WO2022127506A1 - 一种压力波发生装置及医疗器械 - Google Patents
一种压力波发生装置及医疗器械 Download PDFInfo
- Publication number
- WO2022127506A1 WO2022127506A1 PCT/CN2021/131536 CN2021131536W WO2022127506A1 WO 2022127506 A1 WO2022127506 A1 WO 2022127506A1 CN 2021131536 W CN2021131536 W CN 2021131536W WO 2022127506 A1 WO2022127506 A1 WO 2022127506A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- pressure wave
- positive electrode
- power supply
- pulse power
- Prior art date
Links
- 239000007788 liquid Substances 0.000 claims abstract description 76
- 230000015556 catabolic process Effects 0.000 claims abstract description 21
- 230000007246 mechanism Effects 0.000 claims abstract description 21
- 239000007864 aqueous solution Substances 0.000 claims abstract description 6
- 150000003839 salts Chemical class 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 19
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 claims description 6
- 239000001103 potassium chloride Substances 0.000 claims description 3
- 235000011164 potassium chloride Nutrition 0.000 claims description 3
- 229910000160 potassium phosphate Inorganic materials 0.000 claims description 3
- 235000011009 potassium phosphates Nutrition 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 239000001488 sodium phosphate Substances 0.000 claims description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 claims description 3
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 3
- 230000035939 shock Effects 0.000 abstract description 42
- 230000000694 effects Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000003902 lesion Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 208000020084 Bone disease Diseases 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 230000035485 pulse pressure Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000002037 soft tissue calcification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000005909 tumor killing Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 231100000216 vascular lesion Toxicity 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
Definitions
- the present application relates to the technical field of medical equipment, and in particular, to a pressure wave generating device and a medical instrument.
- Hydroelectric effect is a phenomenon in which a rapid high-voltage arc discharge occurs at the electrode in the liquid, and the arc breaks down the liquid to form an arc channel; the arc channel expands rapidly and the liquid is electrolyzed, vaporized and expanded to radiate strong pressure waves outward.
- the "hydroelectric effect” is widely used in the field of medical technology, such as the treatment of cardiovascular diseases.
- a high-voltage pulse power supply is usually used to discharge two oppositely arranged electrode plates to generate hydroelectric pulse pressure waves to impact vascular lesions (such as calcified lesions) to dredge the vascular calcified lesions; plate-to-plate electrodes are usually used to generate arc, thereby forming a pressure wave.
- the arc position generated by the plate-plate electrode is uncertain, and it is difficult to accurately guide the pressure wave; and the plate-plate electrode has certain constraints on the pressure wave generated by the plate-plate electrode; it is difficult to obtain a high-intensity pressure wave.
- the needle-plate electrode requires a high breakdown voltage, and the needle electrode is easy to wear out; this leads to a large change in the breakdown voltage of the needle-plate electrode, which affects the service life of the pressure wave generating device.
- the present application provides a pressure wave generating device and a medical device, so as to solve the problem that the needle electrode of the needle-plate electrode in the related art is easily worn, resulting in a large change in the breakdown voltage of the needle-plate electrode.
- a pressure wave generating device comprising: a pulse power source, an electrode and a liquid storage mechanism;
- the pulse power source is electrically connected to the electrode, and the pulse power source is used to provide a pulse voltage for the electrode;
- the electrode is located in the liquid storage mechanism, and a liquid conductive medium is stored in the liquid storage mechanism, and the liquid conductive medium is stored in the liquid storage mechanism. a liquid conductive medium immerses the electrodes;
- the electrode comprises a positive electrode and a negative electrode arranged oppositely, the positive electrode is electrically connected to the positive electrode of the pulse power supply, the negative electrode is electrically connected to the negative electrode of the pulse power supply; the positive electrode is electrically connected to the negative electrode The opposite end of at least one of them is point-shaped or line-shaped; the liquid conductive medium is an aqueous solution of salt; the liquid conductive medium is used to form a conductive path between the positive electrode and the negative electrode, so as to The breakdown voltage between the positive electrode and the negative electrode is reduced.
- the liquid conductive medium made of an aqueous solution of salt is stored in the liquid storage mechanism, and the opposite end of at least one of the positive electrode or the negative electrode of the electrode is set in a point shape or a line shape; in this way,
- the liquid conductive medium made of an aqueous salt solution can improve the conductivity of the liquid and reduce the breakdown voltage between the positive electrode and the negative electrode; that is, the calorific value of the electrode is reduced, and the service life of the electrode can be increased.
- the position of the point-shaped or linear electrode to generate the breakdown arc is fixed, which can accurately guide the generated shock wave or pressure wave; at the same time, the propagation and diffusion resistance of the generated shock wave or pressure wave is small, which is conducive to improving the shock wave or pressure wave. the strength of the wave.
- the electrodes include any one of the following: wire-plate electrodes, point-plate electrodes, wire-wire electrodes, point-wire electrodes or point-point electrodes.
- the pressure wave will propagate and diffuse in the liquid bypassing the wire electrode or the point electrode, and will not be blocked by the electrode, which can effectively improve the intensity of the pressure wave.
- both the positive electrode and the negative electrode are annular structures to form the wire-wire electrode.
- the wire-wire electrodes are formed by two annular-structured electrodes, which can facilitate the positioning between the wire electrodes and reduce the gap between the wire electrodes. Thus, the breakdown voltage of the electrode gap can be reduced.
- one of the positive electrode and the negative electrode is a dot-shaped structure, and the other is a ring-shaped structure, so as to form the dot-line electrode.
- a point-line electrode is formed by a point electrode and an electrode with a ring structure, which can facilitate the positioning between the line electrodes and reduce the gap between the line electrodes. Thus, the breakdown voltage of the electrode gap can be reduced.
