレット 特開2017-196150号公報
Organ Biology,VOL24,No.1,7-12頁,2017 JOURNAL OF BIOMEDICAL MATERIALS RESEARCH,PartB/VOL103B,ISSUE 5,P1120-1132(2015)
 上記のような状況において、実用可能な新たな移植用デバイスなどが求められていた。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、以下の(1)~(10)のことを見出し、これらの知見に基づいて、本発明を完成するに至った。
(1)ここで使用される新規なアルギン酸誘導体(例えば、式(HA-I)及び式(HA-II)のアルギン酸誘導体)は、例えば、化学架橋形成でハイドロゲル化するものであり、当該化学架橋するアルギン酸誘導体を用いて平板型に調製したアルギン酸ゲルが、生体内(健常マウスの腹腔内)に移植したところ、5週間後でも平板型ゲルのサイズに大きな変化がなく、当該ゲルが溶解せずに形状を維持し、生体内安定性に優れること。
(2)また、当該マウスの腹腔内の癒着や炎症が見られないこと。
(3)平板型ゲル内にMin6細胞を包埋させ3~4週間培養したところ、Min6クラスターの生存が確認でき、増殖が良好で、細胞毒性はないこと。
(4)ブタ膵島を包埋した化学架橋アルギン酸ゲルを半透膜で被覆した移植用デバイスを糖尿病モデルマウスに移植したところ、75日間に及ぶ血糖値抑制効果が示されたこと。
(5)上記(4)において、移植後10週経過してから当該移植用デバイスを摘出したところ、癒着、血管新生、及び炎症などの障害は認められなかったこと。更に、移植用デバイス中の膵島についてジチゾン染色によりその生存を確認したころ、十分生存していることが確認されたこと。また、移植後10週間後摘出した移植用デバイスを開き、中のアルギン酸ゲルを確認したところ、その形状状態が維持されていたこと。
(6)デバイス内外への物質透過性に優れること。
(7)ハイドロゲルの厚みが500μm未満の薄型のデバイスである場合に、500μm以上の場合と比べ、デバイスを移植した動物の治癒率が高いこと。
(8)ハイドロゲルの厚みが500μm未満の薄型のデバイスである場合に、500μm以上の場合と比べ、デバイスの表面に対する中心部の酸素濃度の割合が高いこと。
(9)ハイドロゲルを振とうした場合において、ハイドロゲルが崩壊しない又はしにくいこと。
(10)ハイドロゲルを振とうした場合において、ハイドロゲル中に含まれる膵島のゲルからの脱落が少ないこと。
 ここで使用される新規なアルギン酸誘導体(例えば、式(HA-I)及び式(HA-II)のアルギン酸誘導体)は、例えば、化学架橋形成に使用することができるものであり、即ち、化学架橋形成に用いることができる反応性基又は当該反応性基の相補的な反応性基が導入されたものである。
 前記化学架橋形成は、例えば化学架橋形成に用いることが出来る反応性基が導入されたアルギン酸誘導体と当該反応性基の相補的な反応性基が導入されたアルギン酸誘導体との間で生じてもよい。反応性基と当該反応性基の相補的な反応性基はアルギン酸の1分子中に双方導入されていてもよく、別々に導入されていてもよい。また、前記化学架橋形成は、アルギン酸誘導体の分子内で行われてもよく、分子間で行われてもよく、反応性基又は当該反応性基の相補的な反応性基が導入された他の分子と行われてもよい。
 前記化学架橋形成は、例えば、Huisgen反応(1,3-双極子付加環化反応)による架橋反応にて行われ、例えば、式(HA-I)及び式(HA-II)のアルギン酸誘導体間で行われても良く、又は、例えば、式(HA-I)のアルギン酸誘導体とアジド基を有する他の分子間で行われても良く、又は、式(HA-II)のアルギン酸誘導体とアルキン基を有する他の分子間で行われても良い。
 また、前記化学架橋形成は、例えば、Huisgen反応(1,3-双極子付加環化反応)による架橋反応にて行われ、例えば、式(HB-I)及び式(HB-II)のアルギン酸誘導体間で行われても良く、又は、例えば、式(HB-I)のアルギン酸誘導体とアジド基を有する他の分子間で行われても良く、又は、式(HB-II)のアルギン酸誘導体とアルキン基を有する他の分子間で行われても良い。
 ここでは、化学架橋によりゲル化されるアルギン酸誘導体を用いて調製された、細胞などを生体に移植するためのデバイス、より具体的には、例えば、インスリン分泌細胞又は膵島などが包埋された化学架橋アルギン酸ゲルと、必要に応じて当該ゲルを被覆する半透膜とを含む移植用デバイス、その製造方法などが提供される。化学架橋によりゲル化されるアルギン酸誘導体は、例えば、アルギン酸の任意の1つ以上のカルボキシル基に、アミド結合及び2価のリンカーを介して環状アルキン基又はアジド基が導入された式(HA-I)又は式(HA-II)のアルギン酸誘導体であり、式(HA-I)及び式(HA-II)のアルギン酸誘導体を用いてHuisgen反応(1,3-双極子付加環化反応)を行うことで新規な架橋アルギン酸が得られる。
 あるいは、化学架橋によりゲル化されるアルギン酸誘導体は、例えば、アルギン酸の任意の1つ以上のカルボキシル基に、アミド結合及び2価のリンカーを介して環状アルキン基又はアジド基が導入された式(HB-I)又は式(HB-II)のアルギン酸誘導体であり、式(HB-I)及び式(HB-II)のアルギン酸誘導体を用いてHuisgen反応(1,3-双極子付加環化反応)を行うことで新規な架橋アルギン酸が得られる。
 例示的な態様は、以下の〔1-1〕~〔3-4〕の通りであり得る。
 なお、本明細書において、式(HA-I)及び式(HB-I)に係るアルギン酸誘導体は、いずれも共通して式(I)の構造を有する。したがって、式(HA-I)及び式(HB-I)に係るアルギン酸誘導体の一般式は、ともに式(I)で表される。
 また、本明細書において、式(HA-II)及び式(HB-II)に係るアルギン酸誘導体は、いずれも共通して式(II)の構造を有する。したがって、式(HA-II)及び式(HB-II)に係るアルギン酸誘導体の一般式は、ともに式(II)で表される。
 また、本明細書において、式(HA-III-L)及び式(HB-III-L)に係る架橋アルギン酸は、いずれも共通して式(III-L)の構造を有する。したがって、式(HA-III-L)及び式(HB-III-L)に係る架橋アルギン酸の一般式は、ともに式(III-L)で表される。
 本発明の第1の態様は、以下の〔1-1〕~〔1-34〕の通りであり得る。
〔1-1〕インスリン分泌細胞又は膵島が封入されたハイドロゲルを含む移植用デバイスであって、前記ハイドロゲルがアルギン酸誘導体を化学架橋によりゲル化したものである、移植用デバイス。
〔1-2〕前記ハイドロゲルが、架橋としてアルギン酸誘導体間で形成される化学架橋を含む、前記〔1-1〕に記載の移植用デバイス。
〔1-3〕前記ハイドロゲルが、架橋としてHuisgen反応により形成されるトリアゾール環による化学架橋を含む、前記〔1-1〕又は〔1-2〕に記載の移植用デバイス。
〔1-4〕前記化学架橋が、アルギン酸の任意の1つ以上のカルボキシル基に導入された環状アルキン基と、アルギン酸の任意の1つ以上のカルボキシル基に導入されたアジド基より生じる、前記〔1-1〕~〔1-3〕のいずれか1項に記載の移植用デバイス。
〔1-5〕前記化学架橋が、第1のアルギン酸の任意の1つ以上のカルボキシル基に導入された環状アルキン基と、第2のアルギン酸の任意の1つ以上のカルボキシル基に導入されたアジド基より生じる、前記〔1-4〕に記載の移植用デバイス。
〔1-6〕前記化学架橋が、以下の(A)及び(B)に記載のアルギン酸誘導体の組み合わせによる化学架橋である、前記〔1-1〕~〔1-5〕のいずれか1項に記載の移植用デバイス
 (A):
 アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、環状アルキン基(Akn)が導入された、下記式(HA-I):
Figure JPOXMLDOC01-appb-C000020
[式(HA-I)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記部分構造式[各式中、両端の破線外側は含まない]:
Figure JPOXMLDOC01-appb-C000021
の群から選択される2価のリンカーを表わし;Aknは、下記部分構造式[各式中、破線右側は含まない]:
Figure JPOXMLDOC01-appb-C000022
の群から選択される環状アルキン基を表わし、星印はキラル中心を表す]で表わされるアルギン酸誘導体;
 (B):
 アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、アジド基が導入された、下記式(HA-II):
Figure JPOXMLDOC01-appb-C000023
[式(HA-II)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記部分構造式[各式中、両端の破線外側は含まない]:
Figure JPOXMLDOC01-appb-C000024
の群から選択される2価のリンカーを表わす]で表わされるアルギン酸誘導体。
〔1-7〕前記化学架橋したアルギン酸誘導体が、第1のアルギン酸の任意のカルボキシル基と、第2のアルギン酸の任意のカルボキシル基が、下記式(HA-III-L):
Figure JPOXMLDOC01-appb-C000025
[式(HA-III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;
-L-は、前記態様〔1-6〕中の定義と同じであり;
-L-は、前記態様〔1-6〕中の定義と同じであり;
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000026
の群から選択される環状基であり(各式中、両端の破線外側は含まない)、星印はキラル中心を表す]を介して結合した架橋アルギン酸である、前記〔1-6〕に記載の移植用デバイス。
〔1-8〕前記化学架橋が、以下の(A)及び(B)に記載のアルギン酸誘導体の組み合わせによる化学架橋である、前記〔1-1〕~〔1-5〕のいずれか1項に記載の移植用デバイス
(A):アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、環状アルキン基(Akn)が導入された、下記式(HB-I):
Figure JPOXMLDOC01-appb-C000027
[式(HB-I)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記表
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
に記載された部分構造式[各式中、両端の破線外側は含まない]からなる群より選択されるリンカーを表わし;
Aknは、下記表:
Figure JPOXMLDOC01-appb-T000030
に記載された部分構造式[各式中、破線右側は含まない]からなる群より選択される環状アルキン基を表わす]で表わされるアルギン酸誘導体;
(B):アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(- L-)を介して、アジド基が導入された、下記式(HB-II):
Figure JPOXMLDOC01-appb-C000031
[式(HB-II)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記表:
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
に記載された部分構造式[各式中、両端の破線外側は含まない]からなる群より選択されるリンカーを表す]で表されるアルギン酸誘導体
(但し、式(HB-I)で表わされるアルギン酸誘導体において-L-が(L1-1)、(L1-2a)、(L1-2b)、(L1-11)又は(L1-12)の群から選択されるいずれか1つのリンカーである誘導体と、式(HB-II)で表わされるアルギン酸誘導体において―L―が(L2-10)のリンカーである誘導体との組み合わせによる化学架橋は除く)。
〔1-9〕前記化学架橋したアルギン酸誘導体が、第1のアルギン酸の任意のカルボキシル基と、第2のアルギン酸の任意のカルボキシル基が、下記式(HB-III-L):
Figure JPOXMLDOC01-appb-C000034
[式(HB-III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;
-L-は、前記〔1-8〕中の定義と同じであり;
-L-は、前記〔1-8〕中の定義と同じであり; Xは、下記表:
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
に記載された部分構造式の群から選択される環状基である(各式中、両端の破線外側は含まない)]を介して結合した架橋アルギン酸である(但し、式(HB-I)で表わされるアルギン酸誘導体において-L-が(L1-1)、(L1-2a)、(L1-2b)、(L1-11)又は(L1-12)の群から選択されるいずれか1つのリンカーである誘導体と、式(HB-II)で表わされるアルギン酸誘導体において―L―が(L2-10)のリンカーである誘導体との組み合わせによる架橋アルギン酸は除く)、前記〔1-8〕に記載の移植用デバイス。
〔1-10〕式(HA-I)のアルギン酸誘導体が、下記式(EX-1-(I)-A-2)であり、
Figure JPOXMLDOC01-appb-C000037
 式(HA-II)のアルギン酸誘導体が、下記式(EX-2-(II)-A-2)である、
Figure JPOXMLDOC01-appb-C000038
前記〔1-6〕又は〔1-7〕に記載の移植用デバイス。
〔1-11〕 式(HA-I)のアルギン酸誘導体が、下記式(EX-3-(I)-A-2)であり、
Figure JPOXMLDOC01-appb-C000039
 式(HA-II)のアルギン酸誘導体が、下記式(EX-4-(II)-A-2)である、
Figure JPOXMLDOC01-appb-C000040
前記〔1-6〕又は〔1-7〕に記載の移植用デバイス。
〔1-12〕 式(HA-I)のアルギン酸誘導体が、下記式(EX-1-(I)-A-2)であり、
Figure JPOXMLDOC01-appb-C000041
 式(HA-II)のアルギン酸誘導体が、下記式(EX-4-2-(II)-A-2)である、
Figure JPOXMLDOC01-appb-C000042
前記〔1-6〕又は〔1-7〕に記載の移植用デバイス。
〔1-13〕 式(HA-I)のアルギン酸誘導体が、下記式(EX-3-(I)-A-2)であり、
Figure JPOXMLDOC01-appb-C000043
 式(HA-II)のアルギン酸誘導体が、下記式(EX-2-(II)-A-2)である、
Figure JPOXMLDOC01-appb-C000044
前記〔1-6〕又は〔1-7〕に記載の移植用デバイス。
〔1-14〕 式(HA-I)のアルギン酸誘導体が、下記式(EX-3-(I)-A-2)であり、
Figure JPOXMLDOC01-appb-C000045
 式(HA-II)のアルギン酸誘導体が、下記式(EX-4-2-(II)-A-2)である、
Figure JPOXMLDOC01-appb-C000046
前記〔1-6〕又は〔1-7〕に記載の移植用デバイス。
〔1-15〕前記膵島が、ヒト膵島またはブタ膵島である、前記〔1-1〕~〔1-14〕のいずれか1項に記載の移植用デバイス。
〔1-16〕前記膵島が、ブタの成体の膵島である、前記〔1-15〕に記載の移植用デバイス。
〔1-17〕前記膵島が、胎生期、新生児期、または周産期のブタ膵島である、前記〔1-15〕に記載の移植用デバイス。
〔1-18〕前記インスリン分泌細胞又は膵島が、ドナーであるヒトから得られた膵島、膵島細胞、またはβ細胞であるか、ドナーであるブタから得られた膵島、膵島細胞、又はβ細胞であるか、ヒト由来の幹細胞から分化させて得られた膵島、膵島細胞、又はβ細胞である、前記〔1-1〕~〔1-14〕のいずれか1項に記載の移植用デバイス。
〔1-19〕前記インスリン分泌細胞又は膵島が、ドナーであるヒトから得られた膵島、膵島細胞、またはβ細胞である、前記〔1-18〕に記載の移植用デバイス。
〔1-20〕前記ハイドロゲルが、更に半透膜で被覆された、前記〔1-1〕~〔1-19〕のいずれか1項に記載の移植用デバイス。
〔1-21〕前記半透膜が、セルロース誘導体より形成された透析膜である、前記〔1-20〕に記載の移植用デバイス。
〔1-22〕前記セルロース誘導体が、酢酸セルロースである、前記〔1-21〕に記載の移植用デバイス。
〔1-23〕前記移植用デバイスの移植部位が、皮下又は腹腔内である、前記〔1-1〕~〔1-22〕のいずれか1項に記載の移植用デバイス。
〔1-24〕前記移植用デバイスの厚さが、0.1~5mmである、前記〔1-1〕~〔1-23〕のいずれか1項に記載の移植用デバイス。
〔1-25〕前記移植用デバイスの厚さが、100μm以上1000μm未満である、前記〔1-1〕~〔1-23〕のいずれか1項に記載の移植用デバイス。
〔1-26〕前記ハイドロゲルの厚さが、0.1~5mmである、前記〔1-1〕~〔1-23〕のいずれか1項に記載の移植用デバイス。
〔1-27〕前記ハイドロゲルの厚さが、100μm以上500μm未満である、前記〔1-1〕~〔1-23〕のいずれか1項に記載の移植用デバイス。
〔1-28〕前記インスリン分泌細胞又は膵島を含むハイドロゲルを作製した後、半透膜で被覆した、前記〔1-1〕~〔1-27〕のいずれか1項に記載の移植用デバイス。
〔1-29〕化学架橋によってハイドロゲル化するアルギン酸誘導体の溶液に、インスリン分泌細胞又は膵島を懸濁し、当該インスリン分泌細胞又は膵島を懸濁した溶液を半透膜中に封入した後、当該半透膜を2価金属イオンを含む溶液と接触させることで、半透膜中のアルギン酸誘導体をゲル化して得られる、前記〔1-1〕~〔1-28〕のいずれか1項に記載の移植用デバイス。
〔1-30〕前記2価金属イオンを含む溶液が、カルシウムイオンを含む溶液である、前記〔1-29〕に記載の移植用デバイス。
〔1-31〕縦10mm及び横20mmとした前記ハイドロゲル3枚を37℃、12mLの生理食塩水溶液中で、振幅25mm、振とう速度180rpmの往復振とうの条件で37℃を維持したまま96時間振とう攪拌したときに、ハイドロゲルが崩壊しない、〔1-1〕~〔1-30〕のいずれか1項に記載の移植用デバイス。
〔1-32〕縦10mm及び横20mmとした前記ハイドロゲル3枚を37℃、12mLの生理食塩水溶液中で、振幅25mm、振とう速度180rpmの往復振とうの条件で37℃を維持したまま96時間振とう撹拌したときに、ハイドロゲルの崩壊率が30%以下である、〔1-1〕~〔1-31〕のいずれか1項に記載の移植用デバイス。
〔1-33〕縦10mm及び横20mmとした前記ハイドロゲル3枚を37℃、12mLの生理食塩水溶液中で、振幅25mm、振とう速度180rpmの往復振とうの条件で37℃を維持したまま24時間振とう攪拌したときに、ハイドロゲルから細胞がほとんど脱落しない、〔1-1〕~〔1-32〕のいずれか1項に記載の移植用デバイス。
〔1-34〕縦10mm及び横20mmとした前記ハイドロゲル3枚を37℃、12mLの生理食塩水溶液中で、振幅25mm、振とう速度180rpmの往復振とうの条件で37℃を維持したまま24時間振とう攪拌したときに、ハイドロゲルに封入した細胞数を100%とした場合の振とう攪拌後のハイドロゲルからの細胞の脱落率が30%以下である、〔1-1〕~〔1-33〕のいずれか1項に記載の移植用デバイス。
 本発明の第2の態様は、以下の〔2-1〕~〔2-34〕の通りであり得る。
〔2-1〕インスリン分泌細胞又は膵島が封入されたハイドロゲルを含む移植用デバイスであって、前記ハイドロゲルがアルギン酸誘導体を化学架橋によりゲル化したものであり、
 前記ハイドロゲルの厚さが、100μm以上500μm未満である、移植用デバイス。
〔2-2〕前記ハイドロゲルの厚さが、150μm以上500μm未満である、前記〔2-1〕に記載の移植用デバイス。
〔2-3〕前記ハイドロゲルの厚さが、200μm以上300μm未満である、前記〔2-1〕又は〔2-2〕に記載の移植用デバイス。
〔2-4〕前記ハイドロゲルが、架橋としてアルギン酸誘導体間で形成される化学架橋を含む、前記〔2-1〕~〔2-3〕のいずれか1項に記載の移植用デバイス。
〔2-5〕前記ハイドロゲルが、架橋としてHuisgen反応により形成されるトリアゾール環による化学架橋を含む、前記〔2-1〕~〔2-4〕のいずれか1項に記載の移植用デバイス。
〔2-6〕前記化学架橋が、アルギン酸の任意の1つ以上のカルボキシル基に導入された環状アルキン基と、アルギン酸の任意の1つ以上のカルボキシル基に導入されたアジド基より生じる、前記〔2-1〕~〔2-5〕のいずれか1項に記載の移植用デバイス。
〔2-7〕前記化学架橋が、第1のアルギン酸の任意の1つ以上のカルボキシル基に導入された環状アルキン基と、第2のアルギン酸の任意の1つ以上のカルボキシル基に導入されたアジド基より生じる、前記〔2-6〕に記載の移植用デバイス。
〔2-8〕前記化学架橋が、以下の(A)及び(B)に記載のアルギン酸誘導体の組み合わせによる化学架橋である、前記〔2-1〕~〔2-7〕のいずれか1項に記載の移植用デバイス
 (A):
 アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、環状アルキン基(Akn)が導入された、下記式(HA-I):
Figure JPOXMLDOC01-appb-C000047
[式(HA-I)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記部分構造式[各式中、両端の破線外側は含まない]:
Figure JPOXMLDOC01-appb-C000048
の群から選択される2価のリンカーを表わし;Aknは、下記部分構造式[各式中、破線右側は含まない]:
Figure JPOXMLDOC01-appb-C000049
の群から選択される環状アルキン基を表わし、星印はキラル中心を表す]で表わされるアルギン酸誘導体;
 (B):
 アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、アジド基が導入された、下記式(HA-II):
Figure JPOXMLDOC01-appb-C000050
[式(HA-II)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記部分構造式[各式中、両端の破線外側は含まない]:
Figure JPOXMLDOC01-appb-C000051
の群から選択される2価のリンカーを表わす]で表わされるアルギン酸誘導体。
〔2-9〕前記化学架橋したアルギン酸誘導体が、第1のアルギン酸の任意のカルボキシル基と、第2のアルギン酸の任意のカルボキシル基が、下記式(HA-III-L):
Figure JPOXMLDOC01-appb-C000052
[式(HA-III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;
-L-は、前記態様〔2-8〕中の定義と同じであり;
-L-は、前記態様〔2-8〕中の定義と同じであり;
Xは、下記部分構造式:
Figure JPOXMLDOC01-appb-C000053
の群から選択される環状基であり(各式中、両端の破線外側は含まない)、星印はキラル中心を表す]を介して結合した架橋アルギン酸である、前記〔2-8〕に記載の移植用デバイス。
〔2-10〕前記化学架橋が、以下の(A)及び(B)に記載のアルギン酸誘導体の組み合わせによる化学架橋である、前記〔2-1〕~〔2-7〕のいずれか1項に記載の移植用デバイス
(A):アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、環状アルキン基(Akn)が導入された、下記式(HB-I):
Figure JPOXMLDOC01-appb-C000054
[式(HB-I)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記表:
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
に記載された部分構造式[各式中、両端の破線外側は含まない]からなる群より選択されるリンカーを表わし;
Aknは、下記表:
Figure JPOXMLDOC01-appb-T000057
に記載された部分構造式[各式中、破線右側は含まない]からなる群より選択される環状アルキン基を表わす]で表わされるアルギン酸誘導体;
(B):アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(- L-)を介して、アジド基が導入された、下記式(HB-II):
Figure JPOXMLDOC01-appb-C000058
[式(HB-II)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記表:
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
に記載された部分構造式[各式中、両端の破線外側は含まない]からなる群より選択されるリンカーを表す]で表されるアルギン酸誘導体
(但し、式(HB-I)で表わされるアルギン酸誘導体において-L-が(L1-1)、(L1-2a)、(L1-2b)、(L1-11)又は(L1-12)の群から選択されるいずれか1つのリンカーである誘導体と、式(HB-II)で表わされるアルギン酸誘導体において―L―が(L2-10)のリンカーである誘導体との組み合わせによる化学架橋は除く)。
〔2-11〕前記化学架橋したアルギン酸誘導体が、第1のアルギン酸の任意のカルボキシル基と、第2のアルギン酸の任意のカルボキシル基が、下記式(HB-III-L):
Figure JPOXMLDOC01-appb-C000061
[式(HB-III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;
-L-は、前記〔2-10〕中の定義と同じであり;
-L-は、前記〔2-10〕中の定義と同じであり; Xは、下記表:
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
に記載された部分構造式の群から選択される環状基である(各式中、両端の破線外側は含まない)]を介して結合した架橋アルギン酸である(但し、式(HB-I)で表わされるアルギン酸誘導体において-L-が(L1-1)、(L1-2a)、(L1-2b)、(L1-11)又は(L1-12)の群から選択されるいずれか1つのリンカーである誘導体と、式(HB-II)で表わされるアルギン酸誘導体において―L―が(L2-10)のリンカーである誘導体との組み合わせによる架橋アルギン酸は除く)、前記〔2-10〕に記載の移植用デバイス。
〔2-12〕式(HA-I)のアルギン酸誘導体が、下記式(EX-1-(I)-A-2)であり、
Figure JPOXMLDOC01-appb-C000064
 式(HA-II)のアルギン酸誘導体が、下記式(EX-2-(II)-A-2)である、
Figure JPOXMLDOC01-appb-C000065
前記〔2-8〕又は〔2-9〕に記載の移植用デバイス。
〔2-13〕 式(HA-I)のアルギン酸誘導体が、下記式(EX-3-(I)-A-2)であり、
Figure JPOXMLDOC01-appb-C000066
 式(HA-II)のアルギン酸誘導体が、下記式(EX-4-(II)-A-2)である、
Figure JPOXMLDOC01-appb-C000067
前記〔2-8〕又は〔2-9〕に記載の移植用デバイス。
〔2-14〕 式(HA-I)のアルギン酸誘導体が、下記式(EX-1-(I)-A-2)であり、
Figure JPOXMLDOC01-appb-C000068
 式(HA-II)のアルギン酸誘導体が、下記式(EX-4-2-(II)-A-2)である、
Figure JPOXMLDOC01-appb-C000069
前記〔2-8〕又は〔2-9〕に記載の移植用デバイス。
〔2-15〕 式(HA-I)のアルギン酸誘導体が、下記式(EX-3-(I)-A-2)であり、
Figure JPOXMLDOC01-appb-C000070
 式(HA-II)のアルギン酸誘導体が、下記式(EX-2-(II)-A-2)である、
Figure JPOXMLDOC01-appb-C000071
前記〔2-8〕又は〔2-9〕に記載の移植用デバイス。
〔2-16〕 式(HA-I)のアルギン酸誘導体が、下記式(EX-3-(I)-A-2)であり、
Figure JPOXMLDOC01-appb-C000072
 式(HA-II)のアルギン酸誘導体が、下記式(EX-4-2-(II)-A-2)である、
Figure JPOXMLDOC01-appb-C000073
前記〔2-8〕又は〔2-9〕に記載の移植用デバイス。
〔2-17〕前記膵島が、ヒト膵島またはブタ膵島である、前記〔2-1〕~〔2-16〕のいずれか1項に記載の移植用デバイス。
〔2-18〕前記膵島が、ブタの成体の膵島である、前記〔2-17〕に記載の移植用デバイス。
〔2-19〕前記膵島が、胎生期、新生児期、または周産期のブタ膵島である、前記〔2-17〕に記載の移植用デバイス。
〔2-20〕前記インスリン分泌細胞又は膵島が、ドナーであるヒトから得られた膵島、膵島細胞、またはβ細胞であるか、ドナーであるブタから得られた膵島、膵島細胞、又はβ細胞であるか、ヒト由来の幹細胞から分化させて得られた膵島、膵島細胞、又はβ細胞である、前記〔2-1〕~〔2-19〕のいずれか1項に記載の移植用デバイス。
〔2-21〕前記インスリン分泌細胞又は膵島が、ドナーであるヒトから得られた膵島、膵島細胞、またはβ細胞である、前記〔2-20〕に記載の移植用デバイス。
〔2-22〕前記ハイドロゲルが、更に半透膜で被覆された、前記〔2-1〕~〔2-21〕のいずれか1項に記載の移植用デバイス。
〔2-23〕前記半透膜が、セルロース誘導体より形成された透析膜である、前記〔2-22〕に記載の移植用デバイス。
〔2-24〕前記セルロース誘導体が、酢酸セルロースである、前記〔2-23〕に記載の移植用デバイス。
〔2-25〕前記移植用デバイスの移植部位が、皮下又は腹腔内である、前記〔2-1〕~〔2-24〕のいずれか1項に記載の移植用デバイス。
〔2-26〕前記移植用デバイスの厚さが、100μm以上1000μm未満である、前記〔2-1〕~〔2-25〕のいずれか1項に記載の移植用デバイス。
〔2-27〕前記移植用デバイスの厚さが、150μm以上500μm未満である、前記〔2-26〕に記載の移植用デバイス。
〔2-28〕前記インスリン分泌細胞又は膵島を含むハイドロゲルを作製した後、半透膜で被覆した、前記〔2-1〕~〔2-27〕のいずれか1項に記載の移植用デバイス。
〔2-29〕化学架橋によってハイドロゲル化するアルギン酸誘導体の溶液に、インスリン分泌細胞又は膵島を懸濁し、当該インスリン分泌細胞又は膵島を懸濁した溶液を半透膜中に封入した後、当該半透膜を2価金属イオンを含む溶液と接触させることで、半透膜中のアルギン酸誘導体をゲル化して得られる、前記〔2-1〕~〔2-28〕のいずれか1項に記載の移植用デバイス。
〔2-30〕前記2価金属イオンを含む溶液が、カルシウムイオンを含む溶液である、前記〔2-29〕に記載の移植用デバイス。
〔2-31〕縦10mm及び横20mmとした前記ハイドロゲル3枚を37℃、12mLの生理食塩水溶液中で、振幅25mm、振とう速度180rpmの往復振とうの条件で37℃を維持したまま96時間振とう攪拌したときに、ハイドロゲルが崩壊しない、〔2-1〕~〔2-30〕のいずれか1項に記載の移植用デバイス。
〔2-32〕縦10mm及び横20mmとした前記ハイドロゲル3枚を37℃、12mLの生理食塩水溶液中で、振幅25mm、振とう速度180rpmの往復振とうの条件で37℃を維持したまま96時間振とう攪拌したときに、ハイドロゲルの崩壊率が30%以下である、〔2-1〕~〔2-31〕のいずれか1項に記載の移植用デバイス。
〔2-33〕縦10mm及び横20mmとした前記ハイドロゲル3枚を37℃、12mLの生理食塩水溶液中で、振幅25mm、振とう速度180rpmの往復振とうの条件で37℃を維持したまま24時間振とう攪拌したときに、ハイドロゲルから細胞がほとんど脱落しない、〔2-1〕~〔2-32〕のいずれか1項に記載の移植用デバイス。
〔2-34〕縦10mm及び横20mmとした前記ハイドロゲル3枚を37℃、12mLの生理食塩水溶液中で、振幅25mm、振とう速度180rpmの往復振とうの条件で37℃を維持したまま24時間振とう攪拌したときに、ハイドロゲルに封入した細胞数を100%とした場合の振とう攪拌後のハイドロゲルからの細胞の脱落率が30%以下である、〔2-1〕~〔2-33〕のいずれか1項に記載の移植用デバイス。
 本発明の第3の態様は、以下の〔3-1〕~〔3-4〕の通りであり得る。
〔3-1〕以下の工程(a)~(d)を含む、インスリン分泌細胞又は膵島が封入されたハイドロゲルを含む移植用デバイスの製造方法。
 工程(a):任意選択の工程として、生体から膵臓を摘出し、膵島を分離する工程、
 工程(b):化学架橋によってハイドロゲル化することができるアルギン酸誘導体の溶液に、インスリン分泌細胞、膵島、培養されて得られた膵島細胞、および幹細胞より分化させて得られた膵島細胞からなる群より選択される細胞又は組織を混和する工程、
 工程(c):工程(b)で得られたアルギン酸誘導体の溶液を、2価金属イオンを含む溶液と接触させて、厚さ0.1~5mm(100~5000μm)のゲルを作製する工程、
 工程(d):任意選択の工程として、工程(c)で得られたゲルを半透膜で被覆する工程。
〔3-2〕以下の工程(a)~(d)を含む、インスリン分泌細胞又は膵島が封入されたハイドロゲルを含む移植用デバイスの製造方法。
 工程(a):任意選択の工程として、生体から膵臓を摘出し、膵島を分離する工程、
 工程(b):化学架橋によってハイドロゲル化することができるアルギン酸誘導体の溶液に、インスリン分泌細胞、膵島、培養されて得られた膵島細胞、および幹細胞より分化させて得られた膵島細胞からなる群より選択される細胞又は組織を混和する工程、
 工程(c):工程(b)で得られたアルギン酸誘導体の溶液を、2価金属イオンを含む溶液と接触させて、厚さ100μm以上500μm未満のゲルを作製する工程、
 工程(d):任意選択の工程として、工程(c)で得られたゲルを半透膜で被覆する工程。
〔3-3〕以下の工程(a)~(d)を含む、インスリン分泌細胞又は膵島が封入されたハイドロゲルを含む移植用デバイスの製造方法。
 工程(a):任意選択の工程として、生体から膵臓を摘出し、膵島を分離する工程、
 工程(b):化学架橋によってハイドロゲル化することができるアルギン酸誘導体の溶液に、インスリン分泌細胞、膵島、培養されて得られた膵島細胞、および幹細胞より分化させて得られた膵島細胞からなる群より選択される細胞又は組織を混和する工程、
 工程(c):工程(b)で得られたアルギン酸誘導体の溶液を半透膜に封入する工程、
 工程(d):工程(c)で得られた半透膜を、2価金属イオンを含む溶液と接触させて、半透膜中のアルギン酸誘導体の溶液をゲル化する工程。
〔3-4〕前記2価金属イオンを含む溶液が、カルシウムイオンを含む溶液である、前記〔3-1〕~〔3-3〕のいずれか1項に記載の移植用デバイスの製造方法。
〔3-5〕以下の工程(a)(b)(e)(d)を含む、インスリン分泌細胞又は膵島が封入されたハイドロゲルを含む移植用デバイスの製造方法。
 工程(a):任意選択の工程として、生体から膵臓を摘出し、膵島を分離する工程、
 工程(b):化学架橋によってハイドロゲル化することができるアルギン酸誘導体の溶液に、インスリン分泌細胞、膵島、培養されて得られた膵島細胞、および幹細胞より分化させて得られた膵島細胞からなる群より選択される細胞又は組織を混和する工程、
 工程(e):工程(b)で得られたアルギン酸誘導体の溶液を任意の形状としてゲルを作製する工程、
 工程(d):任意選択の工程として、工程(e)で得られたゲルを半透膜で被覆する工程。
〔3-6〕以下の工程(a)(b)(e)(f)を含む、インスリン分泌細胞又は膵島が封入されたハイドロゲルを含む移植用デバイスの製造方法。
 工程(a):任意選択の工程として、生体から膵臓を摘出し、膵島を分離する工程、
 工程(b):化学架橋によってハイドロゲル化することができるアルギン酸誘導体の溶液に、インスリン分泌細胞、膵島、培養されて得られた膵島細胞、および幹細胞より分化させて得られた膵島細胞からなる群より選択される細胞又は組織を混和する工程、
 工程(e):工程(b)で得られたアルギン酸誘導体の溶液を任意の容器に入れる、または、任意の表面に置く、工程、
 工程(f):工程(e)で得られた容器中又は表面上で、アルギン酸誘導体の溶液をゲル化する工程。
〔3-7〕前記任意の容器が、半透膜、ビーカー、又はシャーレである、前記〔3-6〕に記載の移植用デバイスの製造方法。
〔3-8〕前記任意の表面が、半透膜表面、プラスチック表面又はガラス表面である、前記〔3-6〕に記載の移植用デバイスの製造方法。
〔3-9〕前記ハイドロゲルが厚さ0.1~5mm(100~5000μm)である、前記〔3-5〕~〔3-8〕のいずれか1項に記載の移植用デバイスの製造方法。
〔3-10〕前記アルギン酸誘導体の溶液のゲル化に2価金属イオン又はその溶液との接触する工程を含まない、前記〔3-5〕~〔3-9〕のいずれか1項に記載の移植用デバイスの製造方法。
〔3-11〕以下の工程(a)~(c)(f)を含む、インスリン分泌細胞又は膵島が封入されたハイドロゲルを含む移植用デバイスの製造方法。
 工程(a):任意選択の工程として、生体から膵臓を摘出し、膵島を分離する工程、
 工程(b):化学架橋によってハイドロゲル化することができるアルギン酸誘導体の溶液に、インスリン分泌細胞、膵島、培養されて得られた膵島細胞、および幹細胞より分化させて得られた膵島細胞からなる群より選択される細胞又は組織を混和する工程、
 工程(c):工程(b)で得られたアルギン酸誘導体の溶液を半透膜に封入する工程、
 工程(f):工程(c)で得られた半透膜中で、アルギン酸誘導体の溶液をゲル化し、厚さ0.1~5mm(100~5000μm)のゲルを作製する工程。
 本発明により、新たな移植用デバイスが提供される。好ましくは、移植用デバイスは、少なくとも下記の効果の1つ以上を示す。
 (1)生体適合性や安定性に優れ、細胞毒性も少なく、移植部位における癒着や炎症もほとんどない。
 (2)ゲルの溶解が少なく形状が長期間維持される。
 (3)長期間にわたり、血糖降下作用を持続させ、血糖を調節することが可能となる。
 (4)長期間使用した後、半透膜中のアルギン酸ゲルは溶解しないで形状を維持可能であり、また膵島の生存・機能維持が可能であり、長期間使用できる。
 (5)交換が可能であり、免疫隔離可能であり、癒着、炎症等も少なく、安全性の高い医療材料となる。
 (6)デバイスの内外での物質透過に優れる。
 (7)ハイドロゲルを振とうした場合において、ハイドロゲルが崩壊しない又は崩壊が少ない。
 (8)ハイドロゲルを振とうした場合において、ハイドロゲル中に含まれる膵島のゲルからの脱落が少ないこと。
 また、ハイドロゲルの厚みが薄い(例えば500μm未満)移植用デバイスにおいては、好ましくは少なくとも前記(1)~(8)の効果の1つ以上、および/または、下位の効果の1つ以上を示す。
 (9)デバイスを移植した場合の治癒率が厚みのあるハイドロゲルの場合と比べ高い。
 (10)デバイスの表面に対する中心部の酸素濃度の割合が高い。
 より好ましい態様の移植用デバイスは、移植成績や機能性に優れ、素材に関して新規であり、糖尿病患者(とりわけ、I型糖尿病及びインスリン枯渇型II型糖尿病)に移植することにより、長期間にわたり、血糖降下作用を持続させ、血糖を調節することが可能となる。また、ハイドロゲル内のインスリン分泌細胞又は膵島の機能が低下した場合に、回収が可能である。あるいは、定期的な交換もしくは追加移植が可能となる。また、移植用デバイスのハイドロゲルに封入するインスリン分泌細胞又は膵島として、幹細胞(iPS等)から分化させたインスリン分泌細胞、又はヒト膵島を用いることも可能である。従って、より好ましい態様のデバイスは有用である。
平板型アルギン酸ゲルの写真である。(a)移植前、(b)移植後。 平板型アルギン酸ゲルの写真である。(a)移植前、(b)移植後。 平板型アルギン酸ゲルの写真である。(a)移植前、(b)移植後。 作製した移植用デバイスの写真である。 作製した移植用デバイスの写真である。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day75まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day305まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(リレー移植後day26まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day75まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day305まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(リレー移植後day26まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day305まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(リレー移植後day26まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day305まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(リレー移植後day26まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day305まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(リレー移植後day26まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day305まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(リレー移植後day26まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day178まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day178まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(リレー移植後day40まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day178まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(リレー移植後day40まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day178まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day178まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(リレー移植後day40まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day178まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(リレー移植後day40まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day17まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day17まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day17まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day17まで)。 移植用デバイスを移植したマウスの血糖値変動を示す図である(移植後day17まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day17まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day17まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day17まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day17まで)。 移植用デバイスを移植したマウスの体重変動を示す図である(移植後day17まで)。 ハイドロゲルの酸素濃度の評価部位を示す図である。 ハイドロゲルの断面における酸素濃度を示す図である。 ハイドロゲルの断面における酸素濃度を示す図である。 ハイドロゲルの断面における酸素濃度を示す図である。 移植用デバイスからのヒトインスリンの透過率を示す図である。 移植用デバイスからのグルコースの透過率を示す図である。 ハイドロゲルの振とう時の崩壊率を示す図である。 試験開始24時間後の外液の顕微鏡写真である(バーは1000μmを意味する)。 試験開始24時間後の外液の顕微鏡写真である(バーは1000μmを意味する)。
 ここでは、化学架橋によりゲル化されるアルギン酸誘導体を用いて調製された、細胞などを生体に移植するためのデバイス、より具体的には、例えば、インスリン分泌細胞又は膵島などが包埋された化学架橋アルギン酸ゲルと、必要に応じて当該ゲルを被覆する半透膜とを含む移植用デバイス、その製造方法などが提供される。化学架橋によりゲル化されるアルギン酸誘導体は、例えば、アルギン酸の任意の1つ以上のカルボキシル基に、アミド結合及び2価のリンカーを介して環状アルキン基又はアジド基が導入された式(HA-I)又は式(HA-II)のアルギン酸誘導体であり、式(HA-I)及び式(HA-II)のアルギン酸誘導体を用いてHuisgen反応(1,3-双極子付加環化反応)を行うことで新規な架橋アルギン酸が得られる。あるいは、化学架橋によりゲル化されるアルギン酸誘導体は、例えば、アルギン酸の任意の1つ以上のカルボキシル基に、アミド結合及び2価のリンカーを介して環状アルキン基又はアジド基が導入された式(HB-I)又は式(HB-II)のアルギン酸誘導体であり、式(HB-I)及び式(HB-II)のアルギン酸誘導体を用いてHuisgen反応(1,3-双極子付加環化反応)を行うことで新規な架橋アルギン酸が得られる。
 「移植用デバイス」とは、インスリン分泌細胞又は膵島が封入されたハイドロゲルを用いたものである。当該ハイドロゲルは、アルギン酸誘導体を化学架橋によりゲル化したものである。したがって、アルギン酸誘導体としては、化学架橋によってゲル化することが可能なものを用いる。インスリン分泌細胞又は膵島が封入されているハイドロゲルの形状は、例えば平板型である。移植用デバイスにおいて、ハイドロゲルが更に半透膜で被覆されていてもよく、この場合、インスリン分泌細胞又は膵島が封入されたハイドロゲルが半透膜中に挿入された状態となる。
 移植用デバイスで用いる「インスリン分泌細胞」とは、インスリンを分泌する機能を有する細胞を意味し、例えば、膵島を構成する細胞においては、インスリンを分泌するβ細胞を意味する。また、「インスリン分泌細胞」は、分化、成熟や改変などによってインスリン分泌機能を有するようになった細胞であってもよく、例えば、iPS細胞、ES細胞、又は体性幹細胞(例えば、間葉系幹細胞)等の幹細胞を分化させて得られたインスリン分泌機能を有する細胞、幼若細胞や前駆細胞を成熟させて得られたインスリン分泌機能を有する細胞、及び、遺伝子組み換えによりインスリン分泌機能を付与された細胞も含み得る。ここで、当該細胞を分化や成熟させることには、当該細胞を培養させることが含まれ、すなわち、分化又は成熟させて得られた細胞とは、培養されて得られた細胞を含み得る。
 「膵島」とは、別名ランゲルハンス氏島とも呼ばれる、平均約2000個の膵島細胞より構成される細胞塊である。膵島は、グルカゴンを分泌するα細胞、インスリンを分泌するβ細胞、ソマトスタチンを分泌するδ細胞、グレリンを分泌するε細胞、及び膵ポリペプチドを分泌するPP(pancreatic polypeptide;膵ポリペプチド)細胞の5種の細胞から構成される。
 「インスリン分泌細胞又は膵島」とは、生物学的活性な生成物の分泌機能を有する細胞又は組織とも表現される。
 本明細書において、「膵島細胞」とは、上記の5種類の細胞うちの少なくとも1種類の細胞を含むものであればよいが、少なくともβ細胞を含むことが好ましい。いくつかの態様では、膵島細胞としては、α細胞、β細胞、δ細胞、ε細胞、及びPP細胞の全てを含む混合物でもよく、膵島に含まれた状態のものでもよい。
 また、「膵島細胞」は、分化、成熟や改変などにより膵島細胞になったものであってもよい。この場合、「膵島細胞」には、例えば、iPS細胞、ES細胞、及び体性幹細胞(例えば、間葉系幹細胞)等の幹細胞を分化させて得られた膵島細胞、及び幼若細胞や前駆細胞を成熟させて得られた膵島細胞も含み得る。
 「インスリン分泌細胞又は膵島(膵島細胞を含む)」としては、患者に移植した際に、患者の病的状態を回復することができる程度の生存性と機能とを有することが好ましい。インスリン分泌細胞、膵島又は膵島細胞の機能としては、例えば、インスリンを分泌することが挙げられ、移植後においてもグルコース応答性が維持されていることが好ましい。
 いくつかの態様の「移植用デバイス」は、バイオ人工膵島とも呼ばれ、バイオ人工臓器の一例である。当該バイオ人工膵島の備える細胞には、前記の「インスリン分泌細胞」、「膵島」又は「膵島細胞」が含まれ、例えば、インスリン分泌細胞が含まれる。インスリン分泌細胞は、ヒトあるいはブタなどから採取された膵島に含まれる細胞、あるいは幹細胞(例えば、ES細胞、iPS細胞、及び体性幹細胞(例えば、間葉系幹細胞))から分化した膵島のいずれかでもよい。
 本発明の移植用デバイスには、「インスリン分泌細胞、膵島及び膵島細胞」以外の細胞を用いる場合がある。
 「インスリン分泌細胞、膵島及び膵島細胞」以外の細胞は、細胞移植に用い得るものであれば任意の細胞を使用することができ、その種類は特に限定されない。また、使用する細胞は1種でもよいし、複数種の細胞を組合せて用いてもよい。使用する細胞として、好ましくは、動物細胞、より好ましくは脊椎動物由来細胞、特に好ましくはヒト由来細胞を挙げることができる。脊椎動物由来細胞(特に、ヒト由来細胞)の種類は、幹細胞(例えば、万能細胞、又は体性幹細胞)、前駆細胞、又は成熟細胞の何れでもよい。万能細胞としては、例えば、胚性幹(ES)細胞、生殖幹(GS)細胞、又は人工多能性幹(iPS)細胞を使用することができる。体性幹細胞としては、例えば、間葉系幹細胞(MSC)、造血幹細胞、羊膜細胞、臍帯血細胞、骨髄由来細胞、心筋幹細胞、脂肪由来幹細胞、又は神経幹細胞を使用することができる。
 前駆細胞及び成熟細胞としては、例えば、皮膚、真皮、表皮、筋肉、心筋、神経、骨、軟骨、内皮、脳、上皮、心臓、腎臓、肝臓、脾臓、口腔内、角膜、骨髄、臍帯血、羊膜、又は毛に由来する細胞を使用することができる。ヒト由来細胞としては、例えば、ES細胞、iPS細胞、MSC、軟骨細胞、骨芽細胞、骨芽前駆細胞、間充織細胞、筋芽細胞、心筋細胞、心筋芽細胞、神経細胞、肝細胞、線維芽細胞、角膜内皮細胞、血管内皮細胞、角膜上皮細胞、羊膜細胞、臍帯血細胞、骨髄由来細胞、又は造血幹細胞を使用することができる。また、細胞の由来は、自家細胞又は他家細胞の何れでも構わない。いくつかの態様では、上記の中でも、例えば、ES細胞、iPS細胞、間葉系幹細胞(MSC)を使用することができる。
 「インスリン分泌細胞、又は膵島(膵島細胞を含む)」のドナーは、動物、好ましくは脊椎動物であり、具体的にはヒト、ブタ、サル、ラット又はマウスなどが挙げられ、より好ましくは、ヒト又はブタである。「インスリン分泌細胞、膵島又は膵島細胞」のドナーは、いくつかの態様では、ドナー不足解消の観点からブタである。「インスリン分泌細胞、又は膵島(膵島細胞を含む)」としては、ドナーである動物から得られた膵島、あるいはドナー由来細胞から得られたインスリン分泌細胞又は膵島細胞のいずれかでもよく、例えば、ヒト由来のES細胞またはiPS細胞から分化したインスリン分泌細胞又は膵島細胞でもよい。
 「インスリン分泌細胞、又は膵島(膵島細胞を含む)」がブタ由来である場合には、成体のブタ膵島、又は、胎生期、新生児期、もしくは周産期のブタ膵島が挙げられる。当該膵島は適宜培養してから使用するようにしてもよく、胎生期、新生児期、もしくは周産期のブタ膵島を成熟させた膵島を使用してもよい。
 移植用デバイスの移植方法としては、切開と留置、注射、内視鏡、腹腔鏡といったものが使用可能である。
 移植部位は特に限定されず、皮下、腹腔内、肝臓内、筋肉内、大網内、腎被膜下などを挙げることができるが、皮下や腹腔内に移植することが好ましい。
 ここで「半透膜(はんとうまく、semipermeable membrane)」とは、一定の大きさ以下の分子またはイオンのみを透過させる膜である。半透膜を透過しない溶質と透過性を示す溶媒の系で、半透膜を介して2つの濃度の溶液を接すると、隔てて浸透圧が発生し溶媒のみが透過する性質を有する。本明細書に記載の移植用デバイスは、半透膜を含んでいてもよいし、あるいは半透膜は必須ではなく、すなわち半透膜を含まなくてもよい。いくつかの態様の移植用デバイスは、(例えば、インスリン分泌細胞又は膵島が封入された)ハイドロゲル単体であり、すなわち、当該ハイドロゲルが半透膜で被覆されていない。ハイドロゲルが半透膜で被覆されていない移植用デバイスは、好ましくは、生体適合性や安定性に優れ、細胞毒性も少なく、移植部位における癒着や炎症もほとんどなく、ゲルの溶解が少なく形状が長期間維持され、より好ましくは、長期間にわたり、血糖降下作用を持続させ、血糖を調節することが可能なものである。別のいくつかの態様の移植用デバイスは、ハイドロゲルが半透膜で被覆されている。半透膜としては、例えば、透析に用いられる膜もしくはチューブなどが挙げられ、透析チューブ、コットンセルロース透析膜、再生セルロース透析膜、セルロースエステル透析膜等も使用可能であり、商品名としてはCellu-Sep T Tubular Membrane(Membrane Filtration Products社)、スペクトラバイオテックメンブラン(REPLIGEN社(旧SPECTRUM社))、スペクトラ/ポアCE 透析チューブ(REPLIGEN社(旧SPECTRUM社))等が挙げられる。
 「半透膜」としては、セルロースエステルで作製された半透膜であることが好ましい。
具体例としては、透析膜であるスペクトラ/ポアCE 透析チューブ(REPLIGEN社(旧SPECTRUM社))が挙げられる。当該セルロースエステルは酢酸セルロースの高分子であることがより好ましい。
 ここで用いる半透膜は樹脂を含有する。半透膜は、例えば、少なくとも一種類以上の樹脂を溶媒に溶解させ、溶解した樹脂を凝固させることで作製することができる。かかる樹脂は特に限定されるものではない。かかる樹脂として、例えば、エチレン-ビニルアルコール系共重合体、ポリスルホン系重合体、ポリアクリロニトリル系重合体、酢酸セルロースなどのセルロース系重合体、ポリアミド系重合体、ポリカーボネート系重合体などの樹脂を用いることが出来る。より好ましくは、酢酸セルロースなどのセルロース系重合体である。
 ここで用いられる半透膜には、「分子量カットオフ」がある。「分子量カットオフ」とは、実質的に遮断されない最大分子量の大きさを意味する。該分子量カットオフを上回る分子量を有する分子は、該半透膜を出入りすることが実質的に妨げられる。ここで用いられる半透膜の「分子量カットオフ」としては、100kDa(キロダルトン)であるのが好ましい。例えば、セルロースエステル透析膜であるスペクトラ/ポアCE 透析チューブ((REPLIGEN社(旧SPECTRUM社))であれば、当該カットオフ値を「MWCO」として、100~500Da(ダルトン)、0.5~1kDa、3.5~5kDa、8~10kDa、20kDa、50kDa、100kDa、300kDa、1000kDa等の規格で販売されている。例えば、当該カットオフ値が、約500000ダルトンより大きい分子量カットオフを有する場合、IgGや補体のような分子はこれらの半透膜に進入できるが、免疫細胞のような宿主細胞は、当該半透膜中への進入が妨げられ、インスリンや細胞の栄養素や酸素は当該半透膜を通過できることになる。単位ダルトン記号はDa、1000Daは1kDaを意味する。
 ここで、移植用デバイスの厚さの定義は、後述の通りである。いくつかの態様では、移植用デバイスの厚さは、0.1~5mm(100~5000μm)であり、0.1~3mm(100~3000μm)であることが好ましい。あるいは、0.5~5mm(500~5000μm)であることが好ましく、1~3mm(1000~3000μm)であることがより好ましい。移植用デバイスの厚さは、インスリン分泌細胞又は膵島が封入されているハイドロゲルが半透膜で被覆されている場合、半透膜の厚さで0.15~5mm(150~5000μm)であり、0.2~3mm(200~3000μm)であることが好ましい。あるいは、0.5~5mm(500~5000μm)であることが好ましく、1~3mm(1000~3000μm)であることがより好ましい。
 薄型の移植用デバイスの場合、移植用デバイスの厚さは、100μm以上1000μm未満であり、100μm以上500μm未満であることが好ましい。あるいは、150μm以上1000μm未満であることが好ましく、150μm以上500μmであることがより好ましい。移植用デバイスの厚さは、インスリン分泌細胞又は膵島が封入されているハイドロゲルが半透膜で被覆されている場合、半透膜の厚さで150μm以上1000μm未満であることが好ましく、150μm以上500μm未満であることがより好ましい。あるいは、200μm以上1000μm未満であることが好ましく、200μm以上500μmであることがより好ましい。
 また、ハイドロゲルの厚さの定義も、後述の通りである。いくつかの態様では、ハイドロゲルの厚さは、0.1~5mm(100~5000μm)であり、0.1~3mm(100~3000μm)であることが好ましく、0.1~1mm(100~1000μm)であるのがより好ましい。あるいは、0.15~5mm(150~5000μm)であり、0.15~3mm(150~3000μm)であることが好ましく、0.15~1mm(150~1000μm)であるのがより好ましい。あるいは、0.2~5mm(200~5000μm)であり、0.2~3mm(200~3000μm)であることが好ましく、0.2~1mm(200~1000μm)であるのがより好ましい。あるいは、0.5~5mm(500~5000μm)であり、0.5~3mm(500~3000μm)であるのが好ましく、0.5~1mm(500~1000μm)であるのがより好ましい。
 移植用デバイスが半透膜を含む場合、半透膜中のハイドロゲルの厚さは、0.1~3mm(100~3000μm)であり、0.1~2mm(100~2000μm)であることが好ましく、0.1~1mm(100~1000μm)であるのがより好ましい。あるいは、0.15~3mm(150~3000μm)であり、0.15~2mm(150~2000μm)であることが好ましく、0.15~1mm(150~1000μm)であるのがより好ましい。あるいは、0.2~3mm(200~3000μm)であり、0.2~2mm(200~2000μm)であることが好ましく、0.2~1mm(200~1000μm)であるのがより好ましい。あるいは、1~3mm(1000~3000μm)であることが好ましく、1.5~2mm(1500~2000μm)であることがより好ましい。
 移植用デバイスが半透膜を含まない場合、ハイドロゲルの厚さは、0.1~5mm(100~5000μm)であり、0.1~3mm(100~3000μm)であることが好ましく、0.1~1mm(100~1000μm)であるのがより好ましい。あるいは、0.15~5mm(150~5000μm)であり、0.15~3mm(150~3000μm)であることが好ましく、0.15~1mm(150~1000μm)であるのがより好ましい。あるいは、0.2~5mm(200~5000μm)であり、0.2~3mm(200~3000μm)であることが好ましく、0.2~1mm(200~1000μm)であるのがより好ましい。あるいは、0.5~5mm(500~5000μm)であり、0.5~3mm(500~3000μm)であることが好ましく、0.5~1mm(500~1000μm)であることがより好ましい。
 薄型のハイドロゲルの場合、ハイドロゲルの厚さは、100μm以上500μm未満であり、100μm以上400μm未満であるのが好ましく、100μm以上300μm未満であるのがより好ましい。あるいは、150μm以上500μm未満であり、150μm以上400μm未満であるのが好ましく、150μm以上300μm未満であるのがより好ましく、200μm以上300μm未満であるのが更に好ましい。かかる厚さは、移植用デバイスが半透膜を含む場合と、半透膜を含まない場合とで同様である。
 移植用デバイスの形状は、平板状であれば、特に限定されない。平板とは、平らな板を意味し、厚さがほぼ一定で広い面積を有する板状のことを示す。当該板の形状として、例えば、三角形、四角形、五角形のような多角形や円形等の平らな板状が挙げられる。また、当該移植用デバイスは、前記の厚さであり、かつ、板状全体でほぼ一定の厚さであることが好ましい。板状の移植デバイスにおいて厚さのばらつきは、好ましくは±20%以内、より好ましくは±10%以内である。移植用デバイスの厚さは、移植用デバイスの最大厚の部分の厚さである。例えば、ハイドロゲルを半透膜である透析チューブ中に封入する際には、透析チューブの両端をシールすることにより、移植用デバイスの形状が、一見ラグビーボール状のような、両端がやや薄く、両端に比べ中央が厚くなる形状になることがある。そのような形状になる場合には、移植用デバイスの厚さは、その最大厚の部分である中央付近の厚さを意味する。
 また、ハイドロゲルの形状も、平板状であれば、特に限定されない。平板とは、平らな板を意味し、厚さがほぼ一定で広い面積を有する板状のことを示す。当該板の形状として、例えば、三角形、四角形、五角形のような多角形や円形等の平らな板状が挙げられる。また、ハイドロゲルは、前記の厚さであり、かつ、板状全体でほぼ一定の厚さであることが好ましい。ハイドロゲルにおいて厚さのばらつきは、好ましくは±20%以内、より好ましくは±10%以内である。ハイドロゲルの厚さは、ハイドロゲルの最大厚の部分の厚さである。いくつかの態様では、平板型のハイドロゲルは、例えば、短直径が12~15mm、長直径が12~18mm、厚さが0.1~5mm程度の大きさの架橋アルギン酸のゲルであり、円形、四角形、六角形、八角形などの形状を取ることも可能である。平板型のハイドロゲルを面積で表現すると、例えば、144~270mmとも表わすことができる。
 本明細書において、「IEQ」とは、Islet Equivalentsの略号であり、膵島を球形と見立て、直径が150μmの膵島を1 IEQと定義する、膵島の量を表す国際単位である。