- the multiple electrodes are connected in series between the positive electrode and the negative electrode of the pulse power supply.
- a plurality of electrodes are arranged, and after the plurality of electrodes are connected in series, the generated pressure waves can be superimposed on each other and propagate in the liquid conductive medium, which can enhance the intensity of the pressure waves.
- the gap between the positive electrode and the negative electrode is 0.01-1 mm.
- the gap between the electrodes is kept small, the breakdown voltage between the electrodes can be reduced, and the wear of the electrodes can be reduced.
- the output voltage of the pulse power supply is 500-5000V.
- the pulse width of the pulse power supply is 0.5-2 ⁇ s.
- the liquid conductive medium includes any one of the following solutions: sodium chloride solution, potassium chloride solution, sodium phosphate solution, and potassium phosphate solution.
- a medical device including the pressure wave generating device provided in any possible design manner of the first aspect of the present application.
- FIG. 1 is a perspective structural schematic diagram of a first implementation manner of a pressure wave generating device provided in an embodiment of the present application
- FIG. 2 is a perspective structural schematic diagram of a pressure wave generating device provided by an embodiment of the present application from another perspective;
- FIG. 3 is a perspective structural schematic diagram of a second implementation manner of a pressure wave generating device provided in an embodiment of the present application.
- FIG. 4 is a perspective structural schematic diagram of a third implementation manner of a pressure wave generating device provided by an embodiment of the present application.
- FIG. 5 is a perspective structural schematic diagram of a fourth implementation manner of a pressure wave generating device provided by an embodiment of the present application.
- first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
- plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
- the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication between two elements or the interaction relationship between the two elements, unless otherwise clearly defined.
- installed e.g., it may be a fixed connection or a detachable connection , or integrated; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication between two elements or the interaction relationship between the two elements, unless otherwise clearly defined.
- the specific meanings of the above terms in this application can be understood according to specific situations.
- a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary touch.
- the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
- the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
- orientation or positional relationship (if any) indicated by the terms “inside”, “outside”, “upper”, “bottom”, “front”, “rear”, etc. is
- the orientation or positional relationship shown in FIG. 1 is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot It is construed as a limitation of this application.
- the main principle of the "hydroelectric effect" is that under the action of a high-voltage and strong electric field, the electrons in the liquid between the electrodes are accelerated, and the liquid molecules near the electrodes are ionized.
- the ionized electrons in the liquid will be accelerated by the strong electric field between the electrodes to ionize more electrons, forming an electron avalanche.
- Plasma channels are formed in the regions where the liquid molecules are ionized. As the ionization region expands, discharge channels are formed between the electrodes, and the liquid is broken down.
- Shock waves are also called pressure waves. Because they diffuse in the surrounding medium in the form of shock pressure, shock waves or pressure waves can produce energy gradient differences and torsional tension between tissues of different densities, resulting in biological effects and acting on the local area. tissue to achieve therapeutic effect. It is more and more widely used in modern medical technology.
- a shock wave or pressure wave is applied for tissue destruction, and the shock wave or pressure wave has a pressure phase and a tension phase. Squeeze in the pressure phase and stretch in the tension phase.
- the damage mechanics effect produced by the shock wave or pressure wave itself is a direct effect, and in the tension phase of the shock wave or pressure wave, the cavitation effect produced by the tension wave is an indirect effect of tissue damage.
- shock wave or the pressure wave can also be applied in some other scenarios.
- osteogenesis for example, osteogenesis, analgesia, metabolic activation, and inhibition or killing of tumor cells.
- shock waves are generated by placing two electrode plates facing each other in a liquid (for example, water), and the two electrode plates are connected to the positive and negative poles of the pulse power supply;
- the high-voltage pulse voltage causes the liquid between the plates to be broken down to form an arc; thereby forming a pressure wave.
- the flat plate of the plate-plate electrode cannot be absolutely flat and smooth. In actual production, there will always be uneven bumps or pits. This will lead to the location where the electrical breakdown of the plate-to-plate electrode is not fixed, and it is more likely to cause the breakdown to form arcs at the bumps, while it is difficult to cause the breakdown to form arcs at the pits.
- the unfixed position of the arc makes it difficult to determine the position of the shock wave or pressure wave, so that the shock wave or pressure wave cannot be accurately guided and act on the lesion.
- the shock wave or pressure wave generated also needs to spread and propagate in the liquid. It is difficult to obtain high-intensity shock waves or pressure waves, and the effect on the lesion site is limited.
- the needle-plate electrode can improve the energy injection efficiency of the arc channel or the discharge channel, thereby increasing the intensity of the pressure wave.
- the needle electrode is easily worn out; the gap between the needle and the plate electrode changes, so that the breakdown voltage of the gap changes greatly; the service life of the electrode is affected.
- the embodiment of the present application provides a pressure wave generating device, the main idea is to set at least one of the positive electrode or the negative electrode of the electrode into a point electrode or a line electrode;
- the conductive medium is set to be an aqueous solution of salt.
- higher energy can be injected into the arc channel or discharge channel, which is beneficial to improve the intensity of the pressure wave;
- the breakdown voltage of the electrode gap is reduced, so that the service life of the electrode can be effectively improved.
- the discharge position of the point electrode or the wire electrode is fixed, which is conducive to the precise guidance of the shock wave or the pressure wave, and the treatment of the lesion.
- the point-shaped electrode or the wire-shaped electrode has less resistance to the propagation and diffusion of the shock wave or the pressure wave in the liquid medium, and can further improve the intensity of the shock wave or the pressure wave.
- FIG. 1 is a perspective structural schematic diagram of a first implementation manner of a pressure wave generating device provided by an embodiment of the present application.