 日本膵・膵島移植研究会の新鮮膵島移植の基準(膵島移植実施マニュアル)によれば、新鮮膵島を移植する際の条件のひとつに、「膵島量5000IEQ/kg(患者体重)以上 」とあり、ここでも参考にする。移植用デバイスは、所望の治療効果が生じるよう算定された膵島数に適宜設定することができ、患者の体重、症状の度合い等により適宜適切なデバイスに設定することが可能である。
 インスリン分泌細胞の量についても、膵島に準じて適宜設定できる。
 移植用デバイスの製造方法について、より詳細に説明する。
 移植用デバイスの製造方法において、「工程(a):任意選択の工程として、生体から膵臓を摘出し、膵島を分離する工程」とは、工程(a)が任意選択であることであることを意味する。「生体」は、例えば、ヒト、または非ヒト哺乳動物であり、非ヒト哺乳動物としては、例えば、ブタが挙げられる。工程(a)を行う場合には、例えば、ブタ膵島の単離で言えば、当技術の公知の手順、或いは、霜田ら(Shimoda;Cell Transplantation、第21巻、501-508頁、2012年)に記載された方法、もしくはエドモントンプロトコールを用いた標準のリコルディー技術等に準じて、無菌下で成体のブタから無菌の生存可能な膵臓を得て、膵島細胞を単離することができる。その他の非ヒト哺乳動物の膵島、或いはヒトの膵島の単離も、ブタ膵島の単離に準じて行うことができる。その後、単離した膵島を、そのまま用いてもよいし、あるいは、培養して用いてもよい。膵島の培養については、例えば、野口(Noguchi)ら(Transplantation Proceedings,42,2084-2086(2010))の方法に準じて、培地中(Connaught Medical Research Laboratory(CMRL)-based Miami-defined media #1(MM1;Mediatech-Cellgro,Herndon,VA)-supplemented with 0.5% human serum albumin.)、5%CO/95%空気の湿潤雰囲気中で37℃で1日間培養することが可能である。
 次いで、「工程(b):化学架橋によってハイドロゲル化することができるアルギン酸誘導体の溶液に、インスリン分泌細胞、膵島、培養されて得られた膵島細胞、および幹細胞より分化させて得られた膵島細胞からなる群より選択される細胞又は組織を混和する工程」では、化学架橋によってハイドロゲル化することができるとして、例えば、前述の式(I)及び式(II)で表わされるアルギン酸誘導体を挙げることができる。工程(b)では、例えば、前記アルギン酸誘導体の0.1~5重量%の水溶液もしくは生理食塩水溶液を作製し、当該溶液に、インスリン分泌細胞、膵島、培養されて得られた膵島細胞、および幹細胞より分化させて得られた膵島細胞からなる群より選択される細胞又は組織(例えば、工程(a)で得た膵島、当該膵島から単離したインスリン分泌細胞、又は当該膵島から単離した膵島細胞を培養して得られる膵島細胞)を適宜必要量懸濁させる。
 ここで、「化学架橋によってハイドロゲル化することができるアルギン酸誘導体の溶液」は、例えば、前述の式(HA-I)で表わされるアルギン酸誘導体の溶液と、前述の式(HA-II)で表わされるアルギン酸誘導体の溶液の2種の溶液である。あるいは、「化学架橋によってハイドロゲル化することができるアルギン酸誘導体の溶液」は、例えば、前述の式(HB-I)で表わされるアルギン酸誘導体の溶液と、前述の式(HB-II)で表わされるアルギン酸誘導体の溶液の2種の溶液である。この場合、工程(b)では、これらの2種の溶液、およびそれらに細胞又は組織を混和した溶液は、混合せずに、別々に作製される。このとき、細胞又は組織は、2種の溶液の一方にのみ混和してもよいし、あるいは両方に混和してもよい。
 次いで、「工程(c):工程(b)で得られたアルギン酸誘導体の溶液に、2価金属イオンを含む溶液と接触させて、厚さ0.1~5mm(100~5000μm)又は厚さ100μm以上500μm未満のゲルを作製する工程」では、細胞又は組織(例えば、膵島)が懸濁した、工程(b)で得られたアルギン酸誘導体の溶液をゲル化させる。このとき、先ず、式(HA-I)又は式(HB-I)のアルギン酸誘導体の溶液と式(HA-II)又は式(HB-II)で表わされるアルギン酸誘導体の溶液とを、各々の化学架橋基の導入率に応じて、適宜各々の用量を混合するようにしてよい。次に、その混合溶液に、2価金属イオンを含む溶液と接触させることで、イオン架橋が進むと同時に化学架橋も進み、ゲルが作製できる。ゲルは、より具体的には、後述する実施例5に記載の〔平板型アルギン酸ゲルの製造〕<一般的な調製方法>と同様に作製することができる。
 次いで、「工程(d):任意選択の工程として、工程(c)で得られたゲルを半透膜で被覆する工程」とは、工程(d)が任意選択であることを意味する。工程(d)を行う場合には、工程(c)で得られたゲルを、当該分野で公知の方法またはそれに準ずる方法で、半透膜で被覆する。例えば、ゲルを、半透膜(例えば、一端をシールした半透膜のチューブ)に挿入して、もう一端をシールすることで被覆する。
 あるいは、「工程(c):工程(b)で得られたアルギン酸誘導体の溶液を半透膜に封入する工程」は、細胞又は組織(例えば、膵島)が懸濁した、工程(b)で得られたアルギン酸誘導体の溶液を、当該分野で公知の方法またはそれに準ずる方法で、半透膜で被覆する。このとき、先ず、式(HA-I)又は式(HB-I)のアルギン酸誘導体の溶液と式(HA-II)又は式(HB-II)で表わされるアルギン酸誘導体の溶液とを、各々の化学架橋基の導入率に応じて、適宜各々の用量を混合するようにしてよい。次に、その細胞又は組織(例えば、膵島)が懸濁した混合溶液を、半透膜(例えば、一端をシールした半透膜のチューブ)に挿入して、もう一端をシールすることで被覆する。
 次いで、「工程(d):工程(c)で得られた半透膜を、2価金属イオンを含む溶液と接触させて、半透膜中のアルギン酸溶液をゲル化する工程」では、工程(c)で得られたアルギン酸溶液を封入した半透膜を2価金属イオンを含む溶液と接触させて、半透膜中のアルギン酸溶液をゲル化する。
 工程(d)により得られたデバイスは、生理食塩水等の溶媒で洗浄してもよい。また、培地中で所定期間培養してもよい。
 「工程(e):工程(b)で得られたアルギン酸誘導体の溶液を任意の形状としてゲルを作製する工程」又は「工程(e):工程(b)で得られたアルギン酸誘導体の溶液を任意の容器に入れる、または、任意の表面に置く、工程」は、細胞又は組織(例えば、膵島)が懸濁した、工程(b)で得られたアルギン酸誘導体の溶液を、当該分野で公知の方法またはそれに準ずる方法で、任意の容器や表面等を利用して一定の形に留め、化学架橋の進行によりゲル化させる。このとき、先ず、式(HA-I)又は式(HB-I)のアルギン酸誘導体の溶液と式(HA-II)又は式(HB-II)で表わされるアルギン酸誘導体の溶液とを、各々の化学架橋基の導入率に応じて、適宜各々の用量を混合するようにしてよい。
 任意の容器は、溶液を一定の形状に保持できる容器をいい、例えば、半透膜、ビーカーまたはシャーレが挙げられ、半透膜が好ましい。
 任意の表面は、溶液を一定の形状として載せることのできる表面をいい、例えば半透膜表面、プラスチック表面、またはガラス表面が挙げられ、半透膜表面が好ましい。
 「工程(f):工程(e)で得られた容器中又は表面上で、アルギン酸誘導体の溶液をゲル化する工程」又は「工程(f):工程(c)で得られた半透膜中で、アルギン酸誘導体の溶液をゲル化し、厚さ0.1~5mm(100~5000μm)のゲルを作製する工程」は、任意の容器、表面あるいは半透膜中で保持された溶液を化学架橋によりゲル化させることを意味する。このとき、2価金属イオンを含む溶液と接触させることで、イオン架橋と化学架橋を同時に進めてゲルを作製してもよく、2価金属イオンやその溶液と接触させずに化学架橋のみを進め、ゲルを作製してもよい。
 移植用デバイスに用いられる「2価金属イオン」を含む溶液とは、カルシウムイオン、バリウムイオン、ストロンチウムイオン等を含む溶液が挙げられる。好ましくは、カルシウムイオンまたはバリウムイオンを含む溶液であり、カルシウムイオンを含む溶液であることがより好ましい。
 2価金属イオンを含む溶液は、例えば、2価金属イオンの塩を溶媒に溶解させることにより得ることができる。2価金属イオンの塩としては、塩化カルシウム、塩化バリウム、塩化ストロンチウム等が挙げられる。溶媒としては、例えば、水、生理食塩水、及びHEPES緩衝液が挙げられる。
 いくつかの態様では、2価金属イオンを含む溶液は、カルシウムイオンを含む溶液であり、好ましくは、塩化カルシウムを含む水溶液である。
 2価金属イオンを含む溶液の使用量は、アルギン酸誘導体の使用量や分子量などに応じて適宜調節するのが望ましい。
 移植用デバイスが半透膜を有する場合、デバイス中のハイドロゲルは、アルギン酸誘導体の溶液を半透膜に封入してから、2価金属イオン溶液に接触させることで作製しても、半透膜に封入する前にゲル化させ、その後半透膜中に封入してもどちらでもよい。
 ここで、「接触」とは、アルギン酸誘導体の溶液を封入した半透膜を2価金属イオン溶液に浸漬すること、アルギン酸誘導体の溶液を封入した半透膜に2価金属イオン溶液をかけることなどが挙げられる。
 移植用デバイスに用いられるハイドロゲルとは、水に不溶な三次元の網目構造をもつ高分子及びその水による膨潤体を指すものとする。ここでは、ハイドロゲルのことを単に、ゲルという場合がある。
 ハイドロゲルを調製する時に使用する、高分子の濃度を変化させることにより、このゲルの網目元構造を通過できる分子の分子量を大きく自由に変化させることができる。すなわち、ゲルの網目構造は高分子の濃度の濃い場合にはメッシュが小さく、高分子の濃度が薄い場合にはメッシュが大きくなることが考えられる。網目構造のメッシュが大き過ぎると、抗体等が網目構造内に侵入する。この場合、ゲル内のインスリン分泌細胞又は膵島に対して拒絶反応が起こりやすくなる。拒絶反応はインシュリン等の必要物質の産生を阻害する。
 一般に、ハイドロゲルの材料は、以下のような高分子からなる。例えば、コラーゲン、ヒアルロナン、ゼラチン、フィブロネクチン、エラスチン、テナシン、ラミニン、ビトロネクチン、ポリペプチド、ヘパラン硫酸、コンドロイチン、コンドロイチン硫酸、ケラタン、ケラタン硫酸、デルマタン硫酸、カラギーナン、ヘパリン、キチン、キトサン、アルギン酸塩、アルギン酸誘導体、アガロース、寒天、セルロース、メチルセルロース、カルボキシルメチルセルロース、グリコーゲン及びこれらの誘導体、加えて、フィブリン、フィブリノゲン、トロンビン、及びポリグルタミン酸、ポリ乳酸、ポリグリコール酸、乳酸-グリコール酸共重合体、ビニルアルコール系重合体、ジェランガム、キサンタンガム、ガラクトマンナン、グアガム、ローカストビーンガム及びタラガム等が挙げられる。
 ここで、ハイドロゲルの材料としては、生体適合性、膵島の長期生着・機能維持等の点から、アルギン酸誘導体が好ましい。
 以下、アルギン酸誘導体の各態様についてより詳細に説明する。
1.アルギン酸
 本明細書中、アルギン酸と記載する場合、アルギン酸、アルギン酸エステル、及びそれらの塩(例えば、アルギン酸ナトリウム)からなる群から選択される少なくとも1種のアルギン酸(「アルギン酸類」という場合がある)を意味する。用いられるアルギン酸は、天然由来でも合成物であってもよいが、天然由来であるのが好ましい。好ましく用いられるアルギン酸類は、レッソニア、マクロシスティス、ラミナリア、アスコフィラム、ダービリア、カジメ、アラメ、コンブなどの褐藻類から抽出される生体内吸収性の多糖類であって、D-マンヌロン酸(M)とL-グルロン酸(G)という2種類のウロン酸が直鎖状に重合したポリマーである。より具体的には、D-マンヌロン酸のホモポリマー画分(MM画分)、L-グルロン酸のホモポリマー画分(GG画分)、およびD-マンヌロン酸とL-グルロン酸がランダムに配列した画分(M/G画分)が任意に結合したブロック共重合体である。
 本明細書中、アルギン酸は、アルギン酸を(ALG)として、アルギン酸の任意のカルボキシル基の1つを-COOHとして、(ALG)-COOHと表記する場合がある。
 いくつかの態様では、アルギン酸は、アルギン酸ナトリウムである。アルギン酸ナトリウムは、市販品のアルギン酸ナトリウムを用いることができる。ここで、後述の実施例では、アルギン酸ナトリウムは、下表に記載したA-1、A-2、A-3、B-1、B-2、及びB-3のアルギン酸ナトリウム(発売元 持田製薬株式会社)を用いている。各アルギン酸ナトリウムの1w/w%の水溶液の粘度、重量平均分子量及びM/G比を下記の表に示す。
Figure JPOXMLDOC01-appb-T000074
 前記アルギン酸ナトリウムA-1、A-2、A-3、B-1、B-2、及びB-3の各物性値は、下記の各種方法により測定した。測定方法は、当該方法に限定されるものではないが、測定方法により各物性値が上記のものと異なる場合がある。
[アルギン酸ナトリウムの粘度測定]
 日本薬局方(第16版)の粘度測定法に従い、回転粘度計法(コーンプレート型回転粘度計)を用いて測定した。具体的な測定条件は以下のとおりである。試料溶液の調製は、MilliQ水を用いて行った。測定機器は、コーンプレート型回転粘度計(粘度粘弾性測定装置レオストレスRS600(Thermo Haake GmbH)センサー:35/1)を用いた。回転数は、1w/w%アルギン酸ナトリウム溶液測定時は1rpmとした。読み取り時間は、2分間測定し、開始1分から2分までの平均値とした。3回の測定の平均値を測定値とした。測定温度は20℃とした。
[アルギン酸ナトリウムの重量平均分子量測定]
(1)ゲル浸透クロマトグラフィー(GPC)と、(2)GPC-MALSの2種類の測定法で測定した。測定条件は以下のとおりである。
[前処理方法]
 試料に溶離液を加え溶解後、0.45μmメンブランフィルターろ過したものを測定溶液とした。
(1)ゲル浸透クロマトグラフィー(GPC)測定
[測定条件(相対分子量分布測定)]
 カラム:TSKgel GMPW-XL×2+G2500PW-XL(7.8mm I.D.×300mm×3本)
  溶離液:200mM硝酸ナトリウム水溶液
  流量:1.0mL/min
  濃度:0.05%
  検出器:RI検出器
  カラム温度:40℃
  注入量:200μL
  分子量標準:標準プルラン、グルコース
(2)GPC-MALS測定
[屈折率増分(dn/dc)測定(測定条件)]
 示差屈折率計:Optilab T-rEX
 測定波長:658nm
 測定温度:40℃
 溶媒:200mM硝酸ナトリウム水溶液
 試料濃度:0.5~2.5mg/mL(5濃度)
[測定条件(絶対分子量分布測定)]
 カラム:TSKgel GMPW-XL×2+G2500PW-XL(7.8mm I.D.×300mm×3本)
  溶離液:200mM硝酸ナトリウム水溶液
  流量:1.0mL/min
  濃度:0.05%
  検出器:RI検出器、光散乱検出器(MALS)
  カラム温度:40℃
  注入量:200μL
 本明細書中、アルギン酸、アルギン酸誘導体、架橋アルギン酸、及び架橋アルギン酸の分子量において、単位としてDa(ダルトン)を付記する場合がある。
 アルギン酸類のD-マンヌロン酸とL-グルロン酸の構成比(M/G比)は、主に海藻等の由来となる生物の種類によって異なり、また、その生物の生育場所や季節による影響を受け、M/G比が約0.2の高G型からM/G比が約5の高M型まで高範囲にわたる。アルギン酸類のゲル化能力および生成したゲルの性質は、M/G比によって影響を受け、一般的に、G比率が高い場合にはゲル強度が高くなることが知られている。M/G比は、その他にも、ゲルの硬さ、もろさ、吸水性、柔軟性などにも影響を与える。用いるアルギン酸類および/またはその塩のM/G比は、通常、0.2~4.0であり、より好ましくは、0.4~3.0、さらに好ましくは0.5~3.0である。
 本明細書中、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 本明細書中、用いられる「アルギン酸エステル」、「アルギン酸塩」とは、特に限定されないが、架橋剤と反応させるため、架橋反応を阻害する官能基を有していないことが必要である。アルギン酸エステルとしては、好ましくは、アルギン酸プロピレングリコール、等が挙げられる。
 本明細書中、アルギン酸塩としては、例えば、アルギン酸の1価の塩、アルギン酸の2価の塩が挙げられる。アルギン酸の1価の塩としては、好ましくは、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウム、等が挙げられ、より好ましくは、アルギン酸ナトリウムまたはアルギン酸カリウムであり、特に好ましくは、アルギン酸ナトリウムである。アルギン酸の2価の塩としては、好ましくは、アルギン酸カルシウム、アルギン酸マグネシウム、アルギン酸バリウム、アルギン酸ストロンチウム、等が挙げられる。
 アルギン酸は、高分子多糖類であり、分子量を正確に定めることは困難であるが、一般的に重量平均分子量で1000~1000万、好ましくは1万~800万、より好ましくは2万~300万の範囲である。天然物由来の高分子物質の分子量測定では、測定方法により値に違いが生じうることが知られている。
 例えば、ゲル浸透クロマトグラフィー(GPC)又はゲルろ過クロマトグラフィー(これらを合わせてサイズ排除クロマトグラフィーともいう)により測定した重量平均分子量は、好ましくは10万以上、より好ましくは50万以上であり、また好ましくは、500万以下、より好ましくは300万以下である。その好ましい範囲は、10万~500万であり、より好ましくは15万~300万である。
 また、例えば、GPC-MALS法によれば、絶対重量平均分子量を測定することができる。GPC-MALS法により測定した重量平均分子量(絶対分子量)は、好ましくは1万以上、より好ましくは5万以上、さらに好ましくは6万以上であり、また好ましくは、100万以下、より好ましくは80万以下、さらに好ましくは70万以下、とりわけ好ましくは50万以下である。その好ましい範囲は、1万~100万であり、より好ましくは5万~80万であり、さらに好ましくは6万~70万、とりわけ好ましくは6万~50万である。
 通常、高分子多糖類の分子量を上記のような手法で算出する場合、10%~20%の測定誤差を生じうる。例えば、40万であれば32万~48万、50万であれば40万~60万、100万であれば80万~120万程度の範囲で値の変動が生じうる。
アルギン酸類の分子量の測定は、常法に従い測定することができる。
 分子量測定にゲルろ過クロマトグラフィーを用いる場合の代表的な条件は、後述の本明細書の実施例に記載のとおりである。カラムは、例えば、Superose6 Increase10/300 GLカラム(GEヘルスケアサイエンス社)を用いることができ、展開溶媒として、例えば、0.15mol/L NaClを含む10mmol/Lリン酸緩衝液(pH7.4)を使用することができ、分子量標準としてブルーデキストラン、チログロブリン、フェリチン、アルドラーゼ、コンアルブミン、オブアルブミン、リボヌクレアーゼAおよびアプロチニンを用いることができる。
 本明細書中で用いられるアルギン酸の粘度は、特に限定されないが、1w/w%のアルギン酸類の水溶液として粘度を測定した場合、好ましくは、10mPa・s~1000mPa・s、より好ましくは、50mPa・s~800mPa・sである。
 アルギン酸の水溶液の粘度の測定は、常法に従い測定することができる。例えば、回転粘度計法の、共軸二重円筒形回転粘度計、単一円筒形回転粘度計(ブルックフィールド型粘度計)、円すい-平板形回転粘度計(コーンプレート型粘度計)等を用いて測定することができる。好ましくは、日本薬局方(第16版)の粘度測定法に従うことが望ましい。より好ましくは、コーンプレート型粘度計を用いる。
 アルギン酸類は、褐藻類から抽出された当初は、分子量が大きく、粘度が高めだが、熱による乾燥、精製などの過程で、分子量が小さくなり、粘度は低めとなる。製造工程の温度等の条件管理、原料とする褐藻類の選択、製造工程における分子量の分画などの手法により分子量の異なるアルギン酸類を製造することができる。さらに、異なる分子量あるいは粘度を持つ別ロットのアルギン酸類と混合することにより、目的とする分子量を有するアルギン酸類とすることも可能である。
 本明細書中で用いられるアルギン酸は、いくつかの態様においては、低エンドトキシン処理されていないアルギン酸であり、又は別のいくつかの態様においては、低エンドトキシン処理されたアルギン酸である。低エンドトキシンとは、実質的に炎症、または発熱を惹起しない程度にまでエンドトキシンレベルが低いことをいう。より好ましくは、低エンドトキシン処理されたアルギン酸類であることが望ましい。
 低エンドトキシン処理は、公知の方法またはそれに準じる方法によって行うことができる。例えば、ヒアルロン酸ナトリウムを精製する、菅らの方法(例えば、特開平9-324001号公報など参照)、β1,3-グルカンを精製する、吉田らの方法(例えば、特開平8-269102号公報など参照)、アルギネート、ゲランガム等の生体高分子塩を精製する、ウィリアムらの方法(例えば、特表2002-530440号公報など参照)、ポリサッカライドを精製する、ジェームスらの方法(例えば、国際公開第93/13136号パンフレットなど参照)、ルイスらの方法(例えば、米国特許第5589591号明細書など参照)、アルギネートを精製する、ハーマンフランクらの方法(例えば、Appl Microbiol Biotechnol(1994)40:638-643など参照)等またはこれらに準じる方法によって実施することができる。低エンドトキシン処理は、それらに限らず、洗浄、フィルター(エンドトキシン除去フィルターや帯電したフィルターなど)によるろ過、限外ろ過、カラム(エンドトキシン吸着アフィニティーカラム、ゲルろ過カラム、イオン交換樹脂によるカラムなど)を用いた精製、疎水性物質、樹脂または活性炭などへの吸着、有機溶媒処理(有機溶媒による抽出、有機溶剤添加による析出・沈降など)、界面活性剤処理(例えば、特開2005-036036号公報など参照)など公知の方法によって、あるいはこれらを適宜組合せて実施することができる。これらの処理の工程に、遠心分離など公知の方法を適宜組み合わせてもよい。アルギン酸の種類に合わせて適宜選択するのが望ましい。
 エンドトキシンレベルは、公知の方法で確認することができ、例えば、リムルス試薬(LAL)による方法、エンドスペシー(登録商標)ES-24Sセット(生化学工業株式会社)を用いる方法などによって測定することができる。
 用いられるエンドトキシンの処理方法は特に限定されないが、その結果として、アルギン酸類のエンドトキシン含有量が、リムルス試薬(LAL)によるエンドトキシン測定を行った場合に、500エンドトキシン単位(EU)/g以下であることが好ましく、さらに好ましくは、100EU/g以下、とりわけ好ましくは、50EU/g以下、特に好ましくは、30EU/g以下である。低エンドトキシン処理されたアルギン酸ナトリウムは、例えば、Sea Matrix(登録商標)(持田製薬株式会社)、PRONOVATM UP LVG(FMCBioPolymer)など市販品により入手可能である。
2.アルギン酸誘導体
 本明細書中、新規なアルギン酸誘導体が提供される。本明細書中、アルギン酸誘導体としては、アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカーを介して、Huisgen反応における反応性基又は当該反応性基の相補的な反応性基が導入されたものである。
 より具体的には、下記式(HA-I)又は式(HB-I):
Figure JPOXMLDOC01-appb-C000075
[式(HA-I)又は式(HB-I)中、(ALG)、-L-、Aknの定義は、それぞれ前述の第1の態様中の定義と同じである]で表されるアルギン酸誘導体、及び下記式(HA-II)又は式(HB-II):
Figure JPOXMLDOC01-appb-C000076
[式(HA-II)又は式(HB-II)中、(ALG)、-L-の定義は、それぞれ前述の第1の態様中の定義と同じである]で表されるアルギン酸誘導体である。
 前記の2価のリンカー(-L-又は-L-)は、反応性基と当該反応性基と相補的な反応性基との反応を阻害しない限り、任意の直鎖状基の使用が可能である。具体的には、直鎖のアルキレン基(-(CH-、n=1~30)(当該基中の-CH-は、-C(=O)-、-CONH-、-O-、-NH-、-S-、ベンゼン環、複素環(ピリジン環、ピペリジン環、ピペラジン環、等の5~6員芳香族複素環又は5~6員非芳香族複素環)、等の基で複数個(例えば、1~10個、又は1~5個)置き換えられても良く、当該-CH-の水素原子は、オキソ基(=O)、C1-6アルキル基(例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、等の基)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、等)、水酸基(-OH)、等の基から選択される基で複数個(例えば、1~10個、又は1~5個)置換されていても良い)が挙げられる。
 本明細書における新規なアルギン酸誘導体である式(HA-I)又は式(HB-I)、及び、式(HA-II)又は式(HB-II)で表わされるアルギン酸誘導体は、例えば、下記式の方法により製造することが可能である。
Figure JPOXMLDOC01-appb-C000077
 本明細書の式(HA-I)、式(HA-II)、式(HB-I)又は式(HB-II)で表わされるアルギン酸誘導体の重量平均分子量は、10万Da~300万Daであり、好ましくは30万Da~250万Daであり、より好ましくは50万Da~200万Daである。当該両アルギン酸誘導体の分子量は、後述する方法により求めることができる。
 本明細書中、式(HA-I)又は式(HB-I)のAkn-L-NH-基は、アルギン酸構成単位の全てのカルボキシル基に結合している必要はなく、又、式(HA-II)又は式(HB-II)のN-L-NH-基は、アルギン酸構成単位の全てのカルボキシル基に結合している必要はない。
 本明細書中、式(HA-I)又は式(HB-I)のAkn-L-NH-基を反応性基と言う場合、式(HA-II)又は式(HB-II)のN-L-NH-基が相補的な反応性基となる。又、逆に式(HA-II)又は式(HB-II)のN-L-NH-基を反応性基と言う場合、式(HA-I)又は式(HB-I)のAkn-L-NH-基が相補的な反応性基となる。
 本明細書中、反応性基又は相補的な反応性基の導入率は、各々、0.1%~30%又は1%~30%であり、好ましくは2%~20%であり、より好ましくは3%~10%である。
 前記反応性基又は相補的な反応性基の導入率は、アルギン酸類の繰り返し単位であるウロン酸単糖単位のうち、各反応性基が導入されたウロン酸単糖単位の数を百分率で表した値である。本明細書中、特に断らない限り、アルギン酸誘導体(式(HA-I)、式(HA-II)、式(HB-I)又は式(HB-II))における反応性基又は相補的な反応性基の導入率に用いられる%は、mol%を意味する。各反応性基又は相補的な反応性基の導入率は、後述の実施例に記載の方法により求めることができる。
 本明細書中、式(HA-I)又は式(HB-I)中の環状アルキン基(Akn)及び式(HA-II)又は式(HB-II)中のアジド基が、Huisgen反応によりトリアゾール環を形成し、これにより架橋が形成される。
3.Huisgen反応
 Huisgen反応(1,3-双極子付加環化反応)は、下記式に示される様に末端アジド基及び末端アルキン基を有する化合物間の縮合反応である。反応の結果、二置換1,2,3-トリアゾール環が収率良く得られ、余計な副生成物が生じないという特徴を有している。当該反応は、1,4-又は1,5-二置換トリアゾール環が生成し得ると考えられるが、銅触媒を用いることで位置選択的にトリアゾール環を得ることが可能である。
Figure JPOXMLDOC01-appb-C000078
 又、銅触媒を用いないHuisgen反応がWittigとKrebsにより報告がなされている。即ち、シクロオクチンとフェニルアジドを混合するだけで環化付加体が得られる反応である(下記式中、R=フェニルである)。本反応は、シクロオクチンの三重結合が大きく歪んでいるため、フェニルアジドとの反応による歪みの解消が駆動力となり、反応が自発的に進行することにより、触媒が不要となった。
Figure JPOXMLDOC01-appb-C000079
 以上の様に、Huisgen反応は、置換された1級アジド、2級アジド、3級アジド、芳香族アジド、等を有するアジド化合物、及びアジド基の相補的な反応性基である末端又は環状アルキン基を有する化合物を用いることができる。又、Huisgen反応では、ほぼアジド基及びアルキン基のみが反応することから、反応基質中に種々の官能基(例えば、エステル基、カルボキシル基、アルケニル基、水酸基、アミノ基、等)を置換させることが可能である。
 いくつかの態様では、望ましくない副生成物を生じさせず、銅触媒による細胞毒性を回避させる為に銅触媒を用いずに、短時間、容易に、且つ効率的に1,2,3-トリアゾール環による架橋をアルギン酸分子間に形成させる為に、Huisgen反応のアルキン基としては、例えば、前述の第1の態様に記載した環状アルキン基(シクロオクチル基)を用いる。
 好ましい態様のアルギン酸誘導体の架橋方法においては、当該反応(Huisgen反応)にて望ましくない副生成物がほとんど形成されない。この場合、アルギン酸を用いた新規な形態の生体適合性材料の作製、及びアルギン酸ヒドロゲルの形成において、種々の生物活性分子を取込むこと、又、再建外科用又は遺伝子療法用のアルギン酸ヒドロゲルにて、細胞物質を取込むことが可能となる。
4.架橋アルギン酸
 架橋アルギン酸は、(i)2価の金属イオン結合を介したものと、(ii)化学結合を介したものと、又は(iii)2価の金属イオン結合及び化学結合の両方を介したものがある。何れの架橋アルギン酸は、ゲル状から半固体、場合によってはスポンジ様の形態を形成する特性を有している。
 2価の金属イオン結合を介した架橋アルギン酸は、超高速にて反応が進行し、可逆的であるのに対して、化学結合を介した架橋アルギン酸は、比較的温和な条件でゆっくり反応が進行し、非可逆的である。架橋アルギン酸の物性は、例えば、使用する2価金属イオンが含まれる水溶液(例えば、塩化カルシウム水溶液)の濃度、若しくは、アルギン酸に導入された反応性基の導入率を変化させる等の方法で、調整が可能である。
 前記の架橋反応を利用することで、種々のアルギン酸構造体を作製することが可能となる。例えば、イオン架橋反応により、アルギン酸溶液から瞬時に特定の構造体を作ることができ、当該構造体の構造強化(例えば、長期安定性の獲得、等)の為に、化学結合による架橋反応を利用すること可能である。又、例えば、2価の金属イオン結合及び化学結合の両方を介した架橋アルギン酸構造体において、イオン架橋により取り込まれた2価金属イオンは可逆的に放出されて、化学結合による架橋のみが残った構造体を作ることも可能である。
 なお、好ましい態様のアルギン酸誘導体を用いた架橋アルギン酸構造体は、化学結合による架橋を含むため安定性を有し、アルギン酸ナトリウムを用いたイオン架橋のみの架橋アルギン酸構造体と比較して、形状を長期間維持することができ、有利である。
 ある態様の架橋アルギン酸は、前記式(HA-I)及び前記式(HA-II)のアルギン酸誘導体を混合してHuisgen反応を行うことにより、得ることができる。また、ある態様の架橋アルギン酸は、前記式(HB-I)及び前記式(HB-II)のアルギン酸誘導体を混合してHuisgen反応を行うことにより、得ることができる。
 ある態様の架橋アルギン酸は、化学架橋(アルキン基及びアジド基から形成されるトリアゾール環による架橋)を介して三次元の網目構造を形成する。好ましいアルギン酸誘導体は、架橋後の架橋アルギン酸の安定性が改善したものである。
 いくつかの態様の架橋アルギン酸は、第1のアルギン酸の任意のカルボキシル基と第2のアルギン酸の任意のカルボキシル基間が下記式(HA-III-L)又は式(HB-III-L):
Figure JPOXMLDOC01-appb-C000080
[式(HA-III-L)又は式(HB-III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-、-L-、及びXは、それぞれ前記第1の態様中の定義と同じである]を介してアミド結合した架橋アルギン酸である。
 いくつかの態様にて、架橋アルギン酸を調製する際の、式(HA-I)又は式(HB-I)のアルギン酸誘導体と、式(HA-II)又は式(HB-II)のアルギン酸誘導体の混合比は、式(HA-I)又は式(HB-I)の誘導体と式(HA-II)又は式(HB-II)の誘導体の重量比にて、例えば、1~1.5:1、好ましくは、1.2~1.5:1、または1~1.2:1、より好ましくは1:1である。
 いくつかの態様にて、架橋アルギン酸を調製する際の、式(HA-II)又は式(HB-II)のアルギン酸誘導体と、式(HA-I)又は式(HB-I)のアルギン酸誘導体の混合比は、式(HA-II)又は式(HB-II)の誘導体と式(HA-I)又は式(HB-I)の誘導体の重量比にて、例えば、1~4.0:1、好ましくは1.5~4.0:1、または1.2~1.5:1、または1~1.2:1、より好ましくは1:1である。
 いくつかの態様にて、架橋アルギン酸を調製する際の、式(HA-I)又は式(HB-I)のアルギン酸誘導体と、式(HA-II)又は式(HB-II)のアルギン酸誘導体の混合比は、より好ましくは式(HA-I)又は式(HB-I)のアルギン酸誘導体と式(HA-II)又は式(HB-II)のアルギン酸誘導体の反応性基の導入率(mol%)比にて、例えば、1~1.5:1、好ましくは、1.2~1.5:1、または1~1.2:1、より好ましくは1:1である。
 いくつかの態様にて、架橋アルギン酸を調製する際の、式(HA-II)又は式(HB-II)のアルギン酸誘導体と、式(HA-I)又は式(HB-I)のアルギン酸誘導体の混合比は、より好ましくは式(HA-II)又は式(HB-II)のアルギン酸誘導体と式(HA-I)又は式(HB-I)のアルギン酸誘導体の反応性基の導入率(mol%)比にて、例えば、1~4.0:1、好ましくは1.5~4.0:1、または1.2~1.5:1、または1~1.2:1、より好ましくは1:1である。
 尚、前記混合比において、式(HA-I)又は式(HB-I)のアルギン酸誘導体を式(HA-II)又は式(HB-II)のアルギン酸誘導体に、式(HA-II)又は式(HB-II)のアルギン酸誘導体を式(HA-I)又は式(HB-I)の誘導体に、それぞれ置き換えることも可能である。
 架橋アルギン酸は、アルギン酸の構成単位の全てのカルボキシル基が上記式(HA-III-L)又は式(HB-III-L)の架橋を有している必要はない。架橋アルギン酸における、上記式(HA-III-L)又は式(HB-III-L)で表わされる架橋の導入率(架橋率とも言う)は、例えば、0.1~80%、0.3~60%、0.5~30%、または1.0~10%の範囲である。
 架橋アルギン酸を得るためのHuisgen反応における式(HA-I)、式(HA-II)、式(HB-I)又は式(HB-II)のアルギン酸誘導体の濃度は、通常1~500mg/mLであり、好ましくは5~100mg/mLの範囲である。
 Huisgen反応の反応温度は、通常、外温4~60℃であり、好ましくは外温15~40℃の範囲である。
 架橋アルギン酸(ヒドロゲル)を形成させる為の撹拌時間は、例えば、数秒~24時間、数秒~12時間、数秒~30分間、又は、数秒~10分間である。
 Huisgen反応に用いる反応溶媒又は反応溶液は、特に限定はされないが、例えば、水道水、純水(例えば、蒸留水、イオン交換水、RO水、RO-EDI水、等)、超純水、細胞培養用培地、リン酸緩衝生理食塩水(PBS)、生理食塩水、及びHEPES緩衝液等が挙げられ、好ましくは超純水である。
 いくつかの態様の架橋アルギン酸は、架橋としてHuisgen反応により形成されるトリアゾール環による化学架橋、及びカルシウムイオンにより部分的に形成されるイオン架橋を含む、架橋アルギン酸である。
5.架橋アルギン酸構造体
 架橋アルギン酸構造体は、前記アルギン酸誘導体に架橋反応を施すことを含む方法により得ることができる。例えば、以下の方法によって調製することが可能だが、これらに限定されるものでない。
[混和法]
 式(HA-I)又は式(HB-I)のアルギン酸誘導体及び式(HA-II)又は式(HB-II)のアルギン酸誘導体を混和して得られるアルギン酸誘導体の混合溶液を、2価金属イオンを含む溶液中に滴下することで、化学架橋(Huisgen反応によりアルキン基及びアジド基から形成されるトリアゾール環による架橋)及びイオン架橋(2価金属イオンにより部分的に形成される架橋)が形成された、特定の構造体である、架橋アルギン酸構造体を得ることができる。
[コーティング法]
 式(HA-I)又は式(HB-I)のアルギン酸誘導体を含む溶液を、2価金属イオンを含む溶液中に滴下する等して部分的に架橋された特定の構造体が得られる。前記で得られた、例えばゲル等の構造体を、前述の式(HA-II)又は式(HB-II)のアルギン酸誘導体を含む溶液に添加することにより、前記構造体の表面等にさらなる架橋反応(Huisgen反応)を施すことにより、架橋アルギン酸構造体を得ることができる。尚、この方法は、式(HA-I)又は式(HB-I)のアルギン酸誘導体を式(HA-II)又は式(HB-II)のアルギン酸誘導体に、式(HA-II)又は式(HB-II)のアルギン酸誘導体を式(HA-I)又は式(HB-I)のアルギン酸誘導体に、それぞれ置き換えて実施することも可能である。
 前記方法にて用いる2価金属イオンとしては、特に限定されないが、例えば、カルシウムイオン、マグネシウムイオン、バリウムイオン、ストロンチウムイオン、亜鉛イオン等が挙げられ、好ましくはカルシウムイオンである。
 前記方法にて用いるカルシウムイオンを含む溶液としては、特に限定されないが、例えば、塩化カルシウム水溶液、炭酸カルシウム水溶液、グルコン酸カルシウム水溶液、等の水溶液が挙げられ、好ましくは塩化カルシウム水溶液である。
 前記方法にて用いるカルシウムイオンを含む溶液のカルシウムイオン濃度は、特に限定されないが、例えば、1mM~1Mが挙げられ、好ましくは、5mM~500mMであり、より好ましくは、10mM~300mMである。
 前記方法にて用いる溶媒または溶液も特に限定されないが、例えば、水道水、純水(例えば、蒸留水、イオン交換水、RO水、RO-EDI水、等)、超純水、細胞培養用培地、リン酸緩衝生理食塩水(PBS)、生理食塩水、及びHEPES緩衝液等が挙げられ、好ましくは超純水である。
 特定の架橋アルギン酸構造体としては、例えば、繊維状構造体、ファイバー、ビーズ、ゲル、略球形のゲル、等が挙げられる。好ましい架橋アルギン酸構造体は、安定性が改善したものである。又、架橋アルギン酸構造体は、その内部に内容物を保持する能力(内容物保持性)を有していてもよい。
 アルギン酸ゲルの物性は、硬さ、弾性、反発力、断裂力、破断時応力、等の物性値により調節することが可能である。
6. アルギン酸誘導体、架橋アルギン酸構造体の生体適合性
 本明細書において、アルギン酸誘導体、又は架橋アルギン酸構造体は、生体適合性を有する。本明細書において、生体適合性とは、生体用材料(ここでは、例えば、式(HA-I)及び式(HA-II)で表わされるアルギン酸誘導体、及び当該両アルギン酸誘導体を用いて製造された架橋アルギン酸構造体のことを言う)と生体間の相互作用、前記生体用材料に隣接する組織の局所的反応、又は全身的反応等の反応を引き起こさない性質を、生体適合性(biocompatibility)を有するという。
 本明細書において、アルギン酸誘導体、又は架橋アルギン酸構造体の生体適合性に関しては、後述する生体適合性に関する実施例にて確認する。
7.架橋アルギン酸構造体の安定性
 架橋アルギン酸構造体の安定性は、例えば、ゲル安定性を測定すること、透過性はゲル透過率を測定することなどで確認することができる。
[ゲル安定性の測定法]
 容器に入れた架橋アルギン酸構造体ゲルにリン酸緩衝生理食塩水(PBS)を添加し、PBS中に漏出したアルギン酸の濃度(μg/mL)を測定する。測定したアルギン酸濃度を、架橋アルギン酸構造体ゲルを分解することで得た全アルギン酸濃度で除した値を百分率で示した値を、崩壊率とする。ゲル安定性は、具体的には、後述の実施例に記載の方法により求めることができる。
 本明細書中、架橋アルギン酸構造体のゲル崩壊率は、好ましくは0%~90%であり、より好ましくは0%~70%であり、更に好ましくは0%~50%である。架橋アルギン酸構造体の安定性は、水溶液中に漏出するアルギン酸の濃度が低いほど、すなわちゲル崩壊率が低いほど、安定性が高いことを意味する。
[ゲル透過率の測定法]
 フルオレセインイソチオシアナート-デキストランを内包した架橋アルギン酸構造体ゲルを作製し、容器に入れた前記ゲルに生理食塩水を添加し、生理食塩水中に漏出したデキストラン濃度を測定する。測定したデキストランの濃度を、フルオレセインイソチオシアネート-デキストラン内包架橋アルギン酸構造体ゲルを分解することで得た全デキストラン濃度で除した値を百分率で示した値がゲル透過率である。ゲル透過率は、具体的には、後述の実施例に記載の方法により求めることができる。
 架橋アルギン酸の生理食塩水添加24時間後のゲル透過率は、例えば、分子量200万のデキストランを内包した場合、好ましくは0%~90%であり、より好ましくは0%~70%であり、更に好ましくは0%~50%である。又、分子量15万のデキストランを内包した場合、例えば、当該架橋アルギン酸構造体ゲルの使用目的がたんぱく質や抗体の放出・産生であるならば、好ましくは1%~100%であり、より好ましくは10%~100%であり、更に好ましくは30%~100%である。又、使用目的が免疫隔壁であるならば、好ましくは0%~90%であり、より好ましくは0%~70%であり、更に好ましくは0%~50%である。
 架橋アルギン酸構造体の透過性は、透過率が低いほど、内容物やゲル外物質の透過性が低いことを意味し、透過率が高いほど、内容物やゲル外物質の透過性が高いことを意味する。
 ゲルの透過率は、使用するアルギン酸の分子量、濃度、アルギン酸に導入する架橋基の種類や導入率、ゲル化に用いる2価金属イオンの種類や濃度、またはこれらの組み合わせによって調整することが可能である。
[内容物が内包した架橋アルギン酸構造体ゲルの調製方法]
 例えば、内容物としてフルオレセインイソチオシアナート-デキストランを内包した架橋アルギン酸構造体ゲルは以下の方法にて調製できる。
(1)式(HA-I)又は式(HB-I)で表わされるアルギン酸誘導体の溶液とフルオレセインイソチオシアナート-デキストラン溶液を混和する。
(2)(1)で得られた混合溶液に、式(HA-II)又は式(HB-II)で表わされるアルギン酸誘導体の溶液を混和する。
((1)の式(HA-I)又は式(HB-I)を式(HA-II)又は式(HB-II)に変更する場合、(2)の式(HA-II)又は式(HB-II)は式(HA-I)又は式(HB-I)に変更することになる)
(3)(2)で得られた混合溶液を、カルシウムイオンを含む溶液中に滴下し得られたゲルが、溶液中で、化学架橋及びイオン架橋を形成することにより、フルオレセインイソチオシアナート-デキストラン内包の架橋アルギン酸構造体ゲルが得られる。
8.アルギン酸誘導体の合成方法
  式(HA-I)又は式(HA-II)で表わされるアルギン酸誘導体は、PCT/JP2019/023478(2019年6月13日出願)を参照することで製造することができる。
9.アルギン酸誘導体、架橋アルギン酸構造体の用途
 アルギン酸誘導体は、前述の通り、移植用デバイスを作製するのに用いることができる。移植用デバイス以外にも、アルギン酸誘導体は、食品、医療、化粧品、繊維、製紙などの幅広い分野で、従来のアルギン酸の代わりに用いることができる。アルギン酸誘導体または架橋アルギン酸構造体の好ましい用途としては、具体的には、創傷被覆材、術後癒着防止材、薬剤徐放用基材、細胞培養用基材、細胞移植用基材等の医療用材料が挙げられる。
 医療用材料として用いる場合の架橋アルギン酸構造体の形状として、チューブ状、繊維状、ファイバー、ビーズ、ゲル、略球形のゲル等が挙げられ、ビーズ、ゲルまたは略球形のゲルとすることが好ましく、略球形のゲルとすることがより好ましい。
 アルギン酸誘導体を用いる特に好ましい態様の移植用デバイスは、生体適合性や安定性に優れ、細胞毒性も少なく、移植部位における癒着や炎症もほとんどなく、(半透膜の有無に関わらず)ゲルの溶解が少なく形状が長期間維持され、長期間にわたり、血糖降下作用を持続させ、血糖を調節することが可能となる。
 本発明における治癒率とは、糖尿病患者又は糖尿病モデル動物に対し、インスリン分泌細胞又は膵島が封入されたハイドロゲル、又は、当該ハイドロゲルを含む移植用デバイスを移植し、移植後の所定期間経過時において、移植例数に対する治療例数の割合で表される。
 例えば、実施例7の方法で得た複数の糖尿病モデルマウスに対し、インスリン分泌細胞又は膵島が封入されたハイドロゲル、又は、当該ハイドロゲルを含む移植用デバイスを移植し、移植後の所定期間中において、血糖値が300mg/dL以下(但し、期間中3回までは300mg/dLを超えることを許容する)である場合を治癒マウスとし、糖尿病モデルマウスに対する治癒マウスの割合で表される。
 治癒率は、例えば、移植後2週間で20%以上、好ましくは35%以上、より好ましくは50%以上である。または、移植後1ヶ月で20%以上、好ましくは35%以上、より好ましくは50%以上である。
 本発明における酸素透過率とは、インスリン分泌細胞又は膵島が封入されたハイドロゲル、又は、当該ハイドロゲルを含む移植用デバイスの表面酸素濃度を100%とした場合の中心部酸素濃度の割合で表される。中心部とは、平板型ゲルにあっては縦方向、横方向及び厚さ方向のいずれも略中央部を意味する。
 酸素透過率は、前記ハイドロゲル又はデバイスを測定することにより算出してもよく、計算により算出してもよい。測定により算出する場合は、例えばPreSens社製ニードル式酸素計(OXY-1 ST trace)を使用し、表面酸素濃度と中心部酸素濃度の測定値から算出することができる。
 また、酸素透過率を計算により算出する場合、まず、ハイドロゲルを空間上の直交座標系に配置した時の酸素濃度の反応拡散方程式として以下の通りとなる。
Figure JPOXMLDOC01-appb-M000081
そして、QO2X = rO2 (0次反応)とし、定常状態( (∂C/∂t ) = 0 )における酸素濃度分布を求めると、以下の式で表される。
Figure JPOXMLDOC01-appb-M000082
そして、x方向をx=iΔx、y方向をy=jΔy、 z方向をz=kΔzで等分割し、濃度をC(x,y,z)=Ci,j,kの節点値で差分化することにより、次の式を得、かかる式により算出する。ただし、Δx = Δy = Δz = Δとする。
Figure JPOXMLDOC01-appb-M000083
 酸素透過率は、0%でなければよく、例えば、1~100%、好ましくは10~100%、より好ましくは25~100%、更に好ましくは50~100%、特に好ましくは75~100%である。また、好ましくは25~50%、より好ましくは50~75%、特に好ましくは75~100%である。
 本発明における物質透過率とは、インスリン分泌細胞又は膵島が封入されたハイドロゲル、又は、当該ハイドロゲルを含む移植用デバイスに所定の物質を封入し、攪拌した溶液中で所定時間置いた後の前記ハイドロゲル又は移植用デバイスからの物質透過率を意味する。物質としては、グルコース、インスリン、等が挙げられる。
 例えば、ヒトインスリン500mg又はグルコース250mgをハイドロゲル又は移植用デバイスに封入し、室温の0.01Tween20含有生理食塩水40mL中で24時間攪拌した場合のインスリン透過率又はグルコース透過率が挙げられる。
インスリン透過率は、50%以上、好ましくは70%以上、より好ましくは80%以上である。また、グルコース透過率は、50%以上、好ましくは70%以上、より好ましくは80%以上である。
 本発明のハイドロゲルは、所定条件で振とうしても破断、分解又は溶解が無いか少ない。例えば、縦10mm×横20mm×厚さ0.1~5mmもしくは約20~1000mmのハイドロゲル、縦10mm×横20mm×厚さ100μm以上500μm未満もしくは約20mm以上~100mm未満のハイドロゲル、または、縦10mm×横20mm×厚さ250μmもしくは約50mmのハイドロゲルを3枚用意し、15mLコニカルチューブ中の37℃の生理食塩水溶液12mL中に加え、振とう培養器(例えば、中型恒温振とう培養機(タイテック株式会社、バイオシェーカー(登録商標) BR-43FL・MR))を使用し、37℃で維持したまま往復振とうの方式で振幅25mm、振とう速度180rpmの条件で振とうした時に、破断、分解又は溶解が無いか少ない。
 ハイドロゲルの分解又は溶解が少ないとは、例えば、ハイドロゲル中のアルギン酸を100%とし、前記条件で振とうした時に溶液中に溶出したアルギン酸の割合を崩壊率とした場合に、崩壊率が40%以下、好ましくは20%以下、より好ましくは10%以下、の場合をいう。特に、前記条件で24時間振とうした時に溶液中に溶出したアルギン酸の割合を崩壊率とした場合に、崩壊率が30%以下、好ましくは20%以下、より好ましくは10%以下、の場合をいう。また、前記条件で96時間振とうした時に溶液中に溶出したアルギン酸の割合を崩壊率とした場合に、崩壊率が30%以下、好ましくは20%以下、より好ましくは10%以下、の場合をいう。
 本発明のハイドロゲルは、所定条件で振とうしてもハイドロゲル中の細胞が脱落しないか脱落が少ない。例えば、縦10mm×横20mm×厚さ0.1~5mmもしくは約20~1000mmのハイドロゲル、縦10mm×横20mm×厚さ100μm以上500μm未満もしくは約20mm以上~100mm未満のハイドロゲル、または、縦10mm×横20mm×厚さ250μmもしくは約50mmのハイドロゲル(いずれの場合も細胞が封入されている)を3枚用意し、15mLコニカルチューブ中の37℃の生理食塩水溶液12mL中に加え、振とう培養器(例えば、中型恒温振とう培養機(タイテック株式会社、バイオシェーカー(登録商標) BR-43FL・MR))を使用し、37℃で維持したまま往復振とうの方式で振幅25mm、振とう速度180rpmの条件で振とうした時に、細胞のハイドロゲルからの脱落が無いか、脱落が少ない。
 細胞のハイドロゲルからの脱落が少ないとは、例えば、試験開始時のハイドロゲル中の細胞数を100%とし、前記条件で振とうした時にハイドロゲルから脱落する細胞の割合を脱落率とした場合に、脱落率が30%以下、好ましくは20%以下、より好ましくは10%以下、の場合をいう。特に、前記条件で24時間振とうした時の脱落率が、30%以下、好ましくは20%以下、より好ましくは10%以下、の場合をいう。
 なお、本明細書に記載した全ての文献及び刊行物は、その目的にかかわらず参照によりその全体を本明細書に組み込むものとする。また、本明細書は、日本特許出願No.2019-122063(2019年6月28日出願)及び国際特許出願No.PCT/JP2020/25324(2020年6月26日出願)の特許請求の範囲、明細書、及び図面の開示内容を参照して組み込むものとする。
 また、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を実施できる。発明を実施するための最良の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。
 次に、本発明をさらに詳細に説明するために実施例、試験例をあげるが、これらの例は単なる実施例、試験例であって、本発明を限定するものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。
 核磁気共鳴スペクトル(NMR)の測定には、JEOL JNM-ECX400 FT-NMR(日本電子)を用いた。液体クロマトグラフィー-質量分析スペクトル(LC-Mass)は以下の方法で測定した。[UPLC]Waters AQUITY UPLCシステムおよびBEH C18カラム(2.1mm×50mm、1.7μm)(Waters)を用い、アセトニトリル:0.05%トリフルオロ酢酸水溶液=5:95(0分)~95:5(1.0分)~95:5(1.6分)~5:95(2.0分)の移動相およびグラジエント条件を用いた。
 H-NMRデータ中、NMRシグナルのパターンで、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、mはマルチプレット、brはブロード、Jはカップリング定数、Hzはヘルツ、CDClは重クロロホルム、DMSO-Dは重ジメチルスルホキシド、DOは重水を意味する。H-NMRデータ中、水酸基(OH)、アミノ基(NH)、カルボキシル基(COOH)のプロトン等、ブロードバンドであるため確認ができないシグナルについては、データに記載していない。
 LC-Massデータ中、Mは分子量、RTは保持時間、[M+H],[M+Na]は分子イオンピークを意味する。
 実施例中の「室温」は、通常約0℃から約35℃の温度を示すものとする。
 実施例中の反応性置換基導入率(モル%)は、H-NMR(DO)から算出されたアルギン酸を構成する単糖(グルロン酸およびマンヌロン酸)単位のモル数に対する導入された反応性置換基のモル数の割合を示すものとする。
 実施例において、反応性基又は相補的な反応性基が導入される前のアルギン酸ナトリウムは、前記表10に記される物性値を示すアルギン酸ナトリウムを用いた。
 表12には、(実施例1)~(実施例4-2)で得られた、反応性基が導入されたアルギン酸誘導体(実施例1a、実施例2a)の、物性値(具体的には、反応性基導入率(mol%)、分子量、及び重量平均分子量(万Da))を示す。
(実施例1)
 ジベンゾシクロオクチン-アミノ基導入アルギン酸(実施例1a、実施例1b、実施例1c、実施例1d、及び実施例1e)の合成:
Figure JPOXMLDOC01-appb-C000084
(実施例1a)ジベンゾシクロオクチン-アミノ基導入アルギン酸(EX1-(I)-A-2a)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(43.6 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(111.65 mg)、1モル濃度-重曹水(403.5 μL)を加えた。この溶液に、市販のジベンゾシクロオクチン-アミン[CAS:1255942-06-3](EX1-SM、83.62 mg)のエタノール溶液(2 mL)を滴下し、室温で18時間攪拌した。塩化ナトリウム(400 mg)を加えた後、エタノール(87.2 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX1-(I)-A-2a(376 mg)を淡黄色固体として得た。
 反応性置換基(ジベンゾシクロオクチン-アミノ基)の導入率は6.9mol%(NMR積分比)であった。
(実施例1b)ジベンゾシクロオクチン-アミノ基導入アルギン酸(EX1-(I)-A-2b)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(120 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(330 mg)、1モル濃度-重曹水(300 μL)を加えた。この溶液に、市販のジベンゾシクロオクチン-アミン[CAS:1255942-06-3](EX1-SM、80 mg)のエタノール溶液(12 mL)を滴下し、30℃で4時間攪拌した。塩化ナトリウム(1.2 g)を加えた後、エタノール(240 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX1-(I)-A-2b(1.19 g)を白色固体として得た。
 当該白色固体を80 mLの水に溶解し、凍結乾燥後、40℃で23時間乾燥して、標記化合物EX1-(I)-A-2b(1.2 g)を白色アモルファスとして得た。
 反応性置換基(ジベンゾシクロオクチン-アミノ基)の導入率は5.0mol%(NMR積分比)であった。
(実施例1c)ジベンゾシクロオクチン-アミノ基導入アルギン酸(EX1-(I)-A-2c)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(120 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(167 mg)、1モル濃度-重曹水(151 μL)を加えた。この溶液に、市販のジベンゾシクロオクチン-アミン[CAS:1255942-06-3](EX1-SM、42 mg)のエタノール溶液(12mL)を滴下し、30℃で3.5時間攪拌した。塩化ナトリウム(1.2 g)を加えた後、エタノール(240 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX1-(I)-A-2c(1.2 g)を白色固体として得た。
 当該白色固体を80m Lの水に溶解し、凍結乾燥後、40℃で23時間乾燥して、標記化合物EX1-(I)-A-2c(1.15 g)を白色アモルファスとして得た。
 反応性置換基(ジベンゾシクロオクチン-アミノ基)の導入率は2.3mol%(NMR積分比)であった。
(実施例1d)ジベンゾシクロオクチン-アミノ基導入アルギン酸(EX1-(I)-A-2d)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(201 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(281 mg)、1モル濃度-重曹水(253 μL)を加えた。この溶液に、市販のジベンゾシクロオクチン-アミン[CAS:1255942-06-3](EX1-SM、70 mg)のエタノール溶液(20 mL)を滴下し、32℃で3時間攪拌した。塩化ナトリウム(2.01 g)を加えた後、エタノール(402 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX1-(I)-A-2d(1.94 g)を白色固体として得た。
 当該白色固体を130 mLの水に溶解し、凍結乾燥後、室温で2時間乾燥して、標記化合物EX1-(I)-A-2d(1.84 g)を白色アモルファスとして得た。
 反応性置換基(ジベンゾシクロオクチン-アミノ基)の導入率は2.4mol%(NMR積分比)であった。
(実施例1e)ジベンゾシクロオクチン-アミノ基導入アルギン酸(EX1-(I)-A-2e)の合成:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(250 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(307 mg)、1モル濃度-重曹水(277 μL)を加えた。この溶液に、市販のジベンゾシクロオクチン-アミン[CAS:1255942-06-3](EX1-SM、77 mg)のエタノール溶液(25 mL)を加え、32℃で3時間攪拌した。反応液に、塩化ナトリウム(2.5 g)を加えた後、エタノール(500 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX1-(I)-A-2e(2.42 g)を白色固体として得た。
 当該白色固体を160 mLの水に溶解し、凍結乾燥後、室温で2時間乾燥して、標記化合物EX1-(I)-A-2e(2.34 g)を白色アモルファスとして得た。
 反応性置換基(ジベンゾシクロオクチン-アミノ基)の導入率は2.2mol%(NMR積分比)であった。
(実施例2)
 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(実施例2a、実施例2b、実施例2c、実施例2d、及び実施例2e)の合成:
Figure JPOXMLDOC01-appb-C000085
<工程1>メチル 4-(2-((tert-ブトキシカルボニル)アミノ)エトキシ)ベンゾエート(化合物EX2-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000086
 トリフェニルホスフィン(0.96 g)のテトラヒドロフラン(2.59 mL)溶液に、氷冷撹拌下、アゾジカルボン酸ジエチル(40%トルエン溶液,1.92 mL)溶液を加え、室温で20分間撹拌した。この溶液に対し、氷冷撹拌下、市販の4-ヒドロキシ安息香酸 メチル[CAS:99-76-3](化合物EX2-SM、0.37 g)及び2-(tert-ブトキシカルボニル)エタノールアミン[CAS:26690-80-2](0.39 g)のテトラヒドロフラン(1.1 mL)溶液を加え、室温で17時間撹拌した。反応液を減圧下濃縮し、残留物をシリカゲルカラムクロマトグラフィー(5%酢酸エチル/n-ヘプタン~40%酢酸エチル/n-ヘプタン)により精製し、化合物1と化合物2の混合物を得た。この混合物をメチル tert-ブチルエーテル(20 mL)に溶解させ、1規定-水酸化ナトリウム水溶液(5 mL)で2回、飽和食塩水(5 mL)で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥させた後、減圧下で溶媒を留去し、化合物EX2-IM-1(0.45 g)をピンク色のオイル状物質として得た。
NMRデータ(CDCl)(δ:ppm):7.98 (2H, d, J = 8.8 Hz), 6.90 (2H, d, J = 8.8 Hz), 4.97 (1H, br s), 4.07 (2H, t, J = 5.2 Hz), 3.88 (3H, s), 3.56 (2H, q, J = 5.2 Hz), 1.45 (9H, s)
<工程2>4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド塩酸塩(化合物EX2-IM-3)の合成:
Figure JPOXMLDOC01-appb-C000087
 (実施例2)<工程1>で得られた化合物EX2-IM-1(0.44 g)のメタノール(4.4 mL)溶液に水酸化リチウム一水和物(0.25 g)を加え、60℃で3時間30分撹拌した。反応液に1規定-塩酸(5 mL)を加え、酢酸エチル(10 mL)で3回抽出した。有機層を水(5 mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥させ、減圧下で溶媒を留去した。残留物をアセトニトリル(4.4 mL)に溶解させ、3-アジドプロパン-1-アミン[CAS:88192-19-2](0.15 g)とO-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(0.57 g)を加えた。続いて、氷冷撹拌下、N,N-ジイソプロピルエチルアミン(0.52 mL)を加え、室温で5時間撹拌した。反応液に対し水(10 mL)を加え、酢酸エチル(15 mL)で3回抽出し、有機層を無水硫酸ナトリウムで乾燥させ、減圧下で溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(16%酢酸エチル/n-ヘプタン~100%酢酸エチル)により精製し、化合物EX2-IM-2(0.71 g)を含む画分を得た。