- a pressure wave generating device 1 provided in an embodiment of the present application includes: a pulse power source 10 , an electrode 20 and a liquid storage mechanism 30 .
- the pulse power supply 10 may be a single positive pulse power supply, or may be a double positive and negative pulse power supply.
- the positive pulse turn-on time width (ie the positive pulse width) and the negative turn-on time width (ie the negative pulse width) of the positive and negative pulse power supplies can be adjusted in the full cycle respectively.
- the pulse mode of the pulse power supply 10 in the embodiment of the present application may be a square wave pulse, which is also called a single pulse.
- the single-pulse power supply generally outputs a one-way pulse current with fixed parameters.
- the pulse power supply 10 may also be a double-pulse power supply or a multi-pulse power supply.
- the electrode 20 may be made of materials such as stainless steel, copper, silver, and tungsten.
- the electrodes 20 may be of a material that is visible under imaging equipment, eg, visible under X-rays.
- the pulse power supply 10 is electrically connected to the electrode 20 .
- the pulse power supply 10 is electrically connected to the electrodes 20 through wires.
- the wire may be an aluminum core wire, a copper core wire or a silver core wire.
- the pulse power supply 10 is used to supply pulse voltage to the electrodes 20 .
- the liquid storage mechanism 30 of the present application may be made of insulating material, and the liquid storage mechanism 30 has a liquid storage cavity inside.
- the liquid storage mechanism 30 may be made of a material with certain plasticity (eg elastic deformation), so that after shock waves or pressure waves are generated in the liquid storage cavity of the liquid storage mechanism 30, the shock wave Alternatively, the pressure wave can exert pressure on the wall of the fluid storage mechanism 30 to deform, so as to treat the lesion.
- certain plasticity eg elastic deformation
- the electrode 20 is disposed in the liquid storage cavity in the liquid storage mechanism 30 , the liquid conductive medium is stored in the liquid storage cavity in the liquid storage mechanism 30 , and the liquid conductive medium immerses the electrode 20 .
- the liquid conductive medium may be physiological saline.
- the liquid conductive medium may also be an aqueous solution of other electrolytes, and the concentration of which may be greater than or equal to that of physiological saline.
- the electrode 20 usually includes a positive electrode 21 and a negative electrode 22 disposed opposite to each other, the positive electrode 21 is electrically connected to the positive electrode of the pulse power supply 10 (for example, electrically connected through a wire), and the negative electrode 22 is electrically connected to the negative electrode of the pulse power supply 10 .
- the positive electrode 21 and the negative electrode 22 are not fixed.
- the electrode connected to the positive electrode of the pulse power supply 10 is the positive electrode 21, and the electrode connected to the pulse power supply 10 is the positive electrode 21.
- the electrode connected to the negative electrode of 10 is the negative electrode 22; that is, in different connection methods, the positive electrode 21 and the negative electrode 22 may change.
- the opposite end of at least one of the positive electrode 21 and the negative electrode 22 to the other has a dot shape or a line shape.
- one of the positive electrode 21 and the negative electrode 22 may be a needle electrode or a wire electrode.
- both the positive electrode 21 and the negative electrode 22 may be needle electrodes or both may be wire electrodes.
- the liquid conductive medium is used to form a conductive path between the positive electrode 21 and the negative electrode 22 , so as to reduce the breakdown voltage between the positive electrode 21 and the negative electrode 22 .
- the opposite end of at least one of the positive electrode 21 or the negative electrode 22 of the electrode 20 is set as a dot or line
- the liquid conductive medium made of the aqueous salt solution can improve the conductivity of the liquid and reduce the breakdown voltage between the positive electrode 21 and the negative electrode 22; that is, the calorific value of the electrode is reduced, which can improve the service life.
- the position of the point-shaped or linear electrode to generate the breakdown arc is fixed, which can accurately guide the generated shock wave or pressure wave; at the same time, the propagation and diffusion resistance of the generated shock wave or pressure wave is small, which is conducive to improving the shock wave or pressure wave. the strength of the wave.
- FIG. 2 is a schematic perspective view of a pressure wave generator provided by an embodiment of the present application from another perspective
- FIG. 3 is a pressure wave generator provided by an embodiment of the present application.
- a schematic perspective structure diagram of a second implementation of the device FIG. 4 is a perspective structure schematic diagram of a third implementation of a pressure wave generating device provided by an embodiment of the present application
- FIG. 5 is a pressure wave generator provided by an embodiment of the present application.
- the perspective structure diagram of the fourth implementation manner of the device is shown in FIGS. 1-5 .
- the electrodes 20 include any one of the following: wire-plate electrodes, point-plate electrodes, wire-wire electrodes, point-wire electrodes, or point-point electrodes.
- the wire-plate electrode may be one of the positive electrode 21 or the negative electrode 22 is a wire electrode, and the other is a plate electrode; wherein the wire electrode may be a wire, a conductive rod, or a conductive ring.
- the shock wave or pressure wave generated in this way will propagate around the wire electrode and will not be blocked by the wire electrode; thus, a uniform and effective shock wave or pressure wave can be generated around the electrode 20 .
- the point-plate electrode may be the electrode shown in FIG. 3 and FIG. 4 , one of the positive electrode 21 and the negative electrode 22 may be a point electrode, and the point electrode may be a needle electrode. Needle tip. The other can be a plate electrode. It can be understood that, in the embodiment of the present application, the pressure wave direction of the point-plate electrode may be emitted in the direction from the point electrode to the plate electrode. In this way, the shock wave or pressure wave is not blocked by the electrode, and a uniform shock wave or pressure wave can be generated around the electrode.
- the line-line electrode may be that both the positive electrode 21 and the negative electrode 22 are conductive rods, and the two conductive rods are arranged parallel to each other.