 化合物EX2-IM-2を含む画分(0.71 g)に対し、4規定-塩化水素/1,4-ジオキサン(4.9 mL)を加え、室温で20分間撹拌した。反応液にジイソプロピルエーテルを加えた後、析出物を濾過することで、標記化合物EX2-IM-3(0.49 g)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm):7.60 (2H, d, J = 8.8 Hz), 6.93 (2H, d, J = 8.8 Hz), 4.19 (2H, t, J = 4.8 Hz), 3.31-3.29 (6H, m), 1.77-1.71 (2H, m).LC-MS:M(free amine)=263、RT=0.54(分)、[M+H]=264
(実施例2a) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(化合物EX2-(II)-A-2a)の合成:
Figure JPOXMLDOC01-appb-C000088
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(19.6 mL)に、氷冷撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(50.19 mg)、(実施例2)<工程2>で得られた化合物EX2-IM-3(54.37 mg)、1モル濃度-重曹水(181.4 μL)を加え、室温で5時間攪拌した。塩化ナトリウム(200 mg)を加えた後、エタノール(39.2 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX2-(II)-A-2a(198 mg)を白色固体として得た。
 反応性置換基(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基)の導入率は6.1mol%(NMR積分比)であった。
(実施例2b) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(化合物EX2-(II)-A-2b)の合成:
Figure JPOXMLDOC01-appb-C000089
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(120 mL)に、氷冷撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(330 mg)、(実施例2)<工程2>で得られた化合物EX2-IM-3(90 mg)、1モル濃度-重曹水(450 μL)を加え、30℃で4時間攪拌した。塩化ナトリウム(1.2 g)を加えた後、エタノール(240 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX2-(II)-A-2b(1.22 g)を白色固体として得た。
当該白色固体を80 mLの水に溶解し、凍結乾燥後、40℃で23時間乾燥して、標記化合物EX3-(II)-A-2b(1.19 g)を白色アモルファスとして得た。
 反応性置換基(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基)の導入率は4.9mol%(NMR積分比)であった。
(実施例2c) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(化合物EX2-(II)-A-2c)の合成:
Figure JPOXMLDOC01-appb-C000090
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(120 mL)に、氷冷撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(167 mg)、(実施例2)<工程2>で得られた化合物EX2-IM-3(45 mg)、1モル濃度-重曹水(227 μL)を加え、30℃で3.5時間攪拌した。塩化ナトリウム(1.2 g)を加えた後、エタノール(240 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX2-(II)-A-2c(1.22 g)を白色固体として得た。
当該白色固体を80 mLの水に溶解し、凍結乾燥後、40℃で22時間乾燥して、標記化合物EX2-(II)-A-2c(1.15 g)を白色アモルファスとして得た。
 反応性置換基(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基)の導入率は2.3mol%(NMR積分比)であった。
(実施例2d) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(化合物EX2-(II)-A-2d)の合成:
Figure JPOXMLDOC01-appb-C000091
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(220 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(307 mg)、(実施例2)<工程2>で得られた化合物EX2-IM-3(83 mg)、1モル濃度-重曹水(416 μL)を加え、32℃で3時間攪拌した。塩化ナトリウム(2.2 g)を加えた後、エタノール(440 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX2-(II)-A-2d(2.13 g)を白色固体として得た。
 当該白色固体を130 mLの水に溶解し、凍結乾燥後、室温で2時間乾燥して、標記化合物EX2-(II)-A-2d(1.99 g)を白色アモルファスとして得た。
 反応性置換基(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基)の導入率は2.3mol%(NMR積分比)であった。 
(実施例2e) 4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基導入アルギン酸(化合物EX2-(II)-A-2e)の合成:
Figure JPOXMLDOC01-appb-C000092
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(270 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(377 mg)、(実施例2)<工程2>で得られた化合物EX2-IM-3(102 mg)、1モル濃度-重曹水(511 μL)を加え、32℃で3時間攪拌した。反応液に、塩化ナトリウム(2.7 g)を加えた後、エタノール(540 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX2-(II)-A-2e(2.60 g)を白色固体として得た。
 当該白色固体を160 mLの水に溶解し、凍結乾燥後、室温で2時間乾燥して、標記化合物EX2-(II)-A-2e(2.56 g)を白色アモルファスとして得た。
 反応性置換基(4-(2-アミノエトキシ)-N-(3-アジドプロピル)ベンズアミド基)の導入率は2.4mol%(NMR積分比)であった。
(実施例3)
 N-(4-(アミノエチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(実施例3a、実施例3b、及び実施例3c)の合成:
Figure JPOXMLDOC01-appb-C000093
<工程1> tert-ブチル(4-(4((2,2,2-トリフルオロアセトアミド)メチル)ベンジル)カルバメート(化合物EX3-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000094
 文献公知の方法(Bioorganic & Medicinal Chemistry(2003)11:4189-4206)を参考に、1,4-ビス(アミノメチル)ベンゼン[CAS:539-48-0]から合成したtert-ブチル(4-(アミノエチル)ベンジル)カルバメート[CAS:108468-80-4](EX3-SM1、0.67 g)、トリエチルアミン(0.39 mL)及びメタノール(6.67 mL)の混合物に対し、氷冷撹拌下、トリフルオロ酢酸エチル(0.44 mL)を滴下した。反応混合物を室温に昇温し、同温で5時間撹拌した。反応を水(10 mL)で停止し、酢酸エチル(10mL)で3回抽出した。回収した有機層を飽和食塩水(5 mL)で洗浄し、無水硫酸ナトリウムで乾燥させた。乾燥させた有機層を濾過後、濃縮し、標記粗化合物EX3-IM-1(0.671 g)を淡黄色アモルファスとして得た。
NMRデータ(CDCl)(δ:ppm): 7.29 (2H, d, J = 8.4 Hz), 7.25 (2H, d, J = 7.6 Hz), 6.51 (1H, br s), 4.86 (1H, br s), 4.51 (2H, d, J = 5.2 Hz), 4.31 (2H, d, J = 6.0 Hz), 1.46 (9H, s).LC-MS:M=332,RT=0.97(分),[M+Na]+=355.
<工程2> N-(4-(アミノエチル)ベンジル)-2,2,2-トリフルオロアセトアミド塩酸塩(化合物EX3-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000095
 (実施例3)<工程1>で得られた化合物EX3-IM-1(0.5 g)の1,4-ジオキサン溶液(3.5 mL)に対し、水冷撹拌下、4規定-塩化水素/1,4-ジオキサン(3.5 mL)を加え、室温で3時間撹拌した。反応液にジイソプロピルエーテル(40 mL)を加えた後、析出物を濾過することで、標記化合物EX3-IM-2(0.36 g)を白色固体として得た。
NMRデータ(DO)(δ:ppm): 7.29 (2H, d, J = 8.0 Hz), 7.25 (2H, d, J = 8.4 Hz), 4.38 (2H, s), 4.02 (2H, s).LC-MS:M(free amine)=232,RT=0.53(分),[M+H]+=233.
<工程3> N-(4-((2-(シクロオクト-2-イン-1-イロキシ)アセトアミド)メチル)ベンジル)-2,2,2-トリフルオロアセトアミド(化合物EX3-IM-3)の合成:
Figure JPOXMLDOC01-appb-C000096
 文献公知の方法(Org. Process Res. Dev.(2018)22:108-110)に従い、シクロヘプテン[CAS:628-92-2]から合成したカルボン酸[CAS:917756-42-4](EX3-SM2、0.17 g)及びO-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(0.26 g)のアセトニトリル(1.7 mL)溶液に対し、氷冷撹拌下、(実施例3)<工程2>で得られたEX3-IM-2(0.26 g)及びN,N-ジイソプロピルエチルアミン(0.51 mL)を滴下し、室温で1時間30分撹拌した。水(5 mL)を加え反応を停止させた後、酢酸エチル(5 mL)で3回抽出した。有機層を飽和食塩水(3 mL)で洗浄した後、無水硫酸ナトリウムで乾燥させた。乾燥させた有機層を濾過後、減圧下で溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(12%酢酸エチル/n-ヘプタン~100%酢酸エチル)により精製し、標記化合物EX3-IM-3(0.189 g)を白色アモルファスとして得た。
NMRデータ(CDCl)(δ:ppm): 7.31 (2H, d, J = 8.4 Hz), 7.26 (2H, d, J = 8.0 Hz, Overlapped with solvent peak.), 6.84 (1H, br s), 6.52 (1H, br s), 4.52 (2H, d, J = 6.0 Hz), 4.49 (2H, d, J = 6.4 Hz), 4.26-4.23 (1H, m), 4.11 (1H, d, J = 15.2 Hz), 3.94 (1H, d, J = 15.2 Hz), 2.26-2.09 (3H, m), 2.00-1.58 (6H, m), 1.48-1.44 (1H, m).LC-MS:M=396,RT=0.99(分),[M+H]+=397.
<工程4> N-(4-(アミノメチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド(化合物EX3-IM-4)の合成:
Figure JPOXMLDOC01-appb-C000097
 (実施例3)<工程3>で得られた化合物EX3-IM-3(0.18 g)及びメタノール(1.8 mL)の混合物に対して、氷冷撹拌下、炭酸カリウム(0.126 g)水溶液(0.9 mL)を滴下し、室温で17時間30分撹拌した。メタノールを減圧下で留去し、酢酸エチル(5 mL)で3回抽出した。有機層を飽和食塩水(5 mL)で洗浄後、無水硫酸ナトリウムで乾燥させた。有機層を濾過後、減圧下で溶媒を留去し、標記粗化合物EX3-IM-4(0.13 g)を淡黄色油状物として得た。
NMRデータ(CDCl)(δ:ppm): 7.28-7.28 (4H, m), 6.80 (1H, br s), 4.48 (2H, d, J = 6.0 Hz), 4.26-4.21 (1H, m), 4.11 (1H, d, J = 15.2 Hz), 3.93 (1H, d, J = 15.2 Hz), 3.86 (2H, s), 2.28-2.07 (3H, m), 1.99-1.40 (7H, m, Overlapped with solvent peak.).LC-MS:M=300,RT=0.68(分),[M+H]+=301.
(実施例3a) N-(4-(アミノメチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX3-(I)-A-2a)の合成:
Figure JPOXMLDOC01-appb-C000098
 1重量%に調整したアルギン酸ナトリウム(持田製薬株式会社製、A-2)水溶液(60 mL)に、室温撹拌下、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(183 mg)を加えた。続いて、(実施例3)<工程4>で得られた化合物EX3-IM-4(41.2 mg)のエタノール(5 mL)溶液を同温で滴下し、40度で4時間攪拌した。室温に冷却後、塩化ナトリウム(600 mg)を加えた後、エタノール(119 mL)を加え、30分間攪拌した。得られた沈殿をろ取し、エタノール(5 mL)で3回洗浄後、減圧下乾燥し、標記化合物EX3-(I)-A-2aを白色固体として得た。当該白色固体を40 mLの水に溶解し、凍結乾燥後、40℃で22時間乾燥して、標記化合物EX3-(I)-A-2a(597 mg)を白色綿状物として得た。
 反応性置換基(N-(4-(アミノメチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基)の導入率は3.7mol%(NMR積分比)であった。
(実施例3b) N-(4-(アミノメチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX3-(I)-A-2b)の合成:
Figure JPOXMLDOC01-appb-C000099
 1重量%に調整したアルギン酸ナトリウム(持田製薬株式会社製、A-2)水溶液(290 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(405 mg)、(実施例3)<工程4>で得られた化合物EX3-IM-4(121 mg)のエタノール(29 mL)溶液、1モル濃度-重曹水(366 μL)を加え、32℃で3時間20分攪拌した。塩化ナトリウム(2.9 g)を加えた後、エタノール(580 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX3-(I)-A-2b(2.67 g)を白色固体として得た。
 当該白色固体を180 mLの水に溶解し、凍結乾燥後、40℃で6時間乾燥後、一度冷蔵保存した。再度40℃で5時間乾燥して、標記化合物EX3-(I)-A-2b(2.77 g)を白色アモルファスとして得た。
 反応性置換基(N-(4-(アミノメチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基)の導入率は2.1mol%(NMR積分比)であった。
(実施例3c) N-(4-(アミノメチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基導入アルギン酸(EX3-(I)-A-2c)の合成:
Figure JPOXMLDOC01-appb-C000100
 1重量%に調整したアルギン酸ナトリウム(持田製薬株式会社製、A-2)水溶液(260 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(363 mg)、(実施例3)<工程4>で得られた化合物EX3-IM-4(109 mg)のエタノール(26 mL)溶液、1モル濃度-重曹水(328 μL)を加え、32℃で3時間攪拌した。反応液に、塩化ナトリウム(2.6 g)を加えた後、エタノール(520 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX3-(I)-A-2c(2.69 g)を白色固体として得た。
 当該白色固体を180 mLの水に溶解し、凍結乾燥後、40℃で2.5時間乾燥して、標記化合物EX3-(I)-A-2c(2.42 g)を白色アモルファスとして得た。
 反応性置換基(N-(4-(アミノメチル)ベンジル)-2-(シクロオクト-2-イン-1-イロキシ)アセトアミド基)の導入率は2.0mol%(NMR積分比)であった。
(実施例4)
 N-(2-アミノエチル)-4-アジドベンザミド基導入アルギン酸(実施例4)の合成:
Figure JPOXMLDOC01-appb-C000101
<工程1> tert-ブチル(2-(4-アジドベンザミド)エチル)カルバメート(化合物EX4-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000102
 4-アジド安息香酸(EX4-SM、[CAS:6427-66-3]700 mg)に、塩化チオニル(783 μL)、N,N-ジメチルホルムアミド(3 μL)を加え、70℃で1時間攪拌した。反応液を減圧濃縮し、残さに塩化メチレン(1 mL)を加えて共沸し、同様の操作を再度行った。得られた淡黄色固体の塩化メチレン(3 mL)溶液に対して、tert-ブチル(2-アミノエチル)カルバメート[CAS:57260-73-8](825 mg)、ピリジン(1.04 mL)の塩化メチレン(7.0 mL)溶液に氷水冷下で加え、室温で1時間撹拌した。反応液をtert-ブチルメチルエーテル(30 mL)で希釈し、水(10mL)、飽和重層水(5 mL)、0.5規定-クエン酸(5mLで2回)、水(5mL)、飽和食塩水(5 mL)で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮した。残さをtert-ブチルメチルエーテル/ヘプタンでトリチュレートし、固体をろ過した後、tert-ブチルメチルエーテル/ヘプタンで洗浄して、標記化合物EX4-IM-1(1.1 g)を白色固体として得た。
NMRデータ(CDCl)(δ:ppm): 7.83(2H、d、J = 8 Hz)、7.26(1H、brs)、7.05(2H、d、J = 8 Hz)、4.97(1H、brs)、3.55(2H、q、J = 5 Hz)、3.45-3.37(2H、m)、1.43(9H、s)、LC-MS:M=305、RT=0.90(分)、[M+H]=306、[M+Na]=328
<工程2> N-(2-アミノエチル)-4-アジドベンザミド 塩酸塩(化合物EX4-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000103
 (実施例4)<工程1>で得られた化合物(EX4-IM-1、500 mg)を、1,4-ジオキサン(1.5 mL)に懸濁した。氷水冷下4既定-塩化水素/ジオキサン溶液(3.5 mL)を加え、室温で2.5時間攪拌した。反応液にジイソプロピルエーテル(10.5 mL)を加え、室温で50分間撹拌した。固体をろ過し、ジイソプロピルエーテルで洗浄後、減圧乾燥して、標記化合物EX4-IM-2(365 mg)を淡ベージュ色固体として得た。
NMRデータ(DMSO-d)(δ:ppm): 8.68(1H、t、J = 6 Hz)、7.93(2H、d、J = 9 Hz)、7.82(1H、brs)、7.22(2H、d、J = 9 Hz)、3.49(2H、q、J = 6 Hz)、2.97(2H、t、J = 6 Hz)、LC-MS:M(free amine)=205、RT=0.56(分)、[M+H]=206
<工程3-1> N-(2-アミノエチル)-4-アジドベンザミド基導入アルギン酸(EX4-(II)-A2)の合成:
Figure JPOXMLDOC01-appb-C000104
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(60 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(167 mg)、(実施例4)<工程2>で得られた化合物EX4-IM-2(37 mg)、1モル濃度-重曹水(227 μL)を加え、30℃で3.5時間攪拌した。塩化ナトリウム(600 mg)を加えた後、エタノール(120 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX4-(II)-A-2(615mg)を白色粉末として得た。
 当該白色固体を40 mLの水に溶解し、凍結乾燥後、40℃で22時間乾燥して、標記化合物EX4-(II)-A-2(583 mg)を白色アモルファスとして得た。
 反応性基(N-(2-アミノエチル)-4-アジドベンザミド基)の導入率は、5.3mol%(NMR積分比)であった。
(実施例4-2)
N-(2-(2-アミノエトキシ)エチル)-4-アジドベンズアミド基導入アルギン酸(実施例4-2a、及び実施例4-2b)の合成:
Figure JPOXMLDOC01-appb-C000105
<工程1> tert-ブチル(2-(2-(4-アジドベンザミド)エトキシ)エチル)カルバメート(化合物EX4-2-IM-1)の合成:
Figure JPOXMLDOC01-appb-C000106
 4-アジド安息香酸[CAS:6427-66-3](EX4-SM、300 mg)、tert-ブチル(2-(2-アミノエトキシ)エチル)カルバメート[CAS:127828-22-2](376 mg)をアセトニトリル(6.0 mL)に溶解した。O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(0.77 g)、ジイソプロピルエチルアミン(707 μL)を加え、室温で16時間撹拌した。反応液に、酢酸エチル(20 mL)、水(10 mL)を加え、分液した。有機層を、水(10mL)、飽和食塩水(5 mL)で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残さを、シリカゲルカラムクロマトグラフィー(20%酢酸エチル/n-ヘプタン~70%酢酸エチル/n-ヘプタン)で精製して、標記化合物EX4-2-IM-1(673 mg)を淡黄色ガム状物として得た。
NMRデータ(CDCl)(δ:ppm): 7.83(2H、d、J = 9 Hz)、7.08(2H、d、J = 9 Hz)、6.61(1H、brs)、4.84(1H、brs)、3.68-3.64(4H、m)、3.56(2H、t、J = 5 Hz)、3.34(2H、q、J = 5 Hz)、1.44(9H、s)
<工程2> N-(2-(2-アミノエトキシ)エチル)-4-アジドベンザミド 塩酸塩(化合物EX4-2-IM-2)の合成:
Figure JPOXMLDOC01-appb-C000107
 (実施例4-2)<工程1>で得られた化合物(EX4-2-IM-1、670 mg)に、氷水冷下、4既定-塩化水素/1,4-ジオキサン(4.7 mL)を加え、室温で2時間撹拌した。反応液にジイソプロピルエーテル(14 mL)を加え、30分間撹拌した。得られた固体をろ取し、ジイソプロピルエーテルで洗浄後、減圧乾燥して、標記化合物EX4-2-IM-2(604 mg)を淡ベージュ色固体として得た。
NMRデータ(DMSO-d)(δ:ppm): 8.61(1H、t、J = 6 Hz)、7.95(3H、brs)、7.93(2H、d、J = 9 Hz)、7.20(2H、d、J = 9 Hz)、3.62(2H、t、J = 5 Hz)、3.57(2H、t、J = 6 Hz)、3.46(2H、q、J = 6 Hz)、3.02-2.93(2H、m)、LC-MS(free amine):RT=0.57(分)、[M+H]+=250
(実施例4-2a)N-(2-(2-アミノエトキシ)エチル)-4-アジドベンザミド基導入アルギン酸(EX4-2-(II)-A-2a)の合成:
Figure JPOXMLDOC01-appb-C000108
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(118 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(366.09 mg)、1モル濃度-重曹水(274.51 μL)を加えた。続いて、(実施例4-2)<工程2>で得られた化合物EX4-2-IM-2(78.44 mg)の水(1 mL)及びエタノール(1 mL)溶液を室温にて加え、40℃で4時間攪拌した。塩化ナトリウム(1.2 g)を室温で加えた後、エタノール(237 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX4-2-(II)-A-2a(1.17 g)を白色固体として得た。
 当該白色固体を80 mLの水に溶解し、凍結乾燥して、標記化合物EX4-2-(II)-A-2a(1.14 g)を白色綿状物として得た。
 反応性基(N-(2-(2-アミノエトキシ)エチル)-4-アジドベンザミド基)の導入率は、2.72 mol%(NMR積分比)であった。
(実施例4-2b)N-(2-(2-アミノエトキシ)エチル)-4-アジドベンザミド基導入アルギン酸(EX4-2-(II)-A-2b)の合成:
Figure JPOXMLDOC01-appb-C000109
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液(200 mL)に、4-(4、6-ジメトキシ-1、3、5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)(279 mg)、1モル濃度-重曹水(378 μL)を加えた。続いて、(実施例4-2)<工程2>で得られた化合物EX4-2-IM-2(77 mg)を室温にて加え、32℃で3.25時間攪拌した。反応液に、塩化ナトリウム(2.0 g)を室温で加えた後、エタノール(400 mL)を加え、30分間室温で攪拌した。得られた沈殿をろ取し、エタノールで洗浄後、減圧乾燥して、標記化合物EX4-2-(II)-A-2b(1.93 g)を白色固体として得た。
 当該白色固体を130 mLの水に溶解し、凍結乾燥して、標記化合物EX4-2-(II)-A-2b(1.85 g)を白色アモルファスとして得た。
 反応性基(N-(2-(2-アミノエトキシ)エチル)-4-アジドベンザミド基)の導入率は、2.3 mol%(NMR積分比)であった。
Figure JPOXMLDOC01-appb-T000110
[反応性基又は相補的な反応性基の導入率測定]
 反応性基又は相補的な反応性基導入率は、アルギン酸の繰り返し単位であるウロン酸単糖単位あたりに導入された反応性基又は相補的な反応性基の数を百分率で表した値を意味する。
 本実施例においては、反応性基又は相補的な反応性基導入率(mol%)は、H-NMRの積分比により計算した。又、導入率の算出に必要なアルギン酸の量は、検量線を利用したカルバゾール硫酸法により測定し、反応性基又は相補的な反応性基の量は、検量線を利用した吸光度測定法により測定することもできる。
[分子量の測定]
 実施例で得られた反応性基又は相補的な反応性基が導入されたアルギン酸固体を0.15 mol/LのNaClを含む10mmol/Lリン酸緩衝液(pH7.4)に溶解し0.1%溶液を調製し、孔径0.22μmのポリエーテルスルフォン製ろ過フィルター(Minisart High Flow Filter、Sartorius社)を通し不溶物を除いた後、ゲルろ過用サンプルとした。各サンプルのスペクトルを分光光度計DU-800(Beckman-Coulter社)により測定し、各化合物のゲルろ過における測定波長を決定した。特異的な吸収波長を持たない化合物に関しては、示差屈折計を用いた。
 ゲルろ過用サンプルの200μLをSuperose6 Increase10/300 GLカラム(GEヘルスケアサイエンス社)に供した。ゲルろ過は、クロマトグラフ装置としてAKTA Explorer 10Sを、展開溶媒として0.15 mol/L NaClを含む10mmol/Lリン酸緩衝液(pH7.4)を使用し、室温で流速0.8mL/mimの条件で実施した。サンプルの溶出プロファイルは、各化合物で決定した波長の吸収をモニターし作製した。得られたクロマトグラムは、Unicorn5.31ソフトウエア(GEヘルスケアサイエンス社)にて解析し、ピーク範囲を決定した。
 反応性基又は相補的な反応性基が導入されたアルギン酸の分子量は、ブルーデキストラン(分子量200万Da、 SIGMA社)、チログロブリン(分子量66.9万Da、GEヘルスケアサイエンス社)フェリチン(分子量44万Da、GEヘルスケアサイエンス社)アルドラーゼ(分子量15.8万Da、GEヘルスケアサイエンス社)、コンアルブミン(分子量7.5万Da、GEヘルスケアサイエンス社)、オブアルブミン(分子量4.4万Da、GEヘルスケアサイエンス社)、リボヌクレアーゼA(分子量1.37万Da、GEヘルスケアサイエンス社)及びアプロチニン(分子量6500Da、GEヘルスケアサイエンス社)を標準品として用い、反応性基又は相補的な反応性基が導入されたアルギン酸と同じ条件でゲルろ過を行い、各成分の溶出液量をUnicornソフトウエアにて決定した。この各成分の溶出液量を横軸に、分子量の対数値を縦軸にそれぞれプロットし、直線回帰し、検量線を作成した。検量線は、ブルーデキストランからフェリチンまで、フェリチンからアプロチニンまでの2種類を作成した。
 この検量線を用いて、先に得られたクロマトグラムの溶出時間iにおける分子量(Mi)を計算した。次いで、溶出時間iにおける吸光度を読み取りHiとした。これらのデータから重量平均分子量(Mw)を以下の式から求めた。
Figure JPOXMLDOC01-appb-M000111
(実施例5)
 平板型アルギン酸ゲルの製造
〔アルギン酸溶液の調製〕
 各実施例で得られたアルギン酸誘導体を用いて、1.6重量%もしくは3.3重量%の水溶液を調製し、ミニザルトハイフロー(ザルトリウス, 0.2μm、 Cat. 16532GUK)を用いてろ過滅菌する。濾過滅菌後の水溶液の塩濃度を調整し、1.5重量%又は3.0重量%の生理食塩水溶液とした。
  実施例1(a,b,c)のアルギン酸:1.5重量%生理食塩水溶液 (実施例5-1a、実施5-1b、実施例5-1cの溶液)
  実施例2(a,b,c)のアルギン酸:3.0重量%生理食塩水溶液 (実施例5-2a、実施例5-2b、実施例5-2cの溶液)
  実施例3(a)のアルギン酸:1.5重量%生理食塩水溶液 (実施例5-3aの溶液)
  実施例4のアルギン酸:3.0重量%生理食塩水溶液 (実施例5-4の溶液)