- both the positive electrode 21 and the negative electrode 22 are annular structures to form wire-wire electrodes.
- the positive electrode 21 and the negative electrode 22 of the annular structure can be circular, elliptical, or polygonal annular structures.
- the wire-wire electrode can also be that one of the positive electrode 21 and the negative electrode 22 is a conductive rod, and the other is a conductive ring of annular structure.
- the point-point electrodes may be two opposing needle electrodes, and the point-line electrodes may be electrodes formed by a needle electrode and a conductive rod.
- the point-line electrode may also be that one of the positive electrode 21 and the negative electrode 22 is a point-shaped structure, and the other is a ring-shaped structure.
- the emission direction of the shock wave or the pressure wave may be emitted in the direction from the point electrode to the ring electrode.
- the point electrode may be disposed at the center of the ring electrode, or may be offset from the center of the ring electrode by a certain distance.
- the range of pressure waves or shock waves that can be generated by a single electrode 20 in the liquid conductive medium is limited, in order to enhance the strength of the pressure waves or shock waves and the propagation in the liquid conductive medium range for effective treatment of the lesion site.
- a plurality of electrodes 20 are arranged in the liquid conductive medium, and the plurality of electrodes 20 are connected in series between the positive electrode and the negative electrode of the pulse power supply 10 .
- multiple electrodes 20 jointly generate shock waves or pressure waves, and the shock waves or pressure waves are superimposed on each other and spread outward with the multiple electrodes 20 as the center, which can effectively enhance the intensity and diffusion range of the shock waves or pressure waves.
- the pressure wave generating device provided in the embodiment of the present application can generate a shock wave or pressure wave with a pressure of 0.5-10 MPa, and the diffusion range of the shock wave or pressure wave can reach the range of 0-10 mm from the electrode 20 .
- the number of electrodes 20 is set to be no more than 10 (four electrodes 20 are shown as an example in the figure).
- the heat generation of the electrode 20 is reduced, thereby increasing the service life of the electrode.
- the gap between the positive electrode 21 and the negative electrode 22 of the electrode 20 is kept at 0.01-1 mm. In some possible examples, the gap between the positive electrode 21 and the negative electrode 22 is 0.1-0.9 mm.
- the output voltage of the pulse power supply 10 is 500-5000V.
- the pulse width of the pulse power supply 10 is 0.5 to 2 ⁇ s.
- the liquid conductive medium includes any one of the following solutions: sodium chloride solution, potassium chloride solution, sodium phosphate solution, and potassium phosphate solution.
- concentration of the liquid conductive medium may be greater than or equal to the concentration of physiological saline (mass fraction 0.9%).
- an embodiment of the present application provides a medical device, including the pressure wave generating device 1 provided by any optional embodiment of the first aspect of the present application.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
一种压力波发生装置(1),包括:脉冲电源(10)、电极(20)和储液机构(30);脉冲电源(10)与电极(20)电连接,脉冲电源(10)用于为电极(20)提供脉冲电压;电极(20)位于储液机构(30)内,储液机构(30)内储存有液体导电介质,液体导电介质浸没电极(20);电极(20)包括相对设置的正电极(21)和负电极(22),正电极(21)与脉冲电源(10)的正极电连接,负电极(22)与脉冲电源(10)的负极电连接;正电极(21)与负电极(22)中的至少一个与另一个相对的一端为点状或者线状;液体导电介质为盐的水溶液;液体导电介质用于在正电极(21)和负电极(22)间形成导电通路,以降低正电极(21)和负电极(22)间的击穿电压。压力波发生装置(1)能够提高电极(20)的使用寿命,能够提高冲击波或者压力波的强度。
Description
本申请要求于2020年12月16日在中国专利局提交的、申请号为202011488754.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及医疗设备技术领域,尤其涉及一种压力波发生装置及医疗器械。
“液电效应”是电极在液体中发生快速高电压电弧放电,电弧将液体击穿形成电弧通道;电弧通道快速膨胀以及液体被电解、汽化膨胀向外辐射强烈的压力波的现象。目前“液电效应”在医疗技术领域应用较为广泛,例如针对心血管疾病的治疗。通常采用高压脉冲电源对两个正对设置的电极板进行放电,以产生液电脉冲压力波对血管病灶(例如钙化病灶)进行冲击,以疏通血管钙化病灶;通常会采用板-板电极来产生电弧,从而形成压力波。但是,板-板电极产生的电弧位置不确定,难以对压力波进行精确导向;并且板-板电极对产生的压力波有一定的约束;难以获得高强度的压力波。
相关技术中,也有采用针-板电极来产生压力波的方式,能够对压力波进行精确导向。
但是,针-板电极需要较高的击穿电压,针电极容易损耗;导致针-板电极的击穿电压变化较大,影响压力波发生装置的使用寿命。
本申请提供一种压力波发生装置及医疗器械,以解决相关技术中针-板电极的针电极容易损耗,导致针-板电极击穿电压变化较大的问题。
根据本申请的第一个方面,提供了一种压力波发生装置,包括:脉冲电源、电极和储液机构;
所述脉冲电源与所述电极电连接,所述脉冲电源用于为所述电极提供脉冲电压;所述电极位于所述储液机构内,所述储液机构内储存有液体导电介质,所述液体导电介质浸没所述电极;
所述电极包括相对设置的正电极和负电极,所述正电极与所述脉冲电源的正极电连接,所述负电极与所述脉冲电源的负极电连接;所述正电极与所述负电极中的至少一个与另一个相对的一端为点状或者线状;所述液体导电介质为盐的水溶液;所述液体导电介质用于在所述正电极和所述负电极间形成导电通路,以降低所述正电极和所述负电极间的击穿电压。
本申请实施例,通过在储液机构内储存盐的水溶液制成的液体导电介质,将电极的正电极或负电极中的至少一个与另一个相对的一端设置为点状或者线状;这样,盐的水溶液制成的液体导电介质能够提高液体的电导率,能够降低正电极和负电极之间的击穿电压;也就是说,电极的发热量降低,能够提高电极的使用寿命。并且,点状或者线状的电极产生击穿电弧的位置固定,能够对产生的冲击波或压力波进行精确导向;同时,对产生的冲击波或者压力波的传播扩散阻力较小,利于提高冲击波或者压力波的强度。
在一种可能的设计方式中,所述电极包括以下任意一种:线-板电极、点-板电极、线-线电极、点-线电极或者点-点电极。
这样,在液体中产生压力波后,压力波会绕过线电极或者点电极在液体中传播扩散,不会被电极阻挡,能够有效提高压力波的强度。
在一种可能的设计方式中,所述正电极和所述负电极均为环状结构,以形成所述线-线电极。
通过两个环状结构的电极来形成线-线电极,能够方便线电极之间的定位,减小线电极之间的间隙。从而能够减小电极间隙的击穿电压。
在一种可能的设计方式中,所述正电极和所述负电极中的一个为点状结构,另一个为环状结构,以形成所述点-线电极。
通过一个点状电极和一个环状结构的电极来形成点-线电极,能够方便线电极之间的定位,减小线电极之间的间隙。从而能够减小电极间隙的击穿电压。
在一种可能的设计方式中,所述电极为多个,多个所述电极串联在所述脉冲电源的正极和负极之间。
将电极设置为多个,多个电极串联后,产生的压力波能够相互叠加后在液体导电介质内传播,能够增强压力波的强度。
在一种可能的设计方式中,所述正电极和所述负电极的间隙为0.01~1mm。
这样,保持电极间具有较小的间隙,能够降低电极间的击穿电压,能够减小电极的损耗。
在一种可能的设计方式中,所述脉冲电源的输出电压为500~5000V。
在一种可能的设计方式中,所述脉冲电源的脉冲宽度为0.5~2μs。
在一种可能的设计方式中,所述液体导电介质包括以下溶液中的任意一种:氯化钠溶液,氯化钾溶液,磷酸钠溶液,磷酸钾溶液。
根据本申请的第二个方面,提供了一种医疗器械,包括本申请第一个方面任一可能的设计方式提供的压力波发生装置。
本申请的构造以及它的其他目的及有益效果将会通过结合附图进行详细说明,以保证对优选实施例的描述更加明显易懂。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种压力波发生装置第一种实现方式的透视结构示意图;
图2是本申请实施例提供的一种压力波发生装置另一视角的透视结构示意图;
图3是本申请实施例提供的一种压力波发生装置第二种实现方式的透视结构示意图;
图4是本申请实施例提供的一种压力波发生装置第三种实现方式的透视结构示意图;
图5是本申请实施例提供的一种压力波发生装置第四种实现方式的透视结构示意图。
附图标记说明:
1-压力波发生装置;
10-脉冲电源;20-电极;30-储液机构;
21-正电极;22-负电极。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本申请的描述中,需要理解的是,术语“内”、“外”、“上”、“底”、“前”、“后”等指示的方位或者位置关系(若有的话)为基于附图1所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
高压强电场通过液体,由于巨大的能量瞬间释放于放电通道内,通道中的液体会迅速气化、膨胀并引起爆炸。这被称为“液电效应”。
“液电效应”的主要原理是,在高压强电场作用下,电极间液体中的电子被加速,并电离电极附近的液体分子。液体中被电离出来的电子会被电极间的强电场加速电离出更多的电子,形成电子雪崩。在液体分子被电离的区域形成等离子体通道。随着电离区域的扩展,在电极间形成放电通道,液体被击穿。
放电通道产生后,由于放电电阻很小,将产生较大的放电电流,放电电流加热放电通道周围液体,使液体气化并迅速膨胀。迅速膨胀的气腔外沿在液体介质中或产生强大的冲击波。冲击波随放电电流和放电时间的不同,以冲量或冲击压力的方式作用于周围介质。