 あるいは、各実施例で得られたアルギン酸誘導体を用いて、1.0重量%の生理食塩水溶液を調製し、MILLEX GV 0.22μm(Millipore, 0.22μm、 Cat. SLGV033RS)を用いてろ過滅菌する。

  実施例1(d)のアルギン酸:1.0重量%生理食塩水溶液 (実施例5-1dの溶液)
  実施例2(d)のアルギン酸:1.0重量%生理食塩水溶液 (実施例5-2dの溶液)
  実施例3(b)のアルギン酸:1.0重量%生理食塩水溶液 (実施例5-3bの溶液)
  実施例4-2(a)のアルギン酸:1.0重量%生理食塩水溶液 (実施例5-5aの溶液)
  実施例1(e)のアルギン酸:0.5重量%生理食塩水溶液 (実施例5-1eの溶液)
  実施例2(e)のアルギン酸:0.5重量%生理食塩水溶液 (実施例5-2eの溶液)
  実施例3(c)のアルギン酸:0.5重量%生理食塩水溶液 (実施例5-3bの溶液)
  実施例4-2(b)のアルギン酸:0.5重量%生理食塩水溶液 (実施例5-5bの溶液)

 以下の実施例では、これらの各アルギン酸生理食塩溶液を、適宜濃度調整して試験に用いた。
 実施例1(a,b,c)又は実施例3(a)で調製したアルギン酸と実施例2(a,b,c)又は実施例4で調製したアルギン酸とを組み合わせて、化学架橋したアルギン酸ゲルを作製する。
 より具体的には、実施例5-1(a,b,c)の溶液と実施例5-2(a,b,c)の溶液とを組み合わせ、実施例5-3aの溶液と実施例5-4の溶液とを組み合わせる。
 また、実施例1(d)又は実施例3(b)で調製したアルギン酸と実施例2(d)又は実施例4-2(a)で調製したアルギン酸とを組み合わせて、化学架橋したアルギン酸ゲルを作製する。
 より具体的には、実施例5-1dの溶液と実施例5-2dの溶液とを組み合わせ、実施例5-1dの溶液と実施例5-5aの溶液とを組み合わせ、実施例5-3bの溶液と実施例5-2dの溶液とを組み合わせ、実施例5-3bの溶液と実施例5-5aの溶液とを組み合わせる。
 また、実施例1(e)又は実施例3(c)で調製したアルギン酸と実施例2(e)又は実施例4-2(b)で調製したアルギン酸とを組み合わせて、化学架橋したアルギン酸ゲルを作製する。
 より具体的には、実施例5-1eの溶液と実施例5-2eの溶液とを組み合わせ、実施例5-1eの溶液と実施例5-5bの溶液とを組み合わせ、実施例5-3cの溶液と実施例5-2eの溶液とを組み合わせ、実施例5-3cの溶液と実施例5-5bの溶液とを組み合わせる。
〔平板型アルギン酸ゲルの製造〕
 <一般的な調製方法>
 3.5cm培養皿に55mmol/L 塩化カルシウム(CaCl)水溶液を2mLいれ、400μLのアルギン酸溶液をP1000ピペットで滴下し、10分間静置する。この間、5分以上経って固まりだしたら、手で培養皿を振盪させてアルギン酸の縁を固める。10分後、塩化カルシウム溶液を4mL追加で添加し、5分静置する。生理食塩水で3回洗浄し、平板型のアルギン酸ゲルを得る。
 ここで、平板型ゲルとは、例えば、短直径が12~15mm、長直径が12~18mm、厚さが0.5~5mm程度の大きさのアルギン酸ゲルであり、円形、四角形、六角形、八角形などを取ることも可能であり、特に限定されない。
(実施例6)
 アルギン酸ゲルの生体適合性試験
〔実施例6-1:移植用の平板型アルギン酸ゲルの製造〕
 実施例5に記載の「平板型アルギン酸ゲルの製造」に準じて、55mmol/Lの塩化カルシウム水溶液を用いて、平板型アルギン酸ゲルを製造した。アルギン酸溶液は、1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液、アルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液、実施例5-1bの溶液と実施例5-2bの溶液とを2:1(容量比)で混和して得られる溶液、実施例5-1dの溶液と実施例5-2dの溶液とを1:1(容量比)で混和して得られる溶液、実施例5-1dの溶液と実施例5-5の溶液とを1:1(容量比)で混和して得られる溶液、実施例5-3bの溶液と実施例5-2dの溶液とを1:1(容量比)で混和して得られる溶液、実施例5-3bの溶液と実施例5-5aの溶液とを1:1(容量比)で混和して得られる溶液を用いて、下記の平板型アルギン酸ゲルを調製した。
 調製した平板上アルギン酸ゲルをD-MEM培地で終夜培養した。翌日、無血清D-MEM培地に置換し、さらに、生理食塩水中へ置換し、1時間以上静置して、動物への移植用のアルギン酸ゲルを得た。
 実施例6-1a:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液を用いて、短直径(12mm)-長直径(15mm)-厚さ(5mm)の平板上アルギン酸ゲルを得た。この平板型アルギン酸ゲルの写真を図1(a)として示した。
 実施例6-1b:
 実施例5-1bの溶液と実施例5-2bの溶液を2:1(容量比)で混合した溶液を用いて、短直径(12mm)-長直径(12mm)-厚さ(4mm)の平板上アルギン酸ゲルを得た。化学架橋基としては1%濃度に調製した。この平板型アルギン酸ゲルの写真を図2(a)として示した。
 実施例6-1c:
 実施例5-1bの溶液と実施例5-2bの溶液を2:1(容量比)で混合した溶液を用いて、短直径(12mm)-長直径(12mm)-厚さ(4mm)の平板上アルギン酸ゲルを得た。化学架橋基としては2%濃度に調製した。この平板型アルギン酸ゲルの写真を図3(a)として示した。
 実施例6-1d:
 1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:A-2)水溶液を用いて、短直径(約12mm)-長直径(約12mm)-厚さ(約4mm)の平板上アルギン酸ゲルを得た。
 実施例6-1e:
 実施例5-1dの溶液と実施例5-2dの溶液を1:1(容量比)で混合した溶液を用いて、短直径(約12mm)-長直径(約12mm)-厚さ(約4mm)の平板上アルギン酸ゲルを得た。化学架橋基としては1%濃度に調製した。
 実施例6-1f:
 実施例5-1dの溶液と実施例5-5aの溶液を1:1(容量比)で混合した溶液を用いて、短直径(約12mm)-長直径(約12mm)-厚さ(約4mm)の平板上アルギン酸ゲルを得た。化学架橋基としては1%濃度に調製した。
 実施例6-1g:
 実施例5-3bの溶液と実施例5-2dの溶液を1:1(容量比)で混合した溶液を用いて、短直径(約12mm)-長直径(約12mm)-厚さ(約4mm)の平板上アルギン酸ゲルを得た。化学架橋基としては1%濃度に調製した。
 実施例6-1h:
 実施例5-3bの溶液と実施例5-5aの溶液を1:1(容量比)で混合した溶液を用いて、短直径(約12mm)-長直径(約12mm)-厚さ(約4mm)の平板上アルギン酸ゲルを得た。化学架橋基としては1%濃度に調製した。
〔実施例6-2:平板型アルギン酸ゲルの動物への移植試験〕
 実施例6-1a~cで調製した各アルギン酸ゲルを健常マウスC57BL/6NCrの腹腔内に移植した。5週間後開腹してゲルを摘出し、ゲルの状態を確認した。また腹腔内の腹腔内の癒着や炎症も確認した。
 また、実施例6-1d~hで調製した各アルギン酸ゲルを健常マウスC57BL/6NCrの腹腔内に移植した。1,2又は4週間後開腹してゲルを摘出し、ゲルの状態を確認した。また腹腔内の腹腔内の癒着や炎症も確認した。
 実施例6-1aのアルギン酸ゲル:摘出したアルギン酸ゲルは元の形状を維持しておらず、バラバラで、残存して確認できるゲルの回収量も少ない状態であった。その状態の写真を図1(b)として示した。
 実施例6-1bのアルギン酸ゲル:摘出したアルギン酸ゲルは、ゲルのサイズ変化はなかった。その状態の写真を図2(b)として示した。
 実施例6-1cのアルギン酸ゲル:摘出したアルギン酸ゲルは、割れてはいるが、元の形状はほぼ維持しており、ゲルのサイズ変化はなかった。その状態の写真を図3(b)として示した。
 実施例6-1dのアルギン酸ゲル:1週間後に摘出したアルギン酸ゲルは元の形状を維持しておらず、バラバラで、残存して確認できるゲルの回収量も少ない状態であった。
 実施例6-1fのアルギン酸ゲル:1週間後、2週間後、4週間後に摘出したアルギン酸ゲルは、いずれもゲルのサイズ変化はなかった。
 実施例6-1gのアルギン酸ゲル:1週間後、2週間後に摘出したアルギン酸ゲルは、いずれもゲルのサイズ変化はなかった。4週間後に摘出したアルギン酸ゲルは、割れてはいるが、元の形状はほぼ維持しており、ゲルのサイズ変化はなかった。
 実施例6-1hのアルギン酸ゲル:1週間後、2週間後に摘出したアルギン酸ゲルは、いずれもゲルのサイズ変化はなかった。4週間後に摘出したアルギン酸ゲルは、割れてはいるが、元の形状はほぼ維持しており、ゲルのサイズ変化はなかった。
 実施例6-1a、実施例6-1b、実施例6-1cのアルギン酸ゲルについては、移植し、5週間後に開腹し確認したところ、腹腔内臓器の間で癒着・炎症はなかった。当該ゲルが埋もれていた大網や腸管膜も癒着・炎症はなかった。バラバラになったゲルが接着していた肝臓に癒着・炎症はなかった。
 実施例6-1d、実施例6-1f、実施例6-1g、実施例6-1hのアルギン酸ゲルについては、移植し、1週間後、2週間後、及び4週間後に開腹し確認したところ、腹腔内臓器の間で癒着・炎症はなかった。当該ゲルが埋もれていた大網や腸管膜も癒着・炎症はなかった。バラバラになったゲルが接着していた肝臓に癒着・炎症はなかった。
〔実施例6-3:平板型アルギン酸ゲルの細胞生存確認試験〕
 膵臓ランゲルハンス島β細胞の株化細胞であるMIN6細胞(5×10 cells)を、実施例6-1a、実施例6-1b、実施例6-1c、実施例6-1d、実施例6-1e、実施例6-1f、実施例6-1g、実施例6-1hのアルギン酸ゲルの調製に用いた各アルギン酸溶液に添加し後、アルギン酸ゲルを作製し、D-MEM培地で3~4週間培養して、MIN6細胞の生存を顕微鏡で確認した。
 実施例6-1a、実施例6-1b、実施例6-1c、実施例6-1d、実施例6-1e、実施例6-1f、実施例6-1g、実施例6-1hのアルギン酸ゲル中における細胞増殖は良好であり、顕微鏡下で十分細胞が生存していることが観察された。
(実施例7)
 糖尿病モデルマウスへの腹腔内移植による移植用デバイスの評価
〔ブタ膵島の単離〕
 当技術の公知の手順、或いは、霜田ら(Shimoda;Cell Transplantation、第21巻、501-508頁、2012年) に記載された方法、もしくはエドモントンプロトコールを用いた標準のリコルディー技術等に準じて、無菌下で成体のブタから無菌の生存可能な膵臓を得て、膵島細胞を単離した。
〔単離膵島の培養方法〕
 次いで、単離した膵島を、野口(Noguchi)ら(Transplantation Proceedings, 42, 2084-2086 (2010))の方法に準じて、培地中(Connaught Medical Research Laboratory (CMRL)-based Miami-defined media #1 (MM1; Mediatech-Cellgro, Herndon, VA)-supplemented with 0.5% human serum albumin.)、5%CO /95%空気の湿潤雰囲気中で37℃で1日間培養した。培養した膵島を移植用デバイスの作製に使用した。
〔移植用デバイスの調製〕
 架橋基の導入率5.0mol%の実施例1bと導入率4.9mol%の実施例2bとを用いて、各々、1.5重量%の実施例5-1bの生理食塩水溶液及び3.0重量%の実施例5-2bの生理食塩水溶液を調整する。
 実施例5-1bの溶液と実施例5-2bの溶液を2:1(容量比)で混合することで、架橋基の導入率が5mol%相当の2重量%のアルギン酸溶液が調製できる。
 実施例5-1bと実施5-2bの溶液を2倍、及び4倍に希釈した溶液を調製し、各々2:1(容量比)で混合し、溶液を調製する。
 2倍希釈した溶液の混合溶液を実施例7-1の溶液、4倍希釈した溶液の混合溶液を実施例7-2の溶液とする。
 また、同様な方法で、実施例5-1cの溶液と実施例5-2cの溶液とを2:1(容量比)で混合し、4倍希釈した溶液の混合液を実施例7-3の溶液とする。
 実施例7-1及び実施例7-2の溶液(100μL、200μL)、並びに実施例7-3の溶液(100μL、200μL)で各々調製した移植用デバイスは以下の通りである。
<移植用デバイス>
 実施例7-1a:実施例7-1の溶液を100μL用いて調製した移植用デバイス
 実施例7-1b:実施例7-1の溶液を200μL用いて調製した移植用デバイス
 実施例7-2a:実施例7-2の溶液を100μL用いて調製した移植用デバイス
 実施例7-2b:実施例7-2の溶液を200μL用いて調製した移植用デバイス
 実施例7-3a:実施例7-3の溶液を100μL用いて調製した移植用デバイス
 実施例7-3b:実施例7-3の溶液を200μL用いて調製した移植用デバイス
 100μLまたは200μLのブタ膵島含有0.5重量%~1.0重量%アルギン酸溶液を作製するため、実施例5-1bのアルギン酸溶液(B1)にデバイス1個分に分注した膵島ペレットを懸濁後、実施例5-2bのアルギン酸溶液(C1)と混合し、ブタ膵島を懸濁させた実施例7-1a、実施例7-1b、実施例7-2a、及び実施例7-2bの溶液とした。1デバイスあたりのブタ膵島量10000IEQのペレット量(10~30μL)に応じて、実施例5-1bのアルギン酸溶液(B1)および実施例5-2bのアルギン酸溶液(C1)は、生理食塩水にて濃度調製を行った。
 また、100μLまたは200μLのブタ膵島含有0.5重量%~1.0重量%アルギン酸溶液を作製するため、実施例5-1cのアルギン酸溶液(B1)にデバイス1個分に分注した膵島ペレットを懸濁後、実施例5-2cのアルギン酸溶液(C1)と混合し、ブタ膵島を懸濁させた実施例7-3a及び実施例7-3bの溶液とした。1デバイスあたりのブタ膵島量10000IEQのペレット量(10~30μL)に応じて、実施例5-1cのアルギン酸溶液(B1)および実施例5-2cのアルギン酸溶液(C1)は、生理食塩水にて濃度調製を行った。
 実施例7-1a、実施例7-2a、実施例7-2b及び実施例7-3bとして調製したブタ膵島含有アルギン酸溶液は、迅速に半透膜(スペクトラム社製透析チューブ「スペクトラ/ポアCE(分画分子量10万)」)に封入(半透膜の一端をヒートシーリングした後、アルギン酸溶液を入れて、チタンクリップで封入)し、55mmol/LCaCl溶液中に10~15分間漬し、デバイス中のアルギン酸溶液をゲル化した。
 ゲル化後、当該移植用デバイスは、生理食塩水にて3分洗浄し、移植用培地(M199-ニコチンアミド-FBS+P/S)で終夜培養した。次いで、移植用無血清培地(M199+P/S)に30分浸してから、移植前洗浄用の生理食塩水+P/Sで30分浸して洗浄して、マウスへの移植用デバイスとした。作製した移植用デバイスの写真を図4-1に示した。
 ・移植用デバイスの大きさ:縦10 mm×横26 mm×厚さ約2 mm
 ・培養条件:M199+Nicotinamide+Fetal bovine serum+ Penicillin/Streptomycin (P/S), O/N
 ・洗浄条件:1)移植用無血清培地(M199+P/S), 30min, r.t.
         2)生理食塩水(saline+P/S), 30min, r.t.
Figure JPOXMLDOC01-appb-T000112
〔移植用デバイスの評価(移植試験)〕
 使用動物:
 野生型免疫正常マウス(C57BL/6NCr)の糖尿病モデルマウス。13~17週齢、雄、25 ~35 g。Streptozocin溶液の尾静注、110 mg/kg、単回投与にて約1週間で糖尿病モデルを作製した。随時血糖値が300 mg/dL以上、600 mg/dL以下の個体を糖尿病モデルとした。
 投与方法・移植方法:
 三種混合麻酔薬(ドミトール/ミダゾラム/ベトルファール)を0.25~0.3 mL腹腔内投与にて麻酔し、麻酔下にて腹部剃毛、消毒後、腹部を約 2cm正中切開し、洗浄後の移植用デバイスを腹腔内に単純留置、固定無しで移植した。移植後、閉腹しメデトミジン拮抗薬(アンチセダン)を0.25~0.3 mL皮下注射し覚醒させた。手術はヒートパッド上でマウスを保温して行った。免疫抑制剤の投与無し。補液・抗生剤・抗炎症剤等の投与も無し。
 血糖値・体重測定法:
 移植前及び、移植後day1から数日置きに日中定時に随時血糖値を測定した。メスによる尾の切創からの血液1滴で、グルテストNeoアルファおよびグルテストNeoセンサーを使用し血糖値を測定した。 体重は随時血糖値測定直前に電子天秤にて測定した。デバイス移植マウスの随時血糖値は、300 mg/dL未満のものを糖尿病が治癒した個体とした。
 実施例7-2aの移植デバイスを用いた際の移植後 day75までの血糖値変動を図5-1、体重の変動を図6-1に示した。また、移植後 day 305までの血糖値変動を図5-2、体重の変動を図6-2に示した。さらに、移植後day 305で移植用デバイスを取り出し、別の糖尿病モデルマウスへ移植し(ここで、糖尿病モデルマウスへデバイスを移植し、移植したデバイスを所定期間経過後に取り出し、取り出したデバイスを別の糖尿病モデルマウスへ移植することを「リレー移植」と呼ぶ)、リレー移植後day 26までの血糖値変動を図5-3、体重の変動を図6-3に示した。図5-1~3及び図6-1~3中、♯1及び♯2は各々移植したマウス固体を識別する番号を意味する。
 体重変動には異常はなく、血糖値は75日間正常値に維持された。また、移植後305日間及び更なるリレー移植後26日間、体重変動には異常はなく、血糖値は正常に維持された。
 実施例7-2bの移植デバイスを用いた際の血糖値変動は、実施例7-2aと同様に、体重変動には異常はなく、血糖値は75日間正常値に維持された。
 また、実施例7-2bの移植用デバイスを用いた際の移植後 day 305までの血糖値変動を図7-1、体重の変動を図8-1に示した。さらに、移植後day 305で移植用デバイスを取り出し、別の糖尿病モデルマウスへ移植し、リレー移植後day 26までの血糖値変動を図7-2、体重の変動を図8-2に示した。
 移植後305日間及び更なるリレー移植後26日間、体重変動には異常はなく、血糖値は正常に維持された。
 実施例7-3bの移植デバイスを用いた際の血糖値変動は、実施例7-2aと同様に、体重変動には異常はなく、血糖値は75日間正常値に維持された。
 また、実施例7-3bの移植用デバイスを用いた際の移植後 day 305までの血糖値変動を図9-1、体重の変動を図10-1に示した。さらに、移植後day 305で移植用デバイスを取り出し、別の糖尿病モデルマウスへ移植し、リレー移植後day 26までの血糖値変動を図9-2、体重の変動を図10-2に示した。なお、♯2及び♯3は途中でデバイスを摘出し、試験を終了している。
 移植後305日間及び更なるリレー移植後26日間、体重変動には異常はなく、血糖値は正常に維持された。
 前記移植用デバイスの作製において、アルギン酸誘導体を用いないで膵島を半透膜に封入した移植用デバイスを作製した。前記の〔移植用デバイスの評価(移植試験)〕と同様の方法でマウスに移植したところ、糖尿病マウスの血糖抑制効果は認められなかった。
 組織反応性の評価:
 組織反応性の評価は以下のように行った。
 移植後数週後、または随時血糖値上昇後、デバイス移植マウスを三種混合麻酔薬にて麻酔し、麻酔下にて腹部消毒、腹部を約4cm正中切開し、移植デバイスを腹腔内臓器の間から探した。臓器間にデバイスの一部が見られたら鑷子にてゆっくりと取り出し、単体でデバイスが取り出せるかどうかを調べる。取り出したデバイスの表面の状況を観察する。
  <観察項目>
  1.  デバイス表面に、血管新生しているかどうかを調べる。血管新生があれば、毛細血管レベルか太い血管までできているか観察する。
  2.  次に、臓器や腹膜、大網等と癒着しているか、繋がっているか観察する。臓器が鈍的に剥離が可能か、鋭的に剥離が必要か調べる。
  3.  臓器と直接癒着している場合は、どの臓器とデバイスのどの部分(面全体か、一部か、辺か、デバイス折り目部分やシーリング部分か等。)が癒着しているか、確認する。
  4.  臓器側に炎症等があるかどうかを確認する。
 ※ デバイス摘出後、閉腹。拮抗薬を皮下注射し覚醒させる。手術はヒートパッド上でマウスを保温して行う。
 実施例7-1aの移植デバイスを用いた際の、移植10週後デバイスを摘出し、組織反応性を観察した結果、(1)デバイス表面に、血管新生しておらず、(2)デバイスが臓器や腹膜、大網等と癒着しておらず、(3)臓器が鈍的に剥離が可能であり、臓器と直接癒着しておらず、(4)臓器側に炎症等は認められなかった。
 摘出したデバイス内の生存膵島細胞の様子を、以下のような染色、すなわち、(a)Dithizoneによる膵島細胞の染色、(b)Dithizoneによる膵島細胞の染色、(c)FDAによる生細胞の蛍光染色、(d)PIによる死細胞の蛍光染色を行った後、また、染色せずアルギン酸ゲル中に分散した膵島細胞を顕微鏡で観察した。その結果、デバイス中に膵島細胞が十分生存していることが確認できた。
 移植後10週後摘出したデバイスを開き、デバイス中のアルギン酸ゲルの形状を確認した。その結果、生体内に長期間置かれた移植用デバイス中のアルギン酸ゲルの形状は維持されていることが明らかとなった。
(実施例8)
 糖尿病モデルマウスへの腹腔内移植による移植用デバイスの評価2
〔ブタ膵島の単離及び単離膵島の培養方法〕
 移植用デバイスの作製に使用する膵島は実施例7に記載の単離方法及び培養方法により入手した。
〔移植用デバイスの調製〕
 実施例7と同様な方法で、実施例5-1cの溶液と実施例5-2cの溶液とを2:1(容量比)で混合し、4倍希釈した溶液の混合液を実施例8の溶液とする。
 実施例8の溶液(100μL、75μL、50μL)で各々調製した移植用デバイスは以下の通りである。
<移植用デバイス>
 実施例8-1:実施例8の溶液を100μL用いて調製した移植用デバイス
 実施例8-2:実施例8の溶液を75μL用いて調製した移植用デバイス
 実施例8-3:実施例8の溶液を50μL用いて調製した移植用デバイス
 100μL、75μLまたは50μLのブタ膵島含有0.5重量%アルギン酸溶液を作製するため、実施例5-1cのアルギン酸溶液(B1)にデバイス1個分に分注した膵島ペレットを懸濁後、実施例5-2cのアルギン酸溶液(C1)と混合し、ブタ膵島を懸濁させた実施例8の溶液とした。1デバイスあたりのブタ膵島量10000IEQのペレット量(10~30μL)に応じて、実施例5-1bのアルギン酸溶液(B1)および実施例5-2bのアルギン酸溶液(C1)は、生理食塩水にて濃度調製を行った。
 実施例8として調製したブタ膵島含有アルギン酸溶液は、迅速に半透膜(スペクトラム社製透析チューブ「スペクトラ/ポアCE(分画分子量10万)」)に封入(半透膜の一端をヒートシーリングした後、アルギン酸溶液を入れて、他端をヒートシーリングして封入)し、55mmol/LCaCl溶液中に10~15分間漬し、デバイス中のアルギン酸溶液をゲル化した。
 ゲル化後、当該移植用デバイスは、生理食塩水にて3分洗浄し、移植用培地(M199-ニコチンアミド-FBS+P/S)で終夜培養した。次いで、移植用無血清培地(M199+P/S)に30分浸してから、移植前洗浄用の生理食塩水+P/Sで30分浸して洗浄して、マウスへの移植用デバイスとした。作製した移植用デバイスの写真を図4-2に示した。
 ・移植用デバイスの大きさ:縦10 mm×横26 mm×厚さ約0.25~0.8 mm
 ・移植用デバイス中のハイドロゲルの大きさ:
   実施例8-1:縦約10mm×横約20mm×厚さ約0.5mm(500μm)
   実施例8-2:縦約10mm×横約20mm×厚さ約0.375mm(375μm)
   実施例8-3:縦約10mm×横約20mm×厚さ約0.25mm(250μm)
 ・培養条件:M199+Nicotinamide+Fetal bovine serum+ Penicillin/Streptomycin (P/S), O/N
 ・洗浄条件:1)移植用無血清培地(M199+P/S), 30min, r.t.
       2)生理食塩水(saline+P/S), 30min, r.t.
〔移植用デバイスの評価(移植試験)〕
 実施例7に準じて実施した。
 実施例8-1の移植デバイスを用いた際の移植後 day 178までの血糖値変動を図11-1、体重の変動を図12-1に示した。
 また、実施例8-2の移植デバイスを用いた際の移植後 day 178までの血糖値変動を図11-2、体重の変動を図12-2に示した。さらに、移植後day 178で移植用デバイスを取り出し、リレー移植後day 40までの血糖値変動を図11-3、体重の変動を図12-3に示した。
 また、実施例8-3の移植デバイスを用いた際の移植後 day 178までの血糖値変動を図11-4、体重の変動を図12-4に示した。さらに、移植後day 178で移植用デバイスを取り出し、リレー移植後day 40までの血糖値変動を図11-5、体重の変動を図12-5に示した。
 図11-1~5及び図12-1~5中、♯及び数字で表した表示は各々移植したマウス固体を識別する番号を意味する。
 体重変動には異常はなく、血糖値は178日間正常値に維持された。また、更なるリレー移植後40日間、体重変動には異常はなく、血糖値は正常に維持された。
 摘出したデバイスはGsIsが行われ、デバイスがインスリン分泌能を有していることを確認した。
(実施例9)
 糖尿病モデルマウスへの腹腔内移植による移植用デバイスの評価3
 実施例7の方法に準じ、以下のデバイスを調製した。
<移植用デバイス>
 実施例9-1:1重量%に調製したアルギン酸ナトリウム(持田製薬株式会社製:B-2)水溶液を200μL用いて調製した移植用デバイス
 実施例9-2:実施例7-1と同様の方法で製造した溶液200μL用いて調製した移植用デバイス
 実施例9-3:実施例7-2と同様の方法で製造した溶液200μL用いて調製した移植用デバイス
 実施例9-4:実施例7-2と同様の方法で製造した溶液100μL用いて調製した移植用デバイス
 実施例9-5:実施例7-3と同様の方法で製造した溶液200μL用いて調製した移植用デバイス
 実施例9-6:実施例7-3と同様の方法で製造した溶液100μL用いて調製した移植用デバイス
 実施例9-7:実施例7-3と同様の方法で製造した溶液50μL用いて調製した移植用デバイス
 ・移植用デバイスの大きさ:縦10 mm×横26 mm×厚さ約0.25~1.3 mm
 ・移植用デバイス中のハイドロゲルの大きさ:
   実施例9-1、実施例9-2、実施例9-3及び実施例9-5:縦約10mm×横約20mm×厚さ約1mm(1000μm)
   実施例9-4、実施例9-6:縦約10mm×横約20mm×厚さ約0.5mm(500μm)
   実施例9-7:縦約10mm×横約20mm×厚さ約0.25mm(250μm)
 移植試験は実施例7に準じて行われた。実施例9-1~実施例9-7のデバイスをそれぞれ複数の糖尿病モデルマウスに移植した。移植から178日間、血糖値が300mg/dL以下(但し、期間中3回までは300mg/dLを超えることを許容する)であったマウスを治癒マウスと定義し、移植した糖尿病モデルマウス数に対する治癒マウス数を治癒率として算出したところ、以下の結果となった。
Figure JPOXMLDOC01-appb-T000113
 糖尿病モデルマウスの治癒率は、天然のアルギン酸で製造したハイドロゲルを含む移植用デバイスよりも本願発明のアルギン酸誘導体で製造したハイドロゲルを含む移植用デバイスの方が高いこと、を確認した。また、ハイドロゲルの厚さが薄いほど治癒率が高く、本実施例において500μm以上の厚みで治癒率が約40%に対し、250μmとなることで治癒率が約62%と向上することが確認された。なお、実施例9-2は治癒率0.0%となっているが、N数が少ないことに起因しており、N数が増えることで実施例9-3に記載の程度の治癒率になるものと予想される。
(実施例10)
 糖尿病モデルマウスへの腹腔内移植による移植用デバイスの評価4
〔移植用デバイスの調製〕
 膵島として膵臓ランゲルハンス島β細胞の株化細胞であるMIN6細胞(2.5×10 cells)を使用し、実施例7に準じた方法でデバイスを製造した。
 2%のA-2のアルギン酸の溶液を、4倍希釈した溶液を実施例10-1の溶液とした。
 実施例5-1eの溶液と実施例5-2eの溶液とを1:1(容量比)で混合した溶液を実施例10-2の溶液とした。
 また、実施例5-1eの溶液と実施例5-5bの溶液とを1:1(容量比)で混合しした溶液を実施例10-3の溶液とした。
 また、実施例5-3cの溶液と実施例5-2eの溶液とを1:1(容量比)で混合した溶液を実施例10-4の溶液とした。
また、実施例5-3cの溶液と実施例5-5bの溶液とを1:1(容量比)で混合した溶液を実施例10-5の溶液とした。
 実施例10-2~10-5はいずれも化学架橋基としては0.5%濃度である。
 実施例10-1~実施例10-5の溶液(いずれも50μL)で各々調製した移植用デバイスは以下の通りである。
<移植用デバイス>
 実施例10-1:実施例10-1の溶液を50μL用いて調製した移植用デバイス
 実施例10-2:実施例10-2の溶液を50μL用いて調製した移植用デバイス
 実施例10-3:実施例10-3の溶液を50μL用いて調製した移植用デバイス
 実施例10-4:実施例10-4の溶液を50μL用いて調製した移植用デバイス
 実施例10-5:実施例10-5の溶液を50μL用いて調製した移植用デバイス
 ・移植用デバイスの大きさ:縦10 mm×横26 mm×厚さ約0.4 mm
 ・移植用デバイス中のハイドロゲルの大きさ:縦約10mm×横約20mm×厚さ約0.25mm(250μm)
〔移植用デバイスの評価(移植試験)〕
 実施例7に準じて実施した。
 実施例10-1の移植デバイスを用いた際の移植後 day 17までの血糖値変動を図13-1、体重の変動を図14-1に示した。
 実施例10-2の移植デバイスを用いた際の移植後 day 17までの血糖値変動を図13-2、体重の変動を図14-2に示した。
 実施例10-3の移植デバイスを用いた際の移植後 day 17までの血糖値変動を図13-3、体重の変動を図14-3に示した。
 実施例10-4の移植デバイスを用いた際の移植後 day 17までの血糖値変動を図13-4、体重の変動を図14-4に示した。
 実施例10-5の移植デバイスを用いた際の移植後 day 17までの血糖値変動を図13-5、体重の変動を図14-5に示した。
 図13-1~5及び図14-1~5中、♯及び数字で表した表示は各々移植したマウス固体を識別する番号を意味する。
 体重変動には異常はなく、血糖値は12~17日間正常値に維持された。
 組織反応性の評価:
 組織反応性の評価は実施例7に準じて行った。
 実施例10-1~5の移植デバイスを用いた際の、移植2週間後デバイスを摘出し、組織反応性を観察した結果、(1)デバイス表面に、血管新生しておらず、(2)デバイスが臓器や腹膜、大網等と癒着しておらず、(3)臓器が鈍的に剥離が可能であり、臓器と直接癒着しておらず、(4)臓器側に炎症等は認められなかった。
 移植2週間後摘出したデバイスを開き、デバイス中のアルギン酸ゲルの形状を確認した。その結果、生体内に長期間置かれた移植用デバイス中のアルギン酸ゲルの形状は維持されていることが明らかとなった。
(実施例11)
 移植用デバイスの酸素透過性の評価
〔酸素透過性のシミュレーション〕
 縦10mm×横20mmのハイドロゲルについて、実施例11-1は厚さ1mm、実施例11-2は0.5mm、実施例11-3は0.25mmとした場合の、酸素透過率について以下の条件でシミュレーションを行った。
 なお、シミュレーションに当たり、ハイドロゲル表面の酸素濃度は均一かつ常に一定であること、細胞の比呼吸速度は常に一定であること、細胞の体積は無視し、ハイドロゲル内で均一に酸素消費すること、ゲルの全表面から中心に対して均等に酸素拡散が生じること、を前提とした。
 まず、ハイドロゲルを空間上の直交座標系に配置した時の酸素濃度の反応拡散方程式として以下の通りとした。
Figure JPOXMLDOC01-appb-M000114
そして、QO2X = rO2 (0次反応)とし、定常状態( (∂C/∂t ) = 0 )における酸素濃度分布を求め、以下の式で表した。rO2は表13に記載の膵島の比呼吸速度、ハイドロゲル中に含まれる膵島の総数およびハイドロゲル形状を用いて算出した。
Figure JPOXMLDOC01-appb-M000115
そして、x方向をx=iΔx、y方向をy=jΔy、 z方向をz=kΔzで等分割し、濃度をC(x,y,z)=Ci,j,kの節点値で差分化することにより、次の式を得、かかる式により算出した。ただし、Δx = Δy = Δz = Δとした。
Figure JPOXMLDOC01-appb-M000116
上記式からハイドロゲル表面と中心部の酸素濃度比率のシミュレーションを実施した。なお、シミュレーションに用いた係数は下記の通りであり、BIOTECHNOLOGY AND BIOENGINEERING/VOL96,ISSUE5,P990-998(2007)及びTHEORETICAL BIOLOGY AND MEDICAL MODELLING/6:5(2009)を参照した。
Figure JPOXMLDOC01-appb-T000117
 図15-1はハイドロゲルを表し、黒い矢印で示す箇所の断面における酸素透過性を示したのが図15-2~15-4である。なお、凡例を図15-2に示し、表示内容は図15-3~15-4においても同様である。図15-2は実施例11-1の厚さ1mmのハイドロゲルであるが、表面の酸素透過性が100~75%であるのに対し、中心部の酸素透過率が25%以下であった。また、実施例11-2を示す図15-3では厚さ0.5mmとすることで、中心部の酸素透過率が50~25%と向上し、実施例11-3を示す図15-4では厚さ0.25mmとすることで、中心部の酸素透過率が75~50%と表面の酸素濃度の半分以上となった。
(実施例12)
 移植用デバイスからの物質透過性の評価
〔移植用デバイスの調製〕
 架橋基の導入率2.2mol%の実施例1eと導入率2.4mol%の実施例2eとを用いて、各々、2重量%の実施例12-1eの水溶液及び2重量%の実施例12-2eの水溶液を調製した。なお、水溶液の調製には生理食塩水を用いた。
 実施例12-1eの溶液と実施例12-2eの溶液を1:1(容量比)で混合することで、2重量%のアルギン酸溶液が調製できる。この溶液を生理食塩水と1:1(容量比)で混合した溶液25μLと、ヒトインスリン500ng又はグルコース250μgを含む0.01%Tween20含有生理食塩溶液25μLとを混合し50μLとした。この溶液は、迅速に半透膜(スペクトラム社製透析チューブ「スペクトラ/ポアCE(分画分子量10万)」)に封入(半透膜の一端をヒートシーリングした後、アルギン酸溶液を入れて、他端をヒートシーリングして封入)し、55mmol/LCaCl2溶液中に10~15分間漬し、デバイス中のアルギン酸溶液をゲル化した。アルギン酸の最終濃度は0.5%であった。かかる溶液で調製した移植用デバイスを実施例12-1(インスリンを含む)及び実施例12-2(グルコースを含む)のハイドロゲルとした。
 ・ハイドロゲルの大きさ:縦10 mm×横20 mm×厚さ約0.25mm
〔試験方法〕
 実施例12-1又は実施例12-2のハイドロゲルを室温の0.01%Tween20含有生理食塩水溶液40mL中で24時間攪拌し、外液中のインスリン濃度あるいはグルコース濃度を測定し、ハイドロゲルに封入したヒトインスリン又はグルコースが生理食塩水溶液中に拡散した場合を100%としたときのヒトインスリン透過率又はグルコース透過率を求めた。
 実施例12の移植用デバイスを用いた際の試験開始後24時間までの外液中インスリン濃度を図16-1、グルコース濃度を図16-2に示した。ヒトインスリン及びグルコースのいずれも速やかに透過し、24時間攪拌で100%が透過したことが確認され、本発明の移植用デバイスが、ヒトインスリンやグルコースの透過性に優れることを確認した。
(実施例13)
 ハイドロゲルの崩壊性評価
〔移植用デバイスの調製〕
 まず、以下の実施例13-1~13-5の生理食塩水溶液を調製した。
Figure JPOXMLDOC01-appb-T000118
 実施例13-1~実施例13-5の溶液で各々調製した移植用デバイスは以下の通りである。
<移植用デバイス>
 実施例13-1:実施例13-1の溶液を50μL用いて調製したのちに、迅速に半透膜(スペクトラム社製透析チューブ「スペクトラ/ポアCE(分画分子量10万)」)に封入(半透膜の一端をヒートシーリングした後、アルギン酸溶液を入れて、反対側もヒートシーリングを実施して封入)し、55mmol/LCaCl溶液中に10~15分間漬し、デバイス中のアルギン酸溶液をゲル化した。その後、封入膜からアルギン酸ゲルを取り出した移植用デバイス
 実施例13-2:実施例13-2の溶液を200μL用いて調製したのちに、実施例13-1と同様に作製した移植用デバイス
 実施例13-3a:実施例13-3の溶液を50μL用いて調製したのちに、実施例13-1と同様に作製した移植用デバイス
 実施例13-3b:実施例13-3の溶液を100μL用いて調製したのちに、実施例13-1と同様に作製した移植用デバイス
 実施例13-3c:実施例13-3の溶液を200μL用いて調製したのちに、実施例13-1と同様に作製した移植用デバイス
 実施例13-4:実施例13-4の溶液を200μL用いて調製したのちに、実施例13-1と同様に作製した移植用デバイス
 実施例13-5a:実施例13-5の溶液を50μL用いて調製したのちに、実施例13-1と同様に作製した移植用デバイス
 実施例13-5b:実施例13-5の溶液を100μL用いて調製したのちに、実施例13-1と同様に作製した移植用デバイス
実施例13-5c:実施例13-5の溶液を200μL用いて調製したのちに、実施例13-1と同様に作製した移植用デバイス
〔試験方法〕
 実施例13-1~5cのいずれかの移植用デバイス3枚を15mLコニカルチューブ中の37℃の生理食塩水溶液12mL中に加え、中型恒温振とう培養機(タイテック株式会社、バイオシェーカー(登録商標) BR-43FL・MR)を使用し、37℃で維持したまま往復振とうの方式で振幅25mm、振とう速度180rpmの条件で振とうした。試験開始1.5時間後、6時間後、24時間後、96時間後に外液を回収し、カルバゾール硫酸法にてアルギン酸濃度を定量した。また試験開始96時間後の外液回収後に、移植用デバイスを回収しリアーゼ処理することでアルギン酸ゲルを溶解させたのちに、残存ゲル中のアルギン酸濃度を定量した。
 試験終了時の外液中のアルギン酸濃度及び残存ゲル中のアルギン酸濃度からデバイス中のアルギン酸含量を求め、これを100%とした場合の、各試験開始後の外液から確認されたアルギン酸濃度から計算されるデバイスからの漏出アルギン酸含量を崩壊率として算出した。
 実施例13の移植用デバイスを用いた際の試験開始後96時間までの崩壊率を図17に示した。また、試験開始24時間後及び96時間後の崩壊率を表15に示した。
Figure JPOXMLDOC01-appb-T000119
 実施例13-1および13-2の天然アルギン酸を使用した移植用デバイスはハイドロゲル中のアルギン酸が速やかに溶解してハイドロゲルが崩壊したが、実施例13-3~13-5の本発明の移植用デバイスはアルギン酸溶出がほとんど認められず、ハイドロゲルも崩壊しないため、安定性に優れることを確認した。
(実施例14)
 アルギン酸ゲルからの細胞脱落のモデル試験
〔移植用デバイスの調製〕
 調製した移植用デバイスは以下の通りである。
<移植用デバイス>
 実施例14-1:実施例13-1の溶液45μLに膵島細胞の代わりとしてポリスチレンビーズ (106-125μm, ポリサイエンス社, cat No. 19824) の溶液を5μL加えて調製したのちに、迅速に半透膜(スペクトラム社製透析チューブ「スペクトラ/ポアCE(分画分子量10万)」)に封入(半透膜の一端をヒートシーリングした後、アルギン酸溶液を入れて、反対側もヒートシーリングを実施して封入)し、55mmol/LCaCl溶液中に10~15分間漬し、デバイス中のアルギン酸溶液をゲル化した。その後、封入膜からアルギン酸ゲルを取り出した移植用デバイス
 実施例14-2:実施例13-3aの溶液45μLに膵島細胞の代わりとしてポリスチレンビーズを5μL加えて用いて調製したのちに、実施例14-1と同様に作製した移植用デバイス
〔試験方法〕
 実施例14-1~2のいずれかの移植用デバイス3枚を15mLコニカルチューブ中の37℃の生理食塩水溶液12mL中に加え、中型恒温振とう培養機(タイテック株式会社、バイオシェーカー(登録商標) BR-43FL・MR)を使用し、37℃で維持したまま往復振とうの方式で振幅25mm、振とう速度180rpmの条件で振とうした。試験開始24時間後に外液を回収し、外液中へ脱落したポリスチレンビーズについて顕微鏡で観察した。
 実施例14-1の移植用デバイスを用いた際の試験開始24時間後の外液観察写真を図18-1に、実施例14-2の移植用デバイスを用いた際の試験開始後24時間後の外液観察写真を図18-2に、それぞれ示した。
 実施例14-1の天然アルギン酸を使用した移植用デバイスの場合、外液中に多数のビーズが観察され、試験開始24時間後にほとんどのマイクロビーズが脱落していることが確認された。一方、実施例14-2の本発明の移植用デバイスの場合、マイクロビーズの脱落がほとんど認められず(脱落率10%以下と考えられる)、封入した細胞が長期にわたり脱落しないと考えられ、安定性に優れることを確認した。
 以上ことから、好ましい態様の移植用デバイスは、少なくとも下記の効果の1つ以上を示すことが明らかとなった。
 (1)生体適合性や安定性に優れ、細胞毒性も少なく、移植部位における癒着や炎症もほとんどない。
 (2)ゲルの溶解が少なく形状が長期間維持される。
 (3)長期間にわたり、血糖降下作用を持続させ、血糖を調節することが可能となる。
 (4)長期間使用した後、半透膜中のアルギン酸ゲルは溶解しないで形状を維持可能であり、また膵島の生存・機能維持が可能であり、長期間使用できる。
 (5)交換が可能であり、免疫隔離可能であり、癒着、炎症等も少なく、安全性の高い医療材料となる。
 (6)デバイス内外への物質透過性に優れる。
 (7)ハイドロゲルの厚みが500μm未満の薄型のデバイスである場合に、500μm以上の場合と比べ、デバイスを移植した動物の治癒率が高い。
 (8)ハイドロゲルの厚みが500μm未満の薄型のデバイスである場合に、500μm以上の場合と比べ、デバイスの表面に対する中心部の酸素濃度の割合が高い。
 (9)ハイドロゲルを振とうした場合において、ハイドロゲルが崩壊しない又はしにくい。
 (10)ハイドロゲルを振とうした場合において、ハイドロゲル中に含まれる膵島のゲルからの脱落が少ない。
 より好ましい態様の移植用デバイスは、移植成績や機能性に優れ、素材に関して新規であり、糖尿病患者(とりわけ、I型糖尿病及びインスリン枯渇型II型糖尿病)に移植することにより、長期間にわたり、血糖降下作用を持続させ、血糖を調節することが可能となる。また、ハイドロゲル内のインスリン分泌細胞又は膵島の機能が低下した場合に、回収が可能である。あるいは、定期的な交換もしくは追加移植が可能となる。また、移植用デバイスのハイドロゲルに封入するインスリン分泌細胞又は膵島として、幹細胞(iPS等)から分化させたインスリン分泌細胞、又はヒト膵島を用いることも可能である。従って、より好ましい態様の移植用デバイスは有用である。
 