冲击波又被称为压力波,由于其以冲击压力的方式在周围介质中扩散,因此,冲击波或者压力波在不同密度组织之间能够产生能量梯度差及扭拉力,产生生物学效应,作用于局部组织从而达到治疗效果。在现代医疗技术中并应用的越来越广泛。
例如,在一些应用场景中,冲击波或者压力波被应用来进行组织破坏,冲击波或者压力波具有压力相和张力相。在压力相产生挤压作用,而在张力相则为拉伸作用。冲击波或者压力波本身产生的破坏力学效应是直接作用,在冲击波或者压力波的张力相时,由张力波产生的空化效应是组织破坏的间接作用。通过这两种作用,可以使冲击波或压力波治疗骨性疾病或软组织钙化性疾病等。
上述应用场景仅作为一种示例性说明,可以理解的是,冲击波或者压力波还可以应用在一些其他场景。例如,成骨、镇痛、代谢激活以及肿瘤细胞的抑制或杀灭等。
目前,大多数冲击波的产生方式是将两块正对设置的电极板放置在液体(例如,水)中,两块电极板分别连接脉冲电源的正极和负极;脉冲电源输入对两块电极板施加高压脉冲电压,使得极板间的液体被击穿,形成电弧;从而形成压力波。
可以知道,板-板电极的平板不可能做到绝对的平整光滑,在实际生产中,总是会存在凹凸不平的凸点或者凹坑。这就会导致板-板电极电发生击穿的位置不固定,在凸点处更容易发生击穿形成电弧,而在凹坑处难以发生击穿生成电弧。电弧位置的不固定导致冲击波或者压力波的位置难以确定,从而无法冲击波或者压力波进行精确导向,并作用于病灶部位。
并且,板-板电极由于平板设置在液体中,而产生的冲击波或者压力波也需要在液体中扩散传播,平板会对冲击波或者压力波的扩散传播造成阻挡并约束冲击波或者压力波的传播,导致难以获得高强度的冲击波或者压力波,对病灶部位的作用有限。
现有技术中,也有采用针-板电极来产生冲击波或者压力波的方式。这种针-板电极能够提高电弧通道或者放电通道的能量注入效率,进而提高压力波的强度。但是,由于电弧通道或者放电通道的能量注入提高,导致针电极容易损耗;针-板电极的间隙发生变化,使得间隙的击穿电压变化较大;影响电极的使用寿命。
针对前述问题,第一个方面,本申请实施例提供一种压力波发生装置,主要思路是将电极的正电极或负电极中的至少一个设置成点状电极或者线状电极;同时,将液体导电介质设置为盐的水溶液。这样,一方面能够为电弧通道或者放电通道注入较高的能量,有利于提高压力波的强度;另一方面,以盐的水溶液作为液体介质,相比于纯水具有更高的导电率,能够降低电极间隙的击穿电压,从而能够有效提高电极的使用寿命。并且,点状电极或者线状电极的放电位置固定,有利于对冲击波或压力波进行精准导向,针对病灶部位进行治疗。另外,点状电极或线状电极对冲击波或压力波在液体介质中的传播扩散的阻挡较小,也能够进一步提高冲击波或者压力波的强度。
具体的,参照图1所示,图1是本申请实施例提供的一种压力波发生装置第一种实现方式的透视结构示意图。本申请实施例提供的一种压力波发生装置1,包括:脉冲电源10、电极20和储液机构30。
具体的,本申请实施例,脉冲电源10可以是单正脉冲电源,也可以是双正、负脉冲电源。其中,正、负脉冲电源的正向脉冲开启时间宽度(即正向脉冲宽度)和负向开启时间宽度(即负向脉冲宽度)可分别在全周期内调节。
可以理解的是,本申请实施例中的脉冲电源10的脉冲方式可以是方波脉冲,又被称为单脉冲。单脉冲电源一般输出参数固定的单向脉冲电流。
当然,在一些可能的方式中,脉冲电源10也可以是双脉冲电源或者多脉冲电源。
具体的,本申请实施例中,电极20可以采用不锈钢、铜、银、钨等材料制成。
在一些可能的方式中,电极20可以是在造影设备下可见的材质,例如,在X光下可见。
本申请实施例中,脉冲电源10与电极20电连接。例如,脉冲电源10通过导线与电极20电连接。其中,导线可以铝芯导线、铜芯导线或者银芯导线。脉冲电源10用于为电极20提供脉冲电压。
可选的,本申请储液机构30可以是由绝缘材料制成,储液机构30的内部具有储液腔。
可以理解的是,在具体实现时,储液机构30可以是由具有一定塑性(例如弹性形变)的材质制成,这样,在储液机构30的储液腔内产生冲击波或者压力波后,冲击波或者压力波能够对储液机构30的壁施加压力形成形变,以便对病灶部位进行治疗。
具体的,本申请实施例中,将电极20设置在储液机构30内的储液腔中,在储液机构30内的储液腔中储存有液体导电介质,并且,液体导电介质浸没电极20。
具体的,本申请实施例中,液体导电介质可以是生理盐水。当然,在一些可能的方式中,液体导电介质也可以是其他电解质的水溶液,其浓度可以大于或等于生理盐水的浓度。
可以理解的是,电极20通常包括相对设置的正电极21和负电极22,正电极21与脉冲电源10的正极电连接(例如通过导线电连接),负电极22与脉冲电源10的负极电连接;需要说明的是,本申请实施例中,正电极21和负电极22并非固定不变,本领域技术人员能够理解,与脉冲电源10的正极连接的电极即为正电极21,而与脉冲电源10的负极连接的电极即为负电极22;也就是说,在不同的连线方式中,正电极21和负电极22可能发生变化。正电极21与负电极22中的至少一个与另一个相对的一端为点状或者线状。
可选的,正电极21和负电极22中的其中一个可以是针电极或者线电极。
当然,在一些可能的方式中,正电极21和负电极22都可以是针电极或者都可以是线电极。
可以理解的是,本申请实施例中,液体导电介质用于在正电极21和负电极22间形成导电通路,以降低正电极21和负电极22间的击穿电压。
本申请实施例,通过在储液机构30内储存盐的水溶液制成的液体导电介质,将电极20的正电极21或负电极22中的至少一个与另一个相对的一端设置为点状或者线状;这样,盐的水溶液制成的液体导电介质能够提高液体的电导率,能够降低正电极21和负电极22之间的击穿电压;也就是说,电极的发热量降低,能够提高电极的使用寿命。并且,点状或者线状的电极产生击穿电弧的位置固定,能够对产生的冲击波或压力波进行精确导向;同时,对产生的冲击波或者压力波的传播扩散阻力较小,利于提高冲击波或者压力波的强度。
可选的,参照图1-图5所示,图2是本申请实施例提供的一种压力波发生装置另一视角的透视结构示意图,图3是本申请实施例提供的一种压力波发生装置第二种实现方式的透视结构示意图,图4是本申请实施例提供的一种压力波发生装置第三种实现方式的透视结构示意图,图5是本申请实施例提供的一种压力波发生装置第四种实现方式的透视结构示意图。
本申请实施例中,电极20包括以下任意一种:线-板电极、点-板电极、线-线电极、点-线电极或者点-点电极。
具体的,本申请实施例中,线-板电极可以是正电极21或者负电极22中的一个为线电极,另一个为板电极;其中线电极可以是导线、导电杆或者导电环等。这样产生的冲击波或者压力波会绕过线电极传播,不会被线电极阻挡;从而能够在电极20周围产生均匀有效的冲击波或者压力波。
可选的,本申请实施例中,点-板电极可以是如图3和图4中示出的电极,正电极21和负电极22中的一个可以为点电极,点电极可以是针电极的针尖。另一个可以是板电极。可以理解的是,本申请实施例中,点-板电极的压力波方向可以是从点电极向板电极方向发射的。这样,冲击波或压力波不会被电极阻挡,能够在电极周围产生均匀的冲击波或者压力波。
进一步的,本申请实施例中,线-线电极可以是正电极21和负电极22均为导电杆,两导电杆相互平行设置。
在一些可能的方式中,正电极21和负电极22均为环状结构,以形成线-线电极。
可以理解的是,环状结构的正电极21和负电极22可以是圆环、椭圆环、多边形环状结构。