Claims (15)

  1.  インスリン分泌細胞又は膵島が封入されたハイドロゲルを含む移植用デバイスであって、前記ハイドロゲルがアルギン酸誘導体を化学架橋によりゲル化したものであり、
     前記ハイドロゲルの厚さが、100μm以上500μm未満である、移植用デバイス。
  2.  前記ハイドロゲルが、架橋としてアルギン酸誘導体間で形成される化学架橋を含む、請求項1に記載の移植用デバイス。
  3.  前記ハイドロゲルが、架橋としてHuisgen反応により形成されるトリアゾール環による化学架橋を含む、請求項1又は2に記載の移植用デバイス。
  4.  前記化学架橋が、アルギン酸の任意の1つ以上のカルボキシル基に導入された環状アルキン基と、アルギン酸の任意の1つ以上のカルボキシル基に導入されたアジド基より生じる、請求項1~3のいずれか1項に記載の移植用デバイス。
  5.  前記化学架橋が、以下の(A)及び(B)に記載のアルギン酸誘導体の組み合わせによる化学架橋である、請求項1~4の何れか1項に記載の移植用デバイス
     (A):
    アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、環状アルキン基(Akn)が導入された、下記式(HA-I):
    Figure JPOXMLDOC01-appb-C000001
    [式(HA-I)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記部分構造式[各式中、両端の破線外側は含まない]:
    Figure JPOXMLDOC01-appb-C000002
    の群から選択される2価のリンカーを表わし;Aknは、下記部分構造式[各式中、破線右側は含まない]:
    Figure JPOXMLDOC01-appb-C000003
    の群から選択される環状アルキン基を表わし、星印はキラル中心を表す]で表わされるアルギン酸誘導体;
     (B):
     アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、アジド基が導入された、下記式(HA-II):
    Figure JPOXMLDOC01-appb-C000004
    [式(HA-II)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記部分構造式[各式中、両端の破線外側は含まない]:
    Figure JPOXMLDOC01-appb-C000005
    の群から選択される2価のリンカーを表わす]で表わされるアルギン酸誘導体。
  6.  前記化学架橋したアルギン酸誘導体が、第1のアルギン酸の任意のカルボキシル基と、第2のアルギン酸の任意のカルボキシル基が、下記式(HA-III-L):
    Figure JPOXMLDOC01-appb-C000006
    [式(HA-III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;
    -L-は、前記請求項5中の定義と同じであり;
    -L-は、前記請求項5中の定義と同じであり;
    Xは、下記部分構造式:
    Figure JPOXMLDOC01-appb-C000007
    の群から選択される環状基であり(各式中、両端の破線外側は含まない)、星印はキラル中心を表す]を介して結合した架橋アルギン酸である、請求項5に記載の移植用デバイス。
  7.  前記化学架橋が、以下の(A)及び(B)に記載のアルギン酸誘導体の組み合わせによる化学架橋である、請求項1~4のいずれか1項に記載の移植用デバイス
    (A):アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(-L-)を介して、環状アルキン基(Akn)が導入された、下記式(HB-I):
    Figure JPOXMLDOC01-appb-C000008
    [式(HB-I)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記表:
    Figure JPOXMLDOC01-appb-T000009
    Figure JPOXMLDOC01-appb-T000010
    に記載された部分構造式[各式中、両端の破線外側は含まない]からなる群より選択されるリンカーを表わし;
    Aknは、下記表:
    Figure JPOXMLDOC01-appb-T000011
    に記載された部分構造式[各式中、破線右側は含まない]からなる群より選択される環状アルキン基を表わす]で表わされるアルギン酸誘導体;
    (B):アルギン酸の任意の1つ以上のカルボキシル基にアミド結合及び2価のリンカー(- L-)を介して、アジド基が導入された、下記式(HB-II):
    Figure JPOXMLDOC01-appb-C000012
    [式(HB-II)中、(ALG)は、アルギン酸を表わし;-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;-L-は、下記表:
    Figure JPOXMLDOC01-appb-T000013
    Figure JPOXMLDOC01-appb-T000014
    に記載された部分構造式[各式中、両端の破線外側は含まない]からなる群より選択されるリンカーを表す]で表されるアルギン酸誘導体
    (但し、式(HB-I)で表わされるアルギン酸誘導体において-L-が(L1-1)、(L1-2a)、(L1-2b)、(L1-11)又は(L1-12)の群から選択されるいずれか1つのリンカーである誘導体と、式(HB-II)で表わされるアルギン酸誘導体において―L―が(L2-10)のリンカーである誘導体との組み合わせによる化学架橋は除く)。
  8.  前記化学架橋したアルギン酸誘導体が、第1のアルギン酸の任意のカルボキシル基と、第2のアルギン酸の任意のカルボキシル基が、下記式(HB-III-L):
    Figure JPOXMLDOC01-appb-C000015
    [式(HB-III-L)中、両端の-CONH-及び-NHCO-は、アルギン酸の任意のカルボキシル基を介したアミド結合を表わし;
    -L-は、前記請求項7中の定義と同じであり;
    -L-は、前記請求項7中の定義と同じであり; Xは、下記表:
    Figure JPOXMLDOC01-appb-T000016
    Figure JPOXMLDOC01-appb-T000017
    に記載された部分構造式の群から選択される環状基である(各式中、両端の破線外側は含まない)]を介して結合した架橋アルギン酸である(但し、式(HB-I)で表わされるアルギン酸誘導体において-L-が(L1-1)、(L1-2a)、(L1-2b)、(L1-11)又は(L1-12)の群から選択されるいずれか1つのリンカーである誘導体と、式(HB-II)で表わされるアルギン酸誘導体において―L―が(L2-10)のリンカーである誘導体との組み合わせによる架橋アルギン酸は除く)、請求項7に記載の移植用デバイス。
  9.  式(HA-I)のアルギン酸誘導体が、下記式(EX-1-(I)-A-2)であり、
    Figure JPOXMLDOC01-appb-C000018
     式(HA-II)のアルギン酸誘導体が、下記式(EX-2-(II)-A-2)である、
    Figure JPOXMLDOC01-appb-C000019
    請求項5又は請求項6に記載の移植用デバイス。
  10.  前記膵島が、ヒト膵島またはブタ膵島である、請求項1~9のいずれか1項に記載の移植用デバイス。
  11.  前記膵島が、ブタの成体の膵島である、請求項10に記載の移植用デバイス。
  12.  前記膵島が、胎生期、新生児期、または周産期のブタ膵島である、請求項10に記載の移植用デバイス。
  13.  前記ハイドロゲルが、更に半透膜で被覆された、請求項1~12のいずれか1項に記載の移植用デバイス。
  14.  前記半透膜が、セルロース誘導体より形成された透析膜である、請求項13に記載の移植用デバイス。
  15.  前記セルロース誘導体が、酢酸セルロースである、請求項14に記載の移植用デバイス。
PCT/JP2020/047944 2020-12-22 2020-12-22 化学架橋アルギン酸を用いた移植用デバイス WO2022137345A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2022570823A JPWO2022137345A1 (ja) 2020-12-22 2020-12-22
CA3202982A CA3202982A1 (en) 2020-12-22 2020-12-22 Transplantation device using chemically crosslinked alginic acid
US18/268,427 US20240316248A1 (en) 2020-12-22 2020-12-22 Transplantation device using chemically crosslinked alginic acid
KR1020237020727A KR20230123959A (ko) 2020-12-22 2020-12-22 화학 가교 알긴산을 사용한 이식용 디바이스
AU2020482526A AU2020482526A1 (en) 2020-12-22 2020-12-22 Transplantation device using chemically crosslinked alginic acid
EP20966837.5A EP4268855A4 (en) 2020-12-22 2020-12-22 TRANSPLANTATION DEVICE WITH CHEMICALLY CROSS-LINKED ALGINIC ACID
PCT/JP2020/047944 WO2022137345A1 (ja) 2020-12-22 2020-12-22 化学架橋アルギン酸を用いた移植用デバイス
CN202080108152.7A CN117042783A (zh) 2020-12-22 2020-12-22 使用了化学交联海藻酸的移植用器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047944 WO2022137345A1 (ja) 2020-12-22 2020-12-22 化学架橋アルギン酸を用いた移植用デバイス

Publications (1)

Publication Number Publication Date
WO2022137345A1 true WO2022137345A1 (ja) 2022-06-30

Family

ID=82159212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047944 WO2022137345A1 (ja) 2020-12-22 2020-12-22 化学架橋アルギン酸を用いた移植用デバイス

Country Status (8)

Country Link
US (1) US20240316248A1 (ja)
EP (1) EP4268855A4 (ja)
JP (1) JPWO2022137345A1 (ja)
KR (1) KR20230123959A (ja)
CN (1) CN117042783A (ja)
AU (1) AU2020482526A1 (ja)
CA (1) CA3202982A1 (ja)
WO (1) WO2022137345A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157502A (en) 1979-03-28 1980-12-08 Damon Corp Live tissue encapsulation and tissue transplantation
JPS60258121A (ja) 1984-05-24 1985-12-20 コノート ラボラトリーズ リミテツド 生きた組織や細胞のマイクロカプセル及びその製造方法
WO1992019195A1 (en) 1991-04-25 1992-11-12 Brown University Research Foundation Implantable biocompatible immunoisolatory vehicle for delivery of selected therapeutic products
WO1993013136A1 (en) 1991-12-20 1993-07-08 Howmedica Inc. Ultra-pure polysaccharide materials for medical use
WO1995028480A1 (en) 1994-04-15 1995-10-26 Biohybrid Technologies, Inc. Methods of use of uncoated gel particles
JPH08269102A (ja) 1995-03-30 1996-10-15 Shiseido Co Ltd エンドトキシンフリーのβ1,3−グルカン及びその製造法並びに医療用ゲル素材
US5589591A (en) 1986-07-03 1996-12-31 Advanced Magnetics, Inc. Endotoxin-free polysaccharides
JPH09324001A (ja) 1996-04-02 1997-12-16 Kyowa Hakko Kogyo Co Ltd ヒアルロン酸ナトリウムの精製法
JP2000507202A (ja) * 1995-12-07 2000-06-13 エンセル,インコーポレイテッド 生体人工装置及びそのための細胞マトリックス
JP2002530440A (ja) 1998-11-13 2002-09-17 シーピー ケルコ ユー.エス.インク. エンドトキシンレベルが低い生体高分子塩、その生体高分子組成物およびこれを製造する方法
JP2005036036A (ja) 2003-07-16 2005-02-10 Tanabe Seiyaku Co Ltd エンドトキシン除去方法
CN105078923A (zh) * 2014-05-07 2015-11-25 中国科学院大连化学物理研究所 Peg原位共价接枝的海藻酸盐微胶囊及其制备和应用
JP2017196150A (ja) 2016-04-27 2017-11-02 株式会社クラレ 移植用デバイス及びバイオ人工臓器
JP2019512522A (ja) * 2016-03-24 2019-05-16 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. アルギネートヒドロゲル組成物
JP2019122063A (ja) 2017-12-28 2019-07-22 河村電器産業株式会社 スマートメータ通信装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157502A (en) 1979-03-28 1980-12-08 Damon Corp Live tissue encapsulation and tissue transplantation
JPS60258121A (ja) 1984-05-24 1985-12-20 コノート ラボラトリーズ リミテツド 生きた組織や細胞のマイクロカプセル及びその製造方法
US5589591A (en) 1986-07-03 1996-12-31 Advanced Magnetics, Inc. Endotoxin-free polysaccharides
WO1992019195A1 (en) 1991-04-25 1992-11-12 Brown University Research Foundation Implantable biocompatible immunoisolatory vehicle for delivery of selected therapeutic products
WO1993013136A1 (en) 1991-12-20 1993-07-08 Howmedica Inc. Ultra-pure polysaccharide materials for medical use
WO1995028480A1 (en) 1994-04-15 1995-10-26 Biohybrid Technologies, Inc. Methods of use of uncoated gel particles
JPH08269102A (ja) 1995-03-30 1996-10-15 Shiseido Co Ltd エンドトキシンフリーのβ1,3−グルカン及びその製造法並びに医療用ゲル素材
JP2000507202A (ja) * 1995-12-07 2000-06-13 エンセル,インコーポレイテッド 生体人工装置及びそのための細胞マトリックス
JPH09324001A (ja) 1996-04-02 1997-12-16 Kyowa Hakko Kogyo Co Ltd ヒアルロン酸ナトリウムの精製法
JP2002530440A (ja) 1998-11-13 2002-09-17 シーピー ケルコ ユー.エス.インク. エンドトキシンレベルが低い生体高分子塩、その生体高分子組成物およびこれを製造する方法
JP2005036036A (ja) 2003-07-16 2005-02-10 Tanabe Seiyaku Co Ltd エンドトキシン除去方法
CN105078923A (zh) * 2014-05-07 2015-11-25 中国科学院大连化学物理研究所 Peg原位共价接枝的海藻酸盐微胶囊及其制备和应用
JP2019512522A (ja) * 2016-03-24 2019-05-16 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. アルギネートヒドロゲル組成物
JP2017196150A (ja) 2016-04-27 2017-11-02 株式会社クラレ 移植用デバイス及びバイオ人工臓器
JP2019122063A (ja) 2017-12-28 2019-07-22 河村電器産業株式会社 スマートメータ通信装置

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BIOORGANIC & MEDICINAL CHEMISTRY, vol. 11, 2003, pages 4189 - 4206
BIOTECHNOLOGY AND BIOENGINEERING, vol. 96, 2007, pages 990 - 998
HERMAN FRANK, APPL. MICROBIOL. BIOTECHNOL., vol. 40, 1994, pages 638 - 643
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, vol. 103B, 2015, pages 1120 - 1132
NOGUCHI ET AL., TRANSPLANTATION PROCEEDINGS, vol. 42, 2010, pages 2084 - 2086
ORG. PROCESS RES. DEV., vol. 22, 2018, pages 108 - 110
ORGAN BIOLOGY, vol. 24, no. 1, 2017, pages 7 - 12
See also references of EP4268855A4
SHIMODA ET AL., CELL TRANSPLANTATION, vol. 21, 2012, pages 501 - 508
SHIMODA: CELL TRANSPLANTATION, vol. 21, 2012, pages 501 - 508
THEORETICAL BIOLOGY AND MEDICAL MODELLING, vol. 6, 2009, pages 5

Also Published As

Publication number Publication date
AU2020482526A9 (en) 2024-05-30
JPWO2022137345A1 (ja) 2022-06-30
EP4268855A4 (en) 2024-09-04
AU2020482526A1 (en) 2023-07-06
CA3202982A1 (en) 2022-06-30
KR20230123959A (ko) 2023-08-24
EP4268855A1 (en) 2023-11-01
CN117042783A (zh) 2023-11-10
US20240316248A1 (en) 2024-09-26

Similar Documents

Publication Publication Date Title
Dutta et al. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering
Reakasame et al. Oxidized alginate-based hydrogels for tissue engineering applications: a review
JP6757329B2 (ja) 自己組み込み型ヒドロゲル及びその製造方法
JP7312761B2 (ja) インビトロ培養及び移植のための組織構築物の生理学的3dバイオプリンティングのためのバイオガム及び植物性ガムハイドロゲルバイオインク
Christensen Alginates as biomaterials in tissue engineering
JP7210095B2 (ja) 化学架橋アルギン酸を用いた移植用デバイス
KR20200130685A (ko) 가교된 히알루론산 및 prp/bmc와의 조합물
US20060127873A1 (en) Composition for cytocompatible, injectable, self-gelling chitosan solutions for encapsulating and delivering live cells or biologically active factors
Szustak et al. Nanocellulose-based scaffolds for chondrogenic differentiation and expansion
EP0977780B1 (en) Hetero-polysaccharide conjugates, s-inp polysaccharide gels and methods of making and using the same
JP6055466B2 (ja) 酸化オリゴ糖で架橋したゲル材料
KR102289206B1 (ko) 골치료를 위한 fk506을 포함하는 키토산/템포 산화 셀룰로오스 나노 섬유 하이드로겔 및 이의 제조방법
Kim et al. Injectable hydrogel based on gellan gum/silk sericin for application as a retinal pigment epithelium cell carrier
WO2022137345A1 (ja) 化学架橋アルギン酸を用いた移植用デバイス
WO2022145419A1 (ja) 化学架橋アルギン酸を用いた多層構造体
Bacakova et al. Cell interaction with cellulose-based scaffolds for tissue engineering—a review
Sivashankari et al. Recent Advances on Chitosan‐Based Materials in Regenerative Medicine
Gozalbez Juliá Alginate as Biomaterial for Tissue Engineering
Tomić et al. Hydrogel Scaffolds Based on Alginate, Gelatin, and 2-Hydroxyethyl Methacrylate for Tissue Regeneration
BONINI A SELF-ASSEMBLING POROUS AND INJECTABLE BIOMATERIAL FOR REGENERATIVE MEDICINE
De Silva Characterization of single network and interpenetrating network hydrogels of natural and synthetic polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570823

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18268427

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3202982

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202080108152.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2020482526

Country of ref document: AU

Date of ref document: 20201222

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020966837

Country of ref document: EP

Effective date: 20230724