进一步的,线-线电极还可以是正电极21和负电极22的其中一个是导电杆,另一个是环状结构的导电环。
能够理解的是,点-点电极可以是两个相对的针电极,点-线电极可以是一个针电极和一个导电杆形成的电极。
在一些可能的示例中,点-线电极还可以是正电极21和负电极22中的一个为点状结构,另一个为环状结构。其中,冲击波或者压力波的发射方向可以是从点电极向环电极的方向发射。
本领域技术人员能够理解的是,点电极可以是设置在环电极的中心,也可以与环电极的中心偏离一定距离。
继续参照图1-图5所示,能够理解的是,单个电极20在液体导电介质中能够产生的压力波或者冲击波范围有限,为增强压力波或冲击波的强度,以及在液体导电介质中的传播范围,以便有效对病灶部位进行治疗。本申请实施例中,在液体导电介质中设置多个电极20,多个电极20串联在脉冲电源10的正极和负极之间。
这样,通过多个电极20共同产生冲击波或者压力波,冲击波或者压力波之间会相互叠加,以多个电极20为中心向外扩散,能够有效增强冲击波或者压力波的强度和扩散范围。采用本申请实施例提供的压力波发生装置,能够产生0.5~10MPa压强的冲击波或者压力波,冲击波或者压力波的扩散范围距离电极20可以达到0~10mm范围。
可以理解的是,由于多个电极20串联在脉冲电源10的正极和负极之间。而电极20的本质是电容,正电极21和负电极22之间存在间隙,具有较大的电阻。电极20的数量越多,需要的击穿电压就越大。对脉冲电源的安全性和成本要求也就会越高。为此,从成本和安全性出发,本申请实施例中,将电极20的数量设置为不多于10个(图中以4个电极20作为示例示出)。
为进一步降低电极20的间隙击穿电压,降低电极20的发热量,从而提高电极的使用寿命。本申请实施例中,将电极20的正电极21和负电极22之间的间隙保持在0.01~1mm。在一些可能的示例中,正电极21和负电极22的间隙为0.1~0.9mm。
在一种具体示例中,脉冲电源10的输出电压为500~5000V。并且,脉冲电源10的脉冲宽度为0.5~2μs。
可选的,液体导电介质包括以下溶液中的任意一种:氯化钠溶液,氯化钾溶液,磷酸钠溶液,磷酸钾溶液。其中,液体导电介质的浓度可以是大于或等于生理盐水的浓度(质量分数0.9%)。
第二个方面,本申请实施例提供了一种医疗器械,包括本申请第一个方面任一可选实施例提供的压力波发生装置1。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (10)
- 一种压力波发生装置,其特征在于,包括:脉冲电源(10)、电极(20)和储液机构(30);所述脉冲电源(10)与所述电极(20)电连接,所述脉冲电源(10)用于为所述电极(20)提供脉冲电压;所述电极(20)位于所述储液机构(30)内,所述储液机构(30)内储存有液体导电介质,所述液体导电介质浸没所述电极(20);所述电极(20)包括相对设置的正电极(21)和负电极(22),所述正电极(21)与所述脉冲电源(10)的正极电连接,所述负电极(22)与所述脉冲电源(10)的负极电连接;所述正电极(21)与所述负电极(22)中的至少一个与另一个相对的一端为点状或者线状;所述液体导电介质为盐的水溶液;所述液体导电介质用于在所述正电极(21)和所述负电极(22)间形成导电通路,以降低所述正电极(21)和所述负电极(22)间的击穿电压。
- 根据权利要求1所述的压力波发生装置,其特征在于,所述电极(20)包括以下任意一种:线-板电极、点-板电极、线-线电极、点-线电极或者点-点电极。
- 根据权利要求2所述的压力波发生装置,其特征在于,所述正电极(21)和所述负电极(22)均为环状结构,以形成所述线-线电极。
- 根据权利要求2所述的压力波发生装置,其特征在于,所述正电极(21)和所述负电极(22)中的一个为点状结构,另一个为环状结构,以形成所述点-线电极。
- 根据权利要求1-4任一项所述的压力波发生装置,其特征在于,所述电极(20)为多个,多个所述电极(20)串联在所述脉冲电源(10)的正极和负极之间。
- 根据权利要求1所述的压力波发生装置,其特征在于,所述正电极(21)和所述负电极(22)的间隙为0.01~1mm。
- 根据权利要求1所述的压力波发生装置,其特征在于,所述脉冲电源(10)的输出电压为500~5000V。
- 根据权利要求1所述的压力波发生装置,其特征在于,所述脉冲电源(10)的脉冲宽度为0.5~2μs。
- 根据权利要求1所述的压力波发生装置,其特征在于,所述液体导电介质包括以下溶液中的任意一种:氯化钠溶液,氯化钾溶液,磷酸钠溶液,磷酸钾溶液。
- 一种医疗器械,其特征在于,包括权利要求1-9任一项所述的压力波发生装置(1)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011488754 | 2020-12-16 | ||
CN202011488754.8 | 2020-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022127506A1 true WO2022127506A1 (zh) | 2022-06-23 |
Family
ID=82058919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/131536 WO2022127506A1 (zh) | 2020-12-16 | 2021-11-18 | 一种压力波发生装置及医疗器械 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022127506A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992012513A1 (fr) * | 1990-12-26 | 1992-07-23 | Technomed International | Procede et dispositif interposant un liquide entre des electrodes dans un appareil d'ondes de choc |
US6383152B1 (en) * | 1997-01-24 | 2002-05-07 | Siemens Aktiengesellschaft | Apparatus for producing shock waves for technical, preferably medical applications |
US20160184570A1 (en) * | 2014-12-30 | 2016-06-30 | The Spectranetics Corporation | Electrically-induced fluid filled balloon catheter |
US20170056035A1 (en) * | 2012-09-13 | 2017-03-02 | Shockwave Medical, Inc. | Shock wave catheter system with energy control |
CN108452426A (zh) * | 2018-03-16 | 2018-08-28 | 上海心至医疗科技有限公司 | 一种基于液电效应的球囊导管 |
CN109069167A (zh) * | 2016-04-25 | 2018-12-21 | 冲击波医疗公司 | 具有极性切换的冲击波装置 |
US20200129742A1 (en) * | 2018-10-25 | 2020-04-30 | Medtronic Vascular, Inc. | Cavitation catheter |
CN214907696U (zh) * | 2020-12-16 | 2021-11-30 | 深圳市赛禾医疗技术有限公司 | 一种压力波发生装置及医疗器械 |
-
2021
- 2021-11-18 WO PCT/CN2021/131536 patent/WO2022127506A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992012513A1 (fr) * | 1990-12-26 | 1992-07-23 | Technomed International | Procede et dispositif interposant un liquide entre des electrodes dans un appareil d'ondes de choc |
US6383152B1 (en) * | 1997-01-24 | 2002-05-07 | Siemens Aktiengesellschaft | Apparatus for producing shock waves for technical, preferably medical applications |
US20170056035A1 (en) * | 2012-09-13 | 2017-03-02 | Shockwave Medical, Inc. | Shock wave catheter system with energy control |
US20160184570A1 (en) * | 2014-12-30 | 2016-06-30 | The Spectranetics Corporation | Electrically-induced fluid filled balloon catheter |
CN109069167A (zh) * | 2016-04-25 | 2018-12-21 | 冲击波医疗公司 | 具有极性切换的冲击波装置 |
CN108452426A (zh) * | 2018-03-16 | 2018-08-28 | 上海心至医疗科技有限公司 | 一种基于液电效应的球囊导管 |
US20200129742A1 (en) * | 2018-10-25 | 2020-04-30 | Medtronic Vascular, Inc. | Cavitation catheter |
CN214907696U (zh) * | 2020-12-16 | 2021-11-30 | 深圳市赛禾医疗技术有限公司 | 一种压力波发生装置及医疗器械 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6780178B2 (en) | Method and apparatus for plasma-mediated thermo-electrical ablation | |
WO2022127509A1 (zh) | 一种压力波球囊导管 | |
WO2022127508A1 (zh) | 一种压力波球囊导管 | |
JP4920407B2 (ja) | 周辺組織の破壊が最小限で済む一様な電界を発生する電気外科的システム | |
US8323276B2 (en) | Method for plasma-mediated thermo-electrical ablation with low temperature electrode | |
CN105598021B (zh) | 一种液电脉冲激波发生器 | |
US8798705B2 (en) | Medical instrument for delivery of high voltage pulses and method of delivering the same | |
TW201815436A (zh) | 具備改良電極壽命之快速脈波電動液壓脈衝產生裝置 | |
RU2138213C1 (ru) | Устройство для коагуляции и стимуляции заживления раневых дефектов биологических тканей | |
CN214907696U (zh) | 一种压力波发生装置及医疗器械 | |
WO2022127506A1 (zh) | 一种压力波发生装置及医疗器械 | |
KR102346167B1 (ko) | 전기화학적 작용을 유도하는 고주파 비가역적 전기천공 시스템의 펄스 인가 방법 | |
KR200379423Y1 (ko) | 체외 충격파 쇄석기의 충격파 발생기 | |
RU2732696C2 (ru) | Портативное устройство, используемое главным образом для прижигания и высушивания посредством искрового разряда | |
RU2151559C1 (ru) | Устройство для стимуляции метаболизма тканей ударно-волновыми импульсами | |
RU98633U1 (ru) | Генератор импульсного рентгеновского излучения | |
Teslenko et al. | Generation and focusing of shock-acoustic waves in a liquid by a multicenter electric discharge | |
KR20220095172A (ko) | 전낭 절개 장치 및 전낭 절개 장치에 전기 펄스를 인가하는 방법 | |
CA2139843C (en) | Method and apparatus for pulsed magnetic induction | |
KR100521247B1 (ko) | 열수력학적 충격파 발생기 | |
RU2000086C1 (ru) | Генератор фокусированных ударных волн | |
CN106983537A (zh) | 一种高导放电电极 | |
KR102462865B1 (ko) | 체외 충격파 치료기 | |
Xiao et al. | Atmospheric Air Plasma Streamers Deliver Nanosecond Pulses for Focused Electroporation | |
CN117718211A (zh) | 一种沿面电爆炸耦合多物理场源的复合式机械波发生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21905435 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21905435 Country of ref document: EP Kind code of ref document: A1 |